
REWRITING X86 BINARIES WITHOUT

CODE PRODUCER COOPERATION

by

Richard Wartell

APPROVED BY SUPERVISORY COMMITTEE:

Dr. Kevin Hamlen, Chair

Dr. Gopal Gupta

Dr. Murat Kantarcioglu

Dr. Zhiqiang Lin

Copyright c© 2012

Richard Wartell

All rights reserved

Dedicated to my parents,

for their unending support.

And my brother,

for his inspiration and honesty.

REWRITING X86 BINARIES WITHOUT

CODE PRODUCER COOPERATION

by

RICHARD WARTELL, B.S.

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

December 2012

ACKNOWLEDGMENTS

The author is incredibly grateful for the opportunity to work under his advisor, Dr. Kevin

Hamlen, who was thoroughly helpful in building the foundation of the author’s knowledge

necessary to complete this dissertation and inspiring a thirst for knowledge and creativity. His

patient and humble approach to teaching and direction were crucial in the author’s research

and the completion of this work.

This research would never have been accomplished without the help of the author’s colleague,

Vishwath Mohan. His willingness to act as a sounding board for ideas and helpfulness

in working on certain pieces of this work were crucial in its completion. Special thanks

should also be given to Dr. Yan Zhou whose work in Machine Learning and collaboration on

disassembly projects was unendingly helpful to the author. Special mention should also be

given to Dr. Zhiqiang Lin for his contributions and ideas that extended the author’s research.

Meera Sridhar should also be thanked for her work ethic and contribution to the work on

rewriter transparency. Finally, thanks should also be given to the work done by Dr. Micah

Jones and Dr. Murat Kantarcioglu whose work is closely tied to this dissertation.

This research was supported in part by Air Force Office of Scientific Research awards FA9550-

08-1-0044 and FA9550-10-1-0088, and National Science Foundation award #1054629. All

opinions expressed are those of the authors and do not necessarily reflect those of the AFOSR

or NSF.

The author extends his heartfelt thanks Dr. Mikhail Atallah who was the original inspiration

for this author’s interest in security. Additionally, the author would like to thank Matt White

who was this author’s original collaborator, inspiration, and good friend. Finally, the author

v

vi

wishes to thank Nate Gatchell, whose friendship, support, and unending spirit and swagger

were a constant inspiration.

November 2012

PREFACE

This dissertation was produced in accordance with guidelines which permit the inclusion as

part of the dissertation the text of an original paper or papers submitted for publication.

The dissertation must still conform to all other requirements explained in the “Guide for the

Preparation of Master’s Theses and Doctoral Dissertations at The University of Texas at

Dallas.” It must include a comprehensive abstract, a full introduction and literature review,

and a final overall conclusion. Additional material (procedural and design data as well as

descriptions of equipment) must be provided in sufficient detail to allow a clear and precise

judgment to be made of the importance and originality of the research reported.

It is acceptable for this dissertation to include as chapters authentic copies of papers already

published, provided these meet type size, margin, and legibility requirements. In such cases,

connecting texts which provide logical bridges between different manuscripts are mandatory.

Where the student is not the sole author of a manuscript, the student is required to make an

explicit statement in the introductory material to that manuscript describing the student’s

contribution to the work and acknowledging the contribution of the other author(s). The

signatures of the Supervising Committee which precede all other material in the dissertation

attest to the accuracy of this statement.

vii

REWRITING X86 BINARIES WITHOUT

CODE PRODUCER COOPERATION

Publication No.

Richard Wartell, Ph.D.
The University of Texas at Dallas, 2012

Supervising Professor: Dr. Kevin Hamlen

Binary code from untrusted sources remains one of the primary vehicles for software propa-

gation and malicious software attacks. All previous work to mitigate such attacks requires

code-producer cooperation, has significant deployment issues, or incurs a high performance

penalty. The problem of accurate static x86 disassembly without metadata is provably

undecidable, and is regarded by many as uncircumventable.

This dissertation presents a framework for x86 binary rewriting that requires no cooperation

from code-producers in the form of source code or debugging symbols, requires no client-side

support infrastructure (e.g., a virtual machine or hypervisor), and preserves the behavior of

even complex, event-driven, x86 native COTS binaries generated by aggressively optimizing

compilers. This makes it exceptionally easy to deploy. The framework is instantiated as

two software security systems: Stir, a runtime basic block randomization rewriter for

Return-oriented programming (ROP) attack mitigation, and Reins, a machine verifiable

Software Fault Isolation (SFI) and security policy specification rewriter. Both systems exhibit

extremely low performance overheads in experiments on real-world COTS software— 1.6%

viii

ix

and 2.4% respectively. The foundation of the system includes three novel approaches to

static x86 disassembly, along with a method of statically proving transparency for rewriting

systems.

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

PREFACE . vii

ABSTRACT . viii

TABLE OF CONTENTS . x

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 STATIC X86 DISASSEMBLY . 7

2.1 Challenges . 8

2.2 Current x86 Disassembly . 12

2.3 Shingled Disassembly . 16

2.4 Machine Learning Disassembly Model . 20

2.4.1 Design . 22

2.4.2 Evaluation . 28

2.5 Graph Based Disassembly Model . 34

2.5.1 Design . 35

2.5.2 Shingled Disassembler . 36

2.5.3 Opcode State Machine . 36

2.5.4 Maximum-Likelihood Execution Path 37

2.5.5 Algorithm Analysis . 40

2.5.6 Evaluation . 40

2.5.7 Broad Results . 40

2.5.8 eMule Case Study . 43

x

xi

CHAPTER 3 X86 BINARY REWRITING . 47

3.1 Rewriting Challenges . 47

3.1.1 Accurate Disassembly . 48

3.1.2 Where to rewrite? . 49

3.1.3 Control Flow Instructions . 51

3.1.4 Hijacking System Calls . 54

3.2 STIR . 57

3.2.1 ROP Protection . 58

3.2.2 Design . 60

3.2.3 Evaluation . 70

3.3 Reins . 78

3.3.1 Overview . 78

3.3.2 Control-flow Safety . 83

3.3.3 Policy Specification . 89

3.3.4 Verification . 92

3.3.5 Evaluation . 93

3.3.6 Case Studies . 98

3.4 Intermediary Library . 101

3.4.1 Callback Handling . 101

3.4.2 Dynamic Library Loading . 106

3.4.3 Policy Implementation . 109

CHAPTER 4 REWRITER TRANSPARENCY . 112

4.1 ActionScript Byte Code . 113

4.2 IRM Transparency . 114

4.3 Transparency Verification Design . 118

4.3.1 ActionScript Bytecode Core Subset 118

4.3.2 Concrete and Abstract Machines . 119

4.3.3 Verification Algorithm . 122

4.3.4 Model-Checking . 125

xii

4.3.5 Invariant Generation . 127

4.3.6 A Verification Example . 129

4.4 Evaluation . 131

4.5 Transparency for x86 Rewriters . 135

CHAPTER 5 RELATED WORK . 136

5.1 Disassembly . 136

5.2 Binary Rewriting . 139

5.2.1 Recompilation . 139

5.2.2 Use of Debug Information . 141

5.2.3 Virtual Machines . 142

5.2.4 Restrictionless Binary Rewriting . 143

5.3 Transparency . 144

CHAPTER 6 CONCLUSION . 145

REFERENCES . 148

VITA

LIST OF TABLES

2.1 x86 Instruction Aliasing . 7

2.2 Indirect Branch Types . 11

2.3 Disassembly Techniques . 13

2.4 Statistics of IDA Pro 5.5 disassembly errors . 16

2.5 Programs tested with PPM Disassembler . 28

2.6 Tagging accuracy . 30

2.7 A comparison of mistakes made by IDA Pro and by our disassembler 30

2.8 Disassembly discrepancies between IDA Pro and our disassembler for eMule . . 32

2.9 File Statistics . 41

2.10 Disassembly Comparison for eMule.exe . 45

3.1 Inplace Binary rewriting . 49

3.2 Pinhole Rewriter . 50

3.3 Direct Jump Modification Example . 52

3.4 Summary of x86 code transformations . 53

3.5 Summary of x86 code transformations . 57

3.6 Linux test programs grouped by type and size 71

3.7 STIR Binary size overheads . 79

3.8 Summary of x86 code transformations . 86

3.9 Experimental results: SPEC benchmarks . 95

3.10 Experimental results: Applications and malware 96

3.11 Callback Trampoline Chunk Redirection . 104

4.1 Experimental Results . 133

xiii

LIST OF FIGURES

1.1 The process of rewriting an unsafe binary . 4

2.1 The x86 machine instruction format. 9

2.2 The Java bytecode instruction format. 10

2.3 Java Disassembly vs. x86 Disassembly . 12

2.4 Shingled disassemblies of a given binary . 19

2.5 Disassembler Architecture . 35

2.6 Instruction Transition Graph: 4 opcodes . 37

2.7 Graph disassembly for a shingled binary. 38

2.8 Percent of instructions identified by IDA Pro as well as our disassembler. 42

2.9 Percent of addresses sheered during shingled disassembly. 42

2.10 Disassembly time vs. IDA Pro . 43

3.1 Rewriting a register-indirect system call . 55

3.2 Rewriting code that uses a jump table . 55

3.3 System architecture . 60

3.4 A stirring example . 66

3.5 Position-independent code . 68

3.6 Overlapping function pointers . 69

3.7 Static rewriting times and size increases . 71

3.8 Gadget reduction for Windows binaries . 73

3.9 Runtime overheads for Windows binaries . 76

3.10 Runtime overheads for Linux binaries . 76

3.11 Load-time overhead vs. code size . 77

3.12 Reins architecture . 83

3.13 Reins exmaple of a register-indirect system call 89

3.14 Reins example using a jump table . 90

xiv

xv

3.15 A policy that prohibits applications from both sending emails and creating .exe

files . 90

3.16 Eureka email policy . 91

3.17 Runtimes of rewritten binaries relative to originals 98

3.18 Example of .atexit callback . 102

3.19 Rewritten .atexit callback . 103

3.20 Example of GetProcAddress() Execution . 107

3.21 Rewritten GetProcAddress() Execution . 108

3.22 Policy DFA Example . 110

4.1 Non-standard core language instructions . 118

4.2 Semantics of the obsevent pseudo-instruction 119

4.3 Concrete and abstract machine configurations 120

4.4 Concrete and abstract bisimulation machines . 121

4.5 Concrete small-step operational semantics . 121

4.6 Abstract small-step operational semantics . 122

4.7 An IRM that prohibits more than 100 URL navigations 129

CHAPTER 1

INTRODUCTION

Native code is presently the most ubiquitous and prevalent form of mobile software. In

2008 alone, more than 288 million PCs were shipped, with a combined 3.6 billion units of

software shipped as well [Business Software Alliance, 2010]. The majority of individuals

and organizations do not have the money or manpower to produce all their own software,

and therefore must blindly trust a large volume of native code obtained from untrusted or

semi-trusted sources.

The software business has been growing ever since its inception. In 2008 alone, 3.6 billion

packaged software units were sold worldwide, with an estimated total revenue of $296 billion

dollars [Business Software Alliance, 2010]. In 2010, the estimated revenue of enterprise

software alone (i.e., software purchased by organizations not individuals) was $244 billion

dollars [Gartner, 2010]. These numbers only represent mainstream software purchases and

downloads. They do not include software downloads of freeware, shareware, and open-source

projects, which are harder to estimate.

Untrustworthy code sources are not limited to malicious software authors; in security-

critical contexts they also include any source that is fallible. Faulty software is typically

vulnerable software that can be subverted by an adversary to become malicious software.

As a result, formal verification of a software’s origin (e.g., by digital signature verification)

provides few tangible security assurances. In fact, most software is a conglomeration of many

components from many different vendors spread across many countries worldwide. A flaw

in any one of these components can often be exploited to subvert the entire software and

the entire system on which it runs. Mitre’s Common Vulnerabilities and Exposures (CVE)

1

2

database has catalogued over 5,500 highest-severity software vulnerabilities (i.e., those that

lead to complete system compromise) in major software products just since 2010

The software engineering, programming languages, and compiler design communities

have a long and active history of discovering ever more powerful tools and practices for

the design and implementation of secure software that is free from such faults. The Coq

automated theorem proving language [INRIA, 2012] is the result of 20 years of research by the

programming language community, allowing formal machine verifiable proofs to be provided

with software developed entirely within the Coq framework. The software engineering

community is increasingly focused on security requirements engineering, attempting to

mitigate software faults via improved programming practices. However, it is unlikely that

100% of software will be developed using these technologies in the near future. The vast

majority of the industry continues to develop their products in unsafe languages, such as

C++, for which formal proofs of security are intractable or impossible. Such practices show

little evidence of abatement.

In response to the inevitability of untrusted native code, code-consumers have historically

adopted three major approaches to safely executing untrusted or untrustworthy native code

applications:

1. Many security-conscious organizations, including many governments, develop most or

all of their security-critical software in-house using secure tools and a detailed code

review process.

2. Some untrusted software can be safely executed as-is within a sandboxing virtual

machine (VM).

3. More recently, technologies for secure binary analysis and transformation have emerged

that promise to safely filter untrustworthy code or statically transform it into safe code.

3

Developing in-house software may seem like the best option, but it can be a slow, time

and resource consuming process. In addition, it can be just as prone to error as mainstream

development, even given cutting-edge tools. Most code consumers—even governments—lack

resources or personnel comparable to the worldwide software development community, which

includes industry titans like Microsoft, Google, and Apple. In-house development therefore

constantly lags well behind the state-of-the-art, remaining susceptible to attacks that the

rest of the world has addressed long ago.

Executing software within a VM [VMware, 2012] is a viable solution, protecting a host

machine from faulty software run within the VM. VMs also offer the opportunity to run guest

operating systems within a host machine—a much more reasonable solution than owning a

computer that uses each operating system. However, though VMs provide numerous benefits,

there are many situations they cannot handle:

1. VMs often cannot tractably enforce fine-grained policies. For example, VMware does

not support enforcement of fault isolation for individual modules within process address

spaces, because doing so requires a knowledge of the internal process layout and code

logic that is beyond VMware’s capabilities.

2. Enforcing a new policy requires modifying the VM, which tends to be very difficult and

error-prone.

3. VM-sandboxed processes cannot easily access external system resources like trusted

processes on the host machine without severe performance penalties. This makes them

unsuitable for many applications.

4. VMs are hard to prove correct; they must usually remain trusted, and they’re very

complex and subject to frequent change. The size of the free version of VMware

Workstation installation file is currently 426MB.

4

Download
Unsafe Binary

Binary
Rewriter

Verified Safe Binary

Verifier

Unsafe Binary

Safe
Binary

Figure 1.1. The process of rewriting an unsafe binary

5. VMs cannot be deployed as a service without expanding the circle of trust to include

the service provider. For example, running software remotely on a cloud requires adding

the cloud to the trusted computing base. Most clouds don’t divulge details of the

internal cloud architecture, so this trust is blind.

Binary transformation is an alternative solution, solving the problem of untrusted code

instrumenting an untrusted binary to enforce security policies. Figure 1.1 displays the general

approach of rewriting an untrusted binary from the internet.

Binary transformation comes with some strong benefits. For example, unlike a VM, a

binary rewriter can enforce fine-grained security policies, since the enforcement mechanism

resides within the binary instead of outside of it. In addition, different binary rewriters can

enforce different policies, such as having an email client-specific rewriter that enforces different

policies than a web browser-specific rewriter, allowing rewritten processes to run natively

and therefore communicate directly (if permitted). This separation is not possible with a

VM since it requires inter-operating processes to cohabitate under the umbrella of a single

VM. Rewritten binaries are amenable to formal, machine-verification of safety, allowing the

rewriter to remain untrusted, minimizing the trusted computing base. Since it’s untrusted,

the rewriter can be deployed as an untrusted service.

5

Though binary rewriting extends many benefits, it also raises daunting challenges. The

first step in any binary rewriting process is accurate static analysis, including disassembly.

This step is necessary to provide the instruction semantics to the rewriter, in order for it to

make proper decisions about which instructions or behaviors to guard. However, x86 static

disassembly is provably undecidable in the general case due to unaligned instructions, code

and data interleaving, and computed control-flows. Past works overcome this challenge by

restricting themselves to toy programs not representative of real-world COTS applications,

requiring insider information (e.g., debug symbols) that most code producers are not willing

to provide, or forcing the code producer to recompile their binary with a special compiler,

which most code producers are not willing to do.

My Thesis. This dissertation argues that it is possible to perform effective, provably safe

rewriting of a large category of COTS x86 binaries without metadata or perfect disassembly.

Disassembly flaws can be tolerated via use of a conservative disassembler and by implementing

dynamic control-flow patching that in-lines a light-weight logic to patch undiscovered com-

puted control-flows at runtime. This approach avoids the undecidability of x86 disassembly

by deferring computed control-flow decisions to runtime and including all valid execution

paths in the rewritten binary. The rest of this dissertation describes the steps necessary

to accomplish this through three novel approaches to disassembly and two secure rewriting

strategies—one based on basic block randomization and the other using machine verifiable

software fault isolation. Both of these binary rewriting techniques have very low overhead

and require no source code or metadata. Lastly, it shows how compatibility issues can be

handled via transparency verification.

The rest of this dissertation is structured as follows. Chapter 2 details the x86 instruction

set and the difficulties involved in performing static disassembly, as well as two possible

solutions. The challenges faced when performing static x86 binary rewriting are discussed

6

in Chapter 3, as well as two interesting binary rewriters, Stir and Reins, developed for

this dissertation. Behavioral equivalence of binary rewriters is discussed in Chapter 4, and a

solution to transparency for ActionScript binaries is presented. Finally, relevant related work

is presented in Chapter 5 and conclusions are presented in Chapter 6.

CHAPTER 2

STATIC X86 DISASSEMBLY

Disassemblers transform machine code into human-readable assembly code. For x86 executa-

bles, this can be a daunting task in practice. Unlike Java bytecode and RISC binary formats,

which separate code and data into separate sections or use fixed-length instruction encodings,

x86 permits interleaving of code and static data within a section and uses variable-length,

unaligned instruction encodings. This trades simplicity for brevity and speed, since more

common instructions can be assigned shorter encodings by architecture designers.

Since instructions are unaligned, any address can be treated as the beginning of an

instruction, and thus multiple execution paths through a binary exist. Table 2.1 shows an

example of instruction aliasing, how x86 instructions can be interleaved within each other.

Malicious code is therefore much easier to conceal in x86 binaries than in other formats. To

detect and identify potential attacks or vulnerabilities in software programs, it is important

to have a comprehensive disassembly for analyzing and debugging the executable code.

In software development contexts, robust disassembly is generally achieved by appealing

to binary debugging information (e.g. symbol tables, relocation information, etc.) that is

Table 2.1. x86 Instruction Aliasing

0F 8A C3 C0 E8 03

jp C3C0E803h

mov al, bl

retn

shr al, 3

call 03...

add ...

7

8

generated by most compilers during the compilation process. However, such information

is typically withheld from consumers of proprietary software in order to discourage reverse

engineering and to protect intellectual property. Thus, debugging information is not available

for the vast majority of COTS binaries and other untrusted mobile code to which reverse

engineering is typically applied.

Without any debugging information, accurate static disassembly of an x86 binary is

an undecidable problem, since reachability of arbitrary byte addresses is equivalent to the

halting problem. However, in order to correctly rewrite any binary, the first step is accurate

disassembly. If any of the semantic information about the code section has been lost, that

information will not be translated to the rewritten file or instruction guards and optimizations

may not be properly applied, causing crashes in the rewritten binary.

The rest of Chapter 2 is arranged as follows. Section 2.1 details the various challenges

involved in performing static x86 disassembly. Current approaches to x86 disassembly are

presented in Section 2.2. Finally, three different approaches to x86 disassembly that this

dissertation contributes are described in Sections 2.3, 2.4, and 2.5.

Acknowledgement must be made to Dr. Yan Zhou for her work on the writing and

implementation of the disassemblers in Sections 2.4 and 2.5. Dr. Kevin Hamlen was also a

key contributor of ideas and writing throughout this chapter.

2.1 Challenges

Instruction Format

Figure 2.1 shows the x86 machine instruction binary format [Intel Corporation, 2012].

Instructions begin with 1–3 opcode bytes that identify the instruction. Instructions with

operands are then followed by an addressing form specifier (ModR/M) byte that identifies

register or memory operands for the instruction. Some addressing forms require a second

9

7–6 5–3 2–0 7–6 5–3 2–0

Opcode Mod Reg∗ R/M Scale Index Base Displacement Immediate

1–3 bytes ModR/M byte SIB byte address data︸ ︷︷ ︸ operand operand

register/address mode specifier (0–4 bytes) (0–4 bytes)

∗The Reg field is sometimes used as an opcode extension field.

Figure 2.1. The x86 machine instruction format.

scale-index-base (SIB) byte that specifies a memory addressing mode. The addressing mode

essentially encodes a short formula that dynamically computes the memory operand at

runtime. For example, addressing mode [eax*4]+disp32 references a memory address

obtained by multiplying the contents of the eax register by 4 and then adding a 32-bit

displacement constant. The displacement, if present, comes after the SIB byte. Finally,

immediate operands (constants) are encoded last and have a width of up to 4 bytes (on 32-bit

architectures).

In addition to this complicated instruction format, there are a number of prefix bytes

that may precede the opcode bytes, all eleven of which may be used in combination and each

with their own specific function. For example, 0x66 and 0x67 modify the byte width of the

operand and address size respectively, where as 0xF2 and 0xF3 are both used to repeat the

instruction they precede a specific number of times as specified in the ecx register.

A few x86 machine instructions have multiple different correct representations at the

assembly level. Most notable is the floating point WAIT instruction, which can either be

interpreted as an opcode prefix for the instruction it precedes, or as a separate instruction in

its own right. We adopt the former interpretation in our treatment, since it makes for a more

compact assembly representation.

To contrast, Figure 2.2 shows the instruction format of Java bytecode. The drastic

difference in complexity is apparent. Each Java bytecode instruction starts with a 1 byte

opcode which is optionally followed by operand bytes depending on the opcode. There

10

Opcode Operand

1 byte (0+ bytes)

Figure 2.2. The Java bytecode instruction format.

are only 256 possible opcodes (0x00-0xFF), and 54 are currently unused. In addition, java

bytecode branch targets are static, so instruction aliasing is not possible.

Control-Flow Modifying Instructions

Instructions that modify the control-flow of a program (that modify the eip register) can

either be direct or indirect.

Definition 2.1.1. Direct Branches

Direct branch instructions add their operand to the eip register, treating it as an offset.

Definition 2.1.2. Indirect Branches

Indirect branch instructions calculate their targets at runtime, either by setting the eip

register to their operand, as in the case of jmp and call instructions, or popping their target

off the stack in the case of retn instructions.

Direct branch instructions are not difficult to analyze as their target is static and does not

change at runtime. Indirect branches, however, calculate their targets at runtime. Register

values, stack values, and any dereferenced memory address can be targeted. Table 2.2 shows

examples of each indirect branch type. Due to these branch types and the lack of restrictions

on branch targets, all addresses within an executable code section are viable targets, even if

they are in the interior of another instruction.

Once again, we contrast this property against Java bytecode, which disallows branch

instructions to the middle of another instruction. In addition, branches are all direct in Java

bytecode, and thus can all be determined statically.

11

Table 2.2. Indirect Branch Types

Branch Type Example

Register call eax

Dereferenced Register call [eax]

Dereferenced Stack call [esp - 4]

Dereferenced Memory call [0x4040d4]

Scaled Dereferenced Memory call [eax*4 + 0x4040d4]

Code/Data Interleaving

The final property that makes x86 binaries so difficult to disassemble is that code and data

can be interleaved within executable sections. Consider Java bytecode, which disallows such

interleaving: disassembly starts with the first instruction and follows to each successive

instruction until the end is reached. The same would be true in x86 if there was no data

within executable sections. Every byte in the executable section can be treated as data or as

code, and theoretically as both.

Table 2.3 shows the differences between disassembling java and x86 binaries. Multiple

execution sequences exist for the same sequence of bytes in x86, where as in Java bytecode,

only one instruction sequence is possible.

Static x86 Disassembly Undecideability

The combination of these factors implies the following lemma about static x86 disassemblies:

Lemma 2.1.3. It is Turing-undecidable whether an arbitrary assembly code is an accurate

disassembly of an arbitrary, executable x86 binary, where an accurate disassembly is one that

correctly classifies each byte as (a) an instruction boundary, (b) internal to an instruction,

or (c) non-executable data.

12

Byte Sequence
5E 5F 5D C3 E8 BB 1C 03 00 89 04 24 68 BB 1C 03

Java x86 x86 x86
Disassembly Disassembly 1 Disassembly 2 Disassembly 3
dup2 x2 pop esi pop esi pop esi

new pop edi pop edi pop edi

nop pop ebp pop ebp pop ebp

l2f retn retn retn

iconst 1 call sub 433784 db EB db EB

fload 2 mov [esp+24], eax mov ebx, 8900031Ch db BB

imul push BB1C03A1 add al, 24h sbb al, 3

new push BB1C03A1 add [ecx-44...], cl

sbb al, 3

Figure 2.3. Java Disassembly vs. x86 Disassembly

2.2 Current x86 Disassembly

There are a variety of different approaches to statically disassembling an x86 binary accurately.

Table 2.3 gives examples of the most common approaches, as well as some of their benefits

and deficiencies.

Modern static disassemblers for x86 binaries employ a variety of techniques to accurately

differentiate bytes that comprise instructions from those that comprise static data. IDA

Pro [Hex-Rays, 2012] is widely acknowledged as the best tool currently available for distin-

guishing code from data in arbitrary binaries (cf., [Balakrishnan et al., 2005, Kinder and Veith,

2008]). It combines straight-line, heuristic, and execution emulation-based disassembly while

also providing an extensive GUI interface and multiple powerful APIs for interacting with

the disassembly data. Recent work has applied model-checking and abstract interpretation to

improve upon IDA Pro’s analysis [Kinder and Veith, 2008, Kinder et al., 2009], but application

of these technologies is currently limited to relatively small binaries, such as device drivers,

for which these aggressive analyses remain tractable.

13

Table 2.3. Disassembly Techniques

Disassembly
technique

Description

Fall-through Disassemble from the first byte of the binary and fall
through to each following instruction, regardless of se-
mantics. No attempt to distinguish code from data is
made.

Control-flow Follow the semantics of the assembly language, using
branches to determine where to disassemble next. How-
ever, computed jump targets are difficult to determine
because they are calculated at run-time.

Heuristics Probability based heuristics can be used in order to dis-
assemble x86, based on the semantics of x86. Since these
are based on probabilities, many false positives arise in
distinguishing code from data.

Dynamic Disassembling dynamically is a viable solution for many
problems, but a code-coverage issue arises due to the
fact that most executions do not actually execute all
instructions in the code section of a binary.

14

All other widely available disassemblers to our knowledge take a comparatively simplistic

approach that relies mainly upon straight-line disassembly, and that therefore requires the

user to manually separate code from data during binary analysis. Our tests therefore focus

on comparing the accuracy of our algorithm to that of IDA Pro.

Disassembly heuristics employed by IDA Pro include the following:

• Code entry point. The starting point for analyzing an executable is the address listed

in the header as the code entry point. That address must hold an instruction, and will

hopefully lead to successfully analyzing a large portion of the executable.

• Function prologues and epilogues. Many function bodies compiled by mainstream

compilers begin with a recognizable sequence of instructions that implement one of the

standard x86 calling conventions. These byte sequences are assumed by IDA Pro to be

the beginnings and ends of reachable code blocks.

• Direct jumps and calls. The destination address operand of any static jump instruction

that has already been classified as reachable code is also classified as reachable code.

• Unconditional jumps and returns. Bytes immediately following a reachable, uncondi-

tional jump or return instruction are considered as potential data bytes. These often

contain static data such as jump tables, padding bytes, or strings.

However, despite a decade of development and tuning, IDA Pro nevertheless fails to

reliably distinguish code from data even in many non-malicious, non-obfuscated x86 binaries.

Some common mistakes include the following:

• Misclassifying data as returns. IDA Pro frequently misclassifies isolated data bytes

within data blocks as return instructions. Return instructions have a one-byte x86

encoding and are potential targets of computed jumps whose destinations are not

statically decidable. This makes them extremely difficult to distinguish from data. IDA

15

Pro therefore often misidentifies data bytes that happen to match the encoding of a

return instruction.

• 16-bit legacy instructions. The x86 instruction set supports legacy 16-bit addressing

modes, mainly for reasons of backward compatibility. The vast majority of genuinely

reachable instructions in modern binaries are 32- or 64-bit. However, many data bytes

or misaligned code bytes can be misinterpreted as 16-bit instructions, leading to flawed

disassemblies.

• Mislabeled padding bytes. Many compilers generate padding bytes between consecutive

blocks of code for alignment purposes. These bytes are not reached by typical runs,

nor accessed as data, so their proper classification is ambiguous. IDA Pro typically

classifies them as data, but this can complicate some code analyses by introducing

many spurious code-data boundaries in the disassembly. In addition, these bytes can

later become reachable if the binary undergoes hotpatching [Microsoft Corporation,

2005]. We therefore argue that these bytes are more properly classified as code.

• Flows from code to data. IDA Pro disassemblies frequently contain data bytes imme-

diately preceded by non-branching or conditionally branching instructions. This is

almost always an error; either the code is not actually reachable (and is therefore data

misidentified as code) or the data is reachable (and is therefore code misidentified as

data). The only exception to this that we have observed in practice is when a call

instruction targets a non-returning procedure, such as an exception handler or the

system’s process-abort function. Such call instructions can be immediately followed by

data.

To provide a rough estimate of the classification accuracy of IDA Pro, we wrote scripts in

IDAPython [Erdélyi, 2008] that detect obvious errors made by IDA Pro in its disassemblies.

16

Table 2.4. Statistics of IDA Pro 5.5 disassembly errors

File Name Instructions Mistakes

Mfc42.dll 355906 1216
Mplayerc.exe 830407 474
RevelationClient.exe 66447 36
Vmware.exe 364421 183

Table 2.4 gives a list of the executables we tested and counts of the errors we identified for

IDA Pro 5.5. The main heuristic we used to identify errors is the existence of a control-flow

from code to data. Certain other errors were identified via manual inspection. It is interesting

to note that most programs compiled using the Gnu family of compilers have little to no

errors in their IDA Pro disassemblies. This is probably because Gnu compilers tend to

yield binaries in which code and data are less interleaved, and they perform fewer aggressive

binary-level optimizations that can result in code that is difficult to disassemble.

2.3 Shingled Disassembly

Since computed branch instructions in x86 have their targets established at runtime, every

byte within the code section can be a target and thus must be considered as executable code.

Therefore, we refer to a disassembler that retains all possible execution paths through a

binary as a Shingled Disassembler.

Definition 2.3.1. Shingle

A shingle is a consecutive sequence of bytes that decodes to a single machine instruction.

Shingles may overlap.

The core functionality of the shingled disassembler is to eliminate bytes that are clearly

data and compose a byte sequence that retains information for generating every possible

valid shingle of the source binary. This is a major benefit of this approach since the shingled

disassembly encodes a superset of all the possible valid disassemblies of the binary. In later

17

sections, we discuss how we apply our graph disassembler to prune this superset until we

find the most probable execution paths. In order to define what consists of a valid execution

path, we must first discuss a few key concepts.

Definition 2.3.2. Fall-through

Shingle x (conditionally) falls through to shingle y, denoted x ⇁ y, if shingle y is located

adjacent to and after instruction x, and the semantics of instruction x do not (always) modify

the program counter1. In this case, execution of instruction x is (sometimes) followed by

execution of instruction y at runtime.

Definition 2.3.3. Unconditional Branch

A shingle is an unconditional branch if it only falls through when its operand explicitly targets

the immediately following byte. Unconditional branch instructions for x86 include jmp and

ret instructions.

Unconditional branch instructions are important in defining valid disassemblies because

the last instruction in any disassembly must be an unconditional branch. If this is not the

case, the program could execute past the end of its virtual address space.

Definition 2.3.4. Static Successor

A control-flow edge (x, y) is static if x ⇁ y holds or if x is a conditional or unconditional

branch with fixed (i.e., non-computed) destination y. An instruction’s static successors are

defined by S(x) = {y | (x, y) is static}.

Definition 2.3.5. Post-dominating Set

The (static) post-dominating set P (x) of shingle x is the transitive closure of S on {x}. If

1At first glance, it would seem that we could strengthen our definition of fall-throughs to any two
instructions that do not have an unconditional branch instruction between them. However, there are cases
where a compiler will place a call and jcc instruction followed by data bytes. A common example of this is
call [IAT:ExceptionHandler] since the exception handler function will never return.

18

there exists a static control-flow from x to an illegal address (e.g., an address outside the

address space or whose bytes do not encode a legal instruction), then P (x) is not well defined

and we write P (x) = ⊥.

Definition 2.3.6. Valid Execution Path

All paths in P (x) are valid execution paths from x.

The x86 instruction set does not make use of every possible opcode sequence, therefore

certain bytes cannot be the beginning of a code instruction. For example, the 0xFF byte is

used to distinguish the beginning of one 7 different instructions, using the byte that follows

to distinguish which instruction is intended. However, 0xFFFF is an invalid opcode that is

unused in the instruction set. This sequence of bytes is common because any negative offset

in two’s complement that branches less than 0xFFFF bytes away will start with 0xFFFF. The

shingled disassembler can immediately mark any shingle whose opcode is not supported under

the x86 instruction set as data. A shingle that is marked as data is either used as the operand

of another instruction, or it is part of a data block within the code section. Execution of the

instruction would cause the program to crash.

Lemma 2.3.7. Invalid Fall-through

∀x, y :: x ⇁ y ∧ y = ∅ → x = ∅, in which ∅ stands for data bytes.

Any time that we encounter an address that is marked data, all fall-throughs to that

instruction can be marked as data as well. Direct branches also fall into this definition.

All direct call and jmp instructions imply a direct executional relationship between the

instruction and its target. Therefore, if any shingle that targets a shingle previously marked

as data can also be marked as data.

Definition 2.3.8. Sheering

A shingle x is sheered from the shingled disassembly when ∀y :: x ⇁ y, x and all y are marked

as data in the shingled disassembly.

19

Figure 2.4 illustrates how our shingled disassembler works. Given a binary of byte

sequence 6A01 5156 8BC7 E8B6 E6FF FF..., the shingled disassembler performs a single-

pass, ordered scan over the byte sequence. Data bytes and invalid shingles are marked along

the way. Figure 2.4a demonstrates the first series of valid shingles, beginning at the first

byte of the binary. Figure 2.4b starts at the second byte, which falls through to a previously

disassembled shingle. The shingle with byte C7 is then marked as data (shaded in Figure 2.4)

since it is an invalid opcode. Figure 2.4c shows an invalid shingle since it falls through to an

invalid opcode FFFF. Our shingled disassembler marks the two shingles B6 and FF as invalid

in the sequence. Figure 2.4d shows another valid shingle that begins at the ninth byte of the

binary. After completing the scan, our shingled disassembler has stored information necessary

to produce all valid paths in P (x).

Figure 2.4. Shingled disassemblies of a given binary 6A0151568BC7E8B6E6FFFF (a) a sequence
of shingles beginning at the first byte; (b) a sequence of shingles beginning at the second
byte; (c) an invalid shingle that falls through to an invalid opcode FF; (d) a valid shingle
beginning at the E6 byte.

The pseudocode for generating a shingled disassembly for a binary is shown in Algorithm 1.

This disassembly technique results in a completely valid disassembly that executes properly.

All instruction sequences included in the shingled disassembly are valid based on the semantics

of the x86 instruction set. However, not all of the disassembled shingles are necessary: many

of the instructions in the disassembly are never executed and were not intended execution

20

Algorithm 1: Shingled Disassembly

Input: x0 . . . xi . . . xn−1 ; // byte input

Ins(xi)—output ∅ if xi is a data byte
Output: y0 . . . yi . . . yn−1

t = 0 ;
yi = ∅, ∀i = 1, . . . , n− 1 ; // initialize yi
while t < n do

v = t ;
while yv = ∅ do

yv = Ins(xv) ‖ ∅;
if yv 6= ∅ then

v = v+ | Ins(xv) | ;
end
else

break ;
end

end
t+ +;

end
t = n ;
while t ≥ 0 do

if xt = ∅ then
// invalidate any opcode branching to address t

∀v if v+ | xv |:= t then
xv := ∅ ;

end

end
t−−;

end

sequences when the binary was compiled. In order to prune unnecessary shingles, another

disassembly technique can be applied to narrow down to a single execution sequence of

shingles.

2.4 Machine Learning Disassembly Model

None of the approaches listed in Section 2.2 attempt to use Machine Learning as a tool

in the disassembly process. Each of the described techniques is based around a knowledge

21

of the semantic information in an executable’s code section (or ignorance of it in the case

of straight-line disassembly). However, the problem of disassembly can be simplified down

beyond instruction semantics.

We define the tagging problem as follows: Given a non-empty input string X over an

alphabet Σ, find a set of transition events T = {$1, . . . , $M} such that T = arg maxT f(X, T),

where $i at position i < |X| marks a transition event e in X, and f is a function that

measures the likelihood that X is tagged correctly.

The tagging problem resembles the word segmentation problem in some natural languages

where no clear separations exist between different words [Teahan et al., 2000]. In the word

segmentation problem, the task is to find correct separations between sequences of characters

to form words. In the tagging problem, our objective is to find separations between different

instructions, and often between instructions and data as well. In both problems, resolving

ambiguities is the major challenge. For example, a byte sequence E8 F9 33 6A 00 can be

a 5-byte call instruction (opcode E8), or three bytes of data followed by a push instruction

(opcode 6A). Ambiguities can only be resolved through investigating their surrounding context.

Solutions to the tagging problem must also successfully identify and ignore “noise” in

the form of padding bytes. Padding bytes are neither executed as code nor accessed as

data on any run of the executable, so their classification is ambiguous. However, reliably

distinguishing these padding sequences from true code and data is non-trivial because the

same sequence of bytes often appears as both code and padding within the same executable.

For example, the instruction

8D A4 24 00 00 00 00 lea esp, [esp+0x0]

is semantically a no-operation (NOP), and is therefore used as padding within some instruction

streams to align subsequent bytes to a cache line boundary, but is used in other instruction

streams as a genuinely reachable instruction. Another common use of semantic NOPs is to

introduce obfuscation to hide what the program is doing.

22

In general, code and data bytes may differ only in their locations in the sequence, not

in their values. Any byte sequence that is code could appear as data in an executable,

even though it should statistically appear much more often as code than data. Not every

data sequence can be code, however, since not all byte sequences are legitimate instruction

encodings, as was discussed in Section 2.3.

2.4.1 Design

There are three components in our tagging algorithm: an instruction reference array, a utility

function, and heuristic sanity checks. The reference array stores the length of an instruction

given the bytes of an opcode (and the existence of length-relevant prefix bytes). The utility

function estimates the probability that a byte sequence is code. We estimate the probability

using a context-based language model built from pre-tagged x86 executables. Finally, our

sanity checks use heuristics to verify that our disassembly does not violate x86 instruction

semantics.

Instruction Reference Array

From the x86 instruction decoding specification we derive a mapping from the bytes of an

opcode to the length of the instruction. This is helpful in two respects: First, it marks

a definite ending of an instruction that allows us to move directly to the next instruction

or data. Second, it tells us when a series of bytes is undefined in the x86 instruction set,

which means that the current byte cannot be the beginning of an instruction. We tested our

code against more than ten million instructions in the IDA Pro disassembler and had 100%

accurate instruction lengths.

Utility Function

The utility function helps predict whether a byte sequence is code or data in the current

context. If the current byte sequence is unlikely to be code, our tagging algorithm moves to

23

the next byte sequence. If we predict that the byte sequence is code, we look up the length

of the instruction in the instruction reference array and move to the next byte sequence. The

following two properties express the desired relationship between the utility function and its

input byte sequence.

Property 2.4.1. A byte sequence bordered by transitions is tagged as code (resp., data) if

its utility as code (resp., data) is greater than its utility as data (resp., code).

Property 2.4.2. A transition between two byte sequences SA and SB entails a semantic

ordering in machine code: f(SB|SA) ≥ f(SB|S∗), where S∗ is any subsequence but SA in a

given binary, and f is the utility function.

Our utility function estimates the likelihood of a transition event using context-based

analysis. We collect context statistics from a set of pre-tagged binaries in the training

set. In a pre-tagged binary, code-code and code-data/data-code transitions are given. Two

important forms of information are yielded by pre-tagged binaries. First, they provide

semantic groupings of byte sequences that are either code or data; and second, they provide

a semantic ordering between two subsequences, which predicts how likely a subsequence is

followed by another. To correctly tag an input hex string, both pieces of information are

important. This calls for a language model that We choose to use a context-based statistical

data compression model for storing context statistics of each byte sequence encountered in

the training set of binary executables. base of the utility function. The data model have the

following traits:

• can capture local coherence in a byte sequence, and

• can capture long-range correlations between two adjacent subsequences—i.e., subse-

quences separated by a code-code or code-data/data-code transition.

24

Several modern statistical data compression models [Moffat and Turpin, 2002] are known

for their context-based analysis. These data models can work directly on any raw input

regardless of source and type. We use the current state of the art data compression model as

our language model. Before we discuss the details of the language model, we give the tagging

algorithm in Algorithm 2.

Algorithm 2: Tagging

Input: x0 . . . xi . . . xn−1 ; // input string of bytes

Mc ; // language model

Output: x0 . . . xi|xi+1 . . . xj| · · · |xk . . . xn−1 ; // segmented string

t← 0 ;
while t < n do

`← 0;
if xt ∈Mc then

`← codeLength(xt . . . xmin{t+4,n−1}) ; // lookup instruction length

if (` = 0) ∨ (t+ ` > n) then `← 1 ; // tag as possible data

print xt . . . xt+`−1 ; // output the segment

t← t+ `;

Context-based Data Compression Model. The compression model we use to store

context statistics is predication by partial matching (PPM) [Cleary and Witten, 1984, Cormack

and Horspool, 1987, Cleary and Teahan, 1997]. The theoretical foundation of the PPM

algorithm is the kth order Markov model, where k constrains the maximum order context

based on which a symbol probability is predicted. PPM models both short-range and long-

range correlations among subsequences by using dynamic context match. The context of

the ith symbol xi in an input string is the previous i − 1 symbols. Its kth order context

cki includes only the k prior symbols. To predict the probability of seeing xi in the current

location of the input, the PPM algorithm first searches for a match of cki in the context tree.

If a match is found, p(xi|cki) is returned as the symbol probability. If such a match does not

exist in the context tree, an escape event is recorded and the model falls back to a lower-order

25

context ck−1
i . If a match is found, the following symbol probability is returned:

p(xi|cki) = p(Esc|cki) · p(xi|ck−1
i)

where p(Esc|cki) is the escape probability conditioned on context cki . The escape probability

models the probability that xi will be found in the lower-order context. This process is

repeated whenever a match is not found until an order-0 context has been reached. If xi

appears in the input string for the first time, a uniform probability of distinct symbols that

have been observed so far will be returned. Therefore, the probability of xi in a string of

input is modeled as follows:

p(xi|cki) =


(∏k

j=k′+1 p(Esc|cji)
)
· p(xi|ck

′
i) if k ≥ 0

1
|A| if k = −1

where k′ ≤ k is the context order when the first match is found for xi, and |A| is the number

of distinct symbols seen so far in the input. If the symbol is not predicted by the order-0

model, a probability defined for the order −1 context is predicted.

The PPM model predicts symbol probabilities. To estimate the probability of a sequence

of symbols, we compute the product of the symbol probabilities in the sequence. Thus,

given a data sequence X = x1x2 . . . xd of length d, where xi is a symbol in the alphabet, the

probability of seeing the entire sequence given a compression model M can be estimated as

p(X|M) =
d∏
i=1

p(xi|xi−1
i−k)

where xji = xixi+1xi+2 . . . xj for i < j.

We use the above probability estimate as our utility function. We build two compression

models Mc and Md from the pre-tagged binaries in the training set: Mc is built from tagged

instructions and Md is built from tagged data. Given a new binary executable e and a

subsequence ei in e,

Mc = {ei | p(ei|Mc) > p(ei|Md)}

26

Classification. After tagging the transitions in the executable, we have segments of bytes.

Even though the tagging algorithm outputs each segment either as code or data, we cannot

assume this preliminary classification is correct because some data bytes may match legitimate

opcodes for which a valid instruction length exists in the reference array. The tagging algorithm

will output this segment as code even though it is data. Therefore, we need to reclassify each

segment as data or code.

Our classification algorithm makes use of the aforementioned language model and several

well known semantic heuristics. The language models are also used in the tagging algorithm.

The heuristics are adapted from those used by human experts for debugging disassembly

errors. We first discuss the language model-based classification module followed by the

semantic heuristics.

Classification Using Language Model. Classifying byte sequences is a binary classifica-

tion problem. We reuse the two compression models built for tagging. Recall that model Mc

is built from pre-tagged code and model Md is built from the pre-tagged data in the training

set. To classify a byte sequence B, we compute a log likelihood of B using each data model

α ∈ {c, d}:

p(B|Mα) = − log

|B|∏
i=1

p(bi|bi−1
i−k,Mα)

where Mα is the compression model associated with class α, |B| is the length of byte sequence

B, sequence bi−k, . . . , bi is a subsequence in B, and k is the length of the context. The class

membership α of B is predicted by minimizing the cross entropy [Teahan, 2000, Bratko et al.,

2006]:

α = arg min
α∈{c,d}

− 1

|B|
p(B|Mα)

Sanity Checks

Once we have deemed which instructions are code and data, sanity checks are necessary to

ensure that the disassembly we have generated makes sense based on x86 instruction semantics.

27

Certain semantic heuristics are helpful in determining an accurate class membership of an x86

byte sequence. Reverse engineers rely heavily upon such heuristics when manually correcting

flawed disassemblies. In most cases, these heuristics make no changes but are useful in

ensuring the disassembly is creating a valid execution sequence.

Word data tables. Many static data blocks in code sections store tables of 4-byte integers.

Often the majority of 4-byte integers in these tables have similar values, such as when the

table is a method dispatch or jump table consisting of code addresses that mostly lie within

a limited virtual address range. One way to quickly identify such tables is to examine the

distribution of byte values at addresses that are 1 less than a multiple of 4. When these

high-order bytes have low variance, the section is likely to be a data table rather than code,

and is classified accordingly.

16-bit addressing modes. When classifying a byte sequence as code yields a disassembly

densely populated by instructions with 16-bit operands (and the binary is a 32-bit executable),

this indicates that the sequence may actually be data misclassified as code. Modern x86

architectures support the full 16-bit instruction set of earlier processor generations for

backward compatibility reasons, but these legacy instructions appear only occasionally in

most modern 32-bit applications. The 16-bit instructions often have short binary encodings,

causing them to appear with higher frequency in randomly generated byte sequences than

they do in actual code.

Data after unconditional jumps. Control-flows from code to data are almost always

disassembly errors; either the data is reachable and is therefore code, or the code is actually

unreachable and is therefore data. Thus, data inside of a code section can only occur at

the very beginning of the section or after a branch instruction—usually an unconditional

jump or return instruction. It can occasionally also appear after a call instruction if the call

28

Table 2.5. Programs tested with PPM Disassembler

File Name File Size (K) Code (K) Data (K) Transitions

7zFM.exe 379 271 3.3 1379
notepad.exe 68 23 8.6 182
DosBox.exe 3640 2947 67.2 15355
WinRAR.exe 1059 718 31.6 5171
Mulberry.exe 9276 4632 148.2 36435
scummvm.exe 11823 9798 49.2 47757
emule.exe 5624 3145 119.5 24297
Mfc42.dll 1110 751 265.5 15706
Mplayerc.exe 5858 4044 126.1 28760
RevelationClient.exe 382 252 18.4 1493
Vmware.exe 2675 1158 87.3 18259

never returns (e.g., the call targets an exception handler or process-abort function). This

observation gives rise to the following heuristics:

• If an instruction is a non-jump, non-return surrounded by data, it is reclassified as data.

• If a byte sequence classified as data encodes an instruction known to be a semantic

NOP, it is reclassified as code.

2.4.2 Evaluation

We tested our disassembly algorithm on the 11 real-world programs listed in Table 2.5. In

each experiment, we used 10 of the programs to build the language models and the remaining

one for testing. All the executables are pre-tagged using IDA Pro; however, IDA Pro yields

imperfect disassemblies for all 11 executables. Some instructions it consistently labels as data,

while others—particularly those that are semantic nops—it labels as data or code depending

on the context. This leads to a noisy training set.

Since we lack perfect disassemblies of any of these programs, evaluation of the classification

accuracy of each algorithm is necessarily based on a manual comparison of the disassembly

results. When the number of classification disagreements is large, this can quickly exceed the

29

human processing limit. However, disagreements in which one algorithm identifies a large,

contiguous code section missed by the other are relatively easy to verify by manual inspection.

These constituted the majority of the disagreements, keeping the evaluation tractable.

Tagging Results. We first report the accuracy of our tagging algorithm. Inaccuracies

can take the form of code misclassified as data (false negatives) and data misclassified as

code (false positives). Both can have potentially severe consequences in the context of

reverse engineering for malware defense. False negatives withhold potentially malicious

code sequences from expert analysis, allowing attacks to succeed; false positives increase

the volume of code that experts must examine, exacerbating the difficulty of separating

potentially dangerous code from benign code. We therefore compute the tagging accuracy as

accuracy = 1− false negatives + false positives

total number of instructions

where false positives count the number of instructions erroneously disassembled from data

bytes.

As can be seen in Table 2.6 we were able to tag 6 of the 11 binaries with 100% accuracy.

For the remaining 5, the tagging errors were mainly caused by misclassification of small

word data tables (see §2.4.1) consisting of 12 or fewer bytes. Our heuristic for detecting

such tables avoids matching such small tables in order to avoid misclassifying short semantic

NOP sequences that frequently pad instruction sequences. Such padding often consists of 3

identical 4-byte instructions, which collectively resemble a very short word data table.

Classification Results. To evaluate the classification accuracy we took the output of

our tagging algorithm and ran each segment through the language model to get its class

membership. Table 2.7 shows the classification results of our disassembly algorithm. False

positives (FP), false negatives (FN), and overall classification accuracy is listed for each

disassembler.

30

Table 2.6. Tagging accuracy

File Name Errors Total Tagging Accuracy

7zFM.exe 0 88164 100%
notepad.exe 0 6984 100%
DosBox.exe 0 768768 100%
WinRAR.exe 39 215832 99.982%
Mulberry.exe 0 1437950 100%
scummvm.exe 0 2669967 100%
emule.exe 117 993159 99.988%
Mfc42.dll 0 355906 100%
Mplayerc.exe 307 830407 99.963%
RevelationClient.exe 71 66447 99.893%
Vmware.exe 16 364421 99.998%

Table 2.7. A comparison of mistakes made by IDA Pro and by our disassembler

IDA Pro 5.5 Ours

File Name FP FN Accuracy FP FN Accuracy

7zFM.exe 0 1 99.999% 0 0 100%
notepad.exe 4 0 99.943% 0 0 100%
DosBox.exe 0 26 99.997% 0 0 100%
WinRAR.exe 0 23 99.989% 0 39 99.982%
Mulberry.exe 0 202 99.986% 0 0 100%
scummvm.exe 0 65 99.998% 0 0 100%
emule.exe 0 681 99.931% 0 117 99.988%
Mfc42.dll 0 1216 99.658% 0 47 99.987%
Mplayerc.exe 0 2517 99.697% 0 307 99.963%
RevelationClient.exe 0 2301 96.537% 0 71 99.893%
Vmware.exe 0 183 99.950% 0 45 99.988%

31

eMule Case Study. To show some of the specific differences between decisions made by

IDA Pro’s disassembler and our approach, we here present a detailed case study of eMule, a

popular peer-to-peer file sharing program. Case studies for other executables in our test suite

are similar to that presented here. Table 2.8 illustrates examples in which IDA Pro classified

bytes were code but our disassembler determined that they were data, or vice versa. In the

table, db is an assembly directive commonly used to mark data bytes in a code listing. To

identify all discrepancies, we stored all instructions from both disassemblies to text files with

code/data distinguishers before every instruction. We then used sdiff to find the differences.

The cases in Table 2.8 summarize all of the different kinds of discrepancies we discovered.

IDA Pro makes heavy use of heuristic control-flow analysis to infer instruction start

points in a sea of unclassified bytes. Thus, its classification of bytes immediately following

a call instruction depends on its estimate of whether the called method could return. For

example, Case 1 of Table 2.8 shows a non-returning call to an exception handler. The call

is immediately followed by padding bytes that serve to align the body of the next function.

These bytes are also legitimate (but unreachable) instructions, so could be classified as data

or code (though we argue in §2.2 that a code classification is preferable). However, this

control-flow analysis strategy leads to a classification error in Case 2 of the table, wherein

IDA Pro incorrectly identifies method GetDLGItem as non-returning and therefore fails to

disassemble the bytes that follow the call. Our disassembler correctly identifies both byte

sequences as code. Such scenarios account for about 20 of IDA Pro’s disassembly errors for

eMule.

Case 3 of Table 2.8 illustrates a repetitive instruction sequence that is difficult to distinguish

from a table of static data. IDA Pro therefore misidentifies some of the bytes in this sequence

as data, whereas our algorithm correctly identifies all as code based on the surrounding

context.

Many instruction sequences in x86 binaries are only reachable at runtime via dynamically

computed jumps. These sequences are difficult to identify by control-flow analysis alone

32

Table 2.8. Disassembly discrepancies between IDA Pro and our disassembler for eMule

Example Disassemblies

Case Description IDA Pro 5.5 Ours

1 padding after a
non-returning call

call ExceptionHandler call ExceptionHandler

db (1–9 bytes) code (1–9 bytes)
function start function start

2 calls misidentified
as non-returning

call GetDLGItem call GetDLGItem

db 88h 50h mov edx, [eax+1Ch]

sbb al, 8Bh

3 repetitive
instruction
sequences

db (4 bytes) push 0

push 0

push 0 push 0

push 0 push 0

call 429dd0h call 429dd0h

4 missed computed
jump targets

db (12 bytes) mov eax, large fs:0

mov edx, [esp+8]

push FFFFFFFFh

push offset 41CC30h push offset 41CC30h

5 false computed
jump targets

push ecx push ecx

db FFh call 7DFAB4h

adc eax, 7DFAB4h

mov ebp, eax mov ebp, eax

db 8Bh mov eax, [ebx+0DCh]

sbb esp, 0 mov ecx, [eax+4]

db (13 bytes) cmp ecx, esi

jle loc 524D61

test esi, esi test esi, esi

6 missed opcode
prefixes

push offset 701268h push offset 701268h

db 64h mov eax, large fs:0

mov eax, large ds:0

7 code following
unconditional
branches

jmp 526396h jmp 526396h

db 8Bh mov ecx, 9CAF08h

or eax, 9CAF08h

8 code following
returns

retn retn

db C4h 83h add esp, 2Ch

sub al, CDh int 6

push es

9 code following
conditional
branches

jz 52518Fh jz 52518F

db 8Bh mov ecx, 9CAF04h

or eax, 9CAF04h

33

since the destinations of dynamic jumps cannot be statically predicted in general. Case 4

is an example where IDA Pro fails to identify a computed jump target and therefore fails

to classify the bytes at that address as code; however, our disassembler finds and correctly

disassembles the instructions.

Misidentifying non-jump targets as possible targets leads to a different form of disassembly

error. Case 5 illustrates an example in which an early phase of IDA Pro’s analysis incorrectly

identifies the interior byte of an instruction as a possible computed jump destination (probably

because some bytes in a data section happened to encode that address). The bytes at that

address disassemble to an adc instruction that turns out to be misaligned with respect to

the surrounding sequence. This leads to an inconsistent mix of code and data that IDA Pro

cannot reconcile because it cannot determine which interpretation of the bytes is correct. In

contrast, our algorithm infers the correct instruction sequence, given in the rightmost column

of the table.

Some instructions include prefix bytes, as discussed in §2.1. The suffix without the prefix

bytes is itself a valid instruction encoding. IDA Pro’s analysis sometimes misses these prefix

bytes because it discovers the suffix encoding first and treats it as a self-contained instruction.

This leads to the disassembly error depicted in Case 6 of the table. Our approach avoids this

kind of error in all cases.

Cases 7–8 of the table illustrate disassembly errors in which IDA Pro fails to identify code

bytes immediately following unconditional jumps and returns. These too are a consequence of

relying too heavily on control-flow analysis to discover code bytes. Occasionally these errors

even appear after conditional jumps, as shown in Case 9. It is unclear why IDA Pro makes

this final kind of mistake, though we speculate that it may be the result of a dataflow analysis

that incorrectly infers that certain conditional branches are always taken and therefore never

fall through. Use of conditional branches as unconditional jumps is a common malware

obfuscation technique that this analysis may be intended to counter. However, in this case it

34

backfires and leads to an incorrect disassembly. Our method yields the correct disassembly

on the right.

2.5 Graph Based Disassembly Model

Our recent past work is the first to apply machine learning and data mining to address this

problem [Wartell et al., 2011]. The approach uses statistical data compression techniques to

reveal the semantics of a binary in its assembly form, yielding a segmentation of code bytes

into assembly instructions and a differentiation of data bytes from code bytes. Although the

technique is effective and exhibits improved accuracy over the best commercial disassembler

currently available [Hex-Rays, 2012], the compression algorithm suffers high memory usage

and analysis time. Thus, training on large corpora can be very slow compared to other

disassemblers.

This section presents an improved disassembly technique that is both more effective and

more efficient. Rather than relying on semantic information (which leads to long training

times), we leverage a finite state machine (FSM) with transitional probabilities to infer likely

execution paths through a sea of bytes. Our main contributions include a graph-based static

disassembly technique; a simple, efficient, but effective disassembler implementation; and an

empirical demonstration of the effectiveness of the approach.

Our high-level strategy involves two linear passes: a preprocessing step which recovers

a conservative superset of potential disassemblies, followed by a filtering step in which

a state machine selects the best disassembly from the possible candidates. While the

resulting disassembly is not guaranteed to be fully correct (due to the undecidability of the

general problem), it is guaranteed to avoid certain common errors that plague mainstream

disassemblers. Our empirical analysis shows our simple, linear approach is faster and more

accurate than the observably quadratic-time approaches adopted by other disassemblers.

35

Section 2.5.1 details the solution of the implementation of our FSM disassembler and

Section 2.5.6 shows our empirical evaluation of the disassembler’s analysis time and mistakes

made vs. IDA Pro.

2.5.1 Design

Problem Definition Given an arbitrary string of bytes, what is the most probable execution

path through the binary given a corpus of correct binary executable paths?

Our disassembly system consists of a shingled disassembler which allows generation

any possible valid execution path, or shingles, a finite state machine of trained binary

executables, and a graph disassembler that traces and prunes the shingles to output the

maximum-likelihood execution path. Figure 2.5 shows the architecture of our disassembly

technique.

Figure 2.5. Disassembler Architecture

36

2.5.2 Shingled Disassembler

We use a shingled disassembler described in Section 2.3 as the first pass of our system,

effectively storing all possible execution paths. However, during this first initial pass of

a code section, more semantic information about a binary can be stored. Local statistics

called code/data modifiers that are specific to the executable are collected during this pass.

These modifiers keep track of the likelihood that a shingle is code or data in this particular

executable. The following heuristics are used to update modifiers:

1. If the shingle at address i is a long direct branch instruction with j as its target, the

address j is more likely to be a code instruction. We apply this heuristic with short

direct branches as well, but with less weight since two byte instructions are more likely

to be seen within other instruction operands.

2. If shingles at addresses i, j and k sequentially fall-through to each other and match

one the most common instruction opcode sequences, each of these three addresses is

more likely to be code. Common sequences include function prologues, epilogues, etc.

3. If bytes at address i and i + 4 are both treated as addresses, both addresses reference

shingles within the code section of the binary, the likelihood that addresses i through

i + 7 are data is very high. Shingles i through i+7 are marked as data, as well as any

following four byte sequences that match this criteria. This is most likely a series of

addresses referenced by a conditional branch elsewhere in the code section.

2.5.3 Opcode State Machine

The state machine is constructed from a large corpus of pre-tagged binaries, disassembled

with IDA Pro v6.3. The byte sequences of the training executables are used to build an

opcode graph, consisting of opcode states and transitions from one state to another. For each

37

0x01 0x03

0x04

.1

0x02
.1

.7

.9

.2

.5
.2

.1

.1

.1

.4

.1
db

.5

.7

.3

Figure 2.6. Instruction Transition Graph: 4 opcodes

opcode state, we label its transition with the probability of seeing the next opcode in the

training instruction streams. The opcode graph is a probabilistic finite state machine (FSM)

in thin disguise—essentially a graph including all the correct disassemblies of the training

byte sequences annotated with transition probabilities. The accepting state of the FSM is

the last unconditional branch seen in the binary.

Figure 2.6 shows what this transition graph might look like if the x86 instruction set only

contained four opcodes: 0x01 through 0x04. Each directed edge in the graph between opcode

xi and xj implies that a transition between xi and xj has been observed in the corpus, and

the edge weight of xi → xj is the probability that given xi, the next instruction is xj. It is

also important to note the node db in the graph which represents data bytes. Any transition

from an instruction to data observed in the corpus will be represented by a directed edge to

the db node. The graph for the full x86 instruction set includes more than 500 nodes as each

observed opcode must be included.

2.5.4 Maximum-Likelihood Execution Path

We name the output of the shingled disassembler a shingled binary. The shingled binary

of the source executable can generate a factorial number of valid disassemblies. Our graph

disassembler is designed to scan the shingled binary and prune shingles with lower probabilities.

38

Figure 2.7. Graph disassembly for a shingled binary.

By using our graph disassembler, we can find the maximum-likelihood execution path by

tracing the shingled binary through the opcode finite state machine. At every receiving

state, we check which preceding path (predecessor) has the highest transition probability.

For example in Figure 2.7, address xj is the receiving state of two preceding addresses. We

compute the transition probability from each of the two addresses and sheer the one with a

lower probability.

Theorem 2.5.1. The graph disassembler always returns the maximum-likelihood execution

path among all valid shingles S.

Proof. Each byte in the shingled binary is a potential receiving state of multiple predecessors.

At each receiving state, we keep the best predecessor with the highest transition probability.

Therefore, when we reach the last receiving state—the accepting state, that is, the last

unconditional branch instruction, we find the shingle with the highest probability as the best

execution path.

The transition probability of a predecessor consists of two parts: the global transition

probability taken from the opcode state machine and the local modifiers, and local statistics

39

of each byte being code or data based on several heuristics. This is important because runtime

reference patterns specific to the binary being disassembled are included in distinguishing

the most probable disassembly path.

Let r be a receiving state of a transition triggered at xi in the shingled binary, Pr(pred(xi))

be the transition probability of the best predecessor of xi, cm and dm be the code and data

modifiers computed during shingled disassembly. The transition probability to r is as follows:

Pr(r) = Pr(pred(xi)) · cm/dm

if xi is a fall-through instruction, or

Pr(r) = Pr(pred(xi)) · cm/dm · Pr(dbi) · Pr(dbr)

if xi is a branch instruction, where Pr(dbi) is the probability that xi is followed by data and

Pr(dbr) is the probability that r is proceeded by data. Every branch instruction can possibly

be followed by data. To account for this, when determining the best predecessor for each

instruction, branch instructions are treated as fall-throughs to their following instruction and

to data. Each branch instruction can be a predecessor to the following instruction or to any

instruction that is on a 4-byte boundary and is reachable via data bytes.

Therefore, for any possible valid shingle s resulting a trace of r0, . . . , ri, . . . , rk, the

transition probability of s is:

Pr(s) = Pr(r0)Pr(r1) . . . P r(ri) . . . P r(rk),

and the optimal execution path s∗ is:

s∗ = arg max
s∈S

Pr(s).

40

2.5.5 Algorithm Analysis

Our disassembly algorithm is much quicker than most other approaches due to the small

amount of information that needs to be analyzed. The time complexity of each of the three

steps is as follows:

• shingled disassembly: O(n), where n is the number of bytes in the code section;

• sheering: O(n) for pruning invalid shingles;

• graph disassembly: O(n) for a single-pass scanning over the shingled binary.

Therefore, our disassembly algorithm runs in time O(n), that is, linear in the size of the

source binary executable.

2.5.6 Evaluation

A prototype of our disassembler was developed in Windows using Microsoft .NET C#. Testing

of our disassembly algorithm was done on an Intel Xeon processor with 6 cores at 2.4GHz

apiece and 24GB of physical RAM. We tested on a number of different binaries with very

positive results.

2.5.7 Broad Results

Table 2.9 shows the different programs on which we tested our disassembler, as well as file

sizes and code section sizes. It also displays the number of instructions that the graph

disassembler identified that IDA Pro didn’t identify as code. Figure 2.8 shows the percentage

of instructions that both IDA Pro and our disassembler identified as code.

After the shingled disassembly has been composed, a large number of instructions have

already been eliminated from each binary as invalid opcodes or invalid fall-throughs. Figure 2.9

shows the percentage of bytes that have been sheered after the shingled disassembly.

41

Table 2.9. File Statistics

File Name (.exe) File Size (K) Code Size (K) IDA Missed Instr.

calc 114 75 1700
7z 163 126 680
cmd 389 129 5449
synergyc 609 218 12607
diff 1161 228 3002
gcc 1378 254 2760
c++ 1380 256 2769
synergys 738 319 8061
size 1703 581 5540
ar 1726 593 8626
objcopy 1868 701 6293
as 2188 772 7463
objdump 2247 780 7159
steam 1353 860 16928
git 1159 947 9776
xetex 14424 1277 18579
gvim 1997 1666 19145
Dooble 2579 1884 57598
luatex 3514 2118 18381
celestia 2844 2136 24950
DosBox 3727 3013 24217
emule 5758 3264 52434
filezilla 7994 7085 79367
IdentityFinder 23874 12781 180176

42

99.75%

99.80%

99.85%

99.90%

99.95%

100%

ca
lc

.e
xe

7z
.e

xe
cm

d.
ex

e
sy

ne
rg

yc
.e

xe
di

ff
.e

xe
gc

c.
ex

e
c+

+
.e

xe
sy

ne
rg

ys
.e

xe
si

ze
.e

xe
ar

.e
xe

ob
jc

op
y.

ex
e

as
.e

xe
ob

jd
um

p.
ex

e
st

ea
m

.e
xe

gi
t.

ex
e

xe
te

x.
ex

e
gv

im
.e

xe
D

oo
bl

e.
ex

e
lu

at
ex

.e
xe

ce
le

st
ia

.e
xe

D
os

B
ox

.e
xe

em
ul

e.
ex

e
fil

ez
ill

a.
ex

e

Id
en

ti
ty

Fi
nd

er
.e

xe

Figure 2.8. Percent of instructions identified by IDA Pro as well as our disassembler.

0%

5%

10%

15%

20%

25%

30%

ca
lc

.e
xe

7z
.e

xe
cm

d.
ex

e
sy

ne
rg

yc
.e

xe
di

ff
.e

xe
gc

c.
ex

e
c+

+
.e

xe
sy

ne
rg

ys
.e

xe
si

ze
.e

xe
ar

.e
xe

ob
jc

op
y.

ex
e

as
.e

xe
ob

jd
um

p.
ex

e
st

ea
m

.e
xe

gi
t.

ex
e

xe
te

x.
ex

e
gv

im
.e

xe
D

oo
bl

e.
ex

e
lu

at
ex

.e
xe

ce
le

st
ia

.e
xe

D
os

B
ox

.e
xe

em
ul

e.
ex

e
fil

ez
ill

a.
ex

e

Id
en

ti
ty

Fi
nd

er
.e

xe

Figure 2.9. Percent of addresses sheered during shingled disassembly.

Our disassembler runs in linear time in the size of the given binary. Figure 2.10 shows

how many times longer IDA Pro took to disassemble each binary vs. our disassembler (IDA

Time / Our Time). Our disassembler is increasingly faster than IDA Pro as the size of the

input grows.

43

0x

3x

6x

9x

12x

15x

ca
lc

.e
xe

7z
.e

xe
cm

d.
ex

e
sy

ne
rg

yc
.e

xe
di

ff
.e

xe
gc

c.
ex

e
c+

+
.e

xe
sy

ne
rg

ys
.e

xe
si

ze
.e

xe
ar

.e
xe

ob
jc

op
y.

ex
e

as
.e

xe
ob

jd
um

p.
ex

e
st

ea
m

.e
xe

gi
t.

ex
e

xe
te

x.
ex

e
gv

im
.e

xe
D

oo
bl

e.
ex

e
lu

at
ex

.e
xe

ce
le

st
ia

.e
xe

D
os

B
ox

.e
xe

em
ul

e.
ex

e
fil

ez
ill

a.
ex

e

Id
en

ti
ty

Fi
nd

er
.e

xe

Figure 2.10. Disassembly time vs. IDA Pro

2.5.8 eMule Case Study

The eMule file sharing software is extremely popular, with almost five hundred million

downloads on SourceForge. It also works well as a case study to compare our disassembler

versus IDA Pro to examine some of the mistakes that IDA Pro makes.

We tested IDA Pro v6.3 against our disassembler when working with eMule v.50a. IDA

Pro makes a large number of mistakes when attempting to disassemble eMule and ignores

vast blocks of code. Our disassembler does not make these mistakes.

The most pressing mistake made by IDA Pro is demonstrated in Case 1, where a large

block of instructions are never branched to and do not resemble common code sequences, and

are thus classified as data. This problem is so prevalent in eMule that we saw it occur at each

of the following addresses 0x524CF0, 0x5250A0, 0x525C00, 0x5262D3, 0x533090, 0x62ABBB,

0x6B2821, 0x6CF68A, and 0x711DC9. More examples of this may exist in eMule, these are

merely the addresses that were manually verified by the authors. Our disassembler accurately

classifies each of these blocks as code.

44

Case 2 is an example of IDA Pro using heuristics to determine where data blocks are and

mistaking a common opcode sequence for an address in the code section. IDA Pro strictly

labels the 4 bytes that look like an address as data, and then mislabels bytes around it to

create a normal execution flow. Our disassembler correctly identifies these code bytes.

IDA Pro sometimes drops a single common first byte from an instruction; in Case 3 0x8B

is dropped and 0xFF in Case 4. This is an obvious mistake since it is an illegal fall-through;

code must fall-through to data if IDA Pro were correct. Our disassembler is incapable of

making this mistake based on its architecture.

Cases 5, 6 and 7 are all very similar, each demonstrating IDA Pro’s ability to drop a direct

branch instruction. Each of these instructions is obviously code; in Case 7 the jmp instruction

is quite obviously used as a switch statement. Our disassembler doesn’t misclassify any of

these instructions.

Finally, Case 8 is possibly the most curious of mistakes by IDA Pro since it is an entire

function epilogue that is treated as data. Function epilogues are among the most common

opcode sequences seen in binaries, so the fact that one is ignored like this is quite strange.

Our disassembler correctly identifies it since we use common opcode sequences to help in

classification.

45

Table 2.10. Disassembly Comparison for eMule.exe
IDA Pro Ours

Case 1: Large block of code treated as data by IDA Pro (158-1104 bytes)

41CF9D: call CxxThrowException@8 41CF9D: call CxxThrowException@8

41CFA2: dw 0CC5Bh 41CFA2: pop ebx

... 41CFA3: db align (0CCh x13)

41D030: dd 0CC5B0028h, (0CCh x12) 41CFB0: push 0FFFFFFFFh

41D040: push 0FFFFFFFFh ...

41D032: pop ebx

41D033: db align (0CCh x13)

41D040: push 0FFFFFFFFh

Case 2: Common opcode sequence mistaken for an address (26 bytes)

41CD3D: call CxxThrowException@8 41CD3D: call CxxThrowException@8

41CD42: db ’[?????????????d’,0 41CD42: pop ebx

41CD53: align 4 41CD43: db align (0CCh x13)

41CD54: dd 548B0000h, 0FF6A0824h 41CD50: mov eax, large fs:0

41CD5C: push offset SEH 41CC30 41CD56: mov edx, [esp+8]

41CD5A: push 0FFFFFFFFh

41CD5C: push offset SEH 41CC30

Case 3: 0x8B byte dropped (1 byte)

525D82: mov edx, [eax+1Ch] 525D82: mov edx, [eax+1Ch]

525D85: db 8Bh 525D85: mov edi, off 7DFAB4

525D86: cmp eax, offset off 7DFAB4

Case 4: 0xFF byte dropped (1 byte)

58DC4E: push ecx 58DC4E: push ecx

58DC4F: db 0FFh 58DC4F: call off 7DFAB4

58DC50: adc eax, offset off 7DFAB4

46

Table 2.10 continued
IDA Pro Ours

Case 5: Short direct jmp dropped (2 bytes)

67882D: call sub 6C978E 67882D: call sub 6C978E

678832: db 0EBh 678832: jmp short loc 678839

678833: db 5 678834: cmp ebp, 0FFFFFFFEh

678834: cmp ebp, 0FFFFFFFEh

Case 6: Long direct jump dropped (5 bytes)

71951C: mov ecx, [ebp-10h] 71951C: mov ecx, [ebp-10h]

71951F: db 0E9h 71951F: jmp CWnd@@UAE@XZ

719520: dd 0FFFBA052h

Case 7: Dropped jump switch statement (14 bytes)

6C3137: db 83h 6C3137: sub esp, 2Ch

6C3138: dd 0E0832CECh, 8524FF3Fh 6C313A: and eax, 3Fh

6C3140: dd offset off 7DF12E 6C313D: jmp off 7DF12E[eax*4]

6C3144: fdiv st, st 6C3144: fdiv st, st

Case 8: Dropped epilogue (6 bytes)

6CF231: db 59h 6CF231: pop ecx

6CF232: db 5Fh 6CF232: pop edi

6CF233: db 5Eh 6CF233: pop esi

6CF234: db 0C2h 6CF234: retn 8

6CF235: db 8

6CF236: db 0

CHAPTER 3

X86 BINARY REWRITING

Rewriting x86 binaries can be used for optimization, security policy enforcement, binary

obfuscation, and other purposes. As was discussed in Chapter 1 however, no system that

approaches this problem can provide machine-verifiable safety for legacy COTS binaries

wihtout source code or metadata. This chapter will detail the challenges we found in creating

such a binary rewriting framework, and the solutions we developed to handle them.

The rest of this chapter is structured as follows: Section 3.1 details some challenges that

must be solved by an x86 binary rewriting system. A rewriting system that randomizes basic

blocks at runtime to prevent ROP attacks is presented in Section 3.2. A machine verifiable

Software Fault Isolation (SFI) and application level security policy enforcement rewriter is

detailed in Section 3.3. The intermediary library facilitates system interoperability for both

of these systems is presented in Section 3.4.

This work presented in this chapter was published at the 2012 ACM Conference on

Computer and Communications Security (CCS) [Wartell et al., 2012b], and the 2012 Annual

Computer Security Applications Conference (ACSAC) [Wartell et al., 2012a].

3.1 Rewriting Challenges

Since static x86 disassembly without metadata is an undecidable problem, previous solutions

to binary rewriting require code producer cooperation. For example, disassembly is not

necessary when using recompilation as a rewriting technique, since instrumentation can be

handled as part of compilation. Computed jumps can be omitted from the compiled binary,

and any necessary instruction guards can be included and accounted for without issue since

all relevant targeting information is available to the compiler.

47

48

When rewriting without metadata, much less semantic information is available and thus

the rewriting process requires less intuitive solutions. Section 3.1.2 details where we will

place our rewritten executable code. How to handle indirect branch instructions is detailed

in Section 3.1.3, and successfully hijacking system calls in Section 3.1.4.

3.1.1 Accurate Disassembly

As was discussed in Chapter 2, static x86 disassembly without metadata is provably unde-

cidable. However, in order to correctly rewrite a binary a sound disassembly is needed so

that the semantic information in a binary is preserved. If a disassembly is used to rewrite

a binary that does not include an execution path X and the rewritten binary attempts to

follow X during its execution, the rewritten binary will crash since those instructions will

not be included.

To solve this issue, our rewriting scheme takes a conservative disassembly approach.

Instead of attempting to find just one disassembly path the executable takes through a code

section, our rewriting system includes all possible valid execution paths, as is described by

Section 2.3. In order to include all of these paths, shingles that overlap must all be included

in the rewritten binary. Figure 2.4 shows an example of a shingled disassembly and the

instruction set that results from it.

In order to include a conservative disassembly within the newly rewritten executable, we

first include the longest execution path we can find through the executable and include it in

the rewritten section. All other overlapping code sections are then added to the end. If they

fall-through to an already included execution path, they are concluded with a direct jump

instruction, targeting the instruction to which they originally fell through.

This approach to disassembly is conservative, because instructions are included in the

rewritten section that will never be executed, but it ensures that no execution paths in the

binary can be missed. Since binary rewriting requires all executed instructions to be included

49

Table 3.1. Inplace Binary rewriting

Original
Address

Original Code Rewritten
Address

Rewritten Code

0x004010B0 mov ebx, [0x004105B4] 0x004010B0 mov ebx, [0x004105B4]

0x004010B6 call ebx 0x004010B6 nop

0x004010B7 call ebx

in the disassembly, and we cannot statically determine which instructions are executed, this

is a conservative approach to obtain a sound disassembly.

3.1.2 Where to rewrite?

The first challenge in rewriting is determining where to place the rewritten instructions.

There are two obvious choices: (a) transform the original code in-place, substituting original

instruction sequences with new ones, or (b) generate a completely new code section separate

from the original.

In-place Rewriting. Rewriting a binary in-place (i.e., instrumenting the code sections of

the binary to insert, remove, and modify instructions) would be ideal in terms of efficiency

and code bloat. However, any binary rewriter that requires instruction-insertion is difficult,

if not impossible, to instrument in place. Rewriting for security purposes typically requires

insertion of guard instructions, so in-place rewriting is typically not feasible in such cases.

Table 3.1 displays an example of in-place rewriting. The original binary loads an address

from the code section in to ebx, then branches to the value in ebx. However, the inclusion

of a single nop instruction adds a single byte to the binary. This shifts the code stored in

the binary one byte, causing the information at 0x004105B4 to be different than the original

binary, loading the wrong address into ebx.

This problem is described in more detail in Section 3.1.3. If it can be somehow surmounted,

adding to the size of the executable’s code section by injecting instructions is possible, but a

50

Table 3.2. Pinhole Rewriter

Original
Address

Original
Code

Rewritten
Address

Rewritten
Code

Wrapper
Code

0x004010B0

0x004010B1

0x004010B2

0x004010B3

0x004010B9

push ebx

push ebx

push ecx

call [0x405014]

...

0x004010B0

0x004010B1

0x004010B2

0x004010B3

0x004010B8

0x004010B9

push ebx

push ebx

push ecx

call <Wrapper>

nop

...

(guard instructions)
call [0x405014]

retn

problem immediately arises. Binary sections each have a specific amount of virtual space

assigned in the section header, so if that is exceeded, the binary will fail to execute. If the

executable section is the last section, the section size simply needs to be increased. However,

most compilers do not place the executable section last, and thus increasing the size of the

section will cause it to overlap other sections in virtual address space. To our knowledge, no

rewriter actually attempts this approach.

There are forms of rewriting in-place that do not suffer from this problem, such as pinhole

rewriting. A pinhole rewriter does not actually inject guard instructions, instead replacing

the guarded instruction with a direct call to a wrapper function containing the intended

guard instructions. Table 3.2 shows an example of a pinhole rewriter that guards dereferenced

branch instructions.

However, these rewriting techniques require that instructions requiring guards be replace-

able. For example, a simple call eax is only two bytes, and replacing such an instruction

with a branch to a wrapper function is infeasible. A direct branch instruction is at least five

bytes, so the previous pinhole approach does not work. Most interesting rewriters are not

implementable as a pinhole rewriter for this reason.

Binary rewriters can also be used to perform optimizations. A rewriter that replaces

target instruction sequences with shorter ones can be easily implemented in-place. However,

51

optimizations are a small subset of the tasks performed by rewriters, and often take place in

addition to other rewriting techniques. Etch [Romer et al., 1997] is one example of such a

rewriting system that allows for pin-holes or optimizations.

Adding a new section. Rather than attempt to rewrite in-place, we can create a new

section after the already existing sections in the executable, since doing so will not cause any

harm to the executable. Then, we can include all the information from the section we want

to rewrite, along with any modifications the rewriter wishes to include. However, to include

these modifications, the rewriter must be able to distinguish the intended semantics of the

executable section. As described in Chapter 2, this problem is far from trivial.

Since code and data is interleaved inside of a code section, we can leave the original

code section non-executable and treat it as a data section. Thus all data in it is maintained

and still accessible, effectively separating the code and data of an x86 binary into separate

sections. This allows all instructions that reference data in the binary to be left unmodified,

since they will be referencing the old code section. Throughout the rest of this dissertation,

the code section of the original binary will be referred to as the .text section, the old code

section that is now non-executable in the rewritten binary will be referred to as the .told

section, and the new executable section will be referred to as the .tnew section.

After the rewriter has created sections .told and .tnew, it creates a copy of the orig-

inal binary, injects .tnew, overwrites .text with .told, and modifies header information

appropriately to ensure proper execution. The new binary is then ready for for propagation.

3.1.3 Control Flow Instructions

Direct Branches. All instructions that that do not always fall-through must be modified or

guarded in order to ensure proper execution. First, all direct jmp, call and jcc instructions

must be modified. Since no instruction is in its original position, the intended target of

52

Table 3.3. Direct Jump Modification Example

Original code Rewritten code

0x004010A0: cmp eax, ebx 0x005021A0: cmp eax, ebx

0x004010A3: jne 10h ; Loc 1 0x00503BC3: jne 1A23h ; New Loc 1

.
Loc 1: New Loc 1:

0x004010B3: pop ebx 0x00503BC6: pop ebx

the direct branch must be determined and maintained after instrumentation. This involves

modifying the offset of these instructions after their positions in the new code section have

been determined.

Table 3.3 shows examples of modified direct branches in the .tnew section. Short direct

branch instructions are conservatively converted into their longer encodings (changing them

from 2 byte instructions to 6 byte instructions). This is necessary in systems like Stir

as described in Section 3.2, however for basic rewriters this is not necessary if the branch

instruction and its target have not separated by more than 127 bytes. Such optimizations

can be implemented discretionally.

Indirect Branches. Indirect branch instructions are more difficult to handle, however,

since their intended target is computed at runtime. It is provably undecidable to statically

determine the targets of indirect branches in general. Furthermore, indirect branches come

in many varieties as was previously shown in Table 2.2.

The diversity of indirect branch techniques allow the target of an indirect branch to be

determined from an address stored in the code or data sections, an address in a register,

or dereferencing a jump table using a register as the index. For the sake of simplicity and

minimal overhead, a solution that encompasses the redirection of all 4 of these branch types

to their new targets is ideal.

53

Table 3.4. Summary of x86 code transformations

Description Original code Rewritten code

Computed jumps
with register
operands

call ebx cmp byte ptr [ebx], 0xF4

cmovz ebx, [ebx+1]

call ebx

Computed jumps
with memory
operands

call [0x00483BEC] mov eax, [0x00483BEC]

cmp byte ptr [eax], 0xF4

cmovz eax, [eax+1]

call eax

While computed jumps may seem rare to those accustomed to source-level programming,

they pervade almost all binary programs compiled from all source languages. Computed

jumps include returns (whose destinations are drawn from stack data), method calls (which

use method dispatch tables), library calls (which use import address tables), multi-way

branches (e.g., switch-case), and optimizations that cache code addresses to registers.

When an indirect branch is encountered, if it points to the .told, we must redirect it

to the corresponding address in .tnew. However, if it points to .tnew, there is no need to

modify the address. This is solved by writing a tag byte and the new address of the target

over the first 5 bytes at their old code address. Table 3.4 displays the transformation that is

possible due to this system.

Since the transformed binary stores a jump table of addresses in its old code section,

indirect branches need only check whether their target is in .told (i.e. the first byte is 0xF4),

and if so, dereference the address. Otherwise, the target is in the .tnew and does not need

to be dereferenced.

Table 3.4 shows modifications involving a scratch register (eax in the example). Use of a

scratch register isn’t necessary, however. These instructions can be modified to instead store

the address above the stack (e.g. mov [esp-4], ebx), ensuring that no register values are

corrupted at runtime. Each of these solutions results in proper execution; however, since

using a scratch register results in less guard instructions we expect slightly faster runtimes.

54

Jump Table Examples. To illustrate how indirect branches are handled, whether their

targets reference the .told or somewhere else in memory, Figures 3.1 and 3.2 demonstrate

the transformation process for two representative assembly codes.

Figure 3.1 implements a register-indirect call to a system API function (MBTWC). The

first instruction of the original code loads an IAT entry into the esi register, which is later

used as the target of the call. The same mov instruction is present in our rewritten version,

however the call instruction is replaced with the guarded call sequence shown in lines 2–4

of the rewritten binary. The compare (cmp) and conditional move (cmovz) implement the

table-lookup, but the address in esi is an imported function, and thus does not begin with

0xF4. The cmovz instruction does not dereference the address and the ensuing call executes

correctly.

Figure 3.2 shows a computed jump with a memory operand that indexes the jump table

residing in .told. The rewritten code first loads the destination address into a scratch

register (eax) in accordance with row 2 of Table 3.4. It then implements the same lookup as

in Fig. 3.1. This time the lookup has a significant effect—it discovers at runtime that the

address drawn from the lookup table must be retargeted to a new address. This preserves

the behavior of the binary after rewriting despite the failure of the disassembler to discover

and identify the jump table at rewrite-time.

3.1.4 Hijacking System Calls

The transformations described in Section 3.1.3 would be enough to result in working, in-

strumented binaries, except that x86 binaries have other intricacies that must be solved.

Hidden entry points, known as callbacks, are prevalent in x86 binaries. A callback occurs

when the executing binary calls a library function with an address in its code section as

an argument. That argument is later used to branch back into the binary from the library.

After instrumentation, this becomes an issue because this will be an unguarded branch that

55

Original:
.text:00499345 8B 35 FC B5 4D 00 mov esi, [4DB5FCh] ;IAT:MBTWC

. . .

.text:00499366 FF D6 call esi

Rewritten:
.text:0059DBF0 8B 35 FC B5 4D 00 mov esi, [4DB5FCh] ;IAT:MBTWC

. . .

.tnew:0059DC15 80 3E F4 cmp byte ptr [esi], F4h

.tnew:0059DC18 0F 44 76 01 cmovz esi, [esi+1]

.text:0059DC1C FF D6 call esi

Figure 3.1. Rewriting a register-indirect system call

Original:
.text:00408495 FF 24 85 CC 8A 40 00 jmp ds:off 408ACC[eax*4]

. . .

.text:00408881 3D 8C 8A 4D 00 00 cmp byte 4D8A8C, 0

.text:00408888 74 13 jz short loc 40889D

.text:0040888A 84 C9 test cl, cl

.text:0040888C 74 0F jz short loc 40889D

. . .

.text:00408ACC 81 88 40 00 dd offset loc 408881

.text:00408AD0 . . . (other code pointers)

Rewritten:
.told:00408881 F4 60 3A 4F 00 db F4, loc 4F3A60

.tnew:004F33B4 8B 04 85 CC 8A 40 00 mov eax, ds:dword 408ACC[eax*4]

.tnew:004F33BB 80 38 F4 cmp byte ptr [esi], F4h

.tnew:004F33BE 0F 44 40 01 cmovz eax, [eax+1]

.tnew:004F33C2 FF E0 jmp eax

. . .

.tnew:004F3A60 3D 8C 8A 4D 00 cmp byte 4D8A8C, 0

.tnew:004F3A67 74 27 jz loc 4F3A90

.tnew:004F3A69 84 C9 test cl, cl

.tnew:004F3A6B 74 22 jz short loc 4F3A90

Figure 3.2. Rewriting code that uses a jump table

56

refers to .told. This may seem like an uncommon problem, but it actually manifests in

almost every binary. A simple GCC compiled program with an empty main function has two

callbacks at the binary level, one for initialization and one for termination.

There are two solutions to this problem—rewriting every library to which the instrumented

binary refers or catching the callback and replacing its argument at runtime. The first solution

is impractical in most cases since it would involve rewriting kernel32.dll and other libraries

that include trusted, unrewritable control-flows, such as direct kernal traps. Redirecting all

callbacks raises its own challenges however.

A common solution to such a problem is the use of Import Address Table (IAT) hooking,

wherein the addresses in the IAT are replaced with the addresses of wrapper functions.

However, in a security setting this solution is too easily subverted. For example, a binary can

implement the functionality of GetProcAddress internally to fetch the address of a system

function, or by simply guessing the address of the system function. Both of these methods

circumvent IAT hooking, since the system function being used is never stored in the IAT.

Instead, we use a more thorough technique that identifies code points where an IAT

address is called, an IAT address is loaded into a register, or a library function is dynamically

loaded. Each of these occurrences must be properly handled, lest the sandboxing guards

redirect the flows back into the old code section, corrupting the library call.

Table 3.5 displays the code transformation that handles callbacks. Calls to callback

registration functions are redirected to an intermediary library with the address of the

callback registration function as a parameter. Based on the signature of the call, the

parameter that points to the old code section is checked for an 0xF4 byte, and dereferenced

if one is found. A more thorough explanation of this process is described in Section 3.4.1.

57

Table 3.5. Summary of x86 code transformations

Description Original code Rewritten code

IAT loads mov eax, [.idata:printf] mov eax, offset trampoline printf

trampoline printf:

and [esp], 0x00FFFFF0
jmp [.idata:printf]

Callback
registrations

call [.idata:atexit] jmp trampoline atexit

trampoline atexit:

push [.idata:atexit]

call intermediary.reg callback

return trampoline:

call intermediary.callback ret

3.2 STIR

All of the modifications to a binary necessary to make it viable for rewriting are detailed in

Section 3.1, but this is only the first step. The next step is to create interesting rewriters

using these techniques to accomplish interesting changes to binaries to implement interesting

security policies.

New binary level attacks have surfaced recently that use user-level code within the binary

to manifest a malicious action. Such attacks rely on modifying the stack at runtime to modify

the targets of retn instructions within the binary and chain gadgets in the user–level code.

These gadgets, when executed in sequence create a malicious action.

This section introduces a new technique, Self-Transforming Instruction Relocation (Stir),

that transforms legacy application binary code into self-randomizing code that statically

re-randomizes itself each time it is loaded. The capacity to re-randomize legacy code (i.e., code

without debug symbols or relocation information) at load-time greatly eases deployment, and

its static code transformation approach yields significantly reduced performance overheads.

Moreover, randomizing at basic block granularity achieves higher entropy than Address

Space Layout Randomization (ASLR) [PaX Team, 2003], which only randomizes section base

addresses, and can therefore be susceptible to derandomization attacks [Shacham et al., 2004,

Roglia et al., 2009].

58

Stir is a fully automatic, binary-centric solution that does not require any source code or

symbolic information for the target binary program. Stir-enabled code randomly reorders

the basic blocks in each binary code section each time it is launched, frustrating attempts to

predict the locations of gadgets. It is therefore fully transparent, and there is no modification

to the OS or compiler. This makes it easily deployable; software vendors or end users need

only apply Stir to their binaries to generate one self-randomizing copy, and can thereafter

distribute the binary code normally.

Randomizing legacy CISC code for real-world OS’s (Microsoft Windows and Linux) without

compiler support raises many challenges, including semantic preservation of dynamically

computed jumps, code interleaved with data, function callbacks, and imperfect disassembly

information. These challenges are detailed further in §3.1. In this chapter, we develop a suite

of novel techniques, including conservative disassembly, jump table recovery, and dynamic

dispatch, to address these challenges. Central to our approach is a binary transformation

strategy that expects and tolerates many forms of disassembly errors by conservatively

treating every byte in target code sections as both a potential instruction starting point and

static data, as we described in Section 3.1.1. This obviates the need for perfect disassemblies,

which are seldom realizable in practice without source code.

Stir was published in the 2012 ACM Conference on Computer and Communications

Security [Wartell et al., 2012b].

The rest of this section is structured as follows. Section 3.2.1 details the type of attack we

are attempting to prevent. The design and evaluation of the STIR architecture are detailed

in Sections 3.2.2 and 3.2.3.

3.2.1 ROP Protection

Subverting control-flows of vulnerable programs by hijacking function pointers (e.g., return

addresses) and redirecting them to shell code has long been a dream goal of attackers. For

59

such an attack to succeed, there are two conditions: (1) the targeted software is vulnerable

to redirection, and (2) the attacker-supplied shell code is executable. Consequently, to stop

these attacks, a great deal of research has focused on identifying and eliminating software

vulnerabilities, either through static analysis of program source code (e.g., [Larochelle and

Evans, 2001]) or through dynamic analysis or symbolic execution of program binary code

(e.g., [Cadar et al., 2006, Godefroid et al., 2008]).

Meanwhile, there is also a significant amount of work focusing on how to prevent the

execution of shell code based on its origin or location. Initially, attackers directly injected

malicious machine code into vulnerable programs, prompting the development of W⊕X (write-

xor-execute) protections such as DEP [Andersen, 2004] and ExecShield [van de Ven, 2004] to

block execution of the injected payloads. In response, attackers began to redirect control

flows directly to potentially dangerous code already present in victim process address spaces

(e.g., in standard libraries), bypassing W⊕X. Return-into-libc attacks [Solar Designer, 1997]

and return oriented programming (ROP) [Shacham, 2007, Buchanan et al., 2008, Checkoway

et al., 2010] are two major categories of such attacks. As a result, address space layout

randomization (ASLR) [PaX Team, 2003, Bhatkar et al., 2005] was invented to frustrate

attacks that bypass W⊕X.

ASLR has significantly raised the bar for standard library-based shell code because

attackers cannot predict the addresses of dangerous instructions to which they wish to

transfer control. However, a recent attack from Q [Schwartz et al., 2011] has demonstrated

that attackers can alternatively redirect control to shell code constructed from gadgets (i.e.,

short instruction sequences) already present in the application binary code. Such an attack

is extremely dangerous since instruction addresses in most application binaries are fixed (i.e.,

static) once compiled (except for position independent code). This allows attackers to create

robust shell code for many binaries [Schwartz et al., 2011].

Recent attempts to solve this issue have employed both static and dynamic techniques.

In-place-randomization (IPR) [Pappas et al., 2012] statically smashes unwanted gadgets by

60

Binary Rewriter Memory Image

Load-time Stirring PhaseStatic Rewriting Phase

Original
Application

Binary

Conservative
Disassembler
(IDA Python)

Lookup Table
Generator

Stirred
Binary

Load-time
Reassembler

(Helper Library)

Randomized
Instruction
Addresses

Figure 3.3. System architecture

changing their semantics or reordering their constituent instructions without perturbing the

rest of the binary. Alternatively, ILR [Hiser et al., 2012] dynamically eliminates gadgets by

randomizing all instruction addresses and using a fall-through map to dynamically guide

execution through the reordered instructions. While these two approaches are valuable first

steps, IPR suffers from deployment issues (since millions of separately shipped, randomized

copies are required to obtain a sufficiently diverse field of application instances), and ILR

suffers from high performance overhead (because of its highly dynamic, VM-based approach).

3.2.2 Design

The architecture of STIR is shown in Fig. 3.3. It includes three main components: (1) a

conservative disassembler, (2) a lookup table generator, and (3) a load-time reassembler. At

a high level, our disassembler takes a target binary and transforms it to a randomizable

representation. An address map of the randomizable representation is encoded into the new

binary by the lookup table generator. This is used by the load-time reassembler to efficiently

randomize the new binary’s code section each time it is launched.

This section presents a detailed design of each component. We first outline the static

phase of our algorithm (our conservative disassembler and lookup table generator) in §3.2.2,

61

Algorithm 3: Trans(α, c): Translate one instruction

Input: address mapping α : Z⇀ Z and instruction c
Output: translated instruction(s)

if IsComputedJump(c) then
op ← Operand(c)
if IsRegister(op) then

return [cmp op, F4h;
cmovz op, [op+1]; c]

else if IsMemory(op) then
Operand(c)← eax

return [mov eax, op;
cmp [eax], F4h;
cmovz eax, [eax+1]; c]

end if
else if IsDirectJump(c) then
t← OffsetOperand(c)
return c with operand changed to α(t)

else
return c

end if

followed by the load-time phase (our reassembler) in §3.2.2. Section 3.2.2 walks through an

example. Finally, §3.2.2 addresses practical compatibility issues.

Static Rewriting Phase. Target binaries are first disassembled to assembly code. We

use the IDA Pro disassembler from Hex-rays for this purpose [Hex-Rays, 2012], though

any disassembler capable of accurately identifying likely computed jump targets could be

substituted.

The resulting disassembly may contain harmless errors that misidentify data bytes as

code, or that misidentify some code addresses as possible computed jump targets; but errors

that omit code or misidentify data as computed jump targets can lead to non-functional

rewritten code. We therefore use settings that encourage the disassembler to interpret all

bytes that constitute valid instruction encodings as code, and that identify all instructions that

implement prologues for known calling conventions as possible computed jump targets. This

62

approach is detailed in Section 3.1.1. These settings suffice to avoid all harmful disassembly

errors in our experiments (see §3.2.3).

The assembly code is next partitioned into basic blocks, where a basic block can be

any contiguous sequence of instructions with a single entry point. Each block must also

end with an unconditional jump, but STIR can meet this requirement by inserting jmp 0

instructions (a semantic no-op) to partition the code into arbitrarily small blocks during

rewriting. The resulting blocks are copied and translated into a new binary section according

to Algorithms 3–4, which we implemented as an IDAPython script.

Algorithm 3 translates a single instruction into its replacement in the new code section.

Most instructions are left unchanged, but computed jumps are replaced with the lookup table

code described in §3.1.3, and direct branches are re-pointed according to address mapping α.

Algorithm 4 calls Algorithm 3 as a subroutine to translate all the instructions. Its initial

pass first computes mapping α by using identity function ι as the address mapping.1 The

second pass uses the resulting α to generate the final new code section with direct branches

re-targeted.

Once the new code section has been generated, the lookup table generator overwrites all

potential computed jump targets t in the original code section with a tag byte 0xF4 followed

by 4-byte pointer α(t). This implements the lookup table described in §3.1.3.

It may seem more natural to implement range checks to identify stale pointers rather than

using tag bytes. However, in general a stirred binary may consist of many separate modules,

each of which has undergone separate stirring, and which freely exchange stale code pointers

at runtime. Since each module loads into a contiguous virtual address space, it is not possible

to place all the old code sections within a single virtual address range. Thus, implementing

pointer range checks properly would require many nested conditionals, impairing performance.

1Some x86 instructions’ lengths can change when ι is replaced by α. Our rewriter conservatively translates
these to their longest encodings during the first pass to avoid such changes, but a more optimal rewriter
could use multiple passes to generate smaller code.

63

Algorithm 4: Translate all instructions

Input: instruction list C
Output: rewritten block list B
B ← []
α← ∅
t← base address of .told section
t′ ← base address of .tnew section
for all c ∈ C do

if IsCode(c) then
α← α ∪ {(t, t′)}
t′ ← t′ + |Trans(ι, c)|

end if
t← t+ |c|

end for
for all c ∈ C do

if IsCode(c) then
append Trans(α, c) to B

end if
end for
return B

Our use of tag bytes reduces this to a single conditional move instruction and no conditional

branches.

The resulting binary is finalized by editing its binary header to import the library that

performs binary stirring at program start. PE and ELF headers cannot be safely lengthened

without potentially moving the sections that follow, introducing a host of data relocation

problems. To avoid this, we simply substitute the import table entry for a standard system

library (kernel32.dll on Windows) with an equal-length entry for our library. Our library

exports all symbols of the system library as forwards to the real system library, allowing it

to be transparently used as its replacement. This keeps the header length invariant while

importing all the new code necessary for stirring.

Load-time Stirring Phase. When the rewritten program is launched, the STIR library’s

initializer code runs to completion before any code in STIR-enabled modules that link to it.

64

On Windows this is achieved by the system load order, which guarantees that statically linked

libraries initialize before modules that link to them. On Linux, the library is implemented as

a shared object (SO) that is injected into the address space of STIR-enabled processes using

the LD PRELOAD environment variable. When this variable is set to the path of a shared

object, the system loader ensures that the shared object is loaded first, before any of the

other libraries that a binary may need.

The library initializer performs two main tasks at program start:

1. All basic blocks in the linking module’s .tnew section are randomly reordered. During

this stirring, direct branch operands are retargeted according to address mapping α,

computed during the static phase.

2. The lookup table in the linking module’s .told section is updated according to α to

point to the new basic block locations.

Once the initialization is complete, the .tnew section is assigned the same access permissions

as the original program’s .text section. This preserves non-writability of code employing

W⊕X protections.

To further minimize the attack surface, the library is designed to have as few return

instructions as possible. The majority of the library that implements stirring is loaded

dynamically into the address space at library initialization and then unloaded before the

stirred binary runs. Thus, it is completely unavailable to attackers. The remainder of the

library that stays resident performs small bookkeeping operations, such as callback support

(see §3.2.2). It contains less than 5 return instructions total.

An Example. To illustrate our technique, Fig. 3.4 shows the disassembly of a part of

the original binary’s .text section and its counterparts in the rewritten binary’s .told and

.tnew sections after passing through the static and load-time phases described above.

65

The disassembly of the .text section shows two potential computed jump targets, at

addresses 0x404B00 and 0x404B18, that each correspond to a basic block entry point. In the

rewritten .told section, the underlined values show how each is overwritten with the tag

byte 0xF4 followed by the 4-byte pointer α(t) that represents its new location in the .tnew

section.2 All remaining bytes from the original code section are left unchanged (though the

section is set non-executable) to ensure that any data misclassified as code is still accessible

to instructions that may refer to it.

The .tnew section contains the duplicated code after stirring. Basic blocks 0x404B00,

0x404B10 and 0x404B18, which were previously adjacent, are relocated to randomly chosen

positions 0x51234C, 0x53AF21 and 0x525B12 (respectively) within the new code section.

Non-branch instructions are duplicated as is, but static branches are re-targeted to the new

locations of their destinations. Additionally, as address 0x525B16 shows, branch instructions

are conservatively translated to their longest encodings to accommodate their more distant

new targets.

Special Cases. Real-world x86 COTS binaries generated by arbitrary compilers have some

obscure features, some of which required us to implement special extensions to our framework

to support them. In this section we describe the major ones and our solutions.

Callbacks.

Real-world OS’s—especially Windows—make copious use of callbacks for event-driven pro-

gramming. User code solicits callbacks by passing code pointers to a callback registration

function exported by the system. The supplied pointers are later invoked by the OS in

response to events of interest, such as mouse clicks or timer interrupts. Our approach of

2This value changes during each load-time stirring.

66

Original .text:
.text:00404AF0 00 4B 40 00 .dword 00404B00h

.text:00404AF4 18 4B 40 00 .dword 00404B18h

.text:00404AF8 CC (×8) .align 16

.text:00404B00 8B 04 85 F0 4A 40 00 mov eax,[eax*4+404AF0h]

.text:00404B07 FF E1 jmp eax

.text:00404B09 CC CC CC CC CC CC CC .align 16

.text:00404B10 55 push ebp

.text:00404B11 8B E5 mov esp, ebp

.text:00404B13 C3 retn

.text:00404B14 CC CC CC CC .align 8

.text:00404B18 55 push ebp

.text:00404B19 83 F8 01 cmp eax, 1

.text:00404B1C 7D 02 jge 404B20h

.text:00404B1E 33 C0 xor eax, eax

.text:00404B20 8B C1 mov eax, ecx

.text:00404B22 E8 D9 FF FF FF call 404B00h

STIRred .told (Jump Table):
.told:00404AF0 00 4B 40 00 18 4B 40 00

.told:00404AF8 CC CC CC CC CC CC CC CC

.told:00404B00 F4 4C 23 51 00 40 00 FF

.told:00404B08 E1 CC CC CC CC CC CC CC

.told:00404B10 55 8B E5 C3 CC CC CC CC

.told:00404B18 F4 12 5B 52 00 02 33 C0

.told:00404B20 8B C1 E8 D9 FF FF FF

STIRred .tnew:
.tnew:0051234C 8B 04 85 F0 4A 40 00 mov eax,[eax*4+404AF0h]

.tnew:00512353 80 38 F4 cmp F4h, [eax]

.tnew:00512356 0F 44 40 01 cmov eax, [eax+1]

.tnew:0051235A FF E1 jmp eax

. . . (other basic blocks) . . .
.tnew:00525B12 55 push ebp

.tnew:00525B13 83 F8 01 cmp eax, 1

.tnew:00525B16 0F 8D 00 00 00 02 jge 525B1Eh

.tnew:00525B1C 33 C0 xor eax, eax

.tnew:00525B1E 8B C1 mov eax, ecx

.tnew:00525B20 E8 27 C8 FE FF call 51234C

. . . (other basic blocks) . . .
.tnew:0053AF21 55 push ebp

.tnew:0053AF22 8B E5 mov esp, ebp

.tnew:0053AF24 C3 retn

Figure 3.4. A stirring example

67

dynamically re-pointing stale pointers at the sites of dynamic calls does not work when the

call site is located within an unstirred binary, such as an OS kernel module.

To compensate, our helper library hooks [Hoglund and Butler, 2006] all import address

table entries of known callback registration functions exported by unstirred modules. The

hooks re-point all calls to these functions to a helper library that first identifies and corrects any

stale pointer arguments before passing control on to the system function. This interposition

ensures that the OS receives correct pointer arguments that do not point into the old code

section.

The full implementation details of this are described in Section 3.4.1.

Position Independent Code

PIC instructions compute their own address at runtime and perform pointer arithmetic to

locate other instructions and data tables within the section. An underlying assumption

behind this implementation is that even though the absolute positions of these instructions

in the virtual address space may change, their position relative to one another does not. This

assumption is violated by stirring, necessitating a specialized solution.

All PIC that we encountered in our experiments had the form shown in the first half of

Fig. 3.5. The call instruction has the effect of pushing the address of the following instruction

onto the stack and falling through to it. The following instruction pops this address into a

register, thereby computing its own address. Later this address flows into a computation

that uses it to find the base address of a global offset table at the end of the section. In

the example, constant 56A4h is the compile-time distance from the beginning of the pop

instruction to the start of the global offset table.

To support PIC, our rewriter identifies call instructions with operands of 0 and performs a

simple data-flow analysis to identify instructions that use the pushed address in an arithmetic

computation. It then replaces the computation with an instruction sequence of the same

68

Original:
.text:0804894B E8 00 00 00 00 call 08048950h

.text:08048950 5B pop ebx

.text:08048951 81 C3 A4 56 00 00 add ebx, 56A4h

.text:08048957 8B 93 F8 FF FF FF mov edx, [ebx-8]

Rewritten:
.tnew:0804F007 E8 00 00 00 00 call 0804F00Ch

.tnew:0804F00C 5B pop ebx

.tnew:0804F00D BB F4 DF 04 08 mov ebx, 0804DFF4h

.tnew:0804F012 90 nop

.tnew:0804F013 8B 93 F8 FF FF FF mov edx, [ebx-8]

Figure 3.5. Position-independent code

length that loads the desired address from the STIR system tables. This allows the STIR

system to maintain position independence of the code across stirring. In Fig. 3.5, the nop

instruction is added to ensure that the length matches that of the replaced computation.

Our analysis is not guaranteed to find all possible forms of PIC. For example, PIC that

uses some other instruction to compute its address, or that allows the resulting address to

flow through the heap before use, would defeat our analysis, causing the rewritten binary

to crash at runtime. However, our analysis sufficed to support all PIC instances that we

encountered, and compiler documentation of PIC standards indicates that there is only a

very limited range of PIC implementations that needs to be supported [Oracle Corporation,

2010].

Statically Computed Returns

Although returns are technically computed jumps (because they draw their destinations from

the stack), our rewriting algorithm does not guard them with checks for stale pointers. This

is a performance optimization that assumes that all return addresses that we wish to preserve

(i.e., those not introduced by an attacker) are pushed onto the stack by calls; thus, no return

addresses are stale.

69

Original .text: Jump table .told:

2
b
y
te

s
lo

st func 1: func 1:

.text:40EAA9 33 C0 xor eax, eax .text:40EAA9 F4 2E

.text:40EAAB C3 retn .text:40EAAB 04

func 2: func 2:

.text:40EAAC 50 push eax .text:40EAAC F4

0
b
y
te

s
lo

st

func 1: func 1:

.text:40EAA9 33 C0 xor eax, eax .text:40EAA9 F4 2E

.text:40EAAB 5B pop ebx .text:40EAAB 25

.text:40EAAC 5E pop esi .text:40EAAC 42

.text:40EAAD C3 retn .text:40EAAD 00

func 2: func 2:

.text:40EAAE 50 push eax .text:40EAAE F4

Figure 3.6. Overlapping function pointers

This assumption was met by all binaries we studied except for a certain pattern of

initializer code generated by GNU Compilers. The code sequence in question pushes three

immediate operands onto the stack, which later flow to returns. We supported this by treating

those three instructions as a special case, augmenting them with stale pointer checks that

correct them at the time they are pushed instead of at the time they are used. A more

general solution could rewrite all return instructions with stale pointer guards, probably at

the cost of performance.

Short Functions

Our jump table implementation overwrites each computed jump target with a 5-byte tagged

pointer. This design assumes that nearby computed jump targets are at least 5 bytes apart;

otherwise the two pointers must overlap. An example of this type of jump table collision is

shown in Fig. 3.6, where the first row has two jump table destinations overlapping two bytes

of each other, and the second row does not overlap at all. Such closely packed destinations

are rare, since most computed jump destinations are already 16-byte aligned for performance

reasons, and since all binaries compatible with hot-patching technology have at least 5

bytes of padding between consecutive function entry points (enough to encode a long jump

instruction) [Microsoft Corporation, 2005].

70

In the rare case that two computed jump targets are closer, the rewriter strategically

chooses stirred block addresses within the new code section whose pointer representations

can safely overlap. For example, if the .tnew section is based at address 0x04000000, the

byte sequence F4 00 F4 00 04 00 04 encodes two overlapping, little-endian, tagged pointers

to basic block addresses 0x0400F400 and 0x04000400, respectively. This strategy suffices to

support at least 135 two-pointer collisions and 9 three-pointer collisions per rewritten code

page—far more than we saw in any binary we studied.

3.2.3 Evaluation

We have implemented STIR and evaluated it on both Windows and Linux platforms with

a large number of legacy binary programs. Our experimental results show that STIR can

successfully transform application binaries with self-randomized instruction addresses, and

that doing so introduces about 2.4% overhead (significantly better than ILR’s 16% [Hiser

et al., 2012]) on average at runtime to the applications.

Rewriting Time and Space Overheads

To evaluate the effectiveness of our system, we tested both the Windows and Linux versions of

STIR with a variety of COTS and benchmark binaries. Both Windows and Linux tests were

carried out on Windows 7 and Ubuntu 12 running on an Intel Core i5 dual core, 2.67GHz

laptop with 4GB of physical RAM.

On Windows, we tested STIR against the SPEC CPU 2000 benchmark suite as well as

popular applications like Notepad++ and DosBox. For the Linux version, we evaluated our

system against the 99 binaries in the coreutils tool-chain (v7.0) for the Linux version. Due to

space limitations, figures only present Windows binaries and a selection of 10 Linux binaries.

In all of our tests, stirred binaries exhibited the same behavior and output as their original

counterparts. Average overheads only cover binaries that run for more than 500ms.

71

-20

0

20

40

60

80

100

120

D
os

Box

Not
ep

ad
+

+
gz

ip vp
r

m
cf

par
se

r
ga

p

bzip
2

tw
ol

f
m

es
a

ar
t

eq
uak

e

File
1

File
2

File
3

Tex
t

1

Tex
t

2

Tex
t

3

Tex
t

4

Shell
1

Shell
2

Shell
3

Shell
4

Shell
5

File Size Increase (%) Process Size Increase (%) Code Size Increase (%) Rewrite Time (s/MB)

Figure 3.7. Static rewriting times and size increases

Table 3.6. Linux test programs grouped by type and size

Group Sizes (KB) Programs

File 1 17–37 dircolors, ln, mkdir, mkfifo, mknod, mktemp, rmdir, sync

File 2 41–45 chgrp, chmod, chown, dd, rm, shred, touch, truncate

File 3 49–97 chcon, cp, df, dir, install, ls, mv, vdir

Text 1 21–25 base64, cksum, comm, expand, fmt, fold, paste, unexpand

Text 2 25–29 cut, join, md5sum, nl, sha1sum, shuf, tac, tsort

Text 3 29–37 cat, csplit, head, sha224sum, sum, tr, uniq, wc

Text 4 37–89 od, pr, ptx, sha256sum, sha384sum, sha512sum, sort, split, tail

Shell 1 5–17 basename, dirname, env, false, hostid, link, logname, uptime

Shell 2 17–21 arch, echo, printenv, true, tty, unlink, whoami, yes

Shell 3 21 group, id, nice, noshup, pathchk, pwd, runcon, sleep

Shell 4 21–29 chroot, expr, factor, pinky, readlink, tee, test, uname, users

Shell 5 30–85 date, du, printf, seq, stat, stty, su, timeout, who

72

Figure 3.7 shows how the rewriting phase affects the file size and code section sizes of each

binary, which increase on average by 73% and 3% respectively. However, runtime process

sizes increase by only 37% on average, with the majority of the increase due to the additional

library that is loaded into memory. Our current helper library implementation makes no

attempt to conserve its virtual memory allocations, so we believe that process sizes can be

further reduced in future development. Occasionally our disassembler is able to safely exclude

large sections of static data from rewritten code sections, leading to decreased code sizes. For

example, mesa’s code section decreases by more than 15%. On average, static rewriting of

Windows binaries requires 45 seconds per megabyte of code sections, whereas Linux binaries

require 31 seconds per megabyte.

Linux filenames in Fig. 3.7 are grouped by type (File, Text, and Shell) and by program

size due to the large number of programs. Table 3.6 lists the programs in each group.

Gadget Elimination

One means of evaluating ROP attack protection is to count the number of gadgets that

remain after securing each binary. There are several tools available for such evaluation,

including Mona [Corelan Team, 2012] on Windows and RoPGadget [Salwan, 2012] on Linux.

We used Mona to evaluate the stirred Windows SPEC2000 benchmark programs. Mona

reports the number of gadgets the binary contains after the load-time phase is complete. We

define a gadget as unusable if it is no longer at the same virtual address after basic block

randomization. Figure 3.8 shows that on average STIR causes 99.99% of gadgets to become

unusable. The only gadgets that remain after randomization of the test programs consist of

a pop and a retn instruction that happened to fall onto the same address. Most malware

payloads are not expressible with such primitive gadgets to our knowledge.

We also applied the Q exploit hardening system [Schwartz et al., 2011] to evaluate the

effectiveness of our system. Since Q is a purely static gadget detection and attack payload

73

99.92%

99.94%

99.96%

99.98%

100.00%

D
os

Box

Not
ep

ad
+

+
gz

ip vp
r

m
cf

par
se

r
ga

p

bzip
2

tw
ol

f
m

es
a

ar
t

eq
uak

e

Figure 3.8. Gadget reduction for Windows binaries

generation tool, running Q dynamically after a binary has been stirred is not possible. Instead,

we ran Q on a number of Linux binaries (viz., rsync, opendchub, gv, and proftpd) to generate

a payload, and then ran a script that began execution of the stirred binary, testing each

of the gadgets Q selected for its payload after randomization. Attacks whose gadgets all

remained usable after stirring were deemed successful; otherwise, Q’s payload fails. In our

experiments, no payload generated by Q was able to succeed against STIR.

Entropy

To estimate the entropy that STIR provides we consider a brute-force ROP attack against a

web server with an identified vulnerability running on a 32-bit PaX enabled Linux OS. The

vulnerability allows an attacker to perform a ROP attack that uses g gadgets. We assume

that failed ROP attacks cause the web server to crash and be replaced with a new forked

copy with the same randomization parameters. We consider the following two scenarios.

Scenario 1–PaX ASLR enabled PaX’s ASLR implementation provides 16 bits of

entropy for the starting address of the binary. In the absence of any information leaks, this

implies that the start address of the binary can be any one of 216 or 65,536 possible locations.

However, since ASLR preserves the internal structure of the binary, correctly guessing the

start address is sufficient to determine the starting addresses of each of the g required gadgets.

74

This implies that we there are only 65,536 different sets of gadget addresses to choose amongst,

or about 32,768 guesses in the average case, before our brute–force attack succeeds.

Scenario 2–STIR enabled The STIR helper library performs run–time relocation of

the new text segment before scrambling its contents. Our implementation allows the new

text segment to be located at any one of 219 possible page–aligned addresses, and thus offers

a minimum of 19 bits of entropy without considering stirring.

Once the binary has been stirred, then both the starting address as well as the internal

structure of the binary are randomized at run-time. This implies that knowing the start

address of the binary, or even that of one of the gadgets will not help locate any other gadgets.

Choosing the correct set of g addresses thus means choosing the right set out of 219!/(219− g)!

different possibilities.

The effective entropy can be calculated as:

log2(219!/(219 − g)!) =
219∑

n=219−g

log2n (3.1)

Considering an exploit that requires 5 gadgets, we get the effective entropy as almost 95

bits. For an exploit with 50 gadgets we get the effective entropy as approximately 950 bits.

For a 100 gadget exploit the entropy is almost 1900 bits. As these calculations show, the

effective entropy that STIR provides is far in excess of what ASLR provides.

A comparable test on Linux is not possible since RoPGadget currently only supports

purely static detection of gadgets. (STIR randomizes the binary at load-time, causing

RoPGadget to return incorrect results.) However, since there is no fundamental difference

between Stir’s randomization approach on Linux and Windows platforms, we expect that a

Linux evaluation would yield comparable results to the ones yielded on Windows.

75

Performance Overhead

Runtime performance statistics for Windows and Linux binaries are shown in Figs. 3.9 and

3.10, respectively, with each bar reflecting the application’s median overhead over 20 trials.

The median overhead is 4.6% for Windows applications, 0.3% for Linux applications, and

2.4% overall.

To isolate the effects of caching, Fig. 3.10 additionally reports the runtime overhead

(discounting startup and initialization time) of unstirred Linux binaries, in which the load-

time stirring phase was replaced by a loop that touches each original code byte without

rewriting it, and then runs this unmodified, original code. This potentially has the effect of

pre-fetching some or all of the code into the cache, decreasing some runtimes (although, as

the figure shows, in practice the results are not consistent). Stirred binaries exhibit a median

overhead of 1.2% over unstirred ones.

Amongst the Windows binaries, the gap SPEC2000 benchmark program consistently

returns the worst overhead of 35%. This may be due to excessive numbers of callback

functions or computed jumps. In contrast, the parser benchmark actually increases in speed

by 5%. We speculate that this is due to improved locality resulting from separation of static

data from the code (at the expense of increased process size). On average, the SPEC2000

benchmarks exhibit an overhead increase of 6.6%.

We do not present any runtime information for DosBox and Notepad++, since both

are user-interactive. We did, however, manually confirm that all program features remain

functional after transformation, and no performance degradation is observable.

To separate the load-time overhead of the stirring phase from the rest of the runtime

overhead, Fig. 3.11 plots the stirring time against the code size. As expected, the graph

shows that the increase in load-times is roughly linear with respect to code sizes, requiring

1.37ms of load-time stirring per KB of code on average.

76

-10%

-5%

0%

5%

10%

15%

20%

gz
ip vp

r
m

cf

par
se

r
ga

p

bzip
2

tw
ol

f
m

es
a

ar
t

eq
uak

e

Figure 3.9. Runtime overheads for Windows binaries

-15%

-13%

-11%

-9%

-7%

-5%

-3%

-1%

1%

3%

5%

b
as

e6
4

ca
t

ck
su

m
co

m
m cp

ex
p

an
d

fa
ct

or

fo
ld

h
ea

d
jo

in ls

m
d

5s
u

m n
l

o
d

p
as

te

sh
a1

su
m

sh
a2

24
su

m

sh
a2

56
su

m

sh
a3

84
su

m

sh
a5

12
su

m

sh
re

d

sh
u

f
u

n
ex

p
an

d

w
c

Stirred Unstirred

Figure 3.10. Runtime overheads for Linux binaries

77

Code Section Size (KB)

L
o
a
d
-t
im

e
O
ve

rh
ea

d
(m

s)

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 900

Figure 3.11. Load-time overhead vs. code size

For the most part, none of our tests require manual intervention by the user; all are fully

automatic. The only exception to this is that IDA Pro’s disassembly of each SPEC2000

benchmark program contained exactly two identical errors due to a known bug in its control-

flow analysis heuristic. We manually corrected these two errors in each case before proceeding

with static rewriting.

Table 3.7 provides full file info for each binary.

78

3.3 Reins

Whereas Stir provides probabilistic safety guarantees on the binaries it protects (a brute force

attack would be extremely difficult but still possible), a more strictly enforced and machine

verifiable form of security is often desired. This section presents the first, purely static,

CISC native code rewriting and in-lining system (Reins) using the techniques described in

Section 3.1 combined with sandboxing and a machine verifiable verification system.

The rest of this section is structured as follows: An overview of the goals and assumptions

used in Reins is outlined in Section 3.3.1. Section 3.3.2 describes the techniques used to

constrain the control flow of an x86 binary, including the one used in Reins. The policy

specification language is described in Section 3.3.3. Section 3.3.4 details the machine verifiable

proof of safety provided with Reins, followed by an evaluation of Reins on real world binaries

in Section 3.3.5.

3.3.1 Overview

Assumptions. The goal of our system is to tame and secure malicious code in untrusted

binaries through static binary rewriting. Since a majority of malware threats currently target

Windows x86 platforms, we assume the binary code is running in Microsoft Windows OS

with x86 architecture. Protecting Linux binary code is not currently supported. (In fact,

rewriting Windows binary code is much more challenging than for Linux due to the much

greater diversity of Windows-targeting compilers. Extending Reins to support Linux binaries

is merely an engineering task that will be accomplished in the future. Stir supports Linux

binaries, supporting this claim.)

Our goal is to design a compiler-agnostic static binary rewriting technique, so we do not

impose any constraints on the code-producer; it could be any Windows platform compiler, or

even hand-written machine code. Debug information (e.g., PDB) is assumed to be unavailable.

79

Table 3.7. STIR Binary size overheads

File Sizes (K) Code Sizes (K) Process Sizes (K) Rewriting
Program Old New Increase Old New Increase Old New Increase Time
DOSBox 3640 6701 (+84%) 3015 3133 (+4%) 49.4mb 58.2mb (+18%) 167.3s
Notepad++ 1512 2415 (+60%) 840 920 (+10%) 13400 14800 (+10%) 74.1s
gzip 219 375 (+71%) 176 159 (-10%) 186mb 188mb (+1%) 17.8s
vpr 386 642 (+66%) 295 261 (-12%) 2.8mb 5.9mb (+110%) 19.4s
mcf 180 315 (+75%) 152 138 (-9%) 11.2mb 13.3mb (+19%) 15.3s
parser 294 510 (+73%) 242 220 (-9%) 23.4mb 26.4mb (+13%) 28.5s
gap 536 970 (+81%) 455 443 (-3%) 198mb 203mb (+2%) 52s
bzip2 193 329 (+70%) 156 138 (-12%) 184mb 186mb (+1%) 13.8s
twolf 438 749 (+71%) 356 317 (-11%) 2.2mb 5.7mb (+159%) 32.8s
mesa 846 1,469 (+74%) 754 637 (-16%) 9.3mb 15.2mb (+63%) 73.3s
art 192 335 (+74%) 160 146 (-9%) 4.2mb 6.4mb (+52%) 19.9s
equake 198 341 (+72%) 164 145 (-12%) 45mb 47mb (+4%) 19.4s

arch 21 35 (+ 64.67%) 10 11 (+ 3.90%) 4272 5796 (35%) 0.25s
base64 25 44 (+ 74.95%) 16 16 (+ 3.85%) 4276 5940 (38%) 0.36s
basename 17 30 (+ 75.19%) 10 10 (+ 4.20%) 4268 5792 (35%) 0.22s
cat 37 68 (+ 81.65%) 27 28 (+ 1.84%) 4288 6096 (42%) 0.58s
chcon 49 87 (+ 76.65%) 34 35 (+ 2.37%) 4444 6368 (43%) 0.80s
chgrp 45 80 (+ 76.54%) 31 32 (+ 2.99%) 4296 6108 (42%) 0.69s
chmod 41 74 (+ 79.15%) 29 30 (+ 3.61%) 4292 6100 (42%) 0.66s
chown 45 81 (+ 79.14%) 32 33 (+ 2.77%) 4296 6108 (42%) 0.73s
chroot 25 42 (+ 65.81%) 13 14 (+ 3.07%) 4276 5936 (38%) 0.31s
cksum 21 35 (+ 66.69%) 11 11 (+ 4.60%) 4272 5796 (35%) 0.25s
comm 25 42 (+ 65.81%) 13 14 (+ 2.57%) 4272 5932 (38%) 0.30s
cp 97 177 (+ 81.45%) 76 77 (+ 0.99%) 4700 6916 (47%) 1.61s
csplit 37 66 (+ 76.44%) 25 26 (+ 3.03%) 4288 6092 (42%) 0.55s
cut 29 52 (+ 78.98%) 19 20 (+ 4.80%) 4280 5948 (38%) 0.45s
date 49 85 (+ 72.70%) 32 33 (+ 2.63%) 4448 6112 (37%) 0.66s
dd 45 79 (+ 73.41%) 30 31 (+ 2.72%) 4444 6104 (37%) 0.66s
df 57 106 (+ 84.14%) 45 46 (+ 1.55%) 4308 6264 (45%) 0.97s
dir 94 165 (+ 76.02%) 67 69 (+ 2.72%) 4696 6772 (44%) 1.48s
dircolors 29 45 (+ 54.52%) 13 13 (+ 2.86%) 4276 5936 (38%) 0.28s
dirname 17 30 (+ 75.06%) 10 10 (+ 4.54%) 4268 5792 (35%) 0.23s
du 85 157 (+ 83.69%) 67 69 (+ 2.22%) 4336 6580 (51%) 1.44s
echo 21 35 (+ 64.35%) 10 11 (+ 4.81%) 4272 5796 (35%) 0.23s
env 17 30 (+ 75.88%) 10 10 (+ 4.26%) 4268 5792 (35%) 0.23s
expand 21 37 (+ 71.81%) 12 12 (+ 3.40%) 4272 5932 (38%) 0.28s
expr 29 51 (+ 74.69%) 18 19 (+ 3.62%) 4280 5944 (38%) 0.42s
factor 25 43 (+ 68.74%) 14 15 (+ 3.96%) 4276 5936 (38%) 0.33s
false 17 29 (+ 70.45%) 9 9 (+ 5.18%) 4268 5792 (35%) 0.20s
fmt 25 43 (+ 71.58%) 14 15 (+ 4.68%) 4308 4652 (8%) 0.33s
fold 21 36 (+ 70.86%) 12 12 (+ 4.02%) 4272 5932 (38%) 0.28s
groups 21 35 (+ 66.02%) 11 11 (+ 3.66%) 4272 5796 (35%) 0.23s
head 33 57 (+ 72.27%) 21 21 (+ 3.53%) 4284 5952 (38%) 0.48s
hostid 17 30 (+ 72.40%) 9 10 (+ 4.91%) 4268 5792 (35%) 0.22s
id 21 37 (+ 75.18%) 13 13 (+ 3.23%) 4416 6056 (37%) 0.30s
install 89 161 (+ 79.72%) 68 69 (+ 1.40%) 4700 6776 (44%) 2.31s
join 29 51 (+ 75.79%) 19 19 (+ 3.25%) 4280 5944 (38%) 0.42s
link 17 30 (+ 73.99%) 9 10 (+ 4.57%) 4268 5792 (35%) 0.22s
ln 37 64 (+ 72.26%) 24 24 (+ 3.03%) 4288 6092 (42%) 0.53s
logname 17 30 (+ 72.96%) 9 10 (+ 4.82%) 4268 5792 (35%) 0.22s
ls 94 165 (+ 76.02%) 67 69 (+ 2.72%) 4696 6772 (44%) 1.47s
md5sum 29 49 (+ 68.74%) 17 17 (+ 2.06%) 4280 5944 (38%) 0.38s
mkdir 37 66 (+ 78.00%) 26 26 (+ 2.90%) 4432 6216 (40%) 0.55s
mkfifo 21 35 (+ 67.19%) 11 11 (+ 4.16%) 4416 5920 (34%) 0.27s
mknod 25 43 (+ 69.17%) 14 15 (+ 4.40%) 4420 6060 (37%) 0.33s
mktemp 29 49 (+ 68.73%) 17 17 (+ 1.53%) 4428 5944 (34%) 0.41s
mv 89 165 (+ 84.16%) 72 73 (+ 1.24%) 4692 6772 (44%) 1.50s

80

Table 3.7 continued

File Sizes (K) Code Sizes (K) Process Sizes (K) Rewriting
Program Old New Increase Old New Increase Old New Increase Time
nice 21 36 (+ 69.16%) 11 12 (+ 3.99%) 4272 5932 (38%) 0.27s
nl 29 50 (+ 69.64%) 17 18 (+ 3.22%) 4280 5944 (38%) 0.38s
nohup 21 36 (+ 70.57%) 12 12 (+ 2.96%) 4272 5932 (38%) 0.28s
od 53 92 (+ 72.88%) 35 36 (+ 2.74%) 4304 6120 (42%) 0.75s
paste 21 36 (+ 71.37%) 12 12 (+ 3.48%) 4272 5932 (38%) 0.28s
pathchk 21 35 (+ 65.33%) 11 11 (+ 4.22%) 4272 5796 (35%) 0.25s
pinky 25 43 (+ 70.74%) 15 15 (+ 2.06%) 4276 5936 (38%) 0.34s
pr 49 87 (+ 76.45%) 34 35 (+ 3.82%) 4448 4796 (8%) 0.73s
printenv 17 30 (+ 73.15%) 9 10 (+ 5.15%) 4268 5792 (35%) 0.22s
printf 41 73 (+ 76.20%) 28 29 (+ 2.84%) 4292 6100 (42%) 0.59s
ptx 53 95 (+ 78.66%) 38 39 (+ 2.24%) 4304 6252 (45%) 0.80s
pwd 21 38 (+ 77.12%) 13 14 (+ 2.49%) 4272 5932 (38%) 0.30s
readlink 29 51 (+ 75.46%) 19 19 (+ 4.25%) 4280 5944 (38%) 0.44s
rm 45 80 (+ 77.05%) 31 32 (+ 2.76%) 4296 6108 (42%) 0.70s
rmdir 29 53 (+ 82.44%) 21 21 (+ 3.46%) 4280 5948 (38%) 0.45s
runcon 21 36 (+ 69.58%) 12 12 (+ 2.65%) 4416 6056 (37%) 0.28s
seq 33 59 (+ 78.74%) 23 23 (+ 2.93%) 4284 5952 (38%) 0.48s
sha1sum 29 52 (+ 78.93%) 20 20 (+ 1.82%) 4280 5948 (38%) 0.45s
sha224sum 37 66 (+ 77.56%) 26 26 (+ 1.33%) 4288 5960 (38%) 0.58s
sha256sum 37 66 (+ 77.56%) 26 26 (+ 1.33%) 4288 5960 (38%) 0.58s
sha384sum 89 172 (+ 92.51%) 79 80 (+ 0.50%) 4340 6068 (39%) 1.41s
sha512sum 89 172 (+ 92.51%) 79 80 (+ 0.50%) 4340 6068 (39%) 1.41s
shred 45 78 (+ 72.30%) 30 30 (+ 1.36%) 4444 6104 (37%) 0.64s
shuf 29 51 (+ 74.03%) 19 19 (+ 2.07%) 4428 5944 (34%) 0.42s
sleep 21 35 (+ 63.67%) 10 11 (+ 4.55%) 4268 5792 (35%) 0.25s
sort 73 130 (+ 76.42%) 52 54 (+ 3.15%) 4468 6408 (43%) 1.16s
split 45 81 (+ 78.87%) 32 33 (+ 1.94%) 4296 6108 (42%) 0.72s
stat 41 69 (+ 67.09%) 25 25 (+ 1.11%) 4436 6088 (37%) 0.53s
stty 53 88 (+ 65.33%) 31 32 (+ 3.02%) 4304 4800 (12%) 0.67s
su 30 50 (+ 64.97%) 18 18 (+ 0.40%) 4388 6032 (37%) 0.36s
sum 29 51 (+ 72.73%) 18 19 (+ 3.46%) 4280 5944 (38%) 0.41s
sync 17 30 (+ 72.08%) 9 10 (+ 5.02%) 4268 5792 (35%) 0.22s
tac 25 42 (+ 65.89%) 14 14 (+ 2.40%) 4284 5944 (38%) 0.31s
tail 49 89 (+ 79.42%) 35 37 (+ 3.88%) 4300 4800 (12%) 0.77s
tee 21 35 (+ 66.22%) 11 11 (+ 4.12%) 4272 5796 (35%) 0.25s
test 25 44 (+ 72.48%) 15 16 (+ 3.45%) 4268 5932 (38%) 0.34s
timeout 38 68 (+ 80.13%) 28 28 (+ 1.51%) 4288 6096 (42%) 0.59s
touch 41 70 (+ 70.13%) 26 26 (+ 2.21%) 4440 5964 (34%) 0.59s
tr 33 57 (+ 71.45%) 20 21 (+ 4.33%) 4292 5960 (38%) 0.44s
true 17 29 (+ 70.45%) 9 9 (+ 5.18%) 4268 5792 (35%) 0.20s
truncate 41 75 (+ 81.62%) 30 31 (+ 1.81%) 4292 6100 (42%) 0.64s
tsort 25 41 (+ 64.00%) 13 13 (+ 3.57%) 4276 5936 (38%) 0.30s
tty 17 30 (+ 72.27%) 9 10 (+ 4.41%) 4268 5792 (35%) 0.22s
uname 21 35 (+ 64.67%) 10 11 (+ 3.90%) 4272 5796 (35%) 0.23s
unexpand 21 38 (+ 76.45%) 13 13 (+ 3.25%) 4272 5932 (38%) 0.30s
uniq 29 48 (+ 65.82%) 16 16 (+ 2.45%) 4276 5940 (38%) 0.36s
unlink 17 30 (+ 73.51%) 9 10 (+ 4.55%) 4268 5792 (35%) 0.22s
uptime 5 9 (+ 75.97%) 1 2 (+ 90.97%) 2084 3596 (72%) 0.03s
users 21 35 (+ 63.91%) 10 11 (+ 4.26%) 4268 5792 (35%) 0.25s
vdir 94 165 (+ 76.01%) 67 69 (+ 2.72%) 4696 6772 (44%) 1.49s
wc 29 51 (+ 72.41%) 18 18 (+ 2.04%) 4280 5944 (38%) 0.41s
who 41 72 (+ 73.94%) 27 28 (+ 1.88%) 4288 6096 (42%) 0.58s
whoami 17 30 (+ 73.11%) 9 10 (+ 4.64%) 4268 5792 (35%) 0.22s
yes 17 30 (+ 72.99%) 9 10 (+ 5.05%) 4268 5792 (35%) 0.22s

median (+73.3%) (+2.8%) (+37.5%) 5.3s

81

Like all past native code IRM systems, our fully static approach rejects attempts at self-

modification; untrusted code may only implement runtime-generated code through standard

system API calls, such as dynamic link library (DLL) loading. Code-injection attacks are

therefore thwarted because the monitor ensures that any injected code is unreachable.

In addition, our goal is not to protect untrusted code from harming itself. Rather, we

prevent modules that may have been compromised (e.g., by a buffer overflow) from abusing

the system API to damage the file system or network, and from corrupting trusted modules

(e.g., system libraries) that may share the untrusted module’s address space. This confines

any damage to the untrusted module. This approach to security is known as sandboxing.

Threat Model. Attackers in our model submit arbitrary x86 binary code for execution

on victim systems. Neither attackers nor defenders are assumed to have kernel-level (ring 0)

privileges. Attacker-supplied code runs with user-level privileges, and must therefore leverage

kernel-supplied services to perform malicious actions, such as corrupting the file system or

accessing the network to divulge confidential data. The defender’s ability to thwart these

attacks stems from his ability to modify attacker-supplied code before it is executed. His

goal is therefore to reliably monitor and restrict access to security-relevant kernel services

without the aid of kernel modifications or application source code, and without impairing the

functionality of non-malicious code.

Attacks. The central challenge for any protection mechanism that constrains untrusted

native code is the problem of taming computed jumps, which dynamically compute control-

flow destinations at runtime and execute them. Attackers who manage to corrupt these

computations or the data underlying them can hijack the control-flow, potentially executing

arbitrary code.

Deciding whether any of these jumps might target an unsafe location at runtime requires

statically inferring the program register and memory state at arbitrary code points, which is

82

a well known undecidable problem. Since we are already placing guards around all computed

jumps, as outlined in Section 3.1, any added logic can be added to those guard instructions

to ensure proper control flow, as explained in Section 3.3.2.

System Overview

Given an untrusted binary, Reins automatically transforms it so that (1) all access to system

(and library) APIs are mediated by our policy enforcement library, and (2) all inter-module

control-flow transfers are restricted to published entry points of known libraries, preventing

execution of attacker-injected or misaligned code.

Reins rewriter first generates a conservative disassembly of the untrusted binary that

identifies all safe, non-branching flows (some of which might not actually be reachable)

but not unsafe ones. The resulting disassembly encodes a control-flow policy: instructions

not appearing in the disassembly are prohibited as computed jump targets. Generating

even this conservative disassembly of arbitrary x86 COTS binaries is challenging because

COTS code is typically aggressively interleaved with data, and contains significant portions

that are only reachable via computed jumps. To help overcome some of these challenges,

our rewriter is implemented as an IDAPython [Erdélyi, 2008] program that leverages the

considerable analysis power of the Hex-rays IDA Pro commercial disassembler to identify

function entrypoints and distinguish code from data in complex x86 binaries. While IDA Pro

is powerful, it is not perfect; it suffers numerous significant disassembly errors for almost all

production-level Windows binaries. Thus, our rewriting algorithm’s tolerance of disassembly

errors is critical for success.

Our system architecture is illustrated in Fig. 3.12. Untrusted binaries are first analyzed

and transformed into safe binaries by a binary rewriter, which enforces control-flow safety

and mediates all API calls. A separate verifier certifies that the rewritten binaries are policy-

adherent. Malicious binaries that defeat the rewriter’s analysis might result in rewritten

binaries that fail verification or that fail to execute properly, but never in policy violations.

83

pass

static rewriting

untrusted trusted
untrusted

binary
conservative
disassembler

control-flow
policy

binary
rewriter

rewritten
binary verifier

safe
binary

linker

policy-
enforcement

library

Figure 3.12. Reins architecture

3.3.2 Control-flow Safety

Our binary rewriting algorithm uses Software Fault Isolation (SFI) [Wahbe et al., 1993]

to constrain control-flows of untrusted code. It is based on an SFI approach pioneered by

PittSFIeld [McCamant and Morrisett, 2006], which partitions instruction sequences into c-byte

chunks. Chunk-spanning instructions and targets of jumps are moved to chunk boundaries

by padding the instruction stream with nop (no-operation) instructions. This serves three

purposes:

• When c is a power of 2, computed jumps can be efficiently confined to chunk boundaries

by guarding them with an instruction that dynamically clears the low-order bits of the

jump target.

• Co-locating guards and the instructions they guard within the same chunk prevents

circumvention of the guard by a computed jump. A chunk size of c = 16 suffices to contain

each guarded sequence in our system.

• Aligning all code to c-byte boundaries allows a simple, fall-through disassembler to reliably

discover all reachable instructions in rewritten programs, and verify that all computed

jumps are suitably guarded.

84

To allow trusted, unrewritten system libraries to safely coexist in the same address space

as chunk-aligned, rewritten binaries, we logically divide the virtual address space of each

untrusted process into low memory and high memory. Low memory addresses range from 0

to d−1 and may contain rewritten code and non-executable data. Higher memory addresses

may contain code sections of trusted libraries and arbitrary data sections (but not untrusted

code).

Partition point d is chosen to be a power of 2 so that a single guard instruction suffices

to confine untrusted computed jumps and other indirect control flow transfers to chunk

boundaries in low memory. For example, a jump that targets the address currently stored in

the eax register can be guarded by:

and eax, (d− c)

jmp eax

This clears both the low-order and high-order bits of the target address before jumping,

preventing an untrusted module from jumping directly to a system accessor function or to

a non-chunk boundary in its own code. The partitioning of virtual addresses into low and

high memory is feasible because rewritten code sections are generated by the rewriter and

can therefore be positioned in low memory, while trusted libraries are relocatable through

rebasing and can therefore be moved to high memory when necessary.

Preserving Good Flows. The above suffices to enforce control-flow safety, but it does not

preserve the behavior of most code containing computed jumps. This is a major deficiency of

many early SFI works, most of which can only be successfully applied to relatively small,

gcc-compiled programs that do not contain such jumps. More recent SFI works have only

been able to overcome this problem with the aid of source-level debug information.

Our source-free solution capitalizes on the fact that although disassemblers cannot generally

identify all jumps in arbitrary binary code, modern commercial disassemblers can heuristically

85

identify a superset of all the indirect jump targets (though not the jumps that target them)

in most binary code. This is enough information to implement a light-weight, binary lookup

table that the IRM can consult at runtime to dynamically detect and correct computed jump

targets before they are used. Our lookup table overwrites each old target with a tagged

pointer to its new location in the rewritten code. This solves the computed jump preservation

problem without the aid of source code. The details of the lookup table were described in

Section 3.1.

Table 3.8 shows the transformations used in Reins and how they differ from the original

transformation set shown in Table 3.4. When the original computed jump employs a memory

operand instead of a register, as shown in row 2 of Table 3.8, the rewritten code requires a

scratch register. Table 3.8 uses eax, which is caller-save by convention and is not used to

pass arguments by any calling convention supported by any mainstream x86 compiler [Fog,

2009].3

A particularly common form of computed jump deserves special note. Return instructions

(ret) jump to the address stored atop the stack (and optionally pop n additional bytes from

the stack afterward). These are guarded by the instruction given in row 3 of Table 3.8, which

masks the return address atop the stack to a low memory chunk boundary. Call instructions

are moved to the ends of chunks so that the return addresses they push onto the stack are

aligned to the start of the following chunk. Thus, the return guards have no effect upon

return addresses pushed by properly rewritten call instructions, but they block jumps to

corrupted return addresses that point to illegal destinations, such as the stack. This makes

all attacker-injected code unreachable.

Preserving API Calls. To allow untrusted code to safely access trusted library functions

in high memory, the rewriter permits one form of computed jump to remain unguarded:

3To support binaries that depend on preserving eax across computed jumps, the table’s sequence can be
extended with two instructions that save and restore eax. We did not encounter any programs that required
this, so our experiments use the table’s shorter sequence.

86

Table 3.8. Summary of x86 code transformations

Description Original code Rewritten code

Computed
jumps with
register
operands

call/jmp r cmp byte ptr [r], 0xF4

cmovz r, [r+1]
and r, (d− c)
call/jmp r

Computed
jumps with
memory
operands

call/jmp [m] mov eax, [m]

cmp byte ptr [eax], 0xF4

cmovz eax, [eax+1]

and eax, (d− c)
call/jmp eax

Returns ret (n) and [esp], (d− c)
ret (n)

IAT loads mov rm, [IAT:n] mov rm, offset tramp n

Tail-calls to
high memory

jmp [IAT:n] tramp n:
and [esp], (d− c)
jmp [IAT:n]

Callback
registrations

call/jmp [IAT:n] call/jmp tramp n

tramp n:
push 〈registration function address〉
call intermediary.reg callback

return tramp:

call intermediary.callback ret

Dynamic
linking

call [IAT:GPA] push offset tramp pool

call [IAT:GPA]

tramp pool:

.ALIGN c
call intermediary.dll out

.ALIGN c
call intermediary.dll out
...

87

Computed jumps whose operands directly reference the import address table (IAT) are

retained. Such jumps usually have the following form:

call [IAT:n]

where IAT is the section of the executable reserved for the IAT and n is an offset that identifies

the IAT entry. These jumps are safe since the entrypoint to the APIs is hooked by Reins to

ensure that they always target policy-compliant addresses at runtime.

Not all uses of the IAT have this simple form, however. Most x86-targeting compilers also

generate optimized code that caches IAT entries to registers, and uses the registers as jump

targets. To safely accommodate such calls, the rewriter identifies and modifies all instructions

that use IAT entries as data. An example of such an instruction is given in row 4 of Table 3.8.

For each such instruction, the rewriter replaces the IAT memory operand with the address

of a callee-specific trampoline chunk (in row 5) introduced to the rewritten code section (if

it doesn’t already exist). The trampoline chunk safely jumps to the trusted callee using a

direct IAT reference. Thus, any use of the replacement pointer as a jump target results in a

jump to the trampoline, which invokes the desired function.

This functionality along with dynamic linking and callbacks have already been described

in more detail in Section 3.1, as well as in the technical report [Hamlen et al., 2010].

Memory Safety. To prevent untrusted binaries from dynamically modifying code sections

or executing data sections as code, untrusted processes are executed with DEP enabled.

DEP-supporting operating systems allow memory pages to be marked non-executable (NX).

Attempts to execute code in NX pages result in runtime access violations. The binary rewriter

sets the NX bit on the pages of all low memory sections other than rewritten code sections

to prevent them from being executed as code. Thus, attacker-injected shell code in the stack

or other data memory regions cannot be executed.

88

User processes on Windows systems can set or unset the NX bit on memory pages within

their own address spaces, but this can only be accomplished via a small collection of system

API functions—e.g., VirtualProtect and VirtualAlloc. The rewriter replaces the IAT

entries of these functions with trusted wrapper functions that silently set the NX bit on all

pages in low memory other than rewritten code pages. The wrappers do not require any

elevated privileges; they simply access the real system API directly with modified arguments.

The real system functions are accessible to trusted libraries (but not untrusted libraries)

because they have separate IATs that are not subjected to our IAT hooking. Trusted libraries

can therefore use them to protect their local heap and stack pages from untrusted code that

executes in the same address space. Our API hooks prevent rewritten code from directly

accessing the page protection bits to reverse these effects. This prevents the rewritten code

from gaining unauthorized access to trusted memory.

Our memory safety enforcement strategy conservatively rejects untrusted, self-modifying

code. Such code is a mainstay of certain application domains, such as JIT-compilers. For

these domains we consider alternative technologies, such as certifying compilers and certified,

bytecode-level IRMs, to be a more appropriate means of protection. Self-modifying code is

increasingly rare in other domains, such as application installers, because it is incompatible

with DEP, incurs a high performance penalty, and tends to trigger conservative rejection by

antivirus products. No SFI system to our knowledge supports arbitrary self-modifying code.

Reins Instrumentation Examples. The instrumentation examples in Figures 3.1 and

3.2 have been updated according to the specifications of Reins in Figures 3.13 and 3.14.

Figure 3.13 implements a register-indirect call to a system API function (MBTWC). This

differs from Figure 3.1 because a mask is introduced in front of the call instruction to

support the Reins security policy. Since this is the case, the mov instruction has to point to

trampoline code, which performs a safe jump to the same destination. This ensures that the

89

Original:
.text:00499345 8B 35 FC B5 4D 00 mov esi, [4DB5FCh] ; IAT:MBTWC

. . .

.text:00499366 FF D6 call esi

Rewritten:
.tnew:0059DBF0 BE 90 12 5D 00 mov esi, offset loc 5D1290

. . .

.tnew:0059DC15 80 3E F4 cmp byte ptr [esi], F4h

.tnew:0059DC18 0F 44 76 01 cmovz esi, [esi+1]

.tnew:0059DC1C 90 90 90 90 nop (×4)

.tnew:0059DC20 81 E6 F0 FF FF 0F and esi, 0FFFFFF0h

.tnew:0059DC26 90 (×8) nop (×8)

.tnew:0059DC2E FF D6 call esi

. . .

.tnew:005D1290 81 24 24 F0 FF FF 0F and dword ptr [esp], 0FFFFFF0h

.tnew:005D1297 FF 25 FC B5 4D 00 jmp [4DB5FCh] ; IAT:MBTWC

Figure 3.13. Reins exmaple of a register-indirect system call

mask instruction does not ruin the imported function address while making the call provably

safe to execute.

Figure 3.14 needs less modification than Figure 3.13. The addition of the mask instruction

and chunk alignment satisfy the requirements of Reins, allowing for safe execution.

3.3.3 Policy Specification

To quickly and easily demonstrate the Reins’ effectiveness for enforcing a wide class of

safety policies, we developed a monitor synthesizer that automatically synthesizes the policy

enforcement portion of the intermediary library from a declarative policy specification. Policy

specifications consist of: (1) the module names and signatures of all security-relevant API

functions to be monitored, (2) a description of the runtime argument values that, when passed

to these API functions, constitute a security-relevant event, and (3) a regular expression over

this alphabet of events whose prefix-closure is the language of permissible traces (i.e., event

sequences).

90

Original:
.text:00408495 FF 24 85 CC 8A 40 00 jmp ds:off 408ACC[eax*4]

. . .

.text:00408881 3D 8C 8A 4D 00 00 cmp byte 4D8A8C, 0

.text:00408888 74 13 jz short loc 40889D

.text:0040888A 84 C9 test cl, cl

.text:0040888C 74 0F jz short loc 40889D

. . .

.text:00408ACC 81 88 40 00 dd offset loc 408881

.text:00408AD0 . . . (other code pointers)

Rewritten:
.text:00408881 F4 60 3A 4F 00 db F4, loc 4F3A60

.tnew:004F33B4 8B 04 85 CC 8A 40 00 mov eax, ds:dword 408ACC[eax*4]

.tnew:004F33BB 80 38 F4 cmp byte ptr [eax], F4h

.tnew:004F33BE 90 90 nop (×2)

.tnew:004F33C0 0F 44 40 01 cmovz eax, [eax+1]

.tnew:004F33C4 25 F0 FF FF 0F and eax, 0FFFFFF0h

.tnew:004F33C9 FF E0 jmp eax

. . .

.tnew:004F3A60 3D 8C 8A 4D 00 cmp byte 4D8A8C, 0

.tnew:004F3A67 74 27 jz short loc 4F3A90

.tnew:004F3A69 84 C9 test cl, cl

.tnew:004F3A6B 74 22 jz short loc 4F3A90

Figure 3.14. Reins example using a jump table

1 function conn = ws2_32:: connect(
2 SOCKET, struct sockaddr_in ∗, int) −> int;
3 function cfile = kernel32:: CreateFileW(
4 LPCWSTR, DWORD, DWORD, LPSECURITY_ATTRIBUTES,
5 DWORD, DWORD, HANDLE) −> HANDLE WINAPI;

7 event e1 = conn(_, {sin_port=25}, _) −> 0;
8 event e2 = cfile(”∗. exe”, _, _, _, _, _, _) −> _;

10 policy = e1∗ + e2∗;

Figure 3.15. A policy that prohibits applications from both sending emails and creating
.exe files

91

1 function cfile = kernel32:: CreateFileW(
2 LPCWSTR, DWORD, DWORD, LPSECURITY_ATTRIBUTES,
3 DWORD, DWORD, HANDLE) −> HANDLE WINAPI;
4 function exec = kernel32:: WinExec(LPCSTR, UINT)
5 −> UINT WINAPI;

7 event e1 = cfile(”∗. exe”, _, _, _, _, _, _) −> _;
8 event e2 = cfile(”∗. msi”, _, _, _, _, _, _) −> _;
9 event e3 = cfile(”∗. bat”, _, _, _, _, _, _) −> _;

10 event e4 = exec(”explorer”, _) −> _;

12 policy = ;

Figure 3.16. Eureka email policy

To illustrate, Fig. 3.15 shows a sample policy. Lines 1–5 are signatures of two API

functions exported by Windows system libraries: one for connecting to the network and one

for creating files. Lines 7–8 identify network-connects as security-relevant when the outgoing

port number is 25 (i.e., an SMTP email connection) and the return value is 0 (i.e., the

operation was successful), and file-creations as security-relevant when the filename’s extension

is .exe. Underscores denote arguments whose values are not security-relevant. Finally, line 10

defines traces that include at most one kind of event (but not both) as permissible. Here, *

denotes finite or infinite repetition and + denotes regular alternation.

Currently our synthesizer implementation supports dynamic value tests that include string

wildcard matching, integer equality and inequality tests, and conjunctions of these tests on

fields within a structure. This collection was inspired by the work in [Jones and Hamlen, 2010]

that has identified these as sufficient to enforce an array of interesting, practical policies with

other IRM systems. More extensive collections of dynamic tests are important for supporting

more expressive policy languages, but is reserved as a subject for future work.

From this specification, the monitor synthesizer generates the C source code of a policy

enforcement library that uses IAT hooking to reroute calls to connect and CreateFileW

through trusted guard functions. The guard functions implement the desired policy as a

92

determinized security automaton [Alpern and Schneider, 1986]—a finite state automaton that

accepts the prefix-closure of the policy language in line 10. If the untrusted code attempts to

exhibit a prohibited trace, the monitor rejects by halting the process.

3.3.4 Verification

The disassembler, rewriter, and lookup table logic all remain completely untrusted by our

architecture. Instead, a small, independent verifier certifies that rewritten programs cannot

circumvent the IAT and are therefore policy-adherent. The verifier does not prove that the

rewriting process is behavior-preserving. This reduced obligation greatly simplifies the verifier

relative to the rewriter, resulting in a small TCB.

The verification algorithm performs a simple fall-through disassembly of each executable

section in the untrusted binary and checks the following purely syntactic properties:

1. All executable sections reside in low memory.

2. All exported symbols (including the program entrypoint) target low memory chunk

boundaries.

3. No disassembled instruction spans a chunk boundary.

4. Static branches target low memory chunk boundaries.

5. All computed jump instructions that do not reference the IAT are immediately preceded

by the appropriate and-masking instruction from Table 3.8 in the same chunk.

6. Computed jumps that read the IAT access a properly aligned IAT entry, and are

preceded by an and-mask of the return address. (Call instructions must end on a chunk

boundary rather than requiring a mask, since they push their own return addresses.)

7. There are no trap instructions (e.g., int or syscall).

93

These properties ensure that any unaligned instruction sequences concealed within un-

trusted, executable sections are not reachable at runtime. This allows the verifier to limit its

attention to a fall-through disassembly of executable sections, avoiding any reliance upon

the incomplete code-discovery heuristics needed to produce full disassemblies of arbitrary

(non-chunk-aligned) binaries.

3.3.5 Evaluation

We have developed an implementation of Reins for the 32-bit version of Microsoft Windows

XP/Vista/7/8. The implementation consists of four components: (1) a rewriter, (2) a verifier,

(3) an API hooking utility, and (4) an intermediary library that handles dynamic linking

and callbacks. Rather than using a single, static API hooking utility, we implemented an

automated monitor synthesizer that generates API hooks and wrappers from a declarative

policy specification. This is discussed in §3.4.3. None of the components require elevated

privileges. While the implementation is Windows-specific, we believe the general approach is

applicable to any modern OS that supports DEP technology.

The rewriter transforms Windows Portable Executable (PE) files in accordance with

the algorithm in §3.3.2. Its implementation consists of about 1,300 lines of IDA Python

scripting code that executes atop the Hex-rays IDA Pro 6.1 disassembler. One of IDA Pro’s

primary uses is as a malware reverse engineering and de-obfuscating tool, and it boasts many

powerful code analyses that heuristically recover program structural information without

assistance from a code-producer. These analyses are leveraged by our system to automatically

distinguish code from data and identify function entrypoints to facilitate rewriting.

In contrast to the significant complexity of the rewriting infrastructure, the verifier’s

implementation consists of 1,500 lines of 80-column OCaml code that uses no external

libraries or utilities (other than the built-in OCaml standard libraries). Of these 1,500 lines,

approximately 1,000 are devoted to x86 instruction decoding, 300 to PE binary parsing,

94

and 200 to the actual verification algorithm in §3.3.4. The decoder handles the entire x86

instruction set, including floating point, MMX, and all SSE extensions documented in the

Intel and AMD manuals. This is necessary for practical testing since production-level binaries

frequently contain at least some exotic instructions. No code is shared between the verifier

and rewriter.

The intermediary library consists of approximately 500 lines of C and hand-written,

in-lined assembly code that facilitates callbacks and dynamic linking. An additional 150-line

configuration file itemizes all trusted callback registration functions exported by Windows

libraries used by the test programs. We supported all callback registration functions exported

by comdlg32, gdi32, kernel32, msvcrt, and user32. Information about exports from these

libraries was obtained by examining the C header files for each library and identifying function

pointer types in exported function prototypes.

Our API hooking utility replaces the IAT entries of all monitored system functions

imported by rewritten PE files with the addresses of trusted monitor functions. It also adds

the intermediary library to the PE’s list of imported modules. To avoid expanding the size

of the PE header (which could shift the positions of the binary sections that follow it), our

utility simply changes the library name kernel32.dll in the import section to the name of

our intermediary library. This causes the system loader to draw all IAT entries previously

imported from kernel32.dll from the intermediary library instead. The intermediary library

exports all kernel32 symbols as forwards to the real kernel32, except for security-relevant

functions, which it exports as local replacements. Our intermediary library thus doubles as

the policy enforcement library.

Rewriting Effectiveness

We tested Reins with a set of binary programs listed in Tables 3.9 and 3.10. Table 3.9

lists results for some of the benchmarks from the SPEC 2000 benchmark suite. Table 3.10

95

Table 3.9. Experimental results: SPEC benchmarks

Size Increase
Binary
Program File (%) Code (%) Process (%)

Rewriting
Time (s)

Verification
Time (ms)

gzip 103 31 0 12.5 142
vpr 94 26 22 14.4 168
mcf 108 32 2 10.5 84
parser 108 34 1 17.4 94
gap 118 42 0 31.2 245
bzip2 102 29 0 10.8 91
twolf 99 24 27 25.3 245
mesa 104 20 6 42.4 554
art 108 33 14 12.4 145
equake 103 27 1 12.3 165
median +103.5% +30.0% +1.5% 13.45s 155ms

lists results for some other applications, including GUI programs that include event- and

callback-driven code, and malware samples that require enforcement of higher-level security

policies to prevent malicious behavior. In both tables, columns 2–3 report the percentage

increase of the file size, code segment, and process size, respectively; and columns 5–6 report

the time taken for rewriting and verification, respectively. All experiments were performed on

a 3.4GHz quad-processor AMD Phenom II X4 965 with 4GB of memory running Windows

XP Professional and MinGW 5.1.6.

File sizes double on average after rewriting for benign applications, while malware shows a

smaller increase of about 40%. Code segment sizes increase by a bit less than half for benign

applications, and a bit more than half for malware. Process sizes typically increase by about

15% for benign applications, but almost 90% for malware. The rewriting speed is about 32s

per megabyte of code, while verification is much faster—taking only about 0.4s per megabyte

of code on average.

The applications in Tables 3.10 and 3.9 were chosen to be reasonably large and realistic yet

relatively self-contained. Each includes most or all of the difficult Windows binary features

96

Table 3.10. Experimental results: Applications and malware

Size Increase
Binary
Program File (%) Code (%) Process (%)

Rewriting
Time (s)

Verification
Time (ms)

notepad 60 31 20 1.5 18
Eureka 32 53 15 17.9 225
DOSBox 112 38 0 137.1 2394
PhotoView 87 57 4 3.5 49
BezRender 128 55 3 4.1 55
gcc 100 37 15 3.0 36
g++ 100 41 16 3.0 37
jar 101 34 12 2.4 27
objcopy 122 49 23 26.9 354
size 103 50 116 16.3 20
strings 122 50 42 21.5 283
as 99 49 2 30.4 397
ar 121 50 4 21.8 285
whetstone 88 21 54 0.6 6
linpack 57 19) 31 0.6 6
pi ccs5 125 28 1 5.8 66
md5 25 48 149 0.6 5
median 100% 41% 15% 4.1s 49ms

Virut.a (rejected) − −
Hidrag.a (rejected) − −
Vesic.a 75 34 108 0.3 194
Sinn.1396 37 115 93 0.2 75
Spreder.a 14 66 17 3.0 72
median 37% 66% 93% 0.3s 75ms

97

discussed in Chapter 1, but statically or dynamically links to not more than about five standard

system libraries and local modules. This helped keep the engineering task reasonable for

research purpose. Supporting less self-contained applications requires manually specifying a

trusted interface for each new trusted system library, which can become a significant task

when the number of trusted libraries is large. For example, Microsoft Office consists of over

100 different local modules that statically link to at least 50 different system libraries, and that

dynamically link to innumerable other modules via COM services. Supporting such sprawling

applications essentially requires huge amount of engineering effort to supporting the entire

Windows runtime, which is not something we are prepared to undertake for research purpose.

Therefore, Tables 3.10 and 3.9 are limited to mid-size applications that are nonetheless too

complex to be supported by any past SFI/IRM system without access to source code or

debugging information.

Performance Overhead

We also measured the performance of the non-interactive programs in Tables 3.9 and 3.10. The

runtimes of the rewritten programs as a percentage of the runtimes of the originals is presented

in Fig. 3.17. The median overhead is 2.4%, and the maximum is approximately 15%. As with

other similar works [Abadi et al., 2009, Ford and Cox, 2008], the runtimes of a few programs

decrease after rewriting. This effect is primarily due to improved instruction alignment

introduced by the rewriting algorithm, which improves the effectiveness of instruction look-

ahead and decoding pipelining optimizations implemented by modern processors. While

the net effect is marginal, it is enough to offset the overhead introduced by the rest of the

protection system in these cases, resulting in safe binaries whose runtimes are as fast as or

faster than the originals.

The experiments reported in Tables 3.9 and 3.10 enforced only the core access control

policies required to prevent control-flow and memory safety violations. Case studies that

showcase the framework’s capacity to enforce more useful policies are described in §3.3.6.

98

-10%

-5%

0%

5%

10%

15%

20%

gz
ip vp

r
m

cf ga
p

bzip
2
tw

ol
f
m

es
a

ar
t

eq
uak

e gc
c
g+

+ ja
r

ob
jco

py siz
e

st
rin

gs as ar

whet
st

on
e

lin
pac

k

pi cc
s5

m
d5

Figure 3.17. Runtimes of rewritten binaries relative to originals

3.3.6 Case Studies

An Email Client

As a more in-depth case-study, we used the rewriting system and monitor synthesizer to

enforce two policies on the Eureka 2.2q email client. Eureka is a fully featured, commercial

POP client for 32-bit Windows that features a graphical user interface, email filtering, and

support for launching executable attachments as separate processes. It is 1.61MB in size

and includes all of the binary features discussed in earlier sections, including Windows event

callbacks and dynamic linking. It statically links to eight trusted system libraries.

Without manual assistance, IDA automatically recovers enough structural information

from the Eureka binary to facilitate the full binary rewriting algorithm presented in §3.3.2.

Rewriting requires 18s and automated verification of the rewritten binary requires 0.2s.

After rewriting, we synthesized an intermediary library that enforces the access control

policy given in Fig. 3.16, which prohibits creation of files whose filename extensions are .exe,

.msi, or .bat, and which prevents the application from launching Windows Explorer as an

external process. (The empty policy expression in line 12 prohibits all events defined in the

99

specification.) We also enforced the policy in Fig. 3.15, but with a policy expression that

limits clients to at most 100 outgoing SMTP connections per run. Such a policy might be

used to protect against malware infections that hijack email applications for propagation and

spamming.

After rewriting, we systematically tested all program features and could not detect any

performance degradation or changes to any policy-permitted behaviors. All program features

unrelated to the policy remain functional. However, saving or launching an email attachment

with any of the policy-prohibited filename extensions causes immediate termination of the

program by the monitor. Likewise, using any program operation that attempts to open an

attachment using Windows Explorer, or sending more than 100 email messages, terminates

the process. The rewritten binary therefore correctly enforces the desired policy without

impairing any of the application’s other features.

An Emulator

DOSBox is a large DOS emulator with over 16 million downloads on SourceForge. Though

its source code is available, it was not used during the experiment. The pre-compiled binary

is 3.6MB, and like Eureka, includes all the difficult binary features discussed earlier.

We enforced several policies that prohibit access to portions of the file system based

on filename string and access mode. We then used the rewritten emulator to install and

use several DOS applications, including the games Street Fighter 2 and Capture the Flag.

Installation of these applications requires considerable processing time, and is the basis for

the timing statistics reported in Table 3.10. As in the previous experiment, no performance

degradation or behavioral changes are observable in the rewritten application, except that

policy-violating behaviors are correctly prohibited.

100

Malware

To analyze the framework’s treatment of real-world malware, we tested Reins on five malware

samples obtained from a public malware research repository: Virut.a, Hidrag.a, Vesic.a,

Sinn.1396, and Spreder.a. While these malware variants are well-known and therefore

preventable by conventional signature-matching antivirus defenses, the results indicate how

our system reacts to binaries intentionally crafted to defeat disassembly tools and other

static analyses. Each is statically or dynamically rejected by the protection system at various

different stages, detailed below.

Virut and Hidrag are both rejected at rewriting time when the rewriter encounters

misaligned static branches that target the interior of another instruction. While supporting

instruction aliasing due to misaligned computed jumps is useful for tolerating disassembly

errors, misaligned static jumps only appear in obfuscated malware to our knowledge, and are

therefore conservatively rejected.

Vesic and Sinn are Win32 viruses that propagate by appending themselves to executable

files on the C: volume. They do not use packing or obfuscation, making them good candidates

for testing our framework’s ability to detect malicious behavior rather than just suspicious

binary syntax. With a fully permissive policy, our framework successfully rewrites and verifies

both malware binaries; running the rewritten binaries preserves their original (malicious)

behaviors. However, enforcing the policy in Fig. 3.16 results in premature termination of

infected processes when they attempt to propagate by writing to executable files. We also

successfully enforced a second policy that prohibits the creation of system registry keys,

which Vesic uses to insert itself into the boot process of the system. These effectively protect

the infected system before any damage results.

Spreder has a slightly different propagation strategy that searches for executable files in

the shared directory of the Kazaa file-sharing peer-to-peer client. We successfully enforced a

101

policy that prohibits use of the FindFirstFileA system API function to search for executable

files in this location. This results in immediate termination of infected processes.

3.4 Intermediary Library

Section 3.1.4 explains that in order to preserve the semantics of policy-permitted system

calls, the rewriting algorithm must provide a safe mechanism to exit the sandbox, and this

mechanism must accommodate the myriad system call forms exhibited by real-world COTS

binaries. In addition, dynamically linked system calls are calculated at runtime and therefore

we implement a mechanism to support dynamic interception or some good control flows to

trusted libraries will not be preserved as they will be mistakenly treated as untrusted. And

finally, since we are mediating all system calls, any security policy that we enforce on system

calls must also mediate dynamic library calls. All of these tasks are accomplished by the

intermediary library, whose implementation details are detailed in this section.

3.4.1 Callback Handling

Section 3.1.4 outlines the methods used to handle callback instructions, but omits some

details of callback handling. These details are covered in this section. Figure 3.18 shows a

normal execution of a call to msvcrt::atexit, which is a libc callback registration function

whose single code pointer argument is later called by the system at process exit.

The execution of an atexit callback proceeds as follow:

1. A callback address (the location of a program termination cleanup method within the

binary) is pushed on to the stack as a parameter to atexit and the call to atexit is

executed.

2. The callback address is stored for later use and the execution of atexit proceeds until

it returns.

102

msvcrt.dll:

atexit:

…

retn

exit:

call atexit_callback

…

<terminate program>

.text:

1 push atexit_callback

call atexit

…

call exit

atexit_callback:

…

retn

2

3

4
5

Figure 3.18. Example of .atexit callback

3. The binary continues executing, and when it needs to terminate, it calls msvcrt::exit.

4. exit calls the previously stored callback address, executing the binary’s termination

cleanup method.

5. The callback method execution finishes, returns to exit, which finishes executing and

terminates the binary.

This is a rather simple example of a callback. Both the callback storage strategy and

the circumstances of callback invocation vary from callback to callback. For example,

initterm receives a length-2 array of callback pointers instead of a single callback pointer.

CreateWindow doesn’t push a callback address onto the stack but rather a pointer to a

standard structure with a callback address within it. That structure has to be parsed in

order for this type of callback to be supported.

Figure 3.19 displays the control flow of a rewritten program that executes a call to

msvcrt::atexit. The first step in supporting callbacks is recognizing all of them during

the rewriting process and replacing each branch to a callback instruction with a branch

103

push new_atexit_cb

call atexit_chunk

…

call [IAT:exit]

 Rewritten Binary

msvcrt.dll:
callback_reg()

callback_in()

callback_out()

ae_stub:
call callback_in

Intermediary
Library

atexit:

…

retn

exit:

…

call ae_stub

…

<terminate>

atexit_cb:

F4 [new_atexit_cb]

.told:

.tnew:

new_atexit_cb:

…

retn

atexit_chunk:

push [IAT:atexit]

call callback_reg

returnhook:

call callback_out

LOW
MEMORY

HIGH
MEMORY

1

2 3

4

7

6

9

8

11

5

10

Figure 3.19. Rewritten .atexit callback

104

Table 3.11. Callback Trampoline Chunk Redirection

Original code Rewritten code

call [IAT:atexit] call offset trampoline atexit

trampoline atexit:

push [IAT:atexit]

call [IAT:callback reg]

to a callback trampoline chunk at the end of the rewritten binary. Table 3.11 shows this

transformation for the call to atexit.

With the transformations described in Table 3.11, the redirected atexit callback proceeds

as follows:

1. The program executes until it reaches the call to atexit which has been replaced with

a call to atexit chunk.

2. atexit chunk pushes the address of atexit onto the stack and then calls a callback

registration function, callback reg.

3. The callback registration function finds the argument on the stack that is a callback

address, replaces it with the address of a trampoline within the intermediary library

that will only be used by atexit, pops the address of atexit off the stack and passes

execution to it.

4. atexit executes until it returns, passing execution back to the original binary.

5. The binary continues executing, and when it needs to terminate, it calls msvcrt::exit.

6. The exit method proceeds until it needs to call the callback function, and passes

execution to the trampoline in the intermediary library.

7. The trampoline passes execution to callback in.

105

8. callback in replaces the return address on the stack with the address of returnhook,

creates a new fiber (in the case of the Windows implementation) for the callback code,

since the untrusted callback code could potentially corrupt the stack of the trusted

system call. callback in executes the new fiber.

9. Execution of the callback procedure takes place in the new fiber until it returns, at

which point the return branches to returnhook.

10. returnhook passes execution to callback out through the IAT.

11. callback out returns execution to the parent fiber, deletes the callback fiber, and

passes execution back to exit, which terminates the binary.

Algorithm 5: Callback Registration

// Stores known callback function signatures

trusted cbs []← load signatures() ;

callback reg(regfunc) begin

id ← regfunc id(regfunc) ;

if trusted cbs[id].type = PTR TO CALLBACK then

fix callback(trusted cbs[id].callback location) ;

else if trusted cbs[id].type = PTR TO CALLBACK ARRAY then

forall callback in trusted cbs[id].callback location do

fix callback(callback) ;

else if trusted cbs[id].type = PTR TO STRUCT then

forall callback in parse struct(trusted cbs[id].callback location) do

fix callback(callback) ;

else

fail(”Unknown Callback”) ;

jump (regfunc) ;

end

106

Algorithm 5 shows pseudocode for callback reg(). The main functionality of callback reg

is to determine the function signature of the callback, find the location of the callback address

or addresses on the stack, and redirect them using the function fix callback. The intermediary

library generates a static number of callback stubs (located within the intermediary library)

when it is loaded that fix callback uses for redirection. Each time fix callback is called to

redirect a callback address, it stores the address of the new callback code located in .tnew in

one of the stubs, and then replaces the callback on the stack with the address of callback in.

Finally, callback reg calls the trusted system call stored in regfunc.

It is worth mentioning that this method of handling callbacks is not necessary for all

rewriters. This callback handling methodology is necessary for Reins, but Stir does not

have a separation of memory or use masks, and therefore doesn’t need to use callback stubs,

callback in or callback out to preserve functionality since the system call can directly branch

to the callback rather than going through the intermediary library. Instead, callback reg can

directly replace the callback addresses on the stack for Stir. However, since the library is

trusted and the binary is not, this method of system call interception preserves only good

control flows, and and allows our rewriting framework to support the myriad callbacks that

virtually all Windows binaries require for correct execution.

3.4.2 Dynamic Library Loading

Libraries and functions can be loaded at runtime using different dynamic approaches, such as

calling LoadLibrary, GetProcAddress, or implementing code that executes the functionality

of GetProcAddress at runtime. For a rewriter like Stir, this does not cause any problem since

the address of a loaded function is stored in a register, called, or jumped to at runtime, the

system call executes and returns. Figure 3.20 shows the execution of a call to GetProcAddress

in a normal binary.

When GetProcAddress executes, the module and function name of the required system

call are passed as parameters, and the address is returned in eax. In most cases, that

107

kernel32.dll:

GetProcAddress():

…

retn

.text:

1

push “msvcrt”

push “strstr”

call GetProcAddress

…

call eax

…
msvcrt.dll:

strstr():

…

retn

2

3

4

Figure 3.20. Example of GetProcAddress() Execution

instruction is immediately followed by call eax. In Reins, the instruction call eax is

preceded by a mask instruction which will break the execution of the program if eax holds a

high memory (i.e., trusted) address at this point. Therefore, some mechanism is needed that

can target dynamically loaded library functions through low-memory trampolines.

It should also be noted that when this occurs in Stir, if the function pointer that

GetProcAddress returns contains a callback, it will not be caught by any of the instrumen-

tation we have discussed. Any solution for dynamic loading must solve this problem as

well.

To handle this, the rewriter needs to redirect the call to GetProcAddress to a wrapper

function that returns an appropriate address that is already a low-memory chunk boundary

so that it won’t be sanitized to a different address by the mask instruction. Figure 3.21 shows

the control flow of the program after rewriting, with proper handling of GetProcAddress.

The first step for handling GetProcAddress is to have addresses ready for GetProcAddress

to return that are within low memory. This is accomplished by estimating the number of

unique calls to GetProcAddress within the binary and attaching a trampoline chunk to

108

Rewritten Binary

msvcrt.dll:

SafeGPA:
call GPA

addr[++top] = eax

ret user_tramp_1

int_tramp_1:
jmp addr[1]

Intermediary
Library

strstr:

…

retn

push “msvcrt”

push “strstr”

call SafeGPA

…

cmp [eax], 0xF4

cmovz eax, [eax+1]

and eax, 0x0FFFFFF0

call eax

.tnew:

user_tramp_1:

jmp int_tramp_1

LOW
MEMORY

HIGH
MEMORY

kernel32.dll:

GPA:

…

retn

1

2

3
4

5

6
7

Figure 3.21. Rewritten GetProcAddress() Execution

the end of the binary for each one. Each of these trampolines contains a direct jump to a

trampoline within the intermediary library. We then redirect all branches to GetProcAddress

to a trusted wrapper function, SafeGetProcAddress, in our intermediary library. This wrapper

function stores the library function address in the intermediary library trampoline, and then

returns the address of the associated user code trampoline.

When the call eax instruction occurs and gets masked, the mask doesn’t modify any bits

since the trampoline is within low memory, and the binary still passes verification according

to our security policy.

Two outlier cases must also be handled in order to support all binaries. First, if

GetProcAddress is called with GetProcAddress as the argument, SafeGetProcAddress

must return a trampoline address that points to SafeGetProcAddress rather than to

GetProcAddress; otherwise when it is used, the resulting call to GetProcAddress would not

use a trampoline and execution would halt. This may seem like a trivial outlier since no

109

program should need to ask GetProcAddress to locate GetProcAddress itself. Nevertheless,

many COTS binaries we studied exhibit this peculiar behavior.

A few binaries we studied recreate the semantics of GetProcAddress within the binary

code, and therefore miss the measures we have put in place to facilitate dynamic loading.

To handle this problem, we currently manually detect the issue and modify the instruction

sequence to instead use SafeGetProcAddress. Future work should consider automating some

of these cases through a heuristic static analysis.

3.4.3 Policy Implementation

The intermediary library is responsible for callback registration, callbacks, and dynamically

linking, forming a foundation for mediating all security-relevant system functions. Thus,

our intermediary library also contains the IRM logic that enforces system call policies. The

policy specification language for Reins consists of three components: function definitions,

event definitions based on defined functions, and a policy definition of permissible event

combinations.

Function definitions are simply function signatures that can be matched to all references

made to the system call when the binary is rewritten so that the appropriate callback

chunks can be created within the binary, and wrapper functions can be created within the

intermediary library.

Event definitions specify which arguments constitute security events. Arguments can be

supplied as regular expressions (e.g., “*.exe”), conditionals (e.g., x < 30), specific values, or

not at all to match all values.

Finally, a policy of permissible event sequences is specified as a regular expression. Using

these three components, when the intermediary library is compiled, the policy is used to

create a deterministic finite automata (DFA) and assign security states to each state of the

DFA. A global security state is then stored in the intermediary library, and updated by every

security relevant event.

110

e2

e1

e2

e1

e1

e2

S0

S1

S2

fail

Figure 3.22. Policy DFA Example

To demonstrate the policy synthesis process please refer to Figure 3.15. This policy is

first converted into a DFA, which is displayed in Figure 3.22.

The DFA in Figure 3.22 is converted to wrapper functions, which control the security

state in the intermediary library. Algorithm 6 shows the wrapper code that is produced to

protect the executable.

111

Algorithm 6: Security Policy Wrapper Functions

// Security State

state ← 0 ;
CreateFileW wrapper(name) begin

if name.Contains(“.exe”) then
if state = 0 then

state ← 1 ;

else if state = 2 then
fail(“Security Policy Violated”) ;

CreateFileW(name) ;
end
connect wrapper(a, sock) begin

if sock = 25 then
if state = 0 then

state ← 2 ;

else if state = 1 then
fail(“Security Policy Violated”) ;

connect(a, sock) ;
end

CHAPTER 4

REWRITER TRANSPARENCY

The preceding chapters explicate the design and implementation of a COTS native code

rewriting system that provably enforces safety policies, including control-flow and memory

safety policies. Although the safety of rewritten programs (i.e., soundness) is formally machine-

verified, preservation of the behaviors of policy-adherent programs (i.e., transparency) is

not.

This chapter examines the latter challenge in the context of machine-verifying transparency

of IRMs implemented in a type-safe bytecode language. While our transparency verification

of type-safe IRMs cannot yet be applied to native code IRMs, it is a first step toward such

verification.

This chapter presents the design and implementation of the first automated transparency-

verifier for IRMs. Our main contributions are as follows:

• We show how prior work on safety-verifiers based on model-checking [Hamlen et al.,

2012, Sridhar and Hamlen, 2010] can be extended in a natural way to additionally

verify IRM transparency.

• We demonstrate how an untrusted, external invariant generator can be leveraged to

reduce the state-exploration burden and afford the verifier a higher degree of generality

than the more specialized rewriting systems it checks.

• Prolog unification [Shapiro and Sterling, 1994] and Constraint Logic Programming

(CLP) [Jaffar and Maher, 1994] is leveraged to keep the verifier implementation simple

and closely tied to the underlying verification algorithm.

112

113

• Proofs of correctness are formulated for the underlying verification algorithm using

Cousot’s abstract interpretation framework [Cousot and Cousot, 1992].

• The feasibility of our technique is demonstrated through experiments on a variety of

real-world ActionScript bytecode applets.

Section 4.1 details the ActionScript bytecode language and justifies its use as a stepping

stone in binary level IRM transparency verification. The details of how to prove transparency

for an IRM system are listed in Section 4.2. The design and theory of our transparency

verifier are detailed in Section 4.3. Section 4.4 shows empirical results of our transparency

verification algorithm on real world ActionScript ads. Finally, Section 4.5 concludes the

chapter with a summary of challenges related to extending this work to native code domains.

4.1 ActionScript Byte Code

ActionScript is a powerful, type-safe mobile code language similar to Java bytecode. Its

ubiquity in many modern web browsing technologies, such as Flash ads, makes it a deserving

subject of software security research. For example, numerous malware attacks have used

ActionScript as a vehicle within the past few years to exploit VM buffer overflow vulnerabili-

ties [Dowd, 2008], perform cross-site-scripting, deny service (e.g., by memory-corruption),

and implement click-jack attacks [Mitre Corporation, 2010a,b]. Policies relevant to web ads

are often fusions of constraints prescribed by multiple independent parties, including ad

distributors and embedding page publishers, who lack access to the applet source code and

therefore benefit from the IRM enforcement approach. VM-based security mechanisms for

ActionScript are currently limited to enforcing standard coarse-grained policies, such as file

system access controls, that are inadequate to reliably distinguish malicious from benign code

in many cases.

114

4.2 IRM Transparency

Past work defines IRM transparency in terms of an abstract relation ≈ : M ×M that relates

original and IRM-instrumented programs if and only if they are observably, behaviorally

equivalent when the original program is policy-adherent [Hamlen et al., 2006]. The abstract

relation can be instantiated in terms of various forms of trace equivalence [Ligatti et al.,

2005]. Following this approach, we define transparency as follows:

Definition 4.2.1 (Events, Traces, and Policies). A trace τ is a (finite or infinite) sequence of

observable events, where observable events are a distinguished subset of all program operations—

instructions parameterized by their arguments. Policies P denote sets of permissible traces.

Definition 4.2.2 (Transparency). Programs m are functions from initial states χ0 to traces.

(Any non-determinism in the program is modeled as an infinite subset of χ0.) Original

program m1 and its IRM-instrumentation m2 are transparent for policy P if and only if for

every initial state χ0, (m1(χ0) ∈ P)⇒ (m1(χ0) = m2(χ0)).

In our implementation, observable events include most system API calls and their argu-

ments, which are the only means in ActionScript to affect process-external resources like the

display or file system. Policy specifications may identify certain API calls as unobservable by

assumption, such as those known to be effect-free.

This definition of transparency permits IRMs to augment untrusted code with unobservable

stutter-steps (e.g., runtime security checks) and observable interventions (e.g., code that

takes corrective action when an impending violation is detected), but not new operations

that are observably different even when the original code does not violate the policy. The

IRM must also not insert potentially non-terminating loops to policy-adherent flows, since

these could suppress desired program behaviors.

115

Verification

Our transparency verifier is an abstract interpreter and model-checker that non-deterministic-

ally explores the cross-product of the state spaces of the original and rewritten programs. To

accommodate IRMs that introduce new methods, abstract interpretation is fully interproce-

dural; calls flow into the bodies of callees. (Recursive and mutually recursive callees require a

loop invariant, discussed below, in order for this process to converge.)

Abstract states include an abstract store that maps local variables and object fields to

symbolic expressions, abstract traces that describe the language of possible traces exhibited

by each program by the time execution reaches each code point, and the various other

structures that populate ActionScript VM states. They additionally include linear constraints

introduced by conditional instructions. For example, the abstract states of control-flow nodes

dominated by the positive branch of a conditional instruction that tests (x<=y) contain

constraint x ≤ y.

The verifier attempts to prove that every finite prefix of every flow through the state space

has a finite extension at which the traces of the original and rewritten code become equal. It

assumes that the original program is policy-adherent, since behavioral changes are permitted

(and mandated) for policy-violating flows in original code. Thus, flows in the cross-product

space that are reachable only via such violations are pruned from transparency verification.

The cross-product state space is potentially very large even with such pruning, but it

is greatly reduced with the aid of an untrusted, external invariant generator that hints at

how the verifier can converge more quickly on a proof of transparency. For each code point

p in the cross-product machine (i.e., each pair of original and rewritten code points), the

invariant generator suggests (1) an abstraction of the program states of all flows that reach p,

and (2) a post-dominating set of control-flow nodes where flows that pass through p later

exhibit equivalent trace prefixes. The former identifies extraneous information inferred by

the abstract interpreter that is irrelevant for proving transparency, and that can therefore be

116

safely discarded by the verifier to reduce the search space. The latter is a witness that proves

that even if the two traces are not equal at p, they eventually return to equality within a finite

number of execution steps. This allows one or both programs to include extra, unobservable

operations (stutter-steps) without violating the transparency requirement.

Hints provided by the invariant-generator remain strictly untrusted by the verifier. They

are only accepted if they abstract information already inferred by the trusted abstract

interpreter. Over-abstractions can cause the verifier to discard information needed to prove

transparency, resulting in conservative rejection of the code; but they never result in improper

acceptance of non-transparent code. This allows invariant-generation to potentially rely

on untrusted information, such as the binary rewriting algorithm, without including that

information in the TCB of the system.

To verify abstract states suggested by the untrusted invariant-generator, prune policy-

violating flows, and check trace-equality of abstract states, the heart of the transparency

verifier employs a model-checking algorithm that proves implications of the form A ⇒ B,

where A is an abstract state inferred by the abstract interpreter, and B is an untrusted

abstraction suggested by the invariant-generator. Model-checking consists of two stages:

1. Unification. Abstract program states include data structures such as ActionScript

bytecode operand stacks, objects, and traces. These are first mined for equality

constraints through unification. For example, if abstract program state A includes

constraints ρ̂1 = v1::ŝ1, ρ̂2 = v2::ŝ2, and ρ̂1 = ρ̂2, then unification infers additional

equalities v1 = v2 and ŝ1 = ŝ2.

2. Linear constraint solving. The equality constraints inferred by step 1 are then combined

with any inequality constraints in each abstract state to form a pure linear constraint

satisfaction problem without structures. A linear constraint solver is then applied to

verify that sentence A′ ∧¬B′ is unsatisfiable, where A′ and B′ are the linear constraints

from A and B, respectively.

117

Both unification and linear constraint solving can be elegantly realized in Prolog with

Constraint Logic Programming (CLP) [Jaffar and Maher, 1994], making this an ideal language

for our verifier implementation.

Verification assumes bytecode type-safety of both original and rewritten code as a prerequi-

site. This assumption is checked by the ActionScript VM type-checker. Assuming type-safety

allows the IRM and verifier to leverage properties such as object encapsulation, memory

safety, and control-flow safety to reduce the space of attacks that must be anticipated.

Invariant Generation

General-purpose invariant-generation is well known to be intractable for arbitrary software.

However, IRM systems typically leave large portions of the untrusted programs they modify

unchanged for practical reasons. Their modifications tend to be limited to small, isolated

blocks of guard code scattered throughout the modified binary. Past work has observed

that the unmodified sections of code tend to obey relatively simple invariants that facilitate

tractable proofs of soundness for the resulting IRM [Sridhar and Hamlen, 2010].

We observe that a similar strategy suffices to generate invariants that prove transparency

for these IRMs. Specifically, an invariant-generator for a typical IRM system can assert that

if the two programs are observably equivalent on entry to each block of guard code, and the

original program does not violate the policy during the guarded block, then the traces are

equivalent on exit from the block. Moreover, the abstract states remain step-wise equivalent

outside these blocks. This strategy reduces the vast majority of the search space that is

unaffected by the IRM to a simple, linear scan that confirms that the IRM remains dormant

outside these blocks (i.e., its state does not leak into the observable events exhibited by the

rewritten code).

118

4.3 Transparency Verification Design

4.3.1 ActionScript Bytecode Core Subset

For expository simplicity, we express the verification algorithm in terms of a small (but Turing-

complete), stack-based toy language that includes standard arithmetic operations, conditional

and unconditional jumps, integer-valued local registers, and the special instructions listed in

Fig. 4.1. The implementation described in Section 4.2 supports the full ActionScript bytecode

language.

apimn system API calls

apptracemn append to trace

assertmn assert policy-adherence of event

Figure 4.1. Non-standard core language instructions

Instruction apimn models a system API call, where m is a method identifier and n is

the method’s arity. Some API calls constitute observable events; these are modeled by an

additional apptrace instruction that explicitly appends the API call event to the trace.

Observable events can therefore be modeled as a macro obseventmn whose expansion is

given in Fig. 4.2. In the rewritten code, the expansion simply appends the event to the trace

and then performs the event. In the original code, the expansion additionally models the

premise in Definition 4.2.2 that says that transparency is only an obligation when the original

code does not violate the policy. The assertmn instruction therefore asserts that the current

flow is unreachable if exhibiting apptracemn at this point is a policy violation. This has the

effect of pruning such flows from the search space.

The toy language models objects and their instance fields by reducing them to integer

encodings, and exceptions are modeled as conditional branches in the typical way. A formal

treatment of these is here omitted; their implementation in the transparency verifier is that

of a standard abstract interpreter.

119

Original Rewritten
obseventmn ≡ assertmn obseventmn ≡

apptracemn apptracemn
apimn apimn

Figure 4.2. Semantics of the obsevent pseudo-instruction

4.3.2 Concrete and Abstract Machines

Concrete interpretation and abstract interpretation of ActionScript bytecode programs is

expressed as the small-step operational semantics of a concrete and an abstract machine,

respectively. Figure 4.3 defines a concrete configuration χ as a tuple consisting of a labeled

bytecode instruction L : i, a concrete operand stack ρ, a concrete store σ, and a concrete trace

of observable events τ . The store σ maps heap and local variables ` to their integer values.

Abstract configurations χ̂ are defined similarly, except that abstract stacks, stores, and traces

are defined over symbolic expressions instead of values. Expressions include integer-valued

meta-variables v̂ and return values rvalm(e1:: · · · ::en) of API calls. Meta-variables ŝ and t̂

denote entire abstract stacks and traces, respectively.

A program P = (L, p, s) consists of a program entrypoint label L, a mapping p from code

labels to program instructions, and a label successor function s that defines the destinations

of non-branching instructions.

Since transparency verification involves bisimulating the original and instrumented pro-

grams, Fig. 4.4 extends the concrete and abstract configurations described above to bisimula-

tion machine configurations. Each such configuration includes both an original and rewritten

machine configuration. The abstract bisimulation machine additionally includes a constraint

list ζ consisting of a conjunction of linear inequalities over expressions.

The concrete machine semantics are modeled after the ActionScript VM 2 (AVM2)

semantics [Adobe Systems Incorporated, 2007]; the semantics of the special instructions of

Fig. 4.1 are provided in Fig. 4.5. Relation χ 7→n
P χ

′ denotes n steps of concrete interpretation

120

L (Code Labels)

i (Instructions)

P ::= (L, p, s) (Programs)

p : L→ i (Instruction Labels)

s : L ⇀ L (Label Successors)

m ∈ N (Method Identifiers)

n ∈ N (Method Arities)

σ : (r] `) ⇀ Z (Concrete Stores)

ρ ::= · | x::ρ (Concrete Stacks)

x ∈ Z (Values)

τ ::= ε | τapim(x1:: · · · ::xn) (Concrete Traces)

sys : N× Z∗ → Z (API Return Values)

a : τ ⇀ N (Security Automaton State)

χ ::= 〈L : i, ρ, σ, τ〉 (Concrete Config.)

e ::= n | v̂ | e1+e2 | . . . | (Symbolic Expressions)

rvalm(e1:: · · · ::en) | â(τ̂)

v̂, ŝ, t̂ (Value, Stack, & Trace Vars)

ρ̂ ::= · | ŝ | e::ρ̂ (Abstract Stacks)

σ̂ : (r] `)→ e (Abstract Stores)

τ̂ := ε | t̂ | τ̂apim(e1:: · · · ::en) (Abstract Traces)

χ̂ ::= 〈L : i, ρ̂, σ̂, τ̂〉 (Abstract Config.)

χ̂0 = 〈L0 : p(L0), ·, σ̂0, ε〉 (Initial Abstract Config.)

Figure 4.3. Concrete and abstract machine configurations

121

ζ ::=
∧
i=1..n

ti (n ≥ 1) (Constraints)

t ::= T | F | e1 ≤ e2 (Clauses)

Γ = 〈χO, χR〉 (Concrete Interpreter States)

Γ̂ = 〈χ̂O, χ̂R, ζ〉 (Abstract Interpreter States)

〈C, 〈χO0 , χR0〉, 7→n
P 〉 (Concrete Interpreter)

〈A, 〈χ̂O0 , χ̂R0 , ζ0〉, n
P 〉 (Abstract Interpreter)

Figure 4.4. Concrete and abstract bisimulation machines

x′ = sys(m,x1::x2:: · · · ::xn)

〈L : apimn, x1::x2:: · · · ::xn::ρ, σ, τ〉 7→
〈s(L) : p(s(L)), x′::ρ, σ, τ〉

(CAPI)

ρ = x1::x2:: · · · ::xn::ρ′

〈L : apptracemn, ρ, σ, τ〉 7→
〈s(L) : p(s(L)), ρ, σ, τapim(x1::x2:: · · · ::xn)〉

(CAppTrace)

ρ = x1:: · · · ::xn::ρ′ τapim(x1:: · · · ::xn) ∈ P
〈L : assertmn, ρ, σ, τ〉 7→ 〈s(L) : p(s(L)), ρ, σ, τ〉

(CAssert)

χi 7→1 χ
′
i χj = χ′j i 6= j

〈χO, χR〉 7→ 〈χ′O, χ′R〉
(CBisim)

Figure 4.5. Concrete small-step operational semantics

of program P . Subscript P is omitted when the program is unambiguous, and when n is

omitted it defaults to 1 step.

Rule CAPI models calls to the system API using an opaque function sys that maps

method identifiers and arguments to return values. Any non-determinism in the system API

is modeled by extending the prototypes of system API functions with additional arguments

that read a non-deterministic portion of the initial state. Rule CBisim lifts the single-machine

semantics to a bisimulation machine that non-deterministically chooses which machine to

step next.

122

e′ = rvalm(e1::e2:: · · · ::en)

〈L : apimn, e1::e2:: · · · ::en::ρ̂, σ̂, τ̂〉
〈s(L) : p(s(L)), e′::ρ̂, σ̂, τ̂〉, T

(AAPI)

ρ̂ = e1:: · · · ::en::ρ̂′

〈L : apptracemn, ρ̂, σ̂, τ̂〉
〈s(L) : p(s(L)), ρ̂, σ̂, τ̂apim(e1:: · · · ::en)〉, T

(AAppTrace)

ζ =
(
0 ≤ â(τ̂apim(e1:: · · · ::en))

)
〈L : assertmn, ρ̂, σ̂, τ̂〉 〈s(L) : p(s(L)), ρ̂, σ̂, τ̂〉, ζ

(AAssert)

χ̂O ⊆ χ̂′O χ̂R ⊆ χ̂′R ζ ⇒ ζ ′

〈χ̂O, χ̂R, ζ〉 〈χ̂′O, χ̂′R, ζ ′〉
(Abstraction)

χ̂i χ̂′i, ζ
′ χ̂j = χ̂′j i 6= j

〈χ̂O, χ̂R, ζ〉 〈χ̂′O, χ̂′R, ζ ∧ ζ ′〉
(ABisim)

Figure 4.6. Abstract small-step operational semantics

Figure 4.6 gives the corresponding semantics for abstract interpretation. Each step

χ̂ χ̂′, ζ of abstract interpretation yields both a new configuration χ̂′ and a list ζ of new

constraints. These are conjoined into the master list of constraints by rule ABisim.

Rule AAPI uses expression rvalm(· · ·) to abstractly denote the return value of API call

m. Rule AAssert introduces a new constraint that asserts that appending API call m to

the current trace yields a policy-adherent trace. The constraint uses expression â(τ̂ ′), which

abstractly denotes the security automaton state resulting from trace τ̂ ′. Rule Abstraction

allows the abstract interpreter to discard information at any point by abstracting the current

state. This facilitates pruning the search space in response to hints from the invariant-

generator. Discarding too much information can result in conservative rejection, but it never

results in incorrect acceptance of non-transparent code.

4.3.3 Verification Algorithm

Algorithms 7 and 8 present the main transparency verification algorithm in terms of the

bisimulating abstract interpreter described in Section 4.3.2. Algorithm 8 verifies an individual

123

Algorithm 7: Verification

Input: Cache = {}, Horizon = {Γ̂0}
Output: Accept or Reject

1: while Horizon 6= ∅ do
2: Γ̂← choose(Horizon)
3: SΓ̂ ← VerificationSingleCodePoint(Γ̂)
4: if SΓ̂ = Reject then return Reject

5: Cache ← Cache ∪ {Γ̂}
6: Horizon ← (Horizon ∪ SΓ̂)\Cache
7: end while
8: return Accept

abstract state of the bisimulation, and Algorithm 7 calls it as a subroutine to explore and

verify transparency for all abstract states in all reachable control flows. We begin with a

description of Algorithm 7.

Algorithm 7 takes as input a cache of previously explored abstract states and a horizon of

unexplored abstract states. Upon successful verification of all control flows, it returns Accept ;

otherwise it returns Reject . It begins by drawing an arbitrary unexplored bisimulation state

Γ̂ from the Horizon (line 2) and passing it to Algorithm 8. Algorithm 8 returns a set SΓ̂ of

abstract states where bisimulation must continue in order to verify all control-flows proceeding

from Γ̂ (line 3). Every state of SΓ̂ that is not already in the Cache is added to the Horizon

(line 6). Verification concludes when all the states in Horizon have been explored.

Algorithm 8 takes an abstract state Γ̂ as input. It begins by asking the invariant-generator

for a hint (line 1), consisting of: (1) a new (possibly more abstract) state Γ̂H for Γ̂, (2) a

finite, generalized post-dominating set DΓ̂ for Γ̂ whose members are all trace-equivalent code

points, and (3) a stepping-bound n. A set S of abstract states is said to be generalized

post-dominating for Γ̂ if every complete control-flow that includes Γ̂ later includes at least

one member of S [Gupta, 1992]. In our case, the complete flows are the infinite ones (since

termination is modeled as an infinite stutter state). A code point is said to be trace-equivalent

if its invariant implies that the original and rewritten traces are equal. The stepping bound

n is an upper bound on the number of steps required to reach any state in DΓ̂ from Γ̂H .

124

Algorithm 8: VerificationSingleCodePoint

Input: Γ̂ = 〈〈L1 : i1, ρ̂1, σ̂1, τ̂1〉, 〈L2 : i2, ρ̂2, σ̂2, τ̂2〉, ζ〉
Output: SΓ̂ or Reject

1: (Γ̂H ,DΓ̂, n)← InvariantGen(Γ̂)

2: SatValue ← ModelCheck(Γ̂, Γ̂H)
3: if SatValue = Reject then return Reject
4: SΓ̂ ← AbsInn({Γ̂H},DΓ̂)
5: if labels(SΓ̂) 6⊆ DΓ̂ then return Reject

6: for all Γ̂′ = 〈χ̂1, χ̂2, ζ
′〉 ∈ SΓ̂ do

7: 〈L1 : i1, ρ̂1, σ̂1, τ̂1〉 ← χ̂1

8: 〈L2 : i2, ρ̂2, σ̂2, τ̂2〉 ← χ̂2

9: χ̂′1 ← 〈L1 : i1, ρ̂1, σ̂1, t̂1〉
10: χ̂′2 ← 〈L2 : i2, ρ̂2, σ̂2, t̂2〉
11: SatValue ← ModelCheck(Γ̂′, 〈χ̂′1, χ̂′2, ζ ′ ∧ (t̂1 = t̂2)〉)
12: if SatValue = Reject then return Reject
13: end for
14: return SΓ̂

Set DΓ̂ and bound n therefore constitute a witness that proves that even if state Γ̂ is not

trace-equivalent, the traces become equivalent within at most n steps of computation.

The hint obtained in line 1 is not trusted; it is typically a hint provided by the rewriter

itself or some untrusted third party. It must therefore be verified. To do so, model-checking

first confirms that Γ̂H is a sound abstraction of Γ̂ according to the Abstraction rule of

the operational semantics (see Fig. 4.6). Next, abstract interpretation for n steps from Γ̂ is

applied to confirm post-dominance of DΓ̂. Function AbsIn in line 4 is defined by

AbsIn(S,E) ={Γ̂′ | Γ̂ ∈ S, labels(Γ̂) 6∈ E, Γ̂ Γ̂′}∪

{Γ̂ ∈ S | labels(Γ̂) ∈ E}

where labels(〈L1: . . . 〉, 〈L2: . . . 〉) = (L1, L2) extracts the code labels of an abstract state.

Function AbsIn(S,E) therefore abstract interprets all states in S for one step, except that

states already at end code-points in E are not interpreted further. Finally, the model-checker

is applied again to confirm trace-equivalence of all members of SΓ̂ (line 12). If successful, set

SΓ̂ is returned.

125

Algorithm 9: ModelCheck

Input: Γ̂ = 〈χ̂1, χ̂2, ζ〉, Γ̂′ = 〈χ̂′1, χ̂′2, ζ ′〉
Output: Accept or Reject

1: ζU ← Unify(Γ̂, Γ̂′)
2: if ζU = Fail then return Reject
3: SatValue ← CLP(ζ ∧ ¬ζ ′ ∧ ζU)
4: if SatValue = False then
5: return Accept
6: else
7: return Reject
8: end if

4.3.4 Model-Checking

Verification of abstract states suggested by the invariant-generator, pruning of policy-violating

flows, and verification of trace-equality are all reduced by Algorithm 8 to proving implications

of the form A ⇒ B. These are proved by the two-stage model-checking procedure in

Algorithm 9, consisting of unification followed by linear constraint solving.

Unification. Each abstract configuration χ̂ can be viewed as a set of equalities that relate

the various configuration components to their values. Many of these equalities relate entire

structures; for example, each operand stack is an ordered list of expressions. Given two

abstract states Γ̂ = 〈χ̂1, χ̂2, ζ〉 and Γ̂′ = 〈χ̂′1, χ̂′2, ζ ′〉, the model-checker first uses Prolog

unification to mine all structural equalities in all of the state components for equalities over

their contents. For example, if ρ̂1 = e1::ŝ and ρ̂′1 = e′1::e′2::ŝ′, then unification infers e1 = e′1

and ŝ = e′2::ŝ′. If unification fails, the model-checker rejects.

Since constraint lists ζ and ζ ′ contain only value inequalities, any structural equalities

inferred by the unification are irrelevant for falsifying the constraint lists. They can therefore

be safely dropped once unification succeeds. In the example above, constraint ŝ = e′2::ŝ′ is

discarded. The result is a set of purely non-structural equalities.

126

Linear Constraint Solving. Once both states have been reduced to a conjunction ζU of

non-structural equalities, the model-checker applies constraint logic programming (CLP) to

verify that ¬(ζ ∧ ζU ⇒ ζ ′) is not satisfiable. That is, it confirms that under the hypothesis

ζU that Γ̂ and Γ̂′ abstract the same code point, there is no instantiation of the free variables

that falsifies ζ ⇒ ζ ′.

The constraints that populate lists ζ arise from four major sources: conditional branches,

observable events in the original code, trace-equality checks, and hints provided by the

invariant-generator. Each plays an important role in practical transparency verification, so

we discuss each.

Conditional branches introduce constraints of the form e1 ≤ e2 to the abstract state.

These are important for verifying that some outgoing branches from IRM conditional guards

are only traversed when the original code violates the policy; the transparency obligation

is therefore waived for such flows. This permits IRMs to implement transparency-violating

intervention code as long as it does not observably affect non-violating runs of the program.

Observable events in the original code introduce constraints of the form 0 ≤ â(τ̂) (see

rule AAssert of Fig. 4.6) which assert that the security automaton that encodes the policy

is in a well-defined state (i.e., it has not rejected the original program). This prunes flows in

which the original program violates security, avoiding conservative rejection of rewritten code

that intervenes appropriately.

Trace-equality checks are performed by line 11 of Algorithm 8, which queries the model-

checker with constraints of the form t̂1 = t̂2. These inquire whether equivalence of two traces

is provable from information that is known about the current bisimulation state. If the

constraint is falsifiable, the verifier conservatively rejects.

The untrusted invariant-generator may also introduce constraints that encode loop invari-

ants relevant to proving transparency. This is critical for tractably exploring the full state

space and keeping the TCB small. Invariant-generation is discussed in greater detail in the

next Section 4.3.5.

127

4.3.5 Invariant Generation

Recall from Section 4.3.3 that for every reachable code point (L1, L2) in the bisimulation state

space, the verifier requires an (untrusted) hint consisting of: (1) an invariant for (L1, L2) in

the form of an abstract bisimulation machine state, (2) a finite, generalized post-dominating

set for (L1, L2) whose members are all trace-equivalent code points, and (3) a stepping-bound

n.

These hints may come from any untrusted source, since they are independently verified

by the trusted model-checker. This is important for both verifier generality and TCB

minimization. General-purpose invariant-generation is well known to be extraordinarily

difficult, so it is unlikely that any one invariant-generation strategy suffices for all IRMs.

Shifting invariant-generation outside the TCB addresses this problem by allowing it to be

tailored to the specific rewriting algorithm without re-proving correctness of the verification

algorithm for each possible invariant-generator.

In this section we outline a strategy for invariant-generation that suffices for our rewriting

system, and that can be used as a basis for transparency verification of many other IRM

systems that adopt similar instrumentation approaches. Our approach capitalizes on the fact

that most rewriters leave large portions of the original code unchanged. They implement

IRMs as collections of small code blocks that guard security-relevant operations. Other

additions typically include new classes with helper methods that maintain and track security

automaton state as private fields.

The set of IRM-instrumented code labels is exposed to our invariant-generator as a set

Marked of code marks that distinguish code regions that implement the IRM from code that

has been left relatively unchanged during rewriting. Marked regions include IRM guard

code and the security-relevant instructions it guards, but not IRM intervention code that

responds to impending violations. (Interventions remain unmarked with the expectation that

the verifier considers them unreachable under the assumption that the original code does not

128

Algorithm 10: GenericInvariant

Input: χ̂1 = 〈L1 : i1, ρ̂1, σ̂1, τ̂1〉, χ̂2 = 〈L2 : i2, ρ̂2, σ̂2, τ̂2〉, ζ
1: choose fresh meta-variables v̂`, v̂

′
`, ŝ, ŝ

′, t̂, and t̂′

2: σ̂ ← {(`, v̂`) | ` ∈ σ̂←1 }
3: σ̂′ ← {(`, v̂′`) | ` ∈ σ̂←2 } ∪ {(r, σ̂2(r))}
4: χ̂← 〈L1 : i1, ŝ, σ̂, t̂〉
5: χ̂′ ← 〈L2 : i2, ŝ

′, σ̂′, t̂′〉
6: ζ = (ŝ=ŝ′) ∧

(∧
`∈σ̂←∩σ̂′← v̂`=v̂

′
`

)
∧ (r=â(t̂′)) ∧ (t̂=t̂′)

7: return I = 〈χ̂, χ̂′, ζ〉

violate the policy.) The invariant-generator then returns a different kind of hint depending

on whether the bisimulation state is within a marked region.

Outside marked regions it uses Algorithm 10 to generate a hint that asserts that the

original and rewritten machines are step-wise equivalent. That is, all original and rewritten

state components are equal except for state introduced by the IRM and that therefore does

not exist in the original code. It additionally asserts that reified state variables introduced by

the IRM accurately encode the current security state; this is captured by clause (r = â(t̂R))

in line 6. This property is necessary for proving that interventions are unreachable, since

the verifier must be able to conclude that guard code that tests reified state makes accurate

inferences about the abstract security state.

Within marked regions, the invariant-generator uses the last half of Algorithm 11, which

asserts that trace-equivalence is restored once bisimulation exits the marked region. To prove

that execution does eventually exit the marked region, line 5 uses abstract interpretation to

find the point at which each control-flow exits Marked . IRMs implementing non-trivial loops

outside of interventions may cause this step to conservatively fail.

While the invariant-generation algorithm presented here is specific to our instrumentation

algorithm, it can be adapted to suit other similar instrumentation algorithms by replacing

constraint (r = â(t̂R)) in Algorithm 10 with a different constraint that models the way in

which the IRM reifies the security state. Similarly, appeals to set Marked can be replaced

129

Algorithm 11: InvariantGen

Input: χ̂1 = 〈L1 : i1, ρ̂1, σ̂1, τ̂1〉, χ̂2 = 〈L2 : i2, ρ̂2, σ̂2, τ̂2〉, ζ
Output: Γ̂H ,DΓ̂,n

1: if L2 ∈ Marked then
2: return (GenericInvariant(χ̂1, χ̂2), {(L1, L2)}, 1)
3: else
4: Γ̂← 〈χ̂1, χ̂2, ζ〉
5: n← min{n | AbsInn({Γ̂},Marked) =

AbsInn+1({Γ̂},Marked)}
6: return (Γ̂, labels(AbsInn({Γ̂},Marked)), n)
7: end if

L1: push "http:// ..."

× L2: get c
× L3: iflt 100, L5 // if c ≤ 100 goto L5

L4: call exit
× L5: call NavigateToURL
× L6: get c
× L7: push 1
× L8: add
× L9: set c

L10: jmp L1

Figure 4.7. An IRM that prohibits more than 100 URL navigations

with alternative logic that identifies code points where the transparency invariant is restored

after the IRM has completed any maintenance associated with security-relevant events.

4.3.6 A Verification Example

To illustrate, we briefly describe transparency verification of the simple pseudo-bytecode listing

in Figure 4.7, which implements an IRM that prohibits more than 100 calls to security-relevant

method NavigateToURL. Indented lines are instructions in-lined by the IRM; non-indented

lines are from the original code. Lines with an × are those in the Marked set described in

Section 4.3.5. This IRM tracks the number of calls to NavigateToURL in global field c. (Real

IRMs are typically much more complex, but we use this simplified example for clarity.)

130

The abstract interpreter begins exploring the cross-product space from point (L1, L1),

where both original and rewritten programs are at line 1. The initial state asserts equivalence

of all state components except c, which does not exist in the original code and is initialized

to 0 in the rewritten code. The (untrusted) invariant-generator suggests a hint that abstracts

this to a clause of the form c = â(t̂), where meta-variable t̂ denotes the current trace. This

invariant recommends that the only information necessary at line 1 to infer transparency is

that c correctly reflects the abstract security state. Since initially t̂ = τ̂ = ε in both machines,

the verifier confirms that this abstraction hint is sound and uses it henceforth as an invariant

for point (L1, L1).

The invariant-generator next supplies a post-dominating set {(L10, L10)} and stepping

bound 8, which asserts that all realizable flows from (L1, L1) take both machines to line 10

within 8 steps. The verifier confirms this by non-deterministically interpreting all paths from

(L1, L1) for 8 steps. When interpretation reaches the conditional at line 3, clause c = â(t̂)

is critical for inferring that line 4 is unreachable when the original code satisfies the policy.

Specifically, the policy-adherence assumption yields constraint â(τ̂) < 100 after line 5, which

contradicts negative branch condition c ≥ 100 introduced by line 4 of the rewritten code

when c = â(τ̂).

Once the interpreter reaches point (L10, L10), the invariant-generator supplies the same

abstract state as it did for line 1. That is, the state opaquely asserts that all common state

components (including traces) are equal, and reified state c equals abstract state â(t̂). The

linear constraint solver confirms that the incremented c (line 8) matches the incremented

state â(t̂ apiNavigateToURL), and therefore accepts the new invariant. Abstract interpreting for

an additional step, it confirms that this matches the loop invariant supplied for line 1, and

accepts the program-pair as transparent.

Theorem 4.3.1 (Transparency). If Algorithm 7 terminates and returns Accept, the prog-

ram-pair is transparent.

131

Proof. This theorem is proved in our technical report [Sridhar et al., 2012]

4.4 Evaluation

Our implementation of the transparency verification algorithm detailed in Section 4.2 targets

the full ActionScript bytecode language. It consists of 2500 lines of Prolog for 32-bit Yap 6.2

that parses and verifies pairs of Shockwave Flash File (SWF) binary archives. We use YAP

CLP(R) [Jaffar et al., 1992] for constraint solving and Yap’s tabling for memoization.

IRM instrumentation is accomplished via a collection of small binary-to-binary rewriters

that augment untrusted ActionScript code with security guards in accordance with a security

policy. For ease of implementation, each rewriter is specialized to a particular policy class.

For example, one rewriter enforces resource bound policies that limit the number of accesses

to policy-specified system API functions per run. It augments untrusted code with counters

that track accesses, and halts the applet when an impending operation would exceed the

bound. Each rewriter is accompanied by an invariant-generator as described in Section 4.2.

Rewriters were each about 200 lines of Prolog (not including parsing) and invariant-generaters

were about 100 lines each.

To demonstrate the versatility of our transparency verifier, rewriters in our framework

performed localized binary optimizations during rewriting when convenient. For example,

when original code followed by IRM code formed a sequence of consecutive conditional

branches, the entire sequence (including the original code) was replaced with an ActionScript

multi-way jump instruction (lookupswitch). Certifying transparency of the instrumented

code therefore required the verifier to infer semantic equivalence of these transformations.

When implementing our IRMs we found the transparency verifier to be a significant aid

to debugging. Bugs that we encountered included IRMs that fail transparency when in-lined

into unusual code that overrides IRM-called methods (e.g., toString), IRMs that could throw

uncaught exceptions (e.g., null pointer) in rare cases, IRMs that inadvertently trigger class

132

initializer code that contains an observable operation, and broken IRM instructions that

corrupt a register or stack slot that flows to an observable operation. All of these were

immediately detected by the verifier, greatly facilitating debugging.

We applied our prototype framework to rewrite and verify the resulting transparency of

numerous real-world Flash ads drawn from public web sites. The results are summarized

in Table 4.4. For each ad, the table columns report the policy type, bytecode size before

and after rewriting, the number of methods in the original code, and rewrite and verification

times. All tests were performed on a Lenovo Z560 notebook computer running Windows 7

64-bit with an Intel Core I5 M480 dual core processor, 2.67 GHz processor speed, and 4GB

of memory.

Except for HeapSprayAttack (a synthetic attack discussed below) all tested ads were

being served by public web sites when we collected them. Some came from popular business

and ecommerce websites, but the more obtrusive ones with potentially undesirable actions

tended to be hosted by less reputable sites, such as adult entertainment and torrent download

pages. Potentially undesirable actions included unsolicited URL redirections, large pop-up

expansions, tracking cookies, and excessive memory usage. However, ad complexity was

not necessarily indicative of maliciousness; some of the most complex ads were benign. For

example, wine implements a series of interactive menus showcasing wines and ultimately

offering navigation to the seller’s site. Others function as support code for flash video players

and cookie maintenance.

All programs are classified into one of four case study classes:

Capping URL Navigations. One resource bound policy we enforced restricts the number

of times a Flash applet may navigate away from the hosting site. This helps to prevent

unwanted chains of pop-up windows. The IRM enforces the policy by counting calls to the

NavigateToURL() system API function. When an impending call would exceed the bound,

133

Table 4.1. Experimental Results

Rewrite Verif.
File Size (KB) No. Time Time

Program Policy old new Meth. (ms) (ms)

adult1 ResBnds 1 2 4 <1 <1
adult2 18 18 102 127 1201
atmos 1 1 6 <1 <1
att 22 22 147 156 1434
ecls 2 3 6 16 <1
eco 2 3 6 <1 16
flash 3 4 12 <1 62
fxcm 2 2 12 16 16
gm 21 22 142 157 1245
gucci 2 2 6 15 16
iphone 2 2 6 <1 <1
IPLad 2 2 15 31 15
jlopez 17 17 151 95 560
lowes 34 34 181 218 16549
men1 33 34 237 203 3757
men2 40 40 270 297 4964
prius 71 71 554 516 10359
priusm 70 71 542 468 9951
sprite 34 34 324 234 3075
utv 21 21 155 151 1171
verizon1 3 4 25 <1 37
verizon2 3 3 12 31 15
weightwatch 4 4 34 47 47
wines 185 185 926 904 35926
expandall NoExpands 3 4 17 47 79
cookie NoCookieSet 3 3 8 31 16
CookieSet 1 1 4 <1 <1
HeapSprAttk NoHeapSpray 1 1 4 15 15

134

the call is suppressed at runtime by a conditional branch. To verify transparency of the

resulting IRM, the verifier proves that such branches are only reachable in the event of a

policy violation by the original code.

Bounding Cookie Storage. For another resource bounds policy, we limited the number

of cookie creations per ad. This was achieved by guarding calls to the SetCookie() API

function. Impending violations cause the IRM to prematurely halt the applet.

Preventing Pop-up Expansions. Some Flash ads expand to fill a large part of the web

page whenever the user clicks or mouses over the ad space. This is frequently abused for

click-jacking. Even when ad clicks solicit purely benign behavior, many web publishers and

users regard excessive expansion as essentially a denial-of-service attack upon the embedding

page. There is therefore high demand for a means of disabling it. Our expansion-disabling

policy does so by denying access to the GoToAndPlay() system API function.

Heap Spray Attacks. Heap spraying is a technique for planting malicious payloads by

allocating large blocks of memory containing sleds to dangerous code. Cooperating malware

(often written in an alternative, less safe language) can then access the payload to do damage,

for example by exploiting a buffer overrun to jump to the sled. By separating the payload

injector and exploit code in different applications, the attack becomes harder to detect.

ActionScript has been used as a heap spraying vehicle in several past attacks [FireEye,

2009]. The attack code typically allocates a large byte array and inserts the payload into it

one byte at a time. This implementation makes it difficult to reliably detect the payload’s

signature via purely static inspection of the ActionScript binary.

To inhibit heap sprays, we enforced a policy that prevents a large (policy-specified) number

of byte-write operations from being performed by a Flash ad. We then implemented a heap

spray (HeapSprAttk) and verified that the IRM successfully prevented the attack. Applying

135

the policy to all other ads in Table 4.4 resulted in no behavioral changes, as confirmed by the

transparency verifier.

4.5 Transparency for x86 Rewriters

This is only preliminary work towards the more difficult task of statically proving behavioral

equivalence between an original and instrumented version of an x86 binary. IRMs for type-

safe bytecode languages can be efficiently implemented without permanently modifying

pre-existing program variables. In contrast, efficient implementation of IRMs for native code

binaries requires permanently modifying computed jump arguments in order to tame their

much less restricted control-flows. Proving transparency for native code IRMs thus raises the

significant additional challenge of proving that these permanent state changes do not result

in observable behavioral changes by the rewritten code (assuming the original program is

policy-adherent). Future work should consider extending the work presented in this chapter

to verify transparency of native code IRMs.

CHAPTER 5

RELATED WORK

Numerous topics are closely related to this work, as well as work that has attempted to

solve similar problems with different approaches. This chapter will first discuss the different

approaches to disassembly in Section 5.1, followed by a discussion of binary rewriting

approaches in Section 5.2 and behavioral equivalence of rewriters in Section 5.3.

5.1 Disassembly

Disassemblers of x86 binaries can be broken into two classes: static and dynamic. Static

disassembly, as discussed in Section 2.2, involves classifying a byte sequence as code or data

in order to discover the underlying semantics of the binary. Since many binary analysis

and instrumentation tools rely on static disassembly, including both Reins and Stir, more

accurate disassemblies translate to shortened analysis times and more accurately rewritten

binaries.

Existing static disassemblers mainly fall into three categories: linear sweep disassemblers,

recursive traversal disassemblers, and the hybrid approach. The GNU utility objdump [GNU

Project, 2012] is a popular example of the linear sweep approach. It starts at the beginning

of the text segment of the binary to be disassembled, decoding one instruction at a time until

everything in executable sections is decoded. This type of disassembler is prone to errors

when code and data bytes are interleaved within some segments. Such interleaving is typical

of almost all production-level Windows binaries.

IDA Pro [Hex-Rays, 2012, Eagle, 2008] follows the recursive traversal approach. Unlike

linear sweep disassemblers, it decodes instructions by traversing the static control flow of the

136

137

program, thereby skipping data bytes that may punctuate the code bytes. However, not all

control flows can be predicted statically. When the control flow is constructed incorrectly,

some reachable code bytes are missed, resulting in disassemblies that omit significant blocks

of code.

The hybrid approach [Schwarz et al., 2002] combines linear sweep and recursive traversal

to detect and locate disassembly errors. The basic idea is to disassemble using the linear

sweep algorithm and verify the output using the recursive traversal algorithm. While this

helps to eliminate some disassembly errors, in general it remains prone to the shortcomings

of both techniques. That is, when the sweep and traversal phases disagree, there is no

clear indication of which is correct; the ambiguous bytes therefore receive an error-prone

classification.

Static disassembly for obfuscated binaries [Krügel et al., 2004] attempts to discover all

of the used execution paths in a binary by simulating the call stack statically. Since most

mainstream disassemblers do not attempt to find more than a single execution path, this

approach performs very well on obfuscated binaries compared to disassemblers like objdump

and IDA Pro.

The Jakstab fully configurable binary analysis platform [Kinder and Veith, 2008, Kinder

et al., 2009, Kinder and Kravchenko, 2012, Kinder, 2012] is a recent effort to overcome these

historic shortcomings by statically resolving computed jump destinations to construct accurate

control-flow graphs. The platform implements multiple rounds of disassembly interleaved

with dataflow analysis. In each round, the output assembly instructions are translated to an

intermediate representation, from which the platform builds a more accurate control-flow

graph for dataflow analysis. The results from the dataflow analysis are then used to resolve

computed jump targets. This iterative approach exhibits superior accuracy over commercial

tools like IDA Pro [Hex-Rays, 2012]. However, Jakstab depends on a fixed-point iteration

algorithm that is worst-case exponential in the size of the binary being analyzed. It therefore

138

has only been successfully applied to relatively small binaries (e.g., drivers) and does not

scale well to full-sized COTS binaries, which are often ten or one hundred times larger.

For example, Jakstab requires almost 40 minutes1 to disassemble a 100K Windows floppy

driver [Kinder and Veith, 2010].

Our recent machine learning- and data mining-based approach to the disassembly problem

reported in Section 2.4 [Wartell et al., 2011] avoids error-prone control-flow analysis heuristics

in favor of a three-phase approach: First, executables are segmented into subsequences of bytes

that constitute valid instruction encodings as defined by the architecture [Intel Corporation,

2012]. Next, a language model is built from the training corpus with a statistical data model

used in modern data compression. The language model is used to classify the segmented

subsequence as code or data. Finally, a set of pre-defined heuristics refines the classification

results. The experimental results demonstrate substantial improvements over IDA Pro’s

traversal-based approach. However, it has the disadvantage of high memory usage due to the

large statistical compression model. This significantly slows the disassembly process relative

to simple sweep and traversal disassemblers.

Machine-learning has also been applied to statically identify errors in disassembly list-

ings [Krishnamoorthy et al., 2009]. Incorrect disassemblies are typically statistically different

from correct disassemblies. Based on this observation, a decision tree classifier can be trained

using a set of correct and incorrect disassemblies. The classifier is then used to detect errors

such as extraneous opcodes and operands, as well as nonexistent branch target addresses. The

experimental results demonstrate that the decision tree classifiers can correctly identify the

majority of the disassembly errors in test files while returning relatively few false positives.

The alternative, dynamic disassembly, is guaranteed to be sound (only includes reachable

flows) but not complete (including all reachable flows) and involves following as many

1This high runtime is due in part to Jakstab’s strategy of estimating the possible targets of each individual
computed jump, rather than merely the set of all reachable code bytes. The work presented in Chapter 3
does not need this extra information to successfully transform untrusted binaries, so our disassembler avoids
computing it.

139

executions of a program as can be created. However the inherent shortcomings of this

approach are code coverage and the necessity of executing the binary. Given a protection

system charged with analyzing incoming binaries in real-time, running each incoming program

to completion in a closed environment (e.g., a VM sandbox) is not feasible in the presence

of real-time constraints. In addition, most binaries do not execute all of the code in their

code sections on any one run, and thus large chunks of the binary are treated as data even

though valid execution paths through them exist. Since the focus of this dissertation is a

static approach to binary rewriting, we do not include dynamic disassembly techniques as

related work.

5.2 Binary Rewriting

Most binary rewriting technologies fall into 4 categories:

1. rewriters requiring recompilation of the binary,

2. rewriters that instrument at runtime using a virtual machine,

3. rewriters that use debugging info or link-time information, and

4. rewriters that can be used on arbitrary binaries, but with significant constraints.

5.2.1 Recompilation

Using compile-time information to redesign the binary instruction sequence is the most

common solution. This can be done as part of the compiler, changing the translation from

source code to x86 binary, or it can be done using link-time information, using function and

symbol information to perform the rewriting process. Instrumenting x86 binaries this way

involves modifying a compiler or intercepting information at link time. However, working at

the compiler level assumes code-producer cooperation, forfeiting arbitrary binary support.

140

Another alternative to securing binaries is certified compilation: a compiler that provides a

machine checkable proof of security (type safety, memory safety or control flow safety) in

conjunction with the binary. However, certified compilation is difficult depending on the

programming language.

Compiler Modification

The bulk of works that use recompilation as a means of binary rewriting are focused on

Software Fault Isolation (SFI). Efficient SFI [Wahbe et al., 1993] is the earliest work in SFI,

focusing on enforcing SFI for DEC-MIPS and DEC-ALPHA. SFI is enforced via sandboxing,

which isolates an executing process such that it is restricted to a small allowed address space,

restricting control flows, reads, and writes to its confines.

MiSFIt [Small and Seltzer, 1996] was developed soon after and closely resembles the work

done recently in PittSFIeld [McCamant and Morrisett, 2006]. Both work with a modified

version of GNU’s GCC compiler, but the guards used to implement SFI in each system differ

greatly. Where MiSFIt inserts guards in front of all potentially SFI violating instructions

causing very high overhead, PittSFIeld breaks a binary into 16 byte chunks which allows for

much shorter guards and much smaller overhead using clever masks.

Google researchers followed up on this work in NaCl [Yee et al., 2009]. NaCl implements SFI

almost identically to PittSFIeld, with its main contribution being its method of propagation.

NaCl works as a plugin for Google’s Chrome browser, allowing code-producers the opportunity

to run their code in a sandboxed area of the browser’s virtual address space. An API is also

available that allows code-producers to directly display their program within the browser

window, effectively turning native code into web browser plugins or services.

Link-time Interception

Alternatively, ATOM [Eustace and Srivastava, 1995], PLTO [Schwarz et al., 2001], and Diablo

[Sutter et al., 2005] were developed as a binary transformation tools—ATOM for Alpha

141

binaries, PLTO for x86 binaries on Red Hat Linux, and Diablo for multiple architectures.

Rather than modifying the compiler, they use relocation information and the map provided

to a linker as information necessary to aid in instrumentation. This approach still requires

recompilation since arbitrary binaries do not provide link-time information, since they have

essentially already been “linked”.

Certified Compilation

CompCERT [Leroy, 2009] is a project focusing on certified compilation for the C++ pro-

gramming language. Though quite successful, it still does not support the full range of

C++ functionality, mainly because of the difficulty of proving safety properties on the x86

instruction set.

5.2.2 Use of Debug Information

Microsoft Research created the binary rewriting system known as Vulcan [Srivastava et al.,

2001] which allows instrumentation of binaries on different architectures. Vulcan is not

involved in compilation, instead disassembling a compiled executable to an intermediary

representation that can then be re-assembled in a new binary. This allows for cross-architecture

rewriting. However, in order to perform its conversion to intermediary language, Vulcan

requires a program database file (PDB), which provides assembly procedure names, symbol

table information, variable type information, and more, to aid in disassembly. Most companies

do not provide a PDB file with their software since it could be used to reverse engineer their

software. Additionally, PDB files are only generated by one compiler family (Microsoft) to

our knowledge. Thus, solutions that depend on PDB files are not compiler-agnostic.

Microsoft has applied Vulcan to three different binary rewriting techniques: Control Flow

Integrity (CFI) [Abadi et al., 2005], an extension to CFI called XFI [Erlingsson et al., 2006],

and Software Memory Access Control (SMAC) [Abadi et al., 2009]. CFI determines the

142

control flow graph (CFG) of the execution of a program, and then ensures via instrumentation

that the program only follows the paths dictated by the CFG. CFI potentially mitigates a

large number of low-level attacks, however its overhead is somewhat higher than other SFI

techniques—about 16% on average. XFI expands on the work developed in CFI, dictating

stricter properties for implementing a CFI system—whereas SMAC adds memory safety

properties to CFI, allowing controlled modification of data sections that is uncircumventable

due to CFI’s underlying protections. XFI has higher overhead than CFI, with overheads

between 5% and 100%, and adding SMAC to these projects adds more guard instructions.

5.2.3 Virtual Machines

The use of a large scale virtual machine such as VMWare [VMware, 2012] or Virtualbox

[Oracle Corporation, 2012] tends to be impractical for fine-grained, intra-process, control-

flow sandboxing because such VMs opaquely interpret untrusted code without attempting

to infer its internal semantics. This limits them to traditional OS protections, such as

process isolation. More fine-grained enforcement can lead to unacceptably high overheads.

Smaller, more intelligent, per-process virtual machines can possibly achieve low overheads by

interpreting blocks of instructions at a time. However, in general IRMs optimize VMs by

in-lining the VM logic into the untrusted code and statically specializing it to the program

via partial evaluation. This leads to much lower overheads and avoids security complications

that tend to arise from self-modifying code.

More recently, the vx32 [Ford and Cox, 2008] system was developed, using a small virtual

machine to perform sandboxing of a binary. The performance of vx32 is quite impressive

for a virtual machine, but performs worse than a binary rewriter. Also, vx32 has only

been implemented for Linux based operating systems and its safety has not been proved or

machine-verified.

143

5.2.4 Restrictionless Binary Rewriting

There has been some work that focuses on arbitrary binary rewriting, however the results are

narrowly scoped or short of production level.

The first of such rewriters that was developed is Etch [Romer et al., 1997], which allows

for in place binary rewriting. In place rewriting only supports two kinds of code transforms:

size-reducing and peep-hole. Size-reducing transforms replace an instruction sequence in-place

with a smaller one, and pad the remainder with no-operation instructions. Peep-hole rewriting

replaces an instruction with a call to a subroutine that implements a longer instruction

sequence in its place. These transforms do not suffice to provably enforce control-flow safety,

since many computed jump instructions (e.g., returns, which are only one byte long on x86)

are too small to support either transformation technique. In addition, the peep-hole approach

incurs high overhead due to the higher number of branches.

The Azure rewriting system [Yardimci and Franz, 2009] performs static rewriting in order

to identify possible parrelization candidates to dynamically recompile at runtime to improve

performance. Azure does not require any source code or metadata, but is currently only

supported for the PowerPC architecture.

SecondWrite [Smithson et al., 2010] uses a disassembler and intermediary representation

to attempt instrumentation combined with architectural independence. SecondWrite uses a

rewriting system that requires the original code section to be retained and left executable,

which allows for more attack vectors. Also, SecondWrite uses a jump table to handle indirect

calls, effectively turning each indirect call into a sequence of conditional direct calls to new

addresses. Effectively, the number of guard instructions is 2n where n is the number of

permissible targets of each branch. Also, SecondWrite is currently unable to handle any

mainstream binaries [Smithson et al., 2010]. The system also has a very large trusted

computing base that currently consists of over 120,000 lines of C++ code. This makes it

very hard to formally verify.

144

5.3 Transparency

Past work on IRM theory has defined IRM correctness in terms of soundness and transparency

(i.e., behavioral equivalence) [Hamlen et al., 2006, Ligatti et al., 2005]. Transparency is

defined in terms of a trace-equivalence relation that demands that equal program inputs

(including non-deterministic choices) yield equivalent traces of observable program actions.

Traces are equivalent if they are equal after erasure of irrelevant events (e.g., stutter steps).

Chudnov and Naumann provide the first formal proof of transparency for a real IRM

[Chudnov and Naumann, 2010]. The IRM enforces information flow properties, so transparency

is there defined in terms of program input-output pairs. In lieu of machine-certification, a

written proof establishes that all programs yielded by that particular rewriting algorithm

are transparent. The proof is therefore specific to one rewriting algorithm and does not

necessarily generalize to other IRM systems.

CHAPTER 6

CONCLUSION

This dissertation presented a binary rewriting framework for the x86 architecture that requires

no code-producer cooperation and causes minimal overhead.

Chapter 2 presented the issues inherent in static x86 disassembly. Three different novel

approaches for handling disassembly were presented. Shingled disassembly, presented in

Section 2.3, provides full execution paths through a sequence of bytes regardless of instruction

aliasing, which is necessary for preserving semantic information when binary rewriting. The

PPM Disassembler presented in Section 2.4 is the first work on machine learning-based

disassembly, achieving improved accuracy over IDA Pro using a kth-order Markov model.

Finally, the FSM disassembler presented in Section 2.5 presents a more efficient linear

disassembly algorithm that shows improved runtimes and disassembly accuracy over IDA

Pro.

In Chapter 3, the binary rewriting framework was presented. We describe how the problem

of static x86 disassembly undecidability can be circumvented by using a shingled disassembly

to preserve all semantic information. Additionally, we describe a solution to computed jump

preservation using a dynamic lookup table.

Two binary rewriting systems were created to extend this framework to solve real-world

problems. Stir extended these techniques in Section 3.2 to randomize a binary at load-

time, protecting against ROP attacks with high probability. We used this to automatically

transform hundreds of Windows and Linux binaries into self-randomizing programs. Each

time the transformed programs load, they re-randomize themselves at the basic block level.

This protects them against return-oriented programming attacks and other attacks that hijack

control flows. Stir binaries showed an overhead of just 1.4% on average.

145

146

Reins then extended these techniques in Section 3.3 to enforce machine verifiable security

constraints. Using the Software Fault Isolation (SFI) approach developed by PittSFIeld [Mc-

Camant and Morrisett, 2006], our rewriter Reins in-lines guard instructions, that restrict

flows at runtime to policy-permitted targets. The safety of the resulting code is verifiable

using a straight-line disassembler we developed in just 1500 lines of OCaml code. With

this enforcement in place, we were able to develop a policy language in order to specify

application-specific security policies based on system call interposition. With all of these

precautions in place, Reins binaries showed an overhead of only 2.5%.

In Chapter 4, we present the groundwork for statically proving the transparency of a

binary rewriting system. We implemented a proof of concept for this system in ActionScript

byte code, and went on to discuss the difficulties inherent in proving transparency for the

x86 architecture.

Finally in Chapter 5 we discuss associated work in the area.

We consider these systems to be a significant contribution to the field since all previous

x86 rewriting frameworks require code-producer cooperation [Yee et al., 2009], are unable to

handle many non-trivial rewriting policies [Romer et al., 1997], or introduce significant attack

vectors [Smithson et al., 2010]. This is a necessary evolution in binary rewriting technology

that secures a much larger class of x86 COTS binaries than was possible previously.

The prototypes developed as part of this dissertation are proofs-of-concept, not production-

level systems. In order to keep the projects manageable for a very limited development staff

(viz. two students and one professor), the prototype intentionally omits numerous features

whose design and implementation should be the subject of future work:

1. Extending our system with a simple-to-use API that allows users to write their own

rewriter policies is necessary to better disseminate our rewriting framework for others

to use. Currently the rewriting rules for Reins and Stir are hardcoded into separate

147

binary rewriters for each system. Future dissemination of our framework depends on

first modularizing the framework for component-wise use.

2. At the time of publication, both Reins and Stir use IDA Pro [Hex-Rays, 2012] as their

means of execution path pruning. Since IDA Pro is expensive and prone to mistakes,

switching over to using our FSM Disassembler detailed in Section 2.5 would remove

any reliance on expensive outside software and also decrease the number of disassembly

errors that may have to be manually fixed.

3. Many mainstream Windows binaries such as Microsoft Office heavily rely on Windows

COM Object libraries. Due to the nature of COM objects, which implement and

exchange interfaces composed of dynamically generated code pointer tables, Reins is

currently unable to support them. A wrapper function for COM object creation would

have to be created for each object type, such that code pointers could be dynamically

updated. This is a significant engineering task, but once accomplished, a large number

of additional binaries should be rewritable via Reins.

4. Currently Reins is able to verify complete mediation for rewritten binaries, but there is

no guarantee that the mediator implements any particular high-level policy. For simple

security policies, this task is trivial by hand, but in order to minimize the TCB, we

envision the development of certifying compilation technology for mediators.

5. As discussed in Section 4, currently we can statically prove transparency for ActionScript

bytecode but not for the x86 architecture. There are significant hurdles with x86 due to

the inclusion of computed jumps. Discovery and innovation of transparency verification

technologies for native code IRMs is important for assuring customers that the security

system will not adversely affect well-behaved software—a common concern for many

administrators and users.

REFERENCES

Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity. In

Proceedings of the 12th ACM Conference on Computer and Communications Security

(CCS), pages 340–353, 2005.

Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity

principles, implementations, and applications. ACM Transactions on Information and

System Security (TISSEC), 13(1), 2009.

Adobe Systems Incorporated. ActionScript virtual machine 2 (AVM2) overview, May 2007.

Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed Computing,

2:117–126, 1986.

Starr Andersen. Part 3: Memory protection technologies. In Vincent Abella, editor, Changes

in Functionality in Windows XP Service Pack 2. Microsoft TechNet, 2004. http://

technet.microsoft.com/en-us/library/bb457155.aspx.

Gogul Balakrishnan, Radu Gruian, Thomas W. Reps, and Tim Teitelbaum. CodeSurfer/x86—

a platform for analyzing x86 executables. In Rastislav Bodik, editor, Proceedings of the

14th International Conference on Compiler Construction (CC), pages 250–254, 2005.

Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient techniques for comprehensive

protection from memory error exploits. In Proceedings of the 14th USENIX Security

Symposium, pages 255–270, 2005.

Andrej Bratko, Bogdan Filipič, Gordon V. Cormack, Thomas R. Lynam, and Blaž Zupan.

Spam filtering using statistical data compression models. Journal of Machine Learning

Research, 7:2673–2698, 2006.

Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When good instructions

go bad: Generalizing return-oriented programming to RISC. In Proceedings of the 15th

ACM Conference on Computer and Communications Security (CCS), pages 27–38, 2008.

Business Software Alliance. Software industry facts and figures, 2010. http:

//www.bsa.org/country/public%20policy/~/media/files/policy/security/

general/sw_factsfigures.ashx.

148

http://technet.microsoft.com/en-us/library/bb457155.aspx
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://www.bsa.org/country/public%20policy/~/media/files/policy/security/general/sw_factsfigures.ashx
http://www.bsa.org/country/public%20policy/~/media/files/policy/security/general/sw_factsfigures.ashx
http://www.bsa.org/country/public%20policy/~/media/files/policy/security/general/sw_factsfigures.ashx

149

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler.
EXE: Automatically generating inputs of death. In Proceedings of the 13th ACM Conference
on Computer and Communications Security (CCS), pages 322–335, 2006.

Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Hovav
Shacham, and Marcel Winandy. Return-oriented programming without returns. In
Proceedings of the 17th ACM Conference on Computer and Communications Security
(CCS), pages 559–572, 2010.

Andrey Chudnov and David A. Naumann. Information flow monitor inlining. In Proceedings
of the 23rd Computer Security Foundations Symposium (CSF), pages 200–214, 2010.

John G. Cleary and W. J. Teahan. Unbounded length contexts for PPM. The Computer
Journal, 40(2/3):67–75, 1997.

John G. Cleary and Ian H. Witten. Data compression using adaptive coding and partial
string matching. IEEE Transactions on Communications, 32(4):396–402, 1984.

Corelan Team. Mona, 2012. redmine.corelan.be/projects/mona.

G. V. Cormack and R. N. S. Horspool. Data compression using dynamic Markov modeling.
The Computer Journal, 30(6):541–550, 1987.

Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, 1992.

Mark Dowd. Application-Specific Attacks: Leveraging the ActionScript Virtual Machine. IBM
Global Technology Services, April 2008.

Chris Eagle. The IDA Pro Book: The Unofficial Guide to the World’s Most Popular
Disassembler. No Starch Press, Inc., San Francisco, California, 2008.

Gergely Erdélyi. IDAPython: User scripting for a complex application. Bachelor’s thesis,
EVTEK University of Applied Sciences, 2008.

Úlfar Erlingsson, Mart́ın Abadi, Michael Vrable, Mihai Budiu, and George C. Necula. XFI:
Software guards for system address spaces. In Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), pages 75–88, 2006.

Alan Eustace and Amitabh Srivastava. ATOM: A flexible interface for building high perfor-
mance program analysis tools. In Proceedings of the USENIX Annual Technical Conference
(ATC), pages 303–314, 1995.

FireEye. Heap spraying with ActionScript, 2009. http://blog.fireeye.com/research/

2009/07/actionscript_heap_spray.html.

redmine.corelan.be/projects/mona
http://blog.fireeye.com/research/2009/07/actionscript_heap_spray.html
http://blog.fireeye.com/research/2009/07/actionscript_heap_spray.html

150

Agner Fog. Calling Conventions for different C++ compilers and operating systems. Copen-
hagen University College of Engineering, 2009.

Bryan Ford and Russ Cox. Vx32: Lightweight user-level sandboxing on the x86. In Proceedings
of the USENIX Annual Technical Conference (ATC), pages 293–306, 2008.

Gartner. Gartner says worldwide enterprise software revenue to grow 9.5 percent in 2011.
http://www.gartner.com/it/page.jsp?id=1728615, June 2010.

GNU Project. Gnu binary utilities. http://sourceware.org/binutils/docs-2.22/

binutils/index.html, 2012.

Patrice Godefroid, Michael Y. Levin, and David Molnar. Automated whitebox fuzz testing.
In Proceedings of the 15th Annual Network and Distributed System Security Symposium
(NDSS), 2008.

Rajiv Gupta. Generalized dominators and post-dominators. In Proceedings of the 19th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
pages 246–257, 1992.

Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computability classes for
enforcement mechanisms. ACM Transactions on Programming Languages and Systems
(TOPLAS), 28(1):175–205, 2006.

Kevin W. Hamlen, Vishwath Mohan, and Richard Wartell. Reining in Windows API abuses
with in-lined reference monitors. Technical Report UTDCS-18-10, The University of Texas
at Dallas, 2010.

Kevin W. Hamlen, Micah M. Jones, and Meera Sridhar. Aspect-oriented runtime monitor
certification. In Proceedings of the 18th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages 126–140, 2012.

Hex-Rays. The IDA Pro disassembler and debugger, 2012. www.hex-rays.com/idapro.

Jason D. Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W. Davidson. ILR:
Where’d my gadgets go? In Proceedings of the 33rd IEEE Symposium on Security and
Privacy (S&P), pages 571–585, 2012.

Greg Hoglund and James Butler. Rootkits: Subverting the Windows Kernel, chapter 4: The
Age-Old Art of Hooking, pages 73–74. Pearson Education, Inc., 2006.

INRIA. The Coq proof assistant. http://coq.inria.fr, 2012.

Intel Corporation. Intel R© 64 and IA-32 architectures software developer’s manual. http:

//download.intel.com/products/processor/manual/325462.pdf, August 2012.

http://www.gartner.com/it/page.jsp?id=1728615
http://sourceware.org/binutils/docs-2.22/binutils/index.html
http://sourceware.org/binutils/docs-2.22/binutils/index.html
www.hex-rays.com/idapro
http://coq.inria.fr
http://download.intel.com/products/processor/manual/325462.pdf
http://download.intel.com/products/processor/manual/325462.pdf

151

Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey. Journal of
Logic Programming, 19–20(1):503–581, 1994.

Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. The CLP(R) language
and system. ACM Transactions on Programming Languages and Systems (TOPLAS), 14
(3):339–395, 1992.

Micah Jones and Kevin W. Hamlen. Disambiguating aspect-oriented security policies. In
Proceedings of the 9th International Conference on Aspect-Oriented Software Development
(AOSD), pages 193–204, 2010.

Johannes Kinder. Towards static analysis of virtualization-obfuscated binaries. In Proceedings
of the 19th Working Conference on Reverse Engineering (WCRE), 2012.

Johannes Kinder and Dmitry Kravchenko. Alternating control flow reconstruction. In
Proceedings of the 13th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI), pages 267–282, 2012.

Johannes Kinder and Helmut Veith. Jakstab: A static analysis platform for binaries. In
Proceedings of the 20th International Conference on Computer Aided Verification (CAV),
pages 423–427, 2008.

Johannes Kinder and Helmut Veith. Precise static analysis of untrusted driver binaries. In
Proceedings of the 10th International Conference on Formal Methods in Computer-Aided
Design (FMCAD), pages 43–50, 2010.

Johannes Kinder, Florian Zuleger, and Helmut Veith. An abstract interpretation-based
framework for control flow reconstruction from binaries. In Proceedings of the 10th
International Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI), pages 214–228, 2009.

Nithya Krishnamoorthy, Saumya Debray, and Keith Fligg. Static detection of disassembly
errors. In Proceedings of the 16th Working Conference on Reverse Engineering (WCRE),
pages 259–268, 2009.

Christopher Krügel, William K. Robertson, Fredrik Valeur, and Giovanni Vigna. Static
disassembly of obfuscated binaries. In Proceedings of the 13th USENIX Security Symposium,
pages 255–270, 2004.

David Larochelle and David Evans. Statically detecting likely buffer overflow vulnerabilities.
In Proceedings of the 10th USENIX Security Symposium, 2001.

Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM
(CACM), 52(7):107–115, 2009.

152

Jay Ligatti, Lujo Bauer, and David Walker. Enforcing non-safety security policies with
program monitors. In Proceedings of the 10th European Symposium on Research in
Computer Security (ESORICS), pages 355–373, 2005.

Stephen McCamant and Greg Morrisett. Evaluating SFI for a CISC architecture. In
Proceedings of the 15th USENIX Security Symposium, pages 209–224, 2006.

Microsoft Corporation. Using hotpatching technology to reduce servicing reboots. TechNet
Library, 2005. http://technet.microsoft.com/en-us/library/cc787843.aspx.

Mitre Corporation. CVE-2010-2216, 2010a. http://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2010-2216.

Mitre Corporation. CVE-2010-2215, 2010b. http://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2010-2215.

Alistair Moffat and Andrew Turpin. Compression and Coding Algorithms. Kluwer Academic
Publishers, 2002.

Oracle Corporation. Position-independent code. In Linker and Libraries Guide. 2010.
http://docs.oracle.com/cd/E19082-01/819-0690/chapter4-29405/index.html.

Oracle Corporation. VirtualBox. http://www.virtualbox.org, 2012.

Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Smashing the gadgets:
Hindering return-oriented programming using in-place code randomization. In Proceedings
of the 33rd IEEE Symposium on Security and Privacy (S&P), pages 601–615, 2012.

PaX Team. PaX address space layout randomization (ASLR), 2003. http://pax.grsecurity.
net/docs/aslr.txt.

Giampaolo Fresi Roglia, Lorenzo Martignoni, Roberto Paleari, and Danilo Bruschi. Surgically
returning to randomized lib(c). In Proceedings of the 25th Annual Computer Security
Applications Conference (ACSAC), pages 60–69, 2009.

Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank Levy, Brian
Bershad, and Brad Chen. Instrumentation and optimization of Win32/Intel executables
using Etch. In Proceedings of the USENIX Windows NT Workshop, pages 1–7, 1997.

Jonathan Salwan. ROPgadget, 2012. http://shell-storm.org/project/ROPgadget.

Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. Q: Exploit hardening made
easy. In Proceedings of the 20th USENIX Security Symposium, 2011.

http://technet.microsoft.com/en-us/library/cc787843.aspx
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2216
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2216
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2215
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2215
http://docs.oracle.com/cd/E19082-01/819-0690/chapter4-29405/index.html
http://www.virtualbox.org
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://shell-storm.org/project/ROPgadget

153

Benjamin Schwarz, Saumya Debray, Gregory Andrews, and Matthew Legendre. PLTO: A
link-time optimizer for the Intel IA-32 architecture. In Proceedings of the Workshop on
Binary Translation (WBT), 2001.

Benjamin Schwarz, Saumya Debray, and Gregory Andrews. Disassembly of executable code
revisited. In Proceedings of the 9th Working Conference on Reverse Engineering (WCRE),
pages 45–54, 2002.

Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In Proceedings of the 14th ACM Conference on Computer and
Communications Security (CCS), pages 552–561, 2007.

Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and Dan
Boneh. On the effectiveness of address-space randomization. In Proceedings of the 11th
ACM Conference on Computer and Communications Security (CCS), pages 298–307, 2004.

Leon Shapiro and Ehud Y. Sterling. The Art of Prolog: Advanced Programming Techniques.
MIT Press, 1994.

Christopher Small and Margo I. Seltzer. A comparison of OS extension technologies. In
Proceedings of the USENIX Annual Technical Conference (ATC), pages 41–54, 1996.

Matthew Smithson, Kapil Anand, Aparna Kotha, Khaled Elwazeer, Nathan Giles, and Rajeev
Barua. Binary rewriting without relocation information. Technical report, University of
Maryland, November 2010.

Solar Designer. “return-to-libc” attack. Bugtraq, August 1997.

Meera Sridhar and Kevin W. Hamlen. Model-checking in-lined reference monitors. In
Proceedings of the 11th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI), pages 312–327, 2010.

Meera Sridhar, Richard Wartell, and Kevin W. Hamlen. Hippocratic binary instrumentation:
First do no harm. Unpublished manuscript, to be submitted, 2012.

Amitabh Srivastava, Andrew Edwards, and Hoi Vo. Vulcan: Binary transformation in a
distributed environment. Technical Report MSR-TR-2001-50, Microsoft Research, 2001.

Bjorn De Sutter, Bruno De Bus, and Koen De Bosschere. Link-time binary rewriting
techniques for program compaction. ACM Transactions on Programming Languages and
Systems (TOPLAS), 27(5):882–945, 2005.

W. J. Teahan. Text classification and segmentation using minimum cross-entropy. In Joseph
Mariani and Donna Harman, editors, Proceedings of the 6th International Conference on
Recherche d’Information et ses Applications (RIAO), pages 943–961, 2000.

154

W. J. Teahan, Rodger McNab, Yingying Wen, and Ian H. Witten. A compression-based
algorithm for Chinese word segmentation. Journal of Computational Linguistics, 26(3):
375–393, 2000.

Arjan van de Ven. New security enhancements in Red Hat Enterprise Linux v.3, up-
date 3. Whitepaper WHP0006US, Red Hat, 2004. http://people.redhat.com/mingo/

exec-shield/docs/WHP0006US_Execshield.pdf.

VMware. Desktop virtualization. http://www.vmware.com, 2012.

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient software-
based fault isolation. In Proceedings of the 14th ACM Symposium on Operating Systems
Principles (SOSP), pages 203–216, 1993.

Richard Wartell, Yan Zhou, Kevin W. Hamlen, Murat Kantarcioglu, and Bhavani Thurais-
ingham. Differentiating code from data in x86 binaries. In Proceedings of the European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML PKDD), volume 3, pages 522–536, 2011.

Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. Securing untrusted
code via compiler-agnostic binary rewriting. In Proceedings of the 28th Annual Computer
Security Applications Conference (ACSAC), December 2012a.

Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code. In Proceedings of the
19th ACM Conference on Computer and Communications Security (CCS), pages 157–168,
2012b.

Efe Yardimci and Michael Franz. Mostly static program partitioning of binary executables.
ACM Transactions on Programming Languages and Systems (TOPLAS), 31(5), 2009.

Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Ormandy,
Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native Client: A sandbox for portable,
untrusted x86 native code. In Proceedings of the 29th IEEE Symposium on Security and
Privacy (S&P), pages 79–93, 2009.

http://people.redhat.com/mingo/exec-shield/docs/WHP0006US_Execshield.pdf
http://people.redhat.com/mingo/exec-shield/docs/WHP0006US_Execshield.pdf
http://www.vmware.com

VITA

Richard Wartell was born in Eureka, California on May 4th, 1986, the son of Michael and

Ruth Wartell. When he was three, his father was quizzing his eight year old brother Justin

on math and he began answering the questions faster than his brother. This lead to him

constantly being ahead in Mathematics by about two years of schooling. Then in middle

school, due to the structure of math classes, he was able to advance further such that by

the second half of 7th grade he was taking Honors Calculus at Indiana University Purdue

University Fort Wayne (IPFW).

In the meantime, Richard had developed an intense love of all things computers, digging in to

the guts of his home PC with family friend Pam Olson and scaring his father to no end. This

lead to the pursuit of 3D modelling and animation courses at IPFW, as well as introductory

Computer Science classes. By the middle of his junior year of high school, it became apparent

that if he worked hard, he would be able to pursue a Bachelors in Mathematics from IPFW

by the time he graduated from high school, and he did just that.

After graduating, he finished a Computer Science degree at Purdue in three years. During

his final year at Purdue, he was contacted by The University of Texas at Dallas and offered

the Johnson Scholarship, a full ride for two years in their Ph.D. program. He accepted their

offer, and following a Summer internship at Ball Aerospace in Boulder Colorado, he pursued

his Ph.D. in C.S. at UT Dallas working under Dr. Kevin W. Hamlen.

After finishing his Ph.D. Richard accepted a position with Mandiant as a Malware Analyst

and Incidence Response Security Consultant.

	Acknowledgments
	Preface
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Static x86 Disassembly
	Challenges
	Current x86 Disassembly
	Shingled Disassembly
	Machine Learning Disassembly Model
	Design
	Evaluation

	Graph Based Disassembly Model
	Design
	Shingled Disassembler
	Opcode State Machine
	Maximum-Likelihood Execution Path
	Algorithm Analysis
	Evaluation
	Broad Results
	eMule Case Study

	x86 Binary Rewriting
	Rewriting Challenges
	Accurate Disassembly
	Where to rewrite?
	Control Flow Instructions
	Hijacking System Calls

	STIR
	ROP Protection
	Design
	Evaluation

	Reins
	Overview
	Control-flow Safety
	Policy Specification
	Verification
	Evaluation
	Case Studies

	Intermediary Library
	Callback Handling
	Dynamic Library Loading
	Policy Implementation

	Rewriter Transparency
	ActionScript Byte Code
	IRM Transparency
	Transparency Verification Design
	ActionScript Bytecode Core Subset
	Concrete and Abstract Machines
	Verification Algorithm
	Model-Checking
	Invariant Generation
	A Verification Example

	Evaluation
	Transparency for x86 Rewriters

	Related Work
	Disassembly
	Binary Rewriting
	Recompilation
	Use of Debug Information
	Virtual Machines
	Restrictionless Binary Rewriting

	Transparency

	Conclusion
	References
	Vita

