
Meta-Policies for Distributed Role-Based Access Control Systems

András Belokosztolszki and Ken Moody
University of Cambridge Computer Laboratory

JJ Thomson Avenue, Cambridge, United Kingdom�
andras.belokosztolszki, ken.moody � @cl.cam.ac.uk

Abstract

In this paper meta-policies for access control policies
are presented. There has been a lot of research into the var-
ious ways of specifying policy for a single domain. Such
domains are autonomous and can be managed by the users
or by a specific system administrator. It is often helpful to
have a more general policy description in order to restrict
the ways in which policy can be modified. Meta-policies fill
this particular role. With their help changes to policy can
be made subject to predefined constraints. Meta-policies
are long lived and so can provide users with stable infor-
mation about the policy of the system. In addition they
can provide bodies external to a domain with relevant but
restricted information about its policies, so forming a ba-
sis for co-operation between domains. For example, a do-
main’s meta-policy can function as a policy interface, thus
establishing a basis for agreement on the structure of the
objects accessed. In this way it is possible to build service
level agreements between domains automatically.

1. Introduction

The goals of access control systems are to protect re-
sources from unauthorized access and to ensure access to
those resources for authorized users. There are a num-
ber of models of access control which aim to achieve this
goal. Traditional models include discretionary access con-
trol (DAC) and mandatory access control (MAC) [19]. A
promising alternative to these models is role-based access
control (RBAC) [5, 6, 13, 16], which allows the specifica-
tion of access control policy in a way that maps naturally
to an organization’s structure. This approach brings advan-
tages such as easier understanding of access control poli-
cies and scalable administration. Traditional access control
models can easily be simulated in RBAC [18].

Roles introduce a level of indirection in the mapping of
users to privileges. Instead of mapping users directly to
privileges, users can assume a number of roles, and these

roles are mapped to privileges. Rules specify what roles
can be activated and under what conditions. These role ac-
tivation conditions can include prerequisite roles and envi-
ronmental constraints, changing the static user-to-privilege
mapping into a dynamic mapping that depends on the envi-
ronment. These rules increase the expressive power of the
role-based access control model.

Organizations often have a hierarchical management
structure. Each unit can consist of smaller units, which have
their own users and resources. The access control policy
for a unit is either managed locally or at a higher level. In
RBAC a policy is a set of activation rules, which control the
user-role mapping, and a set of authorisation rules, which
control the role-privilege mapping. In order to control ac-
cess to a policy this same access control mechanism can be
used [16], in which case roles and rules are treated as re-
sources.

Within an organization certain policies will be organiza-
tion wide, to which every unit within that organization must
adhere. It is important to specify who may access and mod-
ify each of the sets of rules which form the overall access
control policy of the organization. Since individual units
have a degree of autonomy, they can extend the high-level
policy of an organization or even define their own sets of
rules. It is difficult to specify a policy that will not conflict
with local requirements, and to ensure that the original in-
tentions behind organizational policy are preserved. Local
administrators must be able to introduce policy to meet lo-
cal needs, but it is essential to control the consequences of
local policy modifications. Restricting access to local roles
and rules is of little help if new roles with their own privi-
leges can be created.

The relationship between autonomous units within an or-
ganization is open. They communicate, exchange data, al-
low access to their resources and cooperate among them-
selves. This cooperation can be handled by so called ser-
vice level agreements (SLAs), which describe the roles and
resources that take part in communications between units.
Changes to the organizational policy or to the local policy
of either of the units involved in a cooperation described by

a SLA require the revision of the SLA itself. In the case of
a large number of units the number of contracts that must
be changed can become unmanageable. An example is the
UK National Health Service (NHS), where a unit can be a
hospital. The number of hospitals is large, and all must be
able to cooperate. A single policy change can require a very
large number of modifications to SLAs.

In this paper we propose a mechanism to control local
freedom within units of an organization. The goal is to
enable local administrators to establish a local policy that
complies with the overall policy of the organization. Users
of the local policy can then be sure that any rights guaran-
teed at organization level have not been restricted in their
local environment.

It is also the aim of our work to ease the task of up-
dating SLAs. The same mechanism as is proposed to de-
scribe a policy can be used to generate SLAs in an auto-
matic fashion. This is especially important when the re-
quirement for interoperation is rare. For example in inter-
hospital communication two hospitals may work together
frequently, whereas a third hospital might make no contact
with them. However, there must still be a potential to coop-
erate, since they are all part of the same organization.

We achieve these goals by means of meta-policies, sets
of rules that describe the management of policies.

This paper is organized as follows: After a short sum-
mary of related work section 2 gives an overview of OA-
SIS, a role-based access control model that includes several
extensions to the basic RBAC models. Section 3 describes
access control domains, their administration and ways of
enabling cooperation among them. This is followed by sec-
tion 4, which motivates the use of meta-policies and classi-
fies their various types. It also describes the specification of
meta-policies, compliance testing and the generation of ser-
vice level agreements to cater for inter-domain cooperation.
Section 5 gives an extended example that illustrates the use
of meta-policies. Finally, section 6 concludes the paper.

1.1. Related Work

The idea of meta-policies is not new. RBAC constraints
are often insufficient to express certain separation of du-
ties, or expressing separation of duties by using constraints
introduces runtime overhead. By using policies that de-
scribe policies this runtime overhead can be reduced. Sev-
eral RBAC implementations use specification time policy
checks to resolve rule conflicts, and it was noted that these
specification time checks can be used to test the policy for
other properties.

Lupu and Sloman in [11] describe a model that supports
distributed and automated policy management. Apart from
authorization policies their model supports obligation poli-
cies and negation. Both of these extensions can lead to pol-

icy conflicts. To provide syntactic analysis of policies Lupu
and Sloman introduce meta-policies. These meta-policy
checks can be integrated into their specification-time and
run-time conflict detection mechanisms. Example meta-
policies to express self-management and separation of duty
are given in [4].

Sandhu introduces the OM-AM framework in [14]. It
has a layered architecture that addresses issues like what
the security objectives are and how these objectives can be
met. The description of these objectives can be looked at as
meta-policies. OM-AM is applied in an RBAC context and
a distributed RBAC case study is provided.

Koch et al. consider policy evolution in [10]. Their
framework based on graph transformations allows detailed
description of policy changes over time.

These approaches do not consider using meta-policies
for inter-domain cooperation and for defining relationships
among policies.

An early example of work on inter-domain policy coop-
eration is the Domino project, summarized in [12].

2. OASIS

OASIS (Open Architecture for Secure Interworking Ser-
vices [2]) is a RBAC architecture developed at the Univer-
sity of Cambridge. It has a clearly defined model based on
logic that allows various properties to be checked.

Roles are activated in the context of a session, which
starts when a user is authenticated at a service. OASIS does
not support role hierarchies, and it is the belief of the devel-
opers that role hierarchies are not required. One of the rea-
sons is that organizational roles and their hierarchy do not
always map easily to access control roles [1]. If necessary
additional role-to-privilege authorisation rules can easily be
generated from the specification of a role hierarchy.

The original OASIS defined by Hayton in [8] is derived
from a capability system. In OASIS, unlike most RBAC
systems, roles can be managed in a decentralized way, since
roles and policy rules are specific to a service. Inter-service
cooperation is supported. OASIS handles policy enforce-
ment using role activation rules and digitally signed creden-
tials. Role activation rules are expressions based on first-
order logic, which specify what prerequisite roles or auxil-
iary credentials the user must hold in order to enter the new
role, and what additional conditions must be met at the time.

Since the first version important extensions have been
made to OASIS, the most important being appointment.
Appointment, as described in [21], abstracts role delegation
by allowing users to appoint other users to activate roles, but
the appointers are not required to hold the delegated role.
Appointment does not itself cause role activation, but in-
stead certificates are issued that can be presented as prereq-
uisites during role entry. These certificates often correspond

to long-lived credentials such as academic qualification or
membership of an organization.

OASIS stands out from other RBAC implementations
by its fast, event-based revocation mechanism. Precondi-
tions in role activation rules can have a membership flag
that specifies that the new role should be deactivated if the
condition should become false. In particular, the role may
be deactivated if the user is no longer active in a prerequisite
role.

Recent research into RBAC has recognized the need for
context awareness [3, 9]. This has been supported since the
first version of OASIS by means of role parameters and sim-
ple environmental constraints in role activation rules. Role
parameters and variables in environmental constraints are
strongly typed in OASIS.

Role activation rules have the form:

���������	��
�

��������	����������

�
���������������������

�

��������� �
where !#" , !%$�& and !#' are the number of prerequisite roles,
appointment certificates and environmental constraint pred-
icates respectively. ��(for)+*-,.*-!%" are prequisite roles,�/�10 for)2*43 *5!6$�& are prequisite appointment certificates
and ��7 for)8*:9+*;!6' are environmental constraint expres-
sions. Predicate expressions on the left hand side of the rule
are called preconditions. � is the target role.

Preconditions may contain parameters. Parameters have
two modes, in and out. in-parameters must be set before
a precondition is evaluated, while out-parameters are set as
a side effect of evaluation. Role and appointment precon-
ditions may contain only out-parameters, which are set by
pattern matching. Parameters of environmental constraints
may be either in- or out- parameters. Variables set while
evaluating preconditions can be used to set parameters in
the target role.

Authorisation rules are of the form:

����� � ��

�
���� � ���=<
where � is the role, ��(for)>*?,@*A!6' are environmental
constraint expressions and < is the privilege.

A set of the above rules defines the policy for an OASIS
service. Since role parameters and environmental condi-
tions are included the rules are very expressive, and meta-
policies are needed to ease administration.

3. Administrative Domains

Authentication of users and control of access to re-
sources are specific to a domain. Such a domain encom-
passes a set of users and a set of resources, and access con-
trol is governed by its policy. Domains are usually defined
to reflect the structure of an organization.

Most research in RBAC has concentrated on access con-
trol within a single domain. Little work has been done in
the area of cooperation between domains since it is usually
assumed that access control is defined for a single adminis-
trative unit.

This paper does not address the problems of policy con-
sistency within a single domain. It is assumed that every
domain has a consistent policy.

3.1. Administration

Domains are administered locally, within the domain.
Sometimes only a small group of people are responsible for
managing the rule set of the domain. These people deter-
mine local policy, and usually there is little or no means
of controlling their actions. Organizations depend on their
work, and treasure them.

It is often the case that users require some level of con-
trol over the access control rules. For example, users wish
to manage the access control policy for the files that they
own. Access control to the rules and roles of the domain
can be handled by the same access control mechanism used
to control access to other resources. This is described in
[15].

In self-administered systems it is possible to set up a
wide variety of access control policies, allowing users to
manage a subset of the resources including those that han-
dle access control to what they manage. There is also a
system administrator with full control. He or she is needed
to correct user errors and to ensure the overall consistency
of the policy. Unfortunately users have no control over the
actions of the system administrator, modifications of their
access control policy or their rights within the system. This
is not because system administrators lack goodwill or wish
to have full control over a particular domain, but because
the policy rules of a system can be complex, and often this
complexity prevents ordinary users from understanding it.

3.2. Inter-Domain Communication

Domains are not closed; they can be accessed from other
domains. There are a number of reasons why a particular
domain may not want its access control policy to be pub-
lic, but there must be an interface to allow others to access
this domain. Access takes place within a session, following
authentication of a user within some domain. If such users
are to access resources in other domains then there must
be (mutual) trust of authenticated users. Access to exter-
nal domains is usually through a few exported roles that the
external domain accepts, and it is important to exercise con-
trol over the use of such roles. This is usually managed by
means of SLAs. SLAs behave like contracts between two
domains, and control the number and format of the roles

accepted externally. Based on these agreements the server
issuing role membership certificates (RMCs) will monitor
membership conditions and notify the external domain in
case of an event that invalidates the exported RMC.

One drawback of SLAs is that they cannot be built dy-
namically at runtime. When two domains agree mutually
to accept certain roles the system administrators of the two
domains have to sit down together and set up a SLA. When
the number of domains is large and communication among
them is rare, it is a tedious task to set up a new SLA with
every other domain each time that the local policy changes.

There are a number of problems associated with inter-
domain communication. The first arises from the various
data types involved. Roles can have parameters, and these
parameter values can be used in rules. If such roles are ex-
ported and used in foreign domains care must be taken to
ensure the correct interpretation of these role parameters.
Another problem is the handling of external roles. It is im-
portant that the privileges granted to the holders of imported
roles are appropriate to the users who have been authenti-
cated into those roles.

4. Meta-Policies

Meta-policies are introduced to solve some of the prob-
lems outlined on the previous pages of this paper. They pro-
vide a mechanism to give users information about an access
control system. This information can also be used to tell
external units about the access control policy used within a
domain or to help managers to control the policy of a sub-
domain.

Meta-policies specify a set of constraints for a set of
rules. The use of meta-policies consists of the following
steps:

Specification: This defines the meta-policy. It consists of
the data types, general rules, constraints, and so forth.
The detailed description is in section 4.1. The goal is to
describe the expectations from a policy, such as what
user-privilege assignments it must contain, what user-
privilege assignments it must not contain, what data
structures or objects are accessed and how these can
be accessed remotely.

Compliance check: This process examines a domain’s
policy or a subset of that policy using the meta-policy
specification. The entities in the meta-policy descrip-
tion must first be mapped to the entities in the policy.
The compliance test is performed on the basis of this
mapping. If the compliance test succeeds a certificate
is issued for the domain’s policy. This step must be
performed each time a policy is modified.

Use of the compliance certificate: The certificate issued
can be used to prove to users that the domain’s pol-
icy complies with a general meta-policy specification
with which the users are familiar.

The certificate can also serve as an export interface
to other domains; using the semantic information en-
coded in the meta-policy external domains can ac-
cept exported roles and associate privileges with them.
Only the certificate and the interface are visible to ex-
ternal domains, the internal structure of the exporting
domain’s policy cannot be accessed.

The certificate can be used as an import interface de-
scription to ensure that external roles are handled in
an appropriate way. This is especially important when
generating service level agreements automatically.

4.1. Specifying Meta-Policies

The first step is to specify each meta-policy. Meta-
policies describe policies. This is done with the help of an
abstract (or generic) policy model. The properties required
are formulated with respect to this model. Later this model
is mapped to a concrete policy, and the properties expressed
using the model can be checked on that policy. To define
this more general model the following must be specified:

Data types describe the data types used in role parameters,
privileges, functions and environmental constraints.
These data types must contain sufficient information
about their semantics or must be generally accepted or
widely used data types, like the data types of C, SOAP
or SQL. The data types defined can be used in the gen-
eral roles, rules and functions of the abstract model.

Objects specify the generic objects that will map onto a
protected object. This description consists of the ac-
cess methods and their parameters, which at some
granularity determine the privilege set for the object.

Functions are described in order to promote agreement
on the use of environmental constraints. The exact
body of the function implementing the predicate is not
given, only a partial description; this includes the sig-
nature and possibly some indication of the semantics,
for example a reference to a service that provides this
function or a natural language description.

Roles are specified with their signature. The signature
includes the parameter types, and information about
those parameters. It can also include statements about
what privileges are expected to be conveyed by the
role.

Appointment certificates are specified in a similar way to
roles, except for the lack of a privilege mapping.

Explicit rules are specified if certain explicit rules must be
present in the policy being checked. Since the policy
rules are permissive and may not contain negation ex-
plicit meta-rules must not contain negation either.

Invariance rules describe invariants of access control poli-
cies that comply with this specification. Basically
these rules specify role-to-privilege mappings that
must be included in the policy. Negative rules can also
be included; these specify privileges that must not be
granted to certain roles (or users). These rules may
seem similar to the rules of a policy, but they are spec-
ified in terms of the abstract model only. Their equiv-
alent must be provably present (either explicitly or im-
plicitly) or absent (in the case of negative rules) in the
concrete policy that is to be checked.

4.1.1. Negation

Meta-policy rules can contain negative rules to restrict
certain privileges. Although in many cases negative rules
can be expressed by permissive positive rules, the equiva-
lent expressions are cumbersome and are difficult to read or
administer [17]. On the other hand, access control rules that
include negation directly can be expensive to enforce at run-
time. The unification engine of the access control system
must be more complex, and care must be taken to resolve
any conflicts and ambiguities that may arise.

As meta-policies are checked only when a new access
control policy is introduced, negation will not lead to inef-
ficiencies at runtime and the unification engine can be kept
simple.

4.1.2. Separation of Duties

Using meta-policies certain static policy checks can be
performed, for example static separation of duty constraints
[7, 20]. As in the case of negation these checks are per-
formed only once per policy version, and so do not ad-
versely affect the efficiency of unification at runtime.

4.2. Specifying Compliance Meta-Policies

Meta-policies serve two related but distinct purposes:
constraining the policy of a particular domain (compliance),
and enabling domains to interoperate at policy level (com-
munication). These purposes are not exclusive, and often a
single meta-policy will serve both. For clarity we discuss
the two purposes separately.

Compliance meta-policies are a set of constraints against
which to check policies. The primary purpose is to examine
and audit the policy of a domain based on the rules in the
meta-policy. If the check succeeds a certificate is issued.
This certificate can be used to build up trust relations; it can

be presented as proof of compliance with the meta-policy
without the need to make details of the access control policy
public. Because of this property, certificates can be shown
to both local and external bodies.

Compliance meta-policies can also be used to control
policy evolution. General constraints on the policy of a do-
main can be specified in a meta-policy. Whenever the do-
main’s policy is modified, the new policy can be checked
to determine whether the general properties still hold. This
use of meta-policies greatly aids policy evolution and policy
administration. If there is a meta-policy, authorized users of
the system can modify policy rules that relate to resources
that they own, provided that the modified policy still com-
plies with the meta-policy.

4.2.1. Example

The following example illustrates some of the features of
compliance meta-policies. The example meta-policy states
that users must have read access to their personal data, and
that no one except the owner of that data can modify this
personal data. For this the following must be specified:

B The personal data object. This description can include
the structure of the object and the privileges that are
associated with the data object.B A classification of the privileges. This distinguishes
read access privileges from modification privileges.B An abstract description of the users. In the case of OA-
SIS this is a parametrised initial role.B Positive rules that associate read access privileges with
each user.B Negative rules that restrict modification privileges for
a personal data object to roles held by the owner of the
object.

Note that the above policy does not say that the owner of
the personal data object can modify it. Also, all roles and
privileges are abstract in the meta-policy specification.

This meta-policy is the privacy policy of an organization
with a hierarchical domain structure. Every domain in the
organization is expected to comply with this meta-policy. If
the compliance check succeeds for the policy of a particular
domain a certificate is issued. This certificate proves to both
users and senior management that the administrators of the
domain respect the high-level policies of the organization.

4.3. Checking Compliance Meta-Policies

The following must be provided to check the policy of a
specific domain against a meta-policy:

C The mapping of data types. If there is a local data type
in the domain that is equivalent to the data type of the
meta-policy, then the mapping is a bi-directional, one-
to-one mapping. If there is no equivalent data type,
then a proper conversion must be provided with the
help of the functions available to the domain. The
meta-policy specifies whether the meta-policy data
type must be converted to a data-type of the domain
or vice versa.C The mapping of functions. The purpose is to define a
mapping of each meta-policy function to a local func-
tion of the domain. As functions can have different pa-
rameter signatures, local functions can be used to con-
vert the parameters to a different format. An example
is the conversion of two ASCII strings (surname and
first name) to a UNICODE string (full name). As in
the case of data type mapping, the meta-policy speci-
fies the direction of the mapping that must be provided.C The mapping of generic objects. The objects of the
abstract model must be mapped to local objects; this
includes identifying the relevant access privileges. In
this context it may also be necessary to use local func-
tions to convert parameters. It is sometimes difficult
to provide a one-to-one mapping of privileges, but of-
ten that is not required. The meta-policy can specify
that a privilege subset relation is sufficient instead of a
one-to-one mapping.C The mapping of roles. Abstract roles of the meta-
policy must be mapped to the local domain roles. Sim-
ple meta-roles, i.e. meta-roles that have no parameters,
can easily be mapped to simple policy roles. Problems
can arise when meta-roles have to map onto policy
roles, but the two roles have different parameter types,
a different number of parameters, or different seman-
tics for parameter values. In such cases interface roles
may need to be introduced, see section 4.5.C The mapping of appointment certificates. Abstract ap-
pointment certificates are mapped to concrete appoint-
ment certificates in much the same way as roles.

Compliance testing is based on the above mappings.
First, check whether all data types, functions, objects, roles
and appointment certificates have been mapped, and that the
direction of these mappings is correct.

Next, check that each explicit rule of the meta-policy has
its counterpart in the concrete policy. Explicit meta-rules
are translated into rules that use the roles, privileges and
functions of the domain to be checked. The resulting rule
must be present in the domain’s policy in an explicit form.

Finally, check the invariance rules of the meta-policy.
This includes checking the validity of both positive and neg-
ative implicit meta-rules. This involves theorem proving

and is potentially an expensive process, but it has to be per-
formed only when policy is modified, and the overhead at
runtime is not affected.

Note that when checking compliance with a meta-policy
that contains negative meta-rules, the entire rule and role
set of the domain must be considered. If only a part of the
policy is examined, negative meta-rules cannot be checked.

When the policy of a domain is validated against a meta-
policy a certificate is issued for that version of the policy,
and this certificate can be used in later access control. As
mentioned earlier, this certificate guarantees that the policy
of the domain complies with organizational standards.

In some circumstances a trusted third party will be made
responsible for checking compliance with meta-policies.
This trusted third party must have access to the conversion
functions available locally, together with their semantics.

4.4. Specifying Interface Meta-Policies

Interface meta-policies are similar to compliance meta-
policies. They consist of two parts, an export part and an
import part.

The export part describes what must be exported from a
domain and in what format. This can include description of
roles, appointment certificates and so forth.

The import part describes external roles that are accepted
via this interface meta-policy, and the semantics expected
for such roles in the complying domain. This can include a
description of the generic privileges that must or must not
be associated with a particular external role.

4.5. Complying with Interface Meta-Policies

Interface meta-policies are used to facilitate cooperation
between domains. The policy of a particular domain can
comply either with the export, or with the import or with
both the export and import parts of the meta-policy. The
extent to which a domain’s policy complies with a meta-
policy determines the relationship of the domain to the
meta-policy. This relationship can be role-exporting, role-
importing or both.

When checking compliance with interface meta-policies
mappings of data types, functions, objects, roles and rules
must be provided. The direction of the mappings will de-
pend on whether the domain is to act as role exporting, role
importing or both.

Meta-policies can be taken into account when a domain’s
policy is designed. In such cases local roles can be created
to reflect the structure of the meta-roles. Such a design can
lead to simple compliance mappings, since the roles to be
mapped have similar structure.

If the local policy of the domain has already been es-
tablished, then it can be extended with interface roles that

map easily to the roles of the meta-policy. The rules of the
domain can be modified in order to assign privileges to in-
terface roles or to let them serve as prerequisites for acti-
vating roles of the existing local policy. This can meet the
same needs as when the policy is designed to comply with
the meta-policy. Sometimes a policy cannot be extended
in such a way; for example, separation of duty constraints
may not allow a new role to obtain certain privileges. In
such cases the meta-role must be mapped directly to an ex-
isting local role which conveys the required privileges; that
role may have an inappropriate structure, and it may be nec-
essary to resolve parameter issues by using local functions.

The certificate of compliance with an interface meta-
policy may include mapping information. This information
can be used to optimize type conversions when generating
service level agreements.

4.6. Generating SLAs Automatically

When two domains comply with the same interface
meta-policy, one with the export part and the other with the
import part, a service level agreement can be generated au-
tomatically, see figure 1.

The exporting domain’s task in the agreement is to issue
local users with exportable roles if those users want to use
external services. The exporting domain must also check
membership conditions of the exported roles and, whenever
such an exported role is deactivated, notification must be
sent to the importing domain.

The importing domain accepts the roles and uses them
according to the interface meta-policy. It must also accept
notification when any external role is deactivated; an event
channel is established when an imported role is first vali-
dated by the exporting domain. These events cause cascade
deactivation of any local roles that were activated accord-
ing to a rule in which the imported role is a membership
precondition.

Appointment certificates are handled in a very similar
way. An appointment certificate that is managed in the ex-
porting domain can be used as a prerequisite credential in
the importing domain. The structure of the certificate is de-
scribed in the meta-policy; the exporting domain will issue
users with an equivalent appointment certificate that com-
plies to the interface. The importing domain is therefore
able to relate the appointment certificate to the local context.
In addition the exporting domain must notify the importing
domain if the appointment certificate is revoked.

For service level agreements a role mapping is provided.
This includes a description of how role parameters should
be set for exported roles. Each role exported from the
exporting domain is transformed into a generic meta-role,
which is accepted by the importing domain as described in
section 4.5. Conversion from a role of the exporting do-

main is based on compliance of the exporting policy with
the interface meta-policy; conversion from the meta-role to
a local role is based on compliance of the importing policy
with the meta-policy.

The mapping information stored in compliance certifi-
cates sometimes enables the exported role to be mapped to
a role in the importing domain more simply than through
the use of a meta-role.

5. Example

This section gives an example of the use of interface
meta-policies. It is motivated by the National Health Ser-
vice (NHS), in which patients’ records are stored in a dis-
tributed heterogeneous environment and cooperation be-
tween domains – hospitals, general practices etc. – is regu-
lated by the NHS. In this example we describe such higher-
level regulations by means of meta-policies. The meta-
policy states that a generic GP role must have access to its
patients’ records. The example uses a simplified model of
patient record fields, namely: name, address, next of kin,
biochemistry, haematology

5.1. The Meta-Policy

The meta-policy consists of the following, see section 4.1:

Data type:

The data type part describes what data types are used in
role parameters, functions, and so forth. Types are identified
by abstract value set identifiers, together with a representa-
tion. In our case we have an identifier for doctors which is
represented by a four-byte unsigned integer, a patient iden-
tifier represented as a UNICODE string, and boolean.

GMC_Id (integer, 4 byte, unsigned)
NHS_Id (Unicode)
boolean ({true, false})

Objects:

The objects section of the meta-policy specification de-
scribes objects and privileges. In this example we have only
one object type, the patient record. Access to this object is
handled by the following abstract privileges:

Read_Name(patient_Id:NHS_Id)
Read_Address(patient_Id:NHS_Id)
Read_NextOfKin(patient_Id:NHS_Id)
Read_Biochemistry(patient_Id:NHS_Id)
Read_Haematology(patient_Id:NHS_Id)

All of these privileges require a DFE/GIHIJ�KLG M/N parameter.
Informally, their semantics is to authorise the holder to read
the respective fields from the record of patient DOE/GIHPJ�KLG M	N .

Data types
Objects

Privileges
Functions

Roles
Role parameters

SLA

Explicit rules
Rules

App. parameters
Appointment cert.

map
pin

g

Imported
roles and

certificates
appointment

Exported
roles and

certificates
appointment

Role−exporting

DomainDomain

Role−importing

mapping

Figure 1. Automatic generation of service level agreements.

Functions:
There is one function in this meta-policy, which checks

whether a patient is registered with a certain GP:

Q2R SOT/UIVPW�XLUZY�[\�]_^%` acb2d_[\�]fe�g1hji�kml�h acbonqp�\�\�rsW�T/X
where

[\�]ut�gcv�i�g�wsx�k
denotes the domain of the variable.

Roles:
The only role in this meta-policy gives an abstraction of

the general practitioner role in the different domains. This
generic role is identified by a globally known identifier is-
sued by the General Medical Council.

Q2RzysQ2R {/|zY	Q~}-� {/|��

Rules:
There are no explicit rules in this meta-policy, but it con-

tains the following meta-rules:

� Q2RzysQ2R {/|/����Q2R SFT/UIVIW�XLU�ysQ2R {	|F��SOT	UIVIW�XLU {	|��� � W�T�| ��T]_W�y�SOT	UIVIW�XLU {	|��
� Q2RzysQ2R {/|/����Q2R SFT/UIVIW�XLU�ysQ2R {	|F��SOT	UIVIW�XLU {	|��� � W�T�| �o|	|	��W����/y�SFT/UIVIW�XLU {/|��
� Q2RzysQ2R {/|/����Q2R SFT/UIVIW�XLU�ysQ2R {	|F��SOT	UIVIW�XLU {	|��� � W�T�| ��W��FU��2����VPX�y�SOT/UIVPW�XLU {	|��
� Q2RzysQ2R {/|/����Q2R SFT/UIVIW�XLU�ysQ2R {	|F��SOT	UIVIW�XLU {	|��� � W�T�| �=VI\�����W�]�Vm��UI���Ly�SOT/UIVPW�XLU {	|��
� Q2RzysQ2R {/|/����Q2R SFT/UIVIW�XLU�ysQ2R {	|F��SOT	UIVIW�XLU {	|��� � W�T�| ��T/W�]_T/Um\�rs\�����y�SFT/UIVIW�XLU {/|/�
These meta-rules state that a GP can access each field of

the records of its patients. This is a lower bound on the GP’s
rights. In a domain that complies with this meta-policy the

equivalent of the generic GP role must possess the equiva-
lent of the above privileges.

All of the rules in our example have one prerequi-
site role

Q2RzysQ2R {/|��
and one environmental constraintQ2R SFT/UIVIW�XLU

.

5.2. The Exporting Domain

The exporting domain in this example is a GP practice.
As there is no negation in the meta-policy, only a small part
of the rules and roles of the practice’s policy need be con-
sidered. The relevant part is:

Roles:

rs\���T�r�Q2RzyjX�T/]�W~Y�UmW���U��
This role is the exported role. For compliance this role

must be mapped to the meta-policy’s
Q2Rzy�Q2R {	|��

role. For
this, a local function must be provided that converts

X�T/]�W
to
Q2R {/|

. Suppose that this function is:
X�T/]�W���\�Q2R YUmW���U�n Q~}-� {/|

, where
Q~}-� {/|

is in the format spec-
ified by the meta-policy. If required by the meta-policy, an
inverse function must also be provided. This inverse func-
tion is required when the exporting domain has to validate
instances of the generic role.

5.3. The Importing Domain

In this example the importing domain is a hospital. Once
again the meta-policy rules do not contain negation, so that
it is enough to consider only part of the local policy. The
relevant policy description of this domain is:

Roles:

GPexternal(GP_Id:GMC_Id)

record_reader1(GP_Id:GMC_Id)
record_reader2(GP_Id:GMC_Id)

There are three relevant roles. The first one is¡2¢2£�¤F¥m£�¦�§�¨�©
, a special role created explicitly for external

GPs; it has the same parameter type and parameter seman-
tics as the

¡2¢
role in the meta-policy. This role does not

have any associated privileges, it is used only as a prerequi-
site to enter other roles. In addition to the

¡2¢2£�¤F¥m£�¦�§�¨�©
role

there are two roles
¦�£�ª�«�¦�¬ ¦�£�¨�¬/£�¦�­

and
¦�£�ª�«�¦�¬ ¦�£�¨/¬/£�¦�®

;
these roles convey local privileges to read health record
data. The authorization rules are:¦�£�ª�«�¦�¬ ¦�£�¨/¬/£�¦�­	¯j¤�°c±�¢2¨	¥I²I£�§L¥�³2´�¡2¢z¯j¤#±sµF²P¬�°¶ ¦�£�¨�¬	¢2£�¦�·�«�§�¨�©s¸ ¨/¥m¨�¯�µF²P¬�°
¦�£�ª�«�¦�¬ ¦�£�¨/¬/£�¦�®¹¯j¤�°c±�¢2¨	¥I²I£�§L¥�³2´�¡2¢z¯j¤#±sµF²P¬�°¶ ¦�£�¨�¬	º�£�¨�©s¥�»�¸ ¨/¥m¨�¯�µF²I¬/°

In the above authorization rules the privileges have one
parameter, and that parameter is the patient identifier

µF²I¬
.

Note that the privileges of the
¦�£�¨�¬/£�¦

roles are depen-
dent on the patient through the environmental predicate¢2¨	¥I²I£�§L¥�³2´�¡2¢

. The privileges distinguish only betweenµF£�¦�·�«�§�¨�©�¬	¨/¥m¨
and

»F£�¨�©j¥�»F¬	¨/¥m¨
fields.

Rules:
The role entry rules of the domain are:

¼ ¡2¢2£�¤�¥m£�¦�§�¨/©�¯j¤�° ¶ ¦�£�ª�«�¦�¬ ¦�£�¨�¬	£�¦�­	¯s¤O°¼ ¡2¢2£�¤�¥m£�¦�§�¨/©�¯j¤�° ¶ ¦�£�ª�«�¦�¬ ¦�£�¨�¬	£�¦�®¹¯s¤O°
Compliance

For compliance the following is included: data type map-
ping and conversion, object mapping, function mapping,
role and rule mapping.

The function mapping includes handling the predicate¡2¢ µF¨/¥I²I£�§L¥�¯�¡2¢ ½	¬F±sµO¨	¥I²I£�§L¥ ½	¬�°
. In order to map this

predicate we must convert the general patient identifier
specified in the meta-policy to a local identifier

µ�²I¬
. This

is achieved by the function¾ º�¿�µ�²I¬	À�«1µ�²I¬ÂÁ�¸ «�ÃfÄ�Å1ÆjÇÉÈIÊ�Æ ËcÌ�Íq¸ «�Ã Ä�ÇÉÌ
which must be available in the local domain. The predicate
equivalent to

¡2¢ µF¨/¥I²I£�§L¥
locally is¢2¨/¥I²I£�§L¥�³2´�¡2¢ÎÁ/¸ «�Ã�Ï#Ð ËcÌ~Ñ_¸ «�ÃfÄ�ÇÉÌoÍÓÒc«�«�©s£�¨/§

and the mapping is given by:¡2¢ µO¨/¥I²P£�§L¥�¯s¤%±�Ô¹°
Õ ¢2¨/¥I²P£�§L¥�³2´�¡2¢z¯s¤%± ¾ º�¿�µ�²I¬	À�«1µ�²I¬O¯jÔ¹°�°

We also use the conversion function
¾ º�¿�µF²I¬�À�«1µF²I¬

for
the privilege mapping.

The privilege mapping is provided as follows (the meta-
policy privileges have a ÖØ× prefix to avoid name conflicts):

ÖØ× Ù £�¨�¬ ¾ ¨/Ã_£�¯jÔ¹°Ú ¦�£�¨�¬/¢2£�¦�·�«�§�¨�©s¸f¨	¥m¨�¯ ¾ º�¿�µF²P¬	À�«1µF²P¬O¯jÔ¹°�°
ÖØ× Ù £�¨�¬ Ûo¬	¬	¦�£�·�·/¯jÔ¹°Ú ¦�£�¨�¬/¢2£�¦�·�«�§�¨�©s¸f¨	¥m¨�¯ ¾ º�¿�µF²P¬	À�«1µF²P¬O¯jÔ¹°�°
ÖØ× Ù £�¨�¬ ¾ £�¤F¥�³2´�Ü�²P§�¯jÔ¹°Ú ¦�£�¨�¬/¢2£�¦�·�«�§�¨�©s¸f¨	¥m¨�¯ ¾ º�¿�µF²P¬	À�«1µF²P¬O¯jÔ¹°�°
ÖØ× Ù £�¨�¬ Ý=²P«�ª�»�£�Ã�²I·�¥I¦�ÔL¯jÔ¹°Ú ¦�£�¨�¬/º�£�¨�©j¥�»F¸ ¨/¥m¨O¯ ¾ º�¿�µF²I¬�À�«1µF²I¬F¯sÔÞ°�°
ÖØ× Ù £�¨�¬ º�¨�£�Ã_¨	¥m«�©�«�ß/ÔL¯sÔÞ°Ú ¦�£�¨�¬/º�£�¨�©j¥�»F¸ ¨/¥m¨O¯ ¾ º�¿�µF²I¬�À�«1µF²I¬F¯sÔÞ°�°

The Ú sign means that the local privilege includes the
meta-policy privilege, but it may not be equivalent to it.

The meta-policy
¡2¢

role is mapped directly to the local¡2¢2£�¤�¥m£�¦�§�¨/©
role. No parameter conversion is needed, as

it was a role specially designed for external GPs.
The meta-rules are checked. The five rules have similar

structure, so only the mapping of the first one is shown. The
meta-rule is¡2¢z¯j¤O°�±Z¡2¢ µO¨	¥I²I£�§L¥�¯j¤#±�Ô¹° ¶ Ù £�¨/¬ ¾ ¨/Ã�£�¯sÔÞ° .
This rule is translated to use the local roles, functions and
privileges. The resulting rule is:¡2¢2£�¤�¥m£�¦�§�¨/©�¯j¤�°c±�¢2¨/¥I²I£�§L¥m«�´�¡2¢z¯j¤%± ¾ º�¿�µF²I¬�À�«1µF²I¬F¯sÔÞ°�°¶ ¦�£�¨�¬/¢2£�¦�·�«�§�¨�©s¸f¨	¥m¨�¯ ¾ º�¿�µF²P¬	À�«1µF²P¬O¯jÔ¹°�°

The above rule must have an equivalent in the local pol-
icy. It is not trivial to find this equivalent, and often it
cannot be done automatically, since the semantics of the
functions are unknown. This task can be eased if the in-
verses of certain functions are known, but usually the pro-
cess requires human intervention. Here we must show that
there is a path from the role

¡2¢2£�¤�¥m£�¦�§�¨�©�¯s¤O°
to the required

privilege
¦�£�¨�¬/¢2£�¦�·�«�§�¨�©s¸ ¨/¥m¨�¯ ¾ º�¿�µ�²I¬	À�«1µ�²I¬O¯jÔ¹°�°

for pa-
tients

Ô
who are registered with

¤
. We must first enter

the role
¦�£�ª�«�¦�¬ ¦�£�¨�¬/£�¦�­/¯j¤O°

; the role parameter is propa-
gated from the role

¡2¢2£�¤�¥m£�¦�§�¨�©�¯j¤�°
. This role conveys the

privilege
¦�£�¨�¬/¢2£�¦�·�«�§�¨�©s¸ ¨/¥m¨�¯ ¾ º�¿�µ�²I¬	À�«1µ�²I¬O¯jÔ¹°�°

, since
we know that the two predicates

¡2¢ µF¨/¥I²I£�§L¥�¯j¤%±�Ô¹°
and
¢2¨/¥I²I£�§L¥�³2´�¡2¢z¯j¤#± ¾ º�¿Lµ�²I¬�Ào«1µ�²I¬F¯sÔ¹°�°

are equivalent.
Similarly the remaining four rules can be checked.

5.4. Service Level Agreement

Based on these two compliances a service level agree-
ment can be generated automatically. The exporting domain
allows its users to use the local role in the importing do-
main. The exporting domain notifies the importing domain
if the exported role is deactivated. The exporting domain
also checks the validity of exported roles at the importing
domain’s request.

The importing domain accepts the exported role, uses it
in rules and grants access to resources appropriately.

6. Conclusion

In this paper we studied the use of meta-policies to check
policies at specification time. We categorize these meta-
policies as either compliance or interface meta-policies. We
use compliance meta-policies to provide both local and ex-
ternal users with information about an access control policy
without making its details public. This builds trust relation-
ships, and it also helps policy evolution. Compliance meta-
policies ease the task of policy administrators since they
constrain policy design, and thus allow policies to evolve
while maintaining the properties specified in a meta-policy.

We also showed how meta-policies can be used in inter-
domain cooperation. These interface meta-policies describe
how the roles of one domain can be used in another, and
how certain guarantees can be made about the use of such
roaming roles.

Desert, our current proof of concept implementation,
consists of a mapping editor and a SLA generator. The
mapping editor can create mappings between policies and
meta-policies, and it also performs compliance checks. The
SLA generator creates SLAs between two domains based
on policy mappings with respect to the same meta-policy.

Future work includes defining a formal model for the
meta-policies and integrating the current implementation
into the OASIS framework.

7. Acknowledgement

András Belokosztolszki gratefully acknowledges the
support provided to him by King’s College Cambridge, the
John Stanley Graduate Fund and the Overseas Research
Students Awards Scheme.

References

[1] R. Awischus. Role based access control with the security ad-
ministration manager (SAM). In Proceedings of the second
ACM workshop on Role-based access control, pages 61–68,
1997.

[2] J. Bacon, K. Moody, and W. Yao. Access control and trust in
the use of widely distributed services. In Middleware 2001,
volume 2218, pages 300–315, November 2001.

[3] M. J. Covington, W. Long, S. Srinivasan, A. K. Dev,
M. Ahamad, and G. D. Abowd. Securing context-aware
applications using environment roles. In Sixth ACM Sym-
posium on Access Control Models and Technologies, pages
10–20, 2001.

[4] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The pon-
der policy specification language. In Policies for Distributed
Systems and Networks,International Workshop, POLICY
2001, Bristol, UK, pages 18–38, 2001.

[5] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn. A role-based
access control model and reference implementation within

a corporate internet. In ACM Transactions on Information
and System Security, volume 2, pages 34–64, 1999.

[6] L. Giuri and P. Iglio. A formal model for role-based access
control with constraints. In Proceedings of the Ninth IEEE
Computer Security Foundations Workshop, pages 136–145,
1996.

[7] V. D. Gligor, A. I. Gavrila, and D. Ferraiolo. On the formal
definition of separation-of-duty policies and their composi-
tion. In IEEE Symposium on Security and Privacy, pages
172–183, 1998.

[8] R. Hayton. OASIS An Open Architecture for Secure Inter-
working Services. PhD thesis, University of Cambridge,
1996. Technical Report No. 399.

[9] M. H. Kang, J. S. Park, and J. N. Froscher. Access con-
trol mechanisms for inter-organizational workflow. In Sixth
ACM Symposium on Access Control Models and Technolo-
gies, 2001.

[10] M. Koch, L. V. Mancini, and F. Parisi-Presicce. On the spec-
ification and evolution of access control policies. In Sixth
ACM Symposium on Access Control Models and Technolo-
gies, pages 121–130, 2001.

[11] E. Lupu and M. Sloman. Conflicts in policy-based dis-
tributed systems management. IEEE Transactions on Soft-
ware Engineering, 25(6):852–869, 1999.

[12] J. D. Moffett. Specification of Management Policies and
Discretionary Access Control, chapter 17, pages 455–479.
Addison-Wesley, 1994.

[13] M. Nyanchama and S. Osborn. The role graph model and
conflict of interest. ACM Transactions on Information and
System Security (TISSEC), 2(1):3–33, 1999.

[14] R. Sandhu. Engineering authority and trust in cyberspace:
the OM-AM and RBAC way. In Proceedings of the fifth
ACM workshop on Role-based access control, pages 111–
119, 2000.

[15] R. Sandhu, V. Bhamidipati, E. Coyne, S. Ganta, and
C. Youman. The ARBAC97 model for role-based admin-
istration of roles: preliminary description and outline. In
Proceedings of the second ACM workshop on Role-based
access control, pages 41–50, 1997.

[16] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
based access control models. IEEE Computer, 29(2):38–47,
1996.

[17] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model
for role-based access control: towards a unified standard.
In Proceedings of the fifth ACM workshop on Role-based
access control, pages 47–63, 2000.

[18] R. Sandhu and Q. Munawer. How to do discretionary ac-
cess control using roles. In Proceedings of the third ACM
workshop on Role-based access control, pages 47–54, 1998.

[19] R. S. Sandhu and P. Samarati. Access control: Principles
and practice. IEEE Communications Magazine, 32(9):40–
48, 1994.

[20] R. T. Simon and M. E. Zurko. Separation of duty in role-
based environments. In PCSFW: Proceedings of The 10th
Computer Security Foundations Workshop. IEEE Computer
Society Press, 1997.

[21] W. Yao, K. Moody, and J. Bacon. A model of OASIS role-
based access control and its support for active security. In
Sixth ACM Symposium on Access Control Models and Tech-
nologies, pages 171–181, 2001.

