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Abstract. Packet header traces are widely used in network analysis.
Header traces are the aggregate of traffic from many concurrent appli-
cations. We present a methodology, based on machine learning, that can
break the trace down into clusters of traffic where each cluster has differ-
ent traffic characteristics. Typical clusters include bulk transfer, single
and multiple transactions and interactive traffic, amongst others. The
paper includes a description of the methodology, a visualisation of the
attribute statistics that aids in recognising cluster types and a discussion
of the stability and effectiveness of the methodology.

1 Introduction

Passive header trace measurements, like the ones performed by NLANR/MNA[7]
and WAND[8] produce a detailed record of the packet by packet behaviour of
all traffic on a link. These traces have been used in a wide range of computer
network research.

A packet header trace is an aggregate of the packets produced by many
network processes. There are several techniques that can be used to disaggregate
a packet trace. Simple approaches divide packet headers into classes based on
some header field, often the protocol or port number. The general notion of a
flow of packets[9] (where a flow roughly corresponds to a sequence of packets
related to a single application exchange) is also well known and widely used.
Different classifications support different uses of a packet header trace. In this
paper we introduce a new methodology for classification of the packet headers
that divides the traffic into similar application types (single transaction, bulk
transfer etc). Our target analysis is workload generation for simulation, however
we believe the technique has much wider application.

Packet traces may be used as raw material for driving simulations. We are
interested in using the traffic captured on a network to answer “what if” ques-
tions about the network’s performance under workloads derived from the one we



captured. We wish to allow a network manager to understand the major types of
traffic on the network and then discover how the network is likely to perform if
the source, destination, quantity and proportions of those traffic types changes
through simulation. Central to this work is the ability to decompose captured
traffic into its component traffic types. As noted above, several different decom-
positions are possible but for this work we are interested in a decomposition
which reflects the workload generating the traffic, rather than characteristics of
the network, its protocols or the total traffic profile.

The most obvious classification (by IP protocol and port) was rejected for
three reasons. The first is that within a single protocol (e.g. HTTP) there may
be several quite distinct classes of traffic. For example, HTTP traffic includes
fetches of small objects, such as HTML pages and icons, as well as large file
transfers and tunnelled applications. The second, is that similar traffic types
may use different protocols. Fetching a large file by HTTP or FTP, for example,
has very similar characteristics. The final reason is that the protocol and port
numbers may not be available. Tunnels, especially encrypted tunnels like IPSec,
obscure this information.

2 Packet Interarrival/Size plots

In our quest for a generic classification methodology we first examined plots
of packet size against packet interarrival time (IAT) for the two unidirectional
flows that make up a single ‘connection’. (We define a unidirectional flow in the
conventional sense of a series of packets sharing the same five-tuple (source IP
address and port, destination IP address port, and protocol number). We do not
timeout flows, except where they exceed the length of the trace (6 hours). From
this point in this paper, we will refer to these pairs of unidirectional flows as a
bidirectional flow, or just a flow.

The IAT/packet size plots exhibit a number of characteristic shapes that we
believe are indicative of the application type. Examples of these plots (produced
from the Auckland-VI[10]) trace are shown in figure 1.3 Only four example plots
are shown here, however there are other types that that we have not shown due
to space limitations. To illustrate the point that the same protocol may carry
different traffic types, two different HTTP sessions are included (1(a) and (b)).
In the following paragraphs we explain the most likely causes for the major
characteristics of these plots. Our analysis is not exhaustive and is primarily
intended to illustrate the point that some (but not all) of these characteristics
are indicative of the type of application that generated the traffic. For simplicity,
we have stated our analysis in the imperative. There were approximately 20,000
flows in the trace we analysed but less than a dozen of these characteristics plot
types (plus a some plots that did not fit any characteristic type).

Fig 1(a) shows a flow containing a single HTTP request for a large object.
There is a single large packet from the server to the client (the HTML GET

3 A colour version of this paper is available at http://www.wand.net.nz/pubs.php.
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(a) A single large HTTP Request (b) Multiple HTTP 1.1 Requests
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Fig. 1. HTTP Packet Interarrival/Size plots

request) and many small packets (the TCP acknowledgements). There are many
large packets of the same size (full data packets) from the server to the client.
There are also a few smaller packets (partly full data packets) and a single
minimum sized packet (an ACK without data) from the server to the client.

Fig 1(b) shows a flow containing multiple HTTP requests in a single connec-
tion (HTTP 1.1). In addition to the packets of the Fig 1(a) there are additional
request packets (mostly ranging between 300 and 600 bytes). Notice the clus-
ter of packets centred roughly around (size = 500, IAT = 0.3s). This type of
cluster is typical of protocols in query/reply/query transaction mode and is the
result of fetching small objects via HTTP. Finally, note the vertical grouping
at approximately IAT = 1.1ms. This is probably the result of the TCP Nagle
Algorithm operating to delay the transmission of partly full packets until the
previous packet is acked.

Fig 1(c) is a similar plot for an FTP control connection. It shows a cluster
of points around IAT = 100ms and then a spread of points above that. The
cluster is again a query/response/query cluster (but with smaller queries and



responses than the multiple HTTP request example). The spread, which ranges
up to about a minute, is related to human interaction times required to generate
a new command. Because FTP uses a separate connection for data transfer there
is no bulk data phase for this flow.

The final plot in the set, Fig 1(d), shows a mail transfer using SMTP. Again
there is a transaction cluster (but with a wider IAT range, indicating that some
queries took longer to resolve than others). There is also a bulk transfer com-
ponent with large packets. The reason for some of the large packets being 1500
bytes and others being 1004 bytes was investigated at some length. The 1004
byte packets are final packet in a repeated series of transfers. That is, this SMTP
session contained 25 transfers of messages requiring five 1500 byte and one 1004
byte packets to transfer. Given SMTP’s multiple recipient feature and the nor-
mal variation in length of email addresses in the message header, this is almost
certainly spam.

3 Clustering and Classification

While it would be possible to form groups of flows by writing code that was
aware of the characteristics we discovered in the IAT/Packet size plots, this
approach imposes a high degree of human interpretation in the results. It is also
unlikely to be sufficiently flexible to allow the methodology to be used in diverse
network types. Machine learning techniques can also be used to cluster the flows
present in the data and then to create a classification from the clusters. This is
a multiple step process. The data is first divided into flows as described above.
A range of attributes are extracted from each flow. These attributes are:

– packet size statistics (minimum, maximum, quartiles, minimum as fraction
of max and the first five modes)

– interarrival statistics
– byte counts
– connection duration
– the number of transitions between transaction mode and bulk transfer mode,

where bulk transfer mode is defined as the time when there are more than
three successive packets in the same direction without any packets carrying
data in the other direction

– the time spent: idle (where idle time is the accumulation of all periods of
2 seconds or greater when no packet was seen in either direction), in bulk
transfer and in transaction mode

These characteristics are then used by the EM clustering algorithm (described
in section 3.1 below) to group the flows into a small number of clusters.

This process is not a precise one. To refine the clusters we generate classifica-
tion rules that characterise the clusters based on the raw data. From these rules
attributes that do not have a large impact on the classification are identified and
removed from the input to the clusterer and the process is repeated. Although
it is not discussed further in this paper, the process is also repeated within each
cluster, creating sub-clusters of each of the major flow types.
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Fig. 2. A two cluster mixture model.

3.1 The EM algorithm for probabilistic clustering

The goal of clustering is to divide flows (instances in the generic terminology of
machine learning) into natural groups. The instances contained in a cluster are
considered to be similar to one another according to some metric based on the
underlying domain from which the instances are drawn.

The results of clustering and the algorithms that generate clusters, can typ-
ically be described as either “hard” or “soft”. Hard clusters (such as those gen-
erated by the simple k-means method [5]) have the property that a given data
point belongs to exactly one of several mutually exclusive groups. Soft clustering
algorithms, on the other hand, assign a given data point to more than one group.
Furthermore, a probabilistic clustering method (such as the EM algorithm [6])
assigns a data point to each group with a certain probability. Such statistical
approaches make sense in practical situations where no amount of training data
is sufficient to make a completely firm decision about cluster memberships.

Methods such as EM [6] have a statistical basis in probability density es-
timation. The goal is to find the most likely set of clusters given the training
data and prior expectations. The underlying model is called a finite mixture. A
mixture is a set of probability distributions—one for each cluster—that model
the attribute values for members of that cluster. Figure 2 shows a simple finite
mixture example with two clusters—each modelled by a normal or Gaussian
distribution—based on a single numeric attribute. Suppose we took samples
from the distribution of cluster A with probability p and the distribution of
cluster B with probability 1 − p. If we made a note of which cluster generated
each sample it would be easy to compute the maximum likelihood estimates for
the parameters of each normal distribution (the sample mean and variance of
the points sampled from A and B respectively) and the mixing probability p.
Of course, the whole problem is that we do not know which cluster a particular
data point came from, nor the parameters of the cluster distributions.

The EM (Expectation-Maximisation) algorithm can be used to find the max-
imum likelihood estimate for the parameters of the probability distributions in



the mixture model4. The basic idea is simple and involves considering unob-
served latent variables zij . The zij ’s take on values 1 or 0 to indicate whether
data point i comes from cluster j’s model or not. The EM algorithm starts with
an initial guess for the parameters of the models for each cluster and then itera-
tively applies a two step process in order to converge to the maximum likelihood
fit. In the expectation step, a soft assignment of each training point to each
cluster is performed—i.e. the current estimates of the parameters are used to
assign cluster membership values according to the relative density of the train-
ing points under each model. In the maximisation step, these density values are
treated as weights and used in the computation of new weighted estimates for
the parameters of each model. These two steps are repeated until the increase
in log-likelihood (the sum of the log of the density for each training point) of
the data given the current fitted model becomes negligible. The EM algorithm
is guaranteed to converge to a local maximum which may or may not be the
same as the global maximum. It is normal practice to run EM multiple times
with different initial settings for the parameter values, and then choose the final
clustering with the largest log-likelihood score.

In practical situations there is likely to be more than just a single attribute to
be modelled. One simple extension of the univariate situation described above is
to treat attributes as independent within clusters. In this case the log-densities
for each attribute are summed to form the joint log-density for each data point.
This is the approach taken by our implementation5 of EM. In the case of a nom-
inal attribute with v values, a discrete distribution—computed from frequency
counts for the v values—is used in place of a normal distribution. Zero frequency
problems for nominal attributes can be handled by using the Laplace estima-
tor. Of course it is unlikely that the attribute independence assumption holds in
real world data sets. In these cases, where there are known correlations between
attributes, various multivariate distributions can be used instead of the simple
univariate normal and discrete distributions. Using multivariate distributions
increases the number of parameters that have to be estimated, which in turn
increases the risk of overfitting the training data.

Another issue to be considered involves choosing the number of clusters to
model. If the number of clusters in the data is not known a-priori then hold-out
data can be used to evaluate the fit obtained by modelling 1, 2, 3, ..., k clus-
ters [4]. The training data can not be used for this purpose because of overfit-
ting problems (i.e. greater numbers of clusters will fit the training data more
closely and will result in better log-likelihood scores). Our implementation of
EM has an option to allow the number of clusters to be found automatically
via cross-validation. Cross-validation is a method for estimating the generalisa-
tion performance (i.e. the performance on data that has not been seen during
training) of an algorithm based on resampling. The resulting estimates of perfor-

4 Actually EM is a very general purpose tool that is applicable to many maximum
likelihood estimation settings (not just clustering).

5 Included as part of the freely available Weka machine learning workbench
(http://www.cs.waikato.ac.nz/ml/weka)



mance (in this case the log-likelihood) are often used to select among competing
models (in this case the number of clusters) for a particular problem.

4 Cluster Visualisation

The result of clustering is a grouping of flows. By examining the IAT/packet size
plots it is possible, given enough thought, to make sense of the clusters produced
but this is a difficult process. To aid the interpretation of the meaning of the
clusters, we developed a visualisation based on the Kiviat graph[1]. The six top-
level clusters for one of our sample data sets are shown in figure 3. Each graph
describes the set of flows in a cluster. The (blue) lines radiating out from the
centre point are axes representing each of the attributes we used for clustering.
The thick part of the axes represents one standard deviation above and below
the mean, the medium thickness lines represent two standard deviations, and the
thin lines represent three standard deviations. Note that, in some cases, the axis
extends beyond the graph plane and has been truncated. The mean point for each
attribute is connected to form the (red) shape in the centre of the graph. Different
shapes are characteristic of different traffic profiles. The standard deviation as a
percentage of the mean is shown on each axis. This figure gives an indication of
how important this attribute is in forming this cluster. If the percentage is high,
then this attribute is likely to be a strong classifier.

The cluster shown in figure 3(a) contains 59% of the flows in this sample.
In this cluster the mean packet size from the server is about 300 bytes and
has a large standard deviation. The total number of packets is small (especially
remembering the 7 packet overhead of a normal TCP connection). Clients send
about 900 bytes of data and servers send an average of about 2300. The duration
is short (¡1s) and the flow normally stays in transaction mode. This cluster is
mostly typical web traffic, fetching small and medium sized objects, for example
HTML pages, icons and other small images.

There are two other similar clusters, clusters 3 and 4, shown in Fig 3(d)
and (e) respectively. These clusters represent a further 20% of flows. Cluster 4
represents larger objects (with a mean server bytes of about 18000 bytes. In
addition to HTTP, quite a lot of SMTP traffic is included in this cluster. The
flows in cluster 3 have a significant idle time. These are mostly HTTP 1.1 flows
with one or more objects fetched over the same connection. The connection is
held open, in the ideal state, for a time after an object is transfered to give the
client time to request another object.

Cluster five (Fig. 3(f)) contains classic bulk transfer flows. They are short to
medium term (a mean of 1m 13s) and transfer a lot of data from the server to
the client. Clusters one and two (Fig. 3(b) and (c))are long duration flows with
a lot of idle time. Flows in cluster two have many small packets transfered in
both directions. These are transaction based with multiple transactions in the
flow, separated by significant delays. IMAP and NTP are examples. Cluster one
has only a few packets. This is predominantly TCP DNS traffic. We suspect this
cluster includes applications where the connection is not correctly terminated.



Proportion of flows in cluster 0: 59% (502857)

duration
0.768800 (103.08%)

totalBytes_srv
2338.164400 (140.73%)

totalPackets_srv
6.057200 (45.03%)

totalBytes_client
921.019400 (55.06%)

totalPackets_client
6.613600 (33.68%)

MeanIATServer
0.129600 (127.31%)

MeanIATClient
0.125500 (111.71%)

IATvarServer
0.213400 (107.22%)

IATvarClient
0.226400 (95.98%)

PSMeanServer
308.066100 (94.17%)

PSMeanClient
140.675700 (42.49%)

stateChanges
0.219000 (188.86%)

timeInBulk
0.065600 (380.03%)

idleTime
0.000001 (10000.00%)

Proportion of flows in cluster 1: 4% (41107)

duration
7266.705500 (139.51%)

totalBytes_srv
1233.052500 (89.82%)

totalPackets_srv
6.803900 (68.25%)

totalBytes_client
815.886700 (86.32%)

totalPackets_client
7.575900 (62.95%)

MeanIATServer
1766.130400 (153.38%)

MeanIATClient
1744.444200 (153.06%)

IATvarServer
1635.730900 (149.14%)

IATvarClient
1650.884700 (147.52%)

PSMeanServer
186.342100 (60.16%)

PSMeanClient
103.114000 (50.25%)

stateChanges
0.019000 (718.42%)

timeInBulk
0.000001 (10000.00%)

idleTime
7264.681800 (139.56%)

(a) (b)

Proportion of flows in cluster 2: 2% (18326)

duration
7269.490400 (142.42%)

totalBytes_srv
52016.719300 (229.46%)

totalPackets_srv
86.839400 (249.54%)

totalBytes_client
8000.372400 (300.48%)

totalPackets_client
74.383700 (257.42%)

MeanIATServer
280.016700 (295.87%)

MeanIATClient
253.750500 (228.71%)

IATvarServer
603.323900 (198.61%)

IATvarClient
608.487100 (190.48%)

PSMeanServer
625.666800 (65.15%)

PSMeanClient
124.188300 (93.84%)

stateChanges
8.140600 (305.41%)

timeInBulk
2408.096600 (168.08%)

idleTime
7252.984500 (142.58%)

Proportion of flows in cluster 3: 12% (108618)

duration
44.239300 (81.74%)

totalBytes_srv
4534.395700 (148.00%)

totalPackets_srv
9.581700 (65.38%)

totalBytes_client
1561.308100 (93.04%)

totalPackets_client
10.242400 (55.21%)

MeanIATServer
4.766200 (100.26%)

MeanIATClient
4.165100 (93.00%)

IATvarServer
8.944800 (99.17%)

IATvarClient
8.970900 (98.32%)

PSMeanServer
349.135600 (98.40%)

PSMeanClient
145.455400 (56.51%)

stateChanges
0.704400 (157.13%)

timeInBulk
10.385800 (256.54%)

idleTime
41.813200 (85.96%)

(c) (d)

Proportion of flows in cluster 4: 16% (140707)

duration
4.465200 (74.87%)

totalBytes_srv
18131.339300 (116.83%)

totalPackets_srv
22.454800 (83.25%)

totalBytes_client
2487.738300 (97.23%)

totalPackets_client
18.906000 (67.37%)

MeanIATServer
0.361600 (104.81%)

MeanIATClient
0.386900 (90.51%)

IATvarServer
0.664800 (81.26%)

IATvarClient
0.708900 (73.97%)

PSMeanServer
645.696000 (72.45%)

PSMeanClient
144.548600 (87.51%)

stateChanges
0.866600 (73.09%)

timeInBulk
1.609700 (142.23%)

idleTime
1.697100 (150.48%)

Proportion of flows in cluster 5: 4% (37766)

duration
73.396300 (118.66%)

totalBytes_srv
126298.499900 (383.46%)

totalPackets_srv
154.131900 (271.41%)

totalBytes_client
46502.217200 (659.80%)

totalPackets_client
122.780500 (288.85%)

MeanIATServer
0.868400 (131.93%)

MeanIATClient
1.193000 (112.27%)

IATvarServer
3.823500 (127.79%)

IATvarClient
5.113800 (111.49%)

PSMeanServer
760.954700 (60.66%)

PSMeanClient
269.225100 (117.59%)

stateChanges
3.835500 (119.24%)

timeInBulk
50.863900 (139.71%)

idleTime
58.330800 (124.11%)

(e) (f)

Fig. 3. Clusters 1 (a), 2 (b) and 4 (c)



Fig. 4. Ports Across Clusters

5 Validation

We are still actively developing the methodology. As part of this process we have
undertaken four types of validation. We looked at the stability of the clusters
within different segments of a single trace, comparing the clusters produced
from the whole trace with those produced from half of the trace. Secondly, we
compared two traces from different, but similar, locations (the University of
Auckland and The University of Waikato). While there were differences in the
statistics of the attributes, both these exercises yielded the same basic set of
clusters, as shown by their Kiviat graphs.

Next we examined the distribution of ports across the clusters. Because port
numbers are indicative of the application in use we expected ports to be focused
on particular clusters. The graphic in Fig 4 shows this distribution for the 20
most common ports. Each stack of bars represents a port with the most common
ports on the left and the least common on the right. The width of the bar
represents the number of flows with that port type, on a logarithmic scale. Each
band represents a cluster, with the largest cluster (cluster 0) at the top, and the
smallest (cluster 2) at the bottom.

The distribution of ports across clusters is less differentiated than we ex-
pected. There are several reasons for this. First it should be noted that, the
log scale of figure 4 (which is necessary to allow the visualisation to show more
than just the two or three dominant port types) creates a false impression of the
distribution of ports. The second, and more important reason is one we alluded
to in the introduction, we just under estimated its significance. HTTP is the
predominant traffic type in these traces. HTTP has a wide range of uses and
consequently there is a significant amount of HTTP traffic in all clusters.

Finally, we examined whether the algorithm was assigning flows of particular
port types to clusters differently than a random assignment would. This analysis,
which we can not present here for space reasons, indicated that for most ports



there was good discrimination between clusters but for a few, there was not.
IMAP is one example where the discrimination was poor.

It seems that, the clustering is generally doing a good job of grouping flows
together by their traffic type (bulk transfer, small transactions, multiple transac-
tions etc.) but that individual applications behave more differently across differ-
ent connections than we had expected. Even given these reasons, the clustering
does not currently meet our needs and we are continuing to develop the ap-
proach, especially through the derivation of new attributes that we believe will
further discriminate between applications. The existence of idle time at the end
of a connection is one example.

6 Conclusion

The initial results of the methodology appear promising. The clusters are sensible
and the clustering and classification algorithms indicate that a good fit has been
obtained to the data. Initial analysis indicates that the clusters are stable over a
range of different data with the same overall characteristics. The existing clusters
provide an alternative way to disaggregate a packet header stream and we expect
it to prove useful in traffic analysis that focuses on a particular traffic type. For
example, simulation of TCP optimisations for high performance bulk transfer.
However, further work is required to fully meet our initial goal of clustering
traffic into groups that a network manager would recognise as related to the
particular application types on their network.
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