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Abstract. We introduce a generic extension of the popular branching-time logic
CTL which refines the temporal until and release operators with formal languages.
For instance, a language may determine the moments along a path that an until
property may be fulfilled. We consider several classes of languages leading to
logics with different expressive power and complexity, whose importance is mo-
tivated by their use in model checking, synthesis, abstract interpretation, etc. We
show that even with context-free languages on the until operator the logic still
allows for polynomial time model-checking despite the significant increasein ex-
pressive power. This makes the logic a promising candidate for applications in
verification. In addition, we analyse the complexity of satisfiability and compare
the expressive power of these logics to CTL∗ and extensions of PDL.

1 Introduction

Computation Tree Logic (CTL) is one of the main logical formalisms for program spec-
ification and verification. It appeals because of its intuitive syntax and its very reason-
able complexities: model checking isPTIME-complete [9] and satisfiability checking is
EXPTIME-complete [12]. However, its expressive power is low.

CTL can be embedded into richer formalisms like CTL∗ [13] or the modalµ-
calculusLµ [23]. This transition comes at a price. For CTL∗ the model checking prob-
lem increases toPSPACE-complete [32] and satisfiability to 2EXPTIME-complete [14,
35]. Furthermore, CTL∗ cannot express regular properties like “something holds af-
ter an even number of steps”. The modalµ-calculus is capable of doing so, and its
complexities compare reasonably to CTL: satisfiability is also EXPTIME-complete, and
model checking sits betweenPTIME and NP∩coNP. However, it is much worse from a
pragmatic perspective since its syntax is notoriously unintuitive.

Common to all these (and many other) formalisms is a restriction of their expressive
power to at most regular properties. This follows since theycan be embedded into (the
bisimulation-invariant) fragment of monadic second-order logic on graphs. This restric-
tion yields some nice properties — like the finite model property and decidability —
but implies that these logics cannot be used for certain specification purposes.

For example, specifying the correctness of a communicationprotocol that uses a
buffer requires a non-underflow property: an item cannot be removed when the buffer



is empty. The specification language must therefore be able to track the buffer’s size. If
the buffer is unbounded, as is usual in software, this property is non-regular and a reg-
ular logic is unsuitable. If the buffer is bounded, the property is regular but depends on
the actual buffer capacity, requiring a different formula for each size. This is unnatural
for verification purposes. The formulas are also likely to becomplex as they essentially
have to hard-code numbers up to the buffer length. To expresssuch properties natu-
rally one has to step beyond regularity and consider logics of corresponding expressive
power.

Also, consider program synthesis where, instead of verifying a program, one wants
to automatically generate a correct program (skeleton) from the specification. This prob-
lem is very much linked to satisfiability checking, except, if a model exists, one is cre-
ated and transformed into a program. This is known as controller synthesis and has been
done mainly based on satisfiability checking for the modalµ-calculus [4]. The finite
model property restricts the synthesization to finite stateprograms, i.e. hardware and
controllers, etc. In order to automatically synthesize software (e.g. recursive functions)
one has to consider non-regular logics.

Finally, consider the problem of verifying programs with infinite or very large state
spaces. A standard technique is to abstract the large state space into a smaller one [10].
This usually results in spurious traces which then have to beexcluded in universal path
quantification on the small system. If the original system was infinite then the language
of spurious traces is typically non-regular and, again, a logic of suitable expressive
power is needed to increase precision [26].

In this paper we introduce a generic extension of CTL which provides a specifi-
cation formalism for such purposes. We refine the usual untiloperator (and its dual,
the release operator) with a formal language defining the moments at which the until
property can be fulfilled. This leads to a family of logics parametrised by a class of
formal languages. CTL is an ideal base logic because of its wide-spread use in actual
verification applications. Since automata easily allow foran unambiguous measure of
input size, we present the precise definition of our logics interms of classes of automata
instead of formal languages. However, we do not promote the use of automata in tem-
poral formulas. For pragmatic considerations it may be sensible to allow more intuitive
descriptions of formal languages such as Backus-Naur-Formor regular expressions.

As a main result we extend CTL using context-free languages,significantly increas-
ing expressive power, while retaining polynomial time model-checking. Hence, we ob-
tain a good balance between expressiveness — as non-regularproperties become ex-
pressible — and low model-checking complexity, which makesthis logic very promis-
ing for applications in verification. We also study model-checking for the new logics
against infinite state systems represented by (visibly) pushdown automata, as they arise
in software model-checking, and obtain tractability results for these. For satisfiability
testing, equipping the path quantifiers with visibly pushdown languages retains decid-
ability. However, the complexity increases fromEXPTIME for CTL to 3EXPTIME for this
new logic.

The paper is organised as follows. We formally introduce thelogics and give an
example demonstrating their expressive power in Section 2.Section 3 discusses related
formalisms. Section 4 presents results on the expressive power of these logics, and



Section 5 and 6 contain results on the complexities of satisfiability and model checking.
Finally, Section 7 concludes with remarks on further work. Due to space restrictions this
paper contains no detailed proofs in its main part. A full version with all proof details
is available online athttp://arxiv.org/abs/1006.3709.

2 Extended Computation Tree Logic

Let P = {p, q, . . .} be a countably infinite set ofpropositionsandΣ be a finite set of
action names. A labeled transition system(LTS) is aT = (S,−→, ℓ), whereS is a set of
states,−→ ⊆ S×Σ×S andℓ : S → 2P . We usually writes a−→ t instead of(s, a, t) ∈ −→.
A pathis a maximal sequence of alternating states and actionsπ = s0, a1, s1, a2, s2, . . .,
s.t.si

ai+1−−−→ si+1 for all i ∈ N. We also write a path ass0
a1−−→ s1

a2−−→ s2 . . .. Maximal-
ity means that the path is either infinite or it ends in a statesn s.t. there are noa ∈ Σ
andt ∈ S with sn

a−→ t. In the latter case, the domaindom(π) of π is {0, . . . , n}. And
otherwisedom(π):=N.

We focus on automata classes between deterministic finite automata (DFA) and non-
deterministic pushdown automata (PDA), with the classes ofnondeterministic finite au-
tomata (NFA), (non-)deterministic visibly pushdown automata (DVPA/VPA) [2] and
deterministic pushdown automata (DPDA) in between. BeyondPDA one is often faced
with undecidability. Note that some of these automata classes define the same class of
languages. However, translations from nondeterministic to deterministic automata usu-
ally involve an exponential blow-up. For complexity estimations it is therefore advisable
to consider such classes separately.

We call a classA of automatareasonableif it contains automata recognisingΣ and
Σ∗ and is closed under equivalences, i.e. ifA ∈ A andL(A) = L(B) andB is of the
same type thenB ∈ A. L(A) denotes the language accepted byA.

Let A,B be two reasonable classes of finite-word automata over the alphabetΣ.
Formulas ofExtended Computation Tree Logic overA andB (CTL[A,B]) are given
by the following grammar, whereA ∈ A, B ∈ B andq ∈ P.

ϕ ::= q | ϕ ∨ ϕ | ¬ϕ | E(ϕUAϕ) | E(ϕRBϕ)

Formulas are interpreted over states of a transition systemT = (S,−→, ℓ) in the follow-
ing way.

– T , s |= q iff q ∈ ℓ(s)
– T , s |= ϕ ∨ ψ iff T , s |= ϕ or T , s |= ψ
– T , s |= ¬ϕ iff T , s 6|= ϕ
– T , s |= E(ϕUAψ) iff there exists a pathπ = s0, a1, s1, . . . with s0 = s and∃n ∈

dom(π) s.t.a1 . . . an ∈ L(A) andT , sn |= ψ and∀i < n : T , si |= ϕ.
– T , s |= E(ϕRAψ) iff there exists a pathπ = s0, a1, s1, . . . with s0 = s and for all
n ∈ dom(π): a1 . . . an 6∈ L(A) or T , sn |= ψ or ∃i < n s.th.T , si |= ϕ.

As usual, further syntactical constructs, like other boolean operators, are introduced as
abbreviations. We defineA(ϕUAψ) := ¬E(¬ϕRA¬ψ), A(ϕRAψ) := ¬E(¬ϕUA¬ψ), as
well asQFAϕ := Q(ttUAϕ), QGAϕ := Q(ffRAϕ) for Q ∈ {E, A}. For presentation,



we also use languagesL instead of automata in the temporal operators. For instance,
EGLϕ is EGAϕ for someA with L(A) = L. This also allows us to easily define the orig-
inal CTL operators:QXϕ := QFΣϕ,Q(ϕUψ) := Q(ϕUΣ

∗

ψ),Q(ϕRψ) := Q(ϕRΣ
∗

ψ),
etc. The size of a formulaϕ is the number of its unique subformulas plus the sum of the
sizes of all automata inϕ, with the usual measure of size of an automaton.

The distinction betweenA andB is motivated by the complexity analysis. For in-
stance, when model checkingE(ϕUAψ) the existential quantifications over system paths
and runs ofA commute and we can guess a path and an accepting run in a step-wise
fashion. On the other hand, when checkingE(ϕRAψ) the existential quantification on
paths and universal quantification on runs (byR — “on all prefixes . . . ”) does not com-
mute unless we determiniseA, which is not always possible or may lead to exponential
costs.

However,A andB can also be the same and in this case we denote the logic by
CTL[A]. Equally, by EF[A], resp. EG[B] we denote the fragments of CTL[A,B] built
from atomic propositions, boolean operators and the temporal operatorsEFAϕ, resp.
EGBϕ only. Since the expressive power of the logic only depends onits class oflan-
guagesrather thanautomata, we will write CTL[REG], CTL[VPL], CTL[CFL], etc.
to denote the logic over regular, visibly pushdown, and context-free languages, repre-
sented by any type of automaton. We close this section with a CTL[VPL] example
which demonstrates the buffer-underflow property discussed in the introduction.

Example. Consider a concurrent producer/consumer scenario over a shared buffer. If
the buffer is empty, the consumer process requests a new resource and halts until the
producer delivers a new one. Any parallel execution of theseprocesses should obey
a non-underflow property (NBU): at any moment, the number of produce actions is
sufficient for the number of consumes.

If the buffer is realised in software it is reasonable to assume that it is unbounded,
and thus, the NBU property becomes non-regular. LetΣ = {p, c, r}, wherep stands
for productionof a buffer object,c for consumeandr for request. Consider the VPL
L = {w ∈ Σ∗ | |w|c = |w|p and|v|c ≤ |v|p for all v � w}, where� denotes the
prefix relation. We express the requirements in CTL[VPL].

1. AGEXptt : “at any time it is possible to produce an object”
2. AGL(AXcff ∧ EXrtt): “whenever the buffer is empty, it is impossible to consume

and possible to request”
3. AGL(EXctt ∧ AXrff): “whenever the buffer is non-empty it is possible to consume

and impossible to request”
4. EFEGc

∗

ff: “at some point there is a consume-only path”

Combining the first three properties yields a specification of the scenario described
above and states that arequestcan only be made if the buffer is empty. For the third
properly, recall that VPL are closed under complement [2]. Every satisfying model
gives a raw implementation of the main characteristics of the system. Note that if it is
always possible toproduceand possible toconsumeiff the buffer is not empty, then
a straight-forward model with self-loopsp, c andr does not satisfy the specification.
Instead, we require a model with infinitely many differentp transitions. If we strengthen
the specification by adding the fourth formula, it becomes unsatisfiable.



3 Related Formalisms

Several suggestions to integrate formal languages into temporal logics have been made
so far. The goal is usually to extend the expressive power of alogic whilst retaining its
intuitive syntax. The most classic example is Propositional Dynamic Logic (PDL) [17]
which extends Modal Logic with regular expressions.

Similar extensions — sometimes using finite automata instead of regular expres-
sions — of Temporal Logics have been investigated a long timeago. The main purpose
has usually been the aim to increase the expressive power of seemingly weak specifi-
cation formalisms in order to obtain at leastω-regular expressivity, but no efforts have
been made at that point in order to go beyond that. This also explains why such exten-
sions were mainly based on LTL [39, 36, 24, 20], i.e. not leaving the world of linear-time
formalisms.

The need for extensions beyond the use of pure temporal operators is also witnessed
by the industry-standardProperty Specification Language(PSL) [1] and its predecessor
ForSpec [3]. However, ForSpec is a linear-time formalism and here we are concerned
with branching-time. PSL does contain branching-time operators but they have been
introduced for backwards-compatibility only.

On the other hand, some effort has been made with regards to extensions of branch-
ing-time logics like CTL [5, 7, 29]. These all refine the temporal operators of this logic
with regular languages in some form.

Thus, while much effort has been put into regular extensionsof standard temporal
logics, little is known about extensions using richer classes of formal languages. We are
only aware of extensions of PDL by context-free languages [19] or visibly pushdown
languages [27]. The main yardstick for measuring the expressive power of CTL[A,B]
will be therefore be PDL and one of its variants, namely PDL with the∆-construct and
tests,∆PDL?[A], [17, 33]. Note: for a classA of automata, CTL[A] is a logic using
such automata on finite words only, whereas∆PDL?[A] uses those and their Büchi-
variants on infinite words. In the following we will use some of the known results about
∆PDL?[A]. For a detailed technical definition of its syntax and semantics, we refer to
the literature on this logic [18].

There are also temporal logics which obtain higher expressive power through other
means. These are usually extensions ofLµ like the Modal Iteration Calculus [11] which
uses inflationary fixpoint constructs or Higher-Order Fixpoint Logic [37] which uses
higher-order predicate transformers. While most regular extensions of standard tempo-
ral logics like CTL and LTL can easily be embedded intoLµ, little is known about the
relationship between richer extensions of these logics.

4 Expressivity and Model Theory

We writeL ≤f L′ with f ∈ {lin, exp} to state that for every formulaϕ ∈ L there is an
equivalentψ ∈ L′ with at most a linear or exponential (respectively) blow up in size.
We useL �f L′ to denote that such a translation exists, but there are formulas ofL′

which are not equivalent to any formula inL. Also, we writeL ≡f L′ if L ≤f L′ and
L′ ≤f L. We will drop the index if a potential blow-up is of no concern.
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Fig. 1.The expressive power of Extended Computation Tree Logic.

A detailed picture of the expressivity results regarding the most important CTL[A]
logics is given in Fig. 1. A (dashed) line moving upwards indicates (strict) inclusion
w.r.t. expressive power. A horizontal continuous line states expressive equivalence. The
following proposition collects some simple observations.

Proposition 4.1. 1. For all A,B: CTL �lin CTL[A,B].
2. For all A,A′,B,B′: if A ≤ A

′ andB ≤ B
′ thenCTL[A,B] ≤ CTL[A’,B’] .

CTL[A] extends PDL[A] since the latter is just a syntactic variation of the EF[A]
fragment. On the other hand, CTL[A] can — in certain cases — be embedded into
PDL[A]’s extension∆PDL?[A]. This, however, requires a transformation from au-
tomata on finite words to automata on infinite words which shows that these two for-
malisms are conceptually different.

Theorem 4.2. 1. For all A: PDL[A] ≡lin EF[A].
2. For all A,B: EF[A] �lin CTL[A,B].
3. For all A,B: CTL[A,B] ≤lin ∆PDL?[A ∪ B], if B is a class of deterministic

automata.
4. ∆PDL?[PDA] ≡lin ∆PDL?[DPDA].

Note that CFL does not admit deterministic automata. Hence,part 3 is not applicable
in that case. If for some classesA,B the inclusion in part 3 holds, then it must be
strict. This is because fairness is not expressible in CTL[A] regardless of whatA is, as
demonstrated by the following.

Theorem 4.3. The CTL∗-formula EGFq expressing fairness is not equivalent to any
CTL[A, B] formula, for anyA, B.

Fairness can be expressed by∆Afair, whereAfair is the standard B̈uchi automaton
over some alphabet containing a test predicateq? that recognises the language of all
infinite paths on which infinitely many states satisfyq.



Corollary 4.4. 1. For all A,B: CTL∗ 6≤ CTL[A,B].
2. There are noA,B such that anyCTL[A,B] is equivalent to the∆PDL?[REG]

formula∆Afair.

At least in the case of CFLs, the premise to part 3 of Thm. 4.2 cannot be dropped.
Indeed, the formulaEGLp is not expressible as a∆PDL?[CFL]-formula whereL is the
language of palindromes.

Theorem 4.5. CTL[CFL] 6≤ ∆PDL?[CFL].

Finally, we provide some model-theoretic results which will also allow us to sepa-
rate some of the logics with respect to expressive power. Notsurprisingly, CTL[REG]
has the finite model property which is a consequence of its embedding into the logic
∆PDL?[REG]. It is not hard to bound the size of such a model given that∆PDL?[REG]
has the small model property of exponential size.

Proposition 4.6. Every satisfiableCTL[REG] formula has a finite model. In fact, ev-
ery satisfiableCTL[NFA,DFA], resp.CTL[NFA,NFA] formula has a model of at most
exponential, resp. double exponential size.

We show now that the bound for CTL[NFA] cannot be improved.

Theorem 4.7. There is a sequence of satisfiableCTL[NFA] -formulas(ψn)n∈N such
that the size of any model ofψn is at least doubly exponential in|ψn|.

The next theorem provides information about the type of models we can expect.
This is useful for synthesis purposes.

Theorem 4.8. 1. There is a satisfiableCTL[VPL] formula which does not have a
finite model.

2. There is a satisfiableCTL[DCFL] formula which has no pushdown system as a
model.

3. Every satisfiableCTL[VPL] formula has a visibly pushdown system as a model.

Proof (Sketch of Part 3).The satisfiability problem for CTL[VPL] can be translated
into that of a non-deterministic B̈uchi visibly pushdown tree automaton (VPTA). An
unrolling of this automaton does not necessarily lead to theclaimed visibly pushdown
system. First, such a system might admit paths which violatethe Büchi condition.
And secondly, the lack of determinism combines successors of different transitions
undesirably. However, Thm. 4.2 Part 3 states that CTL[VPL] can be translated into
∆PDL?[VPL] whose satisfiability problem reduces to the emptinessproblem for stair-
parity VPTA [27]. There exists an exponential reduction from stair-parity VPTA to
parity tree automata (PTA) which preserves satisfiability.The emptiness test is con-
structive in the sense that for every PTA accepting a non-empty language there exists a
finite transition system which satisfies this PTA. This system can be translated back into
a visibly pushdown system satisfying the given CTL[VPL]- or∆PDL?[VPL]-formula.
Implementing this idea, however, requires some care and is technically involved. ⊓⊔

Putting Thm. 4.5, Prop. 4.6 and Thm. 4.8 together we obtain the following separa-
tions. Note that the first three inequalities of the corollary can also be obtained from
language theoretical observations.

Corollary 4.9. CTL[REG] � CTL[VPL] � CTL[DCFL] � CTL[CFL].



5 Satisfiability

In this section we study the complexity of the satisfiabilityproblem for a variety of
CTL[A,B] logics. The presented lower and upper bounds, as shown in Fig. 2, also
yield sharp bounds for EF[] and CTL[ ].

Theorem 5.1. The satisfiability problems forCTL[DPDA, ] and for CTL[ , DPDA]
are undecidable.

Proof. Harel et al. [19] show that PDL over regular programs with theone additional
languageL:={anban | n ∈ N} is undecidable. SinceL ∈ DCFL ⊇ REG, the logic
EF[DPDA] is undecidable and hence so is CTL[DPDA,]. As for the second claim, the
undecidable intersection problem of two DPDA, sayA andB, can be reduced to the
satisfiability problem of the CTL[, DPDA]-formulaAFAAXff ∧ AFBAXff. Note that
a single state with no outgoing transitions still has outgoing paths labeled withǫ. This
formula is therefore only satisfiable ifL(A) ∩ L(B) 6= ∅. ⊓⊔

Theorem 5.2. The upper bounds for the satisfiability problem are as in Fig.2.

Proof. By Thm. 4.2(3), CTL[A, B] can be translated into∆PDL?[A∪B] with a blow-
up that is determined by the worst-case complexity of transforming an arbitraryA-
automaton into a deterministic one. The claim follows usingthat REG⊆ VPL and that
the satisfiability problem for∆PDL?[REG] is in EXPTIME [15] and for∆PDL?[VPL]
is in 2EXPTIME [27]. ⊓⊔

The hardness results are more technically involved.

Theorem 5.3. 1. CTL[DFA, NFA] andCTL[ , DVPA] are 2EXPTIME-hard.
2. CTL[DVPA, NFA] andCTL[ , DVPA ∪ NFA] are 3EXPTIME-hard.

Corollary 5.4. The lower bounds for the satisfiability problem are as in Fig.2.

Proof. As CTL is EXPTIME-hard [12], so is CTL[, ]. The 2EXPTIME lower bound for
PDL[DVPA] [27] is also a lower bound for CTL[DVPA, ] due to Thm. 4.2. Finally,
Thm. 5.3 and Prop. 4.1(2) complete the picture. ⊓⊔

In the remaining part of this section we sketch the proof of Thm. 5.3. For each of the
four lower bounds, we reduce from the word problem of an alternating Turing machine
T with an exponentially or doubly exponentially, resp., space bound. These problems
are 2EXPTIME-hard and 3EXPTIME-hard [8], respectively.

A run of such a machine can be depicted as a tree. Every node stands for a con-
figuration — that is, for simplicity, a bounded sequence of cells. An universal choice
corresponds to a binary branching node, and an existential choice to an unary node. We
aim to construct a CTL[, ]-formulaϕ such that each of its tree-like models resembles
a tree expressing a successful run ofT on a given input. Thereto, the configurations are
linearized — an edge becomes a chain of edges, in the intendedmodel, and a node rep-
resents a single cell. The content of each cell is encoded as aproposition. However, the
linearization separates neighboring cells of consecutiveconfigurations. Between these



DFA NFA DVPA VPA DPDA, PDA

DFA, NFA EXPTIME 2EXPTIME 2EXPTIME 3EXPTIME undec.
DVPA, VPA 2EXPTIME 3EXPTIME 2EXPTIME 3EXPTIME undec.
DPDA, PDA undec. undec. undec. undec. undec.

Fig. 2. The time complexities of checking satisfiability for a CTL[A,B] formula. Entries denote
completeness results. The rows contain different values forA as the results are independent of
whether or not the automata from this class are deterministic.

cells, certain constraints have to hold. So, the actual challenge for the reduction is thatϕ
must bridge this exponential or doubly exponential, resp.,gap while be of a polynomial
size inn, i.e. in the input size toT .

We sketch the construction for CTL[DFA, NFA]. The exponential space bound can
be controlled by a binary counter. Hence, the constraint applies only to consecutive
positions with the same counter value. To bridge between twosuch positions, we use a
proof obligation of the formAUA for a NFAA. In a tree model, we say that a node has
aproof obligationfor anAU-formula iff that formula is forced to hold at an ancestor but
is not yet satisfied along the path to the said node. The key idea is that we can replace
A by an equivalent automatonD without changing the models ofϕ. In our setting,D
is the deterministic automaton resulting from the powerset-construction [30]. In other
words, we simulate an exponentially sized automaton. Here,the mentioned obligation
reflects the value of the counter and the expected content of acell.

One of the building blocks ofϕ programs the obligation with the current value
of the counter. Thereto, we encode the counter as a chain of labels in the model, say
(bitbii )1≤i≤n wherebi ∈ B is the value of theith bit. The automatonA contains states
qbi for all 1 ≤ i ≤ n and b ∈ B. Initially, it is ensured thatD is in the state{qbi |
1 ≤ i ≤ n, b ∈ B}. Informally, this set holds all possibilities for the values of each
bit. In A, any qbi has self-loops for any label except forbit¬bi . Hence, a traversal of
a chain eliminates invalid bit assignments from the subset and bringsD into the state
{qbii | 1 ≤ i ≤ n} which characterizes the counter for which the chain stands.Finally
for matching, a similar construction separates proof obligations depending on whether
or not they match the counter: unmatched obligations will besatisfied trivially, and
matching ones are ensured to be satisfied only if the expectedcell is the current one.

For the other parts involving DVPA, again, the constructed formulaϕ shall imitate
a successful tree ofT on the input. The space bound can be controlled by a counter
with appropriate domain. The constraints between cells of consecutive configurations,
however, are implemented differently. We use a deterministic VPA to push all cells
along the whole branch of the run on the stack — configuration by configuration. At
the end, we successively take the cells from the stack and branch. Along each branch,
we use the counter to remove exponential or doubly exponential, resp., many elements
from stack to access the cell at the same position in the previous configuration. So, as
a main component ofϕ we use eitherAUAAXff or AGAff for some VPAA. In the case
of a doubly exponential counter, the technique explained for CTL[DFA, NFA] can be
applied. But this time, a proof obligation expresses a bit number and its value.



6 Model Checking

In this section we consider model-checking of CTL[A, B] against finite and infinite
transition systems, obtained as the transition graphs of (visibly) pushdown automata.
Note that undecidability is quickly obtained beyond that. For instance model checking
the genuine CTL fragment EF is undecidable over the class of Petri nets, and for EG
model checking becomes undecidable of the class of Very Basic Parallel Processes [16].

6.1 Finite State Systems

The following table summarises the complexities of model checking CTL[A,B] in finite
transition systems in terms of completeness. Surprisingly, despite its greatly increased
expressive power compared to CTL, CTL[PDA,DPDA] remains inPTIME. In general, it
is the classB which determines the complexity. The table therefore only contains one
row (A) and several columns (B). Note that PDA covers everything down to DFA while
DPDA covers DVPA and DFA.

DPDA NFA VPA PDA

PDA PTIME PSPACE EXPTIME undec.

Theorem 6.1. Model checking of finite state systems againstCTL[PDA,DPDA] is in
PTIME, CTL[PDA,VPA] is in EXPTIME, andCTL[PDA,NFA] is in PSPACE.

Proof (Sketch).To obtain aPTIME algorithm for CTL[PDA,DPDA] we observe that —
as for plain CTL — we can model check a CTL[A,B] formula bottom-up for anyA
andB. Starting with the atomic propositions one computes for allsubformulas the set
of satisfying states, then regards the subformula as a proposition. Hence, it suffices to
give algorithms forE(xUAy) andE(xRBy) for propositionsx andy.

We prove the case forE(xUAy) by reduction to non-emptiness of PDA which is well-
known to be solvable inPTIME. LetT =(S,−→, ℓ) be an LTS andA=(Q,Σ, Γ, δ, q0, F ).
We construct for everys ∈ S a PDAAT =(Q× S, Σ, Γ, δ′, (q0, s), F

′), where

F ′:={(q, s) | q ∈ F andy ∈ ℓ(s)} and

δ′((q, s), a, γ):={(q′, s′) | q′ ∈ δ(q, a, γ) ands a−→ s′ andx ∈ ℓ(s)}.

Clearly, ifL(AT ) 6= ∅ then there exist simultaneously a wordw ∈ L(A) and a path
π in T starting ats and labeled withw, s.t.x holds everywhere alongπ except for the
last state in whichy holds. Note that this takes timeO(|S| · |A| · |T |).

The same upper bound can be achieved forER-formulas. However, they require the
automaton to be deterministic. This is due to the quantifier alternation in the release
operator, as discussed in Sect. 2.

We show containment inPTIME by a reduction to the problem of model checking
a fixed LTL formula on a PDS. LetT andA be defined as above except thatA is
deterministic. We construct a PDSTA = (Q × S ∪ {g, b}, Γ,∆, ℓ′), whereℓ′ extends
ℓ by ℓ′(b) = dead for a fresh propositiondead. Intuitively, g represents “good” and



b “bad” states, i.e. dead-end states, in whichE(xRAy) has been fulfilled or violated,
respectively. Furthermore,∆ contains the following transition rules:

((q, s), γ) →֒















(g, ǫ) if x ∈ ℓ′(s) and(q ∈ F impliesy ∈ ℓ′(s))
(b, ǫ) if q ∈ F andy /∈ ℓ′(s)
((q′, s′), w) if none of the above match and there ex.a ∈ Σ, s.t.

s
a−→ s′ and(q′, w) ∈ δ(q, a, γ) for someγ ∈ Γ,w ∈ Γ ∗

Note that|TA| = O(|T | · |A|). Now consider the LTL formulaFdead. It is not hard
to show thats 6|=T E(xRAy) iff ((q0, s), ǫ) |=TA

Fdead. The fact that model checking
a fixed LTL formula over a PDS is inPTIME [6] completes the proof.

To show that CTL[PDA,NFA] is inPSPACEwe reduceE(xRBy) to the problem of
checking a fixed LTL formula against a determinisation of theNFA B. This is a repeated
reachability problem over the product of a Büchi automaton and a determinisation of
the NFA. Since we can determinise by a subset construction, we can use Savitch’s
algorithm [31] and an on-the-fly computation of the edge relation. Because Savitch’s
algorithm requires logarithmic space over an exponential graph, the complete algorithm
runs inPSPACE.

Using the fact that every VPA can be determinised at a possibly exponentially
cost [2], we obtain an algorithm for CTL[PDA,VPA]. ⊓⊔

We now consider the lower bounds.

Theorem 6.2. For fixed finite state transition systems of size 1, model checking for
EF[VPA] is PTIME-hard, EG[NFA] is PSPACE-hard, EG[VPA] is EXPTIME-hard, and
EG[PDA] is undecidable.

Proof (Sketch).It is known that model checking CTL isPTIME-complete. Thus, the
model checking problems for all logics between CTL and CTL[CFL] are PTIME-hard.
However, for EF[VPL] it is already possible to strengthen the result and provePTIME-
hardness of the expression complexity, i.e. the complexityof model checking on a fixed
transition system. The key ingredient is the fact that the emptiness problem for VPA is
PTIME-hard.1

Model checking the fragment EG[A] is harder, namelyPSPACE-hard for the class
REG already. The proof is by a reduction from then-tiling problem [34] resembling
the halting problem of a nondeterministic linear-space bounded Turing Machine. Two
aspects are worth noting. First, this result — as opposed to the one for the fragment
EF[A] — heavily depends on the fact thatA is a class of nondeterministic automata.
For A = DFA for instance, there is no such lower bound unlessPSPACE= PTIME. The
other aspect is that the formulas constructed in this reduction are of the formEGAff,
no boolean operators, no multiple temporal operators, and no atomic propositions are
needed.

The principle is that tilings can be represented by infinite words over the alphabet
of all tiles. Unsuccessful tilings must have a finite prefix that cannot be extended to be-
come successful. We construct an automatonA which recognises unsuccessful prefixes.

1 This can be proved in just the same way asPTIME-hardness of the emptiness problem for PDA.



Every possible tiling is represented by a path in a one-statetransition system with uni-
versal transition relation. This state satisfies the formulaEGAff iff a successful tiling is
possible.

However, if we increase the language class to CFL we are able to encode an unde-
cidable tiling problem. The octant tiling problem asks for asuccessful tiling of the plane
which has successively longer rows [34]. Since the length ofthe rows is unbounded, we
need non-determinism and the unbounded memory of a PDA to recognise unsuccessful
prefixes.

The situation is better for VPA. When used inEF-operators, visibly pushdown lan-
guages are not worse than regular languages, even for nondeterministic automata. This
even extends to the whole of all context-free languages.

In EG-operators VPA increase the complexity of the model checking problem even
further in comparison to NFA toEXPTIME. We reduce from the halting problem for
alternating linear-space bounded Turing machines. An accepting computation of the
machine can be considered afinite tree. We encode a depth-first search of the tree as a
word and construct a VPAA accepting all the words that do not represent an accepting
computation. As in previous proofs, one then takes a one-state transition system with
universal transition relation and formulaEGAff. ⊓⊔

6.2 Visibly Pushdown Systems

We consider model checking over an infinite transition system represented by a visibly
pushdown automaton. The following summarises the complexity results in terms of
completeness.

DFA,DVPA NFA,VPA DPDA

DFA . . . VPA EXPTIME 2EXPTIME undec.

Theorem 6.3. Model checking visibly pushdown systems againstCTL[VPA,DVPA] is
in EXPTIME, whereas againstCTL[VPA,VPA] it is in 2EXPTIME.

Proof (sketch).To obtain the first result, we follow the game approach hintedat in
Section 2 (hence the restriction to DVPA). We reduce the model checking problem
to a Büchi game played over a PDS, which is essentially the productof the formula
(including its automata) and the model. That is, for example, from a state(s, ϕ1 ∧ ϕ2)
the opponent can move to(s, ϕ1) or (s, ϕ2) — the strategy is to pick the subformula
that is not satisfied. The stack alphabet is also a product of the model stack and the
formula VPA stack. For a temporal operator augmented with a VPA, the formula VPA
component is set to⊥ to mark its bottom of stack. Then the automaton is simulated
step-wise with the model. At each step the appropriate player can decide whether to
attempt to satisfy a subformula, or continue simulating a path and run. Since deciding
these games isEXPTIME [38], we get the required result. The second result follows by
determinisation of the VPA. ⊓⊔

Theorem 6.4. Model checking visibly pushdown systems againstCTL[DFA] is hard
for EXPTIME, EG[NFA] is hard for 2EXPTIME, andEF[DPDA] andEG[DPDA] are un-
decidable.



Proof (sketch).EXPTIME-hardness follows immediately from theEXPTIME-hardness of
CTL over pushdown systems [21] and that CTL is insensitive tothe transition labels.

2EXPTIME-hardness is similar to Bozzelli’s 2EXPTIME-hardness for CTL∗ [25]. This
is an intricate encoding of the runs of an alternatingEXPSPACETuring machine. The
difficulty lies in checking the consistency of a guessed worktape of exponential length.
We are able to replace the required CTL∗ subformula with a formula of the formEGA,
giving us the result.

The undecidability results are via encodings of a two counter machine. Intuitively,
the visibly pushdown system simulates the machine, keepingone counter in its stack. It
outputs the operations on the second counter (appropriately marked to meet the visibly
condition) and the DPDA checks for consistency. In this way we can simulate two
counters. ⊓⊔

6.3 Pushdown Systems

For pushdown systems we have the following complexity-theoretic completeness re-
sults.

DFA NFA DVPA

DFA/ NFA EXPTIME 2EXPTIME undec.

Theorem 6.5. Model checking pushdown systems againstCTL[NFA,DFA] is in EXP-

TIME, againstCTL[NFA,NFA] it is in 2EXPTIME, againstEF[DVPA] andEG[DVPA] it
is undecidable.

Proof (sketch).The decidability results are similar to the case of visibly pushdown
systems; we simply drop the visibly restriction. The lower bounds which do not follow
from the results on VPA can be obtained by a reduction from twocounter machines.⊓⊔

7 Conclusion and Further Work

To the best of our knowledge, this is the first work considering a parametric extension
of CTL by arbitrary classes of formal languages characterising the complexities of satis-
fiability and model checking as well as the expressive power and model-theoretic prop-
erties of the resulting logics in accordance to the classes of languages. The results show
that some of the logics, in particular CTL[VPL] may be usefulin program verification
because of the combination of an intuitive syntax with reasonably low complexities of
the corresponding decision problems.

Some questions still remain to be answered. First, it is openwhether the relation-
ships are strict between logics which are connected by solidvertical lines in Fig. 1.
Moreover, the presented separations are rather coarse. Hence, it is desirable to have a
generic approach to separate logics, e.g. CTL[A] � CTL[B] wheneverA is a “reason-
able” subset ofB.

It is an obvious task for further work to consider CTL∗ or CTL+ as the base for
similar extensions, and to characterise the expressive power and the complexities of the
resulting logics.
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A Proof Details

We provide the details for a number of the proofs omitted fromthe main paper. How-
ever, due to the length of the combined proofs, we only present the most interesting
results here. For a complete set of results, please refer to the full version available from
http://web.comlab.ox.ac.uk/people/Stephan.Kreutzer/csl10.pdf.
Semantics of PDL with the∆-operator and tests. FormulasForm and programs
Prog of ∆PDL?[A] for someA over an alphabetΣ are the least sets satisfying the
following.

1. P ⊆ Form.
2. If ϕ,ψ ∈ Form thenϕ ∨ ψ ∈ Form,¬ϕ ∈ Form.
3. If ϕ ∈ Form, A ∈ Prog then〈A〉ϕ ∈ Form.
4. A ⊆ Prog.
5. For everyA-automatonA overΣ ∪ {ϕ? | ϕ ∈ Form} we haveA ∈ Prog.
6. If A ∈ Prog andA′ results fromA by equipping it with a B̈uchi condition on states,

then∆A′ ∈ Form.

∆PDL?[A] consists of all elements ofForm which are constructed in this way. The
fragment PDL[A] is obtained by removing clauses (5) and (6). The semantics is again
defined over states of transition systems. The clauses for atomic propositions and the
boolean operators are as usual. For the other constructs, weuse the fact that programs
and formulas are defined inductively. For aT = (S,−→, ℓ) with edge labels inΣ′ and
a finite subsetΦ ⊂ Form of formulas letT Φ result fromT by adding, for everys ∈ S

and everyϕ ∈ Φ, a transitions ϕ?
−−→ s if T , s |= ϕ. For a formulaϕ let ?(ϕ) be the set

of all testsψ? occurring inϕ syntactically.

T , s |= 〈A〉ϕ iff ∃π = s0
a1−−→ s1

a2−−→ . . .
an−−→ sn in

T ?(〈A〉ϕ) with s0 = s s.t.

(i) a1 . . . an ∈ L(A), and

(ii) T , sn |= ϕ.

T , s |= ∆A iff ∃π = s0
a1−−→ s1

a2−−→ . . . in T ?(〈A〉ϕ)

with s0 = s anda1a2 . . . ∈ L(A).

A.1 Proof of Thm. 4.2

Theorem
1. For allA: PDL[A] ≡lin EF[A].
2. For allA,B: EF[A] �lin CTL[A,B].
3. For allA,B: if B is a class of deterministic automata then CTL[A,B] ≤lin∆PDL?[A∪

B].

Proof. The first two cases are left to the full version. Here we concentrate on the third
case. We focus on finite state automaton only. However, the proof can be extended to the



two kinds of pushdown automata considered in the report—every subsequent replace-
ment can be extended to push, pop and internal operations. Tests are internal operations,
anyway. The proposed translation of theER-formulas relies on an translation of the pos-
sibly larger formulaAXff ≡ ¬E(ttUΣtt). As latter does not involve anyER-formula
we may assume an appropriate induction principle. The translations of proposition and
boolean operation are straight forward. Given a CTL-formulaE(ψ1U

Aψ2), we construct
an automatonA′ by modifyingA as follows.

objective inA replacement to getA′

p a // q p
τ(ψ1)? //?>=<89:; a // q

?>=<89:;/.-,()*+p ?>=<89:;p τ(ψ2)? //?>=<89:;/.-,()*+

Each dotted circle matches either a final or non-final state. The functionτ refers to the
translation for those formulas for which the induction hypothesis is applicable. Obvi-
ouslyT , s |= E(ψ1U

Aψ2) iff T , s |= 〈A′〉tt.
And as for a formulaϕ:=E(ψ1R

Aψ2), the automatonA is assumed to be complete,
and is turned into a safetyω-automatonA′ as follows. The translation ofϕ is∆A′.

objective inA replacement to getA′

?>=<89:;p ?>=<89:;/.-,()*+p
τ(AXff)?

����
��

��
��

�

τ(ψ1)?

��
?>=<89:;/.-,()*+

tt? $$ ?>=<89:;/.-,()*+
Σ

oo

+3?>=<89:;/.-,()*+ +3 +3?>=<89:;/.-,()*+ τ(ψ2)? //?>=<89:;/.-,()*+
τ(AXff)?

����
��

��
��

�

τ(ψ1)?

��

+3

?>=<89:;/.-,()*+
tt? $$ ?>=<89:;/.-,()*+

Σ
oo

The double arrows indicate either in- or outgoing edges. Forthe later discussions we
wishA′ to be deterministic. Therefore, the edgeτ(ψ1)? is omitted iffτ(AXff) = τ(ψ1).
Note that in this case, theΣ-transition is not eligible anyway asτ(ψ1)? reports a dead-
end state in the LTS.

Let π = s0, a1, s1, . . . be a path witnessingT , s0 |= E(ψ1R
Aψ2). AsA is determin-

istic, the run ofA on a prefixπ′ of π is a prefix of the run onπ. Thus the witnessing
path can be turned into a run inA′: As long asψ1 does not hold we follow the trace of
A. In particular, if a final state inA is reached then the respective edgeτ(ψ2)? can be
passed. Now, if the current state has no children thenA′ can follow the edgesτ(AXff)?,
and for evertt? . And if ψ1 holds in the current state of the LTS the proof obligation
vanishes for the next state onwards. HenceA′ can take the wayτ(ψ1)?.

Conversely, letπ = s0, a1, s1, . . . be a path witnessingT , s0 |= ∆A′. The run on
this path has a prefix—maybe the whole run—which corresponds toa run ofA on π
whereψ2 is ensured every timeA recognizing the present word, that is, the states in the



lower line of replacement are not taken. If the prefix is infinite the run is an infinite wit-
ness forϕ. Otherwise, the suffix has the shape(τ(AXtt)?) (tt?)∗ or (τ(ψ1)?) Σ (tt?)∗.
Both alternatives presents a finite witness ofϕ. In particular, the last state of the first
witness has no successors.

Finally, the transition is only linearly increasing.
⊓⊔

A.2 Proof of Thm. 4.7

Theorem.There is a sequence of satisfiable CTL[NFA]-formulas(ψn)n∈N such that the
size of any model ofψn is at least doubly exponential in|ψn|.

Proof. Fix an even numbern > 0. Let [n]:={1, . . . , n}. Let A be the following NFA
over the alphabetΣ:={−n, . . . ,−1,#, 1, . . . , n}.

?>=<89:;
ε

����
��

��
��

�
ε

��?
??

??
??

??
//

?>=<89:;[n]\{1}
((

#

��

. . . ?>=<89:; [n]\{n}
vv

#

��?>=<89:;1Σ\{−1}
((

−1

��

. . . ?>=<89:;n Σ\{−n}
uu

−n

��
?>=<89:;/.-,()*+Σ
((

. . . ?>=<89:;/.-,()*+ Σ
vv

LetQ ⊃ [n] be set of its states. Theǫ-transition can be eliminated with a linear overhead.
However, theǫ-transitions are more convenient for presentation purposes. In any case,
the size ofA is linear inn. LetD be a deterministic automaton forA obtained from the
standard powerset construction [30]. Although we do not useD explicitly, it allows us
to say that at a node of a model there is a proof obligation forAFA in a stateS ⊆ Q,
for instance.

Let S ⊆ [n]. Consider a Hintikka model of some formulaϕ and letAFAp occur in
some node. Suppose that we have the control over the formulasϕ, or over the Hintikka
model, respectively. Now, we can set upA with the setS as follows. Let[n] \ S =
{s1, . . . , sℓ}. Consider a pathπ passing the labelss1, . . . , sℓ,# such that along the
pathp does not hold. At the end of this path, there is a proof obligation for AFAp in the
stateS (w.r.t toD). Iterating this construction with different setsS yields to many proof
obligations for theAFA along the iteration.

As for the lower bound, we construct a formulaϕ polynomially sized inn such
that any of its tree model consists of two phases. The first onecreates exponential many
proof obligations for some instancesAFAp along the path. There are doubly exponential
many such paths. In the second phase the model satisfies theseobligations but it also
materializes all the obligations. The set of proof obligations will be so that the materi-
alization is characteristic for this set. This property prevents any model from sharing



the different materializations. To be more precise, the first phase is built from smaller
blocks, called S-blocks. For each setS ⊆ [n] of sizen/2 there is a leaf such that the
block imposes an additional proof obligation forAFAp in the stateS. The first phase
consists ofb :=

(

n
n/2

)

/2 many2 layers of S-blocks. For each listS := S1, . . . , Sn/2

with each element in
(

[n]
n/2

)

, there is a path (starting from the root) which reaches the

second phase and which has collected proof obligations forAFAp in the stateSi for any
i ∈ [n/2]. In the last phase, the model can pick outb =

(

n
n/2

)

− b sets in
(

[n]
n/2

)

. Only

for these sets the model has a path. For a set{a1, . . . , an/2} ∈
(

[n]
n/2

)

, the path touches
the labels−a1, . . . ,−an/2 in some order. The node after the last label has no successor,
and it is the only state on the path at whichp holds. The passed labels transform the
proof obligations. The only node which can fulfill the the proof obligations is a dead-
end node. The combination of both properties implement the said materialization. This
final phase is implemented by a so-called T-block.

The encoding of this paradigm uses two kinds of counters: oneto iterate the S-
blocks, and the others to control the branching in any T-block. We writeC for a list of
n (distinct) propositions which are intended to be used asn-bit counter.

Let A, B, C—possibly indexed—be counters,ℓ ∈ N, v ∈ {0, . . . , 2n − 1}, and
∆ ⊆ Σ. There are CTL-formulas of polynomial size (inn) which encode the following
properties.
Formula Property

pC = vq, pC 6= vq The counterC has (not) the valuev.
pAX∆A = Bq The value ofA in any∆-successor is the value ofB of the cur-

rent state.
pAX∆A = B + 1q The value ofA in any∆-successor is the successor value ofB

of the current state. IfB represents2n the behavior is undefined.
pA =

∑ℓ
i=0 Bi

q The value ofA is the sum of the values ofBi for all i = 0 . . . ℓ.
Here, we allow (polynomial many) additional counters, respec-
tively variables, to compute the sum successively.

The final formulaϕ uses the propositionsp, and the countersC andCi for i =
0, . . . , n.
Encoding of S-blocks.For∆ ⊆ Σ andψ a CTL-formula, the formula

!X∆ψ :=AXΣ\∆ff ∧ EX∆tt ∧ AX∆ψ

forces that for any of its models there are only∆-successors and at each of themψ
holds. Note that for ana ∈ ∆ there might be more than onea-successors.

The enumeration of allS ∈
(

n
n/2

)

is constructed level by level. An elementS is
enumerated increasingly. Thereto, the auxiliary formulasϕm,ℓ are introduced forℓ the
number of levels remaining andm the maximal number seen along an enumeration so
far.

ϕm,0 :=!X{#}tt

2 Indeed,
(

n
n/2

)

= (n−1)! · n
(n/2)!(n/2−1)! · n/2

= 2
(

n−1
n/2

)

is even.



ϕm,ℓ :=!X{m+1,...,n+1−ℓ}¬p if ℓ > 0

Finally, an S-block is forced by

σ := AFAp ∧ ¬p ∧ ϕ0,n/2 ∧
∧

m∈[n]

k∈[n/2]

AXΣ
k−1{m}ϕm,n/2−k.

Any (tree) model ofσ enumerates all subsets of[n] of sizen/2, and ensures that along
the enumerationp does not hold while the proof obligationAFAp is imposed on the root.
That is, for any sequencea1, . . . , an/2+1 in Σ the following properties are equivalent.

– a1, . . . , an/2 is a strictly increasing sequence in[n], andan/2+1 = #.
– there exists a paths0, a1, s1, a2, s2, . . . starting ats such thatsi |= ¬p for all i ∈

{0, . . . , n/2}, ands0 |= AFAp.

Encoding of T-blocks.An T-block is a tree withb leaves. The encoding is similar to
that of an S-block. Additionally, at each nodev we use a counterC0 and countersCi for
each outgoing label−i. The counterC0 contains the number of leaves of the tree3 at v.
Similarly,Ci stands for the number of leaves at the respective subtree. The countersCi
must sum up toC0. In analogy toϕm,ℓ, each formulaψm,ℓ is responsible for a certain
level. However, the expression!X∆ is replaced by a variation additionally depending on
the counterCi.

ψm,0 :=pC0 = 1q ∧ p ∧ AXff

ψm,ℓ :=¬p ∧
∧

a∈Σ\{−n,...,−1}

AX{a}ff

∧
n+1−ℓ
∧

i=m+1

{(

pCi 6= 0q ↔ EX{−i}tt

)

∧ pAX{−i}C0 = Ciq

}

A T-block is represented by the formulaτ defined as

pC0 = bq ∧ ψ0,n/2 ∧
∧

m∈[n]

k∈[n/2]

AXΣ
k−1{−m}ψm,n/2−k

Encoding. Now, the S-blocks can be iteratedb-times.

ϕ := pC = 0q ∧ AGΣ
∗
(

pAXΣ\{#}C = Cq∧

pAX{#}C = C + 1q
)

3 Because CTL is bisimilar, there might be more than one out-going edge with agiven label
a ∈ Σ. In this case, we pick out one such edge. So, the term “tree” refers to the tree thinned
out.



∧ AGΣ
∗{#} (pC 6= bq → σ)

∧ AGΣ
∗{#} (pC = bq → τ)

ϕ is satisfiable. We construct a tree model ofϕ. Obviously, the existence of the first
phase—as mentioned in the introductive text—is guaranteed becauseτ andϕ without
its last conjunct have bisimilar models only. Given a pathπ from the root to the last
element of the first phase, it remains to show how to continue with a T-blocks. By
the construction ofσ andϕ, there are setsS1, . . . , Sb ∈

(

[n]
n/2

)

such that the path has

collected only proof obligation ofAFAp for the statesS1 to Sb. LetS := {Si | i ∈ [b]}.
Now, set

T :=
{

T ∈
(

[n]
n/2

)

| [n] \ T /∈ S
}

.

Note that|T | =
(

n
n/2

)

−|S| ≥
(

n
n/2

)

−b = b. Choose a subsetT ′ ⊆ T of size
(

n
n/2

)

−b.
The formulaτ forcesb branches. Therefore, for eachT ∈ T ′ we construct a branch
which passes the labels−t1, . . . ,−tb, wheret1, . . . , tb is an increasing enumeration of
T . For anyS ∈ S, the setsS andT are not disjoint. Indeed, if they are disjoint then
[n] \ T = S as both have the same sizen/2. But this is contradiction toT ∈ T . The
non-disjointness ensures that any proof obligation inS is turned into an obligation for
a set of states containing a final state, after passing the labels−t1, . . . ,−tb. However,
this state modelsp, and hence all proof obligations disappear.
Lower bound. Consider a modelT of ϕ. Because

(

2k
k

)

≥ 2k for anyk ∈ N, the set
(( [n]

n/2)
b

)

has at least doubly exponential size inn. For any setS ∈
(( [n]

n/2)
b

)

there is a
rooted pathπS through the S-blocks ofT which got proof obligations forAFAp for
everyS ∈ S and ends at the first node of a T-block. LetS andS ′ two different sets in
(( [n]

n/2)
b

)

. As for the lower bound, it suffices to show that the last nodesof πS andπS′

are different. Assume that they are identical. The T-block starting at the last node shows
b branches, each naming (the negative of each element of) a setT ⊆ [n] of sizen/2.
As in the case of satisfiability, the proof obligations got transformed by each branch.
Since a T-block is a dead end, a transformed proof obligationmust refer to a set which
contains a final state ofA. Therefore,T must intersect with any element ofS ∪S ′. That
is, ([n] \T ) /∈ S ∪S ′. In total, each of theb =

(

n
n/2

)

− b branches names a different set
which is not inS ∪ S ′. So,|S ∪ S ′| = b. Being of sizeb, bothS andS ′ are identical.
Contradiction. ⊓⊔

A.3 Proof of Thm. 4.8

Theorem.

1. There is a satisfiable CTL[VPL] formula which does not havea finite model.
2. There is a satisfiableϕ ∈ CTL[DCFL] s.t. no pushdown system is a model ofϕ.
3. Every satisfiable CTL[VPL] formula has a model which is a visibly pushdown

system.

We commit the first two cases to the full version. Here we provepart three, begin-
ning with the following lemma.



Lemma A.1. Every satisfiableCTL[VPL] formula has a model which is a visibly push-
down system.

Proof. Beforehand, we harmonize the definitions of two kinds of automata, and of a
push down system.

LetΣ = (Σc, Σr, Σi) be a pushdown alphabet [2]. For the following three defini-
tions,Q refers to a set of states,q0 ∈ Q to an initial state,Γ to a stack alphabet contain-
ing the bottom-of-stack symbol⊥, andcol : Q→ N to a function coloring the statesQ.
Moreover, we implicitly use the standard [2, 22] notations of a configuration, and of a
run onω-words overΣ and on infinite trees overΣ, respectively. For simplicity, letT
be the set(Q×Σc×(Γ \{⊥}×Q)∗) ∪ (Q×Σi×Q

∗) ∪ (Q×Σr×Γ×Q∗). We write
〈(q1, B1), . . . (qn, Bn)〉 for an element in(Γ \ {⊥}×Q)∗. A ordered visibly pushdown
system(oVPS) overΣ is a tupleP = (Q,Γ, δ, q0) such thatδ ⊆ T andδ is determin-
istic. An oVPSP induces anΣ-labeled and ordered tree by unrollingδ. A parity tree
automatonoverΣ is a tupleA = (Q, δ, q0, col) such thatδ ⊆ Q×Σ×Q∗. A stair par-
ity visibly pushdown tree automaton[28] overΣ is a tupleA = (Q,Γ, δ, q0, col) such
thatδ ⊆ T . Any such automaton is said to besatisfiableif there exists a tree which it
accepts.

Given a stair parity VPTAA, we construct an oVPS such that its induced tree is
accepted byA. As for the claim of Thm. 3, for any∆PDL?[VPA]- and any CTL[VPA]-
formulaϕ there is a stair parity VPTA which accepts exactly the uniquediamond path
and unique∆-path Hintikka tree models ofϕ [27, Lem. 24]. By the announced im-
plication there exists a oVPS which admits such a Hintikka model for ϕ. From this,
one obtains a VPS [28] satisfyingϕ, as just as one gets a tree model from a Hintikka
model [27, Prop. 23].

Let A = (QA, Γ, δA, qA0 , col
A) be a stair parity visibly pushdown tree automaton

over a a pushdown alphabetΣ = (Σc, Σr, Σi).

Definition A.2. Wlog.colA : QA → N \ {0}, andQA = {1, . . . , |QA|}. The parity
tree automatonB := (QB, δB, qB0 , col

B) is defined as follows.

– QB :=
(

QA × Γ × 2Q
A)

∪̇ {X}.
– qB0 := (qA0 ,⊥, ∅).
– colB

(

(q, , )
)

:= colA(q) for all q ∈ QA, andcolB(X) := 0.

The relationδB is given by case distinction onΣ.

Always: (X, a, 〈X〉) ∈ δB for all a ∈ Σ.
For all a ∈ Σi and (q, a, 〈q1, . . . , qk〉) ∈ δA: Then((q, γ,R), a, 〈(q1, γ, R), . . . , (qk, γ, R)〉) ∈

δB for all γ ∈ Γ .
For all a ∈ Σr and (q, γ, a, 〈q1, . . . , qk〉) ∈ δA: Then((q,⊥, R), a, 〈(q1,⊥, R), . . . , (qk,⊥, R)〉) ∈

δB. And((q, γ,R), a, 〈X〉) ∈ δB if qi ∈ R for all i = 1, . . . , k.
For all a ∈ Σc and (q, a, 〈(γ1, q1), . . . , (γk, qk)〉) ∈ δA: LetR1, . . . , Rk ⊆ QA be ar-

bitrary. Then((q, γ′, R′), a, 〈w1 . . .wk〉) ∈ δB wherewi for i = 1, . . . , k is a
vector overQB of length1 + |QA|. Its first component is(qi, γi, Ri), followed by
(r, γ′, R′) if r ∈ Ri, or byX otherwise, for allr ∈ QA increasingly.

Note that from any transition inB its generating transition inA can be reconstructed.



Lemma A.3. If A is satisfiable then soB is.

Proof. Suppose thatA accepts a treetA. Let t′A be the treetA but additionally anno-
tated with configurations ofA witnessing thattA is accepted byA. Starting from the
root, the treet′A is successively rearranged to a treetB accepted byB. Let a nodev be
given. If atv the automatonA does an internal operation or a pop operation then this
nodes remains. Now, assume thatA does a push operation alongv to a childw. Con-
sider the occurrences of all pop operations corresponding to the push operation fromv
tow on all branches arising fromw. LetR be the states reached byA as a result of the
exhibited pop operation. Hence, for anyr ∈ R there is a subtreetr beloww annotated
with the stater. For all r ∈ QA, increasingly, the nodev got the following subtree as
a sibling. Ifr ∈ R then we taketr and otherwise some (infinite) tree. The new sibling
are inserted right afterv and a head of its siblings in the first place.

The construction ensures that the resulting tree is accepted byB. Indeed, letπ be a
path starting inqB0 . If π touchesX, it keeps doing so. Hence, the path is accepted. Oth-
erwise, the path corresponds to a branch inA where the immediate run corresponding
to a maximally matching word [2] are omitted. For each such word, a branch is forked,
cf. the first component of thewis in Def. A.2. Hence,π corresponds to a branch inA.
However, the positions of the maximally matching words are not taken into account for
the acceptance condition. But, this restriction is just thestair parity condition. Hence,π
is accepted.

Definition A.4. LetC be a parity tree automaton overΣ with statesQ and transitions
δ. A triple (V,E, r, ℓ) is a finite interpretationfor C iff V is a finite set of nodes,E :
V → V + is a successor function with ordered children,r ∈ V is its root, andℓ : V →
(Q×Σ) is a labeling function which in conform withC. That is,E(v0) = (v1, . . . , vn)
and ℓ(vi) = (qi, ai) for all i ∈ {0, . . . , n} imply (q0, a0, (a1, . . . , qn)) ∈ δ, for any
v0, . . . , vn ∈ V , q0, . . . , qn ∈ Q, anda0, . . . , an ∈ Σ. Such a finite interpretation is
a finite modelof C iff C accepts the tree resulting from unrolling(V,E, r, ℓ) at its root.
The labels of this tree follow theΣ-part of ℓ.

Theorem A.5. Any satisfiable parity tree automaton has a finite model.

Proof. The emptiness problem can be reduced to the question whetheror not the au-
tomaton player has a winning strategy for a finite parity game[22]. The set of winning
position is computable. Hence, fixing one outgoing edge of a position of the automaton
player leads directly to the claimed graph.

Finally, the translation in Def. A.2 and the reduction in Lem. A.3 can be reversed.

Definition A.6. Let G = (V,E, r, ℓ) a finite model ofB. ThenG induces an oVPS
P := (V, ΓP , δP , r), where the stack alphabetΓP is (Q → V ) ∪̇ {⊥}. The transition
relation δP is given as follows. Letv ∈ V be labeled with( , a) ∈ Q × Σ. For any
a ∈ Σi, δP contains(v, a, E(v)). And for anya ∈ Σr, δP contains(v, a,⊥, E(v))
and(v, a, ρ, ρ(v)) for any functionρ : Q → V . As for the push operations, letE(v) =
v1 . . .vk and letvi = vi,0, . . . , vi,|Q| for eachi, due to the conformity ofG with B.
Thenδp contains(v, a, ((ρ1, v1,0), . . . , (ρk, vk,0))) whereρi : Q → V is some (fixed)
function such thatρi(q) = vi,q if theΣ-part of ℓ(vi,q) is notX.



Because, in the tree resulting from unrollingG, no rooted branch reaches the stateX,
transitions leaving this state need not be translated.

Theorem A.7. LetG be a finite model ofB. Then the oVPSP is a model ofA.

Proof. In the unrolled tree ofP , any maximal pathπ which starts at the root is infinite,
following the labeling function. Analogously to the proof of Lem. A.3, such a path
meets the stair parity condition. Indeed, it suffices to consider the interrupted path which
skips the minimally matching words in the factorization of (the word labeling)π. Such
an interrupted path corresponds to a path inGmeeting the parity condition ofB. Hence,
π fulfills the stair parity condition forA.

As for the underdetermination of the functionsρi in the caseΣc: if the Σ-part of
ℓ(vi,q) isX, the value ofρi(q) is irrelevant as the function will be never evaluated atq—
as long as only rooted paths are considered. This is ensured by the condition “qi ∈ R”
in the caseΣr of Def. A.2 and by the conformity ofG with B.

This completes the proof of Lemma A.1 and therefore Thm. 4.8 Part 3. ⊓⊔

B Proofs omitted in Section 5

B.1 Proof of Thm. 5.3

Theorem.The following items hold.

1. CTL[DFA, NFA] satisfiability is hard for 2EXPTIME.
2. CTL[DVPA, NFA] satisfiability is hard for 3EXPTIME.

The reduction uses the alternating tiling problem.

Definition B.1. Thealternating tiling problemis the following. Given a setT of tiles,
H,V ⊆ T 2, s ∈ T , f : N → N, andα : T → {0, 1, 2} such thatH ⊆ {(t, t′) | α(t) =
α(t′)} decide whether there is atiling tree. That is, a finite tree such that

– any node is labeled witht1, . . . , tm for m:=f(|T |),
– t1 = s for the root,
– tiHti+1 for all 1 ≤ i < m,
– the node hasα(tm) successors, and
– for each successor labeled witht′1, . . . , t

′
m holdstiV t′i for all 1 ≤ i ≤ m.

The functionα realizes alternation. Note that, if the range ofα is {0, 1} the defi-
nition corresponds the usual one version for one player [34]. Therefore, we refer to a
node in a tiling tree as arow and to its components ascolumns. So,H represent the
horizontal andV the vertical matching relation.

To describe the complexity of alternating tiling we assume areasonable encoding
of T ,H et cetera. In particular, the functionf is given as a term. As we want to charac-
terize complexity classes far beyond EXPTIME the usual corridor tiling [34] does not
suffice because an explicit naming of the width would requireto much space.

Combining the technique of tiling and alternation [8], we obtain the following char-
acterization.



Lemma B.2. The class of alternating tiling problems where their functionsf is expo-
nential is 2EXPTIME-complete. Similar, the restriction todoubly exponential functions
is complete for 3EXPTIME.

In Def. B.1, the restriction onH with respect toα is not necessary for the complete-
ness for the respective completity class. However, it simplifies that subsequent hardness
proof for CTL[DFA,NFA].

Proof (of Thm. 5.3(1)).Given an alternating tiling problem consisting ofT ,H, V , s, f
andα as in Def. B.1 such thatf is exponential. Setn:=|T |,m:=f(n) and letm′ be the
number of bits to count from0 tom − 1, that isn′:=⌊log2(m − 1)⌋ + 1. Note thatn′

is polynomially bounded inn. W.l.o.g.T = {1, . . . , n}.
It is pretty easy to find a CTL-formulaϕ such that any of its models looks like

an tiling tree (up to bisimulation). Thereto, the tiles are encoded by propositions, say
t1, . . . , tn. Any sequent of tiles in a node of the tree is represented by a chain of nodes in
the model of the respective length. The length is ensured by abinary counter withn′ bits.
In (pure) CTL all properties can specified except for the constraint onV . Therefore, the
formula would need to look aboutm steps into the future while have a size polynomial
in n.

TheV -constraint refers only to any those two immediately consecutive positions on
which the counter has the same value. To bridge between thosetwo positions, a proof
obligation is created by anAUA-subformula. The key idea is that for the correctness
we can replaceA by the deterministic automaton obtained from the standard powerset-
construction [30]. In other words, we are allowed to construct an exponentially sized
automaton but which has a small description. The mentioned obligation reflects the
value of the counter and the expected tile at the second position. However, its creating
requires that the outgoing edge is replaced by a chain of edges. Each edge copies another
bit from the counter to the proof obligation. As long as the nodes of the model represent
the same row, the programmed proof obligation are not armed,that is, they can not
reach any final state. The change to the next row arms the obligations. Along the path
to the second position, at every tile position an appendix inthe model checks every
proof obligation. If the current value of the counter does not match the stored value in
the obligation the model ensures that the obligation is satisfied trivially. Otherwise, the
(only remaining) obligation matches the chosen tile with the expected tile. Finally at
every second change of the row, the model disposes of the proof obligations.

Formally, we will construct a formulaϕ over the alphabet

Σ:={nextCol, nextRow, ifNeq, then, else} ∪ Γ

whereΓ :={bitbi | i ∈ [n], b ∈ B}. As boolean values we use0 and1. The label
nextCol separates two columns in the same row, andnextRow indicates a new node
in the tiling tree. The setΓ is used to program the proof obligations, which are veri-
fied with help ofifNeq, then andelse. Besides the already mentioned propositions
t1, . . . , tn for tiles, we usec1, . . . , cn′≡:c as ann′ bit counter ranging from0 tom− 1.
Arithmetical operations involving this counter are described informally in quotes be-
cause these only plays a minor role. However, these operations have short encodings



as CTL-formulas, that is, their size is polynomially bounded in n′. Additionally, the
propositiondir is used to force two sons wheneverα gets two.

Definep0:=¬p andp1:=p for any propositionp. For a labela ∈ Σ and a CTL-
formulaψ, !Xaψ:=EXatt ∧ AXaψ denotes that there is at least onea-successor andψ
hold at these successors. Moreover, instead of automata we also use regular expressions
as annotations to CTL-formulas.

The tiling problem is translated into the formula

ϕ := “c = 0” ∧ AG{ε}∪Σ∗{nextCol,nextRow}ψ

whereψ is the conjunction of the following lines and the automatonA is depicted in
Fig. 3.
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Fig. 3.AutomatonA. Overlined labels mean their complement with respect toΣ. The individual
part is present for anyi ∈ [n] and for anyb ∈ B. So, it has10n + 3 states where2n are initial
ones.
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∧
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



∨

j∈[n],iV j

tj ∨ dispose



 (8)

“c < m− 1” →
∨

i,j∈[n],iHj

ti ∧ AXΓ
n′

!XnextColtj (9)

“c < m− 1” → “AXΓ
n′

nextCol
c = c+ 1” (10)



“c = m− 1” ∧
∨

i∈[n],α(i)>0

ti



 → AXΓ
n′

!XnextRow(dispose ∧ “c = 0”) (11)



“c = m− 1” ∧
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ti


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∧
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ti



 → EXifNeq elsedispose (13)

The formulaϕ is obviously a CTL[DFA,NFA]-formula and its size is polynomially
bounded inn.

The formula (1) ensures that exactly one tile is chosen, (2) programs the proof obli-
gation (for theV -constraint) generated by (8). The verification is performed by (3)–(7).
The formulas (9)–(12) ensure that the columns of a node in thetiling tree are enumer-
ated, and that the tree is branching with respect toα. The formula (13) is the counterpart
to (9) and just ensures that proof obligation at the leaves are satisfied. (Alternatively,
(2)–(7) could be excluded for the very last column.)

If we neglect theV -constraint, the reduction is sound and complete. As for theV -
constraint, we describe the life of a proof obligation on a tree model ofϕ. An excerpt is
given in Fig. 4.

. . . nextCol // 765401231
bit01 //

ifNeq

��

bit12 // bit03 // 765401232
nextCol // 765401233 _____

765401234
bit01 // bit12 // bit03 // 765401235

then // 765401236
else // 765401237

Fig. 4. Excerpt of a model forϕ. This part depicts a single column which is neither the first nor
the last one of a row. The second line shows the appendix which verifies the proof obligation for
theV -constraint. At the node1 the formulast7, ¬c13, c2 and¬c1 shall hold, at the node6 the
propositiondispose, and at node7 the propositiont7.

LetQ be the set of states ofA. If we say that there is a proof obligation in a certain
stateQ′ ⊆ Q, we refer to the deterministic substitute ofA obtained from the powerset
construction. Beginning at the node1, the formula (8) admits a proof obligation for
tj ∨ dispose (for somej ∈ [n]) in the state{pbi | i ∈ [n], b ∈ B}. The intended trace



is the first line in Fig. 4. After passing the labelnextRow the automaton reaches the
state{qbi | i ∈ [n], b ∈ B, 1 |= cbi}, that is, the state reflect the content of the counter at
node1. As for the second line, the proof obligation vanishes becausedispose holds at
the node6. Moreover, the obligation remains while passing another columns of the same
row. Changing the row for the first time, the obligation changes to{rbi | i ∈ [n], b ∈
B, 1 |= cbi} where the node1 refers to the node which admits the proof obligation. As
long as we follow the first line, the state remains until we change the row for the second
time. This brings the obligation in the state{†}. The formulas 5 and 13 offers a node
with modelsdispose and ensure that the proof obligation disappears. Note that after
the first change of the row there is also a node modellingdispose. But the state of the
obligation does not contain a final state ofA at this time.

Now, we consider a proof obligation in the second line after passingnextCol for
the first time. The labelifNeq switches the state to{§, sbi | i ∈ [n], b ∈ B, 1 |= cbi}.
Again the node1 refers to the node which admits the proof obligation. At node5 the
obligation either reaches the state{§} or some proper super set. The second case can
only happen if the programmed counter and the counter of the current column differ. In
this case, the formula (5) disposes the obligation. Otherwise, the state of the obligation
does not contain a final state when reaching the node6. By (6) and (7), the tiletj—as
represented by the obligation—must be the tile of the currentcolumn. ⊓⊔

C Proofs omitted in Section 6

C.1 Proof of Thm. 6.3

Theorem.Model checking visibly pushdown automata against CTL[VPA,DVPA] is in
EXPTIME, and CTL[VPA,VPA] is in 2EXPTIME.

We split the proof into separate lemmas. For VPA rules we use the notation(q, γ, a, push(b), q′),
(q, γ, a, rew(b), q′) and(q, γ, a, pop, q′), and omit the input characterγ for PDS rules.

Lemma C.1. Model checkingCTL[VPA,DVPA] over visibly pushdown automata is in
EXPTIME.

Proof. We reduce the model checking problem for CTL[VPA, DVPA] overVPA to a
Büchi game over a PDS. Since deciding the winner in such a game isEXPTIME [38], we
obtain anEXPTIME algorithm for the model checking problem.

Without loss of generality, we assume all VPA have a bottom ofstack symbol that
is neither popped nor pushed and are complete. We also assumeall formulas are in
positive normal form.

The game has the following transitions. The state set and alphabet is defined implic-
itly. We begin with some standard formula to game translation. The alphabet becomes
a set of pairs,(a, b). The first component corresponds to the model VPA, the second
to the formula VPA being evaluated. All states annotatedbegin are controlled by the
existential player. The universal positions are(s, ϕ1 ∧ ϕ2). The following rules are for
all charactersa andb.

– (win, (a, b), rew((a, b)), win).



– ((s, p)begin, (a, b), rew((a, b)), win) if s satisfies the atomic propositionp.
– ((s,¬p)begin, (a, b), rew((a, b)), win) if s does not satisfy the atomic proposition
p.

– ((s, ϕ1 ∨ ϕ2)
begin, (a, b), rew((a, b)), (s, ϕi)

begin) for i ∈ {1, 2}.
– ((s, ϕ1 ∧ ϕ2)

begin, (a, b), rew((a, b)), (s, ϕ1 ∧ ϕ2)).
– ((s, ϕ1 ∧ ϕ2), (a, b), rew((a, b)), (s, ϕi)

begin) for i ∈ {1, 2}.

For path formulas, we form a product with the VPA labelling the formula. We begin
by adding a bottom of stack symbol to the stack in the formula VPA’s component. For
E(ϕ1U

Aϕ2) we allow the existential player to decide whether to complete the until
formula or postpone completion until later. When postponing, the opponent can check
whether the until will eventually be completed, or whether the condition on the until
holds. When progressing the game, the existential player is able to choose both the move
of the formula VPA and the model VPA. The existential positions are(s, E(ϕ1U

Aqϕ2))
and(s, E(ϕ1U

Aqϕ2),move). The universal positions are(s, E(ϕ1U
Aqϕ2), wait).

– ((s, E(ϕ1U
Aϕ2))

begin, (a, b), rew((a,⊥)), (s, E(ϕ1U
A

qA0 ϕ2))).
– ((s, E(ϕ1U

Aqϕ2)), (a, b), rew((a, b)), (s, ϕ2)
begin) for all a, b andq is accepting.

– ((s, E(ϕ1U
Aqϕ2)), (a, b), rew((a, b)), (s, E(ϕ1U

Aqϕ2), wait)) for all a, b.
– ((s, E(ϕ1U

Aqϕ2), wait), (a, b), rew(a), (s, ϕ1)
begin) for all a, b.

– ((s, E(ϕ1U
Aqϕ2), wait), (a, b), rew((a, b)), (s, E(ϕ1U

Aqϕ2),move)) for all a, b.
– ((s, E(ϕ1U

Aqϕ2),move), (a, b), push((a
′, b′)), (s′, E(ϕ1U

Aq′ϕ2)))whenever we have
the rules(s, γ, a, push(a′), s′) and(q, γ, b, push(b′), q′).

– ((s, E(ϕ1U
Aqϕ2),move), (a, b), rew((a

′, b′)), (s′, E(ϕ1U
Aq′ϕ2))) whenever there

is (s, γ, a, rew(a′), s′) and(q, γ, b, rew(b′), q′).
– ((s, E(ϕ1U

Aqϕ2),move), (a, b), pop, (s
′, E(ϕ1U

Aq′ϕ2)))whenever(s, γ, a, pop, s′)
and(q, γ, b, pop, q′).

The remaining path formulas are similar, but the roles of theplayers are altered
accordingly. In the caseA(ϕ1U

Aϕ2), when satisfaction is postponed, since the prop-
erty must hold for all paths, first the opponent picks a transition of the model, then
the existential player picks a move inA. The existential positions are(s, A(ϕ1U

Aqϕ2))
and(s, A(ϕ1U

Aqϕ2), ts). The universal positions are(s, E(ϕ1U
Aqϕ2), wait). Note that

A(ϕ1U
Aϕ2) is an abbreviation for a¬E(¬ϕ1R

A¬ϕ2). Due to the discussion in Section 2,
correctness of the reduction relies onA being deterministic.

– ((s, A(ϕ1U
Aϕ2))

begin, (a, b), rew((a,⊥)), (s, A(ϕ1U
A

qA0 ϕ2))).
– ((s, A(ϕ1U

Aqϕ2)), (a, b), rew((a, b)), (s, ϕ2)
begin) andq is accepting.

– ((s, A(ϕ1U
Aqϕ2)), (a, b), rew((a, b)), (s, A(ϕ1U

Aqϕ2), wait)).
– ((s, A(ϕ1U

Aqϕ2), wait), (a, b), rew((a, b)), (s, ϕ1)
begin).

– ((s, A(ϕ1U
Aqϕ2), wait), (a, b), rew((a, b)), (s, A(ϕ1U

Aqϕ2), ts))wherets is a tran-
sition froms, a.

– ((s, A(ϕ1U
Aqϕ2), ts), (a, b), push((a

′, b′)), (s′, A(ϕ1U
Aq′ϕ2))) whenever we have

ts = (s, γ, a, push(a′), s′) and(q, γ, b, push(b′), q′).
– ((s, A(ϕ1U

Aqϕ2), ts), (a, b), rew((a
′, b′)), (s′, A(ϕ1U

Aq′ϕ2)))whenever we havets =
(s, γ, a, rew(a′), s′) and(q, γ, b, rew(b′), q′).



– ((s, A(ϕ1U
Aqϕ2), ts), (a, b), pop, (s

′, A(ϕ1U
Aq′ϕ2)))wheneverts = (s, γ, a, pop, s′)

and(q, γ, b, pop, q′).

The release operators are defined analogously. We begin withE(ϕ1R
Aϕ2). The exis-

tential positions are(s, E(ϕ1R
Aqϕ2)) and(s, E(ϕ1R

Aqϕ2),move). The universal posi-
tions are(s, E(ϕ1R

Aqϕ2), wait) and(s, E(ϕ1R
Aqϕ2), ts). Here we also rely on the fact

that the VPA in the formulas are deterministic.

– ((s, E(ϕ1R
Aϕ2))

begin, (a, b), rew((a,⊥)), (s, E(ϕ1R
A

qA0 ϕ2))).
– ((s, E(ϕ1R

Aqϕ2)), (a, b), rew((a, b)), (s, ϕ1)
begin).

– ((s, E(ϕ1R
Aqϕ2)), (a, b), rew((a, b)), (s, E(ϕ1R

Aqϕ2), wait)).
– ((s, E(ϕ1R

Aqϕ2), wait), (a, b), rew((a, b)), (s, ϕ1)
begin) whereq is accepting.

– ((s, E(ϕ1R
Aqϕ2), wait), (a, b), rew((a, b)), (s, A(ϕ1U

Aqϕ2),move)).
– ((s, E(ϕ1R

Aqϕ2),move), (a, b), rew((a, b)), (s, A(ϕ1U
Aqϕ2), ts))wherets is a tran-

sition froms, a.
– ((s, E(ϕ1R

Aqϕ2), ts), (a, b), push((a
′, b′)), (s′, E(ϕ1R

Aq′ϕ2))) whenever we have
ts = (s, γ, a, push(a′), s′) and(q, γ, b, push(b′), q′).

– ((s, E(ϕ1R
Aqϕ2), ts), (a, b), rew((a

′, b′)), (s′, E(ϕ1R
Aq′ϕ2)))whenever we havets =

(s, γ, a, rew(a′), s′) and(q, γ, b, rew(b′), q′).
– ((s, E(ϕ1R

Aqϕ2), ts), (a, b), pop, (s
′, E(ϕ1R

Aq′ϕ2)))wheneverts = (s, γ, a, pop, s′)
(q, γ, b, pop, q′).

And finally,A(ϕ1R
Aϕ2). The existential positions are(s, A(ϕ1R

Aqϕ2)). The univer-
sal positions are(s, E(ϕ1R

Aqϕ2), wait).

– ((s, A(ϕ1R
Aϕ2))

begin, (a, b), rew((a,⊥)), (s, A(ϕ1R
A

qA0 ϕ2))).
– ((s, A(ϕ1R

Aqϕ2)), (a, b), rew((a, b)), (s, ϕ1)
begin).

– ((s, A(ϕ1R
Aqϕ2)), (a, b), rew((a, b)), (s, A(ϕ1R

Aqϕ2), wait)).
– ((s, A(ϕ1R

Aqϕ2), wait), (a, b), rew(a), (s, ϕ2)
begin) whereq is accepting.

– ((s, A(ϕ1R
Aqϕ2), wait), (a, b), push((a

′, b′)), (s′, A(ϕ1R
Aq′ϕ2)))whenever we have

(s, γ, a, push(a′), s′) and(q, γ, b, push(b′), q′).
– ((s, A(ϕ1R

Aqϕ2), wait), (a, b), rew((a
′, b′)), (s′, A(ϕ1R

Aq′ϕ2)))whenever we have
(s, γ, a, rew(a′), s′) and(q, γ, b, rew(b′), q′).

– ((s, A(ϕ1R
Aqϕ2), wait), (a, b), pop, (s

′, A(ϕ1R
Aq′ϕ2))) whenever(s, γ, a, pop, s′)

and(q, γ, b, pop, q′).

The game has a B̈uchi winning condition. All states are accepting except forstates
containing anU operator. Since these formulas must always eventually be satisfied, they
are not accepting. Since we assume all VPA are complete, playwill only get stuck when
a literal is not satisfied, in which case the existential player will lose.

Given a CTL[VPA] formulaϕ and a VPAB, we can check whetherB satisfies
ϕ by asking whether the existential player wins the game described above from the
control state(s0, ϕbegin) with the initial stack contents. Such games can be solved in
EXPTIME [38]. ⊓⊔

Lemma C.2. Model checkingCTL[VPA,VPA] over visibly pushdown automata is in
2EXPTIME.

Proof. The proof follows from the exponential cost of determinising the VPA, and
Lemma C.1. ⊓⊔


