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Abstract

Adaptive mesh refinement (AMR) is a very important
scientific application. Several libraries implementing
specific distribution policies have been written for AMR.
In this paper, we present a “fully general block distribu-
tion” which subsumes these distributions, and discuss
compiler and run-time tools for supporting these dis-
tributions efficiently in the context of a restructuring
compiler. We also present performance numbers which
suggest that in comparison with library code written
for a particular distribution policy, the overhead arising
from the generality of our approach is small.

1 Introduction

Semi-structured methods such as adaptive mesh refine-
ment and multigrid are used in applications which are
computationally intensive. It is difficult to implement
these methods efficiently even on a sequential machine;
parallelism adds an order of magnitude overhead to the
complexity.

The computation in semi-structured methods is
characterized by irregularly organized regular compu-
tations on the underlying data. The underlying data is
specified as grid components which are organized in an
irregular fashion in a grid hierarchy which itself changes
dynamically. The computation in the application con-
sists of stencil operations for relaxation on grid compo-
nents, and interpolation and projection operations for
transferring data between grid components at different
levels of the grid hierarchy. The computation is regular
(that is, data access functions are affine functions of sur-
rounding loop indices). Parallelism is obtained by dis-
tributing the grid components in the hierarchy among
various processors. However, this also leads to commu-
nication between various grid components. The volume
and patterns of communication depend critically on the
data distribution. The irregular and evolving nature of
the application also leads to load imbalance, requiring
redistribution of data at run time.

Even though the underlying computation is dense,
HPF-like compiler technology is inadequate for AMR
applications. There are two reasons for this:

e Block-cyclic distributions are inadequate to obtain
proper load balance for these applications. Obtain-
ing good load balance requires grid components to
be distributed in complex ways among the proces-
sors, as explained below.

e The communication between various grid compo-
nents is determined by the connectivity of the grid
hierarchy. Due to the irregular nature of this con-
nectivity, communication patterns are irregular.

Because of the inadequacy of present compiler
technology, several libraries have been developed to
make the application programmer’s job easier. The
most important of these are Multi-block PARTI [1],
P++4+/AMR++ [3], LPARX [2], DAGH [14]. All these
libraries hide the nature of the data distribution from
the application programmer as much as possible. They
provide constructs such as forallloops to enable applica-
tion writing at a high level, and provide library calls to
take care of parallelization issues. Kach of these libraries
makes certain assumptions regarding how the underly-
ing data is distributed, which affects application perfor-
mance. Multi-block PARTI [1] uses block-cyclic distri-
butions as in HPF, but allows data arrays to be mapped
to a subspace of all the computing processors. This
works well for Multigrid codes, but for adaptive mesh
refinement, the limitations of HPF apply here as well.
AMR++ [3] is an AMR class library layered on top of a
parallel array library P4++. AMR++ treats P4+ as a
black box and uses the distributions that P4+ provides.
These distributions reduce load-imbalance by allowing
arrays to be distributed by columns of variable size, but
are still limited in expressiveness. LPARX [2] allows
data arrays to be distributed in irregularly shaped and
irregularly sized blocks onto processors. While in prin-
ciple it is possible in LPARX for multiple blocks of data
to be assigned to one processor, in practice there is only
one data block per processor. For adaptive mesh refine-
ment, LPARX helps in reducing the communication be-
tween grid components at the same level, but the com-
munication between grid components at different levels
increases. Finally, DAGH [14] uses a space-filling curve
enumeration to distribute the blocks of an array onto
processors. Space filling curves ensure spatial locality,
which means that this distribution policy reduces com-



munication between grid components at different levels
of the grid hierarchy.

From an examination of all the above libraries, it is
clear that there is no single universal distribution pol-
icy that is superior to all others. This makes it hard
for the application programmer to experiment with dif-
ferent distribution policies. The libraries also need to
be extended when they do not satisfy the users’ needs.
For example, DAGH comes with predefined stencils for
relaxation schemes which cover many, but not all relax-
ation methods. Successful compiler support here would
be of benefit to the application writers as well as library
writers.

To this end, there have been some generalizations
of the distributions allowed in HPF, the most general
of which is the generalized block distribution in HPF-
2 [8]. The generalized block distribution for an array is
defined by a cartesian product of intervals, where each
interval partitions one dimension of the array. This gen-
eralization captures the distributions in libraries such as
Multi-block PARTI and AMR+4++, but it is inadequate
to express distributions in libraries such as LPARX and
DAGH.

We propose a distribution called the fully general
block distribution to capture all the distributions used
in the libraries mentioned above. We extend current
compiler techniques to solve the standard paralleliza-
tion problems encountered in generating parallel code
for such distributions. A genuine concern is the poten-
tial cost of handling a general data distribution mech-
anism, and we present preliminary performance num-
bers suggesting that this overhead can be minimal with
proper choice of algorithms. We describe data struc-
tures from computational geometry that enable us to
manipulate information about these distributions effi-
ciently. We also discuss suitable modifications to these
techniques that allow us to handle the case of dynamic
data distributions efficiently.

The rest of the paper is organized in two parts. Sec-
tion 2 describes the new data distribution. Section 3
discusses how parallel code can be generated if the pa-
rameters of the data distribution are known completely
at compile time. Section 4 describes how these tech-
niques are modified when data distributions change dy-
namically. Section 5 describes incremental algorithms
for computing communication sets. We present some
performance results in Section 6 and summarize in Sec-
tion 7.

2 Fully general block distributions

Intuitively, a fully general block distribution partitions
the elements of an array into rectangular blocks whose
sides are parallel to the data coordinate axes. Different
blocks can have different sizes. More formally, we have
the following definition.

A block in d-dimensions is a rectangular parallelop-
iped in d-dimensions, and can be specified by two vec-
tors: & = [o1,...,04] and €= [e1,... ,eq], where & rep-
resents one of the vertices of the parallelopiped, and &
represents the “extent” of the parallelopiped in each of
the d-dimensions. By requiring that all the entries of &
be non-negative, we end up with a canonical represen-
tation of a block. A fully general block distribution for
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Figure 1: Example of a valid fully general block distri-
bution

a data item D is specified as a set of tuples of the form
(Bi, P;), where B; is a block as defined above, and P;
is a processor assignment of this block. In addition, it
must be the case that every element of D must occur in
precisely one block, and any element of a block B; must
be a valid element of D (i.e., it must be within array
bounds of D).

Figure 1 shows an instance of a fully general block
distribution. The general block distributions described
in the literature [7, 8, 9, 17] are special cases of this
distributions.

2.1 Distribution descriptor

We introduce the notion of a distribution descriptor that
is associated with each distributed data item. This de-
scriptor is a data structure which provides information
about the distribution of the associated data item in a
structured form. In particular, the following informa-
tion is provided to each processor.

e Number of blocks of the data item on a particular
processor

e For each block, the global indices of the data object
contained in the block, specified by the origin (J)
and extent (€) vectors.

We assume that this information is replicated; i.e., that
every processor has access to the complete distribution
information of the data item under consideration.

A particular representation for the distribution de-
scriptor is as an ordered set of sets each describing the
local allocation of each processor. For example, the dis-
tribution descriptor for the distribution in Figure 1 con-
sists of the four sets {([1, 1], [64, 64]), ([65, 65], [32, 32])},
{([1,65), [64,64]), ([65,97], [32,32))}, {([65, 1],[64, 64]),
([97,65], [32, 32])} and {([97,97], [32, 32]) } for processors
1, 2, 3 and 4 respectively.

A fully general block distribution is clearly more
complex to specify than a block or cyclic distribution
in HPF. However, it appears that in most AMR appli-
cations, the distributions of data arrays at the start of



Relaxation code

1: Atpl and A are N-by-N matrices

2: dol=2,127

3: do J =2, 127

4: S1: Atpl(I,J) = c* (A(LJ+1)+A(I,J-1)+
5: A(I-1,J)+A(I4+1,])-4.0*A(L,J))

}

Figure 2: Relaxation code in 2-d wave equation

program execution are usually very simple, but become
complex during program execution. Therefore, the fully
general block distribution needs to be supported by the
compiler and runtime system, but it may not be neces-
sary to have directives in the source language to specify
such distributions.

For the rest of the paper, we use the relaxation code
in Figure 2 as our running example, with the data dis-
tribution for A and Atp1 as specified in Figure 1. This is
a simplified version of the actual relaxation code that is
used in the solution to the 2-D wave equation using the
DAGH library [14, 6], and illustrates all the principles
behind our approach.

2.2 lIssues for a Parallelizing Compiler

Given a program with data distribution specifications,
a restructuring compiler performs the following tasks:

Assignment of computations to processors.
Generation of code to enumerate local iteration
sets.

Local storage allocation for distributed arrays.
Determination of communication sets.

Placement of communication in the program.

For dense programs, block and cyclic distributions
(as in HPF [7]) are standard, and a simple rule like the
owner-computes rule [15] is used to determine the iter-
ations to be performed on each processor. In this case,
closed form linear integer constraints can be used to ex-
press the local storage requirements, the local iteration
sets, communication sets as well as the placement of
communication. While the efficient placement of com-
munication is a major concern for programs with depen-
dences, it is straightforward in the case of do-all loops,
since all communication for the loop nest can be per-
formed before the loop nest begins execution. We will
not worry about communication optimizations such as
combining communication from different loop nests to
reduce the volume of communication.

In the rest of this paper, we solve the first four prob-
lems listed above for the case of fully general block dis-
tributions.

3 Parallelization in the static case

In this section, we examine the static case (i.e., when
the parameters of the distribution are known at compile
time), which is relevant in codes like multi-block Euler
solvers [5]. A more general treatment of some of the
material of this section can be found in [11].

Code executed by processor 4

Atpl and A are N-by-N matrices
do I =2, 127
do J =2, 127
If I'm data-centric w.r.t. A(I,J+1)
if ((97 <1 <128) && (97 < J+1 < 128))
S1: Atpl(LJ) = ¢* (A(L,J+1)+A(LJ-1)+
A(I-1,0)+A(I4+1,J) - 4.0%A(L,J))

endif
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Figure 3: Naive code to be executed by processor 4 after
being data-centric w.r.t. A(T,J+1).

Simplified code executed by processor 4

1: dol =097, 127

2 do J = 96, 127

3: S1: Atpl(I,J) = c* (A(L,J+1)+A(L,J-1)+
4: AL, D)+A(I+1,) - 4.0%A(LJ))
}

Figure 4: Simplified code to be executed by processor 4

3.1 Local iteration Set

For any loop nest, every processor must determine the
set of iterations it will execute. This requires the de-
termination of the computation decomposition. In our
framework, we drive this using the data-centric ap-
proach. The data-centric approach requires choosing
a single reference of a distributed data item from a loop
nest and requiring all accesses caused by that reference
to be local. In other words, only those iterations of
the loop nest are executed for which the chosen refer-
ence causes data accesses to be local to the processor.
We illustrate this with an example. We can drive the
data-centric approach using the reference A(I,J+1) in
our running example. This causes processor 4 (which
owns the block(97..128, 97..128) of A) to execute the
code in Figure 3. Note that this code is still written
in a shared-memory style, because the indices used to
access the elements of all the arrays are global indices.
This code is similar to that produced by run-time reso-
lution [15] for distributed memory multiprocessors. We
refer to such conditionals introduced to limit a specific
access to a specific block as localization constraints.

Since all localization constraints are simple affine
constraints on surrounding loop indices and constants
representing block bounds, they can be simplified and
folded into loop bounds using any polyhedral algebra
tool. Doing this produces code shown in Figure 4.

We note that it is possible for a processor to con-
tain multiple blocks of the data item used to partition
computational work (in our example, processor 1 is an
instance of this). Since the distribution descriptor is
available at compile time, we can take one of two ap-
proaches: (i) generate a different loop nest for each local
block, or (ii) generate an outer loop that enumerates lo-
cal blocks, with inner loops generating the iteration set
for each block. The code generated for processor 1 us-
ing approach (i) is shown in Figure 5. Note that this
approach cannot be used if the descriptor is not known
to the compiler. Figure 6 shows the code generated for



Simplified code executed by processor 1

S1: Atpl(I,J) = ¢* (A(L,J+1)+A(TL,J-1)+
A(L)+A(I+1,J) - 4.0%A(L,J))

{

1: dol=1,64

2: doJ=1,63

3: S1: Atpl(I,J) = c*(A(LI+1)+A(1,J-1)+
4: A(I-1,J)+A(I4+1,J)-4.0*A(L,J))
5: dol = 65,96

6: do J = 64, 95

7:

8:

}

Figure 5: Code executed by processor 1 with multiple
blocks of A

Simplified code executed by processor 1

Let D(A) be the distribution descriptor of A
D(A).first is first block of A, D(A).last is last
lo$dim and hi$dim are bounds for dimension $dim
do bl = D(A).MYPROC.first, D(A).MYPROC.last
do I = max(D(A).lo1(bl), 2), min(D(A).hi2(bl), 128)
do J = max(D(A).lo2(bl), 2)-1,
min(D(A).hi2(bl), 128)-1
S1: Atpl(LJ) = c* (A(LI+1)+A(LI-1)+
A(I-1,0)+A(I4+1,T) - 4.0%A(1,T))

TTORAPAR B

Figure 6: Alternative code executed by a processor with
multiple blocks of A

processor 1 using approach (ii).

3.2 Local storage allocation

It is easy to see that while the reference that we choose
to be data-centric with accesses only local data, other
references to the data item could necessitate access to
data not local. We need to allocate storage locally for
all data items that a processor requires to perform its
iterations. In this section, we describe the analysis re-
quired for local storage allocation.

Let us assume that A has been distributed in a fully
general block distributed manner onto a set of proces-
sors. Let Ap; denote block j of A on processor p. Let
R be the reference to A which we have chosen to be
data-centric. Let F(r) be the access matrix [16] for any
reference r, i.e. iteration 7 touches data item F(r) %7
through reference r. We define the following concepts:

Definition 1 The per-block owned data OB(p, A,;) of
a block is the elements of the data item it contains.

Definition 2 The per-block local iteration space
LB(p,7) is defined as

LB(p, Ap;) = {{|F(R) x1 € OB(p, A,5)} (1)

Definition 3 The per-block per-reference view set for
block j for reference r on processor p, written as
vB(r,p, ), is defined as

VB(T,p, APj) = F(?”) * LB(p) APj) (2)

Definition 4 The per-block view set for block j on pro-
cessor p for A, written as VB(p, Ap;), is defined as

JvBE.p An)

Localized index sets

do 1= 65,96
do J = 64, 95
S1: Atpl(1J) = c* (1A12(1-63,J+1-62)+
1A12(1-63,J-1-62) + 1A12(1-1-63,J-62) +
1A12(1+1-63,J-62) - 4.0¥1A12(1-63,J-62))

S OUR W

Figure 7: Code executed by processor 1 after translation
to local index sets

where T ranges over all the references to A in the loop
nest.

The per-block view set represents the set of elements
that are required for the execution of a block for the
given loop nest. In general, this set is arbitrarily shaped.
To allocate storage, we take the smallest enclosing iso-
thetic rectangle (sides parallel to the axes) and allocate
storage for that.

We demonstrate the computation of view sets for
our running example next. We choose block Aia,
represented by the tuple {([65,65],[32,32])}. Let
A(I,J+1) be the data-centric reference. LB(1, A12)
is the set of iterations for which I is in the range
65...96, and J is in the range 64...95. The
per-block per-reference view set for Aiz for the ref-
erences A(I,J), A(I+1,J), A(I-1,J), A(I,J+1) and
A(I,J-1) are {([65,64],[32,32])}, {([66,64],[32,32])},
(6,64, [32,32)},  {(165,65),[32,32)}  and
{([65, 63],[32, 32]) } respectively. The smallest rectangle
that encloses the union of these five view sets is the
set {([64,63],[34,34])}. This is precisely what the
ghost region support in the libraries such as LPARX
and DAGH do and is a generalization of overlap
analysis introduced by Gerndt [10]. Note that this
storage can be determined automatically given the
data distribution. In particular, no information about
the type of stencils used, etc need be conveyed to
the compiler, since the data usage information can be
extracted from the input code. Note that the storage
allocated for each block on a processor is enough to
contain the view set of the block, which is a superset
of the elements owned by the block. Finally, note that
if an element of an array occurs in the view sets of
multiple blocks, space is allocated for it multiple times.

3.2.1 Global and Local index translation

In the node program on each processor of a distributed
memory machine, all array accesses must be to local in-
dices. The storage for the view set of each block intro-
duces a specific index translation from the global indices
to local indices. Each local index of a given block is at a
fixed offset from the corresponding global index, which
is determined by the global index of the first location of
the view set.

For example, the view set of Ais requires a local ar-
ray of size 34-by-34 elements. Element (1,1) of this local
array (call it 1A12) corresponds to element A(64,63) of
the global array. Consequently, a local index of Ai» is
related to the corresponding global index by the offset
vector (63,62). Given this information, it is easy to see



that the enumeration of the per-block iteration space for
A2 corresponds to Figure 7.

3.3 Communication sets

The final step in the parallelization process is one in
which every processor determines what data to send and
what data to receive before the start of execution of a
loop. To mathematically formulate this problem, we
define the following;:

Definition 5 The owns set for data item A on pro-
cessor p, O(p, A), 1s defined as the union of per-block
owned data sets of all blocks of A on p. In other words,

O(p,A) = OB, 4,))

J

where j ranges over all blocks of A on p.

Definition 6 The view set for data item A on processor
p, written as V(p, A), is defined to be the union of the
per-block view sets over all the blocks of A on p. In
other words,

Vip, 4) = VB(p, 4py),

J

where j ranges over all blocks of A on p.

Two processors p and ¢ need to communicate ele-
ments of A if V(p,A) N O(q,A) # ¢. Let S(p,q,A)
denote the elements of A that processor p needs to send
to processor ¢. Let R(p,q, A) denote the elements of
A that processor p needs to receive from processor q.

Then,
S(p,q,A) = R(q,p,A) = O(p, A)NV(q, A) (3)

Once the communication sets are available, a generic
communication routine enumerates over all the elements
of these sets and performs the appropriate send (and
recv) operations. In Section 5, we present a fast algo-
rithm for computing the communication sets efficiently.

4 Modification for dynamic and adaptive distributions

In general, the grid hierarchy may be known only when
the program begins execution (dynamic case), and it
may even be modified during the course of program ex-
ecution (adaptive case). How does this affect the tech-
niques described in Section 37

To enumerate over the local iteration space, the com-
piler must generate code similar to that in Figure 6,
rather the code in Figure 5. Local storage allocation
and computation of communication sets is dependent
on knowing the data distribution. While the compiler
cannot compute the appropriate sets at compile time, it
is easy to write code that computes these sets at runtime
and performs storage allocation and communication as
needed. This code is part of the runtime library. Before
each loop nest begins execution, the library code deter-
mines communication sets, and a generic communica-
tion routine enumerates over all elements of the com-
munication sets, performing the appropriate send (and
recv) operations.

There are two considerations if the data distributions
of arrays can change at run time:

1. Since data descriptors are replicated, they must be
updated consistently across all processors.

2. A more important concern is the efficiency of com-
puting sets such as communication sets. In the
static or dynamic case, these sets are computed
once, so efficiency of this computation is not a ma-
jor issue. In the adaptive case, this computation
is performed repeatedly, so it is important that it
be performed efficiently. We address this problem
next.

5 Incremental Communication Set Generation and
Maintenance

Data redistribution in the adaptive case is usually in-
cremental, so an incremental computation of communi-
cation sets is preferable to complete recomputation. We
show how techniques from computational geometry can
be used to accomplish this.

First, we examine the case when the per-block per-
reference view sets are all rectangular parallelopipeds.
This will be the case for any reference for which the
access matrix can be written as the product of a diag-
onal matrix and a permutation matrix. The exact set
of indices that need to be communicated between every
non-local block which owns some data in the per-block
per-reference view set of some local block is the intersec-
tion of the rectangles representing these two sets. The
general problem to determine the communication for
a single block is the following: Given a set of input
blocks on all processors representing data ownership,
determine the intersection of the per-reference per-block
view set rectangle with the input set. This is a variant
of the well known multidimensional range-search prob-
lem in computational geometry [12]. The rectangles
representing data ownership correspond to input rect-
angles and the rectangle representing the per-reference
per-block view set is called the query rectangle.

There is a naive solution to the above problem - enu-
merate over all the rectangles in the input set and test
each rectangle for intersection with the query rectan-
gle. Two rectangles in d- dimensions intersect if and
only if their projections on all d axes intersect. Eval-
uating this takes O(d) time. Thus, a naive solution to
the query formulated above takes O(Nd) time, where N
is the number of input rectangles (the number of blocks
of data distributed).

Pre-processing the input set of rectangles represent-
ing ownership information, as described below, allows
us to answer each query in time (log? (N) + k) time [13],
where k is the number of rectangles that intersect. In
other words, given a certain number of input rectangles,
the query time grows as the size of the actual number of
positive results for the given query, rather than the size
of the input set. Since these queries have to be solved
quite often, the savings can be substantial in large prob-
lems.

We finally note that every time we perform a query
intersection with the input set of rectangles, we can
cache this result, so that in future identical queries, we
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Figure 8: An example skip list

Procedure BuildSkipList(M)

{

1: M is an wnput set of coordinates on the real line

2: My =M,i=1

3:  while (M;) is non-empty do

4: create M;4y1 = ¢

5: for (all elements e € M; do)

6: randomcoin() is a fair coin

7 toss = randomcoin()

8: if (toss == head)

9: M;y1 = M;y1Ue

10: endif

11: endfor

12: i++

13: endwhile

14: nlevels = i

15: for j = nlevels, 1, -1 do

16:  for (all elements e € M; do)

17: create a descent pointer to element at same location

18: endfor

19: endfor

Figure 9: Procedure for constructing a skip list from a
set of input coordinates

can simply reuse the result of the earlier evaluation.
Thus, we can save on computations for view sets for
same references in different loop nests, for example.

5.1 Orthogonal range-search problem

The orthogonal range-search problem is defined as fol-
lows: In d- dimensions, an orthogonal object is defined
to be simply the cartesian product of d intervals. Given
an input set I of input orthogonal objects and a query
orthogonal object ¢, the solution to the orthogonal range
search problem is required to report all objects in I that
intersect with ¢. Because of space constraints, we dis-
cuss only the solution of this problem when d = 1.

In 1-dimension, an orthogonal object is a line seg-
ment, which is completely specified by its endpoints.
The problem then is, given a set of input line segments,
to report all line segments from this set that intersect a
query line segment. This is done as follows.

Procedure searchSkipList(L, q)

L 1s the skip list, and q s a query coordinate
identify the interval at every level of L containing q
level = toplevel; child = descent pointer from top level
q 1s located trivially in the top most level
for i = nlevels-1, 1, -1 do

parent = interval containing q in level i+1

left = left end point of parent;

Id = descent pointer to level i from left

j=1d
10:  while (coordinate of point j in level i | q)
11: j = next point at level i
12: endwhile
13:  store [j..j+1] as the interval containing q at level i
14: endfor

LrRISTHBPES

Figure 10: Procedure to determine the intervals of skip
list containing a query point

5.1.1 Randomized skip list

The first step is to pre-process the input line segments
into a data structure that can be queried efficiently. The
particular data structure we choose is called the ran-
domized skip list. Let M be any given set of m points
on the real line R. Given a fair coin, a randomized
search structure is associated with M. Starting with
M, a sequence of sets M = My O M O My D M,_1 D
M, = ¢, where set Mj;, is obtained from set M; by
tossing the fair coin for each point in M; and includ-
ing only those points in Mj 1 for which the toss results
in a head. This sequence of sets is known as a grada-
tion. The expected number of levels in the gradation
is O(log m). Each level of the partition is stored as a
linked list of the points in that level in ascending order.
In addition, a descent pointer is maintained from each
point in a level to the point in the immediately lower
level with the same coordinate. The topmost level of the
gradation (which is empty) maintains a single pointer
to the first point in the next lowest level. This storage
mechanism for the gradation is known as a skip list and
is shown in Figure 8. It may also be noted that the
points in every level of the skip list break up the real
line into a set of intervals. H(M;) denotes the set of
intervals generated by level ¢. Figure 9 shows the pro-
cedure for constructing a skip list from an input set of
points. A skiplist can be used for searching using the
code in Figure 10. The expected cost of the search pro-
cedure is equal to the number of children of intervals in
the various levels of the skip list that contain the query
point. It is straightforward to show this to be equal to
O(log m).

5.1.2 Augmented skip list

To use the skip list to answer queries about segment
intersections, certain augmentation must be performed.
Given s input segments in set S, the set M consists of
2 * s elements and is formed by taking all the endpoints
of all the segments of S. A skip list is formed using
the procedure described in section 5.1.1. An interval of
a skip list is defined to be an interval of the real line
that belongs to H(M,1i) for some i. The parent of an
interval [ at level ¢ is defined to be the interval J at



Procedure genRecv(b, D, r)

b is a block of data of array A
D is A’s distribution descriptor, r is a reference
Let I be the set of segments in D
M is the skip list on endpoints of segments in E
R = En vB(r, MY PROC,b).
for (all elements r of R do)
recv-section = r N vB(r, MY PROC,b)
mpi-recv(owner(r), recv-section)
endfor

ORI AR B

Figure 11: Code a processor executes to determine recv
calls it must insert for a given block

level i + 1 that contains /. An input segment S; of S
covers an interval I of M if S; contains . S; is defined
to cover [ canonically if S; covers I and the parent of /
covers S;. The following lemma holds when S; covers [
canonically.

Lemma 1 An interval S; covers an interval I of a skip
list canonically iff the parent of I contains an endpoint

of Si and S; covers I.

Thus, the intervals of a skip list covered canonically
by a given input segment S; can be determined by test-
ing the children of the intervals of the skip list contain-
ing an end point of 5;

An augmented skip list is formed by storing with each
interval [ of a skip list, the list of input segments that
cover [ canonically.

We state the following theorem without proof.

Theorem 1 A skiplist built on an a set of s intervals
of set S can be augmented in O(slog s) time and the
augmentation requires O(slog s) space.

5.1.3 Answering intersection queries and generating
send/recv calls

How do we answer queries regarding the intersection of
a query segment with the set of input segments? It is
easy to see that two segments intersect if one of them
contains an endpoint of the other. When presented with
a query segment, we first report all the input segments
that canonically cover all intervals of the skiplist con-
taining an end point of the query segment. We also need
to report all the input intervals completely contained
inside the query segment. This is done by locating the
left endpoint of the query segment in the lowest level of
the skip list, and traversing the level starting from there
and reporting all segments for which we find both points
within the query range. A more detailed discussion of
this procedure and a generalization to d-dimensions is
presented in [13]

How does this relate to doing sends and receives? We
show the relationship in one-dimension. The relation-
ship in higher dimensions is similar. Figure 11 shows
how the results of the range search problem can be used
to generate recv calls for a single block of data. The
procedure for generating the send calls is analogous.

Multigrid solver on mesh size 17-by-17
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Figure 12: Performance numbers for multigrid solver:
(a) small problem, (b) large problem

5.2 Dynamization

The skip list allows for efficient dynamization. Segments
can be deleted and inserted into the skip list very ef-
ficiently. This allows for incremental maintenance of
distribution information in the skip list when data dis-
tribution changes at run time. The following theorem
(stated without proof) is crucial to the efficient dynamic
behavior of the skip list [13].

Theorem 2 A single point can be inserted into or
deleted from a skip list in time O(log m), where m is
the number of points in the skip list.

6 Performance

In this section, we present some preliminary perfor-
mance measurements, shown in Figure 12. We imple-
mented a 2-D multigrid solver using the DAGH library
with published code [4]. This is the line labeled “execu-
tion time for multigrid solver” in Figure 12. Next, we
created a version of this solver which was augmented
with the actual intersection queries the compiler would
insert to determine the communication sets at run time.
This is the line labeled “execution time for solver with
queries” in Figure 12. Since the compiler does not
have any knowledge of specific data distribution policies
(which the library does) and the distribution is unknown
at compile time, the compiler-generated code must ex-
ecute these queries. As can be seen, the resulting over-
head is minimal. We ran both versions of the solver on
two different problem sizes: a small mesh of 17-by-17



points and a large mesh of 1025-by-1025 points. Fig-
ure 12(a) actually exhibits a slowdown because of the
small problem size, but we show this case to verify that
the absolute overhead introduced by our approach is
small. Figure 12(b) is more realistic. Overall, the over-
head we introduce is within 7% for the small example
and less than 1% for the large problem. We are currently
working on obtaining similar numbers for the 2-D wave
equation. We have also quantified the performance ben-
efit of using an asymptotically optimal algorithm rather
than the naive algorithm. When the number of blocks
of data is less than 60, the naive search algorithm is
faster. For larger numbers of blocks, the asymptotic
algorithm is faster, but there is the penalty of prepro-
cessing. When there were 400 blocks for example, an
average query using the naive algorithm takes approxi-
mately 13us, while the optimal algorithm takes approx-
imately 7ps. The preprocessing time in this case takes
2.34 milliseconds, which means that at least 390 queries
must be made for the optimal algorithm to be useful.
For the sake of comparison, in our multigrid implemen-
tation, a total of 1710 queries were made for the small
problem size and 4290 queries were made for the large
problem size. We conclude that while the performance
advantage of the incremental algorithm is small, it is
easy to code and worth implementing.

7 Conclusions

We have presented a parallelization framework for “fully
general block distributions” which enables us to extend
current compiler technology to meet some of the needs
of semi-structured applications.
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