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Abstract: We consider the problem of deciding whether  to keep a piece of equipment or to replace it 
with a more advanced technology. This decision must take into account both the nature of the available 
replacement  technology and the possibility of future technological advances. Existing models are 
restrictive in the way they model the appearance  of future technologies and the costs and revenues 
associated with those technologies. In an earlier paper  we allowed the probability of appearance of new 
technologies to be non-stationary in time but required the costs and revenues of technologies to be 
different but constant over time. In this paper,  we allow the technology forecasts and revenue functions 
associated with technologies to be non-stationary in time and consider salvage values for technologies. 
We develop a simple and efficient algorithm for finding the optimal decision using a forecast horizon 
approach. This approach finds the optimal decision in any period with minimal reliance on forecast data. 
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1. Introduction 

The replacement  of productive equipment ranks among the most important strategic decisions faced 
by both manufacturing and service firms. This is because purchase of a new piece of equipment often 
involves a significant cost and can affect the productivity and competitiveness of the firm for several 
years into the future. In recent years, the difficulty of this problem has been compounded by the fact that 
technologies are rapidly changing, and what may appear  to be a good equipment purchase can soon 
become obsolete. Under  these circumstances, the driving motivation behind replacement  decisions is 
likely to be technological obsolescence, rather  than physical deterioration, of the existing equipment.  
This situation is typical of microcomputers,  computerized numerically controlled machines, and other 
electronics technologies. 

Much work has been done in the area of equipment  replacement.  For a detailed exposition, see the 
survey in Pierskalla and Voelker (1976). 

The traditional approach to the equipment  replacement  problem emphasizes the physical deteriora- 
tion of the existing equipment.  The basic idea is to replace the equipment  when the cost of operating and 
maintaining it become sufficiently high, in net expected present value terms, to justify a replacement.  
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In most traditional models, technology is assumed to remain constant over time. These include 
Derman (1963) and Hatoyama (1984). This approach would lead to inappropriate decisions if technology 
does change, as is becoming increasingly common. For example, if technology is changing it may be 
better to keep the current equipment for a few more years and then take advantage of an improved 
technology that appears on the market than to replace the current equipment with what is available in 
the market at the present time. Typically, if the capital costs for purchasing the new equipment are not 
recouped by the time another advanced technology appears, it would be extremely difficult for decision 
makers to justify another replacement when the advanced technology appears. 

There are a few models that do consider technological change. Traditionally improvements in 
technology are measured either in terms of increased revenue associated with the new technology or 
decreased costs of procurement and operation of the new technology. Most of these models assume that 
technology improves in a deterministic manner, that is, the extent (in terms of costs and revenues) and 
timing of the technological improvements is known beforehand (Sethi and Chand, 1979). Though 
assuming that technology improves in a deterministic manner is a good first approximation, these models 
do not accommodate the reality that technological improvements can rarely be forecasted with certainty. 

Only recently have researchers started to model the equipment replacement problem due to techno- 
logical change under uncertainty. Goldstein, Ladany and Mehrez (1986, 1988) introduce uncertainty 
using stationary forecasts (that is, forecasts that are constant over time). Hopp and Nair (1991) developed 
a model using non-stationary technology forecasts but where the revenue generated by various technolo- 
gies is different but constant over time. 

The models incorporating non-stationary technological forecasts use a forecast horizon procedure to 
find the optimal keep/replace decision. The forecast  horizon is the minimum number of periods of 
forecasted information required to guarantee that the initial decision is optimal, regardless of forecasts 
in later periods. The reason forecast horizons are important is that it not only reduces the computation 
and forecasting necessary to arrive at an optimal decision, but also because it ensures that the optimal 
decision would be no different if data for additional periods were forecasted. 

A forecast horizon procedure attempts to identify the forecast horizon as efficiently as possible. If a 
forecast horizon exists in a particular problem and can be found, then one needs to solve the problem 
only to that time horizon to compute the optimal decision in the initial period corresponding to any time 
horizon beyond it, and in particular the infinite horizon. Since the first decision is the only one that the 
decision maker is committed to make immediately, this approach is well-suited to the equipment 
replacement problem. The process can be repeated in the next period. We are interested in the infinite 
horizon here because it is usually not clear what time horizon a firm should consider, and what the status 
of the firm would be at the end of that time horizon. Using a forecast horizon obviates the need for using 
an arbitrary time horizon. 

Forecast horizon techniques have been used in the context of a variety of applications (for a survey see 
Bhaskaran and Sethi, 1987) including equipment replacement (Chand and Sethi, 1982). More recently, 
conditions for the existence of forecast horizons for deterministic (Bean and Smith, 1984) and stochastic 
(Hopp, Bean and Smith, 1987; Bbs and Sethi, 1988) problems have been developed. 

If a forecast horizon does exist, it could be put to use only if it is identified. Algorithms for identifying 
forecast horizons in general deterministic (Chand and Morton, 1986) and stochastic optimization (Hopp, 
1987; B~s and Sethi, 1988) problem are typically cumbersome or inefficient (i.e., they identify forecast 
horizons that are much longer than necessary). By exploiting the specific structure of the equipment 
replacement problem we can greatly improve the efficiency of identifying forecast horizons (see Nair, 
1988). This paper is an extension of Hopp and Nair (1991) to the equipment replacement case where not 
only are the technological forecasts non-stationary in time, but also the revenue and cost functions are 
non-stationary in time. In addition, salvage values have been considered in the present paper. Structural 
results on the sensitivity of the optimal decision to changes in forecast are also discussed. 
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2. Problem formulation 

We consider the problem of a firm trying to decide whether to keep a piece of equipment it currently 
owns or to replace it with a better  technology that is currently available on the market. The problem is 
complicated by the fact that further improvements of technology could occur in the future and these 
improvements may have a bearing on the current decision. For example, it may be optimal to wait for a 
few years and take advantage of a better  technology when it becomes available. However, whether or 
when the advanced technology will appear and what its revenue generating potential will be are 
uncertain. We assume that the firm's objective is to maximize expected discounted present revenue over 
the infinite horizon. 

We model this problem as an infinite horizon non-stationary Markov decision process (MDP). We 
choose an infinite horizon as it would be better than assuming an arbitrary finite horizon and then 
making assumptions on the state of the firm at the end of that horizon. The model considered here is 
restricted to the case of three technologies, viz., the technology on hand, a 'bet ter '  technology currently 
available on the market, and an 'even better '  technology that may become available in the future. Our 
notation and approach are described below. 

2.1. Notation 

We denote the technology currently in use by index 0, the better  technology available on the market 
by index 1, and exactly one advanced technology that may appear in the future by index 2. 

We define a 'state' at some point in time, t, by (i, l) where i represents the index of the technology in 
use by the firm and l the index of the latest technology available on the market. By our definition of the 
problem, at the beginning of the problem, the state is (0, 1) and the time period is t = 0. Let K i 
represent the action 'keep technology i' and R~ ( j_<l)  represent the action 'replace the current 
technology with technology j '  in state (i, l). 

To formulate a Markov decision process, we suppose the firm can make keep-replace  decisions at the 
beginning of each period. We let rz, represent the (expected) one period revenue generated by 
technology i in period t, cit represent the expected capital cost of purchasing technology i in period t, 
and sit represent the salvage value received from selling technology i in period t. We assume ri,, ci, and 
sit are bounded. Notice that the revenue, cost and salvage value functions are only time dependent  and 
not age dependent.  This would be reasonable for classes of equipment not subject to physical deteriora- 
tion, like microcomputers and controls, etc. 

Let Pt be the probability of appearance of technology 2 in period t given that it has not appeared in 
period t - 1 or earlier. Note here that though the cost and revenue functions may vary over time, their 
values are essentially known (or can be estimated). However, the period of appearance of the new 
technology is uncertain. Again, this kind of situation is appropriate for advanced technology wherein the 
technical parameters and specifications of the new technology may be decided on beforehand, and the 
appearance of technology on the market would depend on breakthroughs achieved, market conditions, 
etc. 

Let /3 be the one period discount factor (where /3 < 1) and f ,r( i ,  l) represent the maximal expected 
discounted return of being in state (i, l) in period t, if an optimal policy is followed from periods t 
through some time horizon T (T>_ t). The 'boundary condition', i.e., when t = T, is represented as 
L(i ,  l ) - f [ ( i ,  1). 

2.2. Approach 

To find the optimal decision in any state, we need to calculate the value function ftT(i, I). Further, we 
would like to solve the problem for an infinite horizon, i.e., when T = oo. However, since that would 
entail making infinite calculations, we will first solve the problem for some finite T, and then extend 
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these results to the infinite horizon case using forecast horizon techniques. We start by first stating the 
following dynamic programming recursive equations describing the problem: 

R1 : _ C l t + s o t + r l t _ k / 3 { ( 1  r 1 --Pt+l)f t+l(  , 1) +pt+l f tTl (1 ,  2)}, 
f t r (0 ,  1) = max (1) 

T 0 r 0 K0: rot +/3{(1 - P t + l ) f t + , (  , 1) +Pt+,L+I( , 2)}. 

The above expression states that in state (0, 1) in period t, there are only two actions possible, either 
'replace with technology 1' (represented by R 1) or 'keep technology 0' (represented by K0). In the former 
case, a cost of cl, is incurred in purchase of technology 1, a salvage value of So, is collected by selling 
technology 0, and a one period revenue of rl, accrues from the technology purchased. In addition, a 
discounted future stream of revenue accrues which depends on whether the new technology 2 does not 
appear (in which case the state in the next period will be (1, 1)), or appears (in which case the state in the 
next period will be (1, 2)). If K 0 is the action chosen, then a revenue of rot is collected in addition to the 
discounted future stream of revenue. This future stream would again depend on whether the new 
technology 2 does not appear (in which case the state will be (0, 1)) or it appears (the state would be 
(0, 2)). 

Since in state (1, 1) the only decision available is to 'keep technology 1', (it can be proved using 
Lemma l(a) presented later that it would never be optimal to go back to technology 0, once technology 1 
is purchased) the functional equation in this case would be 

r 1 p r f tT(l ,  1) = r l t  4-/3{(1 --Pt+l)ft+l( , 1) + t+lft+l(l ,  2)}. (2) 

The functional equations for the other possible states are given by the following expressions using the 
same reasoning as explained above: 

R2: - -C2 t+SOt+r2 t+/3 f tT+l (2 ,  2), 

r 0 r 1 f ,  ( , 2 ) = m a x  g l :  -C l t+so t - l - r l t+ /3 f t + l ( , 2 ) ,  (3) 

~Ko: ro,+/3Lr~(O, 2), 

[R2:  --C2t + Slt + r2t + /3 f tT l (2 ,  2 ) ,  
f , r (1 ,  2) = max r 1 , (4) 

K,: rlt -1-/3ft + 1( , 2) 

r 2 r 2 = q-/3L+l( , 2). (5) f,  ( , 2) r2t 

The above expressions are valid for t = 0 . . . . .  T - 1. For the backward recursion of dynamic program- 
ming to work, we need to define the functional value of each state when t = T. These are called the 
boundary conditions and we are representing it by L(i, l). As long as T is finite, these actions can be 
computed using backward recursion. In the usual T period problem, we take L(i, l ) =  0 for all i, l. 
However, as we shall see later, using alternate values of L(i, l) can give useful results. 

We let 7rtr(i, l) represent the action, i.e., either K i or Rj ( l > j  >i) ,  that achieves the above 
maximizations (i.e., rrtT(i, l) is the optimal action in state (i, I) in period t of the T period problem). 

The results of Hopp, Bean and Smith (1987) show that, since /3 < 1 and rit, cit , and sit are bounded, 
f f ( i ,  l) converges to a limiting value function ft(i, l) as T --+ oo (henceforth, we will drop the superscript 
T to represent the infinite horizon case). Furthermore,  since the set of actions in state (i, l) is finite, 
their results imply that if the infinite horizon optimal decision, written rrt(i, l), is unique (i.e., the 
revenue streams from alternative actions is not exactly equal), then there exists a finite horizon r such 
that 7rf(i, l) = "a't(i , l) for all T_> ~-, regardless of the boundary condition L(i, l), as long as these are 
bounded. Such a r is called a forecast horizon. 

Since we begin the problem in state (0, 1) and time t = O, we are interested in determining the infinite 
horizon optimal decision 7r0(O, 1). In this paper we give a simple and efficient method for identifying the 
forecast horizon and using it to obtain this decision. 
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2.3. Assumptions  

We make the following assumptions regarding the cost and revenue functions for our model: 

I. r2t > rlt > %t for a l l t < T .  

II. c l t > s l t > S o t  for a l l t < T .  

III. f l ( s , + l - S o t + l  ) > ( s I t - s o t  ) - ( r l t - r 0 ,  ) f o r a l l t < T ,  and 

r l t - r 0 , > s l , - s 0 ,  for t = T .  

The first assumption implies that the per period revenues from new technologies are greater than 
those of old technologies, and this relation holds for all time periods. The first part of the statement is 
reasonable, the second part would be reasonable in cases where the revenue generated by an equipment 
is affected by market conditions (e.g., demand for goods or services produced by the piece of equipment 
under consideration) and changes in market conditions would affect all the technologies in a similar 
manner. 

The second assumption is quite justifiable and merely states that the cost for purchasing technology 1 
be greater than it's salvage value in all periods, and that the salvage value for technology 1 be greater 
than that of technology 0 in all periods. 

The third assumption is sufficient to ensure that if the optimal decision in state (1, 2) in period t were 
to replace with technology 2, then the same decision would hold in state (0, 2) (using the result of 
Lemma 1, discussed later). This is a reasonable deduction to make, and the assumption just formalizes it 
to avoid unrealistic cases. If salvage values were not considered, then this result is intuitive and will 
directly follow from assumption A1 above (and Lemma l(a)). However, when salvage values are 
considered, the above assumption is required. To see that this assumption is reasonable at least in 
certain cases, note that if sit = si, rit = r i for all t, then III reduces to (r~ - r 0 ) / ( 1  - f i ) >  s I - s  0, which 
means that the extra revenue earned by technology 1 over technology 0 over the infinite horizon is 
greater than the difference in their salvage values, which is very reasonable. Also note that if salvage 
values were not important (or very small or equal to some nominal value for all technologies) as in some 
of the advanced fast changing technologies, then III reduces to I. Clearly, there will be many other real 
life situations where III will hold and hence it should not be considered a major restriction on the use of 
the model. 

Since no restrictions have been placed on the relationships between costs of purchase of technologies 
c~t and c2,, (other than II), the model allows these costs to move up or down in any manner with time. 
This comes in handy in modeling replacement of advanced technologies which may cost less in the future 
though its capabilities may increase. 

3. Main results 

In order to solve the infinite horizon problem using the finite horizon formulation in the dynamic 
programming recursions (1)-(5), we first show that under two sets of boundary conditions for a finite T 
period problem (as stated later in Lemmas 2 and 3), the difference between choosing 'keep technology 0' 
and 'replace with technology' in state (0, 1) changes monotonically (one non-decreasing and the other 
non-increasing) with T. We use these two sets of boundary conditions to develop a stopping rule to 
identify the forecast horizon for the problem. Once we identify the forecast horizon, r, we are certain (by 
definition) that solving a ~- time problem will give us an infinite horizon optimal decision. 

3.1. A stopping rule 

We define 

T A _ _ c , t + S o t + ( r L  _ r o t ) + ~ ( l _ P t + l ) [ f t ~ l ( 1 , 1  ) T 0 

+/3pt+l[  r 1 T f t+,(  , 2 ) - - f t + , ( 0 , 2 ) ] ,  (6) 
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which from (1) is the difference between the value of using action R 1 or K 0 in state (0, 1). Hence, a 
necessary and sufficient condition for the optimal decision 7rtr(0, 1) = R 1 is Art > 0, and for 7rtr(0, 1) = K o 
it is r A t < O. Notice that we break ties in favor of K 0. 

If under certain conditions we can show that At r is non-decreasing in T for all t, then this would mean 
that the optimal decision 7r[(0, 1)= R 1 implies that 7rtr(0, 1)= R1, for all T >  ~-, and in particular the 
optimal infinite horizon decision 7rt(0, 1) = R 1. Similarly, if under certain conditions we can show that At r 
is non-increasing in T for all t, then this would mean that the optimal decision w[(0, 1)= K 0 implies 
that rrtr(0, 1)= K 0 for all T > ~-, and in particular the optimal infinite horizon decision 7rt(0, 1)= K 0. 
After one technical lemma (which may be skipped by the casual reader), we present such conditions 
below as Lemmas 2 and 3. 

The following technical lemma gives conditions for the boundary conditions that make certain 
decision combinations in different states to be clearly non-optimal. These conditions are simple to ensure 
and implement and make the identification of the optimal decision simpler. 

L e m m a  1. I f  
(a) L(i, j )  < L(i  + 1, j )  for all i=  O, 1, 2, and j > i + 1, then ftr(i,  j )  <f t r ( i  + 1, j )  for all i = O, 1, 2; 

j > i + l  a n d t < T .  
(b) L(1, 2) - L(O, 2) > s ir  - Sot, then ftr(1, 2) --ftr(O, 2) > Sit -- SOt for all t <_ T. 
(c) L(1, 1) - L(O, 1) > L(1, 2), then ftr(1, 1) -fir(O, 1) >ftr(1,  2) - ftr(o, 2) for all t < T. 

Proof. The proof of (a) follows from straightforward backward induction on t. The proof of (b) and (c) 
follows from backward induction using assumption III. [] 

It follows directly from (3) and (4), the result of Lemma l(a) and l(b) and by assumptions I - I I I  that 
rrtr(1, 2) = R 2 implies 7rtr(0, 2) = R 2 for all t < T. That is, if the optimal decision in state (1, 2) is to 
replace technology 1 with technology 2, then the optimal decision in state (0, 2) will also be to replace 
technology 0 with technology 2. This makes the problem more tractable by precluding cases where the 
optimal decision in state (1, 2) is to 'replace with technology 2' but the optimal decision in state (0, 2) is 
to 'replace with technology 1' or to 'keep technology 0'. Such cases would indeed be unusual, but one 
could think of unrealistic salvage values that could make it possible. It is for this reason that assumption 
III was made. Lemma l(c) is needed for proving Lemma 4, stated later. 

Using the result of Lemma 1 we can obtain expressions for ftr(1, 1 ) - f t r (0 ,  1) and ftr(1, 2 ) - f i r (0 ,  2) 
which help in evaluating (6) and hence arrive at the optimal decision. These expressions are given as part 
of the proof of the next lemma in the Appendix. The minimum and maximum values that these 
expressions take are used for specifying the boundary conditions in Lemmas 2 and 3 below. 

We now present the two lemmas that state the boundary conditions that ensure monotonicity of Art 
with respect to T in (6). 

L e m m a  2. I f  

L(a, 1) 

L(1,  2) 

L(2,  2) 

then Art(g) is 

- L ( O ,  1) = min[clT--Sot,  rlT--rOT], 

- L ( O ,  2)  = S i r  - Sot, 

- L ( 1 ,  2) = C z r - S l r ,  

non-decreasing in T, where Art(g) =- Art under these particular boundary conditions. 

P r o o £  See Append~. [] 
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Lemma 3. I f  

L(1,  1) - L ( 0 ,  1) = c , r - S o r ,  

L(1,  2) - L ( 0 ,  2) = C , v - S o r ,  

L(2,  2) - L ( 1 ,  2) = m i n [ c 2 r - S l v ,  r 2 r -  r lv  ], 

then Ar,(h) is non-increasing in T, where A t ( h )  - r = A, under these particular boundary conditions. 

Proof. The proof is exactly analogous to that of Lemma 2 and is not repeated here. [] 

Note that the boundary conditions in Lemmas 2 and 3 satisfy the requirements of Lemma 1. 
The conditions in Lemma 2 make the 'keep'  decision as attractive as possible. The conditions in 

Lemma 3 make the 'replace'  decision as attractive as possible. The intuition behind this is that the 
conditions in Lemma 2 state that if technology 2 has not appeared until T, the advantage of being in 
state (1, 1) over being in state (0, 1) is small (actually it is the minimum value the difference is being in 
these two states can take, as shown in the Appendix in expression (A.1)), hence being in state (0, 1), that 
is the 'keep'  decision, is attractive. If in spite of this advantage the optimal decision for some r is to 
'replace' ,  then it can be shown that this decision will be optimal for all T > r. The conditions of Lemma 3 
are such that if technology 2 has not appeared until T the advantage of being in state (1, 1) over being in 
state (0, 1) is large (we ensure this difference is the maximum possible, as shown in the Appendix in 
expression (A.1)). This makes 'replace'  and moving to state (1, 1) decision attractive. If under these 
conditions the optimal decision is to 'keep',  then it can be shown that this decision will be optimal for all 
T > r. We present this important result as Theorem 1 below. 

Theorem 1 below takes advantage of the monotonicity results in Lemmas 2 and 3 to identify the 
forecast horizon. Because minimum values are used in Lemma 2 it can be easily shown that J~'(g)  is a 
lower bound on A~ r in (6), and since the maximum values are used in Lemma 3, that a~r(h) is an upper 
bound on zi~ in (6). From the discussion immediately following (6) we know that if At r > 0 then the 
optimal decision is to replace technology 0 with technology 1. Since Air(g) is a lower bound on AT, 
Art(g) > 0 should also give the same optimal decision. Similarly, A~,'(h) < 0 should imply that the optimal 
decision is to keep technology 0. This observation is formalized in Theorem 1. 

Theorem 1. 
(a) I f  A~(g) > O, then ~ff(O, 1) = R 1 for  all T >_ r. 
(b) I f  A , ( h )  < O, then rrTt (O, 1) = K o for  all T >_ r. 

Proof. The result follows directly from Lemmas 2 and 3 and the discussion immediately following 
expression (6). [] 

Theorem 1 (a) states that by using the conditions of Lemma 2, if the A~ in (6) is positive for some 
horizon r,  then the optimal decision will be to replace technology 0 with technology 1 for all horizons 
beyond r. Thus r will be the forecast horizon. Theorem l(b) states that if by using the conditions of 
Lemma 3, the value of A t from (6) is non-positive, then the optimal infinite horizon decision would be to 
keep technology 0 for all horizons beyond r. r in this case would be the forecast horizon. This discussion 
leads us immediately to an algorithm for finding the forecast horizon which will solve two dynamic 
programs, one with the boundary conditions in Lemma 2 and the other with the boundary conditions in 
Lemma 3. Since the Art(g) and Art(h) in these programs are lower and upper bounds, respectively, for / t~  
in (6), whenever these values are either both positive or both non-positive for some T, the forecast 
horizon is found. Since these values coverge as T increases, we iteratively increase the time horizon T in 
the algorithm until the forecast horizon is found. 

We present Figure 1 to put all our results up to now in perspective, and also to facilitate the 
understanding of the results and algorithm stated later. Notice that the forecast horizon is identified 
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Figure 1. Monotonicity of A T using boundary conditions of Lemmas 2 and 3. Data is from numerical example (a) in Section 3.6. 

Here the optimal infinite horizon decision is ~-,(0, 1) = R 1, and the forecast horizon is ~" = 3 

when both  the curves are on the same side of  Art = 0. W h e n  they are on the positive side, the optimal 
decision is ~-t(0, 1) = R1, and when they are on the negative side, the optimal decision is rrt(0, 1 ) =  K 0. 

3.2. The algorithm 

T h e o r e m  1 provides the basis for an algori thmic approach  to comput ing  the infinite horizon optimal 
' k eep '  or  ' r ep lace '  decision for any period,  and specifically for t = 0. The  algori thm can be stated as 
follows: 

Step 1. Choose  a small t ime horizon T (say T = 3), make forecasts Pt for periods 1 . . . .  , T. 
Step 2. Solve two T-period problems: 

• The  first with boundary  condit ions of  L e m m a  2. One  possible set could be: 
~, L(0, 1) -- 0, 

t> L(1, 1) = min[c l r  - s0r, r l r  - rot], 
~> L(0, 2) --- 0, 
t> L(1, 2) = s i t  - Sot, and 
t> L(2, 2) = c2r - So~. 

• The  second problem should have boundary  condit ions of  L e m m a  3. One  possible set could 
be" 

~, L(0, 1) = 
~, L(1, 1) = 
t> L(0, 2) = 
t> L(1, 2) = 

, 

C l T  - -  SOT , 

O, 
C I T  - -  SOT , and 

t> L(2, 2) = min[c2r  - sir, rzr - rlr] + Clr - Sot. 
Step 3. For  the per iod of  interest, in this case t = 0, check to see if ei ther  Art(g) > 0 in the first problem, 

or  Art(h)<_ 0 in the second problem. If  yes, stop. ~" = T is the forecast  horizon. The  optimal 
decision in both  the problems will be the same (from T h e o r e m  1) and the optimal decision is 
7rt(0, 1) = 7rtr(0, 1). I f  no, go to Step 4. 

Step 4. There  are two options:  
(a) Increment T by 1 and go to Step 1, or  
(b) Compute  the maximum error  f rom using the T period problem decision (using result of  

Theo rem 3, s tated later). I f  acceptable,  stop. If  not  acceptable,  go to (a). 

This approach  has three advantages.  First, it is extremely simple to implement,  since testing for 
forecast  horizons merely requires solving two finite horizon dynamic programs.  An  implementa t ion of  
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the above algorithm in Turbo Pascal takes a fraction of a second to run for each value of time horizon T 
on an IBM P S / 2  Model 55 SX. This makes it roughly equivalent in complexity to the stopping rule of 
B~s and Sethi (1988) and much simpler than that of Bean, Hopp and Duenyas (1989). Second, it requires 
only incremental forecasting for the future technology, i.e., forecasts are made for only as many periods 
into the future as are necessary to identify the forecast horizon. And finally, as we will develop below, it 
is 'efficient' in the sense that it identifies short forecast horizons. This is important, since it enables the 
decision maker to base decisions on near term information, rather than requiring dependence on distant, 
unreliable forecasts. 

3.3. Efficiency of the algorithm 

In Bean, Hopp and Duenyas (1989) it is shown that the stopping rule of Bbs and Sethi (1988) can lead 
to overly long forecast horizons (e.g., 55 periods when the minimum forecast horizon is 4 periods). The 
Hopp, Bean and Smith (1987) approach is more efficient in that it identifies shorter forecast horizons, 
but it is computationally very intensive and does not guarantee to the shortest possible forecast horizon. 
All these methods are for the general non-stationary problem and hence do not have the computational 
efficiency or the efficiency in finding short forecast horizons that our algorithm has. As we show in the 
following theorem, under certain conditions, the algorithm introduced above generates forecast horizons 
that are as short as they can be. 

Theorem 2. I f  

-- C 2r ~- Sot - } -32  ~ -- C lr -}-Sot "~'C~I ~--- ~ 0 ,  

--C2r "}-Sl'r -{-"~2 ~C~l' 

and 

r : min(T" Art(g) > 0 or Art(h) < 0} 

where ,~i = ~,-:~([3'-*)ri,, i = O, 1, 2, then r is the shortest forecast horizon consistent with the partial 
forecast {p,},_ i. 

Proof. In Appendix. [] 

.91 i is the total revenue for technology i from period r through o0 discounted back to period r. 
The above result shows that if the conditions of Theorem 2 hold, then r is the shortest forecast 

horizon consistent with the partial forecast up to r. We will show later that even if these conditions do 
not hold, our algorithm results in much shorter forecast horizons compared to other algorithms. 

3.4. Epsilon optimality 

The algorithm states that for any T that is short of the forecast horizon one could stop the procedure 
and calculate the maximum error entailed in choosing one of the decisions from the two T period 
problems. This is especially helpful if for some problems T becomes too large for forecasting probabili- 
ties and estimating costs and revenues. The following result gives a procedure for calculating this error: 

Theorem 3. I f  Art(g) < 0 and Art(h)> O, then the maximum error from using 
(a) %(0, 1 )=  R~ is -Art(g);  
(b) ~r,(0, 1 )=  K o is Art(h). 
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Proof. The proof  is straightforward from Lemmas 2 and 3. [] 

The intuition behind this result will be clear from Figure 1. Since Art(g) and AT(h) are bounds for A~, 
if we choose the decision based on one of these, the maximum error will be given by the (absolute value 
of the) other. 

3.5. Sensitivity to changes in forecasts 

Since the probabilities in this model are non-stationary in time, it would be useful to have results 
which could predict the optimal decision with changes in probabilities. For example, if a decision maker  
forecasts probabilities upto T = 5, and runs the algorithm to find that the optimal infinite horizon 
decision is to keep technology 0. It would be useful to know if this decision would change if the 
probability estimates were increased for some or all of the periods, without having to run the dynamic 
programs once again. We present one such result here after proving a technical lemma (which may be 
skipped by the casual reader). 

Lemma 4. I f  p = ( P t + I ,  P t + 2 , ' - ' ,  PT) and/~  = (/~t+l,/5,+2 . . . .  , I~T) where Pi >Pi for  all t < i < T, then 
Art(~) < AT(p),  where Art(.) - T _ = A t when probability vector ( ' )  is used. 

Proof. We know from Lemma l(c) that f~r(1, 1) - f,r(0, 1) _>fir(l, 2) --f tT(o, 2) for all t _< T. Hence from 
(6) we know that Atr is non-increasing in Pt+l. From (1)-(3) we can see that f iT(l ,  1) - - f ,T (o ,  1) is 
non-increasing in Pt+l and from (3)-(4) that f tr(1,  2)- - f , r (o ,  2) is independent  of Pt for all t. Hence it 
follows that f tT(l ,  1) --ftT(o, 1) is non-increasing in Pm for all m > t + 1. Thus Art(/~) < Atr(p ). [] 

The above result states that when the probability forecasts are increased, the value of Art decreases 
(or more accurately, does not increase). This result helps in predicting the stability of the optimal 
decision, which we formally state in the result below. 

Theorem 4. (a) / f  7rrt (p )  = Ko, then 7rT(~) = Ko; 
(b) I f  7rt~(~) = R 1, then Try(p) = R 1. 

Proof. The result follows directly from Theorem 1 and Lemma 4. [] 

Theorem 4 implies that if the optimal decision is to ' keep '  using a particular technological forecast 
vector, then the optimal decision will be 'keep '  also for a technological forecast vector that stochastically 
dominates the original vector. This is entirely intuitive. The opposite holds if the optimal decision were 
to ' replace ' .  

3.6. Numerical  examples 

We now discuss a few numerical examples to illustrate our algorithm for finding the optimal infinite 
horizon decision using the forecast horizon approach. Specifically, we are interested in ~-0(0, 1), the 
optimal infinite horizon decision in the initial period in state (0, 1). 

Suppose r2t = 175, Czt = 200, sit = 75 and Sot = 35 for all t; T = 4 and /3 = 0.9. Let 

roo = 50, r01 = 60, r02 = 45, ro3 = 50, r04 = 65, 

rl0 = 100, r12 = 100, rlz = 95, rl3 = 90, r14 = 75, 

c10 = 125, cll = 175, cl2 = 100, Cl3 = 100, C14 = 200. 

Note that assumptions I - I I I  are satisfied by the data. We use the boundary conditions stated in our 
algorithm in Section 3.2 to solve two dynamic programs. 
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Figure 2. Resul ts  from numerical example (b). Here 

o 

T 
the optimal infinite horizon decision is ~'t(0, 1 )=  K 0 and the forecast horizon 

is ~-=4 

(a) Suppose the technological forecast were 191 = 0.1, P2 = 0.2, P3 = 0.3, P4 = 0.6. Using the boundary 
conditions in Lemmas 2 and 3 we have z l4(g)= 5 and A4(h)= 9, respectively. It follows from 
Theorem 1 that ~-0(0, 1) will be R x, and so, the decision to replace the current equipment with that 
presently available in the market is optimal for any technological forecast in period 5 and beyond. 
The values of zl0r(g) and A~(h) for different values of T are shown in Figure 1. It can be seen from 
Figure 1 that in this case the forecast horizon ~-= 3. When the time horizon is T = 4, as in this 
example, the same decision holds by definition of forecast horizons as we have above. 

(b) If p~ = 0.5, P2 = 0.3, P3 = 0.3, P4 = 0 . 6 ,  then using the boundary conditions in Lemmas 2 and 3 we 
have A4(g) = - 1 6  and A4(h) = - 9 ,  respectively. It follows from Theorem 1 that ~-0(0, 1 ) = K  0 
regardless of the forecast for periods 5 and beyond. Hence, one should keep the existing piece of 
equipment so as to replace it later when technology 2 appears. The forecast horizon is 7 = 4. The 
values of a~(g)  and A~(h) for different values of T are shown in Figure 2. 

(c) If Pl = 0.25, P2 -- 0.2, P3 = 0.3, P4 = 0 . 6 ,  then using the boundary conditions in Lemmas 2 and 3 we 
get A4(g)=  - 3  and A4(h)= 2, respectively, as shown in Figure 3. In such a case, the optimal 
decision depends on the forecast in periods 5 and beyond. The decision maker could then either 
increase the horizon by one period and repeat the exercise or use the epsilon-optimality result 
discussed in Theorem 3 which states that the maximum error in choosing K 0 is 2, and the maximum 
error in choosing R 1 is 3. To minimize the maximum error, we would choose K 0, (i.e., keep the 
current equipment) and incur a maximum error of 2. 
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-20 

4 0  

-60  

Figure 3. Resul ts  from numerical  examples (c) and 

o 

T 
(d). Here the optimal infinite horizon decision is ~rt(0, 1)= K 0 and the forecast 

horizon is 1- = 5 
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(d) If, however, the decision maker  in the previous case decides to increase T to 5 and forecasts the 
probability, costs and revenues to be P5 = 0.6, %5 = 85, ri5 = 85 and c15 =290,  then we get 
ASo(g) = - 3  and A~(h)= - 3  as shown in Figure 3. Hence I -= 5 is the forecast horizon and using 
Theorem 1, 7r0(0, 1 )=  K 0. 

(e) Using Theorem 4 we can say that all forecast vectors that are dominated by the one in case (a) also 
will result in ~-0(0, 1 )=  R 1 and all forecast vectors that dominate the one in case (b) and (d) will 
result in rr0(0, 1 )=  K 0. 

If  in the above examples we let rit = ri4 and cit ~-Ci4 for all t > 4 and i = 0, 1, 2, then the first 
condition of Theorem 2 is not satisfied (as - c 2 r  + s0r + ~ 2  = 1585, - c  jr  + SoT +--~l = 585, and ~ 0  = 650) 
and hence the forecast horizon obtained is not the shortest possible. It is interesting to note that the 
forecast horizon of 3 and 4 for our examples (a) and (b), respectively, is still appreciably shorter than that 
obtained by the method of B~s and Sethi (1988). To see this, we observe that for our problem, the B~s 
and Sethi stopping rule can be stated as follows: 

Stopping rule (B~s and Sethi). If  A~> ( I - c , 0  + s00 + rio I ) /3T/ (1- /3) ,  then ~-~t(0, 1 )=  7rS(0, 1) for all 
M>_T. 

For example (a), A 4 = 7, and hence the forecast horizon works out to T = 36 using the Bbs and Sethi 
rule, whereas in our method the forecast horizon was T = 4. Other  examples yield similar results. Thus, 
our simple method shows the same level of  improvement  over the B~s and Sethi method achieved by the 
much more complicated approach of Bean, Hopp  and Duenyas (1989). 

4. Conclusions 

We have given a method for computing the optimal equipment  replacement decision where the 
technological forecasts and cost and revenue functions are non-stationary. This method assumes that 
only one new technology may appear  in the future in addition to the technology already available on the 
market  at the current time. A few assumptions about the nature of revenue and cost functions have been 
made with a short discussion of situations where these assumptions would be justifiable. 

The algorithm developed in this pape r  is extremely simple computationally as well as to code, and, 
under certain conditions, is efficient in the sense of computing the optimal initial ' keep '  or ' replace '  
action using a minimum number  of  periods of forecast data. Even when such conditions do not hold, the 
algorithm identifies forecast horizons that are much shorter and in lesser computational time than other 
existing methods. 

Further  work is needed to characterize the problem of equipment replacement  when more than one 
alternative is available on the market  at the outset, and the situation where more than one improvement 
can occur in the future. These situations do not lend themselves to choice of appropriate  boundary 
conditions as was done in this paper.  General -purpose methods can be used for these cases but such 
methods are cumbersome,  as discussed earlier. 

Appendix 

Lemma 2. If  

L(1 ,  1 ) -  L(D, 1 ) =  min[clr-Sov,  rlT--rOT], 

L(1, 2) - L(0,  2) = s , T -  Soy, 

z.(2, 2) - L ( 1 ,  2) =C2T--S,T, 

then ay(g) is non-decreasing in T, where Art(g) - Art under these particular boundary conditions. 
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Proof. Let gf(', " ) - f f ( ' ,  • ) under these boundary conditions. Using (1)-(5) and Lemma 1, we can 
write 

Clt -- SOt, 

g,r(1, 1) -g,r(0,  1) = min{ ( r l t - ro , )  +/3(1-p,+l)[g,r+l(1, 1) - g r ~ ( 0 ,  1)] (A.1) 

[ +/3Pt+l[grt+,(1,2)-gf+l(O, 2)], 

Slt -- SOt, 

_ T = } ( c 2 ' - s ° t - ( r z t - r l ' ) - / 3 [ g T t + l ( 2 ' z ) - g T t + l ( l ' 2 ) ] '  

Sot, gi'(1 2) g , (0 ,2)  maX]min/q ' -  (A.2) 

[ ~ r l t -  rot + f l [gTl( l  , 2) --gtg+ 1(0, 2)], 

gf(2, 2) - gf(1, 2) = min/c2' - sl ' '  
-- gt+l(  ,2)1 ~ r a t - - r l t + f l [ g L l ( 2  , 2) T 1 . (a.3) 

By assumptions I-III  and the boundary conditions used in this lemma, the conditions of Lemma 1 are 
satisfied, so 

gLl(1, 1) -- g f+l (0 ,  1) > 0  and gr l (1 ,  2) --gTl(0 , 2) > 0 .  

Hence, (A.1) implies that 

g , r ( 1 , 1 ) - g f ( 0 , 1 ) > m i n [ c l t - s 0 , , q t - r 0 , ]  f o r a l l t < T .  

Similarly, (A.2) implies 

gf(1, 2) - g f ( 0 ,  2) ~'Slt--Sot 

and (A.3) implies 

gf(2, 2) - g f ( 1 ,  2) <_cit-slt for all t < T. 

These observations imply 

gr+'(2, 2) -grr- l(1,  2) <c2r-Slr=L(2, 2) -L(1 ,  2) =grr(2, 2) -grr(1, 2), 

grr+l(l, 2) -grr+l(0, 2) >s,r-Sor=L(1, 2) -L (0 ,  2) =grr(1, 2) -grr(0, 2), 

gr+l(1, 1) -g r+ l (0 ,  1) > min[qr-Sor, qr-ror]  =L(1, 1) -L (0 ,  1) 

=grr(a, 1) -grr(0, 1). 

Thus the Immma holds for t = T. 
Now suppose 

gT++11(2, 2) -gT+ll(1 , 2) <gLl(2,  2) --gf+l(1, 2), 

gT+ll(1 , 2) --gT~lt(0 , 2) _> gtT+l(1, 2) T -- g t + l ( 0 ,  2 ) ,  

g,r++ll(1, 1) -gf+ll(0, 1) >_gf+l(1, 1) r -- gt+l(0, 1). 

Then from (7)-(9), 

gf+l(2, 2) -g f+ l (1 ,  2) < g,r(2, 2) - g f ( 1 ,  2), 

gf+l(1, 2) -g f+ l (0 ,  2) >gr(1 ,  2) - g f ( 0 ,  2), 

gT+l(1, 1) - -gT+l (0 ,  1) >_grt(1, 1) --gT(O, 1). 
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It  follows by induct ion that  gtr(1, 1) - g r ( 0 ,  1) and g r (1 ,  2) - g t r ( 0 ,  2) are non-decreas ing  in r .  Thus  
using (6) A t ( g )  is non-decreas ing  in T. [] 

Theorem 2. I f  

--C2. r -~- SO, "t-~.~ 2 ~ --el. r "t- SOy -]-~1 ~ '~0 ,  

- c 2 ,  + s l ,  + J i '  2 >~a;'l, 

and 

~" = min{T:  AtT(g ) > 0 o r  ArT(h) < 0 }  

where ~ i  = ~ t = , ( ~ t - ' ) r i t ,  i = O, 1, 2, then .r is the shortest forecast horizon consistent with the partial 

forecast {pt}[= 1. 

Proof.  We  prove  the result  by showing that  the bounda ry  condit ions of  L e m m a s  2 and 3 are consistent  
with actual  forecasts  for  per iods  ~-+ 1, z + 2 . . . . .  Hence ,  if A t ( g ) <  0 or A t ( h ) >  0, then  there  are 
forecasts  beyond  r that  lead to di f ferent  decisions, so the  initial decision depends  on forecas t  data  
beyond  r and is not  a forecas t  horizon. 

First  we show tha t  the  bounda ry  condit ions of  L e m m a  2 are consis tent  with any forecast  tha t  has 
P ,+ I  = 1. Not ice  that  if p~+l = 1, then  the--only states that  are accessible beyond  per iod  r are (0, 2), 
(1, 2), and (2, 2). Thus,  to show that  this forecas t  is consis tent  with the boundary  condit ions of  L e m m a  2, 
it is sufficient to show that  

f , ( 1 ,  2) - f , ( 0 ,  2) =S1,--So, and f , ( 2 ,  2) - f , ( 1 ,  2) = c 2 , - s l ,  

where  f , ( . ,  • ) r epresen t s  the infinite hor izon value funct ion in per iod  r. T h e  condi t ion of  the t heo rem 
guaran tees  tha t  for  this forecast  ( f rom expressions (3)-(5)) ,  

f~(0,  2) = - c 2 ,  + s 0 ,  + ~ '  2, L ( 1 ,  2) = - c 2 ,  --[- Sl, --[-,~2, f~(2,  2) =,9/' 2, 

so the result  follows. 
Next  we show tha t  the  boundary  condi t ions of  L e m m a  3 are consis tent  with the forecast  P ,+ l  = P , + 2  

. . . . .  0. Not ice  that  in this case t h e  only states that  are accessible beyond  per iod ~- are  (0, 1) and 
(1, 1). To  show that  this forecast  is consis tent  with the  condi t ions in L e m m a  3, it is sufficient to show that  
f , (1 ,  1) - f , ( 0 ,  1) = Cl, - So,. F r o m  the condi t ion of  the t h e o r e m  we have ( f rom expressions (1)-(2))  

f~(0,  1 ) =  - C l r  at- s0, --1--,.~1 , L ( 1 ,  1) ~--,-~1, 

which comple tes  the result. [] 
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