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Abstract

Adaptive mesh re�nement �AMR� is a very important
scienti�c application� Several libraries implementing
speci�c distribution policies have been written for AMR�
In this paper� we present a �fully general block distribu�
tion� which subsumes these distributions� and discuss
compiler and run�time tools for supporting these dis�
tributions e�ciently in the context of a restructuring
compiler� We also present performance numbers which
suggest that in comparison with library code written
for a particular distribution policy� the overhead arising
from the generality of our approach is small�

� Introduction

Semi�structured methods such as adaptive mesh re�ne�
ment and multigrid are used in applications which are
computationally intensive� It is di�cult to implement
these methods e�ciently even on a sequential machine	
parallelism adds an order of magnitude overhead to the
complexity�

The computation in semi�structured methods is
characterized by irregularly organized regular compu�
tations on the underlying data� The underlying data is
speci�ed as grid components which are organized in an
irregular fashion in a grid hierarchy which itself changes
dynamically� The computation in the application con�
sists of stencil operations for relaxation on grid compo�
nents� and interpolation and projection operations for
transferring data between grid components at di
erent
levels of the grid hierarchy� The computation is regular
�that is� data access functions are a�ne functions of sur�
rounding loop indices�� Parallelism is obtained by dis�
tributing the grid components in the hierarchy among
various processors� However� this also leads to commu�
nication between various grid components� The volume
and patterns of communication depend critically on the
data distribution� The irregular and evolving nature of
the application also leads to load imbalance� requiring
redistribution of data at run time�

Even though the underlying computation is dense�
HPF�like compiler technology is inadequate for AMR
applications� There are two reasons for this�

� Block�cyclic distributions are inadequate to obtain
proper load balance for these applications� Obtain�
ing good load balance requires grid components to
be distributed in complex ways among the proces�
sors� as explained below�

� The communication between various grid compo�
nents is determined by the connectivity of the grid
hierarchy� Due to the irregular nature of this con�
nectivity� communication patterns are irregular�

Because of the inadequacy of present compiler
technology� several libraries have been developed to
make the application programmer�s job easier� The
most important of these are Multi�block PARTI 
���
P���AMR�� 
��� LPARX 
��� DAGH 
���� All these
libraries hide the nature of the data distribution from
the application programmer as much as possible� They
provide constructs such as forall loops to enable applica�
tion writing at a high level� and provide library calls to
take care of parallelization issues� Each of these libraries
makes certain assumptions regarding how the underly�
ing data is distributed� which a
ects application perfor�
mance� Multi�block PARTI 
�� uses block�cyclic distri�
butions as in HPF� but allows data arrays to be mapped
to a subspace of all the computing processors� This
works well for Multigrid codes� but for adaptive mesh
re�nement� the limitations of HPF apply here as well�
AMR�� 
�� is an AMR class library layered on top of a
parallel array library P��� AMR�� treats P�� as a
black box and uses the distributions that P�� provides�
These distributions reduce load�imbalance by allowing
arrays to be distributed by columns of variable size� but
are still limited in expressiveness� LPARX 
�� allows
data arrays to be distributed in irregularly shaped and
irregularly sized blocks onto processors� While in prin�
ciple it is possible in LPARX for multiple blocks of data
to be assigned to one processor� in practice there is only
one data block per processor� For adaptive mesh re�ne�
ment� LPARX helps in reducing the communication be�
tween grid components at the same level� but the com�
munication between grid components at di
erent levels
increases� Finally� DAGH 
��� uses a space��lling curve
enumeration to distribute the blocks of an array onto
processors� Space �lling curves ensure spatial locality�
which means that this distribution policy reduces com�



munication between grid components at di
erent levels
of the grid hierarchy�

From an examination of all the above libraries� it is
clear that there is no single universal distribution pol�
icy that is superior to all others� This makes it hard
for the application programmer to experiment with dif�
ferent distribution policies� The libraries also need to
be extended when they do not satisfy the users� needs�
For example� DAGH comes with prede�ned stencils for
relaxation schemes which cover many� but not all relax�
ation methods� Successful compiler support here would
be of bene�t to the application writers as well as library
writers�

To this end� there have been some generalizations
of the distributions allowed in HPF� the most general
of which is the generalized block distribution in HPF�
� 
��� The generalized block distribution for an array is
de�ned by a cartesian product of intervals� where each
interval partitions one dimension of the array� This gen�
eralization captures the distributions in libraries such as
Multi�block PARTI and AMR��� but it is inadequate
to express distributions in libraries such as LPARX and
DAGH�

We propose a distribution called the fully general
block distribution to capture all the distributions used
in the libraries mentioned above� We extend current
compiler techniques to solve the standard paralleliza�
tion problems encountered in generating parallel code
for such distributions� A genuine concern is the poten�
tial cost of handling a general data distribution mech�
anism� and we present preliminary performance num�
bers suggesting that this overhead can be minimal with
proper choice of algorithms� We describe data struc�
tures from computational geometry that enable us to
manipulate information about these distributions e��
ciently� We also discuss suitable modi�cations to these
techniques that allow us to handle the case of dynamic
data distributions e�ciently�

The rest of the paper is organized in two parts� Sec�
tion � describes the new data distribution� Section �
discusses how parallel code can be generated if the pa�
rameters of the data distribution are known completely
at compile time� Section � describes how these tech�
niques are modi�ed when data distributions change dy�
namically� Section � describes incremental algorithms
for computing communication sets� We present some
performance results in Section � and summarize in Sec�
tion ��

� Fully general block distributions

Intuitively� a fully general block distribution partitions
the elements of an array into rectangular blocks whose
sides are parallel to the data coordinate axes� Di
erent
blocks can have di
erent sizes� More formally� we have
the following de�nition�

A block in d�dimensions is a rectangular parallelop�
iped in d�dimensions� and can be speci�ed by two vec�
tors� �o � 
o�� � � � � od� and �e � 
e�� � � � � ed�� where �o rep�
resents one of the vertices of the parallelopiped� and �e
represents the �extent� of the parallelopiped in each of
the d�dimensions� By requiring that all the entries of �e
be non�negative� we end up with a canonical represen�
tation of a block� A fully general block distribution for
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Figure �� Example of a valid fully general block distri�
bution

a data item D is speci�ed as a set of tuples of the form
�Bi� Pi�� where Bi is a block as de�ned above� and Pi

is a processor assignment of this block� In addition� it
must be the case that every element of D must occur in
precisely one block� and any element of a block Bi must
be a valid element of D �i�e�� it must be within array
bounds of D��

Figure � shows an instance of a fully general block
distribution� The general block distributions described
in the literature 
�� �� �� ��� are special cases of this
distributions�

��� Distribution descriptor

We introduce the notion of a distribution descriptor that
is associated with each distributed data item� This de�
scriptor is a data structure which provides information
about the distribution of the associated data item in a
structured form� In particular� the following informa�
tion is provided to each processor�

� Number of blocks of the data item on a particular
processor

� For each block� the global indices of the data object
contained in the block� speci�ed by the origin ��o�
and extent ��e� vectors�

We assume that this information is replicated	 i�e�� that
every processor has access to the complete distribution
information of the data item under consideration�

A particular representation for the distribution de�
scriptor is as an ordered set of sets each describing the
local allocation of each processor� For example� the dis�
tribution descriptor for the distribution in Figure � con�
sists of the four sets f�
�� ��� 
��� ����� �
��� ���� 
��� ����g�
f�
�� ���� 
��� ����� �
��� ���� 
��� ����g� f�
��� ��� 
��� �����
�
��� ���� 
��� ����g and f�
��� ���� 
��� ����g for processors
�� �� � and � respectively�

A fully general block distribution is clearly more
complex to specify than a block or cyclic distribution
in HPF� However� it appears that in most AMR appli�
cations� the distributions of data arrays at the start of



Relaxation code
f
�� Atp� and A are N�by�N matrices
�� do I � �� ���
�� do J � �� ���
�� S�� Atp��I�J� � c� �A�I�J	��	A�I�J
��	
�� A�I
��J�	A�I	��J�
��
�A�I�J��
g

Figure �� Relaxation code in ��d wave equation

program execution are usually very simple� but become
complex during program execution� Therefore� the fully
general block distribution needs to be supported by the
compiler and runtime system� but it may not be neces�
sary to have directives in the source language to specify
such distributions�

For the rest of the paper� we use the relaxation code
in Figure � as our running example� with the data dis�
tribution for A and Atp� as speci�ed in Figure �� This is
a simpli�ed version of the actual relaxation code that is
used in the solution to the ��D wave equation using the
DAGH library 
��� ��� and illustrates all the principles
behind our approach�

��� Issues for a Parallelizing Compiler

Given a program with data distribution speci�cations�
a restructuring compiler performs the following tasks�

� Assignment of computations to processors�
� Generation of code to enumerate local iteration
sets�

� Local storage allocation for distributed arrays�
� Determination of communication sets�
� Placement of communication in the program�

For dense programs� block and cyclic distributions
�as in HPF 
��� are standard� and a simple rule like the
owner�computes rule 
��� is used to determine the iter�
ations to be performed on each processor� In this case�
closed form linear integer constraints can be used to ex�
press the local storage requirements� the local iteration
sets� communication sets as well as the placement of
communication� While the e�cient placement of com�
munication is a major concern for programs with depen�
dences� it is straightforward in the case of do�all loops�
since all communication for the loop nest can be per�
formed before the loop nest begins execution� We will
not worry about communication optimizations such as
combining communication from di
erent loop nests to
reduce the volume of communication�

In the rest of this paper� we solve the �rst four prob�
lems listed above for the case of fully general block dis�
tributions�

� Parallelization in the static case

In this section� we examine the static case �i�e�� when
the parameters of the distribution are known at compile
time�� which is relevant in codes like multi�block Euler
solvers 
��� A more general treatment of some of the
material of this section can be found in 
����

Code executed by processor �
f
�� Atp� and A are N�by�N matrices
�� do I � �� ���
�� do J � �� ���
�� If I�m data�centric w�r�t� A�I�J���
�� if ���� � I � ���� �� ��� � J	� � �����
�� S�� Atp��I�J� � c� �A�I�J	��	A�I�J
��	
�� A�I
��J�	A�I	��J� 
 ��
�A�I�J��
�� endif
g

Figure �� Naive code to be executed by processor � after
being data�centric w�r�t� A�I�J����

Simpli	ed code executed by processor �
f
�� do I � ��� ���
�� do J � ��� ���
�� S�� Atp��I�J� � c� �A�I�J	��	A�I�J
��	
�� A�I
��J�	A�I	��J� 
 ��
�A�I�J��
g

Figure �� Simpli�ed code to be executed by processor �

��� Local iteration Set

For any loop nest� every processor must determine the
set of iterations it will execute� This requires the de�
termination of the computation decomposition� In our
framework� we drive this using the data�centric ap�
proach� The data�centric approach requires choosing
a single reference of a distributed data item from a loop
nest and requiring all accesses caused by that reference
to be local� In other words� only those iterations of
the loop nest are executed for which the chosen refer�
ence causes data accesses to be local to the processor�
We illustrate this with an example� We can drive the
data�centric approach using the reference A�I�J��� in
our running example� This causes processor � �which
owns the block��������� �������� of A� to execute the
code in Figure �� Note that this code is still written
in a shared�memory style� because the indices used to
access the elements of all the arrays are global indices�
This code is similar to that produced by run�time reso�
lution 
��� for distributed memory multiprocessors� We
refer to such conditionals introduced to limit a speci�c
access to a speci�c block as localization constraints�

Since all localization constraints are simple a�ne
constraints on surrounding loop indices and constants
representing block bounds� they can be simpli�ed and
folded into loop bounds using any polyhedral algebra
tool� Doing this produces code shown in Figure ��

We note that it is possible for a processor to con�
tain multiple blocks of the data item used to partition
computational work �in our example� processor � is an
instance of this�� Since the distribution descriptor is
available at compile time� we can take one of two ap�
proaches� �i� generate a di
erent loop nest for each local
block� or �ii� generate an outer loop that enumerates lo�
cal blocks� with inner loops generating the iteration set
for each block� The code generated for processor � us�
ing approach �i� is shown in Figure �� Note that this
approach cannot be used if the descriptor is not known
to the compiler� Figure � shows the code generated for



Simpli	ed code executed by processor �
f
�� do I � �� ��
�� do J � �� ��
�� S�� Atp��I�J� � c��A�I�J	��	A�I�J
��	
�� A�I
��J�	A�I	��J�
��
�A�I�J��
�� do I � �����
�� do J � ��� ��
�� S�� Atp��I�J� � c� �A�I�J	��	A�I�J
��	
�� A�I
��J�	A�I	��J� 
 ��
�A�I�J��
g

Figure �� Code executed by processor � with multiple
blocks of A

Simpli	ed code executed by processor �
f
�� Let D�A� be the distribution descriptor of A
�� D�A���rst is �rst block of A� D�A��last is last
�� lo�dim and hi�dim are bounds for dimension �dim
�� do bl � D�A��MYPROC��rst� D�A��MYPROC�last
�� do I � max�D�A��lo��bl�� ��� min�D�A��hi��bl�� ����
�� do J � max�D�A��lo��bl�� ��
��
�� min�D�A��hi��bl�� ����
�
�� S�� Atp��I�J� � c� �A�I�J	��	A�I�J
��	

� A�I
��J�	A�I	��J� 
 ��
�A�I�J��
g

Figure �� Alternative code executed by a processor with
multiple blocks of A

processor � using approach �ii��

��� Local storage allocation

It is easy to see that while the reference that we choose
to be data�centric with accesses only local data� other
references to the data item could necessitate access to
data not local� We need to allocate storage locally for
all data items that a processor requires to perform its
iterations� In this section� we describe the analysis re�
quired for local storage allocation�

Let us assume that A has been distributed in a fully
general block distributed manner onto a set of proces�
sors� Let Apj denote block j of A on processor p� Let
R be the reference to A which we have chosen to be
data�centric� Let F�r� be the access matrix 
��� for any

reference r� i�e� iteration �i touches data item F�r� ��i
through reference r� We de�ne the following concepts�

De�nition � The per�block owned data OB�p�Apj� of
a block is the elements of the data item it contains�

De�nition � The per�block local iteration space
LB�p� j� is de�ned as

LB�p�Apj� � f�ijF �R� ��i � OB�p�Apj�g ���

De�nition � The per�block per�reference view set for
block j for reference r on processor p� written as
vB�r� p� j�� is de�ned as

vB�r� p� Apj� � F �r� � LB�p�Apj� ���

De�nition � The per�block view set for block j on pro�
cessor p for A� written as VB�p�Apj�� is de�ned as

�

r

vB�r� p� Apj�

Localized index sets
f
�� do I � ��� ��
�� do J � ��� ��
�� S�� Atp��I�J� � c� �lA���I
���J	�
���	
�� lA���I
���J
�
��� 	 lA���I
�
���J
��� 	
�� lA���I	�
���J
��� 
 ��
�lA���I
���J
����
g

Figure �� Code executed by processor � after translation
to local index sets

where r ranges over all the references to A in the loop
nest�

The per�block view set represents the set of elements
that are required for the execution of a block for the
given loop nest� In general� this set is arbitrarily shaped�
To allocate storage� we take the smallest enclosing iso�
thetic rectangle �sides parallel to the axes� and allocate
storage for that�

We demonstrate the computation of view sets for
our running example next� We choose block A���
represented by the tuple f�
��� ���� 
��� ����g� Let
A�I�J��� be the data�centric reference� LB��� A���
is the set of iterations for which I is in the range
�� � � � ��� and J is in the range �� � � � ��� The
per�block per�reference view set for A�� for the ref�
erences A�I�J�� A�I���J�� A�I���J�� A�I�J��� and
A�I�J��� are f�
��� ���� 
��� ����g� f�
��� ���� 
��� ����g�
f�
��� ���� 
��� ����g� f�
��� ���� 
��� ����g and
f�
��� ���� 
��� ����g respectively� The smallest rectangle
that encloses the union of these �ve view sets is the
set f�
��� ���� 
��� ����g� This is precisely what the
ghost region support in the libraries such as LPARX
and DAGH do and is a generalization of overlap
analysis introduced by Gerndt 
���� Note that this
storage can be determined automatically given the
data distribution� In particular� no information about
the type of stencils used� etc need be conveyed to
the compiler� since the data usage information can be
extracted from the input code� Note that the storage
allocated for each block on a processor is enough to
contain the view set of the block� which is a superset
of the elements owned by the block� Finally� note that
if an element of an array occurs in the view sets of
multiple blocks� space is allocated for it multiple times�

����� Global and Local index translation

In the node program on each processor of a distributed
memory machine� all array accesses must be to local in�
dices� The storage for the view set of each block intro�
duces a speci�c index translation from the global indices
to local indices� Each local index of a given block is at a
�xed o
set from the corresponding global index� which
is determined by the global index of the �rst location of
the view set�

For example� the view set of A�� requires a local ar�
ray of size ���by��� elements� Element ����� of this local
array �call it lA��� corresponds to element A������� of
the global array� Consequently� a local index of A�� is
related to the corresponding global index by the o
set
vector ���� ���� Given this information� it is easy to see



that the enumeration of the per�block iteration space for
A�� corresponds to Figure ��

��� Communication sets

The �nal step in the parallelization process is one in
which every processor determines what data to send and
what data to receive before the start of execution of a
loop� To mathematically formulate this problem� we
de�ne the following�

De�nition � The owns set for data item A on pro�
cessor p� O�p�A�� is de�ned as the union of per�block
owned data sets of all blocks of A on p� In other words�

O�p�A� �
�

j

OB�p�Apj�

where j ranges over all blocks of A on p�

De�nition � The view set for data item A on processor
p� written as V�p�A�� is de�ned to be the union of the
per�block view sets over all the blocks of A on p� In
other words�

V�p�A� �
�

j

VB�p�Apj��

where j ranges over all blocks of A on p�

Two processors p and q need to communicate ele�
ments of A if V�p�A� � O�q� A� �� �� Let S�p� q� A�
denote the elements of A that processor p needs to send
to processor q� Let R�p� q� A� denote the elements of
A that processor p needs to receive from processor q�
Then�

S�p� q� A� � R�q� p� A� � O�p�A� �V�q� A� ���

Once the communication sets are available� a generic
communication routine enumerates over all the elements
of these sets and performs the appropriate send �and
recv� operations� In Section �� we present a fast algo�
rithm for computing the communication sets e�ciently�

� Modi�cation for dynamic and adaptive distributions

In general� the grid hierarchy may be known only when
the program begins execution �dynamic case�� and it
may even be modi�ed during the course of program ex�
ecution �adaptive case�� How does this a
ect the tech�
niques described in Section ��

To enumerate over the local iteration space� the com�
piler must generate code similar to that in Figure ��
rather the code in Figure �� Local storage allocation
and computation of communication sets is dependent
on knowing the data distribution� While the compiler
cannot compute the appropriate sets at compile time� it
is easy to write code that computes these sets at runtime
and performs storage allocation and communication as
needed� This code is part of the runtime library� Before
each loop nest begins execution� the library code deter�
mines communication sets� and a generic communica�
tion routine enumerates over all elements of the com�
munication sets� performing the appropriate send �and
recv� operations�

There are two considerations if the data distributions
of arrays can change at run time�

�� Since data descriptors are replicated� they must be
updated consistently across all processors�

�� A more important concern is the e�ciency of com�
puting sets such as communication sets� In the
static or dynamic case� these sets are computed
once� so e�ciency of this computation is not a ma�
jor issue� In the adaptive case� this computation
is performed repeatedly� so it is important that it
be performed e�ciently� We address this problem
next�

� Incremental Communication Set Generation and
Maintenance

Data redistribution in the adaptive case is usually in�
cremental� so an incremental computation of communi�
cation sets is preferable to complete recomputation� We
show how techniques from computational geometry can
be used to accomplish this�

First� we examine the case when the per�block per�
reference view sets are all rectangular parallelopipeds�
This will be the case for any reference for which the
access matrix can be written as the product of a diag�
onal matrix and a permutation matrix� The exact set
of indices that need to be communicated between every
non�local block which owns some data in the per�block
per�reference view set of some local block is the intersec�
tion of the rectangles representing these two sets� The
general problem to determine the communication for
a single block is the following� Given a set of input
blocks on all processors representing data ownership�
determine the intersection of the per�reference per�block
view set rectangle with the input set� This is a variant
of the well known multidimensional range�search prob�
lem in computational geometry 
���� The rectangles
representing data ownership correspond to input rect�
angles and the rectangle representing the per�reference
per�block view set is called the query rectangle�

There is a naive solution to the above problem � enu�
merate over all the rectangles in the input set and test
each rectangle for intersection with the query rectan�
gle� Two rectangles in d� dimensions intersect if and
only if their projections on all d axes intersect� Eval�
uating this takes O�d� time� Thus� a naive solution to
the query formulated above takes O�Nd� time� where N
is the number of input rectangles �the number of blocks
of data distributed��

Pre�processing the input set of rectangles represent�
ing ownership information� as described below� allows
us to answer each query in time �logd�N��k� time 
����
where k is the number of rectangles that intersect� In
other words� given a certain number of input rectangles�
the query time grows as the size of the actual number of
positive results for the given query� rather than the size
of the input set� Since these queries have to be solved
quite often� the savings can be substantial in large prob�
lems�

We �nally note that every time we perform a query
intersection with the input set of rectangles� we can
cache this result� so that in future identical queries� we
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Figure �� An example skip list

Procedure BuildSkipList�M�
f
�� M is an input set of coordinates on the real line
�� M� � M � i � �
�� while �Mi� is non
empty do
�� create Mi�� � �

�� for �all elements e �Mi do�
�� randomcoin�� is a fair coin
�� toss � randomcoin��
�� if �toss �� head�

� Mi�� � Mi�� � e
�
� endif
��� endfor
��� i		
��� endwhile
��� nlevels � i
��� for j � nlevels� �� 
� do
��� for �all elements e �Mj do�
��� create a descent pointer to element at same location
��� endfor
�
� endfor
g

Figure �� Procedure for constructing a skip list from a
set of input coordinates

can simply reuse the result of the earlier evaluation�
Thus� we can save on computations for view sets for
same references in di
erent loop nests� for example�

��� Orthogonal range�search problem

The orthogonal range�search problem is de�ned as fol�
lows� In d� dimensions� an orthogonal object is de�ned
to be simply the cartesian product of d intervals� Given
an input set I of input orthogonal objects and a query
orthogonal object q� the solution to the orthogonal range
search problem is required to report all objects in I that
intersect with q� Because of space constraints� we dis�
cuss only the solution of this problem when d � ��

In ��dimension� an orthogonal object is a line seg�
ment� which is completely speci�ed by its endpoints�
The problem then is� given a set of input line segments�
to report all line segments from this set that intersect a
query line segment� This is done as follows�

Procedure searchSkipList�L� q�
f
�� L is the skip list� and q is a query coordinate
�� identify the interval at every level of L containing q
�� level � toplevel� child � descent pointer from top level
�� q is located trivially in the top most level
�� for i � nlevels
�� �� 
� do
�� parent � interval containing q in level i	�
�� left � left end point of parent�
�� ld � descent pointer to level i from left

� j � ld
�
� while �coordinate of point j in level i � q�
��� j � next point at level i
��� endwhile
��� store �j��j	�� as the interval containing q at level i
��� endfor
g

Figure ��� Procedure to determine the intervals of skip
list containing a query point

����� Randomized skip list

The �rst step is to pre�process the input line segments
into a data structure that can be queried e�ciently� The
particular data structure we choose is called the ran�
domized skip list� Let M be any given set of m points
on the real line R� Given a fair coin� a randomized
search structure is associated with M � Starting with
M � a sequence of sets M � M� � M� � M� � Mr�� �
Mr � �� where set Mj�� is obtained from set Mj by
tossing the fair coin for each point in Mj and includ�
ing only those points in Mj�� for which the toss results
in a head� This sequence of sets is known as a grada�
tion� The expected number of levels in the gradation
is O�log m�� Each level of the partition is stored as a
linked list of the points in that level in ascending order�
In addition� a descent pointer is maintained from each
point in a level to the point in the immediately lower
level with the same coordinate� The topmost level of the
gradation �which is empty� maintains a single pointer
to the �rst point in the next lowest level� This storage
mechanism for the gradation is known as a skip list and
is shown in Figure �� It may also be noted that the
points in every level of the skip list break up the real
line into a set of intervals� H�Mi� denotes the set of
intervals generated by level i� Figure � shows the pro�
cedure for constructing a skip list from an input set of
points� A skiplist can be used for searching using the
code in Figure ��� The expected cost of the search pro�
cedure is equal to the number of children of intervals in
the various levels of the skip list that contain the query
point� It is straightforward to show this to be equal to
O�log m��

����� Augmented skip list

To use the skip list to answer queries about segment
intersections� certain augmentation must be performed�
Given s input segments in set S� the set M consists of
� � s elements and is formed by taking all the endpoints
of all the segments of S� A skip list is formed using
the procedure described in section ������ An interval of
a skip list is de�ned to be an interval of the real line
that belongs to H�M� i� for some i� The parent of an
interval I at level i is de�ned to be the interval J at



Procedure genRecv�b� D� r�
f
�� b is a block of data of array A
�� D is A�s distribution descriptor� r is a reference
�� Let E be the set of segments in D
�� M is the skip list on endpoints of segments in E
�� R � E � vB�r�MY PROC� b��
�� for �all elements r of R do�
�� recv
section � r � vB�r�MY PROC� b�
�� mpi
recv�owner�r�� recv
section�

� endfor
g

Figure ��� Code a processor executes to determine recv
calls it must insert for a given block

level i � � that contains I� An input segment Si of S
covers an interval I of M if Si contains I� Si is de�ned
to cover I canonically if Si covers I and the parent of I
covers Si� The following lemma holds when Si covers I
canonically�

Lemma � An interval Si covers an interval I of a skip
list canonically i� the parent of I contains an endpoint
of Si and Si covers I�

Thus� the intervals of a skip list covered canonically
by a given input segment Si can be determined by test�
ing the children of the intervals of the skip list contain�
ing an end point of Si

An augmented skip list is formed by storing with each
interval I of a skip list� the list of input segments that
cover I canonically�

We state the following theorem without proof�

Theorem � A skiplist built on an a set of s intervals
of set S can be augmented in O�slog s� time and the

augmentation requires O�slog s� space�

����� Answering intersection queries and generating
send�recv calls

How do we answer queries regarding the intersection of
a query segment with the set of input segments� It is
easy to see that two segments intersect if one of them
contains an endpoint of the other� When presented with
a query segment� we �rst report all the input segments
that canonically cover all intervals of the skiplist con�
taining an end point of the query segment� We also need
to report all the input intervals completely contained
inside the query segment� This is done by locating the
left endpoint of the query segment in the lowest level of
the skip list� and traversing the level starting from there
and reporting all segments for which we �nd both points
within the query range� A more detailed discussion of
this procedure and a generalization to d�dimensions is
presented in 
���

How does this relate to doing sends and receives� We
show the relationship in one�dimension� The relation�
ship in higher dimensions is similar� Figure �� shows
how the results of the range search problem can be used
to generate recv calls for a single block of data� The
procedure for generating the send calls is analogous�
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Figure ��� Performance numbers for multigrid solver�
�a� small problem� �b� large problem

��� Dynamization

The skip list allows for e�cient dynamization� Segments
can be deleted and inserted into the skip list very ef�
�ciently� This allows for incremental maintenance of
distribution information in the skip list when data dis�
tribution changes at run time� The following theorem
�stated without proof� is crucial to the e�cient dynamic
behavior of the skip list 
����

Theorem � A single point can be inserted into or
deleted from a skip list in time O�log m�� where m is
the number of points in the skip list�

	 Performance

In this section� we present some preliminary perfor�
mance measurements� shown in Figure ��� We imple�
mented a ��D multigrid solver using the DAGH library
with published code 
��� This is the line labeled �execu�
tion time for multigrid solver� in Figure ��� Next� we
created a version of this solver which was augmented
with the actual intersection queries the compiler would
insert to determine the communication sets at run time�
This is the line labeled �execution time for solver with
queries� in Figure ��� Since the compiler does not
have any knowledge of speci�c data distribution policies
�which the library does� and the distribution is unknown
at compile time� the compiler�generated code must ex�
ecute these queries� As can be seen� the resulting over�
head is minimal� We ran both versions of the solver on
two di
erent problem sizes� a small mesh of ���by���



points and a large mesh of �����by����� points� Fig�
ure ���a� actually exhibits a slowdown because of the
small problem size� but we show this case to verify that
the absolute overhead introduced by our approach is
small� Figure ���b� is more realistic� Overall� the over�
head we introduce is within �� for the small example
and less than �� for the large problem� We are currently
working on obtaining similar numbers for the ��D wave
equation� We have also quanti�ed the performance ben�
e�t of using an asymptotically optimal algorithm rather
than the naive algorithm� When the number of blocks
of data is less than ��� the naive search algorithm is
faster� For larger numbers of blocks� the asymptotic
algorithm is faster� but there is the penalty of prepro�
cessing� When there were ��� blocks for example� an
average query using the naive algorithm takes approxi�
mately ���s� while the optimal algorithm takes approx�
imately ��s� The preprocessing time in this case takes
���� milliseconds� which means that at least ��� queries
must be made for the optimal algorithm to be useful�
For the sake of comparison� in our multigrid implemen�
tation� a total of ���� queries were made for the small
problem size and ���� queries were made for the large
problem size� We conclude that while the performance
advantage of the incremental algorithm is small� it is
easy to code and worth implementing�


 Conclusions

We have presented a parallelization framework for �fully
general block distributions� which enables us to extend
current compiler technology to meet some of the needs
of semi�structured applications�
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