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Abstract

This paper develops a framework to evaluate the economic

value derived from a firm's ability to switch between different

modes of production in the face of uncertain prices. The model,

cast as a set of simulataneous stochastic dynamic programs, is

solved for the ex-ante value of flexibility, the optimal

technology choice, and critical prices at which switching is

optimal.

This general model of flexibility is used to synthesize

several recent studies of real options encountered in capital

budgeting. For example, the model yields as special cases Ca) the

value of waiting to invest, (b) the option to abandon, (c) the

value of having an option to shut down, (d) the replacement timing

and technology choice, and (e) the "time to buildu option for

irreversible projects that require sequential outlays.

We use an i-llustrative example with two modes to show that

the value of flexibility is monotonically increasing with price

variability and switching frequency. The value of flexibility can

contribute about a 15 percent improvement over the better fixed

technology. Early in the life of the project it is optimal to

switch modes when the difference between values under one mode

(for the current period and optimal switching thereafter) and the

other mode exceeds the switching cost. Towards the end of the

economic life, the above difference must be significantly larger

for swithcing to occur.





In this paper we model investment behavior when firms face stochastic

relative prices and are allowed to switch between production odes. We consider

firms which can operate with one of several technology modes, where each

technology will be preferred over the others under some states of the world. If

the firm is already producing with one mode thenou a change in conditions may make

it optimal to switch to different mode and incur switching costs. We derive

the value from this flexibility and the critical valueos of the state variables

at which it is optimal to switch between modes.

A very similar problem also arises when considering investments in Mw1

projects where some have irreversibly fixed tchnologies and other, more

expensive ones, are flexible systems. The flexible systems allow for changeos in

production modes without large switching costs. This models derives the

incremental value due to flexibility which when compared with the incremental

cost of the flexible system will determine the choice of tchnology.

We cast the general problem as that of solving a set of simultaneous markov

decision problems and derive the or-ante value of flexibility, the optimal

tochnology choice, and the critical values of the states of the world at which

switching modes is optimal.

This approach unifies several real options arising in capital budgoting as

special casos of flexibility.1 Whon one mode of the flexible system is the no

production mode our problem simplifies to that of valuing projects in the

presence of, an option to shut down (McDonald and Siegel [19851). When

flexibility is limited to a single switch our problem yields the optimal

investment timing problem (McDonald and Siegel [19831) and the optimal

abandonment problem (Myers and Majd [19841) as special cases. When switching to

a previously employed mode is excluded our problem yields the 'timeo to build"

option for irreversible projects that require sequential investment outlays



2

(Xajd and Pindyck [19851). Although all of these real options must be included

in most investment decisions, previous papers only looked at one of them at a

time, thus, preocluding interactions between the various options. Our general

model of flexibility allows for the simultaneous treatment of all real options

in the capital budgeting process.

The model is best elucidated through an examplo. Consider an electric

power generation plant which can be fired with coal or oil.2 Suppose relative

prices at the time of the initial investment are such that the expected profit

is greatest when operated with oil. This decision can, however, be reversed if

conditions change. For instance, if the relative price of oil increases

sufficiently then it may be better to switch to coal and incur retooling costs.

Our model solves for the relative price at which it is optimal to switch.

When switching between technologies is costly, making the current choice

requires a value maximizing firm to look ahead at all future price contingencies

and simultaneously solve for the entire path of decisions. This also implies

that optimal choice depends on the technology which was in place during the

previous period. In other words, a switching decision will affect not only the

cash flows from the imediately following period but also affect the switching

decisions and cash flows during all future periods. However, the entire path is

summarized by the mode of use in the previous period, thus, yielding a markov

decision process.

Now consider an electric utility which is planning to build a no power

plant. One of the choices is to use a fixed technology which is specially

designed to operate under one type of fuel. Suppose that based on current

prices and forecasts the best fixed technology is a coal fired one. In the menu

of available choices to the utility is also a flexible technology where the fuel

type can be switched easily and at relatively little cost. Such a plant no

doubt would incur a higher initial investment than a comparable plant with a
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fixed technology. However, given the uncertainty in energy prices the value

derived from flexibility to switch fuels may offset the extra investment. The

difference between values of the flexible and the best of the fixed technologies

gives the value of flexibility. A simple comparison of the incremental

investment with the value of flexibility yields the tchnology choice.

One can imagine situations in which switching is based on input prices,

output prices or both. Other examples here relative input prices determine the

appropriate production process are numerous: Tire manufacturers will shift the

production technology based on the relative price of natural and synthetic

rubber; Automobile makers will use different metal alloys or plastics in certain

components based on relative prices; In many modern manufacturing applications

it is possible to switch rapidly between production processes based on relative

price of energy inputs. In areas where electricity is priced on a spot market.

switching within a production shift may be feasible.

In many other production situations output price and quantity demand

conditions determine the technology choice. The prototypical example is the

choice between a job shop with human machinists) having low setup costs and a

line process such as a 'hold and stamp" machine which has high setup costs. The

conventional wisdom among production planners is that for applications with high

unit costs, low volumes, and with frequent design changes the extremely flexible

job shop may be ore desirable. The value of flexibility will be high for

products such as automobiles where model changoes occur frequently and, thus,

justify investments in flexible manufacturing systems. However, for products

with low unit costs, high values, and infrequent design changes a line process

may be more desirable. Our approach formalizes this intuition and provides a

quantifiable framework that is useful in capital budgeting.

Another example of where relative output prices determine the optimal

production process can be found in the petroleum refining industry. The value
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of broad rangso refinery will be higher when the relative prices of the refined

products is more uncertain. Hence during periods of high output price

volatility a broad range refinery will be profitable, while in periods of

relatively stable prices a refinery with a narrower range of products will be

preferred.

We model relative prices with a known stochastic process. In the numerical

simulations we use a mean reverting stochastic process. Since flexibility is

derived from an ability to switch between substitutes it is reasonable to expect

that market forces will drive the relative price to fluctuate randomly but

revert towards some mean value. 3

We assume that firms are price takers in both input and output markets

characterize technologies by profit functions. In the power generation

example, a change in the type of fuel will be reflected by a change in the

profit function. The technology choice decisions are made between small

discrete intervals. At these decision points the firm contracts prices for the

duration of a single period but all future prices follow the known stochastic

process. One interpretation of this stylization is that contracting periods are

given exogenously to the firm and, therefore, mode choice decisions need only be

made at the beginning of such contracting periods. Alternatively, we can think

of the this as a discretization of the continuous endogaeous contract-decision

points.

We study the sensitivity of the value of flexibility and the critical

relative prices at which switching must take place on the various model

parameters. Our results show that the value of flexibility increases with

increasing price volatility, increasing price elasticity, and decreasing

switching costs. The value also increases when the switching interval is

shortened. We approximate the continuous switching case by numerically studying

the convergence limit of the value of flexibility for very small switching
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intervals.

Our results bear a close relationship to the option pricing literature.

For example in the case with no switching costs, the expected value of maximum

profit for a future period is analogous to the payoff from a call option with a

stochastic exercise price. Hence the value of the firm can be obtained as the

sum of a series of such options. Although there are known closed form solutions

-for some stochastic processes such solutions are not available in geneoral. In

another special case when switching is costly jd when now process must be

installed at every switching decision point our problem resembles a compound

option.

The rest of the paper is organized as follows; In the next section we

outline the basic structure of the model by describing the production processes

and price dynamics. In section 2, we derive the value of projects under fixed

technologies and use it as a frame of reference to compare the value under 

flexible technology. In section 3, we derive the value of a flexible project.

In section 4, we compute the value of flexibility as the difference between the

flexible and fixed projects, discuss implications for the capital budgeting

decision, and derive previously studied real options as special cases of

flexibility. Section 5 reports results from a numerical example and

investigates comparative static relationships. Finally, in section 6 we make

some concluding remarks.

1. The Profit Function and Price Dnamics

Consider a price taking firm which faces one stochastic price while all

other prices are deterministic. We model the stochastic dynamics of the

relative price Pt by the mean reverting continuous time stochastic process

dPt - (P - Pt) dt + apdZp, > 0
t ~~t

(1)
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where dZp is standard Gauss Weiner process.6

In this analysis, we assume that Pt does not contain any systematic risk,

and thus the equilibrium rate of return for an asset with similar risk

characteristics to Pt will be the risk free interest rate r.7 An application of

Ito's lea reveals that any differentiable function of Pt will also contain no

systematic risk.

We characterize a project by its instantaneous dollar (flow) profit

function Gf(Pt).
8 At time t the firm observes the realization of Pt and fixes

it contractually for a short period (t,t+v).9 We find the optimal switching

strategies for a given value of r and then vry to study the comparative

statics. When contracting arrangements are liven exogenously we can study the.

effects changing contract duration on the valueno of flexibility. When contract

length is within the control of the firm, we can approximate the limiting

continuous time case by very small values of .

The flow of profits during this period is constant and its present value

(at tiome t) gives the profit function G(Pts):

t+T

(2) G(P t) * f G(Pt) o-r(s-t)ds
t

= f(P t ) O(?)

where () - (1-o-r)/r, and r is the risk free interest rate. Varying

functional forms and parameters can represent the alternative production

processes GJ: j as (1...oM). In the power plant oexaploe the generation process

corresponding to each nergy type can be represented by its accompanying profit

function.
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2. Value without Flexibilit: 

In order to form a frane of reference to compare flexible technologies and

thereby obtain the value of flexibility, we first derive the value of the

project under a fixed (rigid) technology. Let the economic life be T thus

having N (- T/) decision periods. The present value of the project, V is

the discounted sum of present value profit functions:

N

(3) V(0) - o Gf(P i) e() r

i-l

Since closed form solutions to the expected value are not available in general,

we can use a backward recursion formula to assure a computationally feasible

method to evaluate V.

Since prices are contracted at beginning period values, the value function

at the beginning of the last period (at time T - (N-l)) is simply the profit

during that period:

(4) VT) - G(PT).

The value funotion at the start of the previous period will be the sum of

profits from that period and the discounted value V(T):

(5) VR(T-) - GPT¶_) + p EV(CT)1.,

where p (- o ) is the discount factor. Continuing this backward recursion

gives the value function at time 0 as
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(6) V(0O) - G(P0) + P E0oV(C) .

Expectations are computed numerically by discretizing the transition probability

matrix of the price process and forming a probability weighted sum. Details are

given in an appendix.

3. Value with Flexibilit: VP

Under a flexible production system the firm must evaluate the stream of

future profits to determine the optimal technology mode for the coming period.

The choice is reconsidered upon the arrival of new price information at the

boginning of the next period. If production decisions call for a change in

process type then switching can be accomplished instantly incurring a cost .10

Consider the last period of operation beginning at time T-v. The value of

the project for the remaining life () will depend on the price PT- and the

mode that was used during the previous period. The latter dependence stems from

the presence of switching costs. The mode in use during the immediately

preceding period sufficiently summarizes the entire path of odes for purposes

of the current decision rule. Therefore, the value function at time T-c will

consist of the arguments time, the relative price realization, PT 'T and the

state, ST_,. which represents the mode employed in the previous period.

If mode j was used in the previous period (i.e. ST - j) and price PT-

was observed then the value function at T-v can be written as

(6) V(T-.PT. ) - sup [ G (PT )- . G... )....,G(PT);--6 ].

where Gj is the profit function for the jth mode. 1
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Now consider the decisions at timo T-2s. If ST_2s - J. thoen the firm

should choose to switch processes only if the present value (at time T-2) of

all future cash flows when using another mode during the coming period (and

optimal future decisions) is greater than the corresponding cash flows when

continuing to use mode J.

(7) VF(T-2, PT-2'. j) sup [ GI(PT_2 )-6+p T2 [V FCT-. PT .)J ..........

GJ(PT2)+Pp r2tVF(T- PTJ)] · .........
G (PT_2 )-8+P Ez[T-2v (T'PT.' ) ]

There will be M such equations, for j - 1,....,., at point in time. The

backward recursion is continued until time 0. where the firm observes and

contracts prices PO. The simultaneous system of stochastic dynamic programs can

be solved for the value of the flexible system and the optimal switching

strategies.

We drop the time arguments and list the general form of the dynamic

programming equations for future refeorence:

(l) W - swp[G +pB(l)l] ...... +PV( ............. G +p ()]]

(8) V(j - .sp[Go-,+p [F(, l....G+ppB B v (j)l, .......... .. .G.o"-+pE[Vx]]

VP(y,, sup(G'-+pB[(1)ooo......o..o.GppIt[(M)J, , ]

4. Alications

In this section we apply the general model of flexibility to several

previously studied applications of real options in capital budgeting. The
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values of the option to wait to invest, to bandon, and to shut down re derived

as special cases when there are only two alternative modes of operation of which

one modes becomes null tchnology. When investments are incurred in stages,

the resulting time to build option also is shown to be a special case.

4.1 The Value of Flexibility

When making the initial investment at t-0, VF does not depend on the state

SO. Thoe present value of the flexible project can be expressed as

(9) VF(O.PO ) sup [ G(P 0) + P BO[VF(,.P.l'] ........*

.... j(P) + p %[ PP.j). .......

......G (P) p P E0B (..P.)l .

The value of flexibility is the difference between VF(O.P 0 ) and the maximum

of the fixed projects:

(10) V(O) - VF(P) . [ax V VV- 11.0. 1.

If Ais i-l,...,9, are the initial investment for fixed processes and A is the

investment for the flexible process the capital budgeting decision rule is to

compare V(O) with the incremental investment requirement for the flexible

system. In other words, invest in the flexible system only if

V - > Max[ A M]- A]].

In cases where there is no truly flexible teohnology, the above solutions

are also useful in forming mode choice when faced with multiple technologies:

For example, when faced with two technologies A and B the decision rule is
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Invest in mode A if VF(O, PO)-AA > 9V(O, P)-A and in mode B if the inequality

is reversed.

One further caveat rogarding the switching cost should be mentioned. For

convenience, we have assumed switching costs to be a constant. In the above

case, the switching cost associated with the first time a processor is brought

on line will include its purchase and installation costs. Thereafter the

switching cost will only involve retooling and reorganization costs. We have

also assumed switching costs to be a constant amount, whether the switch is from

A to B or from B to A. In practice this need not be so. For instance in the

power genoration examploe, switching from coal to oil may be more costly than

switching from oil to coal. This can be easily accomodated in the dynamic

programming algorithm by replacing 6 by %AB and &BA' the costs that take into

account the direction of the switch.

4.2 Replacement Decisions

If the project involves rplacing one machine with another, then the

initial mode 0 will be the one corresponding to the exisiting processor. If

SO - A, then the value of the project is given by

(11a) V (O. P0A) - s. [ G(P) + p 0[. P. )l .

GB(Po) - B + P Bo0[Vl(.,P,B)1 ]

where B is the cost of mode B.

Furthermore, a simple comparison of the arguments of the sup .,.]

determines the choice of the tchnology. If GA(PO) + p E0[V (VrP,A)I > GB(P0)
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- & + p Eo[V?(?,P.B)1. then continue with ode A; otherwise replace it with ode

B.

Similarly, if SO - B, then the value of the project is given by

(lib) VF(O0 P' B) - sup [ GA(PO) - &A + p Bo[V(v.P,A) 

GBepo) + p E0BV(TP.B) 1 i

and ode B should be replaced only if GA(Po) - A + p E0 [BF ( v PA) ] G (P0 ) + p

E0 tV (. P. B) 

4.3 Valuation when there is an otion to shut down

A type of flexibility that is always available to manufacturers is the

option to shut down. When the value of a project is stochastic, it ight be

optimal to operate a currently unprofitable facility in order to save shut down

and startup costs. In a recent paper, McDonald and Sieogol [1983] studied this

problem and derived the value of having such an option to shut down. Their

analysis, based on an infinitely lived project whose value followed goometric

brownian notion, derived a closed form solution to the above value. It is easy

to see that the presence of the option to shut down is merely one form of

flexibility, and the value thus derived can be obtained as a special case of our

fromul at ion.

If the second mode of our flexible manufacturing system is the no

production mode then replacing B with 0 will yield the value of the project

under a shut down option. Shut down and startup costs'are represented by the

switchins costs AB and BA* The algorithm presented in this paper can be used

to evaluate the value of the shut down option under a variety of price processes

and switching cost sceonrios. It is not limited to infinite lived projects.
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4.4 The Value of Waitins to Invest

Our model can be reinterpreted to study the value of waiting to invest,

which was investigated by McDonald and Siegel [19831. When the price of

investments and the present value from the project are stochastic, the optimal

investment decision may not be to invest as soon as the net present value is

positive. By waitins until the investment price and the project value reach

some critical lvels, the firm can derive a higher NPV. McDonald and Siegel

solved for this value in a continuous time model where the project value follows

a log normal process with a drift and where projects are infinitely lived.

With minor reinterpretations we can address above problem within our

framework. Let the inital mode of operation be the null mode (i.e. SO - 0).

The switching cost from the null to the production mode (mode 1) will equal the

initial investment cost (i.o. ) If shut down is not allowed the switching

cost from the production to the null mode should be set at a very large value

(i.e. 10 - ). 1 3 The value of the project under the above parameter values

will include the value due to the optimal timing of the investment. Hence, the

difference between the value of a fixed teohnology and that of above flexible

technology will be the value of waiting to invest.

4.S Value of the Otion to Abandon

A very similar option to that of waiting to invest is available at the end

of a project. When the slvageo value and the value of the project over its

remaining life are stochastic, the optimal time to abandon a project can be

solved in a manner similar to that above. This problem was solved by Myers and

Majd [1984] when the values were assumed to follow goometric brownian otion and
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when project life was finite. Since closed form solutions exist only for the

infinite tioe case, they used numerical methods to solve for the value of the

abandonment option,.

The abandonment option can be incorporated in the value of the project by

considering the following parameter values in our-general model of flexibility;

lot the initial state be the production mode (mode 1), the alternative mode be

the null mode (mode 0), 610 salvage value, and 601 o.

The 'ime To Build" Otion

In a recent paper ajd and Pindyck [1985] odel the value of projects when

(a) spending decisions and cash outlays occur sequentially over time, (b) thoro

is a maximum rate at which outlays and construction can proceed and () the

project yields no cash flows until it is completed. The pattern of investment

outlays can be flexible but will be subject to a maximum rate constraint.

In order to study this problem we can specialize our general model of

flexibility in the following ways; Lot the maximum rate at which investment

outlays can be made be 6 per units of time and Gi.) be the profit function of

the project after i such investments of capital has been incurred. The total

investment required is Nb (i.o. investments of 6). In the case where no cash

flows are derived until all investments are made Gi - 0 for all i < N and GM

will be the profit function of the project. Once an investment has been

comitted it is irreversible. In our model this implies that the firm can not

revert to a mode of operation which was used during a previous period. These

conditions specialize the general system of dynamic programs in equation (8) as

follows;

V() - sup[ G1+E[V(l), G-6+B[V(2)]. ........ G-+EV()
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(12) V(j) - sup[ GJ+E[V(J)], G+-6+E[V(J+l) ], ........ I -6+E[V(#)] ]

0 0

V(i) - sup.[ G-6+E[V(I)] i.

Since the profit functions re ranked according to the level of outlays,

eliminating the possibility of switching to a previously used state is achieved

by including theo value functions corresponding only to higher levels of

investment in the sup[.]. In the first period when no investment has boon made

j - 1, and thus we have the equation for the full flexibility case. After all

investment has been incurred j - M, and the project becomes a fixed technolgy.

. An Examle and Comuarative Statics

Since our model does not yield closed form solutions for the value of

flexibility, we use a simple oexample to illustrate the solution technique and

numerically study comparative statics.

We use the following mean reverting stochastic process to model the

relative price path;l4

dPt (P'Pt) dt + p dZp.
t

The instantaneous drift term (P - Pt) acts as an elastic force which produces

mean reversion. For example, if P - 1, when Pt > 1 project A yields higher

profits, but when Pt < the dominance is revesrsed. In the poswer generation

example we can treat the relative price of oil with respect to coal as Pt.

Prior to OPEC price increases Pt < 1, thus making oil burning more cost
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efficient. Since OPEC, the relative price of coal became cheaper, thus making

coal the preferred fuel. The recent dramatic reduction in oil prices have

reversed this relationship. In general ,although less dramatic, it is likely

that market forces will move to make the relative price of substitutes revert

toward the mean value of P.

The stochastic torm dZp, with variance ap, causes continuous fluctuations

about Pt. ap measures the volatility of relative prices. We think that such

processes will more accurately depict price paths of production inputs and

output s.

As the bas case we chose parameter values - 0.1, p 0.20, P - 1.

For purposes of numerical computations values of Pt are restricted to the range

15[0.5,1.51. This range is divided into 100 discrete price levels. Details of

constructing the discrete probability transition matrix are given in Appendix 1.

The firm can operate with one of two technology modes:
GA Q

G - a1 + 2 P,

GB b1 + bPAP

The parameter values were chosen such that GA. GB when Pt p (-1) and

monotonicity and convexity conditions are satisfied. The base case values were

a1 a2 5 I 1.5

b l - 4.5 b 2 - O S p 0 1.1

a1 and b1 capture the effects due to fixed costs while 2, b2, a and reflect

the price lasticities. The fixed mode B is relatively insensitive to price

while that of A is very sensitive. Mode A can be thought of as having higher

fixed costs than B: a1 ( bl.

We set the switching cost 6 - 0.05 which is about 1 percent of the mean

annual profit. The projeoct has an economic life of 30 years which we divide

into 300 steps, thus, under our contractual arrangement firms contract for a

period (-.1) that is little over a month.l6 Switching decisions are made at
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the beginning of the contract period. In the comparative static analysis we

numerically study the impact of changes in contract length (), sitching cost

(6), volatility of the relative price (op), mean reversion parameter (), and

relative price elasticities () on the value of flexibility and the critical

prices for switching modes.

Since we assume zero systematic risk in prices, we discount all cash flows

at the risk free interest rate.l An instantaneous risk free rate of 2 percent

is used in the baso casL .

In figure 1 weo plot values of the fixed tchnologies and the flexible

technologies under each of the two starting states against initial price

realizations. For low values of P0, fixed mode B is preferred over fixed mode

A. For higher values of Pt the preference ordering is reversed. Although GA(1)

= G (1) the price at which the firm is indifferent between A and B (i.e. VA -

VB ) is not at PO 1. An application of the Jensoen's inequality shows that the

expocted values of VA and VB do not have to equal since the profit functions

have different levels of convexity. The indifference point, PI, is

approximately 0.93. The V and VB plots are ve close together indicating

that values of the flexible technology are not affected much by the starting

mode.

The value of flexibility, however, is significantly affected by the price

realization, P0. This is shown in Figure 2, whero the Percentage Increase in

Value due to Flexibility (PIVF), [(VF/Max(VA, VB))-l)1OOI. is plotted against

the initial price. PIVF is maximized whon the two modes of production are

similar (at P0 - PI). Flexibility produces about a 1 percent improvement over

the better of the two fixed modes.

The reason for this peaking of VF can be explained as follows; For a

moment ignore switching costs. Suppose P0 < P and the firm uses the preferod

mode B. For a change in mode to be warranted the discrete price chango (over a
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discrete tine interval) must be greater than (PI-P). But the probability of a

price change is inversely related to its magnitude and, hence, the probability

of a switch in mode. This situation is symmetrically opposite for P > PI in

that the firm will operate with mode A and require a price change greater than

P-PI in order to switch to B. Therefore, the further away P0 is from PI the

smaller is the probability of switching modes. With switching costs the

threshhold price change for switching modes becomes even larger.

An obvious analogy can be drawn to the options pricing literature. When

PO<PI the firm will employ mode B and hold a call option to switch to mode A.

This option is out-of-the-money until P0 becomes larger than P. However, for

PO)PI the firm will employ mode A and hold an out-of-the-money option to switch

to B. Hence the only value of P0 at which the option is in -the-money is when

PPI. The value of this option (the value of flexibility) is maximized at

P0-PI. A P0 moves away from PI the option goes deeper out-of-the-money.

In Figuro 3. we study the optimal switching points over the life of the

project. The critical price at which it is optimal to switch from mode A to

mode B is plotted against time in the top line (SW1). The critical switching

point from B to A is the lower line (2). In a single period profit maximizing

world, the critical switching point will be when the difference between VA and

VB is equal to the switching cost. As the plot indicates, towards maturity of

the project it is optimal to switch only if the price change yields a larger

difference in value than the switching cost. This is because of the possibility

of running out of time to switch back in case of a price change which requires a

mode reversal. As a consequence when there is little time remaining the

switching costs exceed the value of flexibility (derived at the steady state

critical prices) and it becomes simply not worth switching. In earlier periods

SW1 and SW2 are at their steady state values where switching takes place as

soon as the difference between VF and VF exceeds the switching cost.
A B
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We now turn to the comparative static analysis and vary the bats cas.

parumeter values and investigate the impact on the value of flexibility and the

critical switch points. In Figure 4 we plot tho values of the fixed and

flexible systems against p for P0 - P. A cteris aribus increase in ap

increases the expected value of the convex profit functions. Since we measure

profits at P0 - E(P) - Pan application of the Joenson's inequality shows that

E[Gi] is an increasing function of for convex G . For very small values of a.

GA is slighlty greater than GB. This is probably due to the finite contracting

lengths and the approximations introduced by disroetizing the price process. In

this model flexibility is derived from the firm's increased ability to cope with

price uncertainty. Hence, the value under flexible tochnologies increase with

incroeasing volatility.

Figureo 5 shows the responsiveness of PIYF to changes in a. As expected the

value of flexibility increases with increasing volatility. The intuition bohind

this result is similar to that which explains the increase of call option prices

with incrossing volatility of the stock price. Lik the exercise price in a

call option, the presence of flexibility provides down sido protection in the

ability to switch to the alternate mode. Since profit under the alternative

mode itself is ffected by relative prices this is similar to an option with a

stochastic exercise price. However, due to the state dependency introduced by

switching costs our problem is more complex.

We next turn to the impact of changes in switching cost 6. Figureo 6 shows

PIVF plotted against . As we expect, coterie paribus increases in 6 lowers the

value of flexibility. The impact of on critical price is depicted in Figure

19
7. As the switching cost is reduced the critical prices move towards PI.

Values of rigid and flexible systems and PIVF against are plotted in

figures 8 and 9. respectively. As increases the value of fixed technologios

increase but those of flexible technologies decrease at a faster rate. Hence,
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the value of flexibility decreases. This further illustrates that the value of

flexibility is derived from the presence of uncertainty. When - 0 the prices

are purely random. As A is increased it imposes an increasing tendency to move

prices towards the mean, P, and introduces a deterministic component.

The responsiveness of the value of flexibility to increases in the risk

free rate is demonstrated in Figures 10 and 11. An increasing discount rate

reduces the value of both rigid and flexible technologies. However, the value

of flexible technologies decrease at faster rate than the rigid ones as the

seen by the converging curves in Figure 10. Therefore. PIVF is reduced as the

risk free rate increases.

Figures 12 and 13 show the values of the rigid and flexible systems and the

value of flexibility plotted against a. Since we hold all other production

function characteristics constant, this experiment captures the effect of a

wider disparity in the price elasticities between the two modes. 2 0 GA is a

monotonically increasing function of a and the value of the flexible systems

also are increasing monotonically with a. Therefore, within this range of a,

PIVF is monotonically increasing and cancave.

The intuition behind this result is that, the degree to which the two modes

differ at the indifference price (PI) determines the value added due to

flexibility. Since the probability of smaller price changes (during discrete

intervals) is greater than those of larger ones, as the disparity between

profits under the two modes grows the value derived from each switch will be

greater.

Finally, we study the comparative statics with respect to the decision

interval . In an attempt to minimize computational costs we considered a

project with a one period life and partitioned this interval into smaller

contract periods. There are two effects taking place with changing : (i) Due

to the contract length and (ii) due to the decision interval.- If contract
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periods are exogenous then these must be equal since it only makes sense to

switch when a new price is rvealed. Since in our model more frequent decisions

do not incur higher switching costs, we expect the value of flexibility to be

maximized when continuous decisions are permitted. This is illustrated in

Figuro 14 where the value of flexibility increases with increasing frequency of

decisions (decreasing values of r). Since the prices are reverting to a

constant mean and since the P0 is chosen to be the mean contracting length will

not affect the values. If, however, the prices had an increasing trend then

increasing contract lengths will lock into a lover price which will result in

reduced values of flexibility. When P0 is away from the mean this effect can be

significant even under mean reverting processes.

As the stop size was reduced the values increased but levelled off as 

became very small. For very small step sizes the values can be thought of as

approximations to the continuous tino problem with endogenous contracting.

However, for smaller than 10- 5 the values started flling. This is due to

rounding off errors in the nmerical computations.21

Figuro 16 shows the behavior of critical prices to changinSg . As is

made smaller (approaching continuous time) the critical switch points diverge.

Similarly, we can also investigate the effect of ceteris baribus changes in

other technology charsactristics. This analysis is restricted to price paths

containing no systematic risk. With minor modifications our model can

incorporate the risk characteristics of the cash flows by adjusting the discount

rates used in the present value calculations. 23

6. Concluding Remarks

In this paper we model a firm which faces stochastic prices (for inputs

and/or outputs) and has the ability to switch between modes of production in
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response to price realizations. We derive the o ato value of flexibility and

the critical prices at which modes must be switched. The reaction of the value

of flexibility and the optimal switching between modes to changes in price

volatility, switching costs, and frequency of decisions is studies via a

numerical example.

This approach has wide applications in capital budgeting problems. When

deciding between investments into fixed and flexible manufacturing systems we

can compute the value derived from flexibility and compare this with the

incremental investment requirement for the flexible system. Once a technology

is in place and it is costly to switch, our model givoes the critical price

changes that would warrant such a switch.

An important contribution of this paper is to synthesize and interpret

several recent applications of contingent claim analysis to capital budgoting

within a more gsenral framework of flexibility. In particular we show that the

options to shut down, to wait to invest, to abandon projects, and that due to

"time to invest" become special 'cases of our model.

Although we use a meoan reverting stochastic process in the illustrative

application the numeorical techniques are quite genoral and can be applied to a

wide range of processes. This analysis was also restricted to price paths

containing no systematic risk. This can easily be remedied to include the risk

characteristics of the cash flows by adjusting the discount rates used in the

present value calculations.

Another seeming limitation of this analysis is that we consider the project

in a series of discrete steps. The switching decisions are restricted to those

stops and prices are hold constant over the intervals. However, by shrinking

the decision interval we studied the limiting case which approximates continous

time. Nevertheless, the model with contracting warrants consideration on its

own merit. We plan to study this in a future paper.
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Although the model seems best suited to study broad class of industrial

projects it can lso be applied to several purely financial problems. For

example, the flexibility to switch between assets (incurring transaction costs)

in managing a portfolio represents direct application of this model. Exposure

mangement problems. particularly in multicurrency setting, can also be

analyzed within this context.

Furthermore, the extreme generality and flexibility of the model makes it a

prime candidate for an expert system aimed at making complex capital budgeting

decisions.
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PootnotoU

1 Recent papers by Mason and Mrton [1984] and Baldwin, Mason, and Ruback
[1983] discuss the use of contingent claims analysis is capital budgeting
applications. They note the existence of a value from flexibility that is
similar to that discussed here.

This description applies to truly flexible plants which are designed to
switch between fuel types and also to ases where the plant is originally
designed to operate on one type of fuel but can later be modified to operate
under other fuel types. Both scenarios can be handled within this framework
with proper adjustment of the switching cost structure.

This mean may be a constant or chsange over time. For example, if technical
or market characteristics change, then the mean relative price if the
substitutes will change accordingly.

We can allow for some monopoly power and use cost functions to characterize
technologies.

SThe stochastic price could be for a factor input or an output. Although
conceptually similar, the case of multiple stochastic prices makes the
computations substantially more complex.

6When we model the price by geometric Brownian otion we can obtain closed
form solutions to some of the cases studied in this paper. Those results are
reported in Kulatilaka [198Sb].

7 i.e. dZ is uncorrelated dZm the stochastic term of the returns on a well
diversified portfolio.

8 If Pt' the stochastic price, is an output price then Gf is monotonically
increasing. concave and homogenous of degree one in Pt. If Pt is an input
price G is monotonically increasing, concave, and homogenous of dgree one in
Pt.

9In many applications firms tend to go into contractual arrangements for
purchasing inputs and outputs. This stylization will accurately depict such
firms. Quasi-contractual arrangements, sluggish price adjustments and
transactions in forward and futures purchases are also coon in output goods.

OIn a recent paper Majd and Pindyck [1985] have considered the staggered
nature of investments. We can relax the instantaneous switching assumption by
modeling switching as taking place over several steps where the decision can
be reconsidered at each of these sub-decision point.

liThen the value was not state dependent and when considering only two
alternative modes then our problem simplifies to that in Stulz [19821 where he
derives the value of a security hose payoff is the maximum (or minimum) value
of two assets. Such is the case when there are no switching costs.

12Although our model allows for other starting modes, we chose a null initial
mode to illustrate the McDonald - Siegel case.

1 3 If we allow for shut down then 10 shut down cost.
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14 We also used the process: dP - (P- P) dt + a dZ , where thet th
instantaneous variance is proportional to current prceo. Lthough the
numerical values were changed the qunalitative results remained invariant.

1s We also experimented with finer rid sizes but the value added in obtaining
moother transitions did not, in my opinion, justify the increases in
computational costs.

16 Smaller time increments re used in later comparative static experiments.
Although this value of does not givo a good approximation to the continuous
time case the results are qualitativoly similar. We can still interpret this
case a realistic exogenously dterminAd contract length.

17 Alternatively we can treat this as risk neutral world.

sn separate paper (Kulatilaka [1986]) we follow the conventional
contingent claim pricin literature and model flexibility, in the absence of
switching cost and when prices follow geometric Brownian otion, as call
option with stochastic exercise price.

19 At P - PI the value functions re identical.

20
The range of allowable values of a is constrained so that the regularity

conditions are satisfied and that nithor technology dominates over the
entrire rsngo of possible prices.

21 As becomes extremely small the valun contribution in one time stop also
becomes extremely small. Even with double precision calculations on 32 bit
computer the rounding off errors start to become significant at those values.

22 The flat regions of the plots are due to the discrete approximations used
in the price goeneration process.

2 3Seeo Kulatilaka [19861 for such a treatment hon prices follow geometric
brownian otion but earn below equilibrium rates of return.
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ADe ndi 1

The Discrete Transition Probability Mstrix for Mean Revertina Process

Consider the mean reverting stochastic process

(Al) dt - (X-Xt ) dt + a dZ

where dZX is a standard wiener process. The first stop is to chose a range

[Xi n X ) within which the discretization is to be performed. Depending on

the required precision, then divide this range into N discrete states (i.e. N-1

intervals).

min max-I-l----I --- -- -------- I
(<s >) <s >

X0 X 1 X2 XN

where Zs (i-Ima)/2(N-1).

Without loss of generality we can let the discrete time interval At - 1.

In order to bring about a transition from state i to i+l (i to X,+1) the

following conditions must be satisfied;

(A2) Al > s -> Z > [s-(i-Xi)]/a

and

(A3) Al < 3 s -> Z (< [3s-(-i

Hence the transition probability Pi+ is

(A4) Pi +l Prob [ Z [[xs-)(X-Xi)]/o . [3zs-.L(-i)]/) ]ii i+l 
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Define Z- - (1-i)/a and Zd - ss/a. Then A4 can be rewritten as

(AS) ~Pi i+l ' N[Z0+12(i+l-l)-l)Zd] - N[Zo+(2(i+l-i)+l)Zd]

where N.] is the cumulative normal distribution. In general the transition

from state i to j is given by

(A6) Pi.j N[Z0+(2(j-i)-l)Zdl - N[Z0+(2(j-i)+l)Zd].

Special care must be taken with the end points P and PN. Lumping all exterior

values to the boundary we obtain the transition probabilities

(A) P i, 1 - N[Z0 +2(n-i)-lZ d ]

and

(AS) Pi 1 'l N[Z0+{2(1-i)+l)Zd].

Note that for At 01 we must set X - At and a - a (At)/2.

Once the above discrete probabilities are available the expected values

(such as those encountered in the dynamic programming problems discussed in

sections 2 and 3) are trivially obtained as a probability weighted sun. For

example. if tt_ l -X then BtlV( t] is

N

(AS) Et-l[V(It - V(xi) PJi'
i-1



Figure 1: Values of Fixed and Flexible Technologies plotted against Po
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Figure 3: Critical Prices to Switch Modes Plotted against Time
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Figure 5: Percentage Increase in Value due to Flexibility (PIVF) plotted against

Instantaneous Price Variance, C
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Figure 6: The Percentage Increase in Value due to Flexibility (PIVF) plotted

against Switching Cost, 
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Critical Prices to Switch Modes plotted against Switching Cost, "
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Figure 8: Values of Fixed and Flexible Technologies plotted against the Mean Reversion
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Figure 9: Percentage Increase in Value due to Flexibility (PIVF) plotted against

the Mean Reversion Parameter, 
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Figure 10: Values of Fixed and Flexible Technologies plotted against the

Risk Free Interest Rate, TF

170

IG0

160

140

130

120

110

100

I0

0
50
40
30

20
o0C0 A0 0.0o0 0.076 06100 0612 0.10 0617 06200

*r.-''r

Jl

._ 



Figure 11: Percentage Increase in the Value due to Flexibility (PIVF) plotted against

Risk Free Interest Rate, F
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Figure 13: Percentage Increase in Value due to Flexibility (PIVF) plotted against

Price Elasticity of Technology A, ,
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Contract Period, 

a

7

6

a

4

3

2

1

0

0 0.2 Q4 0.6 as 



Figure 15: Critical Prices to Switch Modes plotted against Contract Period, L
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