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Abstrarct

This paper dovoiops a framework to evaluate the economic
value derived from a firm’s ability to switch between different
nodeé of production in the face of uncertain prices. The model,
cast as a set of simulataneous stochastic dynamic programs, is
solved for the ex—ante value of flexibility, the optimal
technology choice, and critical prices at which switching is
optimal.

This general model of flexibility is used to synthesize
several recent studies of real options encountered in capital
budgeting. For example, the model yields as special cases (a) the
value of waiting to invest, (b)) the option to abandon, (c) the
value of having an option to shut down, (d) the replacement timing
and technology choice, and (e) the "time to build" option for
irreversible projects that require sequential outlays.

We use an illustrative example with two modes to show that
the value of flexibility is monotonically increasing with price
variability and switching frequency. The value of flexibility can
contribute about a 15 percent improvement over the better fixed
technology. Early in the life of the project it is optimal to
switch modes when the difference between values under one mode
(for the cgrrent period and optimal switching thereafter) and the
other mode exceeds the switching cost. Towards the end of the
economic life, the above difference must be significantly larger

for swithcing to occur.






JINTRODUCTION

In this paper we model investment behavior when firms face stochastic
relative prices and are allowed to switch between production modes. We consider
firms which can operate with one of several techmology modes, where each
technology will be preferred over the others under some states of the world., If
the firm is already producing with one mode then a change in conditions may make
it optimal to switch to a different mode and incur switching costs. We derive
the value from this flexibility and the critical values of the state variables
at which it is optimal to switch between modes.

A very similar problem also arises when considering investments in pew
projects where some have irreversibly fixed technologies and other, more
expensive ones, are flexible systems. The flexible systems allow for changes in
production modes without large switching costs. This models derives the
incremeantal value due to flﬁxibility which when compared with the incremental
cost of the flexible system will determine the choice of technology.

We cast the general problem as that of solving a set of simultaneous markov
decision problems and derive the ¢x—ante value of flexibility, the optimal
technology choice, and the critical values of the states of the world at which
switching modes i; optimal.

This approach unifies several real options arising in capital budgeting as
special cases of tlcxibility.l When one mode of the flexible system is the no
production mode our problem simplifies to that of valuing projects in the
presence of an option to shut down (McDonald and Siegel [1985]). When
flexibility is limited to a single switch our problem yields the optimal
investment timing problem (McDonald and Siegel [1983]) and the optimal
abandonment problem (Myers and Majd [1984]) as special cases. Whem switching to
a previously employed mode is excluded our problem yields the ""time to build”

option for irreversible projects that require sequential investment outlays



(Majd and Pindyck [1985]). Although all of these real options must be included
in most investment decisions, previous papers only looked at ome of them at a
time, thus, precluding interactions between the various options. Our general
model of flexibility allows for the simultaneous treatment of all real options
in the capital budgeting process.

The model is best elucidated through an example. Consider an electric
power generation plant which can be fired with coal or oil.2 Suppose relative
prices at the time of the initial investment are such ;hat the expected profit
is g;eatest when operated with oil. This decision can, however, be reversed if
conditions change. For instance, if the relative price of oil increases
sufficiently then it may be better to switch to coal and incur retoolin; costs,
Our model solves for the relative price st which it is optimal to switch.

When switching between technologies is costly, making the curremt choice
requires a value maximizing firm to look ahead at all future price contingencies
and simultaneously solve for the entire path of decisions. This also implies
that optimal choice depends onfthe technology which was in place during the
previous period. Ia other words, a switching decision will affect not only the
cash flows from the immediately following period but also affect the switching
decisions and cash flows during all future periods. However, the entire path is
summarized by the mode of use in the previous period, thus, yielding a markov
decision process.

Now coqsidof an electric utility which is planning to build a gew power
plant. Ono-of the choices is to use a fixed technology which is specially
designed to operate under ome type of fuel. Suppose that based on curreat
prices and forecasts the best fixed techmology is a coal fired one. JIn the menu
of available choices to the utility is also a flexible technology where the fuel
type can be switched easily and at relatively little cost. Such a plant no

doubt would incur s higher initial investment than a comparable plant with a
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fixed technology. However, given the uncertainty in energy prices the value
derived from flexibility to switch fuels may offset the extra investment. The
difference between values of the flexible and the best of the fixed techmologies
gives the value of flexibility. A simple comparison of the incremental
investment with the value of flexibility yields the techmology choice.

One can imagine situations in which switching is based on input prices,
output prices or both. Other examples where relative input prices determine the
appropriate production process are numerous: Tire manufacturers will shift the
production technology based on the relative price of natural and synthetic
rubber; Automobile makers will use diffo:ent.motll alloys or plastics in certain
components based on relative prices; In many modern manufacturing applications
it is possible to switch rapidly between production processes based on relativg
price of energy inputs. In areas where electricity is priced on a spot marcket,
switching within a production shift may be feasible.

In many qthor production situstions output price and quantity demand
conditions determine the techmology choice. The prototypical example is the
choice between a job shop (with human machinists) having low setup costs and a
line process such as s '"mold and stamp’ machine which has high setup costs. The
conventional wisdom among production planners is that for applications with high
unit costs, low volumes, and with frequent design changes the extremely flexible
job shop may be more desirable. The value of flexibility will be high for
products such as asutomobiles where model changes occur frequently and, thus,
justify in;ost-onts in flexible manufacturing systems. However, for products
with low unit costs, high values, and infrequent design changes a line process
may be more desirable. Our approach formalizes this intuition and provides a
quantifiable framework that is useful in capital budgeting.

Another example of where relative output prices determine the optimal

production process can be found in the petroleum refining industry. The value



of a broad range refinery will be higher when the relative prices of the refined
products is more uncertain. Hence during periods of high output price
volatility a broad range refinery will be profitable, while im periods of
relatively stable prices a refinery with a narrower range of products will be
preferred.

We model relative prices with a known stochastic process. In the numerical
simulations we use a mean reverting stochastic process. Since flexibility is
derived from an ability to switch between substitutes it is reasonable to expect
that market forces will drive the relative price to fluctuate randomly but
revert towards some mean valno.s

Ve assume that firms are price takers in both input and output markets
characterize technologies by profit fnnctions.4 In the power generation
example, a change in the type of fuel will be reflected by a change in the
profit function. The techmnology choice decisions are made between small
discrete inte?vuls. At these decision points the firm contracts prices for the
duration of a single period but all future prices follow fho known stochastic
process. One interpretation of this stylization is that contracting periods are
given exogenously to the firm and, therefore, mode choice decisions need only be
made at the beginning of such contracting periods. Alternatively, we can think
of the this as a discretization ofltho continunous endogneous contract—decision
points.

Ve study the sensitivity of the value of flexibility and the critical
relative pricos at which switching must take place on the various model
parameters. Our results show that the value of flexibility increases with
increasing price volatility, increasing price elasticity, and decreasing
switching costs. The value also increases when the switching interval is
shortened. We approximate the continuous switching case by numerically studying

the convergence limit of the value of flexibility for very small switching



intervals.

Our results bear a close relationship to the optiom pricing literature.
For example in the case with no switching.costs, the expected value of maximum
profit for a future period is analogous to the payoff from a call option with a
stochastic exercise price. Hemnce the value of the firm can be obtained as the
sum of s series of such oﬁtions. Although there are known closed form solutions
-for some stochastic processes such solutions are not available in genmeral. 1In
another special case when switching is costly and when new process must be
installed nt'eveiy switching docis#on point our problem resembles a compound
option.

The rest of the paper is organized as follows; In the next section we
outline the basic structure of the model by describing the production processes
and price dynamics. In section 2, we derive the value of projects under fixed
technologies and use it as a frame of reference to compare the value under a
flexible techgology. In section 3, we derive the value of a flexible project.
In section 4, we compute the value of flexibility as the difforenco between the
flexible and fixed projects, discuss implications for the capital budgeting
decision, and derive previously studied real options as special cases of
flexibility. Section 5 reports results from a numerical example and
investigates comparative static relationships. Finally, in section 6 we make

some concluding remarks.

1. The Profit Function sad Price Dvnamics
Consider a price taking firm which faces ome stochastic price while all
other prices are detcrninistic.s We model the stochastic dynamics of the

relative price Pt by the mean reverting continuous time stochastic process

dz A>0

(1) dP, = A(P - Pt) dt + ap

t P’



where dZ_ is a standard Gauss Weiner process.

P

In this analysis, we assume that Pt does not contain any systematic risk,
and thus the equilibrium rate of return for an asset with similar risk
characteristics to Pt will be the risk free interest rate r.7 An application of
Ito’s lemma reveals that any differentisble function of Pt will also coantain no
systomatic risk.

We characterize a project by its instantaneous dollar (flow) profit
fuaction Gf(Pt).8 At time t the firm observes the realization of Pt and fixes
it contractually for a short period (t.t+‘:).9 We find the optimal switchi#}
strategies for a given value of t and then vary t to study the comparative
statics. When contracting arrangements are given exogenously we can study the .
effects changing contract duration on the value of flexibility. When contract
length is within the control of the firm, we can approximate the limiting
continuous time case by very small values of <.

The flow of profits‘during thii period is constant and its preseat value
(at time t) gives the profit fumction G(Pt.t):
t+x

£ -r(s-t)
(2) G(P,T) = j' o', o ds
t

- ¢f(p)) o(z)

where 8(t) = (1-¢ *°)/r, and r is the risk free interest rate. Varying
functional forms and parameters can represent the M alternative production
processes Gj: j s (l,...,M). In the power plant example, the generation process
corresponding to aacﬁ energy type cam be represented by its accompanying profit

function.



In order to form a frame of reference to compare flexible technologies and
thereby obtain the value of flexibility, we first derive the value of the
project uander ; fixed (rigid) techmology. Let the economic life be T thus
having N (= T/t) decision periods. The present value of the project, Vg. is

the discounted sum of present value profit functioas:

N
4 -rit
(3) vRo) = E, 29 () O(x)
i=1

Since closed form solutions to the expected value are not available in general,
we can use a backward recursion formula to assure a computationslly feasible
method to evaluate Vg.

Since prices are contracted at beginning period values, the value function
at the beginning of the last period (at time T = (N-1)t) is simply the profit

during that period:
(4) v = 6.

The value function at the start of the previous period will be the sum of

profits from that period and the discounted value VR(T):
R
(5 VHT-e) = (P ) + p E V()L

where p (= e °) is the discount factor. Continuing this backward recursion

gives the value function at time O as



(6)  VH0) = 6By +p EGIVE(0)].

Expectations are computed numerically by discretizing the transition probability
matrix of the price process and forming a probability weighted sum. Details are

given in an appendix.
3. Value with Flezibility: V'

Under a flexible production system the firm must evaluate the stream of
future profits to determine the optimal technology mode for the coming period.
The choice is reconsidered upon the arrival of new price informatiom at the
beginning of the next period. If production decisions call for a change in
process type then switching can be accomplished instantly incurring a cost 6.10

Considor_the last period of operation beginning at time T-v. The value of
the project for the remaining life (t) will depend on the price P&L‘ and the
mode that was used during the previous period. The latter dependence stems from
the presence of switching costs. The mode in use duoring the immediately
preceding period sufficiently summarizes the entire path of modes for purposes
of the current decision rule. Therefore, the value function at time T-t will
consist of the arguments time, the relative price realization, P&“z’ and the
state, s!*t’ which represents the mode employed in the previous period.

If nodo j was used in the previous period (i.e. sthr = j) and price PT—e

was obgserved then the value function at T-t can be written as

1 _ i 'l -
(6) v"'(r-:,p.r_t. P =supf et LIPPPINL L S POPP M B ]

where Gj is the profit function for the jth node.ll



Now consider the decisions at time T-2v. If 81521 = j, then the firm
should choose to switch processes only if the present value (at time T-2¢) of
all future cash flows when using another mode during the coming period (and

optimal future decisions) is greater than the corresponding cash flows when

continuing to use mode j.

(1 vF(T-2¢, P

1
rgq 4) = sup [ Gl (Rp , )-8+p ET_zt[vF(:br.p B0} P

T-<
J ~
q (PT-21)+p Er_zt[vp(r t'PT-t"’)] poreeesseoeey

N, :
(p,, )-8+p EruzgtVF‘?“‘f’&uff"’] ]

There will be M such equations, for j = 1,....,M, at point in time. The
backward recursion is continnoa until ti-; 0, where the firm observes and
contracts prices Po. The simultaneous system of stochastic dynamic programs can
be solved for the value of the flexible system and the optimal switching
strategies.

We drop the time argn-o;t: and list the general form of the dynamic

programming equations for future reference:

V(1) = sup[lepBIV (1], ... L 6d-80pBIV (), ..l 6 sepRIV 01
(8) V(3 = sup[ G -84pBIV (1)],.. ., @ 4pBIV (1)1,uueinnnnn ., G h8upRIV ()1 ]

v = snp[61-6+pB[vF(1)l......Gj-8+pB[VF(J)]...........Gu+pE[VF(l)] ]
4, Applications ‘

In this section we apply the genmeral model of flexibility to several

previously studied applications of real options in capital budgeting. The
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values of the option to wait to invest, to abamdon, and to shut down are derived
as special cases when there are only two alternative modes of operation of which
one modes becomes s null technology. When investments are incurred in stages,

the resulting time to build option also is shown to be & special case.

4.1 The Value of Flexibility

When making the initial investment at t=0, VF does not depend on the state

So. The present value of the flexible project can be expressed as

(9) V0.8 = wwp [ @l + 5 BBl
ceeens@ (B + p BV (£, P )]0eeneene.

X
ceeeesG(RG) + p norv?(r.p.u)l ]

The value of floxibifity is the difference between VF(O.PO) and the maximum
of the M fixed projects:

(10) V(o) = v"(o,po) - tax [v:v:v:]

If Ai’ i=1,...,M, are the initial investment for fixed processes and AF is the
investment for tﬁo flexible process the cnp;tal budgeting decision rule is to
compare V(0) with the incremental investment requirement for the flexible
system. I; other words, invest in the flexible system only if

V- Ay > M Iv] - All,....,[v:- ad]

In cases where there is no truly flexible techmology, the above solutionms
are also useful in forming mode choice when faced with multiple techmologies:

For example, when faced with two technologies A and B the decision rule is
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Invest in mode A if VF(O. Pb)-AA > YF(O. Pb)-AB and in mode B if the inequality

is reversed.

One further caveat-regarding the switching cost should be mentioned. For
convenience, we have assumed switching costs to be a constant. In the above
case, the switching cost associated with the first time a processor is brought
on line will include its purchase and installation costs. Thereafter the
switching cost will only involve retooling and reorganization costs. We hive
also assumed switching costs to be a constant amount, whether the switch is from
A to B or from B to A. In practice this need mot be so. For instance in the
power generation example, switching from coal to oil may be more costly than
switching from o0il to cosl. This can be easily accomodated in the dynamic
programming algorithm by replacing & by GAB and GBA' the costs that take into

account the direction of the switch.
4.2 Roplacoement Decisions

If the project involves replacing one machine with another, thea the
initial mode 80 will be the ome corresponding to the exisiting processor. If

So = A, then the value of the project is given by

(11a) v'(0,8,.4) = sup [ 6*By) + p B (F(z.p 000 ,
P(ey) - 85 + p B[V (z.B,B)] |,

where 83 is the cost of mode B,
Furthermore, a simple comparison of the arguments of the sup [.,.]

determines the choice of the technology. If GA(PO) +p Bolvg(t.P.A)l > GB(PO)
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-8 +p Eo[VF(t.P.B)]. then continue with mode A; otherwise replace it with mode
B.

Similsrly, if So = B, then the value of the project is given by

(11b) v, B, B) = sup | e‘_(po) -8, +»p B[V (x,P,0)] ,
@By + p no[v"u,p.nn ]

and mode B should be replaced only if GA(PO) -8, +p Eo[VF(t.P.A)] > GA(PO) +p

A
B[V (x,B,B)].

4,3 Valuation when there is an option to shut dowp

A type of flexibility that is always available to manufacturers is the
option to shut down. When the value of a project is stochastic, it might be
optimal to operate a currently unprofitable facility in order to save shut down
and startup costs. Ian a recent paper, McDonald and Siegel i19831 studied this
problem and derived the value of haviﬁg such an option to shut down. Their
analysis, based on an infinitely lived project whose value followed geometric
brownian motion, derived a closed form solution to the above value. It is easy
to see that the presence of the option to shut down is merely one form of
flexibility, and the value thus derived can be obtained as s speciasl case of our
formulation.

1f tho.soeond mode of our flexible manufacturing system is the no
production mode then replacing GB with O will yield the value of the project
under a shut down option. Shut down and startup costs are represented by the
switching costs SAB and 5BA' The algorithm presented in this paper cin be used
to evaluate the value of th§ shut down option under a variety of price processes

and switching cost scenarios. It is not limited to infinite lived projects.
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4.4 The Value of Wajting to Invest

Our model can be reinterpreted to study the value of waiting to invest,
which was investigated by McDonald and Siegel [1983]. When the price of
investments and the present value from the project are stochastic, the optimal
investment decision may not be to invest as soon as the net present value is
positive. By waiting until the investment price and the project value reach
some critical levels, the firm can derive a higher NPV. McDonald and Siegel
solved for this value in a continuous time model where the project value follows
& log normal process with a drift and where projects are infinitely lived.

With minor reinterpretations we can address above problem within our

framework. Let the inital mode of operation be the null mode (i.e. S, = 0).12

0
The switching cost from the null to the production mode (mode 1) will equal the
initial 1nwes§nent cost (i.e. 80181). If shut down is néf allowed the switching
cost from the production to the null mode should be set at a very large value
(i.e. 510 = ').13 The value of the project under the above parameter values
will include the value due to the optimal timing of the investment. Hence, the
difference between the value of s fixed technology and that of above flexible

technology will be the value of waiting to invest.
4.3 Value of the Option to Abandon

A very similar option to that of waiting to invest is available at the end
of a project. When the salvage value and the value of the project over its
remaining lifc are stochastic, the optimal time to abandon a project can be
solved in s manner similar to that above. This problem was solved by Myers and

Majd [1984] when the values were assumed to follow geometric brownian motion and
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when project life was finite. Since closed form solutions exist only for the
infinite time case, they used numerical methods to solve for the vglue of the
abasndonment option.

The abtndonient option can be incorporated in the value of the project by
considering the following parameter values in our.gemeral model of flexibility;
let the initial state be the production mode (mode 1), thevaltorn;tive mode be

the null mode (mode 0), 810 = - salvage value, and 601 = o,

In a recent paper Majd and Pindyck [1985] model the value of projects when
(a) spending decisions and cash outlays occur sequentially over time, (b) there
is a maximum rate at which outlays and construction can proceed and (c) the
project yields no cash flows until it is completed. The pattern of investment
outlays can be flexible but will be subject to a nixinu- rate coastraiat.

In order to .study this problem we can specialize our general model of
flexibility in the following ways; Let the maximum rate at which investment
outlays can be made be 8§ per ¢ nnits‘ot time and Gi(.) be the profit function of
the project after i such investments of capital h;a been incurred. The total
investment required is M8 (i.e. M investments of 8). In the case where no cash
flows are derived uatil all investments are made Gi = 0 for all i < M and GH
will be the profit function of the project. Once an investment has been
committed it is irreversible. In our model this implies that the firm can not
revert to a mode of operation vﬁich was used during a previous period. These
conditions specialize the gemeral system of dynamic programs in equation (8) as

follows;

V(1) = snp[ G +EIV(1)], GP-8+EIV(2)], ..eeen.s GI=8+E[V(M)] ]
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(12) V(j) = tnp[ GlEIV(1)], @I 1-s+EIV(j+1)1, ......., GLB+EIVO0)] ]

V() = snp[ GMos+EIVON)] ] )

Since the profit functions are ranked according to the level of outlays,
eliminating the possibility of switching to a previously used state is achieved
by including the value functions corresponding only to higher levels of
investment in the sup(.]. In the first period when no investment has been made

j =1, and thus we have the equation for the full flexibility case. After all

investment has been incurred j = M, and the project becomes a fixed technplgy.

3. An Exsmple snd Comparative Statics

Since our model does not yield closed form solutions for the value of
flexibility, we use a simple example to illustrate the solution techanique and
numerically study comparative statics.

We use the following mean reverting stochastic process to model the

relative price path:14

p Zp:

dPt = x(P-Pt? dt + ¢
The instantaneous drift term (P - Pt) acts as an elastic force which produces
mean reversion. For example, if P =1, when Pt > 1 project A yields higher
profits, but when Pt { 1 the dominance is reversed. In the power generation
example we can treat the relative price of oil with respect to cosl as Pt'

Prior to OPEC price increases Pt { 1, thus making oil burning more cost
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efficient. Since OPEC, the relative price of coal became cheaper, thus making
coal the preferred fuel. The receant dramatic reduction in oil prices have
reversed this relationship. In general ,although less dramatic, it is likely
that market forces will move to make the relative price of substitutes revert
toward the mean value of P.

The stochastic term dZP. with variance Op. causes continuous fluctuations
about Pt' op measures the volatility of relative prices. We think that such
processes will moze accurately depict price paths of production inputs and
outputs.

As the bagse case we chose parameter values A = 0.1, o, = 0.20, P=1,

P
For purposes of numerical computations values of Pt are restricted to the range
[0.5,1.5]. This range is divided into 100 discrete price lovols.ls Details of

constructing the discrete probability transition matrix are given in Appendix 1.

The firm can operate with one of two technology modes:
A a

G =8 + P

GB""1“"2"‘:

The parameter values were chosean such that GA = (i'B when Pt=5 (=1) and

monotonicity and comvexity conditions are satisfied. The base case values were
8 = 0 5 = 5 a= 1.§

1™ 4.5 bz = 0,8 p=1.1

8 aand b1 capture the offects due to fixed costs while 2, bz. a and P reflect

b

the price elasticities. The fixed mode B is relatively insensitive to price

while that of A is very sensitive. Mode A can be thought of as having higher
1 ¢ bl'

We set the switching cost 8 = 0.05 which is about 1 percent of the mean

fixed costs than B: s

annual profit. The project has an economic life of 30 years which we divide
into 300 steps, thus, under our contractual arrangement firms contract for a

period (v=.1) that is little over a nonth.ls Switching decisions are made at
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the beginning of the contract period. In the comparative static analysis we
numerically study the impact of changes in comtract lenmgth (t), switching cost
(8), volatility of the relative price (aP). mean reversion pat;-etcr (A), and
relative price elasticities (a) on the value of.flexibility and the critical
prices for switching modes.

Since we assume zero ;ysteu:tic risk in prices, we discount all cash flows
at the risk free interest rato.#’ An instantaneous risk free rate of 2 percent
is used in the base cgse.

In figure 1 we plot.valnos of the fizxed technologies and the flexible
technologies under each of the two starting states against initial price
realizations. For low values of Pb, fixed mode B is preferred over fixed mode
A. For higher values of P& the preference ordering is reversed. Although GA(I)
= GB(I) the price at which the firm is indifferent between A and B (i.e. VA =
VB ) is not at Pb = 1, An application of the Jensen’'s inequality shows fhat the
expected values of VA and VB do not have to equsl since the profit functions
have different levels of cﬁnvoxity. The indifference point, PI' is
approximately 0.93. The Vi and Vg pl#ts are very close together indicating
that values of the-floxiblc techiolo;y are not affected much by the starting
mode.

.Tho value of flexibility, however, is significantly affected by the price
realization, Pb. This is shown in Figure 2, where the Percentage Increase in
Value dus to Flexibility (RIVE), [(V'/Max(V,,V;))-1)x100], is plotted against
the initial price. PIVF is maximized when the two modes of productiom are

(1]
the better of the two fixed modes.

similar (at P = PI). Flexibility produces about a 15 perceat improvemeat over

The reason for this peaking of VF can be explained as follows; For a
moment ignore switching costs. Suppose Pb 4 PI and the firm uses the prefered

mode B. For a change in mode to be warranted the discrete price change (over a
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discrete time interval) must be greater than (PI-Pb). But the probability of a
price change is inversely related to its magnitude and, hence, the probability
of a switch in mode. This situation is symmetrically opposit; for Pb ] PI in
that the firm will operate with mode A and require a price change greater than
Pb-PI in order to switch to B. Therefore, the further away Pb is from PI the
smaller is the probability of switching modes. With switching costs the
threshhold ptiée change for switching modes becomes even larger.

An obvious anslogy can be drawn to the options pricing literature. When
P0<PI the firm will employ mode B and hold a call option to switch to mode A.
This option is out—of—-the-money intil Pb becomes larger than PI. However, for
Po)PI the firm will employ mode A and hold an out-of-the—money option to switch
to B. Hence the only value of Pb at which the option is in —the—money is when
Pb'PI' The value of this option (the value of flexibility) is maximized at
PO-PI. As Po moves away from PI the option goes deeper out—of-the—money.

In Figure 3, we study the optimal switching points over the life of the
project. The critical price at which it is optimal to switch from mode A to
mode B is plotted against time in the top line (SW1). The critical switching
point from B to A is the lower line (SW2). 1In a single period profit maximizing
world, the critical switching point vili be when the difference between VA and
VB is equal to the switching cost. As the plot indicates, towards maturity of
the project it is optimal to switch oanly if the price chn#;e yields s larger
difference in value than the switching cost. This is because of the possibility
of running Qnt of time to switch back in case of a price change which requires a
mode reversasl. As a consequence when there is little time remaining the
switching costs exceed the value of flexibility (derived at the steady state
critical prices) and it becomes simply not worth switching. In earlier periods

. *
SW1 and SW2 are at their steady state values where switching takes place as

soon as the difference between Vi and Vg exceeds the switching cost.
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We now turn to the comparative static analysis and vary the base case
parameter values and investigate the impact on the value of flexibility and the
critical switch points. In Figure 4 we plot the values of the fixed and
flexible systems against %p for Po =P. A ceteris paribus increase in %p
increases the expected value of the convex profit functions. Since we measure
profits at Po = E(P) = P, an application of the Jensen’s inequality shows that
B[Gil is an increasing function of ¢ for comvex éi. For very small values of o,
GA is slighlty greater than GB. This is probably due to the finite contracting
lengths and the app:oxinntio;s introduced by discretizing the price process. In
this model flexibility is derived from the firm’s increased ability to cope with
price uncertainty. Hence, the value under flexible technologies increase with
increasing volatility.

Figure 5 shows the responsiveness of PIVF to changes in . As expected the
value of flexibility increases with incteasinﬁ volatility. The intuition behind
this result ig similar to that which explains the increase of call option prices
with increasing volatility of the stock price. Like the exercise price in a
call option, the presence of flexibility provides down side protection in the
ability to switch to the alternate mode. Since profit under the alternative
mode itself is affected by relative prices this is similar to an option with a
stochastic exercise price. However, due to the state dependency introduced by
switching costs our problem is -oro.couplox.;s

We next turm to the impact of changes in switching cost 8. Figure 6 shows
PIVF plottoa against 8. As we expect, ceteris paribus increases in & lowers the

value of flexibility. The impact of & on critical price is depicted in Figure

19
I.
Values of rigid and flexible systems and PIVF against A are plotted in

7. As the switching cost is reduced the critical prices move towards P

figores 8 and 9, respectively. As A increases the value of fixed technmologies

increase but those of flexible technologies decrease at a faster rate. Hence,
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the value of flexibility decreases. This further illustrates that the value of
flexibility is derived from the presence of uncertainty. Whean A = O the prices
are purely random. As A is increased it imposes an increasing tendency to move
prices towards the mean, P, and introduces a deterministic component.

The responsiveness of the value of flexibility to increases in the risk
free rate is demonstrated in Figures 10 and 11. An increasing discount rate
reduces the value of both rigid and flexible technologies. However, the value
of flexible technologies decrease at a faster rate than the rigid oﬂas as the
seen by the conv?tging curves in Figure 10. Therefore, PIVF is reduced as the
risk free rate increases. | |

Figures 12 and 13 show the values of the rigid and flexible systems and the
value of flexibility plotted against a. Since we hold all other production
function charactqristics constant, this experiment captures the effect of a
wider disparity in the price elas?icities between the two nodes.zo GA is a
monotonically increasing function of a and the value of the flexible systems
also are increasing monotomically with a. Therefore, withim this range of a,
PIVF is monotonically increasing and cancave. |

The intuition behind this result is that, the degree to which the two modes
differ at the indifference price (PI) determines the value added due to
flexibility. Since the probability of smaller price changes (during discrete
intervals) is greater than those of larger ones, as the disparity between
profits under the two qodos grows the value derived from each switch will be
greater.

Finally, we study the comparative statics with respect to the decision
interval v. In an attempt to minimize computational costs we considered a
project with a one period life and partitioned this interval into smaller
contract periods. There are two effects taking place with changing t: (i) Due

to the contract length and (ii) due to the decision interval.  If contract
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periods are exogenous then these must be equal since it only makes sense to
switch when a new price is revealed. Since in our model more frequent decisions
do not incur higher switching costs, we expect the value of flexibility to be
mazimized when continuous decisions are permitted. This is illustrated in
Figure 14.'hore the value of flexibility incresses with increasing frequency of
decisions (decreasing values of t). Since the prices are reverting to a
constant mean and since the Pb is chosen to be the mean contracting length will
not affect the values. If, however, the prices had an increasing trend then
increasing contract lengths will lock into a lower price which will result in
reduced values of flexibility. Whea Pb is away from the mean this effect can be
significant even under mean reverting processes.

As the step size was reduced the values increased but levelled off as <
became very small. For very small step sizes the values can be thought of as
spproximations to the continuous time problem with endogenous contracting.
However, for T smaller than 10-5 the values started falling. This is due to
rounding off errors in the numerical conpntations.z1

Figugo 16 shows the behavior of critical prices to changing t. As t is
made smaller (approaching continuous time) the critical switch poiﬁts diver;e.zz

Similarly, we can also investigate the effect of ceteris paribus changes in
other technology characteristics. This analysis is restricted to price paths
containing no systematic risk. With minor modifications our model can
incorporate the risk characteristics of the cash flows by adjusting the discount

rates used in the present value calcnlations.z3

6. Concluding Romarks

In this paper we model a firm which faces stochastic prices (for inmputs

and/or outputs) and has the ability to switch between modes of productionm in
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response to price realizations. We derive the ex apnte value of flexibility and
the critical prices at which n&dos must be switched. The reaction of the value
of flexibility and the optimal switching between modes to changes in price
volatility, switching costs, and frequency of decisions is studies via a
numerical example.

This approach has wide applications in capital budgeting problems. When
deciding between investments into fixed and flexible manufacturing systems we
can compute the value derived from flexibility and compare this with the
incremental investment requirement for the flexible system. Once a technology
is in place and it is costly to switch, our model gives th‘ critical price
changes that would warrant such a switch.

An important contribution of this p;por is to synthesize and interpret
several recent applications of contingent claim analysis to capital budgeting
within a more general framework of flexibility. In particular we show that the
options to shut down, to wait to invest, to abandon projects, and that due to
"time to invest’’ become special cases of our model.

Although we use a mean reverting stochastic process in the illustrative
application the numerical techniques are quite general and can be applied to a
wide range of processes. This analysis was also restricted to price paths
containing no systonatié risk. This can essily be remedied to include the risk
characteristics of the cash flov; by adjusting the discouant rates used in the
present va;na calculations.

Another seeming limitation of this analysis is that we comsider the project
in a series of discrete steps. The switching decisions are restricted to those
stops and prices are held constant over the intervals. However, by shrinking
the decision interval we studied the limiting case which approximates continous
time. Nevertheless, iho model with contracting warrants consideration on its

own merit. We plan to study this in a future paper.
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Although the model seems best suited to study a broad class of industrial
projects it can also be applied to several purely finmancial problems. For
example, the flexibility to switch between assets (incurring tranmsaction costs)
in managing a portfolio represents a direct application of this model. Exposure
mangement problems, particularly in s multicurrency setting, can also be
anslyzed within this context. |

Furthermore, the extreme genmerality and flexibility of the model makes it a
prime candidate for an expert system aimed at making complex capital budgeting

decisions.
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Footnotes

1 Recent papers by Mason and Merton [1984] and Baldwin, Mason, and Ruback

[1983] discuss the use of contingent claims analysis is capital budgeting

applications. They note the existence of a value from flexibility that is
similar to that discussed here.

2 This description applies to truly flexible plants which are designed to
switch between fuel types and also to cases where the plant is originally
designed to operate on one type of fuel but can later be modified to operate
under other fuel types. Both scenarios can be handled within this framework
with proper adjustment of the switching cost structure.

3 This mean may be a constant or change over time. For example, if technical
or market characteristics change, then the mean relative price if the
substitutes will change accordingly.

4 We can allov for some monopoly power and use cost functioms to characterize
technologies.

sTho stochastic price could be for a factor input or am output. Although
conceptually similar, the case of multiple stochastic prices makes the
computations substantially more complex.

slhen we model the price by geometric Brownian motion we can obtain closed
form solutions to some of the cases studied in this paper. Those results are
reported in Kulatilaka [1985b].

11.0. is uncorrelated dZ n’ the stochastic term of the returns on a well
divarsifged portfolio.
8

If P_, the stochastic price, is an output price then Gf is monotonically
1ncteas§n;, concave and homogenous of degree onme in P If P, is an inmput
price G is monotonically increasing, concave, and hosiogenous of degree ome in

Pt'

’ In many applications firms tend to go into contractual arrangements for
purchasing inputs and outputs. This stylization will accurately depict such
firms. Quasi-contractual arrangements, sluggish price adjustments and
transactions in forward and futures purchases are also common in output goods.

1oIn a recent paper Majd and Pindyck [1985] have considered the staggered
nature of investments. We can relax the instantaneous switching assumption by
modeling switching as taking place over several steps where the decision can
be reconsidered at each of these sub-decision point.

lllhen the value was not state dependent and when considering oamly two
alternative modes then our problem simplifies to that in Stulz [1982] where he
derives the value of a security whose payoff is the maximum (or minimum) value
of two assets. Such is the case when there are no switching costs.

12A1thongh our model allows for other starting modes, we chose a null initial
mode to illustrate the McDonald - Siegel ocase.

lslf we allow for shut down then 510 = ghut down cost.
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14 We also used the process: dP, = j (P - P ) dt + cfr where the
instantaneous variance is proportional to cn:tont price. xlthon;h the
numerical values were changed the qualitative results remained invariant.

15 Ve also experimented with finer grid sizes but the value added in obtaining
smoother transitions did not, in my opinion. justify the increases in
computational costs.

16 Smaller time increments are used in later comparative static experiments.
Although this value of t does not give a good approximation to the continuous
time case the results are qualitatively similar. We can still interpret this
case a realistic exogenously determined contract length.

17 Alternatively we can treat this as a risk neutral world.

181n a separate paper (Kulatilaka [1986]) we follow the conventional
contingent claim priving literature and model flexibility, in the absence of
switching cost and when prices follow geometric Brownian notion. as a call

option with stochastic exercise price.

19 At Po = PI the value functions are identical.

20 The range of allowable values of a is constrained so that the regularity
conditions are satisfied and that neither technology dominates over the
entrire range of possible prices.

21 As t becomes extremely small the value contribution in one time step also
becomes extremely small. Even with double precision calculations on a 32 bit
computer the rounding off errors start to become significant at these values.

22 The flat regions of the plots are due to the discrete approximations used
in the price generation process.

23800 Kulatilaka [1986] for such a trestment when prices follow geometric
brownian motion but earn below equilibrium rates of retura.
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Consider the mean reverting stochastic process

(Al) dxt = A gx—xt{ dt + ¢ de

where dzx is a standard wiemer process. The first step is to ehése a range

[x;in' xiax} within which the discretization is to be performed. Depending on

the required precision, then divide this range into N discrete states (i.e. N-1

intervals).
xhin xi.x.
|—1—I | - !
{(xs > <{x8 )
X X X, N

where s = (;.in—x.‘x)/;(n-1).
Without loss of genmerality we can let the discrete time interval At ='1.
In order to bring about a tramsition from state i to i+l (xi to xi+1) the

following conditions must be satisfied;

(A2) AX:) zs ===) Z) [xs-x(i-xi)lld
and
(A3) AX ¢ 3 xs ===) Z ¢ lsxs-x(i-xi)l/a

Hence the transition probability Pi i+1 is

(A4) Pi,1+1 = Prob [ Zs {;xs—x(i-xi)llc . [3::—&(3-11)]/6} ]
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= xs3/0. Then A4 can be rewritten as

Define Z, = -x(i-xi)(a and Z,

(AS) Pi.i+1 = q[zo+[2(i+;-;?-1}zdl - s;zo+;z(1+1-1)+1)zd]

where N[.] is the cumulative normal distribution. In general the transitionm
from state i to j is given by

(A6) P = N[Zo+{2(j-i)-1lzd] -

i NZo2(-1)41iz ).

Special care must be taken with the end points Po and PN. Lumping all exterior

values to the boundary we obtain the tramsitionm ptobabiiitics

(A7) Pi.n =1 - N(Zo+{2(n-i)-1}zd]
and

(A§) l’i.1 = N[zo*-{zu-i)fl}zd].

Note that for At #1 we must set A = A At and 0o = ¢ (At)llz.

Once the above discrete probabilities are available the expected values
(such as those encounteéed in the dynamic programming problems discussed in
sections 2 and 3) are trivially obtained as s probability weighted sum. For
eiaﬁplef 1# xt—l - !3 then Bt_l;v(xt] is

N

(A8)  E,_;[V(X,] =} V(X,) P, ,.
i=1 '



.Figure 1: Values of Fixed and Flexible Technologies plotted against P,
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Figure 2: Percentage Increase in Value due to Flexibility (PIVF)
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Figure 3: Critical Prices to Switch Modes

Plotted against Time
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Figure 4:

Values of Fixed and Flexible Technologies plotted against

Instantaneous Price Variance,
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Figure 5: Percentage Increase in Value due to Flexibility (PIVF) plotted against

Instantaneous Price Variance, 6;
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Figure 6: The Percentage Increase in Value due to Flexibility (PIVF) plotted

against Switching Cost, &’
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Figure 7: Critical Prices to Switch Modes plotted against Switching Cost,b
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Figure 8: Values of Fixed and Flexible Technologies plotted against the Mean Reversion
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Figure 9: Percentage Increase in Value due to Flexibility (PIVF) plotted against

the Mean Reversion Parameter, ;\
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Figure 10: Values of Fixed and Flexible Technologies plotted against the

Risk Free Interest Rate, T}
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Figure 11: Percentage Increase in the Value due to Flexibility (PIVF) plotted against

Risk Free Interest Rate, ’T;
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Figure 12: Valﬁes of Fixed and Flexible Technologies plotted against Price Elasticity

of Technology A, X
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Figure 13: Percentage Increase in Value due to Flexibility (PIVF) plotted against

Price Elasticity of Technology A, o¢
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Figure 14: Percentage Increase in Value due to Flexibility (PIVF) plotted against
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Figure 15: Critical Prices to Switch Modes plotted against Contract Period,f
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