
A Survey of
Data Models for Hypermedia

Joan Boone
IBM Corporation

and
Department of Computer Science

University of North Carolina
Chapel Hill, NC 27599-3175

April 1992

Abstract: This article surveys data models developed in support of hypermedia environments.
Each model is briefly summarized and identified according to the primary motivating factor:
application requirements, refinement and formalization, and most recently, standardization. A
more detailed description of the following data model characteristics is provided: low-level
abstractions, high-level abstractions, operations, and relationship to system architecture.
Lastly, the models are reviewed with respect to how they address some hypermedia issues
such as versioning, collaboration, interoperability and interchange, and security.

Keywords: hypermedia, data model, data abstraction

2

Introduction.. 2
Some Preliminaries... 2
Historical Background.. 4

Hypermedia Data Models.. 5
Overview... 5
Data Model Characteristics.. 14

Data Model Issues... 19
Versioning... 20
Collaboration... 21
Interoperability and Interchange.. 22
Security... 22

Conclusion.. 23
References.. 24

3

Introduction

Hypermedia is an approach to the representation and management of information characterized

by a set of nodes interconnected by links. Each node corresponds to a media object which may

be text, graphics, audio, or video recordings; links represent relationships among media

objects. Hypermedia research efforts and system implementations focus on what Conklin

[Conk87] describes as either the front end (the user interface) or the back end (the database).

The purpose of this article is to survey work related to an important component of the

hypermedia back end: the data model. Data models are reviewed from several perspectives:

Motivating factors

Some of the earlier models were developed to support a specific application domain, e.g.,

software development or authoring environments. Others evolved as research projects, are

more general purpose in nature, and serve to refine and formalize the hypermedia data

model. Recent efforts propose reference models to promote standardization - an indication

of the growing diversity of models appearing, and the need to support interchange among

emerging systems.

Data model characteristics

Most models employ the basic node-and-link paradigm. This section focuses on the

different refinements made to the basic model. Some of the properties that distinguish them

are

Low-level representation primitives
Higher-level abstractions for aggregation and generalization
Operations to support model definition and manipulation
Relationship of the data model to system architecture, i.e., how does the data
model interface with the underlying storage system and the user interface

Issues for hypermedia data models

Many of the identified data modeling issues are not unique to hypermedia; they are the same

issues confronting modelers of conventional databases. However, given the collaborative

and distributed nature of most hypermedia environments, these issues are especially

important. The last section reviews the issues and how some models propose to address

them.

SOME PRELIMINARIES
What is a Data Model ?

Ullman [Ullm88] defines a data model as a mathematical formalism with two parts:

4

A notation for describing data, and

A set of operations used to manipulate that data

In the hypermedia domain the data model is typically some variation of the basic node-and-link

paradigm. This model reflects the essence of hypermedia environments where information has

a non-linear organization; it is stored in "chunks" with machine-supported links within and

between the "chunks" [Conk87]. The notation used to describe the models varies from English

language descriptions to more formal methods such as set notation and graph grammars. The

set of operations provided are as diverse as the models themselves, but typically include basic

manipulation primitives for viewing and editing data objects. A summary of model

abstractions and operations is provided in the "Data Model Characteristics" section.

Why do Hypermedia Systems Need a Data Model ?

There are two ways to answer this question:

From an architecture perspective it is important to isolate the data model as a separate layer

in a hypermedia system for several reasons:

So that diverse applications and presentation services can be built on a single

hypermedia database.

To maintain independence from the physical implementation; the data model should be

independent of the underlying file management system to support system portability.

Data models provide the definition mechanism to partition information in a systematic

way for distributed data environments.

From a database perspective, the traditional models (hierarchical, network, relational) do

not map well to the hypermedia environment for at least two reasons:

Restrictive semantics of the entities and relationships in these models

Lack of support for structural abstraction. The class of semantic models probably

provides the best fit since it supports constructors for building complex data types

[Kim89].

Most of the models in this review emphasize the structural abstractions not found in traditional

models. The importance of positioning the data model within a system architecture has only

recently been addressed by reference models developed by standardization work groups.

H ISTORICAL BACKGROUND

5

The first description of hypertext is attributed to Vannevar Bush in his 1945 article "As We

May Think" [Bush45]. Even the extended concept of hypermedia and the use of a persistent

information store can be found in Bush's comments on the recording of research results:

"A record, if it is to be useful to science, must be continuously extended, it must be

stored, and above all it must be consulted. Today we make the record conventionally by

writing and photography, followed by printing; but we also record on film, on waxdisks,

and on magnetic wires."

Bush proposed the "memex," a device for the storage and retrieval of such records. Two

essential capabilities of the "memex" continue to be fundamental properties of hypermedia data

models:

"The process of tying two items together is the important thing."

The basic node-and-link paradigm is common to most hypermedia models.

"Selection by association"

As noted by Conklin, machine-supported links are the essence of hypertext that permit the

traversal of a network of nodes in a user-directed manner.

In 1958 Good [Good58] proposed a network model of knowledge that he described as

resembling Bush's "memex." This network contained "nodes and roads" - nodes which

represent propositions, and roads which represent associations of varying strength. He

compared the network to the nervous system where the network is highly connected, perhaps

with some tree structures, but with "innumerable cross-connections." His model also

introduced two abstractions:

The notion of changing views as one moves further from the network. For example, at

close range it is a network of propositions, then a network of documents, then a library

collection diagram.

The notion of aggregation where a subset of nodes is a "clump or ganglion" with a

computable attribute known as "clumpiness."

Influenced by both Bush and Good, Engelbart wrote "A Conceptual Framework for the

Augmentation of Man's Intellect" in 1963 [Enge63]. He proposed the H-LAM/T (Human using

Language, Artifacts, and Methodology, in which he is Trained) concept where a hierarchically

structured repertory of capabilities provides the foundation for augmenting intellect. Users

work "within a symbol structure of some sort, shifting their attention from one structure to

another as they guide and execute the processes that ultimately provide them with the

comprehension and the problem solutions they seek." Several years later these concepts were

6

implemented as NLS (oN Line System), a text processing system for a multi-user

environment. The data model is essentially hierarchical where each node represents a

"statement." A statement is the basic work unit which may represent paragraphs or sections.

Links are supported for text citation and can be specified between and within nodes in the file

hierarchy [Enge73]. NLS is now known as Augment and has been made available

commercially.

Hypermedia Data Models

OVERVIEW

This section provides an overview of data models that have been developed during the last

several years. Earlier models were developed to support specific applications and were

implemented as part of a larger system. Others have evolved as a means to refine and formalize

the data model. Several of the most recent efforts address the need for model standardization in

future hypermedia systems.

GRAS

GRAS (GRAph Storage) is the database component of a system developed at Osnabruck

University to support software development environments [Bran85]. Software documents are

represented as attributed, labelled graphs which are organized into database collections.

Separation of structural and non-structural information is a central design principle which is

realized in both the graph model and the storage representation to achieve an efficient

implementation for associative queries.

K M S

KMS (Knowledge Management System) is a distributed hypermedia system for collaboration

based on the ZOG system developed at Carnegie Mellon University [Aksc88, Aksc84]. Unlike

most hypermedia data models, the basic paradigm is tightly coupled with the user interface.

The screen-sized frame is the primary object in KMS; users navigate among interconnected

frames to view and edit their contents. Although frames are typically organized hierarchically,

KMS permits the user to augment the structure with links for cross-referencing and

commentary.

HAM

7

The HAM (Hypertext Abstract Machine) is a general purpose, transaction-based server for

hypertext storage that is based on the storage system of Neptune, a prototype hypertext system

developed at Tektronix Computer Research Laboratory [Camp88, Deli86]. The graph-based,

object-oriented storage model employs hierarchically-organized context objects to partition

graph contents. Contexts may contain node objects of arbitrary data related by link objects;

relationships between nodes in different contexts are supported by cross-context links. In

addition to model and storage management, the HAM provides versioning, filtering, and access

control mechanisms.

HyperBase

HyperBase is a general purpose hypermedia engine that was motivated by the development of

an authoring environment at the Integrated Publication and Information Systems Institute, West

Germany [Schu90]. HyperBase uses a commercial relational database system that supplies

transaction management and multi-user access services. Influenced by the HAM model, the

HyperBase data model is object-oriented, and application and storage-system independent.

Complex objects provide an abstraction capability to represent collections of references to

nodes and links. This abstraction, as well as nodes and attributes, maintain history information

about object modification. Complex objects additionally maintain versions which record the

state of invalidated objects.

Graph Server

The Graph Server is a transaction-based, multi-user server for object-oriented hypertext

applications under development at the University of North Carolina [Ande90]. The underlying

data model is general purpose, graph-based, and object-oriented. Like the HAM's contexts, the

subgraph object provides a useful abstraction for refining the graph database. The subgraph

has extended semantics that include typing (e.g. directed graphs, connected graphs, lists, trees,

acyclic graphs) and aggregation into composite subgraphs by bridging and embedding

individual subgraphs.

MINOS

MINOS is a prototype multimedia information system developed at the University of Waterloo

that supports presentation, browsing, extraction, sharing, editing, and formatting of

multimedia documents [Chri86]. The document model is object-oriented with support for

higher-level abstractions such as aggregations and generalizations. Links between objects are

known as annotations that relate logical components. The document model actually consists of

8

two submodels: the logical model describes the logical components of documents such as

paragraphs or audio segments; the physical modeldefines the presentation specifications for the

logical component. The submodels are united by mapping objects that relate the logical and

physical components for information display.

Trellis

The Trellis hypertext model is the basis for a prototype hypertext browsing and authoring

environment developed at the University of Maryland [Stot89]. The system is based on a Petri

net model which clearly separates document structure, content, and presentation via mapping

functions in the Petri net definition for a given hypertext. For example, content elements map

to Petri net places, places map to logical windows, and transitions map to logical buttons that

represent browsing actions. Unlike other graph-based models, the Petri net model permits not

only the specification of information structure and content, but also the specification of

browsing and concurrent execution semantics.

Intermedia

Intermedia is an object-oriented hypermedia system that supports applications development

[Meyr86]. The system, developed at Brown University, has a single database built on the

Ingres database management system for network-wide access and concurrency control. Block,

link, and web objects are the foundation of the document-oriented data model and are the user

paradigm for interaction with the database. Blocks are document segments, or anchors, which

can be related through navigational links. Their definition is very open-ended, permitting the

user to equate any valid selection from the user interface to a block. The abstraction for a

collection of blocks and links is the web. By defining webs, users can access and share groups

of documents based on various sets of linkages, thus providing different views of related

documents.

The following models were primarily motivated by the need to refine and formalize the

hypermedia data model versus supporting a specific implementation. As prototypes and

systems have developed and been exercised, several design issues have been identified and

addressed by these efforts.

Contexts

9

User collaboration is a primary objective of hypermedia systems. To be effective, Delisle and

Schwartz [Deli87] identify several characteristics which must exist in a collaborative

environment:

A means to organize related hypermedia information

Independent partitions to minimize interference among users

Versioning mechanism and a configuration facility to relate versions of nodes and links

Distributed database support

The authors propose contexts to partition hypermedia information into disjoint collections of

nodes and links which may be related by cross-context links. An example of usage is

document revision by multiple users. Each user defines a context for their work unit which

may reside on different machines. The revised contexts are eventually merged back into the

master context for the document, with appropriate updates made to the version histories of

node and links.

Garg' s Abstraction Mechanisms

Garg's work focuses on the importance of abstractions in the hypermedia model [Garg88]. In

addition to aggregation and collaborative partitioning, Garg identifies several other ways that

abstractions can be of value:

Filtering information based on its relevancy to the user

Definition of information structure versus content

Definition of domain knowledge rather than information instances

Maintenance of revisions

A set theoretical model is used to formally define three useful abstractions that permit the

manipulation of information with different views and granularity.

Aggregation is a collection of objects that can be referenced by an identifier. Since an

aggregate object is similar to a relation, operations such as projection, join, and selection

can be defined.

Generalization is a collection of objects which share a similar characteristic. In contrast

with an aggregation, individual properties of constituent objects are hidden; only shared

characteristics are visible. Advantages of this view are the specification of generalized

queries, attributes, and relationships, as well as default properties for the collection.

Revision is an information object that contains some changes that distinguish it from a

source object. The concept of a revision tree is employed to define "delta sequences" of

10

changes to an object. This approach permits the recreation of a previous version by

applying the appropriate backward deltas to the current object.

A simple filtering mechanism can be applied to each of these abstractions through the

specification of keyword attributes associated with objects and links. An interesting extension

to this mechanism is suggested whereby the predicate meaning of a link can be interpreted by a

PROLOG-like language for filtering information.

Hypergraph Data Model

The data model adopted by many hypermedia systems is based on a directed graph. Tompa

[Tomp89] proposes a model based on directed, labelled hypergraphs to address several

shortcomings of the simpler graph model:

Inadequate separation of nodes and content

Inadequate support for shared structures of components

No support for sets of pages, where pages represent node contents

A formal definition of the hypergraph data model includes a set of nodes, a set of pages, and a

value function which maps nodes to pages, to achieve the desired separation. Sharing of

structures among users is accomplished via user views. Unlike traditional database views

which often are a restriction on database contents, Tompa's user views can augment or

override the underlying database, thus also providing a customization capability. Labelled

hyperedges provide the means for specifying sets of nodes and their associated pages.

The following models are not hypermedia-motivated but are of interest in that they provide

additional formalisms for a graph-based representation of data. Both are oriented toward the

development of database user interfaces.

Conceptual Graphs

Sowa proposes a formalism, conceptual graphs, to describe data in a way which is similar to a

user's mental picture of that information [Sowa76]. The familiarity and naturalness of the

paradigm are expected to facilitate the user's interaction with a database system without having

to be knowledgeable about the underlying representation.

A conceptual graph is an undirected graph with two node types:

Concepts are the basic unit; they are essentially labelled symbols which can represent

anything the user chooses

11

Conceptual relations are the connections between concepts and can contain one or more

links

A powerful enhancement to the basic graph model is achieved by integrating artificial

intelligence concepts. Formation rules and inference rules are used to maintain model integrity

and to infer relations that are not explicitly defined. Relationship semantics are also enhanced

via function links between concepts that permit the specification of quantifiers and functional

dependencies. The resulting graph is called a conceptual schema which can map directly to a

relational database.

GOOD

The GOOD (Graph-Oriented Object Database) model was developed to demonstrate the value of

graphs to both describe and manage databases [Gyss90]. The basic model is a directed, labelled

graph containing nodes that represent database objects, and interconnecting edges. The GOOD

data manipulation language supports five operations: the addition and deletion of nodes and

edges, and an abstraction operator that specifies a collection of nodes based on shared

properties. An interesting technique employed by the operations is the use of a metamodel

construct, the pattern, to describe subgraphs in a database instance. The pattern is the

mechanism for selecting a subgraph for addition, deletion, or abstraction.

Many hypermedia systems have been motivated by front end objectives and implementation-

specific requirements. These efforts have significantly advanced the technology but have at the

same time resulted in a variety of highly disparate systems which cannot easily communicate

with each other. Given the importance of collaboration and the inherent distributed nature of

hypermedia information, this situation inhibits the effectiveness of existing and future systems.

As a result, various proposals for hypermedia reference models have been made. These models

serve several purposes:

Through formal descriptions they provide a basis for comparison and analysis

By developing standards for systems and terminology, standard interfaces for interchange

and communication can be developed

They provide a framework within which design issues, problems, and solutions can be

identified

The following models were presented at the Hypertext Standardization Workshop, sponsored

by the National Institute of Standards and Technology in January, 1990.

12

Trellis Hypertext Reference Model

This reference model describes a three-level architectural framework that is primarily

concerned with the presentation of hypertext information [Furu90]. The concrete level

addresses the physical organization of the hypertext, i.e., how to format and display

characteristics of abstract components. The visible level maps the concrete representation to

the external user view. Below the concrete level is the abstract level of hypertext which

defines its components and associations. Components include:

Structure - the "placeholders" and relationships which define the hypertext organization

but are separate from the contents. This is the component which would include the data

model; however,this reference model makes no assumptions about the organization of

the underlying model. In their work the authors used the Petri Net model as described

earlier.

Contents - text, graphics, audio or video segments

Buttons - definitions of how relationships are displayed

Containers - how to aggregate information for display purposes

At the abstract hypertext level associations between components are defined, i.e., the

associations between structures and contents, buttons, and containers. Although this

proposal provides minimal detail about the data model, it is included here because it

provides a useful framework for the mapping of back end abstractions to front end

abstractions.

Strawman Reference Model

This reference model describes hypermedia systems in terms of basic, advanced, and open

features [Thom90]. Basic features are those which all systems have and can provide a

foundation for comparison:

Media types - the content part of the representation of hypermedia information

Data model - the structure part of the representation. Like the Trellis model, this model

does not define a specific paradigm, but does note that in all hypermedia systems the

common primitive is the link object.

User interface

Persistent store

13

Advanced features are not found in all hypermedia systems but are generally required for

more complex applications. These features include:

Multi-user support

Distributed data

Uniform representation - unlike existing models which emphasize separation of node

contents and structure, this proposal suggests a recursive data model where contents can

contain nodes, thus permitting structure within media objects.

Computational completeness - inclusion of procedural information in the data model to

describe the behavioral characteristics of information

Specialized facilities for navigation, search, and complex queries

Versioning, configurations, and change management support

Open features are generic characteristics found in many computer systems and include

human factors provisions, an open and modular architecture, portability and availability.

An ideal architecture for hypermedia systems that is characterized by the basic and

advanced features is described. An important aspect of the architecture is its modularity

which the authors argue will accelerate the development of system standards.

Van Dyke Parunak's Reference Model

The model outlined in this paper focuses on the functional elements, implementation, and

interface issues of hypermedia systems [VanD89]. The functional elements address the basic

components of the hypermedia model: nodes and links, and the composite structures derived

from them.The salient characteristics of the elements are described: nodes can be

characterized by their contents, type, and structure; links can be characterized by their

directionality, topology, type, anchors, and modes. Composites can be defined either

topologically or rhetorically. An example of a topological composite is a predefined route for

navigation through an application. Rhetorical composites are logical groupings of nodes

and links which, for example, might represent an argumentation schema.

The functional elements are the foundation of a four layer architecture for hypermedia

implementation. At the lowest level is the data layer which is responsible for data and

transaction management in a multiuser environment, distributed data access, and possibly

versioning. The next higher level is the element layer that supports node and link

management services. Generalized link traversal is provided by the inference layer, and the

user's view is managed by the interface layer. Several user interface issues are identified

14

which deal primarily with techniques for constructing links, screen layout and manipulation,

and navigational mechanisms.

Dexter Reference Model

Unlike the previous models described here, the Dexter model provides a more extensive and

formal definition of meaningful hypermedia abstractions [Hala89]. These are part of the storage

layer, the focus of the three-layer reference model. The storage layer is the middle "database"

layer which describes the network of components and interconnecting links. Components are

the basic unit of the model and represent generic placeholders for hypermedia contents. A

component may represent an atom (similar to a node), a link, or a composite which consists of

other components.

As in other models, separation of structure and content is an important objective and is

maintained by associating contents with the within-component layer. Component contents

(text, graphics, audio, etc.) and internal structure are not part of this model; however, a generic

interface between the storage and within-component layers is provided by an anchoring

mechanism. Anchors define link end points and may be associated with a segment of a

component's contents, e.g., a document paragraph or citation.

The third layer of the model is the runtime layer which supports the presentation of hypermedia

information. Like the within-component layer, the runtime layer is not addressed by this model

in detail; instead, the emphasis is on the storage layer interface to the presentation services. A

generic interface is supplied via presentation specifications that describe how a component is to

be displayed to the user. The specifications are included in the storage layer definition of a

component and are made accessible to the presentation services.

In addition to the structural definition provided by the storage layer, the Dexter model defines a

set of operations to access and manage hypermedia components. These include the basic

management primitives for addition, deletion, and modification, and a pair of resolver/accessor

functions for retrieval. A formal specification of the operations and abstractions is included in

the model.

Lange's Formal Model

Lange's hypertext model concentrates primarily on the data model; it is not an architectural

framework for hypertext systems [Lang90]. Nodes and links are the basic units of the model

which defines two composite abstractions, networks and structures. Unlike the previous

15

models, Lange's does not strongly separate structure and content, but rather provides explicit

support for contents. His model defines the slot abstraction as a node substructure, or

template, for contents. A node may contain multiple slots that are connection points for links.

Slots are further refined through the notion of buttons and fields which are anchoring points

for links and represent text segments in a document.

Networks are an abstraction for a set of hypertext links. Structures define an organization for

nodes and networks; for example, a structure might be a sequence, a set, or a tree, depending

on the application.

16

DATA MODEL CHARACTERISTICS

Despite the diversity of purpose, refinement, and implementation, the data models described

here have several common characteristics: each defines primitive objects which are interrelated

in some way and each has a basic set of operations for viewing and editing objects. Each model

also defines at least one higher level abstraction which serves as a collector for primitive

objects. The following table summarizes the structural abstractions and operations that

characterize each model.

Table 1. Summary of Data Model Characteristics
DATA MODEL LOW LEVEL

ABSTRACTIONS
HIGH LEVEL
ABSTRACTIONS

OPERATIONS

G R A S attributed nodes, labelled
edges

attributed and directed
graphs, database, multi-
database

insertion, deletion,
assignment, query

K M S frames, links hierarchy of frames navigation, frame editing

HAM nodes, links,cross-context
links, attributes

graphs, contexts editing, filtering, string
search, merge

HyperBase node and link objects with
attributes

complex objects editing, copy

Graph Server nodes, links, attributes database, subgraph,
composite subgraph
(bridged and embedded
subgraphs)

 editing, copy, traversal, set
operations on subgraphs

MINOS attributed objects,
annotations

aggregation hierarchies,
generalization hierarchies

viewing, browsing;
information extraction,
sharing, correlation,
generation; document
formatting

Trel l is places, transitions, flow
relations

Petri net browsing, editing

Intermedia blocks and links with
keywords

documents, webs generic management
operations for blocks,
links, webs and their
attributes

Contexts nodes, links, cross-context
links

context, supercontext editing, navigation,
pruning, destroy, merge,
difference detection

17

Garg's Abstraction
Mechanisms

objects, attributes,
predicates

aggregation, generalization,
revision

filtering

Hypergraph nodes, hyperedges, labelled
edges

user views query, view creation, update

Conceptual Graphs concepts, concept relations conceptual graphs,
conceptual schema

copy, detach,restrict, join,
conjunction,negation,
disjunction,implication

GOOD nodes, edges, labels directed and labelled graphs,
subgraphs

add, delete, abstract, query,
browse, restructure, update

Trellis Reference
Model

placeholders, relationships abstract structure

Strawman Reference
Model

nodes, links

Van Dyke Parunak's
Reference Model

nodes, links composites

Dexter Reference
Model

components (atoms, links),
anchors, attributes

composite components addition, deletion,
modification, and retrieval
of components

Lange's Formal Model nodes, links, slots,
buttons, fields

structures, networks generic management
operations for node,
networks, and structures;
version management,
access control

Low Level Abstractions The low level abstractions in most models are structural entities

that are independent of their content, applications, and the user environment. Two exceptions

are KMS where nodes are represented by screen-sized workspaces called frames and the

structured definition of node contents in Lange's model. His node interior definition includes a

collection of uniquely-identified slots which in turn may contain buttons and fields that are

anchorable locations for links.

18

The most common refinement for nodes and links is the specification of attribute-value pairs

which may be system- or user-defined. The Petri net is an exception in that nodes are viewed

as placeholders only, without any attributes.

 Link definitions exhibit greater diversity across the models than node definitions. Several

distinguishing characteristics are type, direction, arity, attributes, anchors, and relationship to

nodes. Most models treat links as "first-class" objects, i.e., they are abstractions whose

semantic importance is equivalent to nodes. In several models link-specific high level

abstractions have been defined which provide a "collection of links" perspective: Hypergraph

defines hyperedges, Intermedia has webs, and Lange defines networks. Garg, on the other

hand, does not explicitly define links in his abstractions, but rather refers to "two-place

predicates" on objects. The Trellis Petri net model views links as transitions to define browsing

execution, as opposed to the more conventional view of links as structural connectors.

In most models links are binary and without type; however, the Dexter model permits links of

arbitrary arity, and the KMS distinguishes between structural links (tree items) and referential

links (annotation items). An important refinement of the link construct is the anchor, generally

defined as the end point of a link. The anchor references some portion of a node's contents and

is used, for example, to relate text segments within and between documents. The anchor is

considered a structural entity whose value is managed by the application so as to maintain the

separation between structure and content. Like other model constructs, the anchor has various

refinements. The Dexter model provides the most formal definition which includes an anchor id

and value that are part of the component specifications; the anchor value is arbitrary and

application-defined. Lange distinguishes between the source and target end points of a link -

these are known as anchors and destinations, respectively. A link is anchored to buttons and

fields in a node and may have multiple endpoints associated with it. HyperBase describes

"point-to-point links" which are functionally similar to anchored links but are not supported by

an explicit anchor abstraction. It is suggested that object attributes can be used for this purpose.

Van Dyke Parunak discusses link end points between structured and unstructured nodes and

describes two types of end points: one which references a node substructure, the other

references an arbitrary segment of node contents.

High Level Abstractions Another characteristic shared by the hypermedia data models is

the provision for a higher level abstraction, usually of an aggregation type. For the graph-

based data models this abstraction is a graph or subgraph. GRAS employs attributed, directed

graphs which can be grouped together to form databases. In the HAM storage model the graph

is the highest level object which is partitioned into contexts. The Petri net abstraction in the

19

Trellis reference model is a generalization of a directed graph that also defines the browsing

semantics for the user interface.

A more complete refinement of the graph abstraction can be found in the Graph Server. In this

model subgraphs represent a set of nodes and links and are the basic unit of manipulation, i.e.,

all operations on nodes and links are performed in the subgraph context. Subgraphs are typed,

and correctness is ensured through type-specific methods. Another level of abstraction is

provided by composite subgraphs which are formed by bridging and embedding graphs. A

bridge graph represents a set of links which spans multiple subgraph instances and the set of

incident nodes. An embedded graph is a bridge graph where the bridge links are restricted to

relating nodes within the same subgraph.

The MINOS and HyperBase systems adopt an object-oriented view of the data model. MINOS

defines aggregation and generalization hierarchies of objects, whereas HyperBase defines the

more general complex object as a collection of objects which may optionally be ordered.

Garg's abstraction mechanisms include revision since a most current version "conceals"

historical version information. This is similar in concept to Delisle and Schwartz's "contexts"

which can be used to partition a document's contents for revision by multiple users.

Operations Operations for most of the models described here include specifications for

generic management functions such as viewing and editing. To varying degrees the operations

ensure model integrity. The Graph Server verifies type-correctness of subgraphs; HyperBase

prohibits dangling references, ensures object uniqueness, and disallows recursive definition of

complex objects. An important operation in the Contexts model is the merge. This model

provides support for detecting conflicts and highlighting differences when a revision is merged

with the original context.

Relationship to System Architecture A general architecture which characterizes most

computer systems consists of three layers: end user interface, applications, and data

management. The systems and models described here emphasize a refinement of the data

management layer that distinguishes between the structure and content of information. This

approach is especially important for hypermedia systems where the same structure may be used

to represent a variety of media types. Conversely, the same media types may map to multiple

structures to support different user views or display devices. Several methods have been used

to maintain data model independence from contents and the end user interface.

Both the Trellis and Hypergraph models provide formal definitions of the relationship between

structure and content. The Trellis Petri-net model defines a mapping function from content

20

elements to "places" in the net. A similar function can be found in the hypergraph definition

which relates nodes with pages (or contents). The MINOS implementation employs logical

tables which define the aggregation hierarchies that map to the document files. The Dexter

model defines a clear separation via its layered architecture. The storage layer contains the

structural definition of hypermedia components which interfaces to the within-component layer

through anchoring specifications.

Data model support for the end user interface is another discriminating characteristic. Although

most models are concerned with data representation, the importance of coupling the

hypermedia front end with the back end is reflected in some models. In the MINOS model the

physical table defines the presentation characteristics of components in the logical table. A

mapping mechanism between the tables permits multiple presentation schemes for a set of

logical components. Presentation specifications in the Dexter model are included in component

definitions, thus providing a generic mechanism for interpretation by the presentation services.

Perhaps the tightest coupling of model with user interface can be found in the Trellis reference

model where the visible and concrete layers of the model define the format and display of

hypertext information. The abstract layer, which encompasses the data model, emphasizes the

association of structures with buttons (how relationships are displayed) and containers (how to

display aggregates). This close coupling of user view with data view results in a consistent

system architecture based on the node-and-link paradigm that is effective in a single-user,

single-database environment. Whether this same approach is compatible with interoperability

objectives is an issue to be evaluated.

Data Model Issues

As hypermedia data models mature, design issues are emerging which have been addressed to

varying degrees by the models included here. The issues are not hypermedia-specific, as they

apply to any database environment; however, they are particularly significant for the

development of collaborative and distributed hypermedia systems.

Versioning

Versioning support provides the capability to manage changes to information over time; this

contrasts with traditional "snapshot" databases where the state of an object has one

representation which is subject to modification. An extension to versioning is the concept of

21

configuration where a collection of versions of related information is maintained. For example,

a software configuration management system maintains multiple versions of source code,

which is related to multiple versions of documentation and object modules.

Some of the versioning issues which affect data modeling include:

Application versus data model support

Responsibility for defining, maintaining, and validating version control mechanisms varies

widely. Functionality that was once the domain of application programs is now being

absorbed by semantic data models.

Version propagation

When a component of a composite object is revised, is version information propagated to

related components?

Space efficiency

Should new versions be represented as copies or deltas to the original object ?

Configuration integrity

How can the consistency and completeness of a configuration be verified ?

The Strawman reference model assumes no versioning support is provided by the data model.

The architecture includes a change management module that handles the recording and

propagation of changes. The HyperBase engine provides some definition support for history

information, but assumes the application interface supplies the management function. Model

support includes definition of history attributes for individual objects and maintenance of

versions for complex objects. The KMS supports versioning of frame hierarchies by

maintaining linked lists of successive versions.

The Neptune model, on which the HAM is based, maintains complete version histories of

graphs. Two link types are defined: one which refers to a specific version, the other to the most

current version. This typing can be used to define a configuration by designating a

"configuration node" with links to related versions. Concerned with space efficiency , the

Neptune model records version changes as deltas to the original, not with multiple copies. This

approach is very similar to the functionality outlined by Garg for the revision abstraction.

MINOS and Contexts both support the notion of version trees; i.e., the tree root represents the

original document, and the leaf nodes correspond, for example, to annotated versions

generated by reviewers. MINOS improves on space requirements by permitting the sharing of

common objects. Contexts supports sophisticated merge operations to consolidate multiple

22

revisions into a new document version. The multi-user and distributed characteristics of

Contexts' versioning most nearly approaches the requirements of collaborative environments.

Collaboration

Support for collaborative environments by hypermedia systems exhibits the same features and

problems as very large database environments: multiple users, concurrency control, and

distributed function. The data model implications of this environment have not been

investigated extensively; however, concerns on how to provide support have been expressed,

and partial solutions proposed.

Perhaps the most expeditious approach was that taken by HyperBase which is "tightly

coupled" with a commercial data base management system to provide concurrency control and

transaction management. Two of the reference model proposals suggest organizations which

emphasize the role of the data model for distributed support. Van Dyke Parunak's four-layer

architecture isolates the data layer which would provide distributed data access. Thompson's

Strawman model suggests that distributed support could be implemented with a relational

database for structural information and a WORM device for contents.

Concurrency is improved in the KMS data model by defining a construct that represents a small

unit of work. The frame is the basic unit and typically corresponds to a few paragraphs. The

small unit, in conjunction with an "optimistic" concurrency control algorithm, reduces

interference among users when manipulating large amounts of data. Tompa's hypergraph

model also defines a unit of work, the "user view," which is the basis for update and managing

concurrency.

The most extensive work thus far in developing a useful data model for distributed,

collaborative environments is Delisle and Schwartz's Contexts. Their data partitioning concept,

which has been implemented in the HAM, addresses several needs: a useful aggregation

abstraction for nodes and links, a mechanism for defining independent partitions to reduce user

interference, and a mechanism for defining distributed units of work.

Interoperability and Interchange

An issue related to distributed hypermedia environments is the need to communicate among

heterogeneous hypermedia systems. The ideal solution would be one where a global schema

maps to, and resolves, the differences among various systems, thus allowing applications to

access any environment with the same interface.

23

An interim solution which provides a measure of interoperability is Sun's Link Service

[Pear89]. The service defines a protocol which allows independent applications to define

relationships in a hypertext system. The relationships are stored as pointer pairs between linked

objects in a link database. By registering with the link database, an application becomes part of

an extensible front end to the hypertext system.

In the absence of a global schema or interoperability, exchange of information between

heterogeneous systems requires file format standardization. Riley's proposal for an interchange

format standard supports "first-order" hypertext systems, i.e., those which define documents,

links, anchors, and attributes [Rile90].

Security

Restricting access to information is a concern in any multi-user environment. Security

mechanisms are found throughout a system, from the user interface to the underlying file

system. The types of restrictions and the granularity of data to which restrictions apply can

vary greatly.

For database security the unit of access is often derived from the data model representation. For

example, the basic unit of the KMS model is the frame. Each frame has an owner and access

control is obtained by owner-specification of permissions granted to other users. The Petri net

model supports "subhypertexts" which are individual Petri net structures that have access

control classes associated with them; the classes identify users with browsing capabilities. In

the HAM, object types are optionally related to access control lists which define a user or group

and associated permissions, e.g., access, annotate, update, destroy.

These methods assume a multi-user, single database environment. Additional work is needed

to determine if they are adequate for the collaborative environment, and to what extent the data

model provides support for security of hypermedia information.

Conclusion

In this paper I have reviewed the work related to hypermedia data models with the objective of

consolidating and summarizing the developments in this important component of hypermedia

systems. Where early models focused on satisfying requirements for a specific implementation,

more recent efforts are concerned with refinement and standardization. These efforts have

surfaced many issues, several of which are described here. Additionally, there are system-

level issues identified by Halasz [Hala88] which have ramifications for data models of next-

generation hypermedia systems. These include query-based access, composite and virtual

24

structures to augment the basic node-and-link paradigm, extensibility and tailorability, and

support for computational engines by integrating hypermedia with AI technology. Progress in

these areas is important if hypermedia systems are to overcome a fundamental obstacle

described by Bush in 1945: "we can enormously extend the record; yet even in its present bulk

we can hardly consult it." Further refinements to existing data models will be essential for

users to effectively use the abundance of information made available by future hypermedia

systems.

25

References

Aksc84 R.M. Akscyn and D.L. McCracken, The ZOG Approach to Database Management,

Proceedings of the 1984 Trends and Applications Conference: Making Database Work,

Gaithersburg, Maryland, May 1984.

Aksc88 R.M. Akscyn, D.L. McCracken, and E.A. Yoder, KMS: A Distributed Hypermedia

System for Managing Knowledge in Organizations, Communications of the ACM, Vol.

31, No. 7, 820-835, July 1988.

Ande90 M. Anderegg, B. Elledge, J. Harford, D. Shackelford, and O. Toki, User's Manual for

Attributed Directed Graph Server, Department of Computer Science, University of North

Carolina, May 1990.

Bran85 T. Brandes and C. Lewerentz, GRAS: A Non-Standard Data Base System within a

Software Development Environment, GTE Workshop on Software Engineering

Environments for Programming-in-the-Large, Harwichport, Massachusetts, 113-121,

June 1985.

Bush45 V. Bush, As We May Think, Atlantic Monthly,Vol. 176, No. 1, 101-108, July 1945.

Camp88 B. Campbell and J.M. Goodman, HAM: A General Purpose Hypertext Abstract

Machine, Communications of the ACM, Vol. 31, No. 7, 856-861, July 1988.

Chri86 S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa, and A. Pathria, Multimedia

Document Presentation, Information Extraction, and Document Formation in MINOS: A

Model and a System, ACM Transactions on Office Information Systems, Vol. 4, No. 4,

345-383, October, 1986.

Conk87 J. Conklin, Hypertext: An Introduction and Survey, IEEE Computer, Vol. 20, No. 9,

17-41, September 1987.

Deli86 N. Delisle and M. Schwartz, Neptune: a Hypertext System for CAD Applications, CR-

85-50, Tektronix Computer Research Laboratory, Beaverton, Oregon, January 1986.

26

Deli87 N. Delisle and M. Schwartz, Contexts - A Partitioning Concept for Hypertext, ACM

Transactions on Office Information Systems, Vol. 5, No. 2, 168-186, April 1987.

Enge63 D.C. Engelbart, A Conceptual Framework for the Augmentation of Man's Intellect,

Vistas in Information Handling, P.D. Howerton and D.C. Weeks (editors), Spartan

Books, Washington, D.C., 1-29, 1963.

Enge73 D.C. Engelbart, R. W. Watson, and J. C. Norton, The Augmented Knowledge

Workshop, AFIPS Conference Proceedings, 1973 National Computer Conference and

Exposition (June 4-8, 1973, New York, New York), 9-21, 1973.

Furu90 R. Furuta and P.D. Stotts, The Trellis Hypertext Reference Model, Proceedings of the

Hypertext Standardization Workshop (Gaithersburg, Maryland), 83-93, January 1990.

Garg88 P. K. Garg, Abstraction Mechanisms in Hypertext, Communications of the ACM, Vol.

31, No. 7, 862-870, July 1988.

Good58 I.J. Good, How Much Science Can You Have at Your Fingertips?, IBM Journal, 282-

288, October 1958.

Gyss90 M. Gyssens, J. Paredaens, and D. Van Gucht, A Graph-Oriented Object Model for

Database End-User Interfaces, Proceedings of 1990 ACM SIGMOD International

Conference on Management of Data (May 23-25, Atlantic City,New Jersey), 24-33,

1990.

Hala88 F. Halasz, Reflections on NoteCards: Seven Issues for the Next Generation of

Hypermedia Systems, Communications of the ACM, Vol. 31, No. 7, 836-852, July

1988.

Hala89 F. Halasz and M. Schwartz, The Dexter Hypertext Reference Model, Proceedings of the

Hypertext Standardization Workshop (Gaithersburg, Maryland), 1-39, January 1990.

Kim89 W. Kim and F.H. Lochovsky (editors), Object-Oriented Concepts, Databases, and

Applications, ACM Press, New York, 1989.

27

Lang90 D. Lange, A Formal Model of Hypertext, Proceedings of the Hypertext Standardization

Workshop, (Gaithersburg, Maryland), 145-166, January 1990.

Meyr86 N. Meyrowitz, Intermedia: The Architecture and Construction of an Object-Oriented

Hypermedia System and Applications Framework, Proceedings of the Conference on

Object-Oriented Programming Systems, Languages, and Applications (OOPSLA '86)

(September 29-October 2, Portland, Oregon), 1986.

Pear89 A.Pearl, Sun's Link Service: A Protocol for Open Linking, Hypertext '89 Proceedings

(November 5-7, Pittsburgh, Pennsylvania), 137-146, 1989.

Rile90 V. Riley, An Interchange Format for Hypertext Systems: the Intermedia Model,

Proceedings of the Hypertext Standardization Workshop (Gaithersburg, Maryland),

213-222, January 1990.

Schu90 H. Schutt and N. Streitz, HyperBase: A Hypermedia Engine Based on a Relational

Database Management System, Integrated Publication and Information Systems

Institute, West Germany, submitted to ECHT '90.

Sowa76 J. Sowa, Conceptual Graphs for a Data Base Interface, IBM Journal of Research and

Development, 336-357, July 1976.

Stot89 P. Stotts and R. Furuta, Petri-Net-Based Hypertext: Document Structure with Browsing

Semantics, ACM Transactions on Information Systems, Vol. 7, No. 1, 3-29, January

1989.

Thom90 C. Thompson, Strawman Reference Model for Hypermedia Systems, Proceedings of the

Hypertext Standardization Workshop, (Gaithersburg, Maryland), 223-246, January

1990.

Tomp89 F. Tompa, A Data Model for Flexible Hypertext Database Systems, ACM Transactions

on Information Systems, Vol. 7, No. 1, 85-100, January 1989.

Ullm88 J. D. Ullman, Principles of Database and Knowledge-Base Systems, Vol. 1, Computer

Science Press, Rockville, Maryland, 1988.

28

VanD89 H. Van Dyke Parunak, Toward a Reference Model for Hypermedia, Proceedings of the

Hypertext Standardization Workshop (Gaithersburg, Maryland), 197-211, January

1990.

