
1

Towards Safe Composition of Product Lines

Don Batory and Sahil Thaker
Department of Computer Sciences

University of Texas at Austin
Austin, Texas, 78712 U.S.A.

{batory, sahilt}@cs.utexas.edu

ABSTRACT
Programs of a software product line can be synthesized by compos-
ing modules that implement features. Besides high-level domain
constraints that govern the compatibility of features, there are also
low-level implementation constraints: a feature module can refer-
ence elements that are defined in other feature modules. Safe com-
position is the guarantee that programs composed from feature
modules are absent of references to undefined elements (such as
classes, methods, and variables). We show how many properties of
safe composition can be verified for AHEAD product lines using
feature models and SAT solvers.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Modules and interfaces;
D.2.4 [Software Program Verification]: Assertion checkers;
D.2.11 [Software Architectures]: Data abstraction, Languages.

General Terms
Design, Languages, Verification.

Keywords
compositional programming, program synthesis, SAT solvers, fea-
tures.

1 INTRODUCTION
The essence of software product lines is the systematic and efficient
creation of products [13]. Features are commonly used to specify
and distinguish members of a product line, where a feature is an
increment in program functionality. Features communicate product
functions in an easy-to-understand way, they capture functionalities
concisely, and help delineate commonalities and variabilities in a
domain [29].

We have argued that if features are primary entities that describe
products, then modules that implement features should also be pri-
mary entities in software design and program synthesis. This line of
reasoning has lead us to compositional and declarative models of
programs in software product lines. A program is declaratively
specified by the list of features that it supports. Tools directly trans-
late such a specification into a composition of feature modules that
synthesize the target program [6][10].

Not all features are compatible. Feature models or feature diagrams
are commonly used to define the legal combinations of features in a
product line. In addition to domain constraints, there are low-level
implementation constraints that must also be satisfied. For example,
a feature module can reference a class, variable, or method that is
defined in another feature module. Safe composition is the guaran-

tee that programs composed from feature modules are absent of ref-
erences to undefined classes, methods, and variables. More
generally, safe composition is a particular problem of safe genera-
tion: the guarantee that generators synthesize programs with partic-
ular properties [47][51][49][25]. There are few results on safe
generation of product lines [33][17].

In this paper, we show how many properties of safe composition
can be achieved for AHEAD product lines by using feature models
and SAT solvers. We identify properties of safe composition, and
report our findings on two different product lines to verify that
these properties hold for all product line members. Some properties
that we analyze do not reveal actual errors, but rather designs that
“smell bad” and that could be improved.

2 FORMAL MODELS OF PRODUCT LINES
A feature model is a hierarchy of features that is used to distinguish
products of a product line [28][16]. Consider an elementary auto-
motive product line that differentiates cars by transmission type
(automatic or manual), engine type (electric or gasoline), and the
option of cruise control. A feature diagram is a common way to
depict a feature model. Figure 1 shows the diagram of this product
line. A car has a body, engine, transmission, and optionally a cruise
control. A transmission is either automatic or manual (choose one),
and an engine is electric-powered, gasoline-powered, or both.

Besides hierarchical relationships, feature models also allow cross-
tree constraints. Such constraints are often inclusion or exclusion
statements of the form if feature F is included in a product, then fea-
tures A and B must also be included (or excluded). A cross-tree con-
straint is that cruise control requires an automatic transmission.

A feature diagram is a graphical depiction of a context-free gram-
mar [27]. Rules for translating feature diagrams to grammars are
listed in Figure 2. A bracketed term [B] means that feature B is
optional, and term S+ means select one or more subfeatures of S.
We assume subfeature selections are not replicated and the order in
which subfeatures appear in a sentence is the order in which they
are listed in the grammar [11].

Figure 1 A Feature Diagram

Car

Cruise Transmission Engine Body

Automatic Manual Electric Gasoline

and

choose1 1+

mandatory
optional

LegendCar

Cruise Transmission Engine Body

Automatic Manual Electric Gasoline

and

choose1 1+

mandatory
optional

Legend
mandatory
optional
mandatory
optional

Legend

2

A specification of a feature model is a grammar and its cross-tree
constraints. A model of our automotive product line is listed in
Figure 3. A sentence of this grammar that satisfies all cross-tree
constraints defines a unique product and the set of all legal sen-
tences is a language, i.e., a product line [11].

We recently showed that feature models are compact representa-
tions of propositional formulas [11]. Rules for translating grammar
productions into formulas are listed in Figure 2. (The
atmost1(A,B,C) predicate in Figure 2 means at most one of A, B,
or C is true. See [21] p. 278.) The propositional formula of a gram-
mar is the conjunction of the formulas for each production, each
cross-tree constraint, and the formula that selects the root feature
(i.e., all products have the root feature). Thus, all constraints
except ordering constraints of a feature model can be mapped to a
propositional formula. This relationship of feature models and
propositional formulas is essential to results on safe composition.

3 AHEAD
AHEAD is a theory of program synthesis that merges feature mod-
els with additional ideas [10]. First, each feature is implemented by
a distinct module. Second, program synthesis is compositional:
complex programs are built by composing feature modules. Third,
program designs are algebraic expressions. The following summa-
rizes the ideas of AHEAD that are relevant to safe composition.

3.1 Algebras and Step-Wise Development
An AHEAD model of a domain is an algebra that consists of a set
of operations, where each operation implements a feature. We
write M = {f, h, i, j} to mean model M has operations (or fea-
tures) f, h, i, and j. One or more features of a model are constants
that represent base programs:

f // a program with feature f
h // a program with feature h

The remaining operations are functions, which are program refine-
ments or extensions:

i•x // adds feature i to program x
j•x // adds feature j to program x

where • denotes function composition and i•x is read as “feature i
refines program x” or equivalently “feature i is added to program
x”. The design of an application is a named expression (i.e., com-
position of features) called an equation:

prog1 = i•f // prog1 has features i and f
prog2 = j•h // prog2 has features j and h
prog3 = i•j•h // prog3 has features i, j, h

AHEAD is based on step-wise development [52]: one begins with
a simple program (e.g., constant feature h) and builds a more com-
plex program by progressively adding features (e.g., adding fea-
tures i and j to h in prog3).

The relationship between feature models and AHEAD is simple:
the operations of an AHEAD algebra are the primitive features of a
feature model; compound features (i.e., non-leaf features of a fea-
ture diagram) are AHEAD expressions. Each sentence of a feature
model defines an AHEAD expression which, when evaluated, syn-
thesizes that product. The AHEAD model Auto of the automotive
product line is:

Auto = { Body, Electric, Gasoline, Automatic,
 Manual, Cruise }

where Body is the lone constant. Some products (i.e., legal expres-
sions or sentences) of this product line are:

c1 = Automatic•Electric•Body
c2 = Cruise•Automatic•Electric•Gasoline•Body

c1 is a car with an electric engine and automatic transmission. And
c2 is a car with both electric and gasoline engines, automatic trans-
mission, and cruise control.

Figure 2 Feature Diagrams, Grammars, and Propositional Formulas

S

A B C

S

A B C

S

A B C

S : A [B] C ;

... S ...

S : A | B | C ;

... S+ ...

S : A | B | C ;

(S⇔A) ∧ (B⇒S) ∧ (C⇔S)

(S ⇔ A ∨ B ∨ C)
∧ atmost1(A,B,C)

S ⇔ A ∨ B ∨ C

diagram notation grammar propositional formulaconcept

and

alternative
(choose1)

or
(choose 1+)

// grammar of our automotive product line

Car : [Cruise] Transmission Engine+ Body ;

Transmission : Automatic | Manual ;

Engine : Electric | Gasoline ;

// cross-tree constraints

Cruise ⇒ Automatic ;

Figure 3 A Feature Model Specification

3

3.2 Feature Implementations
Features are implemented as
program refinements. Con-
sider the following example.
Let the BASE feature encapsu-
late an elementary buffer class
with set and get methods.
Let RESTORE denote a
“backup” feature that remem-
bers the previous value of a
buffer. Figure 4a shows the
buffer class of BASE and
Figure 4b shows the buffer
class of RESTORE•BASE. The
underlined code indicates the
changes RESTORE makes to
BASE. Namely, RESTORE adds
to the buffer class two mem-
bers, a back variable and a
restore method, and modi-
fies the existing set method.
While this example is simple,
it is typical of features. Adding a feature means adding new mem-
bers to existing classes and modifying existing methods. As pro-
grams and features get larger, features can add new classes and
packages to a program as well.

Features can be implemented in many ways. The way it is done in
AHEAD is to write program refinements in the Jak language, a
superset of Java [10]. The changes RESTORE makes to the buffer
class is a refinement that adds the back and restore members
and refines the set method. This is expressed in Jak as:

refines class buffer {
int back = 0;
void restore() { buf = back; }
void set(int x) { back = buf; Super.set(x); }

} (1)

Method refinement in AHEAD is accomplished by inheritance;
Super.set(x) indicates a call to (or substitution of) the prior def-
inition of method set(x). By composing the refinement of (1)
with the class of Figure 4a, a class that is equivalent to that in
Figure 4b is produced. See [10] for further details.

AspectJ could also be used to implement features. As the refine-
ment capabilities of AspectJ are more general than that of method
refinement in AHEAD, we delay further discussion of aspect
implementations of features until Section 7.

4 “BIG INHALE” COMPILATION
The first step in testing safe composition properties is to provide a
global analysis of the feature modules that can be composed. The
analysis (a) determines how each class, method, and variable refer-
ence in every module binds to a definition, and (b) eliminates or
identifies ambiguities and other problems related to module com-
pilation. We used a variation of a technique that was pioneered in
Hyper/J for compiling hyperslices (i.e., Hyper/J modules) [40]. As
an approximation, an AHEAD feature module is a hyperslice. To

compile a hyperslice, stubs are created for all classes and members
that are not introduced by that hyperslice. This makes them declar-
atively complete. Once stubs are available, the Java classes of a
hyperslice can be compiled into bytecode. Hyper/J then uses byte-
code composition tools to compose independently compiled hyper-
slices. We follow a similar approach.

We know of no tool support for automatic stub creation in Hyper/J;
stubs must be created manually [36]. An advantage of AHEAD
and many product lines is that the source or binaries for all features
are available. By analyzing the feature code base (which we call
the “big inhale”), we can automatically generate stubs for all
classes that could appear in a synthesized product [9]. For every
class, we create a stub that contains the union of the signatures of
all variables, methods, and declarations that could appear in that
class. The same applies to interfaces that a class could implement.
Remember a Java class C in feature module M encapsulates a frag-
ment of a class P.C that could appear in a synthesized program P.
When we compile module M, we bind all references in class C of M
to the variables, methods, and classes of our generated stubs. Only
at module composition time do we rebind each variable, method,
etc. reference in C of M to a definition, where the definition of a
variable, method, or class may be supplied by one of any of the
features that comprise P.

An important point of feature module compilation is that it pro-
vides a global consistency check on modules, without dealing with
the feature combinatorics that is the subject of safe composition
discussed in the next section. An example of a consistency prop-
erty is for a feature module F to reference a method that is not
defined in any feature module. We catch this error because module
F fails to compile.

Ambiguities are another source
of errors that our compilation
technique catches. Consider the
base program BaseP in
Figure 5a, which consists of
two interfaces (I,J) and three
classes (X,A,B). BaseP seems
consistent in isolation: the
foo(x) call in Figure 5a binds
to the foo(I) method of class
A. Now consider feature mod-
ule ExtendX of Figure 5b that
makes class X also implement
interface J. This global knowl-
edge is exposed by our class
stubs, and module BaseP fails
to compile as a consequence:
the foo(x) call is ambiguous as it could be bound to either the
foo(I) or foo(J) methods of class A.

In the following sections, assume we have the bytecodes of each
feature module from which we can extract variable, method, and
class and interface references.

class buffer {
int buf = 0;
int get() {return buf;}

 void set(int x) {
buf=x;

}
}

class buffer {
int buf = 0;
int get() {return buf;}
int back = 0;

 void set(int x) {
back = buf;
buf=x;

}
void restore() {

buf = back;
}

}

(a)

(b)

Figure 4 Buffer Variations

interface I {}
interface J {}
class X implements I {}
class A {

void foo(I b) {}
void foo(J d) {}

}
class B {

void bar(A a,X x) {
a.foo(x);

}
}

refines class X
implements J {}

Figure 5 Uncompilable
 Feature Modules

(a)

(b)

4

5 SAFE COMPOSITION
The AHEAD tool suite has multiple ways to compose feature mod-
ules to build a product. We can compile feature modules as dis-
cussed in the last section and let AHEAD compose their bytecodes
to produce the binary of a product directly. A problem that can
arise is that there may be references to classes or members that are
undefined. Alternatively, the primary way in which features are
composed in AHEAD is by composing source files. But now, the
same errors (i.e., reference to undefined elements) are discovered
at program compilation time. In short, we need to ensure that all
variables, methods, and classes that are referenced in a program
are indeed defined. And we want to ensure this property for all
programs in a product line, regardless of the specific approach to
synthesize products. This is the essence of safe composition.

The core problem is illustrated in
the following example. Let PL
be a product line with three fea-
tures: base, addD, and refC.
Figure 6 shows their modules.
base is a base feature that
encapsulates class C with
method foo(). Feature addD
introduces class D and leaves
class C unchanged. Feature refC
refines method foo() of class C
and references the constructor of
class D. Now suppose the feature
model of PL is a single produc-
tion with no cross-tree con-
straints:

PL : [refC] [addD] base ; // feature model

The product line of PL has four programs that represent all possible
combinations of the presence/absence of the refC and addD fea-
tures. All programs in PL use the base feature. Question: are there
programs in PL that have type errors? As PL is so simple, it is not
difficult to see that there is such a program: it has the AHEAD
expression refC•base. Class D is referenced in refC, but there is
no definition of D in the program itself. This means one of several
possibilities: the feature model is wrong, feature implementations
are wrong, or both. Designers need to be alerted to such errors. In
the following, we define some general compositional constraints
(i.e., properties) that product lines must satisfy.

5.1 Properties of Safe Composition
Refinement Constraint. Suppose a member or class m is intro-
duced in features X, Y, and Z, and is refined by feature F. Products
in a product line that contain feature F must satisfy the following
constraints to be type safe:

(i) X, Y, and Z must appear prior to F in the product’s AHEAD
expression (i.e., m must be defined prior to be refined), and
(ii) at least X, Y, or Z must appear in every product that
contains feature F.

Property (i) can be verified by examining the feature model, as it
linearizes features. Property (ii) requires the feature model (or
rather its propositional formula) to satisfy the constraint:

F ⇒ X ∨ Y ∨ Z (2)

By examining the code base of feature modules, it is possible to
identify and collect such constraints. These constraints, called
implementation constraints, are a consequence of feature imple-
mentations, and may not arise if different implementations are
used. Implementation constraints can be added to the existing
cross-tree constraints of a feature model and obeying these addi-
tional constraints will guarantee safe composition. That is, only
programs that satisfy domain and implementation constraints will
be synthesized. Of course, the number of implementation con-
straints may be huge for large programs. However, a majority of
constraints will be redundant. Theorem provers, such as Otter [5],
could be used to prove that implementation constraints are implied
by the feature model and thus can be discarded.

Czarnecki [17] recently observed the following: Let PLf be the
propositional formula of product line PL. If there is a constraint R
that is to be satisfied by all members of PL, then the formula (PLf ∧
¬R) can not be satisfiable. If it is, we know that there is a product
of PL that violates R. To make our example concrete, to verify that
a product line PL satisfies property (2), we want to prove that all
products of PL that use feature F also use X, Y, or Z. A satisfiability
(SAT) solver can verify if (PLf ∧ F ∧ ¬X ∧ ¬Y ∧ ¬Z) is satisfiable.
If it is, there exists a product that uses F without X, Y, or Z. The
variable bindings that are returned by a solver identifies the
offending product. In this manner, we can verify that all products
of PL satisfy (2).

Note: We are inferring composition constraints for each
feature module; these constraints lie at the module’s “requires-
and-provides interface” [18]. When we compose feature
modules, we must verify that their “interface” constraints are
satisfied by a composition. If composition is a linking process,
we are guaranteeing that there will be no linking errors.

Superclass Constraint. Super has multiple meanings in the Jak
language. The original intent was that Super would refer to the
method that was being refined. Once a method void m() in a class
C is defined, it is refined by a specification of the form:

void m() {... Super.m(); ... } (3)

(In AOP-speak, (3) is an around method for an execution pointcut
containing the single joinpoint of the m() method). However, if no
method m() exists in class C, then (3) is interpreted as a method
introduction that invokes its corresponding superclass method.
That is, method m() is added to C and Super.m() invokes C’s
inherited method m(). To test the existence of a superclass method
requires a more complex constraint.

Let feature F introduce a method m into class C and let m invoke
m() of its superclass. Let Hn be a superclass of C, where n indicates
the position of Hn by the number of ancestors above C. Thus H0 is
class C, H1 is the superclass of C, H2 is the super superclass of C,
etc. Let Supn(m) denote the predicate that is the disjunction of all

class C {
void foo(){..}

}

class D {...}

refines class C {
void foo(){

... new D() ...
Super.foo();

}
}

(a) base

(b) addD

(c) refC

Figure 6 Three Feature
Modules

5

features that define method m in Hn (i.e., m is defined with a method
body and is not abstract). If features X and Y define m in H1, then
Sup1(m)=X∨Y. If features Q and R define m in H2, then
Sup2(m)=Q∨R. And so on. The constraint that m is defined in some
superclass is:

F ⇒ Sup1(m) ∨ Sup2(m) ∨ Sup3(m) ∨ ... (4)

In short, if feature F is in a product, then there must also be some
feature that defines m in a superclass of C. The actual predicate that
is used depends on C’s position in the inheritance hierarchy.

Note: it is common for a method n() of a class C to invoke a
different method m() of its superclass via Super.m().
Constraint (4) is also used to verify that m() is defined in a
superclass of C.

Reference Constraint. Let feature F reference member m of class
C. This means that some feature must introduce m in C or m is intro-
duced in some superclass of C. The constraint to verify is:

F ⇒ Sup0(m) ∨ Sup1(m) ∨ Sup2(m) ∨ ... (5)

Note: By treating Super calls as references, (5) subsumes
constraints (2) and (4).

Note: a special case of (5) is the following. Suppose C is a
direct subclass of class S. If C is introduced in a product then S
must also be introduced. Let c be the default constructor of C
which invokes the default constructor m of S. If feature F
introduces C and features X, Y, and Z introduce S, then (5)
simplifies to:

F ⇒ Sup0(m) // same as F ⇒ X ∨ Y ∨ Z (6)

Single Introduction Constraint.
More complicated properties can
be verified in the same manner.
An example is when the same
member or class is introduced
multiple times in a composition,
which we call replacing. While
not necessarily an error, replac-
ing a member or class can invali-
date the feature that first
introduced this class or member.
For example, suppose feature A
introduces the Value class,
which contains an integer mem-
ber and a get() method
(Figure 7a). Feature B replaces —
not refines — the get() method
by returning the double of the
integer member (Figure 7b). Both A and B introduce method
get(). Their composition, B•A, causes A’s get method to be
replaced by B’s get (see Figure 7c). If subsequent features depend
on the get() method of A, the resulting program may not work
correctly.

It is possible for multiple introductions to be correct; in fact, we
carefully used such designs in building AHEAD. More often, such

designs are symptomatic of inadvertent captures [31]: a member is
inadvertently named in one feature identically to that of a member
in another feature, and both members have different meanings. In
general, these are “bad” designs that could be avoided with a more
structured design where each member or class is introduced pre-
cisely once in a product. Testing for multiple introductions can
either alert designers to actual errors or to designs that “smell bad”.
We note that this problem was first recognized by Flatt et al in
mixin compositions [19], and has resurfaced elsewhere in object
delegation [30] and aspect implementations [4].

Suppose member or class m is introduced by features X, Y, and Z.
The constraint that no product has multiple introductions of m is:

atmost1(X,Y,Z) // at most one of X,Y,Z is true (7)

The actual constraint used depends on the features that introduce m.

Abstract Class Constraint. An abstract class can define abstract
methods (i.e., methods without a body). Each concrete subclass C
that is a descendant of an abstract class A must implement all of A’s
abstract methods. To make this constraint precise, let feature F
declare an abstract method m in abstract class A. (F could refine A
by introducing m, or F could introduce A with m). Let feature X
introduce concrete class C, a descendant of A. If F and X are com-
patible (i.e., they can appear together in the same product) then C
must implement m or inherit an implementation of m. Let C.m
denote method m of class C. The constraint is:

F ∧ X ⇒ Sup0(C.m) ∨ Sup1(C.m) ∨ Sup2(C.m) ∨ … (8)

That is, if abstract method m is declared in abstract class A and C is
a concrete class descendant of A, then some feature must imple-
ment m in C or an ancestor of C.

Note: to minimize the number of constraints to verify, we only
need to verify (8) on concrete classes whose immediate
superclass is abstract; A need not be C’s immediate superclass.

Note: Although this does not arise in the product lines we
examine later, it is possible for a method m that is abstract in
class A to override a concrete method m in a superclass of A.
(8) would have to be modified to take this possibility into
account.

Interface Constraint. Let feature F refine interface I by introduc-
ing method m or that F introduces I which contains m. Let feature X
either introduce class C that implements I or that refines class C to
implement I (i.e., a refinement that adds I to C’s list of imple-
mented interfaces). If features F and X are compatible, then C must
implement or inherit m. Let C.m denote method m of class C. The
constraint is:

F ∧ X ⇒ Sup0(C.m) ∨ Sup1(C.m) ∨ Sup2(C.m) ∨ ... (9)

This constraint is identical in form to (8), although the parameters
F, X, and m may assume different values.

5.2 Perspective
We identified six properties ((2),(4)-(9)) that are essential to
safe composition. We believe these are the primary properties to

class Value {
int v;
int get()
{ return v; }

}

refines class Value {
int get()
{ return 2*v; }

}

class Value {
int v;
int get()
{ return 2*v; }

}

(a) A

(b) B

(c) B•A

Figure 7 Overriding Member

6

check. We know that there are other constraints that are particular
to AHEAD that could be included; some are discussed in
Section 7.1. Further, using a different compilation technology may
introduce even more constraints to be checked (see Section 7.2).

To determine if we have a full compliment of constraints requires a
theoretical result on the soundness of the type system of the Jak
language, which is a superset of Java. To place such a result into
perspective, we are not aware of a proof of the soundness of the
entire Java language. A standard approach for soundness proofs is
to study a representative subset of Java, such as Featherweight
Java [26] or ClassicJava [20]. Given a soundness proof, it should
be possible to determine if any constraints are missing for that lan-
guage subset. To do this for Jak is a topic of future work.

5.3 Beyond Code Artifacts
The ideas of safe composition transcend code artifacts [17]. Con-
sider an XML document; it may reference other XML documents
in addition to referencing internal elements. If an XML document
is synthesized by composing feature modules [10], we need to
know if there are references to undefined elements or files in these
documents. Exactly the same techniques that we outlined in earlier
sections could be used to verify safe composition properties of a
product line of XML documents. We believe the same holds for
product lines of other artifacts (grammars, makefiles, etc.) as well.
The reason is that we are performing analyses on structures that
are common to all kinds of synthesized documents; herein lies the
generality and power of our approach.

6 RESULTS
We have analyzed the safe composition properties of many differ-
ent AHEAD product lines. Table 1 summarizes the key size statis-
tics for several of the product lines that we analyzed. For lack of
space in this paper, we report the specifics of the first two product
lines listed (PPL and BPL). Note that the size of the code base and
and average size of a generated program is listed both in Jak LOC
and translated Java LOC.

The properties that we verified are grouped into five categories:

• Refinement (2),
• Reference to Member or Class includes (4) and (5)
• Single Introduction (7)
• Abstract Class (8)
• Interface (9).

For each constraint, we generate a theorem to verify that all prod-
ucts in a product line satisfy that constraint. We report the number
of theorems generated in each category. Note that duplicate theo-
rems can be generated. Consider features Y and ExtendY of

Figure 8. Method m in ExtendY references method o in Y, method
p in ExtendY references field i in Y, and method p in ExtendsY
refines method p defined in Y. We create a theorem for each con-
straint; all theorems are of the form ExtendY⇒Y. We eliminate
duplicate theorems, and report only the number of failures per cat-
egory. If a theorem fails, we report all (in Figure 8, all three)
sources of errors. Finally, we note that very few abstract methods
and interfaces were used in the product lines of Table 1. So the
numbers reported in the last two categories are small.

We conducted our experiments on a Mobile Intel Pentium 2.8 GHz
PC with 1GB memory running Windows XP. We used J2SDK ver-
sion 1.5.0_04 and the SAT4J Solver version 1.0.258RC [45].

6.1. Prevayler Product Line
Prevayler is an open source application written in Java that main-
tains an in-memory database and supports plain Java object persis-
tence, transactions, logging, snapshots, and queries [43]. We
refactored Prevalyer into the Prevaler Product Line (PPL) by giv-
ing it a feature-oriented design. That is, we refactored Prevalyer
into a set of feature modules, some of which could be removed to
produce different versions of Prevalyer with a subset of its original
capabilities. Note that the analyses and errors we report in this sec-
tion are associated with our refactoring of Prevayler into PPL, and
not the original Prevayler source1.

The code base of the PPL is 2029 Jak LOC with seven features:

• Core — This is the base program of the Prevayler framework.
• Clock — Provides timestamps for transactions.
• Persistent — Logs transactions.
• Snapshot — Writes and reads database snapshots.
• Censor — Rejects transactions by certain criteria.
• Replication — Supports database duplication.
• Thread — Provides multiple threads to perform transactions.

A feature model for Prevayler is shown in Figure 9. Note that there
are constraints that preclude all possible combinations of features.

Product
Line

of
Features

of
Programs

Code Base
Jak/Java LOC

Program
Jak/Java LOC

PPL 7 20 2000/2000 1K/1K
BPL 17 8 12K/16K 8K/12K
GPL 18 80 1800/1800 700/700
JPL 70 56 34K/48K 22K/35K

Table 1: Product Line Statistics

1. We presented a different feature refactoring of Prevayler in [37]. The
refactoring we report here is similar to an aspect refactoring of Godil and
Jacobsen [22].

class D {
static int i;
static void o() {..}
void p() {..}

}

class C {
void m() { D.o(); }

}

refines class D {
void p() {

Super.p();
D.i=2;

}
}Figure 8 Sources of ExtendY⇒Y

(a) Y

(b) ExtendY

// grammar
PREVAYLER : [Thread] [Replication] [Censor]

 [Snapshot] [Persistent] [Clock] Core ;

//constraints
Censor ⇒ Snapshot;
Replication ⇒ Snapshot;

Figure 9. Prevayler Feature Model

7

Results. The statistics of our PPL analysis is shown in Table 2. We
generated a total of 882 theorems, of which 791 were duplicates.
To analyze the PPL feature module bytecodes, generate and
remove duplicate theorems, and run the SAT solver to prove the 91
unique theorems took 8 seconds.

We performed two sets of safe composition tests on Prevalyer. In
the first test, we found 15 reference constraint violations, of which
8 were unique errors, and 12 multiple-introduction constraint
errors. These failures revealed an omission in our feature model:
we were missing a constraint “Replication ⇒ Snapshot”. After
changing the model (to that shown in Figure 9) we found 11 refer-
ence failures, of which 4 were unique errors, and still had 12 multi-
ple-introduction failures. These are the results in Table 2.

Two reference failures were due to yet another error in the feature
model that went undetected. Feature Clock must not be optional
because all other features depend on its functionality. We fixed this
by removing Clock’s optionality.

A third failure was an implementation error. It revealed that a code
fragment had been misplaced — it was placed in the Snapshot
where it should have been placed in Replication. The last fail-
ure was similar. A field member that only Thread feature relied
upon, was defined in the Persistent feature, essentially making
Persistent non-optional if Thread is selected. The error was
corrected by moving the field member into Thread feature.

Making the above-mentioned changes resolved all reference con-
straint failures, but 12 multiple-introduction failures remained.
They were not errors, rather “bad-smell” warnings. Here is a typi-
cal example. Core has the method:

public TransactionPublisher publisher(..) {
return new CentralPublisher(null, ...);

}

Clock replaces this method with:

public TransactionPublisher publisher(..) {
return new CentralPublisher(new Clock(), ...);

}

Alternatively, the same effect could be achieved by altering the
Core to:

ClockInterface c = null;
public TransactionPublisher publisher(..) {

return new CentralPublisher(c, ...);
}

And changing Clock to refine publisher():

public TransactionPublisher publisher(..) {
c = new Clock();
return Super.publisher(..);

}

Our safe composition checks allowed us to confirm by inspection
that the replacements were performed with genuine intent.

6.2 Bali
The Bali Product Line (BPL) is a set of AHEAD tools that manipu-
late, transform, and compose AHEAD grammar specifications
[10]. The feature model of Bali is shown in Figure 10. It consists
of 17 primitive features and a code base of 8K Jak (12K Java) LOC
plus a grammar file from which a parser can be generated.
Although the number of programs in BPL is rather small (8), each
program is about 8K Jak LOC or 12K Java LOC that includes a
generated parser. The complexity of the feature model of Figure 10
is due to the fact that our feature modelling tools preclude the rep-
lication of features in a grammar specification, and several (but not
all) Bali tools use the same set of features.

The statistics of our BPL analysis is shown in Table 3. We gener-
ated a total of 3453 theorems, of which 3358 were duplicates. To
analyze the BPL feature module bytecodes, generate and remove
duplicate theorems, and run the SAT solver to prove the 95 unique
theorems took 4 seconds.

We found several failures, some of which were due to duplicate
theorems failing, and the underlying cause boils down to two
errors. The first was a unrecognized dependency between the
requireBali2jcc feature and the require feature, namely

Constraint # of
Theorems

Failures

Refinement 39 0
Reference to Member or a Class 830 11
Single Introduction 12 12
Abstract Class 0 0
Interface 1 0

Table 2: Prevayler Statistics
Bali : Tool [codegen] Base ;

Base : [require] [requireSyntax] collect
visitor bali syntax kernel;

Tool : [requireBali2jak] bali2jak
| [requireBali2jcc] bali2jcc
| [requireComposer] composer
| bali2layerGUI bali2layer

bali2layerOptions ;
%%
composer ⇒ ¬codegen;
bali2jak ∨ bali2layer ∨ bali2javacc ⇔ codegen;
bali2jak ∧ require ⇒ requireBali2jak; // 1
bali2jcc ∧ require ⇒ requireBali2jcc; // 2
composer ∧ require ⇒ requireComposer; // 3
require ⇒ requireSyntax;

Figure 10 Bali Feature Model

Constraint # of
Theorems

Failures

Refinement 42 0
Reference to Member or a Class 3334 7
Single Introduction 18 7
Abstract Class 41 0
Interface 18 0

Table 3: Bali Product Line Statistics

8

requireBali2jcc invokes a method in require. The feature
model of Figure 10 allows a Bali tool to have
requireBali2javacc without require. A similar error was the
requireComposer feature invoked a method of the require fea-
ture, even though require need not be present. These failures
revealed an error in our feature model. The fix is to replace rules 1-
3 in Figure 10 with:

Bali2JakTool ⇒ (require ⇔ requireBali2jak); // new 1

Bali2jccTool ⇒ (require ⇔ requireBali2jcc); //new 2

BaliComposerTool ⇒ (require ⇔ requireComposer);// new 3

We verified that these fixes do indeed remove the errors.

Another source of errors deals with replicated methods (i.e., multi-
ple introductions). When a new feature module is developed, it is
common to take an existing module as a template and rewrite it as
a new module. In doing so, some methods are copied verbatim and
because we had no analysis to check for replication, replicas
remained. Since the same method overrides a copy of itself in a
composition, no real error resulted. This error revealed a “bad
smell” in our design that has a simple fix — remove replicas.

We found other multiple introductions. The kernel feature
defines a standard command-line front-end for all Bali tools. To
customize the front-end to report the command-line options of a
particular tool, a usage() method is refined by tool-specific fea-
tures. In some tools, it was easier to simply override usage(),
rather than refine it with a tool-specific definition. In another case,
the overriding method could easily have been restructured to be a
method refinement. In both cases, we interpreted these failures as
“bad smell” warnings and not true errors.

6.3 Other Product Lines
We have evaluated other product lines w.r.t. safe composition
properties. Some of these product lines were considerably larger
than those presented in previous sections. The results were simi-
larly encouraging: product lines whose code base is close to 50K
Java LOC and whose programs are 35K Java LOC apiece took
under 30 seconds to analyze.

7 RELATED AND FUTURE WORK
7.1 Other Safe Composition Constraints
The importance of ordering features in a composition can be lim-
ited to defining a class or method prior to refining it. We verified
these requirements in our product lines and found no errors. How-
ever, it is possible in AHEAD to write feature modules that refer-
ence methods that are added by subsequently composed features.
Here is a simple example.

The modules for features Base and Ref are shown in Figure 11.
Base encapsulates class C that has a method foo() which invokes
method bar(). Module Ref refines class C by introducing method
bar(). The composition Ref•Base is shown in Figure 11c.

Observe that Ref•Base
(Figure 11c) has no references
to undefined members. But the
design of Base does not strictly
follow the requirements of step-
wise development, which
asserts after each step in a pro-
gram’s development, there
should be an absence of refer-
ences to undefined members.
Base does not have this prop-
erty (i.e., it fails to satisfy the
Reference constraint (5) as
bar() is undefined).

We can circumvent this prob-
lem by rewriting Base as
Base1 in Figure 12, where
Base1 includes an empty
bar() method. Composing
Base1 with Ref overrides the
bar() method, and the com-
position of Ref•Base1 is
again class C of Figure 11c.
Now both expressions Base1 and Ref•Base1 satisfy our safe
composition properties. Unfortunately this revised design raises
the warning of multiple introductions.

Satisfying the strict requirements of stepwise development is not
essential for safe composition. Nevertheless, it does lead to another
set of interesting automated analyses and feature module refactor-
ings that are subjects of future work.

7.2 Related Work
Undefined methods and classes can arise in the linking or run-time
loading of programs when required library modules cannot be
found [38]. Our work addresses a variant of this problem from the
perspective of product lines and program generation.

Safe generation is the goal of synthesizing programs with specific
properties. Although the term is new [25], the problem is well-
known. The pioneering work of Goguen, Wagner, et al using alge-
braic specifications to create programs [51], and the work at
Kestrel [47] to synthesize programs from formal models are exam-
ples. Synthesis and property guarantees of programs in these
approaches require sophisticated mathematical machinery.
AHEAD relies on simple mathematics whose refinement abstrac-
tions are virtually identical to known OO design concepts (e.g.,
inheritance).

MetaOCaml adds code quote and escape operations to OCaml (to
force or delay evaluation) and verifies that generated programs are
well-typed [49]. Huang, Zook, and Smaragdakis [25] studied safe
generation properties of templates. Templates are written in a syn-
tax close to first-order logic, and properties to be verified are writ-
ten similarly. Theorem provers verify properties of templates. Our
work is different: feature modules are a component technology
where we verify properties of component compositions. The clos-

class C {
void foo() {
 bar();

}
}

refines class C {
bar() {..}

}

class C {
void foo() {
 bar();

}
void bar() {..}

}

Figure 11 Ordering Example

(a) Base

(b) Ref

(c) Ref•Base

class C {
void foo() {
 bar();

}
void bar(){};

}

Figure 12 Improved Base Design

9

est research to ours, and an inspiration for our work, is that of
Czarnecki and Pietroszek [17]. Unlike our work, they do not use
feature modules. Instead, they define an artifact (e.g., specifica-
tion) using preprocessor directives, e.g., an element is included in a
specification if a boolean expression is satisfied. The expression
references feature selections in a feature model. By defining con-
straints on the presence or absence of an element, they can verify
that a synthesized specification for all products in a product line is
well-formed. Our work on safe composition is an instance of this
idea. Further, as AHEAD treats and refines all artifacts in the same
way, we believe our results on safe composition are applicable to
non-code artifacts as well, as we explained in Section 5.3. Demon-
strating this is a subject of future work.

We analyze feature source code to expose properties that must be
satisfied by a program in which a feature module can appear.
Krishnamurthi and Fisler analyze feature/aspect modules that con-
tain fragments of state machines, and use the information collected
for compositional verification [32][33].

Our work is related to module interconnection languages (MILs)
[18][44] and architecture description languages (ADLs) [46] that
verify constraints on module compositions. When feature modules
are used, a feature model becomes an MIL or ADL.

Our approach to compile individual feature modules and to use
bytecode composition tools follows the lead of Hyper/J [40]. How-
ever, our technique for compiling feature modules is provisional. A
more general approach, one that encodes a language’s type theory
as module composition constraints, is exemplified by work on sep-
arate class compilation [2]. Recent programming languages that
support mixin-like constructs, e.g., Scala [39] and CaesarJ [4], sug-
gest an alternative approach to defining, compiling, and compos-
ing feature modules. Interestingly, the basic idea is to define
features so that their dependencies on other features is expressed
via an inheritance hierarchy. That is, if feature F extends defini-
tions of G, F is a “sub-feature” of feature G in an inheritance hierar-
chy. Neither Scala or CaesarJ use feature models, which we use to
encode this information. At feature composition time, a topologi-
cal sort of dependencies among referenced features is performed,
which linearizes their composition. The linearization of features is
precisely what our feature models provide. One of the advantages
that feature models offer, which is a capability that is not evident in
Scala and CaesarJ, is the ability to swap features or combinations
of features. To us, as long as grammar and cross-tree constraints
are satisfied, any composition of features is legal. It is not clear if
Scala and CaesarJ have this same flexibility. We believe our work
may be relevant to these languages when safe composition proper-
ties need to be verified in product line implementations.

Propagating feature selections in a feature model into other devel-
opment artifacts (requirements, architecture, code modules, test
cases, documentation, etc.) is a key problem in product lines [42].
Our work solves an instance of this problem. More generally, veri-
fying properties of different models (e.g., feature models and code
implementations of features) is an example of Model Driven
Design (MDD) [48][34][23][12]. Different views or models of a
program are created; interpreters extract information from multiple
models to synthesize target code. Other MDD tools verify the con-

sistency of different program (model) specifications. Our work is
an example of the latter.

We mentioned earlier that aspects can be used to implement refine-
ments. AHEAD uses a small subset of the capabilities of AspectJ.
In particular, AHEAD method refinements are around advice with
execution pointcuts that capture a single joinpoint. Aspect imple-
mentations of product lines is a topic of current research (e.g.,
[1][14]), but examples that synthesize large programs or product
lines are not yet common. Never the less, the techniques that we
outlined in this paper should be relevant to such work.

8 CONCLUSIONS
The importance of product lines in software development will pro-
gressively increase. Successful products spawn variations that
often lead to the creation of product lines [41]. Coupled with this is
the desire to build systems compositionally, and to guarantee prop-
erties of composed systems. A confluence of these research goals
occurs when modules implement features and programs of a prod-
uct line are synthesized by composing feature modules.

We examined safe composition properties in this paper, which
ensure that there is an absence of references to undefined elements
(classes, methods, variables) in a composed program’s implemen-
tation for all programs in a software product line. We mapped fea-
ture models to propositional formulas, and analyzed feature
modules to identify their dependencies with other modules. Not
only did our analysis identify previously unknown errors in exist-
ing product lines, it provided insight into how to create better
designs and how to avoid designs that “smell bad”. Further, the
performance of using SAT solvers to prove theorems was encour-
aging: non-trivial product lines of programs of respectable size
(e.g., product lines with over 50 members, each program of size
35K LOC) could be analyzed and verified in less than 30 seconds.
For this reason, we feel the techniques presented are practical.

Our work is but a first step toward more general and useful analy-
ses directed at software product lines. We believe this will be an
important and fruitful area for future research.

Acknowledgements. This work was support in part by NSF’s Sci-
ence of Design Project #CCF-0438786. We thank William Cook,
David Kitchin, and the referees for their helpful comments.

9 REFERENCES
[1] M. Anastasopoulos and D. Muthig. “An Evaluation of

Aspect-Oriented Programming as a Product Line Implemen-
tation Technology”. ICSR 2004.

[2] D. Ancona, et al. “True Separate Compilation of Java
Classes”, PPDP 2002.

[3] Apache Ant Project. http://ant.apache.org/
[4] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. “An

Overview of CaesarJ”, to appear Journal of Aspect Oriented
Development, 2005.

[5] Argonne National Laboratory. “Otter: An Automated Deduc-
tion System”, www-unix.mcs.anl.gov/AR/otter/

[6] D. Batory and S. O’Malley. “The Design and Implementation
of Hierarchical Software Systems with Reusable Compo-
nents”, ACM TOSEM, October 1992.

10

[7] D. Batory, B. Lofaso, and Y. Smaragdakis. “JTS: Tools for
Implementing Domain-Specific Languages”. 5th Int. Confer-
ence on Software Reuse, Victoria, Canada, June 1998.

[8] D. Batory, Rich Cardone, and Y. Smaragdakis. “Object-Ori-
ented Frameworks and Product Lines”. Software Product Line
Conference (SPLC), August 2000.

[9] D. Batory, AHEAD Tool Suite. www.cs.utexas.edu/
users/schwartz/ATS.html.

[10] D. Batory, J.N. Sarvela, and A. Rauschmayer. “Scaling Step-
Wise Refinement”, IEEE TSE, June 2004.

[11] D. Batory. “Feature Models, Grammars, and Propositional
Formulas”, Software Product Line Conference (SPLC), Sep-
tember 2005.

[12] D. Batory “Multi-Level Models in Model Driven Develop-
ment, Product-Lines, and Metaprogramming”, IBM Systems
Journal, Vol. 45#3, 2006.

[13] P. Clements. private correspondence 2005.
[14] A. Colyer, A. Rashid, G. Blair. “On the Separation of Con-

cerns in Program Families”. Technical Report COMP-001-
2004, Lancaster University, 2004.

[15] T.H. Cormen, C.E. Leiserson, and R.L.Rivest. Introduction to
Algorithms, MIT Press,1990.

[16] K. Czarnecki and U. Eisenecker. Generative Programming
Methods, Tools, and Applications. Addison-Wesley, Boston,
MA, 2000.

[17] K. Czarnecki and K. Pietroszek. “Verifying Feature-Based
Model Templates Against Well-Formed OCL Constraints”,
submitted 2005.

[18] T.R. Dean and D.A. Lamb. “A Theory Model Core for Mod-
ule Interconnection Languages”. Conf. Centre For Advanced
Studies on Collaborative Research, 1994.

[19] M. Flatt, S. Krishnamurthi, and M. Felleisen. “Classes and
Mixins”, POPL 1998.

[20] M. Flatt, S. Krishnamurthi, and M. Felleisen, “A Program-
mer's Reduction Semantics for Classes and Mixins”. Formal
Syntax and Semantics of Java, chapter 7, pages 241--269.
Springer-Verlag, 1999.

[21] K.D. Forbus and J. de Kleer, Building Problem Solvers, MIT
Press 1993.

[22] I. Godil and H.-A. Jacobsen, “Horizontal Decomposition of
Prevayler”. CASCON 2005.

[23] J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crupi. Soft-
ware Factories: Assembling Applications with Patterns, mod-
els, Frameworks and Tools, Wiley, 2004.

[24] I.M. Holland. “Specifying Reusable Components Using Con-
tracts”. ECOOP 1992.

[25] S.S. Huang, D. Zook, and Y. Smaragdakis. “Statically Safe
Program Generation with SafeGen”, GPCE 2005.

[26] A. Igarashi, B. Pierce, and P. Wadler, “Featherweight Java A
Minimal Core Calculus for Java and GJ”, OOPSLA 1999.

[27] M. de Jong and J. Visser. “Grammars as Feature Diagrams”.
www.cs.uu.nl/wiki/Merijn/PaperGrammarsAsFea-
tureDiagrams, 2002.

[28] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson.
“Feature-Oriented Domain Analysis (FODA) Feasibility
Study”. Technical Report, CMU/SEI-90TR-21, Nov. 1990.

[29] K. Kang. private communication, 2005.

[30] G. Kniesel, “Type-Safe Delegation for Run-Time Component
Adaptation”, ECOOP 1999.

[31] E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. Duba.
“Hygienic Macro Expansion”. SIGPLAN ‘86 ACM Confer-
ence on Lisp and Functional Programming, 151-161.

[32] S. Krishnamurthi and K. Fisler. “Modular Verification of Col-
laboration-Based Software Designs”, FSE 2001.

[33] S. Krishnamurthi, K. Fisler, and M. Greenberg. “Verifying
Aspect Advice Modularly”, ACM SIGSOFT 2004.

[34] V. Kulkarni, S. Reddy. “Separation of Concerns in Model-
Driven Development”, IEEE Software 2003.

[35] R.E. Lopez-Herrejon and D. Batory. “A Standard Problem for
Evaluating Product Line Methodologies”, GCSE 2001, Sep-
tember 9-13, 2001 Messe Erfurt, Erfurt, Germany.

[36] R.E. Lopez-Herrejon and D. Batory. “Using Hyper/J to imple-
ment Product Lines: A Case Study”, Dept. Computer Sci-
ences, Univ. Texas at Austin, 2002.

[37] J. Liu, D. Batory, and C. Lengauer, “Feature Oriented Refac-
toring of Legacy Applications”, ICSE 2006, Shanghai, China.

[38] C. McManus, The Basics of Java Class Loaders, www.java-
world.com/javaworld/jw-10-1996/jw-10-
indepth.html

[39] M. Odersky, et al. An Overview of the Scala Programming
Language. September (2004), scala.epfl.ch

[40] H. Ossher and P. Tarr. “Multi-dimensional Separation of Con-
cerns and the Hyperspace Approach.” In Software Architec-
tures and Component Technology, Kluwer, 2002.

[41] D.L. Parnas, “On the Design and Development of Program
Families”, IEEE TSE, March 1976.

[42] K. Pohl, G. Bockle, and F v.d. Linden. Software Product Line
Engineering: Foundations, Principles and Techniques,
Springer 2005.

[43] Prevaler Project. www.prevayler.org/.
[44] R. Prieto-Diaz and J. Neighbors. “Module Interconnection

Languages”. Journal of Systems and Software 1986.
[45] SAT4J Satisfiability Solver, www.sat4j.org/
[46] M. Shaw and D. Garlan. Perspective on an Emerging Disci-

pline: Software Architecture. Prentice Hall, 1996.
[47] Specware. www.specware.org.
[48] J. Sztipanovits and G. Karsai. “Model Integrated Computing”.

IEEE Computer, April 1997.
[49] W. Taha and T. Sheard. “Multi-Stage Programming with

Explicit Annotations”, Symposium on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM), 1997.

[50] M. VanHilst and D. Notkin. “Using C++ Templates to Imple-
ment Role-Based Designs”, JSSST Int. Symp. on Object Tech-
nologies for Advanced Software. Springer Verlag, 1996.

[51] E. Wagner. “Algebraic Specifications: Some Old History and
New Thoughts”, Nordic Journal of Computing, Vol #9, Issue
#4, 2002.

[52] N. Wirth. “Program Development by Stepwise Refinement”,
CACM 14 #4, 221-227, 1971.

