Extended Computation Tree Logic

Roland Axelssoh Matthew Hagug, Stephan Kreutzér Martin Langé, and Markus
Latte!

1 Department of Computer Science, Ludwig-Maximilians-Univétsidunich,
Emai | : {rol and. axel sson, markus.latte}@fi .|l nu. de
2 Oxford University Computing Laboratory,
Enmi | : {Matt hew. Hague, st ephan. kreut zer }@onl ab. ox. ac. uk
3 Department of Elect. Engineering and Computer Science, Universikasgel, Germany,
Emai |l : martin. | ange@ni - kassel . de

Abstract. We introduce a generic extension of the popular branching-time logic
CTL which refines the temporal until and release operators with formgliages.
For instance, a language may determine the moments along a path thail an un
property may be fulfilled. We consider several classes of languagdmteto
logics with different expressive power and complexity, whose impogas mo-
tivated by their use in model checking, synthesis, abstract interpretatmni/Ve
show that even with context-free languages on the until operator the llgjic s
allows for polynomial time model-checking despite the significant increase-
pressive power. This makes the logic a promising candidate for appfisaitio
verification. In addition, we analyse the complexity of satisfiability and campa
the expressive power of these logics to CTdnd extensions of PDL.

1 Introduction

Computation Tree Logic (CTL) is one of the main logical fotisias for program spec-

ification and verification. It appeals because of its imkeitsyntax and its very reason-
able complexities: model checkingrsIME-complete [9] and satisfiability checking is
EXPTIME-complete [12]. However, its expressive power is low.

CTL can be embedded into richer formalisms like CT]13] or the modaly-
calculusZ,, [23]. This transition comes at a price. For CTthe model checking prob-
lem increases t@SPACEcomplete [32] and satisfiability toEXPTIME-complete [14,
35]. Furthermore, CTL cannot express regular properties like “something holds af
ter an even number of steps”. The mogatalculus is capable of doing so, and its
complexities compare reasonably to CTL: satisfiabilityls&xpPTIME-complete, and
model checking sits betweaTIME and NP \coNP. However, it is much worse from a
pragmatic perspective since its syntax is notoriously tuitixe.

Common to all these (and many other) formalisms is a restnicf their expressive
power to at most regular properties. This follows since tteay be embedded into (the
bisimulation-invariant) fragment of monadic second-oidgic on graphs. This restric-
tion yields some nice properties — like the finite model propand decidability —
but implies that these logics cannot be used for certainifspegiton purposes.

For example, specifying the correctness of a communicaifotocol that uses a
buffer requires a non-underflow property: an item cannotemeaved when the buffer

is empty. The specification language must therefore be alitatk the buffer’s size. If
the buffer is unbounded, as is usual in software, this ptgpemon-regular and a reg-
ular logic is unsuitable. If the buffer is bounded, the pmbypés regular but depends on
the actual buffer capacity, requiring a different formuta éach size. This is unnatural
for verification purposes. The formulas are also likely tabmplex as they essentially
have to hard-code numbers up to the buffer length. To exmeasls properties natu-
rally one has to step beyond regularity and consider lodicewesponding expressive
power.

Also, consider program synthesis where, instead of vexgf@ program, one wants
to automatically generate a correct program (skeletom) fiee specification. This prob-
lem is very much linked to satisfiability checking, excepg model exists, one is cre-
ated and transformed into a program. This is known as cdetrgnthesis and has been
done mainly based on satisfiability checking for the mada&hlculus [4]. The finite
model property restricts the synthesization to finite spatgrams, i.e. hardware and
controllers, etc. In order to automatically synthesizevgafe (e.g. recursive functions)
one has to consider non-regular logics.

Finally, consider the problem of verifying programs witffimite or very large state
spaces. A standard technique is to abstract the large ptate sto a smaller one [10].
This usually results in spurious traces which then have texdoided in universal path
quantification on the small system. If the original systens widinite then the language
of spurious traces is typically non-regular and, again, gicl@f suitable expressive
power is needed to increase precision [26].

In this paper we introduce a generic extension of CTL whiabvjgles a specifi-
cation formalism for such purposes. We refine the usual optrator (and its dual,
the release operator) with a formal language defining the emtsnat which the until
property can be fulfilled. This leads to a family of logics g@uetrised by a class of
formal languages. CTL is an ideal base logic because of dgispread use in actual
verification applications. Since automata easily allowdnrunambiguous measure of
input size, we present the precise definition of our logideims of classes of automata
instead of formal languages. However, we do not promote $ieeofl automata in tem-
poral formulas. For pragmatic considerations it may beib&to allow more intuitive
descriptions of formal languages such as Backus-Naur-lBomagular expressions.

As a main result we extend CTL using context-free languagigsificantly increas-
ing expressive power, while retaining polynomial time mlecteecking. Hence, we ob-
tain a good balance between expressiveness — as non-r@gofsarties become ex-
pressible — and low model-checking complexity, which matkés logic very promis-
ing for applications in verification. We also study modekcking for the new logics
against infinite state systems represented by (visiblyhgown automata, as they arise
in software model-checking, and obtain tractability rés@ibr these. For satisfiability
testing, equipping the path quantifiers with visibly puskiddanguages retains decid-
ability. However, the complexity increases frarPTIME for CTL to 3EXPTIME for this
new logic.

The paper is organised as follows. We formally introduceltiggcs and give an
example demonstrating their expressive power in Secti@egtion 3 discusses related
formalisms. Section 4 presents results on the expresswempof these logics, and

Section 5 and 6 contain results on the complexities of salbisiiy and model checking.
Finally, Section 7 concludes with remarks on further workelo space restrictions this
paper contains no detailed proofs in its main part. A fullsien with all proof details
is available online alt t p: / / ar xi v. or g/ abs/ 1006. 3709.

2 Extended Computation Tree Logic

Let? = {p,q,...} be a countably infinite set gfropositionsand X' be a finite set of
action namesA labeled transition systeiTS) is a7 = (S, —, ¢), whereS is a set of
states—~ C SxXxSandl : S — 27. We usually writes -+ t instead of s, a, t) € —.
A pathis a maximal sequence of alternating states and actieas, a1, $1, as, So, . - .,
s.t.s; —t1s 5., forall i € N. We also write a path ag) — s, —25 s, Maximal-
ity means that the path is either infinite or it ends in a stats.t. there are na € %)
andt € S with s, — . In the latter case, the domaiiam(r) of 7 is {0,...,n}. And
otherwisedom(m):=N.

We focus on automata classes between deterministic fintibereta (DFA) and non-
deterministic pushdown automata (PDA), with the classemafleterministic finite au-
tomata (NFA), (non-)deterministic visibly pushdown autie (DVPA/VPA) [2] and
deterministic pushdown automata (DPDA) in between. Bey®b4 one is often faced
with undecidability. Note that some of these automata efasgefine the same class of
languages. However, translations from nondeterministbeterministic automata usu-
ally involve an exponential blow-up. For complexity estiioas it is therefore advisable
to consider such classes separately.

We call a clas€l of automataeasonablef it contains automata recognisirig and
X* and is closed under equivalences, i.edite 2 andL(A) = L(B) andB is of the
same type the8 € 2. L(.A) denotes the language accepteddy

Let 2(, 5 be two reasonable classes of finite-word automata over gtebéty.
Formulas ofExtended Computation Tree Logic orand 8 (CTL[2(,8]) are given
by the following grammar, wherd € 2, B € B andq € P.

¢ 1= qleVe|-p|E(@Ue) | E(¢RPp)

Formulas are interpreted over states of a transition sygtem(S, —, ¢) in the follow-
ing way.

— T,sk=q iff qel(s)

—T,sEeVyiff T,sEporT,sE=v¢

—T,sE-piff T,sl¢e

— T, s |= E(pUA) iff there exists a pathr = sg, a1, 51, ... With sg = s and3n €
dom(m)st.ay...a, € L(A)andT,s, Ev andVi <n:T,s; | ¢.

— T, s = E(eRA) iff there exists a path = s¢, a1, 51, . .. with so = s and for all
n € dom(m):ay...an &€ L(A)orT,s, Evordi <nsth.T, s, Ep.

As usual, further syntactical constructs, like other banleperators, are introduced as
abbreviations. We defing(oUA)) := —E(-@RA—1)), A(pRAY) := —E(—pUA), as
well asQF4y = Q(ttUAp), QGy = Q(££RAp) for Q € {E, A}. For presentation,

we also use languagdsinstead of automata in the temporal operators. For instance
EGL ¢ is EG* ¢ for someA with L(.A) = L. This also allows us to easily define the orig-
inal CTL operatorsQXy := QF¥ ¢, Q(gUt) := Q(pU 1)), Q(¢Rep) := Q(pR¥ 1)),

etc. The size of a formula is the number of its unique subformulas plus the sum of the
sizes of all automata i, with the usual measure of size of an automaton.

The distinction betweefl and®B is motivated by the complexity analysis. For in-
stance, when model checkiB@U~+)) the existential quantifications over system paths
and runs of4 commute and we can guess a path and an accepting run in aisep-w
fashion. On the other hand, when checki{gr*1) the existential quantification on
paths and universal quantification on runs Roy- “on all prefixes ...") does not com-
mute unless we determinisg which is not always possible or may lead to exponential
costs.

However,2l and‘B can also be the same and in this case we denote the logic by
CTLI[2(]. Equally, by EFRI], resp. EG{B] we denote the fragments of CTU[*B] built
from atomic propositions, boolean operators and the teatpuperatorsEF-y, resp.
EGB¢ only. Since the expressive power of the logic only dependésoalass oflan-
guagesrather thanautomata we will write CTL[REG], CTL[VPL], CTL[CFL], etc.
to denote the logic over regular, visibly pushdown, and extafree languages, repre-
sented by any type of automaton. We close this section witiT[\@PL] example
which demonstrates the buffer-underflow property disaligs¢he introduction.

Example. Consider a concurrent producer/consumer scenario ovearachuffer. If
the buffer is empty, the consumer process requests a newrcesand halts until the
producer delivers a new one. Any parallel execution of th@eeesses should obey
a non-underflow property (NBU): at any moment, the numberrofipce actions is
sufficient for the number of consumes.

If the buffer is realised in software it is reasonable to assthat it is unbounded,
and thus, the NBU property becomes non-regular. Xet {p,c,r}, wherep stands
for productionof a buffer object¢ for consumeandr for request Consider the VPL
L={weX| |w.=|wandv|. <|v|,forallv < w}, where< denotes the
prefix relation. We express the requirements in CTL[VPL].

1. AGEXPtt : “at any time it is possible to produce an object”

2. AGE(AX“ff A EX"tt): “whenever the buffer is empty, it is impossible to consume
and possible to request”

3. AGH(EX°tt A AX"£f): “whenever the buffer is non-empty it is possible to consume
and impossible to request”

4. EFEGS £f: “at some point there is a consume-only path”

Combining the first three properties yields a specificatibtme scenario described
above and states thatraquestcan only be made if the buffer is empty. For the third
properly, recall that VPL are closed under complement [2jer satisfying model
gives a raw implementation of the main characteristics efdystem. Note that if it is
always possible tgproduceand possible t@onsumadff the buffer is not empty, then
a straight-forward model with self-loops ¢ andr does not satisfy the specification.
Instead, we require a model with infinitely many differgritansitions. If we strengthen
the specification by adding the fourth formula, it becomesatisfiable.

3 Related Formalisms

Several suggestions to integrate formal languages intpdesthlogics have been made
so far. The goal is usually to extend the expressive powelajia whilst retaining its
intuitive syntax. The most classic example is Proposifiaamic Logic (PDL) [17]
which extends Modal Logic with regular expressions.

Similar extensions — sometimes using finite automata idstdaregular expres-
sions — of Temporal Logics have been investigated a long éigte The main purpose
has usually been the aim to increase the expressive poweeaofisgly weak specifi-
cation formalisms in order to obtain at leastegular expressivity, but no efforts have
been made at that point in order to go beyond that. This alptaigs why such exten-
sions were mainly based on LTL [39, 36, 24, 20], i.e. not leg¥he world of linear-time
formalisms.

The need for extensions beyond the use of pure temporaltopgiaalso withessed
by the industry-standarf@roperty Specification LanguadgESL) [1] and its predecessor
ForSpec [3]. However, ForSpec is a linear-time formalisrd hare we are concerned
with branching-time. PSL does contain branching-time afmes but they have been
introduced for backwards-compatibility only.

On the other hand, some effort has been made with regardsaioséons of branch-
ing-time logics like CTL [5, 7, 29]. These all refine the temglaoperators of this logic
with regular languages in some form.

Thus, while much effort has been put into regular extensadrssandard temporal
logics, little is known about extensions using richer ofsssf formal languages. We are
only aware of extensions of PDL by context-free languag8$ ¢t visibly pushdown
languages [27]. The main yardstick for measuring the expregpower of CTLR,B]
will be therefore be PDL and one of its variants, namely PDthwhe A-construct and
tests, APDL’[2(], [17, 33]. Note: for a clas8l of automata, CTLJ(] is a logic using
such automata on finite words only, whereABDL’[2] uses those and theiriBhi-
variants on infinite words. In the following we will use sonfdlee known results about
APDL’[2(]. For a detailed technical definition of its syntax and seticanwe refer to
the literature on this logic [18].

There are also temporal logics which obtain higher expregsbwer through other
means. These are usually extensiong pfike the Modal Iteration Calculus [11] which
uses inflationary fixpoint constructs or Higher-Order Fixppdogic [37] which uses
higher-order predicate transformers. While most reguléresions of standard tempo-
ral logics like CTL and LTL can easily be embedded inlg, little is known about the
relationship between richer extensions of these logics.

4 Expressivity and Model Theory

We write £ <, £" with f € {lin, exp} to state that for every formula € £ there is an
equivalenty € £’ with at most a linear or exponential (respectively) blow nsize.
We usel <y L' to denote that such a translation exists, but there are fasmf £’

which are not equivalent to any formulah Also, we writel =; L' if £L <; £" and
L' <; L. We will drop the index if a potential blow-up is of no concern

_CTL[CFL]
]

PDL[CFL]— EF[CFL] EG|CFL : APDL/[DCFL]—— APDL’[CFL]
o _,CTL[DI(SF—L]’ E

PDL[IIDCFL]—EF[DIC—FI—_]— —Ee[qé 1 E A_PDU:[VPL]

| E————__:_::=_,CTL[\:/I5L] ok
PDL[IVPL] —EF[\{PL] EG[YPL] \ - 4PDL7I[REG]

E E L _E_’_’___ _CTL[I:?EG] E
PDL[REG]— EF[REG] EG[REG] | __.cm

E E ______ o
S G

Fig. 1. The expressive power of Extended Computation Tree Logic.

A detailed picture of the expressivity results regardirg tost important CTL]
logics is given in Fig. 1. A (dashed) line moving upwards gades (strict) inclusion
w.I.t. expressive power. A horizontal continuous lineesatxpressive equivalence. The
following proposition collects some simple observations.

Proposition 4.1. 1. Forall2(,8B: CTL <;;, CTL[2,5].
2. Forall, 2,8, if A <A andB < B’ thenCTL[2,B] < CTL[',B"].

CTL[2(] extends PDL{(] since the latter is just a syntactic variation of the &F[
fragment. On the other hand, CT] can — in certain cases — be embedded into
PDL[2(]'s extension APDL’[2(]. This, however, requires a transformation from au-
tomata on finite words to automata on infinite words which shtvat these two for-
malisms are conceptually different.

Theorem 4.2. 1. For alll: PDL[2(] =, EF[2(].
2. Forall,%B: EF[] <y, CTL[2(,58].
3. For all 2,%: CTL[2,B] <, APDL’[2l U B8], if %8 is a class of deterministic
automata.
4. APDL’[PDA] =, APDL’[DPDA].

Note that CFL does not admit deterministic automata. Hepene: 3 is not applicable
in that case. If for some class@6% the inclusion in part 3 holds, then it must be
strict. This is because fairness is not expressible in @Tk¢gardless of whall is, as
demonstrated by the following.

Theorem 4.3. The CTL*-formula EGFq expressing fairness is not equivalent to any
CTL[2(, B] formula, for any, 8.

Fairness can be expressed Ayls.;,, whereAy,;, is the standard &chi automaton
over some alphabet containing a test predigdt¢hat recognises the language of all
infinite paths on which infinitely many states satigfy

Corollary 4.4. 1. Forall2(,%8: CTL* £ CTL[2,8]. ‘
2. There are nd,B such that anyCTL[2,%8] is equivalent to theAPDL’[REG]
formula A Az,

At least in the case of CFLs, the premise to part 3 of Thm. 4rihotbe dropped.
Indeed, the formul&G’p is not expressible as APDL’[CFL]-formula whereL is the
language of palindromes.

Theorem 4.5. CTL[CFL] £ APDL?[CFL].

Finally, we provide some model-theoretic results which ali$o allow us to sepa-
rate some of the logics with respect to expressive powershNigrisingly, CTL[REG]
has the finite model property which is a consequence of itseeldibg into the logic
APDL’[REG]. Itis not hard to bound the size of such a model giveh#iRRDL’[REG]
has the small model property of exponential size.

Proposition 4.6. Every satisfiableCTL[REG] formula has a finite model. In fact, ev-
ery satisfiableCTL[NFA,DFA], resp.CTL[NFA,NFA] formula has a model of at most
exponential, resp. double exponential size.

We show now that the bound for CTL[NFA] cannot be improved.

Theorem 4.7. There is a sequence of satisfiall@ L[NFA]-formulas (¢,),en such
that the size of any model gf, is at least doubly exponential j@,,|.

The next theorem provides information about the type of rwde can expect.
This is useful for synthesis purposes.

Theorem 4.8. 1. There is a satisfiabl€TL[VPL] formula which does not have a
finite model.
2. There is a satisfiabl€TL[DCFL] formula which has no pushdown system as a
model.
3. Every satisfiabl€TL[VPL] formula has a visibly pushdown system as a model.

Proof (Sketch of Part 3).The satisfiability problem for CTL[VPL] can be translated
into that of a non-deterministic ighi visibly pushdown tree automaton (VPTA). An
unrolling of this automaton does not necessarily lead ta:thiened visibly pushdown
system. First, such a system might admit paths which vidla¢eBichi condition.
And secondly, the lack of determinism combines successodsfferent transitions
undesirably. However, Thm. 4.2 Part 3 states that CTL[VPa} e translated into
APDL’[VPL] whose satisfiability problem reduces to the emptinasblem for stair-
parity VPTA [27]. There exists an exponential reductionnirgtair-parity VPTA to
parity tree automata (PTA) which preserves satisfiabilitye emptiness test is con-
structive in the sense that for every PTA accepting a nontgfapguage there exists a
finite transition system which satisfies this PTA. This syst&n be translated back into
a visibly pushdown system satisfying the given CTL[VPL]-4PDL’[VPL]-formula.
Implementing this idea, however, requires some care amtimically involved. O

Putting Thm. 4.5, Prop. 4.6 and Thm. 4.8 together we obtarfalilowing separa-
tions. Note that the first three inequalities of the corgllean also be obtained from
language theoretical observations.

Corollary 4.9. CTL[REG] < CTL[VPL] < CTL[DCFL] < CTL[CFL].

5 Satisfiability

In this section we study the complexity of the satisfiabilitypblem for a variety of
CTL[2(,*8] logics. The presented lower and upper bounds, as showngin2rialso
yield sharp bounds for EFfand CTL[_].

Theorem 5.1. The satisfiability problems foa€ETL[DPDA, _] and for CTL[_, DPDA]
are undecidable.

Proof. Harel et al. [19] show that PDL over regular programs with dihe additional
languageL:={a"ba™ | n € N} is undecidable. Sincé € DCFL D REG, the logic
EF[DPDA] is undecidable and hence so is CTL[DPDA,As for the second claim, the
undecidable intersection problem of two DPDA, sdyand 3, can be reduced to the
satisfiability problem of the CTL[, DPDA]-formulaAF-AXff A AFPAXff. Note that
a single state with no outgoing transitions still has outggyaths labeled with. This
formula is therefore only satisfiable if(.A) N L(B) # 0. O

Theorem 5.2. The upper bounds for the satisfiability problem are as in Eig.

Proof. By Thm. 4.2(3), CTL{, 8] can be translated intdPDL’[2(U 8] with a blow-
up that is determined by the worst-case complexity of tramsing an arbitraryl-
automaton into a deterministic one. The claim follows ugheg REGC VPL and that
the satisfiability problem for\PDL’[REG] is in EXPTIME [15] and for APDL’[VPL]
is in 2EXPTIME [27]. O

The hardness results are more technically involved.

Theorem 5.3. 1. CTL[DFA, NFA] andCTL][_, DVPA] are 2EXPTIMEhard.
2. CTL[DVPA, NFA] andCTL[_, DVPA U NFA] are EXPTIMEhard.

Corollary 5.4. The lower bounds for the satisfiability problem are as in Rg.

Proof. As CTL iseXPTIME-hard [12], so is CTL[, _]. The ZEXPTIME lower bound for
PDL[DVPA] [27] is also a lower bound for CTL[DVPA,] due to Thm. 4.2. Finally,
Thm. 5.3 and Prop. 4.1(2) complete the picture. ad

In the remaining part of this section we sketch the proof ahTh.3. For each of the
four lower bounds, we reduce from the word problem of an aéteng Turing machine
T with an exponentially or doubly exponentially, resp., spaound. These problems
are EXPTIME-hard and 8XPTIME-hard [8], respectively.

A run of such a machine can be depicted as a tree. Every nodésstar a con-
figuration — that is, for simplicity, a bounded sequence dliscé\n universal choice
corresponds to a binary branching node, and an existehti@e to an unary node. We
aim to construct a CTL[,_]-formula ¢ such that each of its tree-like models resembles
a tree expressing a successful rurfadn a given input. Thereto, the configurations are
linearized — an edge becomes a chain of edges, in the intendddl, and a node rep-
resents a single cell. The content of each cell is encodeghaspasition. However, the
linearization separates neighboring cells of consecutrdigurations. Between these

‘ DFA NFA DVPA VPA DPDA, PDA

DFA, NFA EXPTIME 2EXPTIME 2EXPTIME 3EXPTIME undec.
DVPA, VPA 2EXPTIME 3EXPTIME 2EXPTIME 3EXPTIME undec.
DPDA, PDA undec. undec. undec. undec. undec.

Fig. 2. The time complexities of checking satisfiability for a CTL{B] formula. Entries denote
completeness results. The rows contain different valueS(fas the results are independent of
whether or not the automata from this class are deterministic.

cells, certain constraints have to hold. So, the actualexngé for the reduction is that
must bridge this exponential or doubly exponential, regmp, while be of a polynomial
size inn, i.e. in the input size t@".

We sketch the construction for CTL[DFA, NFA]. The exponahsipace bound can
be controlled by a binary counter. Hence, the constraintiepnly to consecutive
positions with the same counter value. To bridge betweerstved positions, we use a
proof obligation of the formAu+ for a NFA A. In a tree model, we say that a node has
aproof obligationfor anAU-formula iff that formula is forced to hold at an ancestor but
is not yet satisfied along the path to the said node. The keyigithat we can replace
A by an equivalent automatdn without changing the models of. In our setting,D
is the deterministic automaton resulting from the powecsetstruction [30]. In other
words, we simulate an exponentially sized automaton. Hbeesmentioned obligation
reflects the value of the counter and the expected contenteif.a

One of the building blocks ofp programs the obligation with the current value
of the counter. Thereto, we encode the counter as a chairbelslin the model, say
(bit?i)lgign whereb; € B is the value of théth bit. The automatond contains states
¢ foralll < i < nandb € B. Initially, it is ensured thaD is in the state{q’ |
1 < i < n,b € B}. Informally, this set holds all possibilities for the vatuef each
bit. In A, any ¢? has self-loops for any label except foit;*. Hence, a traversal of
a chain eliminates invalid bit assignments from the subsdttaingsD into the state
{¢¥" | 1 < < n} which characterizes the counter for which the chain stafidsily
for matching, a similar construction separates proof @tigns depending on whether
or not they match the counter: unmatched obligations wilkhgsfied trivially, and
matching ones are ensured to be satisfied only if the expeetkid the current one.

For the other parts involving DVPA, again, the constructaaniulay shall imitate
a successful tree df on the input. The space bound can be controlled by a counter
with appropriate domain. The constraints between cellookecutive configurations,
however, are implemented differently. We use a deterniiniPA to push all cells
along the whole branch of the run on the stack — configuratipndnfiguration. At
the end, we successively take the cells from the stack amthr&\long each branch,
we use the counter to remove exponential or doubly expcadergisp., many elements
from stack to access the cell at the same position in the quewonfiguration. So, as
a main component ab we use eitheAU-AX£f or AGA£f for some VPAA. In the case
of a doubly exponential counter, the technique explainedCfbL[DFA, NFA] can be
applied. But this time, a proof obligation expresses a hihber and its value.

6 Model Checking

In this section we consider model-checking of CHIL_[B] against finite and infinite
transition systems, obtained as the transition graphsisib{y) pushdown automata.
Note that undecidability is quickly obtained beyond thait Fistance model checking
the genuine CTL fragment EF is undecidable over the clas®tf Rets, and for EG
model checking becomes undecidable of the class of VerycBasiallel Processes [16].

6.1 Finite State Systems

The following table summarises the complexities of modeltting CTLR(, 23] in finite
transition systems in terms of completeness. Surprisjmggpite its greatly increased
expressive power compared to CTL, CTL[PDA,DPDA] remainBTmME. In general, it
is the classB which determines the complexity. The table therefore oolytains one
row () and several column&y). Note that PDA covers everything down to DFA while
DPDA covers DVPA and DFA.

‘ DPDA NFA VPA PDA
PDA | PTIME PSPACE EXPTIME undec.

Theorem 6.1. Model checking of finite state systems agai@$t [PDA,DPDA] is in
PTIME, CTL[PDA,VPA] is in EXPTIME and CTL[PDA,NFA] is in PSPACE

Proof (Sketch)To obtain aPTIME algorithm for CTL[PDA,DPDA] we observe that —
as for plain CTL — we can model check a CRLP] formula bottom-up for any(
and®B. Starting with the atomic propositions one computes fosaliformulas the set
of satisfying states, then regards the subformula as a pitojoo Hence, it suffices to
give algorithms folE(2Uy) andE(zRBy) for propositions: andy.

We prove the case f@(zU*y) by reduction to non-emptiness of PDA which is well-
known to be solvable iRTIME. Let T=(S, —, ¢) be an LTS andd=(Q, X, ', 6, qo, F).
We construct for every € S a PDAAT=(Q x S, X, T',¢', (g0, s), F’), where

F':={(¢q,s) | ¢ € F andy € {(s)} and
§'((q,8),a,7):={(¢,s") | ¢ € 6(q,a,~) ands =+ s" andz € £(s)}.

Clearly, if £L(A7) # 0 then there exist simultaneously a wards £(.A) and a path
min T starting ats and labeled withw, s.t.2 holds everywhere along except for the
last state in whichy holds. Note that this takes tin@(|S| - |A| - |T]).

The same upper bound can be achieved:foformulas. However, they require the
automaton to be deterministic. This is due to the quantifier@ation in the release
operator, as discussed in Sect. 2.

We show containment iRTIME by a reduction to the problem of model checking
a fixed LTL formula on a PDS. Lef and .A be defined as above except thatis
deterministic. We construct a PDGy = (Q x SU{g,b},I', A, ¢'), where!’ extends
£ by ¢'(b) = dead for a fresh propositiordead. Intuitively, g represents “good” and

b “bad” states, i.e. dead-end states, in whiihRy) has been fulfilled or violated,
respectively. Furthermore) contains the following transition rules:

(g,€) if x € £'(s) and(g € F impliesy € ¢'(s))
(b, €) if g€ Fandy ¢ ¢'(s)
((¢:5),7) = ((¢', "), w) if none of the above match and there exc X, s.t.
s s and(¢’,w) € §(q,a,~) forsomey € I'w € I'*

Note that| 74| = O(|T] - |.A|). Now consider the LTL formul&dead. It is not hard
to show thats (=1 E(xRAy) iff ((qo,s),€) =7, Fdead. The fact that model checking
a fixed LTL formula over a PDS is iRTIME [6] completes the proof.

To show that CTL[PDA,NFA] is irPSPACEWe reduceE(zR5y) to the problem of
checking a fixed LTL formula against a determinisation ofXf&\ 5. This is a repeated
reachability problem over the product of @&i&i automaton and a determinisation of
the NFA. Since we can determinise by a subset constructiencam use Savitch’s
algorithm [31] and an on-the-fly computation of the edgetiefa Because Savitch’s
algorithm requires logarithmic space over an exponentaglg, the complete algorithm
runs inPSPACE

Using the fact that every VPA can be determinised at a pgssikponentially
cost [2], we obtain an algorithm for CTL[PDA,VPA]. O

We now consider the lower bounds.

Theorem 6.2. For fixed finite state transition systems of size 1, modelkihgdor
EF[VPA] is PTIME-hard, EG[NFA] is PsPACEhard, EG[VPA] is EXPTIMEhard, and
EG[PDA] is undecidable.

Proof (Sketch)lt is known that model checking CTL iBTIME-complete. Thus, the
model checking problems for all logics between CTL and CTElTare PTIME-hard.
However, for EF[VPL] it is already possible to strengthea thsult and proveTIME-
hardness of the expression complexity, i.e. the compl@fitgodel checking on a fixed
transition system. The key ingredient is the fact that theterass problem for VPA is
PTIME-hard?

Model checking the fragment E@J is harder, namelyspAcEhard for the class
REG already. The proof is by a reduction from theiling problem [34] resembling
the halting problem of a nondeterministic linear-spacenolea Turing Machine. Two
aspects are worth noting. First, this result — as opposetieémne for the fragment
EF[R(] — heavily depends on the fact th@itis a class of nondeterministic automata.
For 20 = DFA for instance, there is no such lower bound unkeseACE= PTIME. The
other aspect is that the formulas constructed in this réoluctre of the formeEGA#f,
no boolean operators, no multiple temporal operators, anatomic propositions are
needed.

The principle is that tilings can be represented by infinitedg over the alphabet
of all tiles. Unsuccessful tilings must have a finite prefiattbannot be extended to be-
come successful. We construct an automadamhich recognises unsuccessful prefixes.

! This can be proved in just the same wayasve-hardness of the emptiness problem for PDA.

Every possible tiling is represented by a path in a one-statssition system with uni-
versal transition relation. This state satisfies the foerBal* £f iff a successful tiling is
possible.

However, if we increase the language class to CFL we are atdadode an unde-
cidable tiling problem. The octant tiling problem asks faugcessful tiling of the plane
which has successively longer rows [34]. Since the lengthefows is unbounded, we
need non-determinism and the unbounded memaory of a PDA égnése unsuccessful
prefixes.

The situation is better for VPA. When usedER-operators, visibly pushdown lan-
guages are not worse than regular languages, even for mondeistic automata. This
even extends to the whole of all context-free languages.

In EG-operators VPA increase the complexity of the model chegkimblem even
further in comparison to NFA t&xPTIME. We reduce from the halting problem for
alternating linear-space bounded Turing machines. Anpitge computation of the
machine can be consideredilaite tree. We encode a depth-first search of the tree as a
word and construct a VPA accepting all the words that do not represent an accepting
computation. As in previous proofs, one then takes a orte-gtansition system with
universal transition relation and formuig-£f. O

6.2 Visibly Pushdown Systems

We consider model checking over an infinite transition systepresented by a visibly
pushdown automaton. The following summarises the coniplersults in terms of
completeness.

‘ DFA,DVPA NFA,VPA DPDA
DFA ... VPA ‘ EXPTIME 2EXPTIME undec.

Theorem 6.3. Model checking visibly pushdown systems aga@Et[VPA,DVPA] is
in EXPTIME whereas againsCTL[VPA,VPA] itis in 2EXPTIME

Proof (sketch).To obtain the first result, we follow the game approach hirdgeth
Section 2 (hence the restriction to DVPA). We reduce the rholdecking problem
to a Buchi game played over a PDS, which is essentially the produtie formula
(including its automata) and the model. That is, for examipten a stats, 1 A 2)
the opponent can move {8, ¢1) or (s, ¢2) — the strategy is to pick the subformula
that is not satisfied. The stack alphabet is also a produdiefriodel stack and the
formula VPA stack. For a temporal operator augmented wittPA Mhe formula VPA
component is set td. to mark its bottom of stack. Then the automaton is simulated
step-wise with the model. At each step the appropriate plege decide whether to
attempt to satisfy a subformula, or continue simulating th pad run. Since deciding
these games iBXPTIME [38], we get the required result. The second result follows b
determinisation of the VPA. a0

Theorem 6.4. Model checking visibly pushdown systems aga@iEL[DFA] is hard
for EXPTIME EG[NFA] is hard for ZxPTIME and EF[DPDA] and EG[DPDA] are un-
decidable.

Proof (sketch)ExPTIME-hardness follows immediately from tiExPTIME-hardness of
CTL over pushdown systems [21] and that CTL is insensitivihéotransition labels.

2EXPTIME-hardness is similar to Bozzell'ssXPTIME-hardness for CTL[25]. This
is an intricate encoding of the runs of an alternatm@pSPACETuring machine. The
difficulty lies in checking the consistency of a guessed wage of exponential length.
We are able to replace the required CTéubformula with a formula of the form4,
giving us the result.

The undecidability results are via encodings of a two caumtachine. Intuitively,
the visibly pushdown system simulates the machine, keepiegounter in its stack. It
outputs the operations on the second counter (appropriat@iked to meet the visibly
condition) and the DPDA checks for consistency. In this way ean simulate two
counters. O

6.3 Pushdown Systems

For pushdown systems we have the following complexity-tbgo completeness re-
sults.

| DFA NFA DVPA
DFA/ NFA ‘ EXPTIME 2EXPTIME undec.

Theorem 6.5. Model checking pushdown systems agal®$t [NFA,DFA] is in EXP-
TIME, againstCTL[NFA,NFA] it is in 2EXPTIME, againstEF[DVPA] and EG[DVPA] it
is undecidable.

Proof (sketch).The decidability results are similar to the case of visiblsipdown
systems; we simply drop the visibly restriction. The loweubds which do not follow
from the results on VPA can be obtained by a reduction fromdaswnmter machines. O

7 Conclusion and Further Work

To the best of our knowledge, this is the first work considgarparametric extension
of CTL by arbitrary classes of formal languages charadtegithe complexities of satis-
fiability and model checking as well as the expressive powdrraodel-theoretic prop-
erties of the resulting logics in accordance to the clasklesmguages. The results show
that some of the logics, in particular CTL[VPL] may be usefuprogram verification
because of the combination of an intuitive syntax with readdy low complexities of
the corresponding decision problems.

Some questions still remain to be answered. First, it is apleether the relation-
ships are strict between logics which are connected by selitical lines in Fig. 1.
Moreover, the presented separations are rather coarseeHers desirable to have a
generic approach to separate logics, e.g. QMLL CTL[B] wheneverl is a “reason-
able” subset of3.

It is an obvious task for further work to consider CThr CTL' as the base for
similar extensions, and to characterise the expressivepamd the complexities of the
resulting logics.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

. Inc. Accellera Organization. Formal semantics of Accellera pigppecification language,

2004. In Appendix B oht t p: / / www. eda. or g/ vf v/ docs/ PSL- v1. 1. pdf .

. R. Alur and P. Madhusudan. Visibly pushdown languageraic. 36th Ann. ACM Symp.

on Theory of Computing, STOC’0dages 202-211, 2004.

. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanzal.Andver, S. Mador-Haim,

E. Singerman, A. Tiemeyer, M. Y. Vardi, and Y. Zbar. The ForSpeap@ral logic: A new
temporal property specification languagePhoc. 8th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS@Rme 2280 o£ NCS pages 296-311,
Grenoble, France, 2002. Springer.

. A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis aftcollers with partial

observationTheor. Comput. S¢i303(1):7-34, 2003.

. |. Beer, S. Ben-David, and A. Landver. On-the-fly model cleglof RCTL formulas. In

Proc. 10th Int. Conf. on Computer Aided Verification, CAV'@@8ume 1427 o£ NCS pages
184-194. Springer, 1998.

. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis ofdmveih automata: Ap-

plication to model-checking. IRroc. 8th Int. Conf. on Concurrency Theory, CONCUR’'97
volume 1243 oLNCS pages 135-150. Springer, 1997.

. T. Brazdil and I. Cera. Model checking of regCTLComputers and Atrtificial Intelligence

25(1), 2006.

. Ashok K. Chandra, Dexter C. Kozen, and Larry J.Stockmeydterdation. Journal of the

ACM, 28(1):114-133, 1981.

. E. M. Clarke and E. A. Emerson. Synthesis of synchronization shkedefor branching

time temporal logic. IrLogics of Programs: Workshgpolume 131 ofLNCS pages 52-71,
Yorktown Heights, New York, 1981. Springer.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Courtarple-guided abstraction
refinement for symbolic model checkingournal of the ACM50(5):752—794, 2003.

A. Dawar, E. Gadel, and S. Kreutzer. Inflationary fixed points in modal logi&dCM
Transactions on Computational Log#s(2):282—-315, 2004.

E. A. Emerson and J. Y. Halpern. Decision procedures aneéssigeness in the temporal
logic of branching timeJournal of Computer and System Scien@&8s1-24, 1985.

E. A. Emerson and J. Y. Halpern. “Sometimes” and “not nevevfsited: On branching
versus linear time temporal logidournal of the ACM33(1):151-178, 1986.

E. A. Emerson and C. S. Jutla. The complexity of tree automata arws lofprograms.
SIAM Journal on Computin@9(1):132-158, 2000.

E.A. Emerson and C.S. Jutla. The complexity of tree automata aius$ logprograms. In
Foundations of Computer Science, Annual IEEE Symposiympeages 328—337, 1988.

J. Esparza. Decidability of model-checking for infinite-state caratisystemsActa Infor-
maticg 34:85-107, 1997.

M. J. Fischer and R. E. Ladner. Propositional dynamic logic afleégprogramsJournal of
Computer and System Scienck8(2):194-211, 1979.

D. Harel, D. Kozen, and J. Tiuryynamic Logic MIT Press, 2000.

D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of egular programsJour-
nal of Computer and System Scien@&{(2):222-243, 1983.

J. G. Henriksen and P. S. Thiagarajan. Dynamic linear time temlpgial Annals of Pure
and Applied Logigc96(1-3):187-207, 1999.

I. Walukiewicz. Model checking ctl properties of pushdown systerim FSTTCS pages
127-138, 2000.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

D. Kirsten. Automata Logics, and Infinite Games — A Guide to Current Resgabhapter
9 — Alternating Tree Automata and Parity Games, pages 405-411. N@50ern LNCS.
Springer, 2002.

D. Kozen. Results on the propositiopatalculus. TCS 27:333—-354, 1983.

O. Kupferman, N. Piterman, and M. Y. Vardi. Extended tempomgitloevisited. InProc.
12th Int. Conf. on Concurrency Theory, CONCUR'@dlume 2154 o NCS pages 519-535.
Springer, 2001.

L. Bozzelli. Complexity results on branching-time pushdown modetking. Theor. Com-
put. Sci, 379(1-2):286-297, 2007.

M. Lange and M. Latte. A CTL-based logic for program abstraction$roc. 17th Work-
shop on Logic, Language, Information and Computation, WoLLIQ/dlume 6188 of NAI,
pages 19-33. Springer, 2010.

C. Loding, C. Lutz, and O. Serre. Propositional dynamic logic with recarpiegrams.J.
Log. Algebr. Program.73(1-2):51-69, 2007.

Ch. oding, P. Madhusudan, and O. Serre. Visibly pushdown gaméxomm 24th Int. Conf.
on Foundations of Software Technology and Theoretical Computerc®GiESTTCS'04vol-
ume 3328 oL NCS pages 408—420. Springer, 2004.

R. Mateescu, P. T. Monteiro, E. Dumas, and H. de Jong. Computadi® regular logic for
genetic regulatory networks. Rroc. 6th Int. Conf. on Automated Technology for Verification
and Analysis, ATVA'Q8/olume 5311 o£ NCS pages 48-63. Springer, 2008.

M. O. Rabin and D. Scott. Finite automata and their decision probld®k! Journal
2(3):115-125, 1959.

W. J. Savitch. Relationships between nondeterministic and determingicoaplexities.
Journal of Computer and System Sciende$77-192, 1970.

A. P. Sistlaand E. M. Clarke. The complexity of propositional lineaptal logics.Journal
of the Association for Computing MachineB2(3):733—-749, 1985.

R. S. Streett. Propositional dynamic logic of looping and converderiseatarily decidable.
Information and Contrql54(1/2):121-141, 1982.

P. van Emde Boas. The convenience of tilings. In A. Sorbi, ediomplexity, Logic, and
Recursion Theoryvolume 187 ofLecture notes in pure and applied mathematieages
331-363. Marcel Dekker, Inc., 1997.

M. Y. Vardi and L. Stockmeyer. Improved upper and lower lasufor modal logics of pro-
grams. InProc. 17th Symp. on Theory of Computing, STOC{&ges 240-251, Baltimore,
USA, 1985. ACM.

M. Y. Vardi and P. Wolper. Reasoning about infinite computatiénfermation and Compu-
tation, 115(1):1-37, 1994.

M. Viswanathan and R. Viswanathan. A higher order modal fixéut mgic. In Proc. 15th
Int. Conf. on Concurrency Theory, CONCUROblume 3170 ofLNCS pages 512-528.
Springer, 2004.

I. Walukiewicz. Pushdown processes: Games and model-clgethkfarmation and Compu-
tation, 164(2):234-263, 2001.

P. Wolper. Temporal logic can be more expressiveSHES '81: Proceedings of the 22nd
Annual Symposium on Foundations of Computer Scigrages 340—-348, Washington, DC,
USA, 1981. IEEE Computer Society.

A Proof Details

We provide the details for a number of the proofs omitted ftbemain paper. How-
ever, due to the length of the combined proofs, we only ptefenmost interesting
results here. For a complete set of results, please refeetiuli version available from
http://web.comlab.ox.ac.uk/people/Stephan.Kreutz&rD. pdf.

Semantics of PDL with the A-operator and tests. FormulasForm and programs
Prog of APDL’[2(] for some®l over an alphabef are the least sets satisfying the
following.

. P C Form.

. If p,9 € Form theny Vv ¢ € Form, —¢ € Form.

. If ¢ € Form, A € Prog then(A)y € Form.

2 C Prog.

For every-automaton4 over X' U {¢? | ¢ € Form} we haveA € Prog.

If A € Prog and.A’ results fromA by equipping it with a Bichi condition on states,
thenAA” € Form.

ouAwNE

APDL’[2(] consists of all elements dform which are constructed in this way. The
fragment PDL{!] is obtained by removing clauses (5) and (6). The semargiagain
defined over states of transition systems. The clauses dari@tpropositions and the
boolean operators are as usual. For the other construcissevihe fact that programs
and formulas are defined inductively. Foffa= (S, —, ¢) with edge labels i’ and
a finite subse® C Form of formulas let7? result from7 by adding, for every € S

and everyp € @, a transitions 2 s if T,s = . For aformulap let ?(¢) be the set
of all testsy)? occurring inp syntactically.

T,s = (A)p iff Im =505 —25... > 5,in
T7UA9) with sg = s s.t.
(i) a1...an € L(A), and
(i) T,sn E o
T.s = AA iff 3 =50 -5 25 ... inT (A9
with sp = s andajas ... € L(A).

A.1 Proof of Thm. 4.2

Theorem
1. Foralll: PDL[Q] =, EF[2].
2. For all2(, B: EF[(] <;i, CTL[2(,B].
3. Forall2, 98:if 9B is a class of deterministic automata then CXIB] <;i, APDL?[2AU
B].

Proof. The first two cases are left to the full version. Here we cotre¢s on the third
case. We focus on finite state automaton only. However, thef gan be extended to the

two kinds of pushdown automata considered in the report—yemginsequent replace-
ment can be extended to push, pop and internal operatiosis. die internal operations,
anyway. The proposed translation of #Reformulas relies on an translation of the pos-
sibly larger formulaAxff = —E(ttU*tt). As latter does not involve argR-formula
we may assume an appropriate induction principle. The ladoss of proposition and
boolean operation are straight forward. Given a CTL-fommgty; U4,), we construct
an automatod’ by modifying.A as follows.

objective inA

replacement to getl’

p s g

D T(w1)7< >*a> q

@T(%)?C

Each dotted circle matches either a final or non-final stdte.flinctionr refers to the
translation for those formulas for which the induction hiyysis is applicable. Obvi-
ously T, s |= E(y1UA,) iff T, s = (A))tt.

And as for a formulap:=E(¢); R4), the automatord is assumed to be complete,
and is turned into a safety-automaton4’ as follows. The translation af is AA’.

objective inA

®

replacement to getl’

l‘r(wlﬂ
O

@T(¢2)7©:>

7 (AXE£)? lT(wl)?
t? X
\‘é O

The double arrows indicate either in- or outgoing edges.tkedater discussions we
wish A’ to be deterministic. Therefore, the edge);)? is omitted iff 7 (AX£f) = 7(¢1).
Note that in this case, thE-transition is not eligible anyway agv,)? reports a dead-
end state in the LTS.

Letw = sg, a1, 51, ... be a path witnessing, sy = E(¢1R*v5). As A is determin-
istic, the run ofA on a prefixz’ of « is a prefix of the run onr. Thus the witnessing
path can be turned into a run i4’: As long asy); does not hold we follow the trace of
A. In particular, if a final state ind is reached then the respective edge-)? can be
passed. Now, if the current state has no children thecan follow the edges(AX£f)?,
and for evertt? . And if)1 holds in the current state of the LTS the proof obligation
vanishes for the next state onwards. Hegéean take the way (¢1)?.

Conversely, letr = sg, a1, s1,... be a path witnessing, s = AA’. The run on
this path has a prefix—maybe the whole run—which correspondsrtm of A on 7
wherez), is ensured every timd recognizing the present word, that is, the states in the

T(AX££)?

w7
~\
&\

O

lower line of replacement are not taken. If the prefix is inérhe run is an infinite wit-
ness forp. Otherwise, the suffix has the shgp¢aXxtt)?) (tt?)* or (7(¢1)7) X (tt?)*.
Both alternatives presents a finite witnessgofin particular, the last state of the first
witness has no successors.

Finally, the transition is only linearly increasing.

A.2 Proof of Thm. 4.7

TheoremThere is a sequence of satisfiable CTL[NFA]-formulés) ,cn such that the
size of any model of),, is at least doubly exponential fib, |.

Proof. Fix an even number > 0. Let [n]:={1,...,n}. Let A be the following NFA

over the alphabeX:={—n, ..., —1,#,1,...,n}.
£ £
SN s
N 2))

#l .

Let@ D [n] be set of its states. Thetransition can be eliminated with a linear overhead.
However, thes-transitions are more convenient for presentation puipdseany case,
the size of4 is linear inn. Let D be a deterministic automaton ferobtained from the
standard powerset construction [30]. Although we do notdsxplicitly, it allows us

to say that at a node of a model there is a proof obligatiorfdt_ in a stateS C Q,

for instance.

Let S C [n]. Consider a Hintikka model of some formuteand letAFp occur in
some node. Suppose that we have the control over the formutarsover the Hintikka
model, respectively. Now, we can set upwith the setS as follows. Let[n] \ S =
{s1,...,s¢}. Consider a pathr passing the labels,, ..., s;, # such that along the
pathp does not hold. At the end of this path, there is a proof okiligefor AF“p in the
stateS (w.r.t to D). Iterating this construction with different sefg/ields to many proof
obligations for theAF along the iteration.

As for the lower bound, we construct a formutapolynomially sized inn such
that any of its tree model consists of two phases. The firstogeges exponential many
proof obligations for some instancaB“p along the path. There are doubly exponential
many such paths. In the second phase the model satisfiesabiegations but it also
materializes all the obligations. The set of proof obligas will be so that the materi-
alization is characteristic for this set. This propertyvergs any model from sharing

the different materializations. To be more precise, thé firase is built from smaller
blocks, called S-blocks. For each setC [n] of sizen/2 there is a leaf such that the
block imposes an additional proof obligation fF-p in the stateS. The first phase

consists ofh := (7;/‘2)/2 many layers of S-blocks. For each li§ := S1,...,5,/»

with each element mir[;}]z) there is a path (starting from the root) which reaches the

second phase and which has collected proof obligationsffdp in the stateS; for any
i € [n/2). In the last phase, the model can pick but (") — b sets in([")). Only

n/2 n/2
for these sets the model has a path. For d>. .., a,/2} € (7%) the path touches
the labels-ay, ...,—a, /- in some order. The node after the last label has no successor,

and it is the only state on the path at whiglnolds. The passed labels transform the
proof obligations. The only node which can fulfill the the pfabligations is a dead-
end node. The combination of both properties implementaictraaterialization. This
final phase is implemented by a so-called T-block.

The encoding of this paradigm uses two kinds of counters:toriterate the S-
blocks, and the others to control the branching in any THlbée write C for a list of
n (distinct) propositions which are intended to be used-&# counter.

Let A, B, C—possibly indexed—be counters,c N, v € {0,...,2" — 1}, and
A C Y. There are CTL-formulas of polynomial size ¢ which encode the following
properties.

Formula Property

C =v7,"C # v The countelC has (not) the value.

"AXAA =B The value ofA in any A-successor is the value @& of the cur-
rent state.

"AX*A=B+1"' The value ofA in any A-successor is the successor valugf
of the current state. IB represent@”™ the behavior is undefined.

"A=Y'_,B;' The value ofA is the sum of the values d8, for all i = 0...¢.
Here, we allow (polynomial many) additional counters, Bxsp
tively variables, to compute the sum successively.

The final formulay uses the propositions, and the counter€ and C; for i =
0,...,n.
Encoding of S-blocks.For A C X and« a CTL-formula, the formula

X249 :=AXT VA A EXPtt A AXD

forces that for any of its models there are onlysuccessors and at each of them
holds. Note that for an € A there might be more than omesuccessors.

The enumeration of alb ¢ (n’/LQ) is constructed level by level. An elemesitis
enumerated increasingly. Thereto, the auxiliary formylas, are introduced fof the
number of levels remaining and the maximal number seen along an enumeration so

far.
©m.0 =Ix1#l g

2 no\ __ (n=1)!-n _ n—1\ ;
Indeed,(,),) = Grantmz=nr w7z = 2(h2) is even.

P 0 =IXEHL =y if £>0
Finally, an S-block is forced by

k—1
0= AFAp A 2p A $o,n/2 A /\ AX> {m}gam,n/Q—k:'
me(n]
ke[n/2]

Any (tree) model ot enumerates all subsets|of of sizen /2, and ensures that along
the enumeratiop does not hold while the proof obligatia®-p is imposed on the root.
That s, for any sequenes, . .., a, /24, in X' the following properties are equivalent.

- ay,..., a9 is astrictly increasing sequencelifj, anda,, 211 = #.
— there exists a patky, a1, s1, as, s2, . .. Starting ats such thats; = —p for all ¢ €
{0,...,n/2}, andsy = AF4p.

Encoding of T-blocks.An T-block is a tree withh leaves. The encoding is similar to
that of an S-block. Additionally, at each nod&ve use a countery and counterg§’; for
each outgoing labeli. The counteC contains the number of leaves of the fregv.
Similarly, C; stands for the number of leaves at the respective subtrescdimters”;
must sum up t@. In analogy top,, ¢, €ach formula),, , is responsible for a certain
level. However, the expressidx? is replaced by a variation additionally depending on
the countelC;.

Ymo:="Co=17 A p A AXEf

Ymye ="p A /\ axtedsf
aceX\{—n,...,—1}
n+1—¢
A { (FCi £07 ¢ Ex{*i}tt>
i=m-+1

AN rAX{ii}CYO = Cl—l}
A T-block is represented by the formutedefined as

k—1
,_CO =b'A 1)[107”/2 A /\ AXZ {_m}wnz,n/Q—k’
me[n]
ke[n/2]

Encoding. Now, the S-blocks can be iteratédimes.
©:="C=0"A AG™ (FAXE\{#}C’ =C'A
"ax#o=cC + 17)
WTL is bisimilar, there might be more than one out-going edge vgien label

a € X. In this case, we pick out one such edge. So, the term “tree” refere timeth thinned
out.

A MG HH(TC £ b7 o)
A AT (O =b1 = 1)

w Is satisfiable. We construct a tree model gf. Obviously, the existence of the first
phase—as mentioned in the introductive text—is guaranteeauser and¢ without
its last conjunct have bisimilar models only. Given a patfrom the root to the last
element of the first phase, it remains to show how to continitb & T-blocks. By
the construction of and ¢, there are sets’, ..., S, € (T[L’/L]Z) such that the path has
collected only proof obligation ofFp for the statesS; to S,. LetS := {S; | i € [b]}.
Now, set

T={Te () Im\T¢S}.
Note thai 7’| = (,},) =|S| = (,},) —b = b. Choose a subsgt’ C T of size(,,,) —b.
The formular forcesb branches. Therefore, for ea@h € 7’ we construct a branch
which passes the labelsty, ..., —t,, Wherety, ..., t, iS an increasing enumeration of
T. For anyS € S, the setsS and7" are not disjoint. Indeed, if they are disjoint then
[n] \ T = S as both have the same siz¢2. But this is contradiction t@” € 7. The
non-disjointness ensures that any proof obligatio'iis turned into an obligation for
a set of states containing a final state, after passing tledslal,, . .., —¢,. However,
this state modelg, and hence all proof obligations disappear.
Lower bound. Consider a modeJ™ of . Because(Qkf") > 2F for anyk € N, the set

[n] (n]
((nf)) has at least doubly exponential sizerinFor any setS ¢ (("62)) there is a

rooted pathrs through the S-blocks of” which got proof obligations foaF-p for
everyS € S and ends at the first node of a T-block. Ll&andS’ two different sets in

((T[LZD). As for the lower bound, it suffices to show that the last noafess and s
are different. Assume that they are identical. The T-bldakimg at the last node shows
b branches, each naming (the negative of each element of)&a sefn] of sizen/2.
As in the case of satisfiability, the proof obligations gatnisformed by each branch.
Since a T-block is a dead end, a transformed proof obligatiost refer to a set which
contains a final state od. Therefore;" must intersect with any element&fJS’. That

is, ([n]\T) ¢ SUS’. In total, each of thé = (n’/LQ) — b branches names a different set
which is not inS U §’. So,|S U §’| = b. Being of sizeb, bothS andS’ are identical.
Contradiction. O

A.3 Proof of Thm. 4.8
Theorem.

1. There is a satisfiable CTL[VPL] formula which does not ha¥aite model.

2. There is a satisfiable € CTL[DCFL] s.t. no pushdown system is a modelof

3. Every satisfiable CTL[VPL] formula has a model which is aibiy pushdown
system.

We commit the first two cases to the full version. Here we proas three, begin-
ning with the following lemma.

Lemma A.1. Every satisfiabl€TL[VPL] formula has a model which is a visibly push-
down system.

Proof. Beforehand, we harmonize the definitions of two kinds of e#ta, and of a
push down system.

Let ¥ = (X, X}, X;) be a pushdown alphabet [2]. For the following three defini-
tions, @ refers to a set of stateg, € () to an initial state/” to a stack alphabet contain-
ing the bottom-of-stack symbdl, andcol : @ — N to a function coloring the state&g.
Moreover, we implicitly use the standard [2, 22] notatiofg @onfiguration, and of a
run onw-words overY’ and on infinite trees ovex, respectively. For simplicity, If’
be the sef@Q x X x (IN\{L} xQ)*) U (@ x X; xQ*) U (Qx X xI'xQ*). We write
((g1,B1),...(gn, By)) foran elementifl"\ { L} x Q)*. A ordered visibly pushdown
system(0VPS) overY' is a tupleP = (Q, I, 9, qo) such that C 7" andJ is determin-
istic. An oVPSP induces an¥-labeled and ordered tree by unrolliagA parity tree
automatorover Y is a tupled = (Q, 6, qo, col) such that C @ x X' x Q*. A stair par-
ity visibly pushdown tree automat§®8] over ¥ is a tupleA = (Q, I, 9, qo, col) such
thatd C T'. Any such automaton is said to Batisfiableif there exists a tree which it
accepts.

Given a stair parity VPTAA, we construct an oVPS such that its induced tree is
accepted byA. As for the claim of Thm. 3, for anAPDL?[VPA]- and any CTL[VPA]-
formulay there is a stair parity VPTA which accepts exactly the unidiaenond path
and uniqueA-path Hintikka tree models op [27, Lem. 24]. By the announced im-
plication there exists a o0VPS which admits such a Hintikkadehdor . From this,
one obtains a VPS [28] satisfying, as just as one gets a tree model from a Hintikka
model [27, Prop. 23].

Let A = (QA, T, 6%, g3\, col) be a stair parity visibly pushdown tree automaton
over a a pushdown alphahBt= (X, X, X;).

Definition A.2. Wlog.col: Q4 — N\ {0}, and@Q* = {1,...,|Q*|}. The parity
tree automatorB := (Q7, 6%, ¢5, col?) is defined as follows.

- QB = (QAXFXQQA)U{/}.
- Q(? = (q(347J—7®)
— col®((q,_,_)) := col*(q) forall ¢ € Q*, andcol®(v) := 0.

The relationd? is given by case distinction oxf.

Always: (v',a,(v')) € §8foralla € X.

Forall a € ¥; and (¢, a, (1, ..., qx)) € 6*: Then((¢,7, R),a,{(q1,7, R), ..., (qx, 7, R))) €
sBforally € I

Forall a € ¥, and (¢,7,a, {q1,...,q)) € 6: Then((¢, L, R),a, {(¢1, L, R),...,(q, L, R))) €
6. And((¢,7, R),a,(v)) € 68ifq; € Rforalli =1,... k.

Foralla € ¥.and (q,a,((v1,q1),-- -, (Yk:ax))) € 04 LetRy, ..., Ry C Q4 bear-
bitrary. Then((q,~', R'),a, (w; ... w;)) € 6° wherew; fori = 1,...,kis a
vector overQ”? of lengthl + |Q4|. Its first component i§g;, v;, R;), followed by
(r,y',R") if r € R;, or by v otherwise, for all- € Q* increasingly.

Note that from any transition if§ its generating transition il can be reconstructed.

Lemma A.3. If A is satisfiable then s8 is.

Proof. Suppose tha#l accepts a tree4. Lett/, be the treg 4 but additionally anno-
tated with configurations a#l witnessing that 4 is accepted byA. Starting from the
root, the tree’, is successively rearranged to a ttgeaccepted bys. Let a nodev be
given. If atv the automatomd does an internal operation or a pop operation then this
nodes remains. Now, assume tbatloes a push operation alomgo a childw. Con-
sider the occurrences of all pop operations corresponditiget push operation from

to w on all branches arising from. Let R be the states reached Byas a result of the
exhibited pop operation. Hence, for any= R there is a subtreg. beloww annotated
with the state-. For all € @, increasingly, the node got the following subtree as
a sibling. Ifr € R then we také, and otherwise some (infinite) tree. The new sibling
are inserted right after and a head of its siblings in the first place.

The construction ensures that the resulting tree is acddpt®. Indeed, letr be a
path starting ing5. If = touches/, it keeps doing so. Hence, the path is accepted. Oth-
erwise, the path corresponds to a branchlimwhere the immediate run corresponding
to a maximally matching word [2] are omitted. For each suclhdya branch is forked,
cf. the first component of the;s in Def. A.2. Hencer corresponds to a branch j.
However, the positions of the maximally matching words aretaken into account for
the acceptance condition. But, this restriction is justdtaér parity condition. Hences
is accepted.

Definition A.4. LetC be a parity tree automaton ovér with states) and transitions
0. A triple (V, E, r, ¢) is afinite interpretatiorfor C iff V' is a finite set of nodedy :
V — VT is a successor function with ordered childrens V is its root, and¢: V' —

(Q x X) is a labeling function which in conform with That is,E(vy) = (v1,...,v,)
and {(v;) = (¢, a;) forall i € {0,...,n} imply (qo, ao, (a1,...,¢,)) € 0, for any
Vo, Un € V,qo,-.-,qn € Q,andag,...,a, € X. Such a finite interpretation is

a finite modelof C iff C accepts the tree resulting from unrollifd’, £, r, ¢) at its root.
The labels of this tree follow th&-part of £.

Theorem A.5. Any satisfiable parity tree automaton has a finite model.

Proof. The emptiness problem can be reduced to the question whatimet the au-
tomaton player has a winning strategy for a finite parity gg22¢ The set of winning
position is computable. Hence, fixing one outgoing edge afsatipn of the automaton
player leads directly to the claimed graph.

Finally, the translation in Def. A.2 and the reduction in Lefn3 can be reversed.

Definition A.6. Let G = (V, E,r,¢) a finite model of3. ThenG induces an oVPS
P = (V,I'" 67 r), where the stack alphabét’ is (Q — V) U {L}. The transition
relation 7 is given as follows. Let € V be labeled with_,a) € @ x ¥. For any
a € X, 6F contains(v, a, E(v)). And for anya € X, 6¥ contains(v,a, L, E(v))
and (v, a, p, p(v)) for any functionp : Q — V. As for the push operations, 1&(v) =
v1... v, and letv; = v;,...,v; | for eachi, due to the conformity off with 5.
Thend? contains(v, a, ((p1,v1,0)s- - - (Pr, VE0))) Wherep; : @ — V is some (fixed)
function such thap;(¢) = v; 4 if the X-part of £(v; 4) is notv'.

Because, in the tree resulting from unrolli6g no rooted branch reaches the stdte
transitions leaving this state need not be translated.

Theorem A.7. LetG be a finite model oB. Then the oVP® is a model ofA.

Proof. In the unrolled tree of?, any maximal pathr which starts at the root is infinite,
following the labeling function. Analogously to the proof bem. A.3, such a path
meets the stair parity condition. Indeed, it suffices to @ershe interrupted path which
skips the minimally matching words in the factorization thfg word labeling)r. Such
an interrupted path corresponds to a pat&¥imeeting the parity condition @. Hence,
w fulfills the stair parity condition forA.

As for the underdetermination of the functiopsin the caseY.: if the X-part of
L(v; 4) 1s v/, the value of; (g) is irrelevant as the function will be never evaluated-at
as long as only rooted paths are considered. This is ensyrggelrondition §; € R”
in the caseX, of Def. A.2 and by the conformity ofr with 5.

This completes the proof of Lemma A.1 and therefore Thm. &8 & ad

B Proofs omitted in Section 5

B.1 Proof of Thm. 5.3
TheoremThe following items hold.

1. CTL[DFA, NFA] satisfiability is hard for EXPTIME.
2. CTL[DVPA, NFA] satisfiability is hard for BXPTIME.

The reduction uses the alternating tiling problem.

Definition B.1. Thealternating tiling problenis the following. Given a séf of tiles,
H,V CT? seT,f:N—N,anda: T — {0,1,2} suchthatd C {(t,t') | a(t) =
a(t")} decide whether there istding tree That is, a finite tree such that

— any node is labeled withy, . . ., t,,, for m:=f(|T),

— t; = s for the root,

— t;Ht;pq forall 1 <i <m,

— the node has(t,,) successors, and

— for each successor labeled with . .., ¢/ holdst; V¢, forall 1 <i < m.

The functiona realizes alternation. Note that, if the rangecofs {0,1} the defi-
nition corresponds the usual one version for one player. [Bd¢refore, we refer to a
node in a tiling tree as ow and to its components a®lumns So, H represent the
horizontal and/ the vertical matching relation.

To describe the complexity of alternating tiling we assunreasonable encoding
of T', H et cetera. In particular, the functighis given as a term. As we want to charac-
terize complexity classes far beyond EXPTIME the usualidorrtiling [34] does not
suffice because an explicit naming of the width would reqtdreuch space.

Combining the technique of tiling and alternation [8], weaih the following char-
acterization.

Lemma B.2. The class of alternating tiling problems where their fuoo8 f is expo-
nential is 2EXPTIME-complete. Similar, the restrictiordimubly exponential functions
is complete for BEEXPTIME.

In Def. B.1, the restriction o with respect tav is not necessary for the complete-
ness for the respective completity class. However, it siieplthat subsequent hardness
proof for CTL[DFA,NFA].

Proof (of Thm. 5.3(1))Given an alternating tiling problem consisting®f H, V, s, f
anda as in Def. B.1 such that is exponential. Set:=|T|, m:=f(n) and letm’ be the
number of bits to count fror to m — 1, that isn”:=|log,(m — 1) | + 1. Note thatn’
is polynomially bounded im. W.l.o.g.7 = {1, ..., n}.

It is pretty easy to find a CTL-formule such that any of its models looks like
an tiling tree (up to bisimulation). Thereto, the tiles are@ded by propositions, say
t1,...,t,. Any sequent of tiles in a node of the tree is represented bpmof nodes in
the model of the respective length. The length is ensureddiryaaty counter with' bits.

In (pure) CTL all properties can specified except for the traist onV. Therefore, the
formula would need to look about steps into the future while have a size polynomial
in n.

TheV-constraint refers only to any those two immediately contee positions on
which the counter has the same value. To bridge between thvospositions, a proof
obligation is created by aau“-subformula. The key idea is that for the correctness
we can replaced by the deterministic automaton obtained from the standewepset-
construction [30]. In other words, we are allowed to coredtan exponentially sized
automaton but which has a small description. The mentiordigation reflects the
value of the counter and the expected tile at the secondqusiowever, its creating
requires that the outgoing edge is replaced by a chain oked@geh edge copies another
bit from the counter to the proof obligation. As long as thee®of the model represent
the same row, the programmed proof obligation are not aried,is, they can not
reach any final state. The change to the next row arms theaioligs. Along the path
to the second position, at every tile position an appendithexmodel checks every
proof obligation. If the current value of the counter doesmatch the stored value in
the obligation the model ensures that the obligation isBad trivially. Otherwise, the
(only remaining) obligation matches the chosen tile with #xpected tile. Finally at
every second change of the row, the model disposes of thé gintigations.

Formally, we will construct a formula over the alphabet

Y:={nextCol,nextRow, ifNeq, then,else} U I

where I':={bit? | i € [n],b € B}. As boolean values we ugeand 1. The label
nextCol separates two columns in the same row, aegtRow indicates a new node
in the tiling tree. The sef” is used to program the proof obligations, which are veri-
fied with help ofifNeq, then andelse. Besides the already mentioned propositions
t1,...,t, fortiles, we use:, ..., ¢, =:cas ann’ bit counter ranging frond tom — 1.
Arithmetical operations involving this counter are delsed informally in quotes be-
cause these only plays a minor role. However, these opesatiave short encodings

as CTL-formulas, that is, their size is polynomially boudde »’. Additionally, the
propositiondir is used to force two sons whenevegets two.

Define p’:=—p andp':=p for any propositionp. For a labela € X and a CTL-
formula, !X%:=EX*tt A AX%) denotes that there is at least angsuccessor ang
hold at these successors. Moreover, instead of automatswease regular expressions
as annotations to CTL-formulas.

The tiling problem is translated into the formula

0 = “o— (0" A AG{E}UE*{nextCol,nextRow}d)

where is the conjunction of the following lines and the automatéris depicted in
Fig. 3.

bit}_b,nextCol,nextRow,ifNeq bit}_ ,then

\(—w nextRow (w

/—\ ifleq

— @
nextCol nextRow then

nextRow

individual

ifNeq

shared
&
%
i)
"
B
i)

else @

= else

Fig. 3. AutomatonA. Overlined labels mean their complement with respect tdhe individual

part is present for any € [n] and for anyb € B. So, it haslOn + 3 states wher@n are initial
ones.

\/ i N /\ it (1)
i€[n]

jeln]\{i}
N N\ b= axlE g @
i€[n’] beB
EXifNeqtt (3)
N\ ¢ axiea I pybitt g)
i€[n’] beB
AXNea I |xtheng i gpose ©
AXifNeq " then!xelse(—\dispose A AXfE) (6)
/\ (AxifNeq I'™ then elseti) “ ot (7)

i€[n]

/\ t; — AFA \/ t; V dispose (8)

i€[n],a(i)#0 JE[n],iVj
e<m—1"—= \/ ti AAxTT Ixmeteely 9)
i,j€[n],iHj
“e <m— 1" — uAXFn neXtColc —c+ 1” (10)
“e=m—1"A \/ t; | — AXI" 1XRFR (gispose ACe = 07) (11)
i€[n],a(i)>0
‘e=m—1"A \/ t]| = /\ &X' EXertgirt (12)
i€[n],a(i)=2 beB
“c=m—1"A \/ t; | — Ex*Neaclseqigpose (13)
i€[n],a(i)=0

The formulay is obviously a CTL[DFA,NFA]-formula and its size is polynaatly
bounded im.

The formula (1) ensures that exactly one tile is chosen, (@&)nams the proof obli-
gation (for thelV/-constraint) generated by (8). The verification is perfairog (3)—(7).
The formulas (9)-(12) ensure that the columns of a node itilthg tree are enumer-
ated, and that the tree is branching with respeat fbhe formula (13) is the counterpart
to (9) and just ensures that proof obligation at the leavessatisfied. (Alternatively,
(2)—(7) could be excluded for the very last column.)

If we neglect thel/-constraint, the reduction is sound and complete. As follthe
constraint, we describe the life of a proof obligation onetmodel ofp. An excerpt is
given in Fig. 4.

2.0 apl 220
nextCol m bity bity bitg G\ nextCol @
\/ \Z/
iifl\leq
bit(l) bit% bitg m then m else
o D DD
\Z/ N4

Fig. 4. Excerpt of a model forp. This part depicts a single column which is neither the first nor
the last one of a row. The second line shows the appendix which veriigsdlof obligation for
the V-constraint. At the nodé the formulast7, —c3, ¢ and—¢; shall hold, at the nodé the
propositiondispose, and at nod& the propositiort;.

Let @ be the set of states of. If we say that there is a proof obligation in a certain
state’ C @, we refer to the deterministic substitute.dfobtained from the powerset
construction. Beginning at the node the formula (8) admits a proof obligation for
t; V dispose (for somej € [n]) in the state{p? | i € [n],b € B}. The intended trace

is the first line in Fig. 4. After passing the laheéxtRow the automaton reaches the
state{q? | i € [n],b € B, 1 |= ¢!}, that is, the state reflect the content of the counter at
nodel. As for the second line, the proof obligation vanishes bseaiispose holds at
the node&s. Moreover, the obligation remains while passing anothkmoas of the same
row. Changing the row for the first time, the obligation chesigo{r? | i € [n],b €
B, 1 = ¢!} where the nodé refers to the node which admits the proof obligation. As
long as we follow the first line, the state remains until wergfethe row for the second
time. This brings the obligation in the staf¢}. The formulas 5 and 13 offers a node
with modelsdispose and ensure that the proof obligation disappears. Note ftet a
the first change of the row there is also a node modelligpose. But the state of the
obligation does not contain a final statefat this time.

Now, we consider a proof obligation in the second line afsgingnextCol for
the first time. The label fNeq switches the state t5,s? | i € [n],b € B,1 = c?}.
Again the nodel refers to the node which admits the proof obligation. At n6dbe
obligation either reaches the stdtg or some proper super set. The second case can
only happen if the programmed counter and the counter ofuhreiat column differ. In
this case, the formula (5) disposes the obligation. Otrsmyithe state of the obligation
does not contain a final state when reaching the riody (6) and (7), the tile ,—as
represented by the obligation—must be the tile of the cuicelumn. O

C Proofs omitted in Section 6

C.1 Proofof Thm. 6.3

Theorem.Model checking visibly pushdown automata against CTL[MP¥PA] is in
EXPTIME, and CTL[VPA,VPA] is in 2EXPTIME.

We split the proof into separate lemmas. For VPA rules wehmsaostation(q, -, a, push(b), ¢'),
(q,7,a,rew(b),q) and(q,~, a, pop, ¢'), and omit the input characterfor PDS rules.

Lemma C.1. Model checkindCTL[VPA,DVPA] over visibly pushdown automata is in
EXPTIME

Proof. We reduce the model checking problem for CTL[VPA, DVPA] oA to a
Buchi game over a PDS. Since deciding the winner in such a gaEx®TIME [38], we
obtain arEXPTIME algorithm for the model checking problem.

Without loss of generality, we assume all VPA have a bottorstatk symbol that
is neither popped nor pushed and are complete. We also assufeemulas are in
positive normal form.

The game has the following transitions. The state set arfthbht is defined implic-
itly. We begin with some standard formula to game transhatidhe alphabet becomes
a set of pairs(a,b). The first component corresponds to the model VPA, the second
to the formula VPA being evaluated. All states annotdiagn are controlled by the
existential player. The universal positions ésep; A ¢2). The following rules are for
all characters, andb.

— (win, (a,b), rew((a, b)), win).

— ((s,p)b®9™ (a,b), rew((a, b)), win) if s satisfies the atomic propositign

— ((s,—p)be9™ (a,b), rew((a,b)),win) if s does not satisfy the atomic proposition
D.
((Sv w1V 302)begz:na (av b)a rew((a, b))’ (s’ @i)begm) fori e {17 2}'

- ((Sv w1 A @2)begzn, (av b)v Tew((av b))7 (57 Y1 A @2))'
((8, p1 A <)02)7 (a7 b)7 ’I"BUJ((CL, b))7 (57 @i)begln) fori e {L 2}

For path formulas, we form a product with the VPA labelling thrmula. We begin
by adding a bottom of stack symbol to the stack in the formUPA'¥ component. For
E(p1U%p,) we allow the existential player to decide whether to conepliie until
formula or postpone completion until later. When postponthg opponent can check
whether the until will eventually be completed, or whethe tondition on the until
holds. When progressing the game, the existential playétésa choose both the move
of the formula VPA and the model VPA. The existential positi@re(s, E(p1U%4¢5))
and(s, E(p1U%4¢,), move). The universal positions afe, E(¢, U4 p,), wait).

E(p1U%)
E(p1U%¢)
E(p1U%5)
E()
E(),

),

»

e, (a,b), rew((a, 1)), (s, E(p10" % 02))).
), (a,b), rew((a, b)), (s, p2)?e9"™) for all a, b andq is accepting.

), (a,b),rew((a,), (s,

, ,rew(a), (s, p1)¢9™) for all a, b.

,rew((a,b)), (s, E(p1U4apy), move)) for all a, b.

), push((a’, V")), (s',E(p1U% ,))) whenever we have
and(q, v, b, push(b'),q’).

»

5, E(p1U%p,), wait)) for all a, b.

»

(
01049y walt) (a,b)
01049 05), wait), (a,b)

)

5/3

L E(p1U0%45), move), (a, b
ruIeS(s v, a,push(a’), s
LE(p1UAa0y), move), (a,b), rew((a’, b)), (s',E(01U4 ¢5))) whenever there
s,7v,a,rew(a’),s") and(q,~, b, rew(t’),q).

E(‘)DlUAqQO?)vaUe) (G,) pop, (S/7E(901UA(1/<}92)))Whenevel(5777a7p0p? S/)
(4,7, b,pop, q').

o o o — — —
»

O~~~
V)

D

—

—~

»w o~ ®»

and

The remaining path formulas are similar, but the roles of glagers are altered
accordingly. In the case(yU%,), when satisfaction is postponed, since the prop-
erty must hold for all paths, first the opponent picks a trt@msiof the model, then
the existential player picks a move i The existential positions aKe, A(p;U4p5))
and(s, A(p1U%ap,), t,). The universal positions af@, E(¢; U4,), wait). Note that
A(p1U4¢p,) is an abbreviation for @E(—¢; R4 —5). Due to the discussion in Section 2,
correctness of the reduction relies drbeing deterministic.

— (5, A(P1U42))" 9" (a,b), rew((a, 1)), (s, A0).

— (5, A(p1UA909)), (a, b), rew((a, b)), (s, p2)?e9"") andq is accepting.

- ((S7A(‘p1UAq‘p2))7(a’ b)7 rew ((aab))’(S’A((PlUAq‘p2)3wait))'

- ((S, A(‘»OlUAq‘p?)v wait), (a7 b), Tew((a7 b))» (3» Qpl)begm)'

- ((s, A(;plUAQQog), wait), (a,b), rew((a, b)), (s, A(p1U%py), t,)) wheret,, is atran-
sition froms, a

— (5, A(p1UA99), 1), (a,b), push((a’, 1)), (s, A(p1U44 5))) whenever we have
ts = (s,7,a,push(a’),s’) and(q,~, b, push(b'),q).

— ((s,A(p1UAp), t5), (a, b), rew((a’, 1)), (s’ ,A(golUAq’ ©2))) whenever we have =

(s,7,a,rew(a’),s’) and(q,~, b, rew(d’),q").

~ ((s, A(p1U%102), 15), (a,b), pop, (s', A(91U4+ 2))) whenevet, = (s, 7, a, pop, ')
and(q,, b, pop,q’).

The release operators are defined analogously. We begiEit®*). The exis-
tential positions arés, E(¢1R415)) and (s, E(¢1R4p,), move). The universal posi-
tions are(s, E(p1R41¢y), wait) and(s, E(p1RYps), t,). Here we also rely on the fact
that the VPA in the formulas are deterministic.

= (5, E(1R)™, (a,b), rew((a, 1), (s, E(@1R ").

)

- (5 E(paRrea)), (0,5) rew((a,b), (s, 000,

— (5 E(paRr2a)), (0, b) rew((a,5)), (s, E(piRriga), wait)). |

— ((s,E(p1RA qwg),wazt) (a,),rew((b)), (s, p1)"9"") whereq is accepting.

- ((S,E(wlRAqwg),wazt) (a,b),rew((a,b)), (s, A(p1Uaps), move)). -

— ((s,E(¢1RA03), move), (a,b), rew((a, b)), (s, A(p1 U9 ps), t,)) Wheret, is a tran-
sition froms, a.

— ((5,E(p1RAp9), 1), (a,b), push((a’, 1)), (s',E(p1R7 5))) whenever we have
ts = (s,7, a,push(a’), ') and(q, v, b, push(¥/), ¢').

— ((s,E(p1RA909), ts), (a,b), rew((a’, b)), (s, E(p1R ©2))) whenever we have, =
(s,7,a, rew(a’), s') and(q, 7, b, rew(t'), ¢).

~ ((s,E(p1R%02), 1), (a,b), pop, (s', E(¢1R™' 1)) whenevet, = (s,, a, pop, ')

(q,7,b,pop, q").

And finally, A(p1R“5). The existential positions are, A(pR44¢,)). The univer-
sal positions args, E(p1RA4ps), wait).

= ((s, A(<P1RA<P2))begi” (ab), rew((a, 1)), (5, A(p1R" 4 2))).

~ (5 A(paBrea)), (0,5) rew((a,b), (s, 1)/70).
~ (5 A(paBr2a)). (0, b) rew((a,). (5, AlpaRioa), wait)),
((S,A(cle 1p,), wazt) (a,b), rew(a),(s,@)begm)whereq is accepting.
— ((s, A(p1RA), wait), (a b), push((a’, V'), (s', A(@1RA ©5))) whenever we have
(s,7,a,push(a’), s") and(q, v, b, push(b'), ¢').

- ((s, (<p1RA‘Zg02) wait), (a,b), rew((a’, V), (s', A(@1R ¢5))) whenever we have
(

s,7y,a,rew(a’),s’) and(q, v, b, rew(d’), q).
(5 AR) 0ait), (0,0), pop (', A 1R 2))) whenever(s, 1, pop,)
and(q, v, b, pop, q').

The game has aighi winning condition. All states are accepting exceptdiates
containing aru operator. Since these formulas must always eventuallytisfied, they
are not accepting. Since we assume all VPA are completewillegnly get stuck when
a literal is not satisfied, in which case the existential ptayill lose.

Given a CTL[VPA] formulay and a VPAB, we can check whetheB satisfies
¢ by asking whether the existential player wins the game desgrabove from the
control state(sg, ©*9") with the initial stack contents. Such games can be solved in
EXPTIME [38]. O

Lemma C.2. Model checkingCTL[VPA,VPA] over visibly pushdown automata is in
2EXPTIME

Proof. The proof follows from the exponential cost of determinggsithe VPA, and
Lemma C.1. O

