
A Probabilistic Framework for Information
Modelling and Retrieval Based on User Annotations

on Digital Objects

Vom Fachbereich Ingenieurwissenschaften
der Universität Duisburg-Essen

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

genehmigte Dissertation

von

Diplom-Informatiker
Ingo Peter August Frommholz

aus Bochum-Wattenscheid

Referent: Prof. Dr.-Ing. Norbert Fuhr
Korreferentin: Prof. Dr. Maristella Agosti
Tag der mündlichen Prüfung: 21. Oktober 2008

Für Damaris.

Abstract

Annotations are a means to make critical remarks, to explain and comment things, to add notes
and give opinions, and to relate objects. Nowadays, they can be found in digital libraries and
collaboratories, for example as a building block for scientific discussion on the one hand or as
private notes on the other. We further find them in product reviews, scientific databases and
many “Web 2.0” applications; even well-established concepts like emails can be regarded as
annotations in a certain sense. Digital annotations can be (textual) comments, markings (i.e.
highlighted parts) and references to other documents or document parts. Since annotations
convey information which is potentially important to satisfy a user’s information need, this
thesis tries to answer the question of how to exploit annotations for information retrieval. It
gives a first answer to the question if retrieval effectiveness can be improved with annotations.
A survey of the “annotation universe” reveals some facets of annotations; for example, they

can be content level annotations (extending the content of the annotation object) or meta level
ones (saying something about the annotated object). Besides the annotations themselves, other
objects created during the process of annotation can be interesting for retrieval, these being the
annotated fragments. These objects are integrated into an object-oriented model comprising
digital objects such as structured documents and annotations as well as fragments. In this
model, the different relationships among the various objects are reflected. From this model,
the basic data structure for annotation-based retrieval, the structured annotation hypertext, is
derived.
In order to thoroughly exploit the information contained in structured annotation hyper-

texts, a probabilistic, object-oriented logical framework called POLAR is introduced. In PO-
LAR, structured annotation hypertexts can be modelled by means of probabilistic propositions
and four-valued logics. POLAR allows for specifying several relationships among annotations
and annotated (sub)parts or fragments. Queries can be posed to extract the knowledge con-
tained in structured annotation hypertexts. POLAR supports annotation-based retrieval, i.e.
document and discussion search, by applying an augmentation strategy (knowledge augmenta-
tion, propagating propositions from subcontexts like annotations, or relevance augmentation,
where retrieval status values are propagated) in conjunction with probabilistic inference, where
P (d → q), the probability that a document d implies a query q, is estimated. POLAR’s se-
mantics is based on possible worlds and accessibility relations. It is implemented on top of
four-valued probabilistic Datalog.
POLAR’s core retrieval functionality, knowledge augmentation with probabilistic inference, is

evaluated for discussion and document search. The experiments show that all relevant POLAR
objects, merged annotation targets, fragments and content annotations, are able to increase
retrieval effectiveness when used as a context for discussion or document search. Additional
experiments reveal that we can determine the polarity of annotations with an accuracy of
around 80%.

Acknowledgements

I would like to take this opportunity to thank those who accompanied me on the long way
throughout the time this thesis was created, who supported me in several ways and who showed
interest in my work.
I thank my former and current colleagues at Fraunhofer IPSI in Darmstadt and the Infor-

mation Systems group at the University of Duisburg-Essen, especially Holger Brocks, André
Everts, Marcello L’Abbate, Adelheit Stein, Matthias Hemmje, Sascha Kriewel and Claus-Peter
Klas. They always found the time for discussion, to give technical support or just to listen.
Special thanks go to Henrik Nottelmann, a brilliant nice guy who left us much too early, to
Erich Neuhold, who was involved in my work when he was institute director at IPSI, and Piklu
Gupta, a native English and a near-native German speaker (and, besides, a nice guy), who
helped to translate even complicated German sentences into English. I also thank Marc Lecht-
enfeld for his fantastic master thesis on machine-learning methods to determine the polarity
of annotations, Dennis Korbar, who helped me by providing the infrastructure to create the
ZDNet testbed, and Ray Larson for reading an early version of this thesis.
Ulrich Thiel was the one who mentored me during my time at Fraunhofer IPSI. He showed

me the “other side of IR”, namely the cognitive, more user-oriented one. Ulrich’s comments
sometimes gave me a very hard time, but made me learn a lot.
Thomas Rölleke made the heart of this work possible by providing his superb HySpirit

framework. Without him, none of the proposed framework could actually be executed. Thanks
for good advice, a nice afternoon on a sailing boat and your patience for answering many
questions. And of course thanks for POOL.
During a visit to Padua, I had the opportunity for good and fruitful discussions with Maris-

tella Agosti and Nicola Ferro. Their collaboration enriched my work significantly. I’d like to
thank them for good advice, the nice time I had with them, for the good collaboration in
DELOS and for their interest in my work.
Especially I’d like to thank Norbert Fuhr. He is the person mainly involved in my work. His

inspiration, his deep knowledge and his support paved the way to make this thesis possible. He
was also the one giving me the opportunity to continue the work started in Darmstadt when I
began working at his chair in Duisburg.
Finally, very hearty thanks go to my family and especially my wife Damaris. She is the one

who was suffering most when I was writing up this thesis, and her infinite patience cannot be
measured.
Thank you.

Ingo Frommholz
Darmstadt/Duisburg, November 2008

Contents

1 Introduction 1

I The Annotation Universe 7

2 The Annotation Universe – Applications, Facets and Properties 9
2.1 Digital Annotations . 9

2.1.1 Definition and Usage . 9
2.1.2 Annotations in Digital Libraries and Collaboratories 11
2.1.3 Annotations on the Web . 15
2.1.4 Email Discussions and Usenet News . 16
2.1.5 Semantic Annotation . 16
2.1.6 Scientific Databases . 16
2.1.7 Linguistic Annotation . 17

2.2 Facets of Annotations . 17
2.2.1 Annotations as Metadata . 17
2.2.2 Annotations as Content . 18
2.2.3 Annotations as Dialogue Acts . 18
2.2.4 Annotations as References . 19
2.2.5 Polarity of Annotations . 19
2.2.6 Annotations and Hypertexts . 19

2.3 Summary and Discussion . 20

3 A Model of the Annotation Universe for Annotation-based IR 23
3.1 Main Classes . 24

3.1.1 Digital Objects . 24
3.1.2 Structured Documents . 26
3.1.3 Annotatable Objects and Annotations 27
3.1.4 Fragments . 29
3.1.5 Annotation Types . 30
3.1.6 Scope, Permission and Polarity . 30
3.1.7 Multiclassification . 31

3.2 Structured Annotation Hypertext . 31
3.2.1 Annotation Hypertext . 32
3.2.2 Structured Annotation Hypertext . 33

3.3 Summary and Discussion . 36

ii Contents

II The POLAR Framework 39

4 Annotation-based Knowledge Modelling and Retrieval with POLAR 41
4.1 Information Retrieval . 42

4.1.1 Introduction . 42
4.1.2 An Overview of Retrieval Models . 43
4.1.3 Hypertext, Structured Document and Web Retrieval 47
4.1.4 Annotation-based Retrieval . 48

4.2 The POLAR Framework . 50
4.2.1 Motivation . 51
4.2.2 Probabilistic Object-oriented Logics for Annotation-based Retrieval . . 54
4.2.3 Document and Query Representation and Description 54
4.2.4 POLAR Knowledge Modelling . 55
4.2.5 Querying and Retrieval in POLAR . 60
4.2.6 Knowledge and Relevance Augmentation 63

4.3 Further Application Showcases . 71
4.3.1 Annotation-based Structured Document Retrieval and Discussion Search 71
4.3.2 Enriching a Document Ranking with Annotations 74
4.3.3 Document Access through Fragments and Highlighted Parts 75
4.3.4 Users and Groups . 76
4.3.5 Semantic Annotations and Ontologies 77
4.3.6 Social Networks . 78
4.3.7 Ratings . 79
4.3.8 Annotation-based Trustworthiness . 79
4.3.9 Access Probability . 81

4.4 Related Work . 81
4.4.1 Hypertext and Structured Document IR and Discussion Search 81
4.4.2 Annotation-based IR . 85

4.5 Summary and Discussion . 86

5 POLAR Syntax and Semantics 89
5.1 Syntax . 89

5.1.1 Basic Expressions . 89
5.1.2 Rules and Queries . 91

5.2 Semantics . 92
5.2.1 Possible Worlds . 93
5.2.2 Basic Knowledge Modelling . 96
5.2.3 Knowledge Augmentation . 114
5.2.4 Queries and Rules . 127

5.3 Retrieval Function . 136
5.3.1 Information Retrieval with Probabilistic Inference 136
5.3.2 Probabilistic Inference in POLAR . 137

5.4 Summary and Discussion . 138

6 POLAR Implementation 141
6.1 Four-Valued Probabilistic Datalog (FVPD) . 141

6.1.1 Syntax of FVPD . 142
6.1.2 Translation to and Evaluation with Probabilistic Datalog 142

Contents iii

6.2 POLAR Translation to FVPD . 145
6.2.1 Basic Knowledge Modelling . 146
6.2.2 Queries and Rules . 151
6.2.3 Knowledge Augmentation . 155
6.2.4 Retrieval Function . 166
6.2.5 Relevance Augmentation . 170

6.3 System Architecture and Java Implementation 173
6.3.1 POLAR Translation and Execution . 173
6.3.2 POLAR Indexing . 175
6.3.3 POLAR Prototype . 176

6.4 Summary and Discussion . 177

III Evaluation 181

7 Example Applications and Test Collections 183
7.1 Emails as Annotations: The W3C Discussion Lists 183

7.1.1 Collection . 183
7.1.2 The Annotation View on Email Messages 184
7.1.3 Collection Statistics . 186
7.1.4 Representation in POLAR . 186

7.2 ZDNet News . 188
7.2.1 Collection Statistics . 188
7.2.2 Testbed Creation . 189
7.2.3 Representation in POLAR . 190
7.2.4 Polarity of Comments . 190

7.3 Summary and Discussion . 192

8 Experiments 195
8.1 Methodology and Presentation . 195

8.1.1 Evaluation Measures . 195
8.1.2 Significance Tests . 196
8.1.3 Presentation . 197

8.2 Term Weighting and Retrieval Functions . 197
8.3 Discussion Search . 198

8.3.1 Description of Runs . 198
8.3.2 Baseline and Whole Email Results . 200
8.3.3 Results for Knowledge Augmentation 200

8.4 Document Search . 208
8.4.1 Description of Runs . 208
8.4.2 Results . 209

8.5 Determining the Polarity of an Annotation . 214
8.5.1 Machine Learning for Sentiment Classification in Discussions 214

8.6 Summary and Discussion . 215

9 Conclusion and Outlook 217

A Model of the Annotation Universe 221

iv Contents

B POLAR Implementation 223
B.1 FVPD Support Rules for Knowledge Augmentation 223
B.2 Calculation of η(pos_term_k(football,d1) & !neg_term_k(football,d1)) 227

C Further Evaluation Statistics 231
C.1 Ranking Statistics . 231

C.1.1 Discussion Search . 231
C.1.2 Document Search . 238

C.2 Recall-Precision-Graphs . 241
C.2.1 Discussion Search . 241

1
Introduction

Imagine that you want to buy a new smart phone and wonder whether your preferred GPS-
based navigation software runs on the desired device. Using common search engines on the
Web, you find evaluation reports about the phone and its technical features, but unfortunately,
these reports do not consider your specific requirement. But some of these Web sites allow for
writing comments on the article, and you write a comment on one evaluation report, asking

Does anyone have experience with the XY navigation software
and the ABC mobile phone?

After waiting a few hours, you revisit the page again and find that, triggered by your question,
a whole discussion started among the users how to make the navigation software run on the
smart phone. You are very satisfied with the outcome of the discussion, buy the desired smart
phone, follow the instructions found in the discussion, and after the first cruise with the running
navigation software on your new smart phone, you write another comment to the forum:

Thanks, this helped a lot! :-)

Later, another user somewhere in the world has the same problem you had. She types ap-
propriate keywords into the search engine, and this search engine ranks the evaluation report
mentioned above on the first position, additionally hinting her that she should also consider
the comments to find the information she needs. She navigates to the comments, and after
only a few minutes she found exactly what she wanted. Reading your last comment, she finds
that the approach described in the discussion thread is really worth trying.
Imagine another scenario. You are a film scientist and want to write an article about political

censorship. For your research, you have access to a repository of scanned documents about
movies in the last century. In the search interface of the system, you type the query terms
“political censorship”, and the system returns some results. While examining these, you find
a censorship document about a film which gives morality issues as the censorship reason. You
wonder what this document has to do with your research, when you discover an annotation
saying:

I think the film was censored for political reasons. Since
political censorship was not allowed at that time, they just
had to find other reasons.

This comment, coming from a scholar working at another institute, makes you curious. You
discover that this interpretation is not the only annotation about the document, but that a

2 1 Introduction

whole discussion thread was started with lots of agreement and disagreement. You read the
annotations in the discussion thread and gain valuable insights and new references for your own
article.
Now consider another case. You want to write a master thesis about digital libraries, and

to prepare for this thesis, you need a good and easy to understand introduction to the field.
You go to the Web site of a book seller which offers some functionality to search within the
book titles. You type “digital libraries introduction” as a query and find a few books which are
supposed to be introductions. Since you only want to read one of the books, you need to find
out which one of them is really introductory and easy to understand. Fortunately, the system
also presents user reviews, and for one book, you find two important comments:

This book is a good introduction!

It was easy to read and helped me prepare for my exams.

Although this book was not in the first position of the ranking produced for your search, you
choose it due to these comments.
A fourth and last scenario. You are writing a PhD thesis and you want to find a certain

paper, but you forgot the title and do not remember the author. All you remember is this
passage in the paper which you found very interesting. You remember marking it with a green
marker and writing a comment on the margin: “Good idea, should include it in my model!”.
Looking at the pile of papers you read throughout the last year, you would give everything for
a hint where to find this annotated passage again! So you make your way through the pile, and
finally, after having examined dozens of papers for this single annotated fragment, you find it,
re-read the important parts of the paper, and integrate its basic idea into your model.
All scenarios, which are fictitious but could have happened at any time, have something

in common: user annotations are exploited to satisfy an information need. In the first sce-
nario, main documents like the evaluation report could not answer the specific question if the
navigation software runs on the desired smart phone; later, the answer could be found in the
comments. In this scenario, we hinted at an imaginary search engine which “knows” that the
desired information is in the annotation-based discussion, and could therefore easily point the
following user with the same problem to it. In the second scenario, which comes from the
context of the COLLATE project presented later, a document is associated with the informa-
tion need (“political censorship”) by way of annotations, and can therefore be deemed relevant.
Furthermore, since the main documents the system deals with are scans, and search engines
usually operate on textual descriptions of their material, the annotations may be one of the few
sources a search engine can exploit to present the user relevant documents. The third scenario
shows the usefulness of annotations saying something about a document. From all the books
offered by the system, the one was chosen which seems to best fit the additional requirement
of being a good and readable introduction. Finally, in the last scenario, a document was found
(again) due to an annotated fragment.
These introducing scenarios shall motivate the main focus of this thesis: to use annotations

as an additional source for information retrieval to satisfy certain information needs. The exam-
ples above are only few of the possible ones involving annotations. In fact, the act of annotation
is many centuries old and has a long tradition and many applications in the non-digital world.
But in recent years, annotations have entered the digital world more and more. We find them
in commercial office tools like Word or OpenOffice (where people can insert comments into the
text or highlight important parts), in digital libraries which let users annotate (and through
this, interpret) the material at hand, and in form of product reviews and discussion forums

3

attached to some documents on the Web. From a certain viewpoint, even well-known tech-
nologies like email can be regarded as digital annotation. This recent development lets novel
search and retrieval approaches be able to access the rich additional source of information con-
tained in annotations in order to perform document or discussion search. While traditionally
in information retrieval, documents are regarded as an atomic single unit, we are now able to
see these documents embedded in the context established by annotations. To fully exploit this
context for retrieval, it is not sufficient to define yet another retrieval or term indexing func-
tion; this would probably miss information contained in the annotations or about them which
is valuable to satisfy specific sophisticated information needs. Annotations can be employed to
extend the knowledge in a document, but we might also want to use non-topical information,
for example in cases annotations contain statements about the quality of the annotated object
(think of book reviews for instance). Or we want to search for documents through annotations,
for example when we recorded an idea in an annotation and now want to find the passage in a
book again which was the source of this idea. We see that there are a number of information
needs and search strategies thinkable which can potentially be satisfied and supported when
considering the annotation context in a suitable way. What we need is a flexible framework
which can handle these needs and support these strategies by exploiting as much of the infor-
mation as possible contained in the annotation context. But before such a framework can be
designed, it is important to study contemporary annotation systems in order to extract impor-
tant facets of annotations and create a model which reflects all important objects playing a role
in an annotation scenario. And of course we need to answer the question if such a framework,
which incorporates annotations into the retrieval process, can potentially improve the retrieval
quality.
Some of the basic questions discussed in this thesis therefore are: What is contained in

the annotation context? Which objects can we identify conveying information exploitable for
retrieval? What is “annotation-based retrieval”, actually? How can we model annotations
and related objects to make them satisfy our information needs? And does it really perform
better than traditional retrieval approaches? To provide answers to these questions, the thesis
is structured into the three parts shown in Figure 1.1. The main question this thesis tries to
answer is: How and how effective can we exploit annotations for information retrieval? The
three parts of the thesis address this question.
Before we can discuss how to use the context established by annotations for information

retrieval, we need to shed some light on the question what this annotation context actually is.
What objects do we find there, and how are they related? Part I discusses these questions. First,
the notion of “annotation” and contemporary annotation systems and studies are investigated
in Chapter 2. From this investigation, some important facets of annotations are derived. In
Chapter 3, we pick up the discussion in Chapter 2 and formulate an object model of the
annotation universe, which results in the definition of the structured annotation hypertext
on the instance level, combining structured objects with annotations. This model comprises
important concepts for annotation-based retrieval and can be used as a base data structure to
develop annotation-based retrieval approaches.
Part II builds upon the output of the first part. After defining what the annotation con-

text consists of, namely structured annotation hypertexts, this part asks for the “How?” in
the main question about exploiting annotations for retrieval. Since the annotation context is
quite complex and full of information on various levels, a probabilistic, logic-based framework
called POLAR is introduced in Chapter 4. This goes beyond defining a simple context-based
indexing or retrieval function (although such a retrieval function, realised by means of what
we call knowledge augmentation and probabilistic inference, is the core of the framework).

4 1 Introduction

Figure 1.1: Structure of the thesis

POLAR is an extension of another logic-based framework called POOL, which is targeted at
modelling structured documents (but no annotations). POLAR is expressive enough to rep-
resent structured annotation hypertexts and to support advanced information needs, which
also involves non-topical information. It is supposed to be applied in many annotation-based
retrieval scenarios. To do so, POLAR models and queries structured annotation hypertexts,
and combines structured with annotation-based retrieval. Besides providing complex querying
mechanisms to the underlying knowledge base, POLAR’s main features are knowledge and
relevance augmentation, which exploit (among others) the annotation context, and retrieval
based on the estimation of the implication probability P (d → q) that a document d implies a
query q. To illustrate that POLAR is able to support sophisticated information needs, some
example application showcases are given. POLAR is a logic-based framework, which means
that besides its syntax, also its semantics have to be defined; both are done in Chapter 5. The
semantics are based on possible worlds and Kripke structures and extend those defined for the
POOL framework in order to handle annotations and their various peculiarities. Chapter 6
discusses the implementation of POLAR, which is done by translating POLAR programs into
four-valued probabilistic Datalog (FVPD). FVPD programs can then be executed with engines
like HySpirit.
Part III discusses the “how effective” w.r.t. exploiting the annotation context for retrieval. It

answers the question if the incorporation of the annotation context into retrieval helps to gain

5

better effectiveness, at least for two manifestations of annotation-based IR, document and dis-
cussion search. It describes the evaluation of POLAR’s main approach, which is retrieval based
on estimating the implication probability and using knowledge augmentation. In Chapter 7, the
test collections (W3C Email discussion lists and ZDNet News) are introduced. Chapter 8 dis-
cusses experiments performed with these collections and their results. These experiments shall
answer the question if annotations and their related objects can be used to improve retrieval
effectiveness. A further series of experiments deals with another question: How accurately can
we determine if an annotation as a reply to another annotation is positive or negative?
Chapter 9 concludes this work and provides an outlook on future work.
The main contributions of this thesis are:

• an annotation model (the structured annotation hypertext) reflecting the results of an-
notation research and projects, with the focus on annotation-based IR, as the output of
Part I;

• the POLAR framework to model structured annotation hypertexts and exploit them for
annotation-based IR in order to satisfy advanced information needs (output of Part II);

• the evaluation of some POLAR concepts introduced in Part II, in particular knowledge
augmentation with probabilistic inference, for annotation-based document and discussion
search. This is presented in Part III.

While the scenarios above give a first clue about annotations and their possible role in
information retrieval, we commence this thesis with an overview of what we call “the annotation
universe” in the next chapter. This study shall define and reveal the nature of annotations, its
facets and components, and how they are applied in current systems.

Part I

The Annotation Universe

2
The Annotation Universe – Applications,

Facets and Properties

May your journey be free of
incident.

(Vulcan proverb, “Star Trek IV:
The Voyage Home”)

In order to design annotation-based retrieval functions, we first have to understand the concept
of annotation – its application, its facets and its properties. Therefore, this chapter contains
a study of annotations, of the applications employing annotations, of its facets and properties,
and the identification of further important entities involved in the annotation process. To
understand what a “digital annotation” actually is, we do not have to start from scratch, but
can rely on many studies and experiences with digital annotations. However, this chapter should
not be seen as yet another thorough study on these issues, as there have been many such studies
before, but it is directed towards the goal of exploiting annotations for information retrieval.
The chapter starts with a description of digital annotations, their definition and application
in several fields and systems. It continues with a reflection of what annotations are used for.
After that, different facets of annotations are discussed.

2.1 Digital Annotations

2.1.1 Definition and Usage

Presumably everyone reading this thesis has used annotations at some time. We meet them
in form of small notes and comments written in the margin of an article we need to read
and understand for a certain purpose, or as highlight annotations to mark important parts of
a paper. Annotations can also be references pointing to another passage in the text (intra-
document) or to another document (inter-document). Annotations in form of interpretations
are used, e.g., to understand classical literature1, legal texts, or religious books like the Bible
or the Talmud (Fraenkel and Klein, 1999). These examples also show that the practise of
annotation goes back to (at least) the Middle Ages; in fact, annotations can be found on

1In Germany, for example, the famous “Königs Erläuterungen” provide interpretations of classical literature
like Goethe’s “Faust” (which is an essential information source for pupils preparing their exams).

10 2 The Annotation Universe – Applications, Facets and Properties

historical documents, not only in the literary or theological field, but also for administrative
and legal practise (Agosti et al., 2007a).
The concept of annotation is best introduced by looking at common definitions. Webster’s

New Encyclopedic Dictionary defines the verb “to annotate” as

to make or furnish with critical or explanatory notes or comments

and “annotation” as

a note of comment and explanation

Hornby et al. (1976) elaborate the definition of the verb “to annotate” as

to add notes (to a book, etc) explaining difficulties, giving opinions, etc.

We see with these definitions that annotations are related to notes and comments, and that
their usage might be, among others, to explain things or give (critical) opinions. Furthermore,
we see that annotations are a kind of add-on to the object they belong to.
As Agosti et al. (2007a) point out, there are many other terms related with annotations, like

footnote2, gloss (an explanation or interpretation of a word), jotting (a brief note), observation
(comment or remark about the fact learnt from observation), postil (comment or marginal
note), record (e.g., information about facts or events) or scholium (commentary or annotation,
especially on classical text). Another kind of annotation are highlight annotations which mark
important passages of a text (either by underlining them, drawing a circle around them or
marking them with a highlighter).
The idea of annotations in non-paper form goes back to the year 1945, when Vannevar Bush

presented his idea of the revolutionary “memex” device, which is always regarded as a vision
of today’s digital libraries (Bush, 1945). Within the memex device, it should be possible to
record comments and notes and attach them to the objects they comment. In a way, the idea
of “digital annotations” was born even before digital computers started their successful story.
In the Eighties, Halasz (1988) mentioned the creation of annotations as one kind of activity to
support collaborative work. In the last roughly 15 years, with the emergence of digital libraries
and the Web, efforts were made to transfer the concept of annotation, as we know it from the
paper world, to the digital world. In fact, there are certain benefits in introducing annotations
to the digital world. Once annotations are machine-processable, they can easily be shared and
reused. We can make our notes and comments available from any location or store them on our
laptop or mobile device. Annotations may be one of the last reasons why we print documents
instead of reading them electronically. But to make our paper annotations available everywhere,
we usually need to carry a pile of documents around. And, finally, digital annotations can be
integrated into the processing of documents and in operations applied to them, which may be,
for example, indexing and retrieval. Digital annotations thus can serve purposes which paper
annotation cannot. So we see there is a certain value in making annotations digital.

The act of annotation always serves a special purpose, although the way an annotation is
used may change over time. Ovsiannikov et al. (1999) identify four primary uses of annotations,
which are: to remember, to think, to clarify and to share.
Annotations help remember the main content of a document. As an example, highlighted

and annotated passages indicate important parts of a text. Shipman et al. (2003) assign such
2a note printed at the bottom of a page

2.1 Digital Annotations 11

passages an emphasise value, which is a heuristic measure; more focused annotations (focused
regarding the passage they annotate) have a higher emphasise value as do interpretive an-
notations which have a comment attached. Annotations with only highlighting have a lower
emphasise value.
Active reading is the combination of reading with (critical) thinking and learning and is

a fundamental activity of knowledge workers (Schilit et al., 1998a). Active reading usually
is accompanied by annotations. Giving critical remarks, asking questions and creating notes
reflecting the opinion of the reader, as well as recording thoughts and ideas (in the context of
the document) are facilitated by means of annotations.
Annotations containing interpretations can help a reader to clarify ideas in the text which

are hard to grasp. Furthermore, as another variant of active reading, reshaping parts of the
document content in one’s own words can be a good means to understand this content, and
to locate points which need more clarification. Summaries, which can also occur in form of
annotations, might help to bring the single ideas and assertions presented in a document into
a global context.
The sharing of annotations is a very important means to foster collaborative work or the

reuse and communication of previous ideas and interpretations. With shared annotations, users
can discuss topics or ideas, give feedback, or collaboratively interpret the given material. The
sharing of annotations is possible by defining the scope of an annotation; usually, this scope
can be private (only visible to the author of the annotation), shared (visible to the members
of the same group) and public (visible to everyone). Shared and public annotations are the
building block for annotation-based discussion (Brocks et al., 2002; Bernheim Brush, 2002).

2.1.2 Annotations in Digital Libraries and Collaboratories
2.1.2.1 Role of Annotations in Digital Libraries and Collaboratories

One of the main areas where annotations are applied are digital libraries and collaboratories.
Digital libraries (DLs) are not only the digital versions of traditional libraries, but offer means
going beyond mere presentation of the content stored in a digital repository. Two definitions
of digital libraries, coming from two different directions and thus focusing on different aspects,
point to this fact. The introduction to the first issue of the International Journal on Digital
Libraries (cited in Fuhr et al. (2001)) expresses a more computer science oriented view on DLs:

Digital libraries are concerned with the creation and management of information
resources, the movement of information across global networks and the effective use
of this information by a wide range of users.

A slightly different viewpoint on DLs comes from librarians themselves:

Digital libraries are organisations that provide the resources, including the spe-
cialised stuff, to select, structure, offer intellectual access to, interpret, distribute,
preserve the integrity of, and ensure the persistence over time of collections of dig-
ital works so that they are readily and economically available for use by a defined
community or set of communities. (Digital Library Federation (DLF), 1998, cited
in Fuhr et al. (2001))

As discussed in Agosti et al. (2004), annotations can potentially support many functions DLs
should provide. Among them are the creation of new documents: first, annotations are new in-
formation resources themselves; second, annotations convey the content which is then compiled

12 2 The Annotation Universe – Applications, Facets and Properties

into a new document. When creating new annotations, users become active content providers
instead of merely being passive readers. Interpretations might help to understand the content
of a document. They are also an important means to reconstruct the original context of a doc-
ument. Annotations may contain reviews and additional information about a document. As we
elaborate later, annotations are an important kind of metadata attached to a document. On
the collection level, annotations can be employed to link information resources, creating new
explicit relationships between them (Neuhold et al., 2004; Agosti et al., 2007a). Furthermore,
annotations can support access and retrieval of the information sources managed in a digital
library repository – the information contained in annotations may be important to judge the
relevance of a document w.r.t. a query, as annotations are a special kind of document context
(Frommholz et al., 2004a). How to model this context and employ it for information retrieval
is the focus of Part II of this thesis.
Closely related to digital libraries are collaboratories. A collaboratory, as formulated by

William Wulf, is defined as a

...center without walls, in which nation’s researchers can perform their research
without regard to geographical location – interacting with colleagues, accessing
instrumentation, sharing data and computation resource, and accessing information
in digital libraries. (Kouzes et al., 1996)

Collaboratories focus on facilitating scientific interaction and collaboration within a team. Be-
sides this, they should support the sharing of data and resources. Annotations can support
collaboratories in the above tasks by providing means to share annotations as well as annotation-
based discussion for the collaborative interpretation of the given material.
Consequently, the DELOS Network of Excellence on Digital Libraries sees annotation as a

new form of communication and identifies the understanding and managing of this new medium
as one of the major challenges in DL research (Del Bimbo et al., 2004). Several studies have
been performed to assist the design of digital library systems supporting annotations on the
user level (Marshall, 1997, 1998), on the conceptual level (Agosti and Ferro, 2003; Agosti et al.,
2004, 2007a) as well as on the system level (Agosti et al., 2005a, 2006). Current annotation
research also deals with the question of how to anchor annotations to the passage they belong
to (Bernheim Brush, 2002).

2.1.2.2 An example: Annotation-based scientific discussion in COLLATE

We present COLLATE as an example of a collaboratory for the humanities which enables
scientific discussion through annotations. The COLLATE3 collaboratory (Thiel et al., 2004)
focuses on historic film documentation, dealing with documents about films of the 20s and 30s of
the last century. Such documents can be, for example, censorship decisions, newspaper articles,
etc. They are digitised and stored in the system repository. COLLATE supports the work
between film scientists in different locations by establishing a collaboration cycle (Frommholz
et al., 2003): users can react to other users’ contribution, and so the cycle continues. Users have
the option of manually assigning keywords to the digitised documents as well as cataloguing
them according to a pre-defined schema. One of the central concepts of COLLATE is to support
document interpretation by enabling scientific discussion about documents through annotation
threads comprised of shared annotations.

3Collaboratory for Annotation, Indexing and Retrieval of Digitized Historical Archive Material, http://www.
collate.de/

http://www.collate.de/
http://www.collate.de/

2.1 Digital Annotations 13

Figure 2.1: An annotation thread in COLLATE

Annotation threads consist of the annotated document (or a part of it) as root and nested
annotations connected to the root. The links between the nodes of an annotation thread
(documents and textual annotations) are typed with so-called discourse structure relations.
In COLLATE, the following relations are defined: elaboration (giving additional information),
analogy (describing similarities), difference (describing contrasts), cause (stating a cause for
specific circumstances), background information (e.g., information about the background of
an author), interpretation (of statements), support argument and counterargument (support or
attack other arguments). Figure 2.1 shows an example of two discourse structure relations. The
incorporation of these relations is discussed in more detail in Brocks et al. (2002). Modelling
annotation threads this way gives us explicit information about the pragmatics of statements
(through link types).
Figure 2.2 shows a screenshot of the COLLATE prototype. In the lower right corner we see

in the background a page of one of the typical digitised documents film scientists deal with in
COLLATE. Users can annotate this page, the whole document or a fragment of the page. To
annotate a fragment, the user can mark the fragment with a rectangle, as it happened around
the stamp in the example page. Above the digitised page we see a typical annotation. On the
left hand side of the screenshot there is a window showing the annotation thread belonging to
the document. In front of it, we can see the comment dialogue box for entering a new comment.
The user can see the message she is replying to for reference. She can choose from one of the
annotation types above and type her message. On the right hand side of the dialogue box the
user can request further actions on the new annotation or one the old one, which is one of the
various mechanisms in COLLATE to foster collaboration.

2.1.2.3 Other Systems supporting Annotations

There are many other digital libraries and collaboratories which support several kinds of an-
notations. DAFFODIL (Klas et al., 2004a) is targeted at the support of the digital library
life cycle proposed by Paepcke (1996). While initially focusing on strategic retrieval support,
improvements of DAFFODIL concentrate on interpreting the material at hand, sharing new
insights and creating new knowledge. To support these tasks, the user is provided with basic
annotation functionality like the creation of annotations, browsing of annotation threads and
display of particular annotations (Agosti et al., 2006). As an example for the various possible

14 2 The Annotation Universe – Applications, Facets and Properties

Figure 2.2: Screenshot of the COLLATE prototype

scenarios, users can discuss the content of important documents in their state-of-the-art with
collaborators in order to develop new ideas based on previous ones; these ideas can later result in
new publications which in turn become part of a DL system’s repository. In DAFFODIL, users
can furthermore categorise documents relevant for their work in a personal library (PLib) using
folders and subfolders. The management of the document content in the PLib is supported by
means of private annotations. Annotations and their type in DAFFODIL are modelled as an
ontology. In this annotation ontology, each annotation type is an own class inheriting from the
generic class Annotation. Annotations themselves are instances of the classes of this ontology.
For example, annotations of type “comment” are instances of the Comment class.
Another interesting example of a system supporting annotations is IPSA (Agosti et al.,

2005b). Here, linking annotations are used to relate images, for example to make hidden
relationships between images and illustrations explicit. To this end, it is possible to state by
which image another image was inspired or to see which image is a copy of another one. The
typed relations between these images are modelled as annotations using a specific “RelateTo”
relationship. The DEBORA project (Nichols et al., 2000), where annotations can be chained
together to allow for trails and virtual books consisting of Renaissance documents, goes in a
similar direction.
XLibris (Schilit et al., 1998b) is a system supporting active reading through free form digital

ink annotations. XLibris runs on a pen tablet PC and supports the paper document metaphor

2.1 Digital Annotations 15

to capture several important characteristics of paper documents. Users can create margin notes
as well as highlight important parts of the text.
From a conceptual and implementation point of view, annotations are often realised as super-

imposed layers referencing certain points on a base (document) layer (Delcambre et al., 2001;
Phelps and Wilensky, 1997).

2.1.3 Annotations on the Web

2.1.3.1 “Web 2.0”, Blogs, Forums, Web Annotations

Very similar to annotations in digital libraries and collaboratories are Web annotations. An-
notations gain increasing importance in what is called the “Web 2.0” (O’Reilly, 2005) as an
instrument to make the Web more interactive and involve the user in creating content. We
find annotations in typical flagships of the Web 2.0 paradigm. For example, entries in the free
encyclopedia Wikipedia4 can contain comments discussing the corresponding entry in order to
clarify and elaborate things, or discuss possible modifications to an entry. The photo sharing
platform Flickr5 allows users to comment (parts of) pictures and photos. Another typical Web
2.0 concept realised in Flickr (and many other platforms) is collaborative tagging, which is “a
style of collaborative categorisation of sites using freely chosen keywords, often referred to as
tags” (O’Reilly, 2005). In Flickr, for example, users can annotate a photo by assigning it differ-
ent tags, not bound to any controlled vocabulary or ontology. Another concept which came up
in the Web 2.0 context are blogs. Blogs (short for “web logs”) can be seen as a kind of online
diary, since blog entries are chronologically ordered. While blog entries are no annotations per
se, they often refer to other Web pages, which make them an annotation of these pages then.
Furthermore, many systems provide the possibility to discuss these entries. A variant of blogs
is Slashdot.org6, where comments on interesting Web pages are posted, which in turn can be
commented upon. Another typical application for annotations can be found in news portals
like ZDNet News7, where articles about developments in the IT business are posted. Users can
comment these articles, and the comments can be annotated again, which enables a discussion
which starts with the content of the corresponding article.
Besides Web portals which let users annotate the presented content, there also exist tools to

annotate arbitrary Web documents. These systems usually let users select a fragment of a Web
page or a whole page and then offer the possibility to write a (private or public) note and/or
start a discussion about the content of the page or the selected fragment. Some of these systems
also support annotation types. Examples of such systems are Annotea (Kahan et al., 2001),
Yawas (Denoue and Vignollet, 2000) and MADCOW (Bottoni et al., 2004). Another application
of Web annotation tools is the creation of trails to implement guided tours (Röscheisen et al.,
1995; Furuta et al., 1997).

2.1.3.2 Product Reviews

Product reviews are another kind of annotation which can be found on several e-commerce Web
portals. For instance, Amazon8 allows for reviewing books, CDs and other products. Such
reviews often contain a scale where users can judge the quality of a product, e.g. by giving

4http://www.wikipedia.org/
5http://www.flickr.com/
6http://www.slashdot.org/
7http://news.zdnet.com/
8http://www.amazon.com/

http://www.wikipedia.org/
http://www.flickr.com/
http://www.slashdot.org/
http://news.zdnet.com/
http://www.amazon.com/

16 2 The Annotation Universe – Applications, Facets and Properties

0 (very bad quality) to 5 stars (very good quality). Additionally, users can give comments
explaining the reasons for their judgement.

2.1.4 Email Discussions and Usenet News

The concept of collaborative annotation is not only observed on the Web or in digital libraries,
but also within Internet services which are older than the Web: email discussions and Usenet
News. Email discussion lists (or mailing lists) let users discuss topics in a certain domain using
their email client. An example are the discussion lists offered by the World Wide Web consor-
tium9 (W3C) to discuss topics about the Web and related technologies. A similar technology,
although underlying a different protocol and different routing strategies, is Usenet News (Ke-
hoe, 1993, chapter 4), which came up around 1979. Users can subscribe to several newsgroups,
which cover a certain domain area and are hierarchically ordered. Email discussion lists and
Usenet News have in common that users can start a new discussion thread, triggering other
users to write a reply by quoting interesting passages from the previous article; the reply then
annotates the selected fragment of the previous email. A further thorough discussion on how
newsgroup postings and emails relate to annotations can be found in Section 7.1.

2.1.5 Semantic Annotation

One of the fundamental ideas of the so-called Semantic Web is to make data available on
the Web machine-readable. The idea is to let human-readable data reside besides machine-
understandable data. One of the core building blocks of the Semantic Web is semantic anno-
tation (Handschuh and Staab, 2003a). Semantic annotation involves relating the objects of an
ontology (a formal, explicit specification of domain concepts and their semantic relations) to
documents or document parts. Annotations are then a classification of the selected element as
instantiation of an ontology object, an object property or a relation between objects (Handschuh
and Staab, 2003b). The assignment of ontology objects to documents can be done manually
or semi-automatically (by applying information extraction techniques), employing the resource
description framework (RDF)10. For example, the author name on the cover of this thesis can
be set in relation to a concept “PhD Student”. Based on interrelations in the ontology and the
semantic annotation, an inferencing system might infer that this thesis was written by a PhD
student supervised by Norbert Fuhr.

2.1.6 Scientific Databases

Annotations are also an important issue in scientific databases to support collaborative work
and the reuse of its outcome. Annotations in scientific databases let scientists semantically
enrich their results or the object under consideration. One example is the Gene Ontology
Annotation project (Camon et al., 2003) to let curators annotate entries in the SWISS-PROT
protein knowledge base or from other sources. Annotation in this sense is similar to semantic
annotation, because a database entry is linked to an object in an ontology. A similar example
from bioinformatics is the Distributed Annotation System (DAS) (Dowell et al., 2001), which
is concerned with genome annotation. The focus of DAS lies on the distribution of annotation
servers. This way, laboratories and their members can contribute to the overall annotation

9http://www.w3.org/Mail/
10http://www.w3.org/RDF/

http://www.w3.org/Mail/
http://www.w3.org/RDF/

2.2 Facets of Annotations 17

effort, but have total control over their annotations since they may have their own annotation
server.
A third example comes from neuroscience. Gertz et al. (2002) report about a concept-based

approach to annotate scientific images by assigning them to domain-specific concepts. For
images, annotations are an important means for semantic indexing, since automatic methods
are capable of extracting syntactic features (like colour distribution, shapes, etc.), but usually
fail to grasp the meaning of an image. To semantically enrich scientific images, neuroscientists
can define a region of interest in the image and annotate these regions with concepts of their
domain (which, again, is similar to semantic annotation). As within DAS, annotation here is a
distributed process as well. This means that inconsistent or incompatible data may be provided
for one single region.

2.1.7 Linguistic Annotation

As a last kind of annotation, we briefly present linguistic annotation. Linguistic annotation
comprises part-of-speech tagging, morphological analysis, chunk analysis and named entity
recognition; one of its purposes is to aid information extraction and thus semantic annotation
(Buitelaar and Declerck, 2003). A full text is separated into tokens, which can be single words
or phrases. Each such token may be annotated with, for example, its syntactic class (e.g., noun,
verb, etc.) as a result of part-of-speech tagging, or its named entity (a named entity recognition
would, for instance, identify the author name on the cover of this thesis as a person).

2.2 Facets of Annotations

So far we have introduced annotation systems, concepts and usage. In the following, we describe
the different facets of annotations that we consider by repeating and elaborating the findings
in Agosti et al. (2004).

2.2.1 Annotations as Metadata

Metadata is defined as “data about data”. Examples of metadata are bibliographic or descrip-
tive metadata; DublinCore metadata records11, for instance, contain fields where, e.g., the
creator and title of a document, as well as a description of the document content and a rights
management statement can be provided (Arms, 2001, chapter 10).
From a syntactic point of view one of the main characteristics of metadata is that it is

connected to the object it refers to. Annotations have a similar connection to what they
are annotating, and they are considered as additional data about an existing data, that is
annotations are metadata (Nagao, 2003). This reflects a data specific view on annotations.
For example, the World Wide Web Consortium (W3C) considers annotations as metadata and
interprets them as the first step in creating an infrastructure that will handle and associate
metadata with content towards the Semantic Web. Kahan et al. (2001) state that “from
a general viewpoint, annotations can be considered as metadata; they associate remarks to
existing documents”. This viewpoint also implies that not only structured annotations (like
we have with semantic annotation) can be considered metadata, but also semi-structured or
unstructured comments.
11http://dublincore.org/

http://dublincore.org/

18 2 The Annotation Universe – Applications, Facets and Properties

2.2.2 Annotations as Content

Another view on annotations is seeing them as content, reflecting an information specific view.
Annotations can be regarded as content in two ways: they can be content about content and they
can be considered as additional content (Nagao, 2003). Annotations being additional content
extend the content in the annotated document, for instance by means of elaboration (e.g., “it is
Paris in Texas, not in France”), examples, arguments and counterarguments and interpretation.
We say that an annotation is created on the content level in this case. Annotations on the
content level also have another special property, which Agosti et al. (2007a) and Agosti and
Ferro (2003) describe as the dualism between annotations as content enrichment and as stand-
alone content. In the former view, annotations are not autonomous, but rely on the annotated
object as information resource to justify their existence. In the latter view, they are considered
as real documents and autonomous entities. When we first start annotating a document, this
annotation, as an outcome of active reading, is very closely related to what we previously read
and can be seen as an extension of it. But on the other hand, the annotations can contain new
insights, interpretations or ideas, which are new content in its own right. This way, annotations
bridge the gap between reading and writing (Marshall, 1998).
In contrast to the view of annotations on the content level, annotations can be regarded as

content on the meta level. By this we mean annotations which do not extend existing content,
but its content says something about the content of the annotated object or the annotated
object itself. Examples are annotations being reviews and judgements (e.g., saying “this is
a good and well-written introduction” or “this book is certainly too expensive”); they make
assertion about the content of the annotated object, for example if they judge the quality of
an argument (“there is no reason to assume this”), or even contain interpersonal statements
about the author of an annotated object (“the author is well-recognised in her community” or
“he should do his homework first”), but do not necessarily extend the content. We call such
annotations meta level annotations (or short meta annotations), which are not to be mixed
up with the concept of metadata, which simply is another facet of annotations and reflects a
syntactic viewpoint – both content and meta level annotations are metadata from a syntactic
point of view. The distinction between content and meta level annotations is purely made with
respect to a semantic viewpoint. We can find other examples of meta level annotations in Wolfe
(2000). Note that both ways do not necessarily mutually exclude each other: interpretations,
for example, may be content about content, but they might also contain additional content.

2.2.3 Annotations as Dialogue Acts

Another viewpoint on annotations is regarding them as dialogue acts. This covers a com-
munication specific view, which is concerned with the question of the pragmatics conveyed in
annotations, i.e. the intention behind a user’s statement. Gaining information about pragmatics
is an important means to distinguish between the different kinds of content we have discussed
when regarding annotation as content. We may find out about the semantics of utterances in
annotations, but this does not necessarily mean that we can distinguish whether we can see
the annotation as content about content or an extension of existing content.
Each annotation implicitly consists of certain communicative acts, which, according to Searle,

can be classified as (among others) assertives, directives (e.g., requests), and commissives (e.g.,
promises) (Searle, 1979). Communicative acts both allow for communication on the content
and on the meta level. On the content level, assertives connected with a certain discourse
structure relation are the units with which a coherent interpretation of the material can be

2.2 Facets of Annotations 19

created (Brocks et al., 2002). On the other hand, directives and commissives can trigger
further collaborative acts on the meta level. Directives can be used to attempt to get some
other person to do something; an example would be when a user asks the author of a comment
if he could further elaborate on it. The author, in turn, can answer the request with a promise
to provide the needed information (and actually provide it later on). Certain communicative
acts can thus enable collaboration, and they can be realised as annotations.

2.2.4 Annotations as References
Annotations may be references which link together two different documents or parts of docu-
ments. A classical example for such a reference annotation is an arrow drawn from one text
passage to another on the same page in order to bring them in relation. It could also be a
text like “see also the paper I read last week”. So a reference annotation can be combined
with a textual sign (Agosti and Ferro, 2003), meaning that we not only have a link between
two objects, but also some text describing the type or even the semantics of the link. This
way, documents and objects in the whole repository can be brought in relation. With reference
annotations, resources can be chained into paths like it is done in the Walden’s Path system
(Furuta et al., 1997).

2.2.5 Polarity of Annotations
Another facet of annotations is their polarity. Annotations might convey a positive or negative
sentiment towards the object they are annotating. As an example on the content level, a
counter argument relation type, as it is found in COLLATE, indicates a negative polarity
towards an argument in the annotated object, whereas a support argument would implicitly
convey a positive sentiment. On the meta level, reviews of and judgements about an object
might overall be positive or negative.

2.2.6 Annotations and Hypertexts
When annotations are references, they link together the objects contained in the repository,
thus establishing a huge hypertext, according to the definition of hypertext provided in Agosti
and Smeaton (1996). Marshall (1998) considers annotations as a natural way of enhancing hy-
pertexts by actively engaging users with existing content in a digital library (Marshall, 1997).
But also annotations not being references (like textual comments) are part of this hypertext,
due to their strong relation to the annotated object. Tools like the Multivalent Browser (Phelps
and Wilensky, 1997) let users select a text fragment which is then to be annotated, and also
in COLLATE it is possible to choose a part of an image as a fragment for annotation. So we
might regard such an annotated fragment (or document part or passage) as a single node in this
hypertext. We gain a web consisting of objects (documents or annotations) and their fragments
which are connected through different kind of links. For instance, annotated fragments can be
related to their original object they are contained in with an is fragment of relation; nodes in
an annotation thread are connected via an annotates or has annotation target relation, while
annotations being references introduce a specific references relation. We call the resulting struc-
ture the annotation hypertext (elsewhere also referred to as document-annotation hypertext). If
we do not regard documents and annotations as atomic units, but also consider their internal
structure (like books made of chapters, chapters made of sections), each of these structural
elements can be a node in this hypertext in its own right, connected to its related structural
elements through an is part of link. We call such an extended hypertext which combines intra-

20 2 The Annotation Universe – Applications, Facets and Properties

and inter-document relations as well as annotations and annotated fragments the structured
annotation hypertext. Structured annotation hypertexts and their properties are going to be
discussed thoroughly in the next chapter.

2.3 Summary and Discussion

In this chapter we have examined digital annotations, their usage, properties and facets. An-
notations play an important part in digital libraries and collaboratories as well as on the Web,
as COLLATE and many other applications show. They are the building blocks for scientific
discussion in order to collaboratively interpret the material at hand. We can even regard email
discussions and newsgroup postings as annotations in a broader sense. In another manifesta-
tion, annotations are a key concept when talking about the “Web 2.0”, the Semantic Web or in
scientific databases. They can furthermore link repository resources when they are references.
Their main usages are to remember, think, clarify and share, but they can also be a starting
point for creating new knowledge or even contain new information. From a syntactic point of
view, annotations are metadata. From a semantic viewpoint, they are either content about
content (in case of meta level annotations) or additional content (in case of content level anno-
tation). We can view them as objects which are strongly connected to the annotated entity, but
also as stand-alone objects which are equally important as the main documents in a repository.
Another facet of annotations, from a pragmatic point of view, is to see them as dialogue acts.
Additionally, annotations can convey a positive or negative sentiment towards the entity they
belong to. As annotations are connecting the various objects found in a repository and in turn
are connected to the objects they annotate, they establish an annotation hypertext. In case
the objects in a repository are structured and we make the document structure explicit, the
annotation hypertext can be expanded to form a structured annotation hypertext.

Which early conclusions can we draw for information retrieval? From the considerations
above it is clear that on the one hand, we need retrieval mechanisms which let users search
for annotations, since otherwise important insights and new ideas might never be uncovered
(especially if we see annotations as stand-alone documents). On the other hand it also be-
comes clear that annotations are an important additional source to decide the relevance of
documents which are annotated, so retrieval functions should consider the annotation con-
text. We have identified important properties of annotations which should be considered when
creating annotation-based retrieval methods. First of all there is the fact that annotations,
annotated fragments and documents establish a hypertext. This means that all nodes in this
hypertext are embedded in a context given by the links to other objects. Annotation-based
retrieval methods should take this context under consideration. Second, many systems offer
the possibility to type annotations. Annotations of various type might play a different role
in the retrieval process, especially when it comes to distinguishing between content level and
meta level annotations. Third, a very interesting side-effect of annotation is the identification
of the annotated fragment or passage, which seems to be an important part to the annotator
as she took the time to highlight this part or even write a comment about it. So fragments are
another player when it comes to annotation-based retrieval. And last but not least, also the
polarity of annotations might have an influence on the decision whether an object is relevant
or not.
The findings in this chapter help us to understand the concept of annotation and are an

important basis for the design of annotation-based retrieval functions. The next step is to

2.3 Summary and Discussion 21

formalise the insights we gained in order to make them ready to be exploited by novel retrieval
functions. This is the main issue of the following chapter, which deals with the definition of
the structured annotation hypertext and a discussion of its properties.

3
A Model of the Annotation Universe for

Annotation-based IR

That’s why we like you, Mulder.
Your ideas are weirder than ours.

(Lone Gunman to Fox Mulder,
“The X-Files”)

If we talk about annotation-based retrieval, we first have to determine the data structure our
methods can operate on. What are the objects, relations and constraints we are potentially
dealing with when we talk about annotation-based retrieval? In the last chapter we learnt about
certain features of annotations and we also mentioned structured annotation hypertexts. Based
on these considerations, the aim of the model discussed in this chapter is to make explicit the
objects and relationships which play an important part in annotation-based retrieval, either as
being a retrievable object (i.e. an object which can be retrieved by the system) or as providing
the context in order to determine the relevance of objects. So the model here is tailored to
the task of annotation-based information retrieval and does not claim to be thorough w.r.t.
every possible property of annotations and annotated objects. Our model reflects, whenever
possible, previous formal models for digital libraries and annotations of digital content, as they
are introduced in the 5S model by Gonçalves et al. (2004), and by Agosti and Ferro (2007),
respectively. It further emphasises and integrates structured documents, as they are used
for structured document retrieval (Fuhr et al., 2002). The model is simple; it should not be
regarded as yet another model of annotations in digital libraries – readers interested in that
are referred to the aforementioned publications.
We will first discuss an object-oriented view on annotations which identifies important ob-

jects and relations. One the instance level, our discussion leads us to our core data structure,
the annotation hypertext, and an extension of it, the structured annotation hypertext. We use
Description Logics (Baader et al., 2003) to express the annotation model. With Description
Logics, it is possible to exactly specify objects and their properties and relationships, espe-
cially inheritance relations1. Basically, there are two key components to model a domain in
Description Logics: The TBox and the ABox. While the TBox is used to specify the concepts
and terms of our domain, together with their properties and relationships, the ABox is used to

1Note that Description Logics are only used as the language to specify the data structure. In the next chapters,
another logical framework will be introduced which implements the actual retrieval approach based on the
data structure defined here.

24 3 A Model of the Annotation Universe for Annotation-based IR

specify the individuals in our universe. In the next section, we are going to discuss the TBox
containing the classes we deem important for our aims. In the then following section, the ABox
is used to extract and discuss the basic data structure, the structured annotation hypertext.
Instead of giving an overview of the Description Logics syntax, Description Logics constructs
are briefly introduced when they are needed. The interested reader is referred to (Baader et al.,
2003, chapter 1) for an introduction to Description Logics and their semantics.

3.1 Main Classes
In this section we define the terminology of our annotation universe by defining the classes and
properties of our TBox or object-oriented view, respectively. The objects and main relations of
view are also depicted in Figure 3.1, which summarises the further discussion. An early version
of the model was discussed before in Frommholz and Fuhr (2006b).

3.1.1 Digital Objects

A digital library manages digital objects of various kinds (Gonçalves et al., 2004). Such digital
objects might be, e.g., textual and multimedia documents, but also other kinds like digital
representations of persons and conferences, as we find them for example in the DAFFODIL
system (Klas et al., 2004b). In principle, annotation-based retrieval approaches might return
any digital object in the repository when processing a query. Those digital objects need to be

Figure 3.1: Classes and properties of the object-oriented view (the TBox)

3.1 Main Classes 25

uniquely identified. In our case, we say that every digital object has a Uniform Resource Iden-
tifier (URI) (Berners-Lee et al., 2005); of course, other identification mechanisms are possible
and subject to the actual application2. We also record the creation time of any digital object.
We will now identify the first class, DigitalObject, as an object which is identified by a URI.

In Description Logics, the definition of a class actually means the definition of a subset of
individuals with certain properties. When specifying a class C, we mean all individuals which
can be classified as C. So DigitalObject denotes all individuals which can be classified as digital
objects. AuB describes all individuals which are in both A and B. We say that all individuals
identified by a URI are digital objects, and all digital objects must be specified by a URI, which
we express with a property called hasURI. The set of all individuals having exactly 1 hasURI
relation with a URI3 primitive datatype is expressed in Description Logics as

(= 1 hasURI) u ∀hasURI.URI. (3.1)

(= 1 hasURI) specifies the set of all individuals having exactly 1 hasURI property. Generally in
Description Logics, ∀P.C is the set of individuals that are in the relationship P with individuals
belonging to the set denoted by the concept C. So ∀hasURI.URI determines the set of individuals
for which the range of the property hasURI is URI, and (= 1 hasURI) u ∀hasURI.URI are all
individuals which have exactly one URI and whose URI is of type URI. Similar to that,

(= 1 hasCreationTime) u ∀hasCreationTime.Timestamp. (3.2)

specifies the set of all individuals having exactly one unique time stamp as creation time.
A digital object may have a body which contains its content. For the sake of simplicity, we

see the body as a string and therefore use the primitive datatype String. However, other
datatypes are conceivable, even complex ones. For example, xsd:base64Binary (Biron
and Malhotra, 2004) may be used to encode binary content like multimedia data in a string.
Gonçalves et al. (2004) introduce the notion of streams, which is a more general one and may
be applied here as well. The connection between digital objects and their bodies is given by
the hasBody property, so we define the set of individuals having at most 1 body:

(≤ 1 hasBody) u ∀hasBody.String (3.3)

where (≤ 1 hasBody) is the set of individuals having 0 or 1 property hasBody.
(3.1) to (3.3) describe three sets of individuals with certain properties. We define the class

DigitalObject as the set of individuals which belong to all these three sets:

DigitalObject ≡ (= 1 hasURI) u ∀hasURI.URI
u (≤ 1 hasCreationTime) u ∀hasCreationTime.Timestamp
u (≤ 1 hasBody) u ∀hasBody.String

In Description Logics, the expression A ≡ B says that A and B are equivalent – any individual
which is in A must also be in B and vice versa.

2Taking URIs is one possible option. It is of course possible to use the more general notion of unique handles
for digital objects as it is done in Gonçalves et al. (2004). These handles may be URIs, but also, e.g., Digital
Object Identifiers (DOIs). Since URIs are meant to not only identify digital objects, but, for instance, persons
as well, we use URIs where we could have used handles instead. Instead of URIs, any other identification
scheme is conceivable here.

3From a Description Logics point of view, primitive datatypes are classes as well. But in order to distinguish
them from the other classes in our model, we write them with typewriter fonts.

26 3 A Model of the Annotation Universe for Annotation-based IR

3.1.2 Structured Documents
Although any conceivable object may be a digital object, the most important ones we are
dealing with are documents. We use the term “document” for any main item in a digital
library which conveys some kind of content. Documents may thus be textual documents, but
also multimedia ones, for instance. In our model, documents are digital objects and we do not
introduce new properties for them:

Document v DigitalObject.

In Description Logics, A v B means that every individual in A is also an individual in B; the
expression A < B further specifies that there is at least one individual in B which is not in
A. ‘v’ thus models the IS-A relation with inheritance between documents and digital objects:
each document is also a digital object. Particularly, each document inherits the properties from
digital objects: it has exactly one URI and it possibly has a body.
If the structure of a document is made explicit, we talk of structured documents. In a

document-centric view, we can think of books containing parts, parts containing chapters,
chapters containing sections and so on. In a data-centric view, a “document” is a kind of
formatted data like spreadsheets and database records which have a certain structure (Fuhr
et al., 2002). In both cases, we can identify subcomponents which are part of exactly one
supercomponent. For this, we introduce the isPartOf property. This property thus models the
structure of a document as an aggregation of subcomponents. Note that each subcomponent
might again be structured. So a component may be part of a document or of another component
(which in turn must be part of another supercomponent). We therefore define the Component
class as

Component ≡ (= 1 isPartOf) u ∀isPartOf.(Document t Component). (3.4)

Components are part of exactly 1 other object, and this object must be a document or another
component. Furthermore, we determine that components are digital objects as well:

Component < DigitalObject. (3.5)

Note that we used ‘<’ instead of ‘v’ – the case that Component ≡ DigitalObject is impossible
since there has to exist at least one digital object which is not a component. Again, the
properties of digital libraries are inherited by components, so they might have a body and we
specify that they are identified by a URI.
Modelling components as digital objects reflects a different view than expressed in Gonçalves

et al. (2004). Here, each digital object might contain a set of structured streams in case the
digital object is a structured document (like, e.g., an XML document). Such a structured
stream consists of a structure, which is a directed graph, and a stream (see above). Each
node of the structure is associated with a segment of the stream, but the node is not seen
as a digital object in its own right. This is different in our model, where we want to retrieve
subcomponents as well, and therefore need to address them. For the sake of simplification, we
also see components as digital objects in our model.
We further assume that the graph representing a structured document forms a tree (this is

consistent with the view of XML document trees representing the structure of a document (Fuhr
and Großjohann, 2004)). Gonçalves et al. (2004) define an entailment relation for subparts of
a structured document, saying that a stream segment of a node contains the segment of each
subnode. In our model, we would form the body of a component with the part of the stream
which belongs to the component’s node and only this node. For example, consider a stream

3.1 Main Classes 27

s =< s1, . . . , sn > and a component c1 with subcomponents c11 and c12. Let us further assume
that s is the stream belonging to c1. Furthermore, there are two substreams s1 =< si, . . . , sj >
and s1 =< sk, . . . , sl > with 1 ≤ i ≤ j < k ≤ l ≤ n, and s1 associated to c11 and s2 associated
to c12. In that case, the body of c11 would be made of s1 and the body of c12 would be made
of s2. The body of c1 would contain s \ (s1 ∪ s2). So the body of a subpart is not contained
in the body of its superpart. The reason is that our retrieval approach presented in the second
part of this thesis applies a technique called knowledge augmentation to aggregate these parts
again in an appropriate way.

3.1.3 Annotatable Objects and Annotations
After having defined digital objects and structured documents, we now come to the core ele-
ments of our model – annotations and the objects they annotate, which we call annotatable
objects. As outlined in Chapter 2, annotations can also be references connecting several digital
objects and, like documents, they can also be structured. From a retrieval perspective, it is
also interesting to ask for the author of an annotation and the groups she belongs to.

3.1.3.1 Annotatable Objects

An annotatable object is a digital object which can be annotated (in contrast to those digital
objects which might not be annotatable). We define the new class of annotatable objects as a
subclass of digital objects:

AnnotatableObject v DigitalObject.

Each annotatable object therefore inherits the properties from DigitalObject. We further say
that structured documents and their components can potentially be annotatable, so we have

Document v AnnotatableObject
Component v AnnotatableObject

3.1.3.2 Annotations

So far we discussed annotatable objects without introducing annotations themselves. Annota-
tions are objects as well, so we introduce a class

Annotation < DigitalObject.

As explained in Section 2.2.1, annotations are metadata, strongly connected to the object they
refer to. This means that annotations cannot exist as independent entities from a syntactic
viewpoint, but must have at least one specific annotation target, which can be any annotatable
object in the digital library repository. This is expressed by the property hasAnnotationTarget.
So we say that each individual which has at least one annotation target is an annotation,
and annotations must have at least one annotation target which is an annotatable object. In
Description Logics, we can express this as

Annotation ≡ (≥ 1 hasAnnotationTarget) u
∀hasAnnotationTarget.AnnotatableObject.

which also means that, in contrast to the model in Agosti and Ferro (2007), an annotation can
have more than one target it belongs to. We allow for multiple annotation targets for three

28 3 A Model of the Annotation Universe for Annotation-based IR

reasons: first, the model in Agosti and Ferro (2007) does not forbid the annotation of one or
more parts in a digital object (only the annotation of more than one digital object). Such parts
might be components as introduced above, and we see each of them as a digital object in its
own right; annotating more than one of them would then violate the constraint that only one
digital object can be annotated. So if a system allows for annotating more than one part in
a document, and we assign to each part an identifier and regard it as a retrievable object in
our model, we must weaken the constraint reported in Agosti and Ferro (2007) and permit
annotations to have more than one annotation target. The second reason is that we should not
exclude possible systems which allow for the annotation of multiple digital objects, for instance
to enable the annotation of sets of components or groups of digital objects. Third, as we will
see in Section 7.1.2, emails could contain annotations which belong to fragments from different
other emails, which means they annotate more than one object. If we want to consider this
annotation view on emails as well in our model, we must allow multiple annotation targets.
Another important feature is to nest annotations, i.e. make them annotatable again, which

is crucial when modelling annotation-based discussions. So

Annotation < AnnotatableObject.

3.1.3.3 Annotations as References

As discussed in the last chapter, annotations might be links or references connecting an an-
notatable object with other digital objects (in contrast to hyperlinks given by the creator of
a digital object). We introduce a new property references to establish links between digital
objects: each annotation target is a source of the link, whereas each digital object, regardless
of being annotatable or not, may be its destination. Annotations may have no or multiple
references.

Annotation v (≥ 0 references) u ∀references.DigitalObject.

In principle, also documents can contain references (the aforementioned hyperlinks given by
the creator of a document), so

Document v (≥ 0 references) u ∀references.DigitalObject.

In this work, we concentrate on references established by annotations, so document references
only play a minor role.

3.1.3.4 Structured Annotations

Annotations can be structured as well; in this case we talk of structured annotations. For
example, the MADCOW system introduces structured annotations (Bottoni et al., 2004). To
model this, we have to extend our definition of components in (3.4) to

Component ≡ (= 1 isPartOf) u ∀isPartOf.(Document t Component t Annotation) (3.6)

so that components can also be part of annotations. Note that components of annotations
are not annotations themselves; the hasAnnotationTarget property is not defined for them, but
only for the annotation they are a subcomponent of.

3.1 Main Classes 29

3.1.3.5 Users and Groups

We also model that annotations have exactly one author, who in our model is a user of the
system and belongs to the (not further specified) class User:

Annotation v (= 1 hasAuthor) u ∀hasAuthor.User.

Note that the specification of the hasAuthor property for annotations does not mean that
digital objects in general cannot have any author at all; we distinguish here between authors
of annotations, which are users, and authors of documents, which often are external persons.
Although we do not want to further discuss the properties of users, there is one important

feature which is interesting for annotation-based retrieval: users might belong to one or more
group, represented by the class Group and the isMemberOf property. We can thus partially
define User as

User v (≥ 0 isMemberOf) u ∀isMemberOf.Group.

In the tradition of the Web, users and groups can also be identified by URIs:

User v (= 1 hasURI) u ∀hasURI.URI
Group v (= 1 hasURI) u ∀hasURI.URI

We do not discuss the classes User and Group and their properties any further. We just remark
that users and groups play an important part when talking about the scope of an annotation
later, which can be private (i.e., belonging to a certain user), shared (belonging to a certain
group) or public.
The model so far still has some shortcomings: neither is it possible to annotate arbitrary parts

of documents (document fragments), nor can we define annotation types. These enhancements
of the basic model will be introduced in the next two subsections.

3.1.4 Fragments

Fragments are certain portions of digital objects, in the case of an annotation scenario these
are areas selected by the user as an annotation target. Such a fragment can be, for instance, a
passage or paragraph of a text document, a certain video sequence or an excerpt of an image.
When applying the 5S model, fragments might be segments of a stream. The ability to identify
a fragment of a document and to annotate it is a crucial functionality in a digital library system
supporting annotations. To reflect this in our model, we introduce a new class

Fragment v AnnotatableObject.

Since fragments are created during the annotation process, they are related to the annotatable
object they are part of. To connect fragments and their source object, we introduce a new
property isFragmentOf and say that a fragment must belong to exactly one annotatable object:

Fragment ≡ (= 1 isFragmentOf) u ∀isFragmentOf.AnnotatableObject.

30 3 A Model of the Annotation Universe for Annotation-based IR

3.1.5 Annotation Types
Some annotation systems offer a categorisation of annotations into several types. Furthermore,
according to the considerations in Section 2.2, annotations can contain additional content or
content on the meta level, and thus be categorised into meta level and content level annotations.
Explanations, for example, contain additional content and expand the content of the object
they refer to. On the other hand, highlight markings operate on the meta level; if a passage is
highlighted, the implicit assertion is “this part is important”, but there is no additional content.
Another example of meta level content are judgements, where people state their opinion about
a document. To distinguish between these kinds of annotation types, we create new classes

ContentLevelAnnotation v Annotation

and
MetaLevelAnnotation v Annotation

and categorise our example annotation types accordingly, for example:

Highlighting v MetaLevelAnnotation
Judgement v MetaLevelAnnotation
Explanation v ContentLevelAnnotation

3.1.6 Scope, Permission and Polarity
Annotations can be private, shared or public. In the first case, only the creator of an annotation
has the right to access it; in the second case, the annotation is visible to a whole group. In the
last case, everyone can see the annotation. We thus need to model the scope of an annotation,
expressed by the scope property. It reflects whether the annotation is public, private or shared,
so possible values of this property should be like that. In order to ensure authorised access to
annotations, the scope goes together with permissions. Shared annotations might be seen by
several groups, and not necessarily only the group the author is member of. Annotation-based
retrieval functions should actually return only those annotations which are accessible by the
current user, which can either be because the annotation is public, or it is shared and the user
belongs to a group the annotation is to be seen by, or it is private and the user is the author
of the annotation4. In any case, we need to know by which groups an annotation can be seen
in order to properly handle access to shared annotations. We therefore introduce the property
seenBy between Annotation and Group. An annotation might be seen by one or more groups
or no group at all (in case of private annotations). Public annotations imply that they can be
seen by any group. We do not further discuss mechanisms to prohibit scope and permission
conflict as they are not in the focus of this thesis; readers interested in these issues are referred
to Agosti and Ferro (2007).
Another attribute of annotations is their polarity (if known). For example, annotation types

like “agreement” and “support argument” have a clear positive polarity, since they express a
positive sentiment about the annotated part. In contrast, “disagreement” and “counterargu-
ment” convey a negative sentiment about the annotated content. In these cases, the annotation
type determines the overall polarity of the annotation. In other cases, the polarity might not
be clearly derivable from the annotation type, so the polarity might be determined by the
annotation content (for example, a comment itself does not have a certain polarity, but there

4An appropriate access policy is due to the actual application and shall not be discussed here.

3.2 Structured Annotation Hypertext 31

can of course be negative or positive statements in the comment). For Annotation, we define a
new functional property polarity which might take the values “positive” or “negative”.
Scope and polarity are modelled in Description Logics as

Annotation v (≤ 1 polarity) u ∀polarity.String
Annotation v (= 1 scope) u ∀scope.String.
Annotation v (≥ 0 seenBy) u ∀seenBy.Group.

3.1.7 Multiclassification
So far we specified the properties and class assignments of individuals. But what happens if
an individual has, say, both the isFragmentOf and hasAnnotationTarget property? In this case,
it would be both a fragment and an annotation, which should not be possible. While such
multiclassification is obviously desirable for IS-A relations, we have to prohibit this in other
cases.
User individuals must not be Group or DigitalObject individuals the same time; similarly,

Group individuals must not be User or DigitalObject individuals the same time

User v ¬Group u ¬DigitalObject
Group v ¬User u ¬DigitalObject

Furthermore, we have to ensure that an annotatable object only belongs to one of the classes
Fragment, Document, Component or Annotations (or its subclasses). First of all, we say that
documents must neither have the isFragmentOf nor the isPartOf nor the hasAnnotationTarget
property:

Document v (= 0 isPartOf) u
(= 0 isFragmentOf) u
(= 0 hasAnnotationTarget).

This tells us that no document can also be an annotation, a fragment or a component. Note
that due to the fact that documents (like annotations, components and fragments) are digital
objects, an individual which is classified as a document cannot be a group or a user, too.
We have to define similar restrictions for fragments, components and annotations:

Fragment v (= 0 isPartOf) u (= 0 hasAnnotationTarget)
Component v (= 0 isFragmentOf) u (= 0 hasAnnotationTarget)
Annotation v (= 0 isPartOf) u (= 0 isFragmentOf)

We have now modelled our annotation universe. The whole model is shown in Appendix A.

3.2 Structured Annotation Hypertext
In the last subsection we described the classes contained in our logical view. Actual documents
and annotations are instances or individuals of DigitalObjects or its subclasses, respectively. On
the instance level (or ABox, to use a term from Description Logics), we can derive an important
data structure: structured annotation hypertexts. We describe the definition of a structured

32 3 A Model of the Annotation Universe for Annotation-based IR

annotation hypertext (or structured document-annotation hypertext), which is similar to the
one in Agosti and Ferro (2005), but with certain differences, as it deals with fragments and
structured documents. For our further considerations, C(o) means that an instance o belongs
to a class C, while R(a, b) means instance a has value b for the property R. Before we continue,
we need to prohibit that, for example, an annotation annotates or references itself or a fragment
is a fragment of itself, or that a subcomponent is part of itself:

Constraint 1 (Loopless): The property value of an instance cannot be the instance itself
(but there may be properties having (other) instances of the same type):

R(a, b)⇒ a 6= b

for each property R. 2

We further must prohibit that annotations reference the same objects they annotate (Agosti
and Ferro, 2007):

Constraint 2 (Annotation targets and references): If an annotation a annotates an ob-
ject o and references an object o′, they must not be the same:

hasAnnotationTarget(a, o) ∧ references(a, o′)⇒ o 6= o′

for all instances a, o, o′. 2

We begin our further considerations with the definition of the annotation hypertext and a
discussion of some important properties. The annotation hypertext can be derived from the
instances of our model.

3.2.1 Annotation Hypertext
An annotation hypertext is composed of digital objects as nodes and specific relations among
them as edges.

Definition 1 (Annotation Hypertext):
An annotation hypertext (or document-annotation hypertext) is a labelled digraph H =
(V,E) with N as the set of vertices and o ∈ N iff DigitalObject(o). E ⊆ V × V is the
set of edges and l : E −→ Σ∗ is a labelling function over an alphabet Σ. The annotation
hypertext is derived from the instances of our model as follows:

• (n,m) ∈ E if hasAnnotationTarget(n,m);

• (n,m) ∈ E if references(n,m);

• (n,m) ∈ E if isFragmentOf(n,m).

Other properties are not considered in the annotation hypertext. For each e = (n,m) ∈ E
it is

l(e) =


“hasAnnotationTarget” iff hasAnnotationTarget(n,m)

“references” iff references(n,m)
“isFragmentOf” iff isFragmentOf(n,m)

3.2 Structured Annotation Hypertext 33

We can identify a temporal dimension of annotations, which regulates the temporal order
among annotations and annotated objects – each annotation can only belong to digital objects
which existed before (Agosti and Ferro, 2007; Agosti et al., 2007a; Agosti and Ferro, 2005), and
fragments are younger than the object they belong to, since they are created during annotation.
The age of a digital object can be determined by the hasCreationTime property which assigns
each object a unique time stamp.

Constraint 3 (Temporal order of annotation hypertexts): Let t denote the time an
item was created in the sense of a timestamp, i.e., the higher t(o), the younger object o.
Then

(a, b) ∈ E ⇒ t(a) > t(b). 2

The temporal order makes sense for the annotation hypertext. Let again be e = (n,m) ∈ E.
If l(e) = “hasAnnotationTarget”, then n annotates m. It is impossible to annotate an object
which does not exist yet, so consequently m must be older than n and it is t(n) > t(m). The
same holds true if l(e) = “references” – it is only possible to reference older objects, so again it
is t(n) > t(m). If a fragment of an annotatable object was created in the annotation process,
this object needs to exist. This means for l(e) = “isFragmentOf”, it is t(n) > t(m) as well.

Proposition 1 (Annotation hypertext acyclic): Each annotation hypertext H = (V,E) is
loopless (i.e., there is no edge whose start and end vertex are the same) and acyclic.

Proof. Loopless: This is a consequence from Constraint 1.
Acyclic: Let us assume the annotation hypertext H is cyclic. Then there exists a path

(v1, . . . , vn, v1) in H, with (vi, vi+1) ∈ E for i = (1, . . . , n − 1). Because of Constraint 3, it is
t(v1) > ... > t(vn), but also t(vn) > t(v1), which is a contradiction. �

3.2.2 Structured Annotation Hypertext

The annotation hypertext may not only contain documents and annotations, but also subcom-
ponents in case we deal with structured documents and annotations. Therefore we extend our
notion of an annotation hypertext with document structure.
Before we start, we have to define the temporal completeness of structured objects w.r.t.

annotation, which means that a structured object being annotated, referenced or annotating
cannot be changed after the act of annotation5.

Constraint 4 (Temporal completeness of structured objects): Let x be a structured
object (document or annotation) and SUBx be the set of its subcomponents which are directly
or indirectly connected with x through the isPartOf property. From a temporal perspective, we
regard x as being complete w.r.t. annotation in the sense that no subcomponent was added to
SUBx after x annotates another object, or any s ∈ SUBx has been annotated or referenced
by another item. If again t denotes the time an item was created, let y be the youngest com-
ponent of x, i.e., t(y) = {max(t(i))|i ∈ {x} ∪ SUBx}, and o be the oldest component of x, i.e.,
t(o) = {min(t(i))|i ∈ {x} ∪ SUBx}. Then we define the following conditions:

5There might be cases where this assumption is violated, for example when annotations are used in an authoring
process. After annotating a part of the document in creation, it might be extended by a new subcomponent.
However, in our model we would regard the new extended version as a new document which is not annotated
yet. Versioning in an annotation environment is a problem in its own right which is not further addressed
here.

34 3 A Model of the Annotation Universe for Annotation-based IR

1. t(a) > t(y) for each i ∈ {x} ∪ SUBx with hasAnnotationTarget(a,i) or references(a,i);
each object annotating or referencing x or one of its subcomponents must be younger
than the youngest component;

2. t(f) > t(y) for each i ∈ {x} ∪ SUBx with isFragmentOf(f ,i); each fragment of x or its
subcomponents must be younger than the youngest component;

3. t(o) > t(u) if hasAnnotationTarget(x,u) or references(x,u); if x annotates or references
another annotatable object u, the oldest component must by younger than u. (Any
s ∈ SUBx can be an annotation target, but not be an annotation itself.)

Let u, v ∈ {x} ∪ SUBo. The above conditions prohibit that t(u) > t(i) > t(v) with i /∈
{x} ∪ SUBx annotating or referencing v or a fragment of v. In this case, u would have been
added to {x}∪SUBx after a component or subcomponent was annotated. u would be younger
than i, which would violate condition 1. Similarly, in case i is a fragment of v, we would have
condition 2 violated. Finally, if u annotates i or a fragment of i, then condition 3 is violated.2

We define the structured annotation hypertext as an extension of annotation hypertexts
dealing with structured documents and annotations. We can create a structured annotation
hypertext from annotation hypertexts by adding the structural relationships between compo-
nents which are given by the isPartOf property.

Definition 2 (Structured Annotation Hypertext):
A structured annotation hypertext SH = (V ′, E′) is an extension of an annotation hypertext
H = (V,E) and created as follows:

• V ′ = V,E′ ⊇ E

• If isPartOf(n,m) then (n,m) ∈ E′ and l((n,m)) = “isPartOf”.

Note that H is a subgraph of SH. V ′ = V because all digital objects, even components, are
vertices in annotation hypertexts. An annotation hypertext is thus a structured annotation
hypertext without “isPartOf” edges.

Example 1 (Structured annotation hypertext): Figure 3.2 shows an example of a struc-
tured annotation hypertext. Here, document d1 is a structured document with subcomponents
s1 and s2. The annotation a1 annotates s2. f is a fragment of d1 which is annotated by a3.
a3 annotates both f and a1, and is a structured annotation containing t. a2 annotates s2 and
references it to d2, thus creating a link from s2 to d2. 2

In (3.6) on page 28 we defined structured annotations and documents by means of compo-
nents, which are objects having exactly one isPartOf property. The problem is that a situation
as it is depicted in Figure 3.3 still can occur – s2 is part of s1, s3 is part of s2, but s1 is part of
s3, so we have a cycle here and a set of components from which none of them is a subpart of
a document or annotation. This is certainly not what we want, so we have to ensure that in
a set of connected components, there exists one component which is part of an annotation or
document. If this is the case, each subgraph consisting only of “isPartOf” relations is a tree.

3.2 Structured Annotation Hypertext 35

Figure 3.2: Example of a structured annotation hypertext

Constraint 5 (Structured objects are trees): Let

AN(x) = {y|component(y) ∧ (isPartOf(x,y) ∨ (isPartOf(x,y′) ∧ y ∈ AN(y′)))}

be the set on ancestor components of a component x. Either x or one of its ancestor components
must be part of a document or annotation:

∀x : component(x) =⇒ ∃y ∈ {x} ∪AN(x) : isPartOf(y,y′) ∧ (Annotation(y′) ∨ Document(y′))
2

Applying this constraints forbids the structure in Fig. 3.3.
We also forbid that a component or subcomponent of an annotation can annotate or be

annotated by itself:

Constraint 6 (Self annotation and reference): Let a be a structured annotation and
SUBa be the set of its subcomponents which are directly or indirectly connected with a through
the isPartOf property. No element from SUBa can be an annotation, and Constraint 1 prohibits
that a annotates itself. Let SH = (V,E) be the structured annotation hypertext containing
a, so that a ∈ V . Then there must not exist any edge (a, n) ∈ E with n ∈ SUBa. We
also have to take into account the case that a references or annotates a fragment of its sub-
components. So we say that there must not exist an edge (a, n) ∈ E and (n,m) ∈ E with
l((n,m)) = “isFragmentOf” or and m ∈ SUBa. Figure 3.4.a illustrates some forbidden cases
of self annotation. 2

Note that Constraint 3 alone would not prohibit self annotation.

Figure 3.3: Cyclic component structure

36 3 A Model of the Annotation Universe for Annotation-based IR

(a) (b)

Figure 3.4: (a) Three cases of self annotation: Through an annotation target, a reference and
indirectly through a fragment f.
(b) Sketch of a cyclic structured annotation hypertext; dotted line denotes
edge/path in H, solid line edge/path in S.

Proposition 2 (Structured annotation hypertext acyclic): Each structured annotation
hypertext SH = (V,E) is loopless and acyclic.

Proof. Loopless: This is again a consequence from Constraint 1.
Acyclic: We prove that SH is acyclic by showing that a cyclic SH would violate tempo-

ral constraints. We create the subgraph S = (V ′, E′) from SH as follows: (n,m) ∈ E′ iff
l((n,m)) = “isPartOf”. n ∈ V ′ and m ∈ V ′ iff (n,m) ∈ E′. So S only consists of part-of
relations and represents structured documents and structured annotations, but no connections
between them. S is acyclic, since otherwise Constraint 5 would be violated.
Let H = (V ′′, E′′) be the annotation hypertext from which SH was created. H contains only

edges which are not contained in S, and it is E = E′ ∪ E′′ with E′ ∩ E′′ = ∅. We know from
Proposition 1 that H does not contain any loops and is acyclic. Let us assume SH is cyclic, and
p = (v1, . . . , vi, vi+1, . . . , vn, v1) is a cycle in SH. Due to the fact that both S and H are acyclic,
this path must contain at least one edge from S and one from H. Without loss of generality,
let (vi, vi+1) ∈ E′ be the first edge of p in S. Then vi and vi+1 must be subcomponents of an
object a (or vi+1 = a, respectively). In order to create a cycle, a must be an annotation, since
otherwise a would only contain incoming edges. Furthermore, there must exist a vertex o ∈ p
which is connected to vi through an edge in H. Figure 3.4.b illustrates the situation. There
are two possible cases:

• o = a, then a does a self annotation, which is not allowed due to Constraint 6;

• o 6= a. Then all objects on the path from a to o must be older than a, thus t(a) > t(o)
due to Constraint 3. Since o annotates vi or a fragment of vi, it must be t(o) > t(vi), so
t(a) > t(o) > t(vi), which violates Constraint 4, since a would have been created after vi
was annotated. �

3.3 Summary and Discussion
The output of this chapter is a formal model describing the objects, concepts and relations of the
annotation universe which we deem important in an annotation scenario. The model is based

3.3 Summary and Discussion 37

on existing ones addressing the objects in digital libraries (Gonçalves et al., 2004), annotations
of digital content (Agosti and Ferro, 2007) and structured document retrieval (e.g., (Fuhr et al.,
2002; Fuhr and Großjohann, 2004; Chiaramella et al., 1996)). We apply Description Logics to
describe our model; the T-Box shows the relations between certain classes like digital objects,
fragments, annotations and documents, whereas the A-Box specifies the individuals. On this
level we identified the structured annotation hypertext and showed that it is acyclic.
The model presented in this chapter can be used as the underlying data structure to design

future annotation-based retrieval methods, combining structured documents with annotation
hypertexts. It integrates, sometimes extends or weakens, many concepts, relationships and
constraints found in the different models mentioned above. The proposed model does not claim
to be yet another model of annotations and digital libraries besides the ones already mentioned,
but emphasises the objects which we deem useful and which should be considered for retrieval
involving annotations. How these objects are used for retrieval is subject of the next part of
this thesis, and if exploiting them really improves retrieval effectiveness is discussed in Part III.
It is understood that this model should not be seen as carved in stone; instead, it should be
regarded as an open model and may be tailored, if necessary, to a specific annotation-based
retrieval application.
We are now ready to introduce the main contribution of this thesis, which is a probabilis-

tic, object-oriented, logic-based framework for annotation-based retrieval. The framework, its
functionality, syntax, semantics and implementation is discussed in the next part of this thesis.
It operates on a structured annotation hypertext, like the one discussed in this chapter, as the
underlying data structure.

Part II

The POLAR Framework

4
Annotation-based Knowledge Modelling and

Retrieval with POLAR

The best defense against logic is
ignorance.

(Blaise Pascal)

In Part I of this thesis we discussed annotations and their peculiarities, as well as identifying
objects which we deem important for annotation-based retrieval. The outcome of that part is
the definition of the structured annotation hypertext, which is the main data structure upon
which annotation-based IR can be performed.
But what is “annotation-based IR”? How can we provide a framework which is able to model

structured annotation hypertexts and, exploiting the rich information we find there, satisfy
many information needs arising when dealing with annotations in a search scenario? How can
we actually perform “annotation-based retrieval”? While the Description Logics used in the last
chapter (and also derivates of it, like the Web Ontology Language (OWL)) is a feasible language
to describe the objects and relationships in the annotation universe (and we used them with no
other intention in mind), we need a more sophisticated representation and description of these
objects and their relationships to perform an actual annotation-based retrieval task, especially
to cover concepts like (probabilistic) term weights and inverse document frequencies, as they are
commonly known from various IR approaches. So the main topic of this chapter is to introduce
a framework, called POLAR, which is able to model structured annotation hypertexts on the
one hand, and to employ the information contained in this representation for annotation-based
retrieval on the other hand. The discussion of POLAR in this and the two subsequent chapters
shall answer the “how” questions – how to model structured annotation hypertexts and how
to perform annotation-based retrieval in order to satisfy (possibly sophisticated) information
needs related to annotation.
This chapter starts by giving an overview of information retrieval and some of its important

models. This overview also contains a general discussion of what annotation-based retrieval
is about. Afterwards, the POLAR framework is presented informally. POLAR is the tool
to model structured annotation hypertexts, query them and perform annotation-based IR by
applying probabilistic inference and implication. To show how POLAR can support informa-
tion needs which also might involve non-topical evidence, further application showcases are
presented. After that, Section 4.4 discusses some related work and positions POLAR in the

42 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

context of hypertext and structured document IR, discussion search and of course annotation-
based retrieval. The subsequent section concludes this chapter and discusses its main findings.

4.1 Information Retrieval

This section gives an overview about information retrieval. It commences with an introduction
to the field and then presents important retrieval models. Since in POLAR we deal with
hypertexts and structured documents, these topics are subsequently introduced. Finally, the
relatively young field of annotation-based IR is presented.

4.1.1 Introduction

According to Baeza-Yates and Ribeiro-Neto (1999), information retrieval (or IR for short)
“deals with the representation, storage, organization of, and access to information items. The
representation and organization of the information items should provide the user with easy
access to the information in which he is interested”. The main goal of IR is thus to let the
user easily access the information, stored in information items pooled into a collection, he or
she needs to satisfy an information need which arises when fulfilling a certain task. So we
have an information need on the one hand, and a set of information items (usually called
documents in the IR context) containing relevant information on the other hand. In fact,
finding relevant information for a given information need is a difficult task, as Mizzaro (1998)
describes. The goal is to deliver the user exactly the information which is relevant to the
user’s real information need at the given time, to the given topic, to fulfil the given task within
a specific context. Today’s IR systems and search engines can support this goal only to a
certain degree. Problems arise, for example, in describing the actual information need and to
transform it into a (keyword-based) query language the IR system understands. On the other
hand, many IR systems see documents as atomic units and return them instead of the single
piece of information which is relevant. Users may wonder why a document was retrieved and
need to find the relevant information within the document. Instead of returning the information
relevant to a real information need, contemporary IR systems usually return documents which
are relevant to a query.
We can distinguish between two different views on the IR problem (Baeza-Yates and Ribeiro-

Neto, 1999, p. 7): the computer-centred view focuses on building efficient indexes and developing
algorithms which process a query efficiently and effectively, i.e. they should return a high-quality
ranking of documents w.r.t. the query as quickly as possible. In contrast to that, the human-
centred view studies the user’s behaviour, tries to understand his or her information needs and
how retrieval systems can be operated to best satisfy the information need. The computer-
and human-centred view are not mutually exclusive; in fact, query processing as studied in
the computer-centred view is an important strategy and may be part of a bigger solution to
satisfy information needs. When talking of IR, usually the computer-centred view is meant.
The human-centred view is sometimes referred to as information seeking and searching. In this
thesis, we mainly focus on the computer-centred view of IR (and use the term “IR” for this
view), bearing in mind that the results of the work presented here might as well be interesting
in the human-centred view. In fact, the approach presented later is aimed at providing a flexible
framework which can be operated to support sophisticated information needs.

4.1 Information Retrieval 43

4.1.2 An Overview of Retrieval Models

We give an overview of the most important IR models and concepts. We begin with a general-
purpose conceptual model and then discuss non-probabilistic and probabilistic models, and
models based on uncertain inference and probabilistic logics.

4.1.2.1 Conceptual Model

Fuhr (1992) introduces a conceptual model of IR, which is depicted in Figure 4.1. In this
model, Q and D are the sets of possible queries and documents, respectively. Documents can
be judged relevant or non-relevant to a query; this is done by providing relevance judgements,
which are usually given by users or domain experts. Relevance judgements are usually based
on information needs rather than queries (which are representations of information needs), but
here we assume that documents are judged relevant w.r.t. a query. If we assume a binary
relevance scale, the set R of relevance judgements is R = {R,R} with R saying that the
document is relevant to the query, and R saying that it is not. Relevance judgements can thus
be regarded as a mapping r : Q×D → R.

Figure 4.1: Conceptual Model of Information Retrieval (Fuhr, 1992)

To process queries and documents, both must be transformed into an internal representa-
tion and description which is machine-processable according to the given retrieval function.
The function αQ : Q → Q transforms queries into their query representation. αD does the
same for documents and leads them into their document representation. Very often a second
transformation for queries and documents is necessary, which converts queries into their query
description and documents into their document description. βQ : Q → QD and βD : D → DD

are the corresponding functions for queries and documents, respectively. The process of doc-
ument indexing usually applies both αD and βD consecutively to create the document index.
For instance, in many approaches, αD transforms a full-text document into a bag of words by
removing punctuation and frequently occurring words (so-called stop words, which, in English,
are words like “and”, “or”, “is”, “a” etc.), and additionally applying stemming algorithms in
order to use word stems in place of the words themselves (like “comput” instead of “comput-
ing”). The function βD might then take this bag of words and calculate term weights based
on, e.g., the frequency of a term within the document. Documents are then often described
as vectors of terms, where the ith element of the vector contains the weight of term ti in the
document. αQ and βQ might perform similar transformations on queries. What document and
query descriptions look like and how the corresponding transformation functions are defined
depends on the retrieval model.
To process queries and return a ranked list of documents which are relevant w.r.t. a query, a

retrieval function ρ : QD ×DD → R is applied; this function operates on query and document
descriptions and returns a retrieval status value (RSV) rsv ∈ R for each document. The output
of ρ is used to create a ranking of documents according to decreasing retrieval status values.

44 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

4.1.2.2 Non-Probabilistic Models

Several retrieval models exist which can be described by means of the conceptual model (Baeza-
Yates and Ribeiro-Neto, 1999, chapter 2). In the Boolean model, documents are described as
term sets. If there are T terms in the collection, the document description is a T -dimensional
vector ~d with di ∈ {0, 1} and di = 1 if ti appears in d, and 0 otherwise. Query descriptions are
Boolean expressions like “t1 ∧ (t2 ∨ ¬t3)”. The Boolean retrieval function ρ returns documents
which match the Boolean expression.
The vector space model (VSM) (Baeza-Yates and Ribeiro-Neto, 1999, section 2.5.3) is a

retrieval model which was first introduced by Salton when working on the SMART project.
It recognises that the use of binary weights and the sharp partitioning into matching and
non-matching documents is too limiting. Therefore, documents and queries in the VSM are
described as vectors of (negative or positive) term weights in a T -dimensional vector space.
The retrieval function ρ determines the similarity between the document and the query vector,
for instance by calculating the cosine of the angle between query and document vector, or the
scalar product, so that ρ(dD, qD) = ~d · ~q is the RSV of d w.r.t. q. The system returns a ranking
of documents according to decreasing RSVs.
To determine term weights, it is common in IR to use statistical values like the term frequency

tf ij of a term ti in a document dj . tf ij is usually normalised by the document length (and
denoted ntf ij then). A simple example is ntf ij = tfij/maxl(tflj) where maxl is the frequency
of the most frequent term in the document. Another important component is the inverse
document frequency idf i which is calculated upon the number of documents ti appears in. For
example, idf i = log(N/ni) with N as the number of documents in the collection and ni as the
number of documents ti appears in. The motivation behind this factor is the assumption that
terms which appear in many documents are less discriminatory than those appearing in fewer
documents. Therefore, idf increases the more rare a term is. Many retrieval approaches based
on the VSM balance the two factors tf and idf , for example by using wij = ntf ij · idf i as the
weight for ti in dj . The document dj is then described by the vector ~dj = (w1j , . . . , wTj). We
call such approaches tf × idf -based methods.

4.1.2.3 Probabilistic Models

The aim of most probabilistic models (Crestani et al., 1998; Fuhr, 1992) is to rank documents
in decreasing order of P (R|q, d), the probability of relevance of a document d with respect
to the query q. The Probability Ranking Principle (PRP) gives a theoretical justification for
creating a ranking based on this probability (Robertson, 1977). Probabilistic relevance mod-
els thus estimate the probability P (R|q, d), often by applying Bayes’ Theorem and making
certain independence assumptions. We can roughly distinguish between model-oriented and
description-oriented approaches. The former are based on some probabilistic independence
assumptions.
Model-oriented approaches can be categorised into query-related and document-related learn-

ing (Fuhr, 1992). An example for a query-related approach is the binary independence retrieval
model (BIR) (Robertson and Sparck Jones, 1976) which utilises relevance feedback1 data to re-
weight search terms of a given query q. In BIR, a document d is represented as a T -dimensional
term vector ~x, so that P (R|q, d) becomes P (R|q, ~x). In contrast to that, the binary indepen-
dent indexing (BII) approach (Fuhr and Buckley, 1991) is query independent but document
dependent. In the BII model, two probabilities have to be estimated: P (R|d), the probability

1Relevance feedback is the process of judging documents in a ranking as relevant or non-relevant.

4.1 Information Retrieval 45

that d will be judged relevant to an arbitrary query, and P (R|ti, d) the probability that d is
relevant given it contains the index term ti.

The idea of description-oriented approaches, which have their roots in pattern recognition, is
to apply a learning strategy for document indexing which is based on term features in documents
(in contrast to the term itself). A description-oriented method was developed in the Darmstadt
Indexing Approach (DIA) (Biebricher et al., 1988). Like in the BII model, the aim is to index
documents probabilistically, but instead of estimating P (R|ti, d), the probability P (R|~x(ti, d))
is calculated. ~x(ti, d) is a feature vector which contains values of attributes of ti and d. Such
attributes may be the within-document frequency of ti in d, the inverse document frequency
of ti in the collection or hints about the location of ti (for instance if the term appears in the
document title). An indexing function e(~x(ti, d)) ≈ P (R|~x(ti, d)) is derived by means of linear
(Fuhr and Buckley, 1991), polynomial (Fuhr and Buckley, 1993) or logistic (Cooper et al., 1992;
Fuhr and Pfeifer, 1991) regression. For each term ti in d, a term weight is then computed as
e(~x(ti, d)). The description dD of a document d consists of a vector of such term weights. Given
that the query is described as a term vector as well, the scalar product can deal as a retrieval
function (like in the vector space model).

The probabilistic models so far have in common that they rely on knowledge about the set
R of relevant documents in order to estimate P (R|q, d). A probabilistic model which does not
need relevance judgements is the 2-Poisson model, which was formulated by Bookstein and
Swanson (1974) first. The aim of the 2-Poisson model is to decide whether an index term ti
should be assigned to a document dj or not. The underlying assumption is that tfij , the number
of occurrences of a term ti within a document dj , is distributed differently within these two
classes, according to a Poisson distribution. The required parameters to acquire a probabilistic
indexing term weight can be estimated from the document collection.

The 2-Poisson model has been the starting point for several other (probabilistic) indexing
approaches. One example are the BM-style term weighting functions (Robertson and Walker,
1994), from which the famous BM25 function (Robertson et al., 1995) is derived. Ponte and
Croft (1998) propose a language modelling approach which does not rely on relevance judge-
ments, but only uses statistics coming from the collection itself. The idea behind language
models is to calculate P (q|md), which is the probability that the query q can be generated from
the language model md underlying the document d. The calculation of this probability employs
P (t|md), which is the probability that the term t can be derived from d’s term distribution.
It is then P (q|md) =

∏
t∈q P (t|md) ·

∏
t6∈q(1− P (t|md)). Problems arise from the first product

when no query terms appear in the document. In that case, P (t|md) is approximated based on
collection statistics.

Another model which can be regarded as inspired by the 2-Poisson model is the divergence
from randomness approach (Amati and van Rĳsbergen, 2002), which is related to language
models. Term weighting is performed by measuring the divergence of the actual term distribu-
tion from that obtained under a random process. The basic idea is to compute the term weight
as the product of two functions Inf1 and Inf2, which measure the informative content of a
term. Inf1 utilises the probability that term t has tf occurrences in document d by pure chance.
The lower this probability, the higher the informative content of the term. Inf1 can be based
on certain models of randomness. Inf2 is related to the risk of accepting the term as a good
descriptor for the document and measures the information gain which can be achieved with
this term. Inf2 is regarded as a normalisation of Inf1. The resulting product w = Inf1 · Inf2
for a term ti can be used in a term vector ~d describing the document d.

46 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

4.1.2.4 Models Based on Uncertain Inference

A paradigm which is related to probabilistic models is the view of information retrieval as
uncertain inference (Crestani and Lalmas, 2001). In these logical models of IR, it is assumed
that documents and queries can be described as a set of logical formulae. One of the strengths of
this approach is that additional knowledge, for example coming from a thesaurus or an ontology,
as well as metadata and any other knowledge can easily be integrated into the retrieval function.
Since classical logic might not be adequate to represent queries and documents, many logic-
based models apply a logic for uncertain inference and try to estimate the implication probability
P (d → q) that a document d implies a query q, which was first proposed by van Rĳsbergen
(1986). Sloppily speaking, P (d→ q) measures the amount of information we have to add to let
d→ q become true. One example of a possible interpretation and application of P (d→ q) for
retrieval is the imaging approach reported in van Rĳsbergen (1989). Another formalism which
can be used for the calculation of P (d→ q) is provided by Bayesian inference networks (Turtle
and Croft, 1990).

Many standard retrieval models like the Boolean or the vector space model can be expressed
in terms of probabilistic inference, as Wong and Yao (1995) show. They apply an epistemolog-
ical view on probabilities and define the implication probability as a conditional one, namely
P (d → q) := P (q|d). Depending on certain independence and disjointness assumptions on
the underlying concept space, several retrieval models can be expressed as uncertain inference.
Other considerations aim at mapping the implication probability P (d→ q) to the probability of
relevance P (R|q, d) (Nottelmann and Fuhr, 2003; van Rĳsbergen, 1992) so that the PRP gives a
theoretical justification to rank documents with respect to decreasing implication probabilities.

Besides models which estimate P (d→ q) directly, there are other retrieval frameworks which
use the notion of probabilistic inference for retrieval tasks. Two examples are terminological
logic and probabilistic Datalog. One of the advantages of these frameworks is that they offer
means for complex document and query representations and descriptions, and allow for the
integration of additional knowledge into the retrieval process. Meghini et al. (1993) describe
an IR framework based on terminological logic called MIRTL, which has its roots in knowledge
representation and semantic networks. Documents are described as a set of concepts and roles,
and the actual document is an instance of its corresponding concept. Queries in MIRTL are
described as concepts and roles as well; when evaluating a query, the inference engine returns
all individual constants whose concepts and roles are subsumed by the query description.

Probabilistic Datalog (PD) (Fuhr, 2000) is the probabilistic extension of Datalog based on
Horn clauses. Documents and queries can be represented as facts and rules. Each fact can
be assigned a probability. Rules create new intensional knowledge by combining facts and
their corresponding probabilities with respect to the rules of probability theory. Due to its
expressiveness, PD is a powerful tool to model advanced retrieval functions and frameworks
which are also capable of integrating additional knowledge. For example, POOL (Rölleke,
1998; Fuhr et al., 1998) is a framework for object-oriented structured document retrieval which
is based on PD. We will learn more about PD and POOL in the remainder of this thesis.

There are certain other models utilising (probabilistic) logics in many different ways. For
example, Müller and Thiel (1994) use abductive inferencing for query expansion and interactive
IR. Further models are reported in Crestani and Lalmas (2001).

4.1 Information Retrieval 47

4.1.3 Exploiting the Neighbourhood – Hypertext, Structured Document and Web
Retrieval

The retrieval and indexing models discussed so far regard documents as atomic units – no
relations between documents or within them are considered. But the emergence of hypertext
systems in the late 80s and of course the World Wide Web (WWW) made it possible to broaden
the view and see documents and document fragments embedded in a linked environment.
According to Agosti (1996), a hypertext is composed of nodes and a network of links. Nodes

may be document fragments, but also single documents. In the former case, links between
these nodes represent intra-document relations like the document structure; in the latter case,
links between nodes are inter-document relations, for example to similar documents. Within
the WWW we usually find a mixture of intra- and inter-document links. Links can be classified
in different link types, like structural links (reflecting the document structure), referential links
(e.g. between a document and a document that is citing it) and further unspecified associative
links (Agosti and Melucci, 2000). There can be numerous other link types in a system (Trigg,
1983, chapter 4). Nodes may represent different kinds of digital media (like videos, images,
sound); to reflect this, the term hypermedia is commonly used.
One of the main differences between hypertext and standard document collections is the

additional possibility to realise information search by navigation and browsing. Relevant doc-
uments are not only found by examining a linear ranking delivered by a typical search engine,
but also by following links pointing to potential other relevant nodes in the hypertext. To this
end, classical IR methods can aid navigation and browsing on the one hand, and searching
on the other hand. They can aid navigation and browsing by giving hints and links to next
relevant passages (Hammwöhner and Thiel, 1987) or automatically construct new hypertext
links of different type like similarity links (Agosti and Melucci, 2000). IR methods can further
help to find entry points in the hypertext which are a good starting point for further naviga-
tion. Neighbouring nodes and their corresponding (possibly typed) links (e.g. established by
citations) can be exploited in order to calculate the relevance of a node. This way, the hyper-
text defines the context a node/document is embedded in. The interested reader is referred to
Agosti and Smeaton (1996) for a thorough discussion of hypertext retrieval including references
to many approaches.
A very special case of hypertexts are structured documents. Nodes in structured documents

are document fragments which are connected by structural links. An example is a book which
is made up of chapters, sections, subsections and so on. A chapter node, for instance, may point
to several section nodes, which again are linked to subsection nodes. Structured documents
basically form trees. The logical structure of documents is nowadays represented using the eX-
tensible Markup Language (XML). The success of XML as a means to exchange formatted data
(like database records) on the one hand, and for the representation of structured documents
(containing text, multimedia and metadata) on the other hand motivated the creation of new
models and methods for XML information retrieval (XML IR). Like many classical hypertext
approaches, XML IR methods exploit the structural context of nodes to allow for more pre-
cise access to the relevant content (by trying to find a best entry point within the document
structure). The fact that, in contrast to HTML, nodes in an XML tree usually convey defined
semantics, allows for the definition of complex retrieval tasks which are not only able to process
traditionally content-oriented queries, but can also handle hints about the type of elements to
be retrieved (so called content-and-structure queries). The success of XML also meant that test
collections for structured document IR became available. These led to the foundation of the
Initiative for the Evaluation of XML Retrieval (INEX), whose goal is not only the compara-

48 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

tive evaluation of XML IR approaches within defined tasks, but also to discuss new evaluation
measures which take into account the peculiarities of structured documents (see, e.g. (Fuhr
et al., 2007)).
Another special case of hypertext information retrieval is Web IR. As the name suggests,

Web IR is tailored to the WWW and documents composed in the Hypertext Markup Language
(HTML). In many Web IR approaches, a link analysis is performed to compute non-topical
values, for example to decide if a document is a good authority (when many Web pages point
to it (Page et al., 1998; Kleinberg, 1998)) or a good hub (when the document points to many
good authorities (Kleinberg, 1998)). Other approaches apply methods known from traditional
hypertext IR (see, e.g., Savoy and Picard (1999)) or create and exploit a rich document repre-
sentation which comprises, for instance, the full text and the headings found in Web documents,
but also the anchor text of referring Web pages (Craswell and Hawking, 2003).

4.1.4 Annotation-based Retrieval

Annotation-based IR is a relatively young research area compared to hypertext and XML IR.
We therefore introduce this area first, by describing main retrieval scenarios and its relation
to hypertext and structured document retrieval. Possible benefits of annotation-based IR are
discussed afterwards.

4.1.4.1 Main Scenarios

As we have seen in Chapter 3, the main data structure we are dealing with is a hypertext,
comprising structural links (like in XML documents) and intra-document links to fragments
as well as inter-document ones to annotations or other documents. Having given an overview
of the relevant areas, in particular information retrieval, hypertext IR and XML IR, we can
now discuss what we actually mean by “annotation-based retrieval”. Based on the structured
annotation hypertext as defined in Chapter 3, we can identify the following two main scenarios
for annotation-based retrieval (cf. Frommholz (2005b)):

1. Document search: Users are only interested in the main documents of the repository. In
this scenario, annotations are just auxiliary documents and are not equal to the main
documents. Nonetheless, since annotations contain information about the annotated
documents (as meta annotations) or extensions to its content (as content annotations),
annotation-based document search will exploit the context given by the annotations and
annotation threads attached to a document.

2. Annotation and discussion search: In this scenario, annotations are the main target of the
search – users are interested in finding relevant annotations. Finding relevant annotations
can, for instance, uncover interpretations, thoughts and ideas not present in the main
documents, or reveal the motivation behind a decision. As we have seen in Chapter 2,
annotations can be used to model discussions and discourses. In the discussion search
scenario, users are interested in parts of or the whole annotation thread satisfying their
information need. Systems should hint them to suitable entry points in the discussion
thread.

The scenarios reflect the dualism between annotations as content enrichment and as stand-
alone documents (see Section 2.2.2). Both scenarios do not exclude each other, but may be
combined, for example if users do not distinguish between annotations and main documents,

4.1 Information Retrieval 49

but just want to retrieve any relevant object in the repository. Since the desired objects are
embedded in a context given by their linked items, annotation-based IR is a kind of context-
based retrieval. Due to its underlying data structure, annotation-based IR is strongly related
to hypertext (or hypermedia) IR as well as to structured document retrieval or XML IR2.

4.1.4.2 Relation to Hypertext and Structured Document IR

Like the structured annotation hypertext is a special kind of hypertext, annotation-based IR
can be viewed as a special kind of hypertext IR in which we distinguish between different basic
objects, the (main) documents and the annotations. Known hypertext retrieval approaches
do not take the peculiarities of annotation hypertexts into account, so they are, although in
general applicable, usually too generic for the given problem.
Annotation-based IR can also be regarded as an extension to structured document retrieval

or XML IR, since it does not only consider the internal logical structure of documents, but
also external objects attached to them (the annotations). Classical XML IR methods would
cover only a subset of the possible retrieval tasks when dealing with structured documents and
annotations. We see from this discussion that annotation-based IR indeed establishes a new
class of retrieval tasks and problems to solve.

4.1.4.3 Possible Benefits

What do we hope to gain from annotation-based IR? One possible benefit is that it potentially
addresses the vocabulary problem. Usually, retrieval approaches assume that the document
author and the user share the same vocabulary, which is then adapted by the (automatic)
indexer. This assumption does not always hold – for instance, users and author might use
different terms for the same facts or even circumscribe them (an expert in a specific field might
use a different vocabulary than the common user). A fact possibly changes its describing
terms after some time (this is especially true with the interpretation of historic texts). With
annotations, a third player joins the game, the annotator. If we combine the evidence coming
from documents and annotations, chances are higher that the user uses a term for a fact which
either the document author or the annotator used. An example is the term ‘land’ in the
Bible, which generally, but not always, refers to the land of Israel or Canaan (Fraenkel and
Klein, 1999). So annotations can help to determine the relevance of passages where the term
‘land’ appears by associating them to Israel or Canaan, but also help to find the exceptions.
As Fraenkel and Klein explain, a query for “war in Babylon” would only be successful when
annotations are involved, since in a relevant passage3 ‘land’ exceptionally refers to ‘Babylon’,
which is only mentioned in an annotation coming from a Bible commentary. Another example
comes from the COLLATE scenario and can be seen in Figure 2.1 on page13. Consider a
censorship document which says that a film was censored for, say, morality reasons. The first
annotator interprets the document in a way that she thinks the censorship reasons were actually
political ones. This way, the document is associated with political censorship, although from
its content there is no evidence for it. The document is probably relevant (together with
its attached annotation) when film students search for political censorship. In the case that
annotations express facts differently or associate things, they help to find more documents
which would otherwise not be found, that is, they increase the recall. The danger, of course, is

2If we see XML IR detached from the framework it is named after as a variant of structured document retrieval,
that is. We do not want to imply that annotations should be encoded in XML.

3“A sound of war is in the land, and of great destruction.” (Jeremiah 50:22)

50 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

that through annotations, new terms are introduced to the annotated document which could
actually not be associated with it. The quality of annotations is another important factor.
Especially in public discussion forums, many comments lack the required quality to be taken
seriously.
When terms occur in annotations, their targets or in annotated fragments, annotations might

have a beneficial effect as well. For instance, automatic term indexing estimates the probability
that a document can be indexed with a specific term. It usually does so by counting the
number of occurrences of that term in the document and possibly applying some normalisation
based on the document length. But an uncertainty remains that the automatic association of a
document to an index term is not correct. If such an index term occurs both in a document and
its annotations, this raises our certainty that we really can index the document with that term,
since both document and annotation seem to talk about the same topics. The same holds if a
term occurs in an annotated fragment, especially if the fragment is a direct highlighting. When
terms occur in several subcontexts, the probability that the decision to index the document
with that specific term increases. This could possibly boost the precision of our search.
As indicated above, the relationships between objects in the structured annotation hypertext

contain additional information which, if interpreted correctly, can be beneficial for retrieval as
well. If, for example, we can distinguish whether an annotation is positive or negative w.r.t.
the annotated object, we are able to draw conclusions about the trustworthiness of comments
in a discussion. Furthermore, if an article has many comments, it shows that the article’s
topic is somewhat popular (otherwise nobody would care about the article). We see that the
amount of incoming or outgoing links in a structured annotation hypertext indeed contains
evidence which is worth being considered. We also see that, besides the topical aboutness of
annotations or documents, a structured annotation hypertext implicitly or explicitly contains
further information which might be helpful to satisfy users’ information needs. Some examples
are discussed later in Section 4.3.

In the next section we are going to present the POLAR framework. The aim of POLAR is
to support both annotation-based document search, and annotation and discussion search.

4.2 The POLAR Framework

As described by van Rĳsbergen and discussed in Section 4.1.2.4, information retrieval can
be seen as uncertain inference (van Rĳsbergen, 1986). We follow this idea and present a
probabilistic, object-oriented representation of structured annotation hypertexts as defined in
Chapter 3 and discuss annotation-based querying and retrieval functions based on this model.
The framework is called POLAR (Probabilistic Object-oriented Logics for Annotation-based
Retrieval). Within POLAR, it is possible to pose queries to the knowledge base for retrieving
documents (with the help of annotations) or relevant annotations. POLAR is similar to and very
much influenced by POOL, an object-oriented, probabilistic logical model used for representing
complex structured documents (Rölleke, 1998; Fuhr et al., 1998), but with a different focus.
POLAR was introduced in Frommholz and Fuhr (2006b). Since then, POLAR has undergone

slight changes in its syntax. In the following, we extend the description given in Frommholz and
Fuhr (2006b), reflecting its current syntax. We commence with a discussion of the motivation
behind POLAR, its main features and how it compares to POOL. Subsequently, we show how
documents and queries are represented and described in POLAR. We then introduce POLAR
informally and illustrate how certain information needs are supported. A formal definition of

4.2 The POLAR Framework 51

POLAR’s syntax and semantics can be found in Chapter 5, its implementation is discussed in
Chapter 6.

4.2.1 Motivation

4.2.1.1 Why a Probabilistic, Logic-based Framework?

In the discussion so far we have seen that annotations, annotated objects and their interrela-
tions build a complex data structure. The motivation behind POLAR is to create a powerful
tool which is able to support sophisticated information needs related to structured annotation
hypertexts and annotation-based retrieval. To do so, it is not sufficient to adapt one of the
classical retrieval approaches (like language models or the vector space model) to also consider
the content of annotations in order to create a retrieval status value for an object w.r.t. a query.
When serving sophisticated information needs, we might need to take into account different
kinds of relationships between different kinds of complex objects. Thus, a tool for annotation-
based retrieval should also allow for queries to the underlying knowledge base containing the
structured annotation hypertext. Such queries could for example ask for the number, types
and polarity of annotations made to a specific object, or for the scope of an annotation in
order to return only annotations in a ranking which the user is allowed to see. A separation
in content and meta level annotations is crucial in order to distinguish whether an annotation
extends the content of the annotated objects or says something about them; both kinds of
annotations can be treated differently when satisfying information needs. Annotation-based
retrieval functions should also be able to take the logical structure of documents into account,
which allows for annotation-based structured document retrieval where annotations are used
to find a best entry point within the document structure. External information, for example
coming from a thesaurus, may be incorporated into the retrieval function. Furthermore, espe-
cially annotation-based discussions often contain contradictions (recall the COLLATE example
in Section 2.1.2.2 and the disagreement w.r.t. “political reasons”). It would be desirable that
annotation-based retrieval methods could handle these situations. These considerations should
make clear that we need a rich representation and description of structured annotation hyper-
texts and the content of annotations and documents, and we need the means to exploit this
representation for annotation-based retrieval.
How can we provide a tool which offers such a rich representation and the whole range of

functionality discussed above? In IR, logic-based approaches like probabilistic Datalog (Fuhr,
2000) are general and flexible frameworks to set up complex retrieval functions which exploit
various kinds of evidence. Such frameworks, in this case based on predicate logics and prob-
abilistic inference, provide users with a huge degree of freedom to model the underlying data
structures and suitable retrieval functions. However, these models and functions can easily
lead to inconsistent and inefficient Datalog programs. Probabilistic Datalog is very generic,
and it would therefore be desirable to have a conceptual model which is tailored to structured
annotation hypertexts. Such a model could enable users to easily model all the objects, their
content and interrelations in structured annotation hypertexts (without bothering about how
to store them). It would provide them with core annotation-based retrieval functions on the
one hand, and the ability to enrich this core functionality accordingly on the other hand. For
structured documents, POOL (Rölleke, 1998) is such a framework. The idea is to use POOL
as a starting point and extend it to be able to cope with structured annotation hypertexts.

52 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

4.2.1.2 Going Beyond POOL

POOL is s framework to model structured, complex objects. Its object-oriented design fea-
tures provide some helpful mechanisms like the possibility to describe complex objects through
propositions, classifications and attributes. An example POOL program (taken from Rölleke
(1998)) shall illustrate this. It models a complex, structured document d1 having the two
subparts s1 and s2. It also shows some interesting feature POOL provides, namely four truth
values with an open world assumption. Consider the following POOL object:

d1[0.9 s1[0.8/0.2 sailing]
0.7 s2[0.6/0.4 sailing]]

The document d1 consists of the two subparts s1 and s2; these are accessed with 0.9 and 0.7
probability, respectively. In the context of s1, the term “sailing” is true with 0.8 probability,
and it is true with a probability of 0.6 in the context of s2. In POOL, we can also specify the
probability that propositions are false (and even the probability that they are inconsistent); in
the example, “sailing” is false with 0.2 probability in s1 and with a probability of 0.4 in the
context of s2. A query for documents about “sailing”, expressed in POOL as

?- D[sailing]

would return a ranking containing s1 and s2, but also d1 due to an approach called knowledge
augmentation which propagates the weights from the subcontexts s1 and s2 to the augmented
context d1(s1,s2) for the document d1. Propositions in POOL cannot only be terms, but also
classifications and attributes, making it a powerful tool to describe spatial relations as it would
be useful for multimedia documents.
Tree-like annotation threads might be modelled in POOL so that each annotation is a subcon-

text of the object it annotates. Supporting structured multimedia objects is a desirable feature
for annotation-based IR, as annotations and annotated objects can be multimedia documents
as well – one could think of voice comments or even video annotations. Another interesting
feature of POOL is its ability to deal with four-valued logics, which provides means to cope
with inconsistent and contradicting knowledge – indeed, also with annotations, knowledge can
get inconsistent and contradicting in case one annotator says that a proposition is true and an-
other one states that the same proposition is false. Inconsistencies and contradictions naturally
arise in annotation-based discussions. Additionally, the open world assumption supported by
POOL says that if there is no evidence that a proposition is true, we cannot infer that it is false
(like we would with a closed world assumption). This is an interesting feature for document
indexing, because the lack of an index term for a document does not mean that it must not be
indexed with that term. POOL can also create new intensional knowledge by means of rules,
and it is possible to pose sophisticated queries to the underlying knowledge base. Additionally,
with POOL it is possible to estimate the implication probability P (d→ q) as a retrieval status
value.
So why not just use POOL to model structured annotation hypertexts and perform

annotation-based IR? POOL is a powerful framework, and one of our goals is to reuse its
main ideas described above for our problem of annotation-based IR and for modelling struc-
tured annotation hypertexts. But as already outlined, annotation-based IR extends classical
structured document retrieval which POOL mainly aims at. While POOL can indirectly model
hypertexts and thus annotation hypertexts (by means of attributes and categories which can
describe links), we want to represent and support some of the special elements of structured an-
notation hypertexts directly and less cumbersomely. POOL copes with tree structures, whereas

4.2 The POLAR Framework 53

annotation hypertexts are not necessarily trees but directed graphs4. Furthermore, POOL nei-
ther supports fragments nor different kinds of annotations (like content and meta level ones).
POOL’s knowledge augmentation routines cannot take subcontexts which are established by
annotations and referenced objects into account. We will later discuss another augmentation
strategy (not supported by POOL) called relevance augmentation, which is useful in scenarios
where we cannot access the knowledge in documents directly, but rely on the output of external
retrieval services (such a situation is described in Agosti and Ferro (2005)). The bottom line
is that representing structured annotation hypertexts in POOL would be at least cumbersome
and would also lead to redundant information (e.g., when graphs need to be represented as
trees) which possibly would be error-prone.
Nevertheless, most of the POOL concepts are very helpful for annotation-based retrieval,

so one way to realise this and to model structured annotation hypertexts is to extend POOL
accordingly. This also enables us to create a query language which is tailored to structured
annotation hypertexts. This is exactly what the framework proposed in this thesis, POLAR,
does. Below is a list of the features supported by POOL and POLAR, and those found in
POLAR alone.

POOL features supported by POLAR:

• structured, complex objects (underlying tree structure)

• object-oriented modelling

• propositions: terms, attributes and categorisations

• four truth values (true, false, inconsistent and unknown)

• knowledge augmentation with subparts

• probabilistic inferencing and querying

• probabilistic retrieval (P (d→ q))

Additional POLAR features not supported by POOL:

• structured annotation hypertexts (underlying graph structure)

• new annotation-based subcontexts (merged annotation targets, fragments, content and
meta annotations, references)

• querying structured annotation hypertexts (structure queries)

• extended knowledge augmentation (considering peculiarities of subcontext types, e.g. neg-
ative annotations)

• relevance augmentation

POLAR can be compared to POOL in different ways. From an ontological point of view,
POLAR is a specialisation of POOL since it inherits POOL’s functionality, extends (e.g. by
defining new kinds of access relations and subcontexts) and overrides it (by providing a differ-
ent knowledge augmentation approach using annotations and referenced objects as additional

4In fact, as we will see later, the structure behind POLAR can even contain cycles, which could not be handled
by POOL.

54 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

subcontexts besides subparts). From an implementation point of view (which is an issue in
Chapter 6), POLAR is a kind of twin sister of POOL since both are based on four-valued
probabilistic Datalog. From a functional point of view, POLAR extends POOL in that POOL
programs can be evaluated by POLAR as well, but usually not the other way round.

4.2.2 Probabilistic Object-oriented Logics for Annotation-based Retrieval

POLAR has its roots in probability theory, object-oriented modelling and four-valued predicate
logics.
Probability theory is a well-defined framework for capturing uncertain knowledge we are

dealing with in IR. From this point of view, POLAR stands in the tradition of probabilistic
retrieval models on the one hand and can be used as a vehicle to implement new probabilistic
models on the other hand. Attributes, categorisations as well as index terms are assigned
probabilities; from these probabilistic facts, new knowledge can be derived according to the
rules of probability theory.
Object-oriented modelling is a well-known approach to create models of real world scenarios.

In POLAR, documents and annotations are (complex) objects, which makes it compatible to
the more general object-oriented view introduced in Chapter 3. On the global database level,
objects can have attributes and they can be classified. POLAR supports the aggregation of ob-
jects by means of knowledge augmentation. Augmented contexts represent objects aggregated
with their neighbouring context composed of annotations, referenced objects and the logical
document structure. POOL’s object-oriented features are preserved, but with an extended
notion of annotation-based aggregation.
Four-valued predicate logics are used to model the content of complex objects as well as their

relations to other objects. This content is represented as terms (propositions), classifications
(unary predicates) and attributes (binary predicates) as well as access to other objects. Four-
valued logics support the proper aggregation of objects by dealing with inconsistent knowledge
coming from different sources.
The aim of the probabilistic, object-oriented logic-based framework is to support annotation-

based retrieval. POLAR thus provides means to query structured annotation hypertexts on the
one hand and methods based on probabilistic inference on the other hand.
In POLAR, we further distinguish between the object and the global database context. In

the object context, classifications, attributes and terms allow for a sophisticated representation
of objects, combining the content and logical view on documents together with annotations.
Classifications and attributes represent factual knowledge about objects in the global database
context (e.g., is an object a document or an annotation, and what kind of annotation). It also
contains metadata about objects.

4.2.3 Document and Query Representation and Description

Recall the classes and properties of the object-oriented view on structured annotation hyper-
texts given in Figure 3.1 on page 24, and the conceptual retrieval model introduced in Sec-
tion 4.1.2.1. In our further considerations, a document d in the conceptual model is an instance
of AnnotatableObject in the object-oriented view. The transformation αD turns the annotat-
able object d into its document representation d. This representation has to be rich enough to
capture the context of annotatable objects. It should not only contain the body of the object,
for example as a bag of words in case of textual documents, but also its properties containing
metadata and links to other objects, depending on the actual subclass of AnnotatableObject d

4.2 The POLAR Framework 55

belongs to. For example, for instances of class Annotation, the object representation should
contain information about the annotation target, other annotations annotating the object,
the annotation type (meta or content level or any other subtype of these), which objects are
referenced, scope, polarity, author, by which groups the annotation can be seen, links to sub-
components and fragments. We thus extract a very rich document representation d from the
structured annotation hypertext which contains information about the direct context of d (ob-
jects directly connected to d) and which is transformed into a suitable document description
dD by the function βD. dD is a POLAR object, which we call a context. A context in the
POLAR sense contains all information which describes an object, its content and its relation
to other objects5. We will see examples of such contexts later.
A query q is transformed into a query representation q by αQ. This representation is usually

simpler than a document representation. For our purposes, it is enough to store the content of
a query, for instance as a bag of words again. βQ converts the query representation q into its
description qD. This query description is again a (simpler) POLAR context.
Besides documents and queries, some global knowledge might be extracted from the struc-

tured annotation hypertext, for example which groups a user is member of. Furthermore, it
is possible to include external knowledge (e.g. coming from a thesaurus or ontology) into the
POLAR knowledge base.

4.2.4 POLAR Knowledge Modelling
We continue with an informal introduction to POLAR which shows how structured annotation
hypertexts can be modelled. We often refer to the object oriented model presented in the last
chapter.

4.2.4.1 Classes and Is-A Relations

We start with a representation of the structured annotation hypertext on the class level (the
T-Box). We create the following POLAR rules:

metaLevelAnnotation(O) :- highlighting(O)
metaLevelAnnotation(O) :- judgement(O)
contentLevelAnnotation(O) :- comment(O)
annotation(O) :- metaLevelAnnotation(O)
annotation(O) :- contentLevelAnnotation(O)
annotatableObject(O) :- annotation(O)
annotatableObject(O) :- document(O)
digitalObject(O) :- annotatableObject(O)

These rules express the “Is-A” relations in our model (capital letters denote variables) and
further refine meta and content level annotations by introducing new subclasses Highlighting
and Judgement ofMetaLevelAnnotation, and Comment of ContentLevelAnnotation; every instance
which is a highlighting or judgement is also a meta level annotation, every comment is a content
level annotation, and so on. Note that we did not list the Component and Fragment classes
here; these play a special role in POLAR as we will see later. By means of categorisations (or
classifications), we assign instances to their corresponding classes; for example,

5“Context” in the POLAR sense is not to be mixed up with the notion of “context” in “context-based retrieval”.
In POLAR, a proposition is made within a certain document or annotation context, i.e. the proposition
appears in the corresponding document or annotation. Each document or annotation is thus described by a
“context” in the POLAR sense.

56 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

document(d1)
comment(a1)

means document(d1) and comment(a1), respectively. Due to the above rules,
annotatableObject(d1), annotatableObject(a1) and annotation(a1) is inten-
sional knowledge derived implicitly.

4.2.4.2 Metadata

Metadata can be expressed by means of (possibly probabilistic) attributes and categorisations.
For example,

d1.author(tim)

says that Tim is the author of d1.

The rules, categorisations and attributes presented above are all created in a certain context,
the so-called global database context. But in POLAR, each document and annotation describes
a context in its own right, as we are going to discuss now.

4.2.4.3 Documents and Annotations As Complex Objects

Complex Objects Documents and annotations in POLAR are complex objects and described
by contexts containing probabilistic propositions, which can be terms, classifications and at-
tributes. These propositions are derived from the document and annotation representation,
which in turn is extracted from the structured annotation hypertext. Textual content is the
source for term propositions in POLAR; their probability can be estimated using traditional
tf -based measures normalised to the range between 0 and 1. Depending on the document type,
there might also be multimedia content. Such content can be described with categorisations
and attributes in POLAR. Furthermore, documents and even annotations might be structured.
For example,

d1[0.5 information 0.6 retrieval
0.7 digital 0.3 libraries
s1[0.4 information 0.2 retrieval]

m1[o1[] o2[]
house(o1) tree(o2) o2.leftOf(o1)]

states that the context d1 can be described by the term propositions ‘information’, ‘retrieval’,
‘digital’ and ‘libraries’ with the corresponding probabilities (as the outcome of a text indexing
process) and has a subpart (component) s1. s1 is a subcontext of d1. s1 can be indexed with
‘information’ and ‘retrieval’. Furthermore, a multimedia object m1 might be described by a
categorisation of its components and spatial properties, which can be expressed as attributes;
in this example, it says that m1 has two components o1 and o2 which are a house and a
tree, respectively, and o2 appears left of o1. With these mechanisms we are able to deal with
structured textual and multimedia documents and annotations.
To extract the logical structure from the structured annotation hypertext and represent it in

POLAR, we utilise the isPartOf relation: d1[p s1[]] iff isPartOf(s1,d1). p is the probability
that we access s1 from d1, the so-called access probability. We come back to this probability
in a later discussion. The propositions made in the context of a document or annotation and
their weights are derived by indexing the body of the corresponding DigitalObject instance.

4.2 The POLAR Framework 57

Four Truth Values As mentioned before, annotations can contain contradictions and thus
inconsistent knowledge. To represent documents and annotations, POLAR therefore utilises
four-valued logics. We do not only cope with the classical truth values true and false for
propositions, but also introduce two additional truth values, namely inconsistent and unknown
(Belnap, 1977). POLAR implicitly deals with an open world assumption. This means that if
there is no evidence that a proposition is true (false), this does not imply that it is false (true).
In the probabilistic case, if we assume a proposition to be true with a probability of p, we cannot
assume that it is false with a probability of (1 − p). In POLAR, we can give probabilities for
the four truth values directly, with one constraint: the sum of these probabilities must be 1.
Furthermore, we regard the cases that a proposition is true, false, inconsistent or unknown as
disjoint events.

Negative and Positive Evidence Based on the notion of the four truth values we introduce
positive and negative evidence. A proposition is positive if it is true or inconsistent, and it is
negative if it false or inconsistent. This is explained by the view of the four truth values as
sets. In particular, true = {t}, false = {f}, inconsistent = {t, f} and finally unknown = ∅. A
proposition is positive if its truth value contains ’t’ in its set notation, and it is negative if it
contains ’f ’ in its set notation. Inconsistent knowledge is both positive and negative; the truth
value true means positive and not negative, whereas false means negative and not positive.

Example 2 (Four-valued knowledge modelling): An application of modelling with four
truth values is to reflect cases where we know with a certain probability that a document is
about a term or about its negation. For example

d1[0.8/0.1 ir 0/0.4 db]

says that ‘ir’ is true in d1 with 0.8 probability and false with a probability of 0.1. An even more
extreme case is the term ‘db’, from which we only know that it is false with 0.4 probability.
Since for the term ‘ir’, the probabilities do not amount to 1, we implicitly assume a probability
of 1−0.8−0.1 = 0.1 that ‘ir’ is unknown in d1. Similar for the term ‘db’ where the probability
that it is unknown in d1 is 1− 0.4 = 0.6. An alternative interpretation of the truth value false
is that instead of saying that a document is about the negation of a term, it is explicitly not
about the concept the term describes.
Not only the probabilities of true and false can be given directly, but also a value for

inconsistent.

d2[0.3/0.2/0.4 libraries]

says that libraries is true in d2 with 0.3 probability, false with 0.2 probability and inconsistent
with a probability of 0.4. Although it would be syntactically correct, we do not need to give a
probability for unknown because this value is derived from the others (1−(0.3+0.2+0.4) = 0.1
is then the probability that libraries is unknown). 2

There are shortcuts for the non-probabilistic case. For example, d3[ir] is equal to
d3[1 ir] and d3[1/0 ir]. Additionally, d4[!db] equals d4[0/1 db].

4.2.4.4 Structured Annotation Hypertexts and Threads in POLAR

We have discussed how the content and logical structure of a complex document or annotation
can be described in POLAR by means of contexts, subcontexts, propositions and four truth

58 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

values. This is the part which POLAR inherits from POOL. Now we have to connect documents,
fragments and annotations, which are special kinds of subcontexts, according to the given
structured annotation hypertext; this is not supported by POOL.

Content Level Annotations d1[p *a1] means that the content annotation a1 annotates
d1. Formally, d1[p *a1] iff hasAnnotationTarget(a1,d1) ∧ ContentLevelAnnotation(a1). p
denotes the access probability again. d1[0.8 *a1], for example, means that document d1 is
annotated by a1 and this annotation is accessed (or considered) with 0.8 probability.

Meta Level Annotations Meta annotations make assertions about objects on the meta level.
A judgement j1 about a document d1 saying “this is a good introduction” might be indexed
and modelled in POLAR as

d1[0.5 information 0.6 retrieval
0.7 digital 0.3 libraries
0.7 @j1]

j1[0.3 good 0.7 introduction]

In general, d1[p @j1] means that there exists an annotation j1 which makes assertions about
d1 on the meta level and is accessed from d1 with probability p. More formally, d1[p @j1]
iff hasAnnotationTarget(j1,d1) ∧ MetaLevelAnnotation(j1).

Polarity Another attribute of annotations we identified before is their polarity. The polarity of
an annotation might be explicitly determined by, e.g., the annotation type or just be modelled
in the polarity attribute of an Annotation object in the structured annotation hypertext. When
an annotation type or a polarity is not explicitly given, machine learning algorithms could be
applied to determine the polarity (Lechtenfeld, 2007), similar to sentiment classification (Pang
et al., 2002). If we imply that the examples above model positive content or meta annotations,
we have to provide expressions for negative annotations. d1[p -*a1] (d1[p -@a1]) says
that a1 is a negative content (meta) annotation of d1 with the respective access probability p.

References References, which are also a component of annotation hypertexts, are syntactically
represented in POLAR as a1[=>o1], which means object o1 is referenced by annotation a1.
Formally, a1[p =>o1] iff references(a1,o1). p is the probability that we access the referenced
object o1 from a1.
Due to references, an annotation can link objects in the repository. For example,

d1[0.7 *a1]
a1[0.8 =>d2]
d2[]

creates a link between d1 and d2 through the annotation a1. The probability that we access
d2 from a2 is 0.8. The probability that d2 is accessed from d1 is 0.7 · 0.8 = 0.56. a1 thus
realises a link between d1 and d2 which is not provided by the author of d1. As a side effect of
introducing references in our framework, we are also able to represent links given by the author
of a document; the expression d1[=>d2], for instance, would model a link between d1 and d2
provided by the author of d1. This makes POLAR a tool for representing hypertexts in general
(without annotations), although this is not the main focus of POLAR.

4.2 The POLAR Framework 59

Fragments When users create an annotation about a certain passage of a document, they
first select the corresponding document fragment. This fragment is also a part of a document,
and the fact that this was an annotation target should be expressed in our framework as well,
since this knowledge can be valuable in the retrieval process. For example,

d1[0.5 information 0.6 retrieval
0.7 digital 0.3 libraries
0.8 f1|| 0.9 digital 0.5 libraries 0.7 *a1||]

means that a fragment f1 of d1 which is about digital libraries was selected as an an-
notation target for a1; we refer to this fragment as an annotated part of d1. Formally,
d1[p1 f1|| p2 *a1||] iff isFragmentOf(f1,d1) and hasAnnotationTarget(a1,f1). p1 is the
probability that we access the fragment f1 from d1, and p2 is the probability that we access a1
from f1.
Fragments have a special property regarding annotations. We say that if an annotation

annotates a fragment, it also annotates the object the fragment belongs to. For example, if
a user selects a part of a paragraph and annotates this fragment, we regard the annotation
as belonging to both the fragment and the paragraph. Therefore, d[f|| p *a||] implies
d[p *a]. We call this special property fragment permeability.

Merged Annotation Targets Annotation targets (i.e. the objects or fragments which are
annotated) may contain important information to determine the relevance of an annotation.
As a simple intuitive example, consider a fragment about digital libraries which is annotated
with a comment “This is an important new technology”. A reader of this annotation has to
refer to the annotation target to resolve the anaphora “this” and to learn that the annotation
talks about digital libraries. We see that the content of annotation targets is an important
context when searching for annotations, which is also confirmed later by the experiments in
Chapter 8.
Consider the following example:

a1[0.8 t1< 0.7 digital 0.8 libraries >
0.6 important 0.8 new 0.7 technology]

t1 is the merged annotation target (or shortly merged target) of a1 and is about digital libraries.
More generally we say that an expression a1[p t1<. . .>] states that t1 is the merged target
of a1 and that this context is accessed with probability p. Merged annotation targets are
constructed as follows. Let Ta = {o|hasAnnotationTarget(a, o)} denote the set of annotation
targets of a. Instead of considering each annotation target on its own, we see content an
annotation refers to in an integrated way and create a new virtual document t which contains
all propositions of each of a’s annotation targets. Therefore, t = ∪o∈Tao. In the indexing step,
probabilities are calculated for each proposition, e.g. based on the term frequency and length
of the newly created document t in case of terms. One reason to do so comes from our view of
emails as annotations, as it is discussed later in Section 7.1.2.

4.2.4.5 Special Commands

POLAR supports a set of special commands, which are prefixed by a “_”. For example,

_echo("Print me")

prints the string “Print me” to the console. We will introduce additional special commands
when appropriate.

60 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

4.2.4.6 POLAR Symbols and their Associations

Figure 4.2: An annotated snippet

The syntactical elements which denote subcontexts in POLAR are chosen with certain associ-
ations in mind. Subpart access, denoted as “s[...]”, follows the notation already known from
POOL. Regarding the symbols for annotations and references, consider the annotated snippet
from Philip K. Dick’s novel “Do Androids Dream of Electric Sheep?” shown in Fig. 4.2. The
annotations follow a certain annotation code, which differs from person to person. In this snip-
pet, a “*” is used to write a comment about “John Isidore”. The corresponding POLAR element
is a content annotation “*a1” (if we give this annotation the ID “a1”). The fragment starting
with “synthetic sufferings” is marked by two vertical bars highlighting this fragment. The PO-
LAR variant would be something like “f1||synthetic suffering ...||”. Furthermore,
the annotation belonging to the fragment “If I hadn’t failed...test” is a reference (denoted by
the “⇒” symbol) to another structural element of the novel, the chapter 5. In POLAR, this
could be represented as “a2[=>chapter5]”. Meta level annotations are distinguished from
content annotations with the “@” symbol, saying that the annotation says something “@bout”
the annotated object. Finally, from emails we know that their quoted part is often identified
by a “>” character preceding each line of the quotation, which motivated the usage of “<” and
“>” to denote merged annotation targets (see also the representation of emails in POLAR later
in Section 7.1.2).

4.2.5 Querying and Retrieval in POLAR

While the creation of the knowledge base described above is the outcome of a context-based
indexing step, we are going to discuss possible querying and retrieval options in POLAR now.
Queries are expressed as headless rules, with variables in capital letters. When queries are
evaluated, these variables are substituted by the constants (object ids) appearing in a POLAR
program, and their probabilities are used to create a ranking.

4.2 The POLAR Framework 61

4.2.5.1 Database Queries

Database queries return facts from the given knowledge base in the global database context.
Suppose that annotations and documents have a property author denoting the author of an
annotation. The query

?- A.author(turner) & annotation(A)

returns Turner’s annotations. Similarly,

?- A.author(turner) & document(A)

returns all of Turner’s documents.

?- d1.author(A)

yields all authors of d1.

4.2.5.2 Structure Queries

POLAR offers means to pose structure queries to the structured annotation hypertext. Results
are ranked based on the corresponding access probabilities.

?- d1[*A]

returns all (positive) content annotations annotating d1, whereas

?- D[*a1]

returns all objects annotated by the content annotation a1. Similarly,

?- d1[@A]

yields all positive meta annotations of d1, whereas

?- d1[-@A]

fetches all its negative meta annotations.

?- d1[||F]

yields all fragments of d1. For references,

?- a1[=>O]

returns all objects referenced by a1 and

?- A[=>d1]

yields all objects referencing d1. An example of a more complex structure query is

?- d1[*A] & A[=>O]

which returns pairs of objects (a, o) where a is a content annotation of d1 and o is an object
a refers to. This query fetches all objects which are linked from d1 through an annotation
together with the corresponding annotation. If we are only interested in the linked objects and
do not care through which annotation this link was established, we need to apply rules:

linked_from_d1(O) :- d1[*A] & A[=>O]
?- linked_from_d1(O)

The rule sorts out any annotation and only preserves the objects they link to (which are then
fetched by the query).

62 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

4.2.5.3 Content-oriented Queries

Content-oriented queries deal with uncertain knowledge and calculate a value for each object
w.r.t. the query and according to the probabilities of their propositions.

?- A[search]

returns all objects containing ‘search’.

?- D[information & retrieval]

returns all documents about “information AND retrieval”.
POLAR provides a special syntax to query for fragments explicitly. The query

?- F|| digital & libraries ||

returns annotated parts about digital libraries. This kind of query enables direct access to
annotated document fragments in case users are only interested in these parts.

4.2.5.4 Retrieval by Implication Probability

The content queries so far exploit the content of objects to fetch them if they fit to the given
POLAR query. If, for example, the probability of term propositions is based on the within-
term frequency (tf) of objects, we gain a tf -like ranking. But information retrieval approaches
usually also employ the inverse document frequency idf to calculate a RSV. Furthermore, we
want to support retrieval based on the probability P (d→ q) that a document d implies a query
q is computed. For this we define a query6 q as another context. For example,

q1[information 0.8 retrieval]

defines a query q1 containing the terms ‘information’ and ‘retrieval’. ‘retrieval’ is weighted with
a probability of 0.8. The POLAR query

?- D->q1

returns all objects which imply this query, ranked by their decreasing implication probability.
How this value is actually calculated can differ. For example, Wong and Yao (1995) show
how probabilistic inference can be interpreted to realise well-known retrieval functions like the
vector space model. Rölleke (1998) presents how this interpretation can be applied to POOL.
In principle, it is possible to assimilate this solution for POLAR as well. In Section 6.2.4 we
will discuss further retrieval functions based on the implication probability, which are able to
produce a tf ×idf -like ranking. In the remainder of this chapter, in particular in Section 4.2.6.2,
we apply a very simple estimation for P (d→ q), which takes for each query term the product
of the term’s tf within d and q, and its idf value.
In order to allow for the integration of idf -like values, POLAR introduces term spaces. For

example,

0.5 ◦retrieval

says that the probability of the term ‘search’ (which can be based on the inverse document
frequency, depending on the application) is 0.5.

6“Query” is meant in a retrieval sense here, not to be mixed up with a POLAR query prefixed by “?-”

4.2 The POLAR Framework 63

Example 3 (Retrieval by implication probability): Consider the following knowledge
base and query:

0.7 ◦information
0.5 ◦retrieval
d1[0.5 information 0.6 retrieval]
q1[information 0.8 retrieval]

The query

?- D->q

returns d1 with an RSV of 0.506. This is calculated as

q1[information]︷︸︸︷
1 ·

d1[information]︷︸︸︷
0.5 ·

◦information︷︸︸︷
0.7 +

q1[retrieval]︷︸︸︷
0.8 ·

d1[retrieval]︷︸︸︷
0.6 ·

◦retrieval︷︸︸︷
0.5 −

q1[information]︷︸︸︷
1 ·

d1[information]︷︸︸︷
0.5 ·

◦information︷︸︸︷
0.7 ·

q1[retrieval]︷︸︸︷
0.8 ·

d1[retrieval]︷︸︸︷
0.6 ·

◦retrieval︷︸︸︷
0.5
= 0.506

according to the inclusion-exclusion formula (each occurrence of a proposition in a context is
regarded as an event) which we formally introduce later on page 133. 2

4.2.6 Knowledge and Relevance Augmentation
The modelling, querying and retrieval facilities introduced so far see each context individually.
Even subparts in complex objects are viewed separately from the object they are contained in,
or, in other words, a complex object does not “know” anything about its subparts, annotations,
fragments and targets. Our goal is to use these subcontexts to answer queries about complex
objects or for retrieval. The knowledge contained in a context and connected subcontexts should
be aggregated. This is done by means of augmentation. POLAR supports two augmentation
strategies: knowledge augmentation and relevance augmentation.

4.2.6.1 Augmented Contexts

The reason why we did not just model properties like hasAnnotationTarget(a, d) as a POLAR
property a.hasAnnotationTarget(d) becomes clear when introducing the concept of aug-
mented contexts. As said before, in POLAR every object establishes a context. Within their
context, objects have a specific knowledge determined by their content. Consider the following
example:

d1[0.5 information 0.6 retrieval
0.7 digital 0.3 libraries
0.8 *a1]

a1[0.6 search 0.8 big 0.7 issue]

a1 and d1 establish a respective context. d1 knows about ‘information’, ‘retrieval’, ‘digital’ and
‘libraries’ in its context, but nothing more, whereas a1 knows about ‘search’, ‘big’ and ‘issue’.
Our representation also states that content annotation a1 is a subcontext of d1 which is accessed
from d1 with probability 0.8. Also subparts, annotated fragments and merged annotation

64 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

targets are considered as subcontexts. If we access a1 from d1 (or in general a subcontext
from its supercontext), we create an augmented context d1(a1). Augmented contexts aggregate
the information in all contained contexts. For example, knowledge augmentation propagates
all propositions in the subcontexts to the augmented context, according to their respective
access probabilities. In our example above, ‘retrieval’ is known in d1 with 0.6 probability,
while ‘search’ is completely unknown in this context. But if we access a1 from d1, which
we do with 0.8 probability, there is a further probability of 0.6 that the context a1 knows
about ‘search’. The probability that the augmented context d1(a1) knows about ‘search’ is
determined by the probability that d1 knows about search or we access a1 from d1 and a1 knows
about ‘search’. Therefore, d1(a1) knows about ‘search’ with a probability of 0.8 · 0.6 = 0.48.
Relevance augmentation, on the other hand, propagates retrieval status values. For both kinds
of augmentation, we have to care about some peculiarities of the different context types. For
example, meta annotations are ignored as subcontexts for augmentation, since otherwise we
would mix information on the content and the meta level.
Before we discuss knowledge and relevance augmentation any further, we define the notion

of augmented context expressions.

Definition 3 (Augmented context expression):
We call expressions like d1(a1), where we denote that d1 is the context to augment and
a1 is a (not further specified) subcontext, an augmented context expression. Augmented
context expressions can be nested, so that d1(a1(a2)) means that a1 is a subcontext of d1
and a2 a subcontext of a1. The subcontext relation is transitive, so a2 is a subcontext of
d1 as well. Here, a1 is the direct subcontext of d1. Contexts can have more than one direct
subcontext. In the augmented context expression, these are separated by commas. For
instance, d1(a1,a2(a3,a4)) means that both a1 and a2 are direct subcontexts of d1, and a3
and a4 are direct subcontexts of a2.

We now present the two augmentation strategies, knowledge and relevance augmentation. We
start with knowledge augmentation and present examples in order to illustrate the approach.
Further discussions of both augmentation approaches can be found in the two subsequent
chapters.

4.2.6.2 Knowledge Augmentation

Some examples shall discuss the effect of knowledge augmentation w.r.t. the certain POLAR
subcontext types and how results are computed.

Fragments Recall the previous example:

d1[0.5 information 0.6 retrieval
0.7 digital 0.3 libraries
0.8 f1|| 0.9 digital 0.5 libraries 0.7 *a1||]

d2[0.5 libraries]
a1[]

A query for documents about ‘libraries’ without knowledge augmentation yields:

4.2 The POLAR Framework 65

?- D[libraries]
0.5 (d2)
0.3 (d1)

due to the weight of ‘libraries’ in d1 and d2 which represents the probability that this term is
true in d1 and d2. Now we pose the same query, but with knowledge augmentation:

?- //D[libraries]
0.58 (d1) # from d1(a1,f1)
0.5 (d2) # from d2

The “//” tells the system to perform knowledge augmentation. What happened here? The
knowledge of d1 is augmented with the knowledge we find in its fragment f1. The fact that this
fragment has been annotated (otherwise the fragment would not exist) makes this fragment an
important part of d1, since the annotator spent some time to annotate it. Our claim is that
such annotated passages are implicitly highlighted (this is especially true for fragments which
are explicitly highlighted, e.g., by marking or underlining them). The more users annotate
a specific passage (implicitly or explicitly), the more we get an n-way-consensus (Marshall,
1998) that this passage has some value in it. The hypothesis is that we thus receive additional
evidence that the corresponding document should be indexed with the propositions (terms)
in the annotated part, resulting in higher probability of these propositions in d1(f1). So the
effect of knowledge augmentation with fragments is that no new terms are introduced, but the
weights of existing ones in the augmented context are raised, causing a different ranked result
in the example above. The new weight for ‘libraries’ represents the probability that the term is
true in the augmented context d1(a1,f1), which is the sum of the probabilities of the following
four cases:

• ‘libraries’ is true in d1 and we do not access/consider f1 (probability 0.3 ·(1−0.8) = 0.06);

• ‘libraries’ is true in d1 and we access f1 and the term is unknown in f1 (0.3·0.8·0.5 = 0.12);

• ‘libraries’ is true in d1 and we access f1 and the term is true in f1 (0.3 · 0.8 · 0.5 = 0.12);

• ‘libraries’ is unknown in d1 and we access f1 and the term is true in f1 (0.7·0.8·0.5 = 0.28);

The sum of the probabilities of these disjoint events is 0.06 + 0.12 + 0.12 + 0.28 = 0.58. It
represents the probability that an event occurs which makes ‘libraries’ true in d1(f1). This
probability can alternatively be calculated as

P (
=0.3︷ ︸︸ ︷

‘libraries’ true in d1 OR
=0.8·0.5=0.4︷ ︸︸ ︷

f1 accessed from d1 and ‘libraries’ true in f1) =
0.3 + 0.4− 0.3 · 0.4 = 0.58

with the inclusion-exclusion formula (see Definition 24 on page 133).
Note that we use the augmented context d1(a1,f1) instead of d1(f1(a1)), as the structure

indicates it. This has two reasons: first, due to fragment permeability, if a1 annotates f1 and
f1 is a fragment of d1, a1 also annotates d1. Second, since we expand d1 with a1 directly, we
do not consider a1 any more when accessing it from f1.

66 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

Merged Targets In contrast to fragments, merged targets usually add new terms and propo-
sitions to augmented contexts. This is a very important feature of merged targets, since our
motivation to introduce them was to gain additional information about the topics an annotation
is about. Consider again the example from page 59:
annotation(a1)
a1[0.8 t1< 0.7 digital 0.8 libraries >

0.6 important 0.8 new 0.7 technology]

A query for annotations about “digital AND libraries”, in POLAR expressed as
?- A[digital & libraries] & annotation(A)

would not return a1, since these terms are not both true in a1. Nevertheless, a1 talks about
digital libraries when it states that it is an “important new technology”. So a1 is relevant to
the query. Since the crucial information that a1 is relevant to queries for digital libraries is
contained in the merged target, we apply knowledge augmentation and get

?- //A[digital & libraries] & annotation(A)
0.3584 (a1) # from a1(t1)

The probability that ‘digital’ is true in the augmented context a1(t1) is 0.8 · 0.7 = 0.56; for
‘libraries’, this is 0.8 · 0.8 = 0.64. The resulting probability is thus 0.56 · 0.64 = 0.3584.

Subparts Knowledge augmentation with subparts is the traditional application of the POOL
framework (Rölleke, 1998) which sees a structured document as an aggregation of its subparts.
Since POLAR extends POOL, this view is applied in POLAR as well and we also augment
contexts with their subparts. This allows for finding a best entry point within the document
structure. Consider the example
d1[0.7 s1[0.8 ir]

0.7 s2[0.9 db]]

A query
?- D[ir & db]

returns nothing, since in none of the contexts, both query terms are true. The query
?- //D[ir & db]

returns
0.3528 (d1) # from d1(s1,s2)

since in the augmented context d1(s1,s2), ‘ir’ is true with a probability of 0.7 · 0.8 = 0.56 and
‘db’ with 0.7 · 0.9 = 0.63 probability, leading to an overall probability of 0.56 · 0.63 = 0.3528
for d1. Each of the subparts s1 and s2 does not satisfy the query, but the augmented context
d1(s1,s2) does, since it aggregates both s1 and s2. The query

?- //D[ir]

yields
0.8 (s1) # from s1
0.56 (d1) # from d1(s1,s2)

which is the desired result, since s1 and (the augmented) d1 both deal with ‘ir’, but s1 is more
specific and a user would not miss anything if she only considers s1 and not the whole document
d1.

4.2 The POLAR Framework 67

Positive Content Annotations With fragments and merged targets, we considered objects
created during the annotation process for knowledge augmentation. A natural step further is
to take the content of annotations into account as well.
Consider the following POLAR program (imagine for example a document about ‘soccer’

and an annotation saying that ‘soccer’ is called ‘football’ in Europe):
document(d1)
annotation(a1)
d1 [0.6 soccer

0.7 *a1]
a1 [0.5 football]

The query for documents about football
?- D[football] & document(D)

would not retrieve d1, although (for Europeans) it would be relevant. The query
?- //D[football] & document(D)

considers the term ‘football’ in a1 and would thus retrieve d1 with a probability of 0.7·0.5 = 0.35
due to the association of d1 with ‘football’ in d1(a1).
An interesting application of knowledge augmentation is the handling of contradictions, which

often occur in annotations and especially discussions. Consider the following situation:
d1[*a1 *a2]
a1[moon_made_of_cheese]
a2[!moon_made_of_cheese]

Annotation a1 states that the moon is made of cheese, and a2 says it is not. A reader
of d1 would not get any information about what the moon is made of at all; but if
she considers the annotations as well, she would get inconsistent information about the
moon being made of cheese; neither the query “?- //D[moon_made_of_cheese]” nor
“?- //D[!moon_made_of_cheese]” would return d1, because ‘moon_made_of_cheese’
is inconsistent in d1(a1,a2)7.
We extend the example above with probabilities:
d1[*a1 *a2]
a1[0.8 moon_made_of_cheese]
a2[0/0.7 moon_made_of_cheese]

The query
?- //D[moon_made_of_cheese]

returns
0.8 (a1) # from a1
0.24 (d1) # from d1(a1,a2)

We can see here how the negative probability (0.7) in a2 influences the probability that
‘moon_made_of_cheese’ is true in d1(a1,a2). This value is calculated as 0.8 · (1 − 0.7) =
0.24. The query “?- //D[!moon_made_of_cheese]” returns d1 with a probability of
(1− 0.8) · 0.7 = 0.14.

7Note that POLAR does not offer means to query inconsistent knowledge yet. A possible extension of POLAR
might evaluate the query “?- //D[moon_made_of_cheese & !moon_made_of_cheese]” in a way that
it returns d1 in our example. This might be interesting for tasks where one wants to explicitly search for
topics which are discussed controversially.

68 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

Negative Content Annotations The examples presented so far all dealt with positive annota-
tions. The question is how we can handle negative annotations w.r.t. knowledge augmentation.
One option is that a proposition a appearing in a negative content annotation is propagated
as ¬a in the augmented context.
Consider the example of an annotation thread in COLLATE, which is shown in Figure 2.1

on page 13. We see the annotation, an interpretation saying that the film mentioned in the
source document was censored for political reasons. This annotation is annotated again; in
the reply a2, the annotator expresses her disagreement with the previous statement by using
a counterargument annotation type and saying that she thinks there were no political reasons
(“I disagree. There were no political reasons”).
We want to model this situation in POLAR and also reflect the fact that a2 is a neg-

ative response to a1, especially regarding the topic “political reasons”. One option is to
detect in a2’s content that the “no” belongs to “political reasons”. We might then assign
“!political_reasons” to a2. The other option (for instance in case of an automatic in-
dexer which is based on terms and does not detect that “no” belongs to “political reasons”
or even treats “no” as a stop word) is to use negative polarity and create a negative content
annotation, if we assume this can be inferred from the annotation type (counterargument in
this case). This scenario is expressed in POLAR as

document(d)
annotation(A) :- interpretation(A)
annotation(A) :- counterargument(A)
interpretation(a1)
counterargument(a2)
d[*a1]
a1[0.7 film 0.5 censored 0.8 political_reasons 0.8 -*a2]
a2[0.7 political_reasons]

The first line says that d is a document. The second and third line mean that every interpre-
tation or counterargument is an annotation. Line 4 and 5 classify a1 and a2 as interpretation
and counterargument, respectively, which also means they are annotations. Line 6 introduces
document d, with no further (textual) content. Line 7 shows the annotation a1 and its corre-
sponding terms and term weights. In the context of a1, a2 is a negative content annotation
and is accessed with 0.8 probability. The last line shows a2. The query

?- D[political_reasons]

returns, without any augmentation,

0.8 (a1)
0.7 (a2)

The document d would not be retrieved.
We have two annotations a1 and a2 which are both about ‘political reasons’, but a2 talks

negatively about a1 with respect to this term and is thus a negative content annotation in the
context of a1. We interpret this situation that a2 attacks the fact that a1 is a good authority for
‘political reasons’, which means that the corresponding term weight should be decreased when
considering the augmented context a1(a2). Knowledge augmentation adds the probability that
‘political reasons’ is true in a2 to the probability that it is negative in a1(a2); this value is then
also propagated to d1(a1(a2)). So we get

4.2 The POLAR Framework 69

?- //D[political_reasons]
0.7 (a2) # from a2
0.24 (a1) # from a1(a2)
0.24 (d) # from d1(a1(a2))

While a1 has a positive effect on d(a1), We see that the existence of a2 has a negative effect
on a1(a2) and therefore also d(a1(a2)). Without a2, a1 and d would be assigned a value of
0.8 instead of 0.24 (= 0.8 · (1 − 0.7), the probability that ‘political reasons’ is positive and
not negative in a1(a2) and d(a1(a2)), respectively). If there was another negative content
annotation a3 which annotated a2 and also contains the term ‘political reasons’, then a2 would
have a negative effect on a1(a2(a3)) and d(a1(a2(a3))), but a3 would in turn have a positive
effect on a1(a2(a3)) and d(a1(a2(a3))) since it has a negative effect on a2.

Implication Probability and Knowledge Augmentation As mentioned before, POLAR sup-
ports context implication for retrieval, i.e. it estimates the probability P (d → q) that a
document implies a query. This can be combined with knowledge augmentation to realise
annotation-based retrieval.
Again, we calculate the implication probability as above in Section 4.2.5.4. Besides the

weights of propositions (terms, attributes and classifications) in contexts, this method to com-
pute the implication probability also integrates the inverse document frequency. Let us extend
the above COLLATE example with some idf -based term measures, for instance

0.5 ◦political_reasons

which says that the (idf -based) term probability of ‘political reasons’ is 0.5. Then,

q[political_reasons]
?- D->q

calculates a retrieval status value of 0.4 for a1 (the term weight (0.8) multiplied with the
idf (0.5)) and 0.35 for a2. d1 would not be found in that case. Now we apply knowledge
augmentation. We get

?- //D->q
0.35 (a2) # from a2
0.12 (a1) # from a1(a2)
0.12 (d) # from d(a1(a2)))

As seen above, the weight for ‘political reasons’ in the augmented contexts of a1 and d is 0.24,
and 0.24 · 0.5 is the RSV of both a1 and d.

We introduced POLAR’s knowledge augmentation facilities. These take into account every
subcontext of the context to augment. Later in Section 4.3.1 we discuss further knowledge
augmentation examples and how to fine-tune the augmentation process according to subcontext
types.

4.2.6.3 Relevance Augmentation

Besides knowledge augmentation, POLAR supports another augmentation strategy which we
call relevance augmentation. In contrast to knowledge augmentation, we calculate the RSV of

70 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

Figure 4.3: Relevance augmentation example. Arrows denote propagation.

each single object first. Relevance augmentation then means that we propagate the retrieval
status value of a context to its supercontext to create the final RSV of the augmented con-
text (see the example below). The advantage of relevance augmentation is that it operates on
retrieval status values rather than propositions. This is important for example in cases when
an annotation service employing POLAR does not have access to document full texts, which
are possibly stored in external repositories, to extract the required propositions for knowledge
augmentation. Such a scenario is outlined in Agosti et al. (2006) where the DiLAS annota-
tion service is presented; DiLAS is supposed to be linked to several external digital library
management systems, and these systems might only provide document handles and a search
API, but no access to the full texts in order to index them. With relevance augmentation,
a POLAR implementation can query these external sources in order to fetch retrieval status
values for external documents, and merge them with annotations’ retrieval status values for
annotation-based document search (as outlined similarly in Agosti and Ferro (2005))8.

Relevance augmentation is illustrated in Figure 4.3. Let us say that for a query q1 and a
document d1, an external digital library management system returns a retrieval status value
of 0.3. Furthermore, the RSVs for a1 and a2 are 0.5 and 0.2, respectively. Let us further
assume that a1 is a content annotation and a2 is a negative content annotation of d1. The
corresponding access probabilities are 0.5. The relevance augmentation approach now combines
these three retrieval weights and generates a new context-based one for d1. The weight of a1
raises the resulting weight for d1, while the weight of a2 lowers it again, since we have negative
evidence about the relevance of d1 here. From the document itself, we know that it is relevant
with 0.3 probability. From the annotations, we have both positive and negative evidence. The
positive evidence comes from a1; together with the positive evidence from the document, we
infer with a probability of 0.3 + 0.5 · 0.5− 0.3 · 0.5 · 0.5 = 0.475 that d1 is relevant. Considering
the negative evidence from the annotations, we infer that d1 is not relevant with 0.5 · 0.2 = 0.1
probability. Relevance augmentation combines positive and negative evidence and calculates
the probability that we have positive evidence and not negative evidence from the context, that
is 0.475 · (1− 0.1) = 0.4275, which is the final context-based retrieval status value of d1.

Syntactically, the expression “?- //D->q1” could be used for relevance augmentation9. See
Section 6.2.5 for a further discussion.

8We have to be aware that the RSVs coming from external sources are not necessarily probabilities and often
need to be normalised accordingly.

9Note that, despite of the choice of the syntactic expression, relevance augmentation does not necessarily
calculate an implication probability (this also depends on the external sources and their underlying retrieval
function).

4.3 Further Application Showcases 71

We introduced POLAR’s knowledge modelling, querying and retrieval capabilities and its
core concept, augmentation. Before discussing POLAR’s syntax and semantics formally in the
next chapter, we present some further examples of possible POLAR applications.

4.3 Further Application Showcases
The structured annotation hypertext introduced in the last chapter is a very complex data
structure containing many different components and their relations. As we have seen in Chap-
ter 2, annotations can be of many different types and can have many facets. This makes clear
that POLAR, as a framework for modelling structured annotation hypertexts, to query them
and to perform probabilistic retrieval on them, potentially serves a wide range of possible tasks
and applications. In the previous considerations, we have already seen some examples, when
we discussed knowledge augmentation, which is able to handle negative and inconsistent knowl-
edge. We are now going to present some further application showcases, also to give additional
examples of POLAR programs. These single examples can of course be combined in order to
fulfil more complex tasks. All showcases have in common that they combine different kinds of
evidence coming from the structured annotation hypertext in order to determine the relevance
of documents and annotations, respectively, for document or discussion search.

4.3.1 Annotation-based Structured Document Retrieval and Discussion Search
4.3.1.1 Outline

We have discussed POLAR’s main retrieval function based on the estimation of P (d → q),
which can be used in combination with knowledge and relevance augmentation. Augmentation
is a well-known principle for structured document retrieval, where we search for a best entry
point within a structured document. From this perspective, augmentation in POLAR allows
for annotation-based structured document retrieval. Annotations help to find best entry points
in documents. Consider the situation illustrated in Figure 4.4. When we perform classical
structured document retrieval, we are interested in documents and their subparts, which are in
this case d1, s1,s2, s11, s12 and s21. Propagation and augmentation considers these subcontexts
only. For instance, just s21 would influence the RSV of s2 (by propagating its knowledge to s2
when forming s2(s21)). If we add annotations to the retrieval process (by taking a1, . . ., a7 into
account as well), s2’s RSV is also influenced by its direct annotations a3 and a6, and further
indirectly by a4 and a5. It is also indirectly influenced by a7, since the knowledge of a7 is
propagated to s21 and (with a lower resulting propagation factor) also to s2. a1, . . ., a7 are not
retrieved, but contain additional evidence for the relevance or non-relevance of the respective
subparts. Furthermore, in Fig. 4.4, a6 references d2. If we propagate the information coming
from referenced objects as well, also d2 biases the RSV of s2.
We outlined how augmentation can support annotation-based structured document search.

But of course not only structured documents can be the desired objects to retrieve, but also
annotations, possibly as entry points into a discussion thread. If we only want to retrieve
annotations, then in the example above, a3 could be augmented with a4 and a5 and the retrieval
status value of a3(a4,a5) would be calculated. Note that a3 could also possibly augmented with
content from s2 contained in a merged annotation target of a3.

4.3.1.2 Controlling the Augmentation Behaviour

The augmentation behaviour can be controlled by special commands. The expressions

72 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

Figure 4.4: Annotation-based structured document retrieval. Grey boxes reflect subparts of
a structured document, white boxes are annotations. Arrows denote structure,
annotation and reference propagation, respectively.

_structure_propagation()
_annotation_propagation()
_reference_propagation()

say that we augment a context by its logical document structure, by annotations (including
fragments and merged targets), and by referenced objects, respectively (which is the default
behaviour). On the other hand,

_no_structure_propagation()
_no_annotation_propagation()
_no_reference_propagation()

omit the logical structure, annotations and referenced objects, respectively, from (knowledge
and relevance) augmentation. By combining these special commands, we can fine tune the set
of objects involved in augmentation. In the above example, if we say that no structure and
reference propagation should be performed, the augmented context of s2 is s2(a3(a4,a5),a6). If
we omit annotation and reference propagation, s2’s augmented context is s2(s21). If we only
disallow reference propagation, s2(s21(a7),a3(a4,a5),a6) is the augmented context of s2. If we
allow all kinds of propagation, we gain s2(s21(a7),a3(a4,a5),a6(d2)) as the augmented context
of s2.

4.3.1.3 Example

We will now discuss an example for document and discussion search in POLAR. Consider the
following simple knowledge base consisting of annotations and structured documents:

document(d1)
subpart(s1)
annotation(a1)
annotation(a2)
d1[0.7 ir

0.9 s1[0.6 db 0.5 *a1]]
a1[0.4 t1< 0.6 db >

0.75 is 0.6 *a2]
a2[0.4 t2< 0.75 is >

4.3 Further Application Showcases 73

0.9 ir]
0.5 ◦ir 1.0 ◦is 1.0 ◦db

Document d1 is about information retrieval (‘ir’) and has a section (subpart) s1 about databases
(‘db’). s1 is annotated by annotation a1 which is about information systems (‘is’). a1 is
annotated by a2, which is about information retrieval again. a1 and a2 form a toy discussion
thread. The merged target of a1 is determined by the content of its annotated object s1
(analogously for a2). ‘ir’ has an idf of 0.5, ‘is’ and ‘db’ both have an idf of 1. This knowledge
base is the basis for our further considerations on structured document IR and discussion search.

Structured Document IR We want to perform structured document retrieval. This means
our ranking should contain subparts and documents, but no annotations. Let us assume we
search for documents about information systems.

q1[is]
relevant1(D) :- //D->q1 & document(D)
relevant1(D) :- //D->q1 & subpart(D)

The first line defines our query, the second and third line says that every document and subpart
is relevant if its augmented context implies the query. Without knowledge augmentation, d1
and also s1 would not be retrieved, since they do not know about ‘is’. But now, we gain:

?- relevant1(D)
0.375 (s1) # from s1(a1)
0.3375 (d1) # from d1(s1(a1))

The term ‘is’ is propagated from a1 to s1 (and has a weight of 0.5 · 0.75 = 0.375 in s1(a1). It is
further propagated to d1 with a weight of 0.5 · 0.75 · 0.9 = 0.3375 in d1(s1(a1)). These values
are multiplied with the idf of ‘is’ to get the final result (yielding the same values again due to
multiplication with 1). a1 and a2 are not retrieved, although their augmented contexts (a1(a2)
and a2(t2), respectively) know about ‘is’, because they are not classified as being a subpart or
document.

Discussion Search Based on our toy knowledge base we can also perform discussion search.
Here, annotations are the focus of retrieval, and we exploit the discussion context of each
annotation. Consider a new query searching for ‘ir’; relevant are only annotations satisfying
this query. We gain:

q2[ir]
relevant2(A) :- //A->q2 & annotation(A)
?- relevant2(A)
0.45 (a2) # from a2(t2)
0.27 (a1) # from a1(t1,a2)

‘ir’ has a weight of 0.9 in a2 and 0.6 · 0.9 = 0.54 in a1(t1,a2)10. These values need to be
multiplied with the idf of ‘ir’, which is 0.5. Consider a third query, this time for databases:
10You may notice that a1’s augmented context is not a1(t1,a2(t2)), as we would expect it from the discussion so

far. t2 is the merged annotation target of a2 and contains content from a1, which should not be considered
again. This peculiarity of annotations w.r.t. augmentation will be subject to discussion later.

74 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

q3[db]
relevant3(A) :- //A->q3 & annotation(A)
?- relevant3(A)
0.24 (a1) # from a1(t1,a2)

a1 is returned because is annotates an object, s1, which is about databases. We find this
information in a1’s merged target t1, so we gain an overall RSV of 0.6 · 0.4 = 0.24 for a1.
This example shows that discussion search can be influenced by items which are not part of
discussion threads.
When performing discussion search like above, POLAR tries to find a suitable entry point

in the discussion thread. This entry point is supposed to mark the beginning of the discussion
about the given topic in the discussion thread11. It is the best entry point if we assume that
the reader starts at this point and navigates through the replies in order to follow the whole
discussion about the given topic from the beginning to the end.

4.3.2 Enriching a Document Ranking with Annotations

Consider the following POLAR knowledge base:

document(d1)
document(d2)
annotation(a1)
annotation(a2)
annotation(a3)

d1[0.7 ir
0.9 *a1]

a1[0.4 is 0.2 ir]

d2[0.3 is *a2 *a3]
a2[0.5 ir]
a3[0.2 ir]

0.5 ◦ir 1.0 ◦is 1.0 ◦db

Now we seek all documents about ‘ir’:

q1[ir]
?- D->q1 & document(D)
0.377 (d1) # from d1(a1)
0.300 (d2) # from d2(a2,a3)

A system could produce a ranking with d1 and d2 and return this to the user. However,
especially in the case of d2 a user might wonder why this item was retrieved. The idea is
to present the user a ranking which groups all evidence from annotations by their annotated
documents. To do so, an additional query is performed:

11Note that, in case of topic changes, a discussion about a topic can start somewhere deep within the discussion
thread.

4.3 Further Application Showcases 75

?- D[*A] & //A->q
0.09 (d1,a1)
0.25 (d2,a2)
0.10 (d2,a3)

The query returns all document-annotation pairs for documents which directly refer to a rel-
evant annotation, ranked by the annotations’ RSV and their access probability. From this
evidence, a system might return to the user an annotation-enriched ranking like this:

1. 0.377 d1
0.09 a1

2. 0.300 d2
0.25 a2
0.10 a3

Such a ranking would hint the user directly to relevant annotations, which she could use to
determine if the corresponding document is relevant for her information need or not.

4.3.3 Document Access through Fragments and Highlighted Parts
We introduced fragments as special kinds of objects besides annotations and documents. Frag-
ments can either be the main goal for retrieval, or they can help to find relevant documents.
For instance, the query

?- F|| digital & libraries ||

finds fragments (i.e. annotated parts) about digital libraries. Such a query can be useful if,
e.g., the user should be hinted to relevant highlighted parts when a document is displayed. A
user is then able to find her own relevant highlighted parts more easily.
Fragments can be used to find relevant documents. One way is their role in knowledge aug-

mentation described above. Another way is to search for documents having relevant fragments.
Consider the case that the user remembers that she highlighted a passage about digital libraries
in a document, and now wants to find the document again. The rule and query

relevant(D) :- D[||F] & F|| digital & libraries ||
?- relevant(D)

finds documents containing fragments about digital libraries. A similar query can be posed
based on probabilistic inference:

q[digital libraries]
relevant(D) :- D[||F] & F->q
?- relevant(D)

Documents are ranked based on relevant fragments and their access probability. Documents
having relevant fragments are ranked higher than documents with mainly non-relevant ones.
We could also ask for fragments annotated by Mike in a document d1:

relevant(F) :- d1[||F] & F||*A|| & A.author(mike)
?- relevant(F)

76 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

4.3.4 Users and Groups

In a repository consisting of public, shared and private annotations, a user is not allowed to see
every annotation. Private annotations should be visible only by the users who created them,
and shared annotations can only be accessed by members of the appropriate group. We can
represent users and groups, as they are contained in the annotation model introduced in the
last chapter, as objects and attributes on the global database level:

group(infosystems)
group(interactive_systems)
peter.memberOf(infosystems)
thomas.memberOf(infosystems)
harold.memberOf(interactive_systems)

There are two groups, “infosystems” and “interactive systems”. Peter and Thomas belong to
the “infosystems” group, while Harold is member of “interactive systems”. We further specify
the authorship, associated group and scope of annotations:

a1.author(peter)
a2.author(thomas)
a3.author(harold)
a1.group(infosystems)
shared(a1)
private(a2)
public(a3)

Peter is the author of a1, Thomas the one of a2 and Harold the author of a3. a1 is a shared
annotation and belongs to the group “infosystems”. a2 is a private annotation, while a3 is a
public one. Our termspace, the three annotations and the query q are:

0.5 ◦collaborative_systems
a1[0.8 collaborative_systems]
a2[0.6 collaborative_systems]
a3[0.5 collaborative_systems]
q[collaborative_systems]

Let us say that Thomas is the current user of our system:

current_user(thomas)

Then we can define rules for relevant objects which are visible to Thomas:

visible(A) :- private(A) & A.author(U) & current_user(U)
visible(A) :- shared(A) & A.group(G) & U.memberOf(G) &

current_user(U)
visible(A) :- public(A)

The first rule says that the current user can see his own annotations. He can also see annotations
which are shared among groups he is a member of (second rule). And of course he can see all
public annotations, as the third rule states. We return a ranking of documents which satisfy
the query and which are visible to the current user (in this case Thomas):

4.3 Further Application Showcases 77

?- A->q & visible(A)
0.4 (a1)
0.3 (a2)
0.25 (a3)

a1 is retrieved since it is a shared annotation and Thomas is member of the group a1 belongs
to. a2 is retrieved because it is a private annotation and Thomas is its author. a3 is retrieved
because it is a public annotation. All annotations are visible to Thomas, so nothing is filtered.
Now consider the current user is Peter and not Thomas:

current_user(peter)

We then get:
?- A->q & visible(A)
0.4 (a1)
0.25 (a3)

a2 is not fetched since it is a private annotation and Peter is not its author. In case Harold is
the current user, only a3 would be retrieved.

4.3.5 Semantic Annotations and Ontologies
One of the advantages of logic-based frameworks is the possible integration of additional knowl-
edge into the retrieval function. Such external knowledge can consist of an ontology where
classes and objects are semantically related to each other. A simple example can be an on-
tology regarding generalisation/specialisation (or “IS-A”) relations among cities: each Hessian
city (a city located in the German federal state of Hesse) is a German city, and each German
city is a European city (similar relations can be identified for other European countries and
their cities). Our toy ontology further says that each city located in Illinois is an American
city. We can incorporate this ontology into our knowledge base as follows:

O[german_city(C)] :- O[hessian_city(C)]
O[european_city(C)] :- O[german_city(C)]
O[american_city(C)] :- O[illinoisan_city(C)]

This says that each object that is about a Hessian city is also about a German city and about
a European city. The same holds for objects about cities in Illinois, which are also objects
about American cities. Now consider that we have a document d1 about the city Darmstadt.
Furthermore, consider a categoriser which infers with 0.7 probability that the “Darmstadt”
mentioned in d1 is the Hessian city Darmstadt and with 0.3 probability that the American
city Darmstadt, Illinois, is meant, and put this knowledge into a semantic annotation a1. The
output of a document indexing and named entity recognition process could be

d1[0.8 darmstadt *a1]
a1[0.7 hessian_city(darmstadt) 0.3 illinoisan_city(darmstadt)]

To search for all documents about the European city Darmstadt, we apply knowledge augmen-
tation and pose the query

?- //D[darmstadt & european_city(darmstadt)]

The fact that Darmstadt is a Hessian city is known in the augmented context d1(a1) with 0.7
probability. Due to our ontology rules above, this is also the probability that our Darmstadt in
d1 is a European city. The query returns d1 with a corresponding probability of 0.8 ·0.7 = 0.56.

78 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

4.3.6 Social Networks
With the advent of the so-called “Web 2.0”, social community platforms (like Flickr, Library-
Thing, Last.fm and YouTube) emerged which let users submit documents (textual documents,
but also images and video). These documents can be shared among users, and, in turn, users
can annotate these documents. Annotations can be textual comments, but also so-called tags.
Collaborative tagging can be regarded as a kind of manual indexing of the document. Another
key feature of social community platforms is the ability to maintain a list of friends. Friends
lists are populated with friends a user knows from the real world, but can also be enriched with
users sharing similar interests. For example, the social music platform Last.fm12 calculates a
similarity score between users, which is based on the musical taste. Another way of calculating
the so-called friendship similarity is reported in Schenkel et al. (2008). By applying normalisa-
tion, such a score can be interpreted as a probability and thus be integrated into the POLAR
framework.
Let us consider a toy knowledge base with four users, Frank, Eva, Paul and Martin. The

friendship score is used to estimate the probability of the ‘friend’ attribute; for Frank, this
might be:

0.8 frank.friend(eva)
0.1 frank.friend(paul)
0.1 frank.friend(martin)

Eva and Frank are close friends, while Paul and Martin are more strangers to Frank. Consider
two documents, d1 and d2, which are tagged with ‘pop’ by annotations a1 (by Eva), a2 (by
Paul) and a3 (by Martin):

d1[0.5 @a1]
d2[0.5 @a2 0.5 @a3]
a1[pop]
a2[pop]
a3[pop]

a1.author(eva)
a2.author(paul)
a3.author(martin)

(we see tags as meta annotations and access them with a probability of 0.5). Frank now wants
all documents which are tagged with ‘pop’, and he prefers tags coming from his friends. In
POLAR, this can be expressed with the rule and query

rel_soc(D) :- D[@A] & A[pop] & A.author(U) & frank.friend(U).
?- rel_soc(D)

For Frank, the tags provided by Eva are more valuable than the ones provided by Paul or
Martin. So although d2 is tagged with ‘pop’ twice, and d1 only once, d1 is ranked ahead of d2:

0.4 d1
0.0975 d2

(0.4 = 0.5 · 0.8 and 0.0975 = 0.05 + 0.05− 0.05 · 0.05). The probability of rel_soc(d1) (resp.
rel_soc(d2)) is the social score of d1 (resp. d2) with respect to the given user (Frank).
12http://www.last.fm/

http://www.last.fm/

4.3 Further Application Showcases 79

4.3.7 Ratings
Another interesting POLAR application are ratings. These often occur in commercial systems
where users can rate, for instance, products or books. For example, within Amazon, users can
rate (among other items) books and CDs by giving 0 to 5 stars (usually 5 stars means “very
good” and 0 stars means “very bad”) on a Likert scale. Such ratings are typical examples
of meta annotations. We assume a 5-tier scale and map a rating onto the probability that
the rated document is good. For this, we use the proposition ‘rated_good’; its probability is
determined by the rating: 0 means a probability of 0, 1 means a probability of 0.2, 2 means
0.4, 3 means 0.6, 4 means 0.8 and a rating of 5 means a probability of 1. (Note that this is a
simple mapping of the scale to probabilities in order to show how such ratings can be applied
in POLAR; actual applications might require a more sophisticated mapping.) Consider the
following knowledge base:

d1[0.7 databases 0.5 @a1 0.5 @a2]
d2[0.8 databases 0.5 @a3 0.5 @a4]
a1[0.8 rated_good]
a2[0.8 rated_good]
a3[0.4 rated_good]
a4[0.2 rated_good]

We now seek for books about databases which are rated good:

rated_good(D) :- D[@A] & A[rated_good]
?- D[databases] & rated_good(D)

P (rated_good(d1)) = 0.5·0.8+0.5·0.8−0.5·0.8·0.5·0.5 = 0.7 and P (rated_good(d2)) =
0.5 · 0.4 + 0.5 · 0.2− 0.5 · 0.4 · 0.5 · 0.2 = 0.28. The resulting ranking is

0.49 (d1)
0.224 (d2)

(0.49 = 0.7 · 0.7 and 0.224 = 0.8 · 0.28). d1 is ranked ahead of d2 due to the fact that it was
rated better than d2.

4.3.8 Annotation-based Trustworthiness
We previously discussed the effect of negative content annotations on the probability that a
term is true in an augmented context. We interpreted this scenario so that by knowledge
augmentation, we decrease the trust in a1 being a good source for statements about ‘political
reasons’.
Especially in public discussions the question arises whether we can trust an annotation.

Authors of annotations can simply be wrong or just talk nonsense. One measure of the trust-
worthiness is the number of positive or negative replies a comment gets. If there are mostly
negative replies, we should not trust a comment; if there are mostly positive ones, then the
comment is a trustworthy source for new information. Consider the following knowledge base:

0.7 ◦football
a1[0.7 football 0.5 -*a3 0.5 -@a4]
a2[0.5 football 0.5 *a5 0.5 *a6]
a3[] a4[] a5[] a6[]

80 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

a1 talks about ‘football’ with high probability, but earned many negative comments (one on
the content and one on the meta level). The probability that a2 is about ‘football’ is less,
but it received two positive replies. Which comment is more relevant to a user, if we not only
consider topical relevance, but also trustworthiness? We first say that an object is relevant if
it is topically relevant to a query for ‘football’:

q[football]
topically_relevant(O) :- O->q
?- topically_relevant(O)
0.49 (a1)
0.35 (a2)

(0.7 · 0.7 = 0.49 and 0.7 · 0.5 = 0.35). The topical relevance would rank a1 ahead of a2. We add
the following facts and rules to our program:

0.6 unconditional_trust(a1)
0.6 unconditional_trust(a2)
trustworthy(O) :- unconditional_trust(O)
trustworthy(O) :- O[*A]
trustworthy(O) :- O[@A]
!trustworthy(O) :- O[-*A]
!trustworthy(O) :- O[-@A]

The first two lines say that we trust a1 and a2 unconditionally with 0.6 probability. This value
is important, because otherwise annotations which are not annotated again are not trustworthy.
So line 3 says that an object is trustworthy if we unconditionally trust it. The next two rules
say that an object is trustworthy if it has positive annotations. The last two lines say that it
is not trustworthy if it has negative annotations. We get

?- trustworthy(O)
0.9 (a2)
0.15 (a1)

0.9 is the probability coming from the unconditional trust in a2 (0.6) and the two positive
annotations a5 (0.5) and a6 (0.5). With the inclusion-exclusion formula, the probability that
a2 is trustworthy is

0.5 + 0.5 + 0.6− (0.5 · 0.5 + 0.5 · 0.6 + 0.5 · 0.6) + 0.5 · 0.5 · 0.6 = 0.9

The probability that we have positive evidence for a1’s trustworthiness is only coming from the
unconditional trust in a1 (0.6). The probability for negative evidence about a1’s trustworthiness
comes from the annotations a3 (0.5) and a4 (0.5) and is 0.5 + 0.5 − 0.5 · 0.5 = 0.75. a1
is trustworthy if we have positive and no negative evidence about its trustworthiness; the
probability of this event is 0.6 · (1 − 0.75) = 0.15. We see that we can trust a2 more than a1,
based on the annotations. We now say that an object is relevant if it is topically relevant and
trustworthy:

relevant(O) :- topically_relevant(O) & trustworthy(O)
?- relevant(O)
0.315 (a2)
0.0735 (a1)

with 0.315 = 0.35 · 0.9 and 0.0735 = 0.49 · 0.15. We gain a different ranking if we include
annotation-based trustworthiness into our retrieval function.

4.4 Related Work 81

4.3.9 Access Probability
Due to the fact that documents and annotations are not regarded as atomic objects in POLAR,
but their context determined by the document structure, annotations and referenced objects
is considered, the access probability plays a central role. When performing augmentation, the
access probability can be compared to a propagation factor which controls to which degree
terms, classifications, attributes, RSVs and their corresponding weights are propagated from
subcontexts to (augmented) supercontexts. For structure queries, the access probability is used
to provide a ranking of matching objects. Access probabilities have also been exploited for the
determination of the trustworthiness of annotations.
The estimation of access probabilities is subject to the actual application on the one hand

and, when used as a propagation factor for augmentation, subject to experiences made in
experiments on the other hand. There are two basic views on the determination of access
probabilities:

• In the user-centric view, access probabilities may be influenced based on user (i.e. reader)
preferences. For example, a user may not want to consider annotations made by certain
authors, or she gives a certain author more priority and therefore raises the access prob-
ability to annotations by this author.

• In the system-oriented view, the access probability is not determined by a user, but
is based on statistics or a certain underlying model. For instance, the random surfer
model (Page et al., 1998) assumes that Web links are randomly accessed with the same
probability, which is determined by the number of links. To adopt a similar behaviour to
POLAR and annotations, we may calculate the probability that a accesses its successor
a′ as

P (acc(a, a′)) = 1
#annotations

where #annotations is the number of annotations of a. A further estimation of access
probabilities is derived from experiments where we try to determine for which global
access probability a retrieval functions yields the best results.

Both views might be mixed; the system might perform an initial estimation of the access
probabilities, and then the user biases this value based on her preferences.

4.4 Related Work
By providing means to calculate P (d → q), POLAR follows the notion of retrieval as proba-
bilistic inference proposed by van Rĳsbergen (1986). As shown in Fig. 4.5, POLAR combines
concepts and methods from areas such as hypertext and structured document (XML) retrieval
(including modelling and querying of complex objects) and discussion search. Naturally, PO-
LAR is related to other work from annotation-based IR.

4.4.1 Hypertext and Structured Document IR and Discussion Search
4.4.1.1 Hypertext IR

Graph-based Approaches Lucarella and Zanzi (1996) propose a graph-based object model
for hypermedia documents. This model deals with objects and classes, attributes, and proper-
ties. Schema graphs can be defined on the object level; instance graphs are based on schema

82 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

Figure 4.5: POLAR and related work

graphs on the object level. Retrieval is supported by means of so-called perspectives, which
are subgraphs of the schema and instance graph; certain operations are offered to let the user
specify conditions which objects of a select class have to meet. Other operations allow for
object access and the combination of perspectives. Another interesting approach is reported by
Chiaramella and Kheirbek (1996) who propose an integrated model for hypermedia and infor-
mation retrieval based on conceptual graphs. Content knowledge contains concept types (the
domain knowledge including generalisation/specialisation relations among concepts) for index-
ing documents, and structural knowledge contains the logical document structure of objects as
well as possible relations among them. Complex queries can be posed to the underlying graph
structure, and P (d → q) is calculated during query evaluation in order to create a ranking of
documents. Both graph-based approaches are interesting for structured annotation hypertexts
and annotation-based retrieval, since very complex structure and content queries are supported.
Both approaches are different than the one presented here; for example augmentation, as we
know it from POLAR, is not supported.

Propagation-based Approaches Another type of hypertext retrieval approaches takes neigh-
bouring nodes (i.e., documents) into account when calculating a final RSV for a given node. The
following approaches have in common that first a RSV for each node is calculated (applying,
for example, a retrieval function based on tf × idf), which, similar to relevance augmentation,
is then propagated to the node whose final weight has to be determined. Frisse (1988) adds the
normalised final weight of direct neighbours (which again consume the weight of their direct
neighbours) to create a node’s final weight. Frei and Stieger (1994) refine Frisse’s approach
by introducing the concept of spreading activation. Constrained spreading activation is based
on a sophisticated link description which takes the link type, the content of the destination
node and it neighbouring nodes, and link annotations into account. The similarity of a link
description to the query is used in a decision phase to decide whether a link (and probably
its subsequent ones) should be followed or not. If a link is followed, the normalised RSV of
the destination node is added to the RSV of the original node using a propagation factor. In
contrast to that, weighted spreading activation does not know a decision phase (all links are
followed), but uses the similarity of the link to the query as an additional factor to be added to
the final RSV. Both variants of spreading activation can utilise relevance feedback to improve

4.4 Related Work 83

link descriptions. Experiments show that both spreading activation approaches outperform
retrieval methods not considering any neighbouring nodes. Spreading activation motivated the
relevance augmentation approach in POLAR.

Inference-based Approaches Certain other retrieval models include the structural context
(logical structure, hypertext links or thread structure) in different ways to produce a ranking.
For example, Croft and Turtle (1989) propose a retrieval model based on Bayesian inference
networks for hypertext retrieval. Nodes represent documents, concept and the query, as in
the standard Bayesian inference model reported in Turtle and Croft (1990). In order to deal
with various links in hypertexts as well as thesaurus relations, dependencies between nodes
(representing hyperlinks) and concepts (representing thesaurus links) are introduced to the
inference network. A deductive database approach based on probabilistic logics and possible
world semantics is probabilistic Datalog (Fuhr, 2000). Hypertext links can be considered in
form of rules, whereas probabilistic facts represent weighted index terms.

Web IR Beitzel et al. (2003) describe an approach which makes use of a rich representation of
Web documents, which includes, among others, the full text, titles, headers and anchors text of
referring pages. The evidence coming from these components is merged to calculate a combined
RSV. The approach is similar to the idea of augmentation applied here. Especially anchor texts
are interesting, since they are similar to annotations due to the fact that they directly refer
to the page a link points to. Following the ideas of Page et al. (1998) and Kleinberg (1998),
where the link structure is mined to extract evidence if a page is a good authority, also POLAR
basically supports the exploitation of such non-topical evidence found in the link structure.

Further hypertext approaches and a thorough discussion on hypertext IR can be found in
Agosti and Smeaton (1996).

4.4.1.2 Structured Document Retrieval

The hypertexts which are the underlying data structure of the approaches mentioned above
are not necessarily reflecting the logical structure of documents. Above approaches can thus
be applied on a wide range of hypertext containing structural links as well as inter-document
links (like, e.g. bibliographic references). In the 90s and especially with the emergence of XML
as a language to represent structured documents as well as data items, more methods focused
on structured document retrieval.
Structured documents are hypertexts as well, but with certain peculiarities. The report by

Chiaramella et al. (1996) presents a model for hypermedia documents (sometimes also referred
to as complex objects) most approaches for structured document and XML retrieval are based
upon. One important aspect of structured documents is that document components or subparts
are nodes in a hypertext connected by structural links reflecting the logical document struc-
ture. This way, such links establish an aggregation relation. Consider, for example, this thesis
which consists of parts, chapters, sections, subsections, subsubsections and finally paragraphs,
code snippets, figures and tables. Chapters aggregate sections and paragraphs, parts aggregate
chapters, and the whole thesis is an aggregation of chapters and parts. So in the hyperme-
dia model, the thesis as well as each part, each chapter etc. would be nodes in a hypertext
which are connected by structural links. Besides structural links, the model by Chiaramella
et al. also allows for other (intra- and inter-document) links; examples are references to other
document parts or the bibliographic references pointing to external documents. The document

84 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

model in POLAR, where we define documents as contexts, basically follows and extends this
hypermedia model. Both documents and annotations are regarded as structured documents
whose aggregation is modelled by the subpart relation. Knowledge augmentation aggregates
such subcontexts into supercontexts. POLAR goes beyond structured document retrieval by
also incorporating annotations into the aggregation.
As outlined before, POLAR is strongly related to POOL (Rölleke and Fuhr, 1996; Fuhr

and Rölleke, 1998; Rölleke, 1998; Fuhr et al., 1998). POOL is targeted at modelling complex
hypermedia objects and providing means for structured document retrieval. POLAR integrates
all POOL concepts like four-valued logics, probabilistic logics, object-oriented modelling with
terms, classifications and attributes, as well as aggregation of objects by means of access to
subcontexts allowing for knowledge augmentation.
Another knowledge modelling approach, also targeted at hypermedia and structured doc-

ument retrieval, is MIRTL (Meghini et al., 1993). MIRTL is based on terminological logic.
It is good at representing complex objects and complex queries, but lacks direct support of
important IR features like term weights and the calculation of a retrieval status value.
In recent years, many approaches for structured document retrieval were developed which

utilise the XML representation of the document base. The logical structure of documents
is given by the document type definition (DTD) or an XML schema definition; XML docu-
ments basically adhere to the hypermedia model above. XML retrieval emerged as a branch
of structured document retrieval. Many standard retrieval approaches were adapted in order
to consider the structural context of documents. For instance, Piwowarski et al. (2003) utilise
Bayesian inference networks for structured document retrieval to find a best entry point within
the document structure. They apply a flat retrieval function which calculates an initial RSV for
each document node and then use Bayesian inference to determine a best entry point. Other
approaches use language models for structured document retrieval (see, e.g., Ogilvie and Callan
(2004)). Abolhassani and Fuhr (2004) extend the divergence from randomness approach by in-
corporating a so-called third normalisation which introduces the level of a node in a structured
document (with a level of 1 for root node) as an additional parameter to the Inf2 function.
This makes the risk of accepting a term higher for lower levels, penalising nodes which are not
specific. Fuhr and Großjohann (2004) present XIRQL, an XML query language which addresses
the problem that common XML query languages do not offer any support for IR-oriented XML
querying. Within XIRQL, it is possible to pose content-and-structure queries to XML docu-
ments. Specificity-oriented search, aiming at returning only the most specific document nodes,
is supported by an augmentation strategy very similar to POLAR’s knowledge augmentation.
More approaches for structured document (especially XML) retrieval are reported in the

proceedings of INEX, the Initiative for the Evaluation of XML Retrieval (Fuhr et al., 2003,
2004, 2005, 2006, 2007). These proceedings also contain a thorough discussion about the task
itself and suitable evaluation measures.

4.4.1.3 Discussion Search

Discussion threads are made of newsgroup articles, emails or, as we have shown before, nested
annotations. In Section 4.1.4.1 we therefore identified discussion search as an important task
within annotation-based IR. The goal of discussion search is to find documents (newsgroup
articles, emails or annotations) whose own content satisfies the query. Focusing on a document’s
“own content” means that parts belonging to previous messages (in form of quoted text in emails
of newsgroup articles) are not considered as part of the document. Because POLAR also aims at

4.4 Related Work 85

supporting annotation-based discussion search, it is worth looking at related discussion search
approaches.
Xi et al. (2004) propose a feature-based discussion search approach based on linear regression

and support vector machines, respectively. A message’s content features (9 in total) comprise
the content of the message itself, the title’s content, the content of the root of the thread,
the ancestor, children, etc. For all these features, a ranking score is calculated according to
3 different ranking functions, so a document description contains 27 ranking scores (one score
for each combination of content features and ranking function). Some further features like the
number of descendants are added to the document description, together with certain author-
dependent features. Support vector machines and linear regression is used to train a function
which returns the final RSV for a message. While feature-based methods usually performed
well in IR, and the present one is no exception, their disadvantage is that they need a training
sample (documents with training queries and corresponding relevance judgements) to learn the
desired function.
Another approach not relying on a training sample utilises language models and thread-

based query expansion for discussion search (Balog et al., 2006). Discussion search was a
major task in the Enterprise Track of the Text Retrieval Conference (TREC) in 2005 and 2006.
The corresponding TREC proceedings (Voorhees and Buckland, 2005, 2006) introduce further
discussion search methods.

4.4.2 Annotation-based IR

While the approaches explained before can potentially be applied for annotation-based docu-
ment and discussion search, none of them addresses annotations directly. In fact, surprisingly
few annotation-based retrieval methods came up during the last decade.
Fraenkel and Klein (1999) identify annotations as an important source for retrieving relevant

texts, as they show with examples coming from the Bible and the Talmud. Their focus is on
the question how annotations are properly embedded in the main text in order to allow for
proximity search or, in other words: “How should we measure the distance between a word in
an embedded annotation and a word that occurs later in the main text?”. They discuss three
possible alternatives and corresponding implementation issues.
Golovchinsky et al. (1999) derive and expand full-text queries with terms contained in anno-

tated passages (the fragments in POLAR), based on the assumptions that these passages reflect
users’ interests more accurately. They compared the annotation-generated queries (considering
annotated fragments only) with those expanded by relevance feedback (considering whole rel-
evant documents). Experiments show that annotation-generated queries perform better than
those derived by relevance feedback. This result confirms the assumption that annotated frag-
ments reflect users’ interests quite well, and it pretty much motivated the introduction of
fragments into the POLAR framework.
Agosti and Ferro (2005) describe an approach for annotation-based document retrieval using

fusioning techniques. The underlying data structure is similar to the structured annotation
hypertext presented in Chapter 3; in fact, the definition of a structured annotation hypertext
was inspired by Agosti and Ferro’s definition of a document-annotation hypertext. In their
approach, a compound similarity score for annotations with respect to the given query is cal-
culated first, which recursively combines the score of an annotation itself and the score of its
successor nodes in the annotation thread. This score is used to calculate a document score
based on annotations alone. The annotation service knows all about annotations, their content
and metadata, and to which document they belong to, but nothing about the document content

86 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

itself. To get the content-based score of a document, the query is passed to the corresponding
digital library management system, which returns a document score using its own retrieval
routines. The document’s annotation-based score is then combined with its content-based
score by applying certain fusioning techniques. The data fusioning approach is supposed to be
integrated in the Flexible Annotation Service Tool (FAST), which offers an API for annotation-
based document retrieval as well as basic database- and content-oriented annotation querying
functions (Agosti and Ferro, 2006). Once integrated into FAST, the data fusioning approach
can handle the realistic situation that annotation services and document management services
are distributed and annotations are stored independently from the document repository. How-
ever, the approach lacks means to deal with some peculiarities of annotations, like positive and
negative annotations or meta and content ones. As an outlook, POLAR might be a candidate to
implement some of the database- and content-oriented annotation querying methods described
in (Agosti and Ferro, 2006).
Cabanac et al. (2007) present an interesting annotation approach which focuses on the social

validation of annotations. The underlying assumption is that an annotation makes sense when a
social group judges so. Such judgements are more or less implicitly contained within annotation-
based discussion threads. An annotation is socially validated when its arguments are confirmed
or refuted. The social validity measures the degree of confirmation or refutation. This value
is recursively calculated with the replies to an annotation and their social validity. It utilises
an in-depth analysis of objective and subjective data about annotations, deriving important
measures like the annotator’s expertise, whether she provided references and how many, the
comment type (modification, question or example) and the semantics of the annotator’s opinion
(confirmation and refutation). Cabanac et al. discuss three different methods to calculate social
validity. Social validity can support annotation-based retrieval in different ways; for example,
the content of a positive and socially validated annotation qualifies the annotated objects
as being trustworthy, whereas negative annotations attack the importance of the annotated
objects. POLAR basically supports these mechanisms: in augmentation, negative annotations
decrease term weights or retrieval status values, respectively, of the annotated objects, while
positive annotations increase them. We further considered positive (confirming) and negative
(refuting) annotations when talking about the trustworthiness of annotations in Section 4.3.8.
Nevertheless, the model proposed by Cabanac et al. provides a more sophisticated view on
social validity which can potentially be covered by modelling appropriate rules and facts in
POLAR.

4.5 Summary and Discussion

This chapter presented annotation-based knowledge modelling, querying and retrieval with
the POLAR framework. First an overview of information retrieval in general was given, and
then the POLAR framework was presented. POLAR is an extension of POOL; while the
latter focuses on modelling complex objects and on structured document retrieval, the former
extends this by introducing new concepts known from structured annotation hypertexts. In
POLAR, documents and annotations are complex objects which establish so-called contexts.
Propositions (terms, attributes and classifications) can be made within such contexts. For
example, the occurrence of a term in a document is a proposition made in the document’s
context. POLAR copes with different subcontext types, established by subparts, annotations,
fragments, merged targets and references. Within the global database contexts, assertions can
be made about objects (e.g., metadata) and global classes and IS-A relations can be modelled.

4.5 Summary and Discussion 87

POLAR offers certain expressions to query the underlying structured annotation hypertext. It
further supports the calculation of the implication probability P (d→ q). POLAR can deal with
four truth values, which is important for example to reflect contradictions in discussions. A
further important annotation attribute supported by POLAR is the polarity. One of POLAR’s
core concepts is knowledge augmentation, where a context is extended with the knowledge in its
subcontexts. For instance, the context of a document can be augmented with its annotations.
Knowledge augmentation combined with calculating P (d → q) allows for annotation-based
structured document retrieval on the one hand and is a tool for discussion search on the other.
Similar to knowledge augmentation, relevance augmentation propagates retrieval status values
from subcontexts to supercontexts. This strategy is more suitable if there is no access to the
document knowledge in distributed sources, but only to retrieval status values w.r.t. the given
query. Application examples show the flexibility and expressiveness of POLAR, its powerful
querying and retrieval facilities and the ability to exploit even non-topical information contained
in structured annotation hypertexts. While POLAR is aimed at annotation-based retrieval, it
combines and extends concepts known from hypertexts and structured document retrieval as
well as discussion search.

With POLAR, a framework is created which supports various information needs arising when
dealing with annotations. The goal was not only to define yet another solution to retrieve docu-
ments with the help of annotations (although this is the main focus of POLAR), but to provide
advanced knowledge modelling and querying mechanisms. A logic-based solution was chosen
since it allows for easy integration of additional knowledge into the retrieval process, as well as
modelling and querying the rich representation established by annotations and documents. It
further allows for the creation of flexible retrieval functions which are able to fully exploit the
information contained in structured annotation hypertexts which would otherwise be ignored
by “thinner” retrieval approaches. We cannot just reuse POOL for the task at hand since by
nature, POOL can only deal with trees as we find them when dealing with the logical document
structure. Modelling structured annotation hypertexts in POOL is not impossible, but would
be a tedious task. Only subsets of structured annotation hypertexts which have a tree-like
structure (e.g., documents with connected annotation threads, without references and only al-
lowing one annotation target) are supported by POOL directly. A document and a connected
annotation thread would then be regarded as a complex object in POOL. But even then certain
other crucial concepts like negative annotations or the distinction between content and meta
level annotations could only be supported indirectly with POOL (if at all).
The analogy of knowledge augmentation is that of a reader who reads the content of an

annotation or document and likes to know more. If it is not clear what the annotation is about,
the reader would refer the annotated parts to grasp the context an annotation was made
in. Knowledge augmentation does the same by accessing merged targets. The reader would
access content annotations to get different opinions about the topics or additional information
or interpretations – this is analogous to knowledge augmentation accessing annotations. The
reader would probably also consider highlighted parts as more important than non-highlighted
ones, so these fragments would raise her attention in a natural way. POLAR tries to reflect
this by accessing fragments during knowledge augmentation. If another object is referenced, a
reader would access it as well with a certain probability to gather additional information. This
is similar to knowledge augmentation following links to referenced objects. The exception are
meta annotations, which are excluded from knowledge augmentation since this would mix up
different levels – the meta and the content level.

88 4 Annotation-based Knowledge Modelling and Retrieval with POLAR

POLAR contexts contain information about which documents are referenced or by which
objects the document or annotation is annotated. Fragments give information about important
passages and merged annotation targets contain the parts of the objects an annotation refers
to. For example,

a1[t1<...> f1||...*a2|| @a3
a11[...] =>d1 ...]

models an annotation a1 (content not given here) as a complex object containing a subpart a11.
It has a merged annotation target t1, a fragment f1 (annotated by a2) and a meta annotation
a3. a1 references d1. Knowledge and relevance augmentation would now augment a1 to create
the augmented context a1(t1,f1,a2,a11,d1). Propositions from annotations, annotated parts,
fragments, subparts and referenced objects are propagated to the augmented context of a1,
so the current design of POLAR determines the direction in which knowledge is propagated
when performing augmentation. Since POLAR is an open system, possible extensions might be
introduced in the future. For example, instead of merging annotation targets and seeing them
as one virtual object, we might introduce each annotation target as an own subcontext. Or, in
addition to modelling which other objects an object references (a1 references d1 in the example
above), we might model directly if an object is referenced by another one (in the context d1,
we would then directly model that it is referenced by a1, which is not possible right now).
For the time being, POLAR supports propagation in the given directions, since the described
extensions would also mean more complex semantics and implementation.

In this chapter, we introduced POLAR informally and gave some application showcases. The
next chapter brings a formal definition of POLAR’s syntax and semantics.

5
POLAR Syntax and Semantics

Alles Gescheite ist schon gedacht
worden, man muß nur versuchen, es
noch einmal zu denken.

(Johann Wolfgang Goethe)

In the last chapter, we informally introduced the POLAR framework. We have seen that
POLAR allows for complex queries to the underlying structured annotation hypertext, imple-
menting advanced retrieval algorithms for annotation-based document and discussion search.
In this chapter, we are now going to specify POLAR’s syntax and semantics. We start with

a discussion of POLAR’s syntax. Based on the syntax, we give a semantic interpretation of
POLAR expressions. The semantics of POLAR is based on the notion of possible worlds and
modal logics. After presenting POLAR’s semantics, we discuss retrieval functions based on
uncertain inference, precisely the probability P (d→ q) that a document d implies a query q.

5.1 Syntax
We will now describe the syntax of POLAR programs. First, we start with the basic syntax,
which mainly describes the constructs used for modelling extensional knowledge. We then con-
tinue with the syntax of rules and queries. To describe the POLAR syntax, we use the extended
Backus-Naur-Form (EBNF), as specified in (International Organization for Standardization,
1996).

5.1.1 Basic Expressions

Figure 5.1 shows the basic syntax of POLAR programs, which we will now describe in more
detail.
A program consists of one or more clauses which can be a fact, a query, a rule, a context or

a predicate. Queries and rules are described in more detail in the next subsection.
A fact can be a proposition, the negation of a proposition (denoted by a preceding ’!’), or

a proposition with a weightlist. A proposition is a term, a classification (determined by the
class name and the ID of the classified object) or an attribute (consisting of the object the
attribute belongs to, the attribute name and the attribute value as a constant). A constant
might be an object ID, a number or any arbitrary string (all three are not further specified
here). A weight list consists of up to four weights ranging from 0 to 1. The first weight stands

90 5 POLAR Syntax and Semantics

program = clause {program};
clause = fact | query | rule | context | predicate;
context = obj-id "["

{mergedtarget} contextprogram "]";
mergedtarget = {weight} obj-id "<" factlist ">";
contextprogram = contextclause {contextprogram};
contextclause = fact | subpart | annoref | reference

| fragment;
subpart = {weight} obj-id "[" contextprogram "]";
fragment = {weight} obj-id "||" factlist {annoref} "||";
factlist = fact {factlist};
fact = proposition

| "!" proposition
| weightlist proposition;

annoref = contentannoref | metaannoref;
contentannoref = {weight} "*" obj-id

| {weight} "-*" obj-id;
metaannoref = {weight} "@" obj-id

| {weight} "-@" obj-id;
reference = {weight} "=>" obj-id;
proposition = term

| classname "(" obj-id ")"
| obj-id.attr-name "(" constant ")";

predicate = {weight} term-predicate
| {weight} class-predicate
| {weight} attr-predicate;

term-predicate = "◦" term;
class-predicate = "◦◦" classname;
attr-predicate = "◦◦◦" attr-name;
constant = obj-id | number | string;
weightlist = weight

| weight "/" weight
| weight "/" weight "/" weight
| weight "/" weight "/" weight "/" weight;

Figure 5.1: Basic POLAR syntax. See Fig. 5.2 for rules and queries.

for the probability of a proposition to be true, the second weight for false, the third one for
inconsistent and the last one for unknown.
Each POLAR object is modelled as a context. All such contexts consist of an object ID

identifying the object or clause, respectively. Each context may contain a merged target. A
merged target is a special context containing facts appearing in each target an annotation has.
Like any other context, a merged target is uniquely identified by an object ID.
There is a specific context program for each context, which is different from general pro-

grams. A context program contains context clauses, which can be facts, subparts, references
to annotations (so-called annorefs), references to other objects, or fragments. Subparts are the
subcomponents of structured objects; they do not have any merged target.
A fragment is another special context which is identified by an object ID. Since fragments

are areas created during the process of annotation, they are either linked to an annotation in
case they are the target of this annotation, or they can be the object a reference points to.

5.1 Syntax 91

In the former case they are strongly connected to exactly one annotation. In the latter case
they are not an annotated object. Therefore, fragments can contain at most one reference to
an annotation (annoref). An annoref denotes the reference to an annotation which annotates
the given context, and can be either a contentannoref or a metaannoref. A contentannoref
denotes the object annotating a context on the content level, whereas a metaannoref points
to an object annotating a context on the meta level. Both contentannoref and metaannoref
may have associated weights which determine the probability that the annotation is accessed
from the annotated context. An annoref can indicate that an annotation is negative w.r.t. the
given context (preceding ‘-’ sign). A reference denotes the fact that a context refers to another
object. Such references are used if annotations link two objects. Like annorefs, references also
may have a weight as access probability.
Merged targets, fragments and subparts are subcontexts of the context they appear in. An-

norefs and references turn the contexts they point to to subcontexts of the contexts they belong
to.
Predicates contain global values about the importance of specific terms, classes or attributes.

Although these values might be derived from collection statistics, in case of terms for exam-
ple by calculating the inverse document frequency, they may also be given explicitly by the
user. So in POLAR we offer means to define these weights explicitly. We distinguish between
term predicates, class predicates and attribute predicates. Predicates are further discussed in
Section 5.3.

5.1.2 Rules and Queries

Figure 5.2 shows the syntax of POLAR rules and queries. We will give a detailed description
now. A rule consists of a head as a goal and a subgoal list. A head may be a context goal with
an object and a so-called fact goal, or only a fact goal. An object in this syntax description
can be an object ID or a variable in place of an object ID. By convention, variables start
with capital letters, whereas object IDs start with small letters. A fact goal is an atom or its
negation. Atoms can be terms, classnames with a corresponding object (object ID or variable),
or attributes consisting of an object ID or variable, respectively, an attribute name and an
attribute value, which can be either a variable, an object ID or a constant. Similar to POOL
(Rölleke, 1998, p. 78), we avoid recursive context goals – the structured annotation hypertext
cannot be described by rules.
A query is a subgoal list preceded by the query mark “?-”.
A subgoal list is a list of subgoals outside contexts and separated by a ‘&’. There are many

possible kinds of subgoals. The first variant is a context clause with an instruction to perform
(knowledge) augmentation (‘//’). It consists of an object (again, an object ID or a variable)
and a special context subgoal list called csubgoal list. The second variant is composed of
an object and a context subgoal list only. The third kind of subgoal describes fragments as
subgoals, containing a fsubgoal list (special subgoal list for fragments). The next two variants
describe a retrieval function based on uncertain inference, where we seek for (augmented or
non-augmented) objects implying another object. Finally, a fact goal can be a subgoal as well.
Csubgoal lists are lists of csubgoals, which are another special kind of subgoal, here within

contexts. We introduce csubgoals because different kinds of subgoals are possible within con-
texts but not outside them. A csubgoal can be an annoref goal, a reference goal, a fact goal
or a fragment goal. Annoref goals describe objects annotating another object. We distinguish
between content and meta level annotations. For instance, “d[*A]” stands for all content level
annotations of d; “D[*a]” denotes all objects annotated by the content level annotation a.

92 5 POLAR Syntax and Semantics

rule = goal ":-" subgoallist;
query = "?-" subgoallist;
head = object "[" factgoal "]" | factgoal;
subgoallist = subgoal {"&" subgoallist};
subgoal = "//" object "[" csubgoallist "]"

| object "[" csubgoallist "]"
| object "||" fsubgoallist "||"
| object "->" obj-id
| "//" object "->" obj-id
| factgoal;

csubgoallist = csubgoal {"&" csubgoallist};
csubgoal = annorefgoal | referencegoal

| factgoal | fragmentgoal;
fsubgoallist = fsubgoal {"&" fsubgoal};
fsubgoal = factgoal | annorefgoal;
annorefgoal = "*" object | "@" object |

"-*" object | "-@" object;
referencegoal = "=>" object;
fragmentgoal = "||" object;
factgoal = atom | "!" atom;
atom = term

| classname "(" object ")"
| object.attr-name "(" attr-value ")";

object = obj-id | variable;
attr-value = obj-id | variable | constant;

Figure 5.2: Syntax of POLAR rules and queries

Similarly, reference goals describe objects referencing or being referenced by another object.
Fragment goals are used to look for fragments of an object or the object belonging to a given
fragment. Fsubgoal lists are similar to csubgoal lists, but only contain an annoref goal and fact
goals.

5.2 Semantics

In the last section we defined the syntax of POLAR.Now, we are going to discuss the semantics
of POLAR programs. We define formal semantics for two reasons: first, we can check if two
POLAR programs are equivalent by showing that each model of the first program is also a
model of the second one, and vice versa. Second, we are able to show whether or not an
implementation of POLAR behaves correctly.

The model is based on the notion of possible worlds, which we will explain first. Subse-
quently we define the semantics of basic POLAR programs. Afterwards we discuss knowledge
augmentation, i.e. the semantics of augmented contexts. Finally, we continue with queries and
rules.

5.2 Semantics 93

5.2.1 Possible Worlds

5.2.1.1 Introduction

Our formalism to describe the semantics is based on the possible worlds model as discussed by
Fagin et al. (1995). The basic idea is that of so-called agents which consider certain worlds
possible. Such possible worlds contain a set of propositions, which can be, in case of classic
two-valued logics, either true or false in a world. For example, consider two propositions ϕ1 and
ϕ2, then we obtain four possible worlds: w1 = {ϕ1, ϕ2}, w2 = {ϕ1}, w3 = {ϕ2} and w4 = {}.
In world w1, both propositions are true, whereas in w2, only ϕ1 is true and the closed world
assumption applies that ϕ2 is false (since it is not true). In w3, ϕ1 is false and ϕ2 true. In w3,
both propositions are false. It is now said that an agent K believes a proposition ϕ to be true
if ϕ is true in all worlds it considers possible from the current world. If, for example, the agent
K is in the (not further specified) world w0 and considers w1 and w2 possible, it knows that
ϕ1 is true, but has somewhat inconsistent information about ϕ2. Instead of saying “an agent
considers a world w possible”, we also say “an agent can reach or access a world w”. The worlds
an agent K considers possible from the current world are determined by accessibility relations
which state which worlds can be reached from a starting world by a certain agent.
Consider a real life example from the German football league Bundesliga, where Dortmund

and Schalke are famous teams. Let ϕ1=“Schalke won” and ϕ2=“Dortmund won” and w1, . . . , wn
as above. If Schalke and Dortmund did not play against each other and the matches are over,
all four worlds w1, . . . , w4 are possible and furthermore, our agent K is currently in one of these
four worlds (but may not know in which one in case the agent has not heard of the results yet).
So the agent considers all four worlds possible, which means that he actually does not know
if Schalke or Dortmund have won – in the case of Schalke, for example, our agent considers
worlds possible where Schalke won or not. If the agent would only consider worlds w1 and
w2 possible, where “Schalke won” is true, maybe because somebody told him the result of the
Schalke match, he would know that Schalke won, since this proposition is true in each world
the agent considers possible (can reach). But he would not know whether Dortmund won, since
the cases that Dortmund won and did not win are possible. If Dortmund and Schalke played
against each other, the case that both won is impossible; either one of them won or they played
a draw. So without further knowledge, our agent it either in w2, w3 or w4, but not w1, and
considers w2, w3 or w4 possible1.
The possible worlds model above can be extended by introducing probabilities as proposed

by Nilsson (1986). Here, each world has a probability assigned and the probability that a
proposition ϕ is true is determined by the sum of probabilities of all worlds in which ϕ is true
(given that all worlds are mutually exclusive). If we take our example above, let us assume
that from a (not further specified) world w0, our agent K considers each world possible with
a certain probability, for instance P (w1) = 0.3, P (w2) = 0.4, P (w3) = 0.2 and P (w4) = 0.1
(see Figure 5.4). If we refer to our Bundesliga example again (with Schalke and Dortmund
not playing against each other), then one of the four worlds must be actually occurring, and
all worlds are mutually exclusive. So the worlds describe disjoint events and their probability
sums up to 1. Given this information, what is the probability that ϕ1 is true? As ϕ1 is true in
w1 and w2, we obtain 0.3 + 0.4 = 0.7 as the probability that ϕ1 is true. The probability of ϕ2
being true is 0.3 + 0.2 = 0.5.

1The author clearly prefers world w2.

94 5 POLAR Syntax and Semantics

Figure 5.3: Worlds and accessibility relations of the football league example. The right hand
side denotes the situation that the two clubs played against each other.

Figure 5.4: Possible worlds with probabilities

5.2.1.2 Four Truth Values

In the above example we dealt with the traditional two truth values – a proposition is either
true or false in a world. In POLAR, we deal with four truth values – a proposition can either
be true, false, inconsistent or unknown in a world. A proposition is inconsistent, if we have
evidence that it is positive and negative. A proposition is unknown in case it is neither true
nor false.
Using inconsistent, we can deal with contradicting assertions in annotations. For example,

consider the POLAR program

d1[*a1 *a2]
a1[moon_made_of_cheese]
a2[!moon_made_of_cheese]

5.2 Semantics 95

Possible worlds ϕ1 ϕ2
w1 true true
w2 true false
w3 true inconsistent
w4 true unknown
w5 false true
w6 false false
w7 false inconsistent
w8 false unknown
w9 inconsistent true
w10 inconsistent false
w11 inconsistent inconsistent
w12 inconsistent unknown
w13 unknown true
w14 unknown false
w15 unknown inconsistent
w16 unknown unknown

Table 5.1: 16 possible worlds with four truth values and two propositions

where annotation a1 states that the moon is made of cheese, and a2 contradicts. A reader of
d1 has no knowledge about the question whether the moon is made of cheese when regarding
only d1. But if the reader considers all contexts d1, a1 and a2, which is the augmented context
d1(a1,a2), she gets inconsistent knowledge about the question whether the moon is made of
cheese or not.
Furthermore, the truth value unknown can be used for an open world assumption; here, the

absence of evidence that a proposition ϕ is true would not lead to the conclusion that it is
false, like it would be the case when assuming a closed world, but it would simply be assigned
the value unknown. As argued in (Rölleke, 1998, p. 24), the open world assumption is more
reasonable in IR because term indexing is by nature incomplete – if a (human or automatic)
indexer does not assign a term to a document, this does not necessarily mean that the document
must not be indexed with that term. In that case, we would give this term the value false only
if we were sure that the document cannot be indexed with it.
In the possible worlds model, if we have n truth values and m propositions, then there can

be mn possible worlds. In the above case of two propositions ϕ1 and ϕ2 and two truth values,
we obtained four possible worlds. In the case of four truth values and two propositions, we get
16 possible worlds, as can be seen in Table 5.1.

Weight Lists and Truth Values In the description of the POLAR syntax in Figure 5.1 we
introduced weight lists to convey four-valued probabilities. The four truth values defined in
a weight list are all disjoint and sum up to 1. If only one weight is given, we take it as the
probability that the corresponding proposition is true; the difference of this probability to 1
denotes the probability of the truth value unknown. For example, “0.7 ϕ” means that ϕ is true
with 0.7 probability and unknown with a probability of 0.3. The second weight is the probability
that the proposition is false. For instance, “0.7/0.1 ϕ” means that ϕ is true with 0.7 probability,
false with 0.1 probability and unknown with a probability of 0.2 (1 − (0.7 + 0.1)). The third

96 5 POLAR Syntax and Semantics

weight gives the probability that the proposition is inconsistent. Therefore, “0.7/0.1/0.2 ϕ”
means that ϕ is true with 0.7 probability, false with 0.1 probability and inconsistent with a
probability of 0.2. As the difference to 1 is 0, the proposition is not unknown in this case.
Additionally, the expression “! ϕ” means “0/1 ϕ”, and “ϕ” is a shortcut for “1 ϕ”.

We will now continue with a discussion of POLAR’s semantics for the basic knowledge
modelling as shown in Figure 5.1. Afterwards we will discuss knowledge augmentation, i.e., the
semantics of augmented contexts, and go on with rules and queries.

5.2.2 Basic Knowledge Modelling

To describe the semantics of basic POLAR programs, we apply the definitions and notions
known from modal logics, using possible worlds and accessibility relations like explained above.
From POOL we borrow the idea of regarding subparts as subcontexts. Additionally in POLAR,
annotations, merged targets and fragments are seen as subcontexts w.r.t. the object they belong
to, and so are references (or precisely: the referenced objects). For instance, the case that an
annotation is accessed from a document is seen as accessing a subcontext (the annotation)
from a supercontext (the document). The basic idea to describe our semantics is to regard
each named context as an agent who can reach possible worlds. For example, the expression
“d1[...]” would mean that an agent d1 reaches a set of possible worlds which is determined
by the content of the context d1. Similarly, “f1||...||” describes an agent f1 which reaches
certain possible worlds, “t1<...>” says that agent t1 reaches some worlds, “*a1” or “@a1”
means agent a1 reaches certain worlds, and finally “=>r1” describes the worlds an agent r1
considers possible from the given context. If ϕ is a (non-probabilistic) proposition, then d1[ϕ]
means that d1 believes or considers ϕ to be true. While Fagin et al. (1995) talk of agents which
consider worlds possible or not, it is here contexts which access possible worlds. In the following,
we say contextagents when we mean agents which reach and access worlds and which represent
contexts, and stick to the notion of contexts if we mean a context in a POLAR expression. So
if we say “from context d1, subcontext s1 is accessed”, we mean “contextagent d1 can reach
worlds from which contextagent s1 can reach other worlds” on the semantic level.
We will commence with the introduction of our probabilistic interpretation structure, which

is based on Kripke structures used in modal logic. We present special propositions which encode
the relation type (e.g., a subpart or content annotation relation). We then continue with the
interpretation of basic POLAR programs, which includes the notion of validity, context-validity
and context-seriality and the discussion of required constraints. All this leads to the definition
of an interpretation structure M to be a model of a POLAR program P , which is denoted as
M |= P . Making our way through it all, we illustrate many structures and give examples.

5.2.2.1 Interpretation Structure

We start with a formal definition of the interpretation structure underlying our further con-
siderations. First, we repeat the definition of a probability space (see e.g. (Storch and Wiebe,
1989, p. 157ff.)).

5.2 Semantics 97

Definition 4 (Probability space):
A probability space is a tuple (Ω, H, µ). Ω is a set of basic events, H is a so-called σ-algebra
of Ω (a set of subsets of Ω closed under union and complement). µ : Ω → [0, 1] is a
probability mass function, which means: ∀w ∈ Ω: µ(w) ≥ 0 and

∑
w∈Ω µ(w) = 1.

For the sake of simplicity, we define µ also as a function µ : H → [0, 1] which assigns a
probability to each subset A ∈ H:

∀A ∈ H : µ(A) :=
∑
w∈A

µ(w).

Our interpretation structure is the same as the one proposed in (Rölleke, 1998, p. 51) and
Fagin and Halpern (1994) as a probabilistic extension of Kripke structures.

Definition 5 (Probabilistic interpretation structure):
A probabilistic interpretation structure M is a tuple

M = (W,π,R, P)

where W is a finite set of possible worlds and π is a truth value assignment function which
assigns a truth value to each proposition in a given world w ∈W :

π(w) : Φ −→ {true, false, inconsistent, unknown}

with Φ as the set of propositions.
For a set of contextagents Λ = {a1, . . . , an}, R = {Ra1 , . . . , Ran} is a set of binary

accessibility relations on W . For a tuple (w,w′) ∈ Rai we say that contextagent ai reaches
or accesses world w′ from world w. To refer to the set of worlds which can be reached by
a contextagent ai from a world w through an accessibility relation, we define

Rai(w) := {w′|(w,w′) ∈ Rai}.

P is a function that assigns a probability space (Wai,w, Hai,w, µai,w) to each contextagent
ai ∈ Λ and world w. Wai,w is a subset of W and it is Wai,w = Rai(w); µai,w(w′) is thus the
probability that ai accesses a world w′ ∈Wai,w from w.

In contrast to POOL, where we only deal with one subcontext and therefore one relation type,
we cope with a range of relation and subcontext types in POLAR. But the set of accessibility
relations R only contains information about the relations, but not their type. In order to
distinguish between different relation types, we now introduce special propositions.

Definition 6 (Special propositions for relation types):
In order to distinguish between the relation types subpart, merged annotation target, frag-
ment, (positive and negative) content annotation, (positive and negative) meta annotation
and reference, we introduce the following special propositions:

98 5 POLAR Syntax and Semantics

_subpart(sp) This proposition is used if we want to denote that subcontext sp is reached
via a subpart relation.

_mtarget(mt) This proposition is used if subcontext mt is a merged annotation target.

_fragment(fr) This proposition is used if subcontext fr is a fragment.

_canno(ca) This proposition is true in case the subcontext ca is a content annotation.

_negcanno(ca) means that subcontext ca is a negative content annotation.

_manno(ma) stands for the case that the subcontext ma is a meta level annotation.

_negmanno(ma) says that the subcontext ma is a negative meta level annotation.

_reference(rf) denotes that subcontext rf is a referenced object.

Each of these propositions underlies a closed world assumption, and we only allow the two
truth values true and false for them. If, for example, _subpart(sp) is not true, this
automatically means that _subpart(sp) is false.

One constraint needs to be defined regarding the uniqueness and consistency of the access
relation type. We disallow that an agent can reach a subcontext from a given context through
more than one relation type, e.g. something like

d[*a @a]
d[*a a[]]

is forbidden.

Constraint 7 (Relation type consistency): In all worlds w reachable from a world w0 by
a contextagent d, if there is a relation type proposition regarding another context c, then
c’s relation type must be consistent. This means that there exists no other sister world w′

reachable from a world w0 by a contextagent d so that c has another relation type in w′, but
in each of these sister worlds the same relation type for c is true as in w. More formally,
∀(w,w′ ∈ Rd(wo), c ∈ Λ):

π(w)(_subpart(c)) = true =⇒
π(w′)(_mtarget(c)) = false ∧ π(w′)(_canno(c)) = false ∧
π(w′)(_negcanno(c)) = false ∧ π(w′)(_manno(c)) = false ∧
π(w′)(_negmanno(c)) = false ∧ π(w′)(_reference(c)) = false ∧
π(w′)(_fragment(c)) = false ∧ π(w′)(_subpart(c)) = true

5.2 Semantics 99

π(w)(_mtarget(c)) = true =⇒
π(w′)(_mtarget(c)) = true ∧ π(w′)(_canno(c)) = false ∧
π(w′)(_negcanno(c)) = false ∧ π(w′)(_manno(c)) = false ∧
π(w′)(_negmanno(c)) = false ∧ π(w′)(_reference(c)) = false ∧
π(w′)(_fragment(c)) = false ∧ π(w′)(_subpart(c)) = false

π(w)(_canno(c)) = true =⇒
π(w′)(_mtarget(c)) = false ∧ π(w′)(_canno(c)) = true ∧
π(w′)(_negcanno(c)) = false ∧ π(w′)(_manno(c)) = false ∧
π(w′)(_negmanno(c)) = false ∧ π(w′)(_reference(c)) = false ∧
π(w′)(_fragment(c)) = false ∧ π(w′)(_subpart(c)) = false

π(w)(_negcanno(c)) = true =⇒
π(w′)(_mtarget(c)) = false ∧ π(w′)(_canno(c)) = false ∧
π(w′)(_negcanno(c)) = true ∧ π(w′)(_manno(c)) = false ∧
π(w′)(_negmanno(c)) = false ∧ π(w′)(_reference(c)) = false ∧
π(w′)(_fragment(c)) = false ∧ π(w′)(_subpart(c)) = false

π(w)(_manno(c)) = true =⇒
π(w′)(_mtarget(c)) = false ∧ π(w′)(_canno(c)) = false ∧
π(w′)(_negcanno(c)) = false ∧ π(w′)(_manno(c)) = true ∧
π(w′)(_negmanno(c)) = false ∧ π(w′)(_reference(c)) = false ∧
π(w′)(_fragment(c)) = false ∧ π(w′)(_subpart(c)) = false

π(w)(_negmanno(c)) = true =⇒
π(w′)(_mtarget(c)) = false ∧ π(w′)(_canno(c)) = false ∧
π(w′)(_negcanno(c)) = false ∧ π(w′)(_manno(c)) = false ∧
π(w′)(_negmanno(c)) = true ∧ π(w′)(_reference(c)) = false ∧
π(w′)(_fragment(c)) = false ∧ π(w′)(_subpart(c)) = false

π(w)(_fragment(c)) = true =⇒
π(w′)(_mtarget(c)) = false ∧ π(w′)(_canno(c)) = false ∧
π(w′)(_negcanno(c)) = false ∧ π(w′)(_manno(c)) = false ∧
π(w′)(_negmanno(c)) = false ∧ π(w′)(_reference(c)) = false ∧
π(w′)(_fragment(c)) = true ∧ π(w′)(_subpart(c)) = false

100 5 POLAR Syntax and Semantics

π(w)(_reference(c)) = true =⇒
π(w′)(_mtarget(c)) = false ∧ π(w′)(_canno(c)) = false ∧
π(w′)(_negcanno(c)) = false ∧ π(w′)(_manno(c)) = false ∧
π(w′)(_negmanno(c)) = false ∧ π(w′)(_reference(c)) = true ∧
π(w′)(_fragment(c)) = false ∧ π(w′)(_subpart(c)) = false

If c is declared as being a subpart in w, then it must not be declared as something else in a
sister world w′ of w or in w itself. The same holds for the other relation types.

2

5.2.2.2 Interpretation of Basic POLAR Programs

Our goal is to define a suitable interpretation structure for the basic POLAR syntax as de-
scribed in Figure 5.1. For this we have to show that a probabilistic interpretation structure
M as defined in Definition 5 is a model of the given POLAR program. To do so, we use the
notation “(M,w) |= expr” to denote that a POLAR expression expr is true with respect to the
interpretation structure M and a world w.

Interpretation of Probabilistic Propositions For a proposition ϕ, (M,w) |=t ϕ means that ϕ
is true with respect to interpretation M and world w. Similarly, we define |=f for false, |=i for
inconsistent and |=u for undefined. We then obtain the same interpretation of propositions as
in Rölleke (1998):

Definition 7 (Interpretation of propositions):
The interpretation of propositions in a world w is defined using the truth value assignment
function in that world:

(M,w) |=t ϕ ⇐⇒ π(w)(ϕ) = true
(M,w) |=f ϕ ⇐⇒ π(w)(ϕ) = false
(M,w) |=i ϕ ⇐⇒ π(w)(ϕ) = inconsistent
(M,w) |=u ϕ ⇐⇒ π(w)(ϕ) = unknown

Based on this, we can now define the interpretation of probabilistic propositions
within the different kinds of POLAR contexts. Such propositions are, for example,
“d[0.2/0.7 foo]” for (sub)parts, but also “f|| 0.3/0.2/0.2 bar ||” for fragments
and “m< 0.3 foobar >” for merged annotation targets. Let pt be the probability that the
truth value true is assigned (similarly for pf , pi and pu). We then define the interpretation of
probabilistic propositions in contexts as follows:

5.2 Semantics 101

Definition 8 (Interpretation of prob. propositions in contexts):
For subpart contexts, we define

(M,w) |= d[pt/pf/pi/pu ϕ]⇐⇒
pt = µd,w({w′|(M,w) |=t _subpart(d) ∧

w′ ∈ Rd(w) ∧ (M,w′) |=t ϕ}) and
pf = µd,w({w′|(M,w) |=t _subpart(d) ∧

w′ ∈ Rd(w) ∧ (M,w′) |=f ϕ}) and
pi = µd,w({w′|(M,w) |=t _subpart(d) ∧

w′ ∈ Rd(w) ∧ (M,w′) |=i ϕ}) and
pu = µd,w({w′|(M,w) |=t _subpart(d) ∧

w′ ∈ Rd(w) ∧ (M,w′) |=u ϕ})

The probabilities pt, pf , pi and pu are the sum over the probabilities of the possible worlds,
reachable by a subpart relation, where the proposition is assigned the corresponding truth
value.
In a similar manner, we define the interpretation of probabilistic propositions in merged

annotation targets:

(M,w) |= m<pt/pf/pi/pu ϕ>⇐⇒
pt = µm,w({w′|(M,w) |=t _mtarget(m) ∧

w′ ∈ Rd(w) ∧ (M,w′) |=t ϕ}) and
pf = µm,w({w′|(M,w) |=t _mtarget(m) ∧

w′ ∈ Rd(w) ∧ (M,w′) |=f ϕ}) and
pi = µm,w({w′|(M,w) |=t _mtarget(m) ∧

w′ ∈ Rd(w) ∧ (M,w′) |=i ϕ}) and
pu = µm,w({w′|(M,w) |=t _mtarget(m) ∧

w′ ∈ Rd(w) ∧ (M,w′) |=u ϕ})

This time, we only consider worlds reached via a merged target relation.
For propositions in a fragment we define

(M,w) |= fr||pt/pf/pi/pu ϕ||⇐⇒
pt = µfr,w({w′|(M,w) |=t _fragment(fr) ∧

w′ ∈ Rd(w) ∧ (M,w′) |=t ϕ}) and
pf = µfr,w({w′|(M,w) |=t _fragment(fr) ∧

w′ ∈ Rd(w) ∧ (M,w′) |=f ϕ}) and
pi = µfr,w({w′|(M,w) |=t _fragment(fr) ∧

w′ ∈ Rd(w) ∧ (M,w′) |=i ϕ}) and
pu = µfr,w({w′|(M,w) |=t _fragment(fr) ∧

w′ ∈ Rd(w) ∧ (M,w′) |=u ϕ})

102 5 POLAR Syntax and Semantics

In the definition above, we used the phrase “reachable by a subpart relation”. If we say that
a world w′ is reachable by a subpart (or any other of the relation types) relation from another
world w by an agent a, we precisely mean: (M,w) |=t _subpart(a) and w′ ∈ Ra(w) (exchange
“_subpart(a)” with an appropriate special proposition in case of other relation types).

Figure 5.5: Example interpretation of “d[pt/pf/pi/pu ϕ]”. ϕt means “ϕ is true”. Analogously
for ϕf and ϕi.

Example 4 (Probabilistic propositions in contexts): Fig. 5.5 shows an example inter-
pretation of probabilistic propositions, here in a subpart context. ϕ is true in the worlds w′1
and w′2, false in w′3 and inconsistent in w′4. According to the definition, the probabilities in
this example calculate as follows: pt = p1 + p2, pf = p3 and pi = p4. We can think of similar
examples for merged targets and fragments. 2

Global Database Context We regard all propositions as being embedded in a context. This
leads to one problem. Consider the POLAR program

document(d1)

which consists of the proposition that d1 is a document. In which context is this proposition
made? Propositions like the one above are defined outside any document or annotation, so we
regard them as a kind of global database knowledge. We therefore define a special database
context which we call db-context and which is accessed by the agent db. The above proposition
is thus a shortcut for db[document(d1)].

Probabilistic Access We defined the semantics for propositions in a context. But what does
it mean in our model to access a subcontext with a certain probability (which we called the
access probability)? This is subject to discussion now.
Syntactically, probabilistic access is expressed in different ways. Subparts, fragments and

merged targets have exactly one supercontext they are accessed from, so we could encode
them and their content in expressions like “d[0.4 s[...]]”, ‘d[0.1 f||...||]” or
“d[0.6 m<...>]”. With annotations and references, this is a different story, since theo-
retically, an annotation can annotate more than one target respectively an object may be

5.2 Semantics 103

referenced by more than one annotation. This is the reason why the access to these subcon-
texts is expressed with a different syntax like “d[0.4 *a]”, “d[0.5 @a]” or “d[0.6 =>o]”,
which may remind one of a more pointer-oriented syntax as it is found in certain programming
languages like C.
We continue with a definition of probabilistic access in annotations and references and then

present merged targets, fragments and subparts.

Definition 9 (Probabilistic access (annotations and references)):
Let p be the access probability. For content and meta annorefs and for references in subparts
we define

(M,w) |= d[p *a] ⇐⇒ p = µd,w({w′|(M,w) |=t _subpart(d) ∧ w′ ∈ Rd(w) ∧
(M,w′) |=t _canno(a) ∧Ra(w′) 6= ∅})

(M,w) |= d[p -*a] ⇐⇒ p = µd,w({w′|(M,w) |=t _subpart(d) ∧ w′ ∈ Rd(w) ∧
(M,w′) |=t _negcanno(a) ∧Ra(w′) 6= ∅})

(M,w) |= d[p @a] ⇐⇒ p = µd,w({w′|(M,w) |=t _subpart(d) ∧ w′ ∈ Rd(w) ∧
(M,w′) |=t _manno(a) ∧Ra(w′) 6= ∅})

(M,w) |= d[p -@a] ⇐⇒ p = µd,w({w′|(M,w) |=t _subpart(d) ∧ w′ ∈ Rd(w) ∧
(M,w′) |=t _negmanno(a) ∧Ra(w′) 6= ∅})

(M,w) |= d[p => o] ⇐⇒ p = µd,w({w′|(M,w) |=t _subpart(d) ∧ w′ ∈ Rd(w) ∧
(M,w′) |=t _reference(a) ∧Ro(w′) 6= ∅}).

From a context d, content annotation a is accessed with probability p iff p is the sum of
the probabilities of all worlds that

• contextagent d reaches from w through a subpart relation and

• from which contextagent a reaches at least one world through a content annotation
relation.

The access of negative and meta annotations, and references is defined analogously.
A similar definition applies for fragments:

(M,w) |= fr||p *a|| ⇐⇒ p = µfr,w({w′|(M,w) |=t _fragment(fr) ∧ w′ ∈ Rfr(w) ∧
(M,w′) |=t _canno(a) ∧Ra(w′) 6= ∅})

(M,w) |= fr||p -*a|| ⇐⇒ p = µfr,w({w′|(M,w) |=t _fragment(fr) ∧ w′ ∈ Rfr(w) ∧
(M,w′) |=t _negcanno(a) ∧Ra(w′) 6= ∅})

(M,w) |= fr||p @a|| ⇐⇒ p = µfr,w({w′|(M,w) |=t _fragment(fr) ∧ w′ ∈ Rfr(w) ∧
(M,w′) |=t _manno(a) ∧Ra(w′) 6= ∅}).

(M,w) |= fr||p -@a|| ⇐⇒ p = µfr,w({w′|(M,w) |=t _fragment(fr) ∧ w′ ∈ Rfr(w) ∧
(M,w′) |=t _negmanno(a) ∧Ra(w′) 6= ∅}).

Note that fr is only defined as a subcontext of another context, as fragments are always
parts of documents. Nevertheless, we need the above definition later. Access to annotations
or references is not defined for merged annotation targets, so we do not need a definition
for this case.

104 5 POLAR Syntax and Semantics

We now define the probabilistic access to merged annotation targets, subparts and fragments.
We start with merged annotation targets and fragments.

Definition 10 (Probabilistic access (merged targets and fragments)):
Factlists are used as the content of both merged targets and fragments. Factlists consist of
facts, which are propositions with a weightlist. Let factlist∗ be the set of facts in a factlist.
We then define:

(M,w) |= d[p m<factlist>]⇐⇒
p = µd,w({w′|(M,w) |=t _subpart(d) ∧ w′ ∈ Rd(w)∧

∀fact ∈ factlist∗ : (M,w′) |= m<fact>∧
(M,w′) |=t _mtarget(m) ∧Rm(w′) 6= ∅})

An interpretation structure M is a model of d[p m<factlist>] with respect to the world w
iff p is the probability of all worlds w′ which

• can be accessed by d through a subpart relation from w and

• for which (M,w′) is a model of each fact in the merged annotation target m (see
Def. 8) and

• from which contextagent m can reach other worlds through a merged target relation,
which means that d must know that m is a merged target and Rm(w′) is not empty.

With a similar argumentation we define for the access to fragments containing a fact list:

(M,w) |= d[p fr||factlist annoreflist||]⇐⇒
p = µd,w({w′|(M,w) |=t _subpart(d) ∧ w′ ∈ Rd(w)∧

∀fact ∈ factlist∗ : (M,w′) |= fr||fact||∧
∀annoref ∈ annoreflist∗ : (M,w′) |= fr||annoref ||∧
(M,w′) |=t _fragment(fr) ∧Rfr(w′) 6= ∅})

Besides a fact list, fragments can also contain up to one annoref. This annoref is stored
in an annoreflist, which can contain 1 or 0 annorefs. Similar to factlist∗, annoreflist∗ is
the set of annorefs in the annoreflist. Annorefs are either (positive or negative) content or
meta annotation references with an access probability. (M,w) is a model of d[p fr||factlist
annoref||] iff p is the probability of all worlds w′ which can be accessed by d from w and
for which (M,w′) is a model of each fact in the fragment fr and of the annoref in fr (see
Def. 9).

The content of a subpart is a special contextprogram, which can contain subparts again. So
our definition of probabilistic access for subparts is recursive.

5.2 Semantics 105

(a) Subpart to content annotation: d[p *a] (b) Fragment to content annotation: fr||p *a||

(c) Subpart to merged target: d[p m<...>] (d) Subpart to subpart: d[p s[...]]

Figure 5.6: Examples of probabilistic access. p = p1 + p2 in all cases.

Definition 11 (Probabilistic access (subparts)):
A contextprogram contains contexclauses, which can be facts, annorefs, references, frag-
ments or subparts. Let contextprogram∗ be the set of contextclauses appearing in the
contextprogram. We define:

(M,w) |= d[p s[contextprogram]]⇐⇒
p = µd,w({w′|(M,w) |=t _subpart(d) ∧ w′ ∈ Rd(w)∧

∀contextclause ∈ contextprogram∗ : (M,w′) |= s[contextclause] ∧
(M,w′) |=t _subpart(s) ∧Rs(w′) 6= ∅})

Example 5 (Probabilistic access): Figure 5.6 shows four examples of probabilistic access
and snippets of their corresponding interpretation structure. 2

Inconsistent Belief In the definitions 9 to 11, when calculating µ, we only considered worlds
which can reach other worlds through an appropriate relation (for example, in Def. 11 we
required Rs(w′) 6= ∅). What happens in the case that we reach a world w from which a
contextagent d does not reach any other world, so that Rd(w) = ∅? In (Rölleke, 1998, p. 37),
this case is called inconsistent belief – in a world where an agent does not reach any other
world (including the world the agent currently is in), it believes in every possible truth value

106 5 POLAR Syntax and Semantics

for propositions and every possible access2. So in a world w with Rd(w) = ∅, it is (M,w) |=
d[pϕ] and also (M,w) |= d[q ϕ], with p 6= q. Inconsistent belief is useful for defining valid
knowledge, i.e. knowledge which is true in every world.

Validity of POLAR Programs Following Fagin et al. (1995), we define the validity of expres-
sions. An expression is valid in an interpretation structure M if it is true w.r.t. all M ’s worlds.

Definition 12 (Validity):
For each expression expr, we say that expr is valid in M if ∀w ∈ W : (M,w) |= expr. In
this case we write M |= expr.

Based on the definitions above, we formulate our first requirement for a structure M to be
model of a POLAR program P , which says that db[P] must be true in all worlds w.r.t. M :

Constraint 8 (Validity of POLAR programs): If M is a model of a POLAR program P ,
denoted as M |= P , then db[P] must be valid w.r.t. M :

M |= P =⇒M |= db[P].

db is the global database context defined above. 2

Note that the validity of db[P] is possible due to inconsistent belief – in worlds w with Rdb(w) =
∅, the contextagent db considers everything possible.

Before discussing further requirements, we give another example.

Example 6 (Interpretation structures): Consider the following POLAR program P :

d1[foo *a1]
a1[!foo]
foo

Now consider 4 possible worlds W = {wroot, w0, w1, w2} with

π(w0)(_subpart(d1)) = true
π(w0)(_subpart(a1)) = true

π(w0)(foo) = true
π(w1)(_canno(a1)) = true

π(w1)(foo) = true
π(w2)(foo) = false

2Inconsistent belief is not to be mixed up with the truth value inconsistent

5.2 Semantics 107

(in wroot, every proposition is unknown) and the following accessibility relations

R
(1)
db = {(wroot, w0)}

R
(1)
d1 = {(w0, w1)}

R
(1)
a1 = {(w0, w2), (w1, w2)}

R
(2)
db = {(wroot, w0), (w2, w1)}

R
(2)
d1 = {(w0, w1)}

R
(2)
a1 = {(w0, w2), (w1, w2)}

R
(3)
db = {(wroot, w0)}

R
(3)
d1 = ∅

R
(3)
a1 = {(w0, w2)}

We define 3 interpretation structures M1,M2 and M3 as:

M1 = (W,π, {R(1)
db , R

(1)
d1 , R

(1)
a1 }, P r)

M2 = (W,π, {R(2)
db , R

(2)
d1 , R

(2)
a1 }, P r)

M3 = (W,π, {R(3)
db , R

(3)
d1 , R

(3)
a1 }, P r)

(Pr assigns the probability 1 to each relation). The 3 interpretation structures are depicted in
Fig. 5.7. 2

Figure 5.7: Three interpretation structures

In which of the structures is the above POLAR program valid? It is valid in M1, since
(M,wroot) |= db[P] and in w0, w1 and w2, contextagent db considers everything possible
(due to inconsistent belief), so our program is true here as well. This means that P is valid
in M1. But P is not valid in M2. The problem here is the world w2. Here, db[foo] and
db[_canno(a1)] are true, but this also means that db[P] is not true in this world, making P
invalid w.r.t. M2. An interesting case is M3 because surprisingly, db[P] is valid here. We can
also see that (M,w0) |= d1[foo *a1] due to the inconsistent belief contextagent d1 has in w0.
Can we conclude that M3 is a good candidate for being a model of our program P? If we argue

108 5 POLAR Syntax and Semantics

like that, then even a structure M with empty accessibility relations (Ra = ∅ ∀contextagent a)
would be a candidate for a model, since P is valid here as well! It is easy to see that this
would lead to very absurd interpretation structures which are useless in the end, so we have to
formulate another constraint, besides validity, for models of POLAR programs.

Constraint 9 (Existence of accessibility relations): For each contextagent a ∈ Λ appear-
ing in a POLAR program (including the db-agent), Ra 6= ∅ holds. 2

This constraint excludes M3 from the list of candidate models for the POLAR program.
In Example 6, we introduced a world wroot. This world is needed as a starting point from

which the db-agent reaches possible worlds. We will thus use this world in a similar way in our
further considerations. Per default, all propositions are unknown in wroot.
While inconsistent belief helped us in the example above to make sure that db[P] is valid

w.r.t. an interpretation structure M (M |= db[P]), inconsistent belief has some side effect
which needs to be handled as well. In particular, we are talking about context-validity and
context-seriality.

Context-Validity Consider our POLAR program in Example 6 again. If we take the interpre-
tation structureM1, then, e.g., d1[foo] is valid (in w0 d1 reaches a world where foo is true, in any
other world d1 considers everything possible). This means that for example in wo, a1 reaches
worlds in which d1[foo] is true, so (M1, w0) |= a1[d1[foo]], which according to Definition 11
implies:

1 = µa1,w0({w′|(M,w0) |=t _subpart(d) ∧ w′ ∈ Ra1(w0)∧
(M,w′) |= d1[foo] ∧
(M,w′) |=t _subpart(d1) ∧Rd1(w′) 6= ∅})

which says “if there are worlds w′ according to the conditions above, then the sum of their
probabilities must be 1”. Since there are no such worlds ((M,w2) 6|=t _subpart(d1) and
Rd1(w2) = ∅), this implication still holds. a1[d1[foo]] is even valid in M , as we can easily
check. This contradicts the logical structure of subcontexts we find in P , where a1 is a subcon-
text of d1, but not the other way round. Following the discussion in (Rölleke, 1998, pp. 36), we
introduce the notion of context-validity. But before we have to (informally) define a function
sub which yields the set of direct subcontexts for a supercontext. For example, consider the
program

d1[s1[] s2[s21[]] f1 ||*a1||]
a1[a12[]]

Here, sub(db) = {d1, a1} and sub(d1) = {s1, s2, f1, a1} (due to fragment permeability, see
below). Furthermore, sub(a1) = {a12}, sub(f1) = {a1} and sub(s2) = {s21}.

5.2 Semantics 109

Definition 13 (Context-validity):
With the help of the sub function, we define the context-validity |=C :

M |=C d[p s[pt/pf/pi/puϕ]] ⇐⇒ M |= d[p s[pt/pf/pi/puϕ]] and s ∈ sub(d)
M |=C d[p m<pt/pf/pi/puϕ>] ⇐⇒ M |= d[p m<pt/pf/pi/puϕ>] and m ∈ sub(d)
M |=C d[p f||pt/pf/pi/puϕ||] ⇐⇒ M |= d[p f||pt/pf/pi/puϕ||] and f ∈ sub(d)

M |=C d[p *a] ⇐⇒ M |= d[p *a] and a ∈ sub(d)
M |=C d[p -*a] ⇐⇒ M |= d[p -*a] and a ∈ sub(d)
M |=C d[p @a] ⇐⇒ M |= d[p @a] and a ∈ sub(d)
M |=C d[p -@a] ⇐⇒ M |= d[p -@a] and a ∈ sub(d)
M |=C d[p =>r] ⇐⇒ M |= d||p =>r|| and r ∈ sub(d)
M |=C f||p *a|| ⇐⇒ M |= f||p *a|| and a ∈ sub(f)
M |=C f||p -*a|| ⇐⇒ M |= f||p -*a|| and a ∈ sub(f)
M |=C f||p @a|| ⇐⇒ M |= f||p @a|| and a ∈ sub(f)
M |=C f||p -@a|| ⇐⇒ M |= f||p -@a|| and a ∈ sub(f)

An expression is context-valid if it is valid and follows the subcontext relations.

According to this definition, d1[a1[!foo]] is context-valid in M1 in Example 6, but a1[d1[foo]]
is not. So M |= a1[d1[foo]], but M 6|=C a1[d1[foo]]

Context-Seriality We refer to Example 6 again. Let us assume an interpretation structure
M4 = (W,π, {R(4)

db , R
(4)
d1 , R

(4)
d1 }) with R(4)

db = {(wroot, w0)}, R(4)
d1 = {(w0, w1)}, R(4)

a1 = {(w0, w2)}.
This structure is shown in Figure 5.8 on the left side. From our considerations so far we know
that

• Constraint 9 is satisfied,

• M4 |= P and also

• M |=C d1[a1[!foo]].

But there is still something wrong with M4, because although M |=C d1[a1[!foo]], this is based
on inconsistent belief since from w1, a1 does not reach any other world (and in particular not
w2). The structure of our POLAR program is not reflected properly by M4 – there should be
at least one world which is reachable by a1 from at least one world reachable by d1, so Ra1(w1)
should not be empty. This is ensured by the concept of context-seriality:

Definition 14 (Context-seriality):
An accessibility relation of a subcontext s is context-serial with respect to a supercontext d
and a relation type t if and only if: for each world w from which d can reach other worlds,

110 5 POLAR Syntax and Semantics

Figure 5.8: Two other interpretation structures

there exists a world w′ reachable by d from w in which the type of s w.r.t. d is known and
from which s reaches at least one other world. Formally:

Rs is context-serial w.r.t. d and type t⇐⇒(
∀w ∈W : Rd(w) 6= ∅ ⇒ ∃w′ ∈ Rd(w) : (M,w′) |=t t(s) ∧Rs(w′) 6= ∅

)
t(s) stands for the subcontext type and is substituted by the corresponding special propo-
sition. For instance, if s is a content annotation, then t(s) = _contentanno(s).

From the definition of context-seriality, we arrive at another constraint:

Constraint 10 (Context-seriality): If s ∈ sub(d) then Rs must be context-serial with re-
spect to the supercontext d and its type t. 2

Constraint 7 on page 98 prohibits that the knowledge about the relation type is inconsistent.
Constraint 9 ensures that there exists a world w so that Ra(w) 6= ∅, so we have a starting point
for seriality for every contextagent. Note that context-seriality ensures the conditions needed
in Definition 9, 10 and 11. Referring back to Example 6, the context-seriality constraint is
obeyed in M1 and even M3, but not in M2 (d1 is a subcontext of db, but Rd1(w1) = ∅) and
M4 (as discussed). Context-seriality is also a crucial property when it comes to knowledge
augmentation later.

Valid Knowledge of Contextagents Again we turn to Example 6, but now we regard the
structure M5 which can be seen on the right side of Fig. 5.8. All constraints are respected, but
we are still not satisfied. What is disturbing us is the edge from w2 to w1 labelled with a1.
Because of this edge, a1 has different knowledge in w2 than it has in w0 and w1. It is clear that
the knowledge a1 has in w0 and w1 reflects our program, whereas the knowledge in w2 does
not – it even contradicts what a1 is supposed to know! We can prohibit such a situation by
formulating the following constraint:

Constraint 11 (Valid Knowledge of Contextagents): The knowledge a contextagent has
is valid. 2

5.2 Semantics 111

The consequence of this constraint is, for our example:

(M,w) |= a1[!p] =⇒M |= a1[!p]

M5 violates this constraint due to the edge between w2 and w1.

Fragment Permeability Fragment access has some peculiarity. We say that fragments are
permeable w.r.t. annotation, which means that every annotation annotating a fragment also
annotates the object the fragment belongs to. Therefore the expressions d1[f1||... *a||]
and d1[*a f1||... *a||] must be semantically equivalent. This leads us to another con-
straint:

Constraint 12 (Fragment Permeability): If f is a fragment of d and a an annotation which
annotates f and therefore is a subcontext of f , then a also annotates d and is a subcontext of
d:

a ∈ sub(f) and f ∈ sub(d) and a annotates f =⇒ a ∈ sub(d)

Furthermore, to ensure semantic equivalence:

(M,w) |= d[f||p annoref||]⇐⇒ (M,w) |= d[p annoref f||p annoref||] 2

Constraint 10 and the first condition ensures that for an annotation a, Ra is context-serial
w.r.t. d, which means that if there is at least one world reachable by d then in this world a is
known as an annotation and reaches at least another world. The second condition ensures that
d and f have the same knowledge about a and its access probability.
Note that fragment permeability also has consequences for the annotation access probability

within fragments; something like

d1[f1|| 0.8 *a1||
f2|| 0.7 *a1||]

is not allowed, because in this case, different access probabilities would be transferred to the
context d1.

Model of a Basic POLAR Program With the definitions and constraints so far, we are now
ready to define the model of a basic POLAR program.

Definition 15 (Model of a basic POLAR program):
An interpretation structure M is a model of a basic POLAR program P iff

• M |= db[P];

• all structured clauses in P (mergedtarget, subcontext, fragment, annoref and refer-
ence) are context-valid, and

• constraints 7 to 12 hold.

Note that the context-validity of the structured clauses in P implies that these are valid
w.r.t. a model M . We give an exhaustive example of a POLAR program and its corresponding
model.

112 5 POLAR Syntax and Semantics

Example 7 (Model of a basic POLAR program): Consider the POLAR program

d1[0.6 soccer
0.8 s1[0.3 music]
0.7 *a1]

a1[0.5 football]
document(d1)
annotation(a1)

We obtain the following probabilities and truth value assignments w.r.t. possible worlds con-
textagent db can reach (let ‘d’ stand for ‘document(d1)’, ‘a’ for ‘annotation(d1)’, ‘s’ for ‘soccer’,
‘m’ for ‘music’ and ‘f’ for ‘football’; special propositions are not listed here):

w′ µdb,wroot(w′) π(w′)(d) π(w′)(a) π(w′)(s) π(w′)(m) π(w′)(f)
w1 1.0 true true unknown unknown unknown

In wroot, the global database agent db reaches exactly one world w1 in which ‘document(d1)’,
‘a’ and ‘annotation(d1)’ are true. For d1, we get:

w′ µd1,wdb(w′) π(w′)(d) π(w′)(a) π(w′)(s) π(w′)(m) π(w′)(f)
w10 0.024 unknown unknown unknown unknown unknown
w2 0.036 unknown unknown true unknown unknown
w3 0.096 unknown unknown unknown unknown unknown
w4 0.144 unknown unknown true unknown unknown
w5 0.224 unknown unknown unknown unknown unknown
w6 0.336 unknown unknown true unknown unknown
w7 0.056 unknown unknown unknown unknown unknown
w8 0.084 unknown unknown true unknown unknown

Access to w10 represents the case that ‘soccer’ is unknown (probability is 1 − 0.6 = 0.4) and
we do not access s1 (i.e., s1 does not reach any other world from w1 and _subpart(s1) is false,
probability is 1 − 0.8 = 0.2) and we do not access a1 (a1 cannot reach any other worlds from
w10, probability is 1 − 0.7 = 0.3). So µd1,w1(w10) is 0.4 · 0.2 · 0.3 = 0.024. In w2, “soccer”
is true, but we access neither s1 nor a1, which yields µd1,wdb(w2) = 0.6 · 0.2 · 0.3 = 0.036. In
w3, ‘soccer’ is again unknown, but this time we access s1, but do not access a1. We obtain
µd1,w1(w3) = 0.4 · 0.8 · 0.3 = 0.096. All other cases are calculated in a similar way. What
we can read from the table above is the probability that d1 considers ‘soccer’ to be true,
which is the sum of the probabilities of all worlds where ‘soccer’ is assigned the value true:
µd1,w1({w2, w3, w2, w2}) = 0.036 + 0.144 + 0.336 + 0.084 = 0.6. This is exactly the probability
we assigned to ‘soccer’ in context d1 in our POLAR program. For d1, we obtain the following
accessibility relations:

Rd1 = {(wdb, w10), (w1, w2), (w1, w3), (w1, w4),
(w1, w5), (w1, w6), (w1, w7), (w1, w8)}

We continue with contextagent s1, which reaches several worlds from w3, w4, w5 and w6:

w′ µs1,w3(w′) π(w′)(d) π(w′)(a) π(w′)(s) π(w′)(m) π(w′)(f)
w10 0.7 unknown unknown unknown unknown unknown
w11 0.3 unknown unknown unknown true unknown

5.2 Semantics 113

w′ µs1,w4(w′) π(w′)(d) π(w′)(a) π(w′)(s) π(w′)(m) π(w′)(f)
w10 0.7 unknown unknown unknown unknown unknown
w11 0.3 unknown unknown unknown true unknown

w′ µs1,w5(w′) π(w′)(d) π(w′)(a) π(w′)(s) π(w′)(m) π(w′)(f)
w10 0.7 unknown unknown unknown unknown unknown
w11 0.3 unknown unknown unknown true unknown

w′ µs1,w6(w′) π(w′)(d) π(w′)(a) π(w′)(s) π(w′)(m) π(w′)(f)
w10 0.7 unknown unknown unknown unknown unknown
w11 0.3 unknown unknown unknown true unknown

As accessibility relations, we get

Rs1 = {(w3, w10), (w3, w11), (w4, w10), (w4, w11),
(w5, w10), (w5, w11), (w6, w10), (w6, w11)}

Finally, for a1:

w′ µa1,w1(w′) π(w′)(d) π(w′)(a) π(w′)(s) π(w′)(m) π(w′)(f)
w10 0.5 unknown unknown unknown unknown unknown
w9 0.5 unknown unknown unknown unknown true

w′ µa1,w5(w′) π(w′)(d) π(w′)(a) π(w′)(s) π(w′)(m) π(w′)(f)
w10 0.5 unknown unknown unknown unknown unknown
w9 0.5 unknown unknown unknown unknown true

w′ µa1,w6(w′) π(w′)(d) π(w′)(a) π(w′)(s) π(w′)(m) π(w′)(f)
w10 0.5 unknown unknown unknown unknown unknown
w9 0.5 unknown unknown unknown unknown true

w′ µa1,w7(w′) π(w′)(d) π(w′)(a) π(w′)(s) π(w′)(m) π(w′)(f)
w10 0.5 unknown unknown unknown unknown unknown
w9 0.5 unknown unknown unknown unknown true

w′ µa1,w8(w′) π(w′)(d) π(w′)(a) π(w′)(s) π(w′)(m) π(w′)(f)
w10 0.5 unknown unknown unknown unknown unknown
w9 0.5 unknown unknown unknown unknown true

The accessibility relations of a1 are:

Ra1 = {(w5, w9), (w5, w10), (w6, w9), (w6, w10), (w7, w9),
(w7, w10), (w8, w9), (w8, w10), (w1, w9), (w1, w10)}

The possible model is depicted in Figure 5.9. 2

114 5 POLAR Syntax and Semantics

Figure 5.9: A model of the POLAR program in Example 7 (probabilities omitted)

5.2.3 Knowledge Augmentation

With knowledge augmentation, we augment the knowledge contained in an object with the one
contained in subparts, annotations, referenced objects, merged targets and fragments. The
analogy is a reader who reads a document and augments the information she got from the
document with the one from annotations, merged targets and referenced objects or, in case of
fragments, learns that some parts of a document seem to be important.
The concept of knowledge augmentation was used in POOL and is discussed in Lalmas and

Rölleke (2003) and (Rölleke, 1998, chapter 3). Knowledge augmentation in POLAR is based
on the one in POOL, but we need to extend some of the POOL concepts presented. We
will therefore start with a review of knowledge augmentation in POOL and then discuss the
extensions needed by POLAR.

5.2.3.1 Knowledge Augmentation in POOL

Consider the POOL example from Section 4.2.1.2:

d1[0.9 s1 [0.8/0.2 sailing]
0.7 s2 [0.6/0.4 sailing]]

The document d1 consists of two subparts, s1 and s2, which are accessed with 0.9 and 0.7
probability, respectively. In s1, the term ‘sailing’ is true with 0.8 probability and false with 0.2
probability, and it is true with a probability of 0.6 and false with a probability of 0.4 in s2. The

5.2 Semantics 115

aim of knowledge augmentation is to calculate the probability that ‘sailing’ is true or false in
the augmented context d1(s1,s2). A possible model of the POOL program above can be seen
in Figure 5.103.

Figure 5.10: A possible model of the POOL program

Basic Idea The idea of knowledge augmentation is as follows: we count every possible case of
access and truth value assignments which can happen in the augmented context and for each
case, we look up whether the case leads to a true, false, inconsistent or unknown truth value
assignment for our desired proposition. Each such case can occur with a certain probability.
The probability of a proposition to be true is then the sum over all cases where the proposition
becomes true in the augmented context. Take, for example, the case that we access s1 from
d1 (prob. is 0.9) and ‘sailing’ is true (prob. is 0.8) and we also access s2 (prob. 0.7), but now
‘sailing’ is false (prob. 0.4). The probability of this case is 0.9 · 0.8 · 0.7 · 0.4 = 0.1. Since
in this case we have contradicting evidence (‘sailing’ is true in s1, but false in s2), we assign
‘sailing’ the truth value inconsistent in the augmented context for this case. Note that for
determining the truth value assignment and the probability of this case, we used a subtree of
the structure in Fig. 5.10, namely the one containing the edge between w0 and w2, the edge
between w2 and w5 labelled “s1” and the one between w2 and w6 labelled “s2”. In general, each
subtree in the model represents a possible case. The idea is to define a function which detects
all possible subtrees (and therefore detects the possible cases) for an augmented context, and
then assigns a probability to each of these cases and truth values for each proposition in the
subtree. Each subtree, i.e. each case, is regarded as a world in its own right, which is accessed
with the assigned probability and contains the derived truth values.

G-Reachability In the following, we regard every possible case as an own world w∗ which
d1(s1,s2) accesses with the probability of the corresponding case (we use the ’*’ superscript to
refer to such worlds). Each such case is a subtree in our interpretation structure. This subtree
is built upon the notion of G-reachability (Fagin et al., 1995, p. 23) – a world w′ is G-reachable
from a world w if there is a path in the graph from w to w′ whose edges are labelled by members
of the group G. For instance, the world w5 in Fig. 5.10 is G-reachable from w0 for G = {d1, s1}
or G = {d1, s2}, but not for G = {s1, s2}

3Since POOL only knows subparts as subcontexts, no special propositions or other means to specify the relation
type are needed.

116 5 POLAR Syntax and Semantics

Now each subtree which establishes a case is called a G-agent-world-tree. The nodes of such a
tree are a tuple (d,w), where d is the contextagent that accesses w. Formally, a G-agent-world-
tree is a tuple (w, S) where w is the head of the tree and S the set of subtrees. Figure 5.11 shows
three example trees of worlds representing cases (which are described below). For example, the
tree underlying w∗1 and the group G = (d1, s1, s2) is ((d1, w2), {((s1, w5), {}), ((s2, w5), {})}).
We can formally describe a function which creates G-agent-world-trees as the set of trees for a

Figure 5.11: Some selected G-agent-world-trees

context and a group (see also (Rölleke, 1998, p. 44)):

trees((c, w0), dG) := {((d,w), S)|w ∈ Rd(w0) ∧ ((d,w), S) ∈ trees((d,w), G)} (5.1a)

trees((d,w), Gn+1) := {((d,w), S) | ∃Sn, t : ((d,w), Sn) ∈ trees((d,w), Gn)
∧ t ∈ trees((d,w), sn+1) ∧ S = Sn ∪ {t}}

(5.1b)

G is a group, Gn+1 a group (s1, . . . , sn+1) of subcontexts and Gn = (s1, . . . , sn). For our
example above, we need to calculate trees((db, w0),d1(s1,s2)) to get our G-agent-world-trees.
The trees function calculates all trees, that is cases or worlds w∗. For each tree, we need its

probability, and the augmented truth value assignments for the propositions in the respective
world. For the former, we apply the notion of augmented and united probabilities. For the
latter, we extend the present truth value assignment function.

Augmented and United Probabilities For each tree, we apply the definition for augmented
and for united truth probabilities (µA and µU , respectively)

µA,w0(((d,w), S)) := µd,w0(w) · µU (((d,w), S))
µU (((d,w), S) :=

∏
t∈S

µA,w(t)

to calculate the probability of each tree. For w∗1, for instance, we compute

µA,w0(((d1, w2), {((s1, w5), {}), ((s2, w6), {})})) =
µd1,w0(w2) · µU (((d1, w2), {((s1, w5), {}), ((s2, w5), {})})) =
µd1,w0(w2) · µA,w2(((s1, w5), {})) · µA,w2(((s2, w5), {})) =
µd1,w0(w2) · µs1,w2(w5) · µs2,w2(w5) =
0.9 · 0.7 · 0.8 · 0.6 = 0.3024

This is the probability that w∗1 is accessed from w0, or in other words, that the augmented con-
textagent d1(s1,s2) considers w∗1 possible. This probability is therefore denoted µd1(s1,s2),w0(w∗1).

5.2 Semantics 117

Truth Value Assignment Finally, to get the truth value for a proposition in a G-agent-world-
tree like w∗1, the truth value assignment function π(w∗)(ϕ) calculates the set union over the
truth values of all worlds in the G-agent-world-tree. For π(w∗1)(sailing) we thus get the value
true. When talking of a “set union over truth values”, this adheres to the view of the four
possible truth values as sets (see page 57). For a G-agent-world-tree w∗ containing the worlds
(w1, . . . , wn), it is

π(w∗)(ϕ) =
⋃

w∈(w1,...,wn)
π(w)(ϕ)

For the worlds depicted in Figure 5.11, we obtain

π(w∗1)(sailing) = π(w2)(sailing) ∪ π(w5)(sailing) ∪ π(w5)(sailing)
= unknown ∪ true ∪ true = true

π(w∗2)(sailing) = π(w2)(sailing) ∪ π(w5)(sailing) ∪ π(w6)(sailing)
= unknown ∪ true ∪ false = inconsistent

π(w∗5)(sailing) = π(w1)(sailing) ∪ π(w5)(sailing)
= unknown ∪ true = true

For our example case w∗2, we found evidence for true in w5, false in w6 and unknown in w2,
which leads to {t} ∪ {f} ∪ ∅ = {t, f} = inconsistent.

Example 8 (Knowledge augmentation in POOL): For the example POOL program
above we obtain the following worlds, probabilities and truth value assignments:

w∗ µd1(s1,s2),w0(w∗) π(w∗)(sailing)
w∗1 0.9 · 0.7 · 0.8 · 0.6 true = true ∪ true
w∗2 0.9 · 0.7 · 0.8 · 0.4 inconsistent = true ∪ false
w∗3 0.9 · 0.7 · 0.2 · 0.6 inconsistent = false ∪ true
w∗4 0.9 · 0.7 · 0.2 · 0.4 false = false ∪ false
w∗5 0.9 · 0.3 · 0.8 true
w∗6 0.9 · 0.3 · 0.2 false
w∗7 0.1 · 0.7 · 0.6 true
w∗8 0.1 · 0.7 · 0.4 false
w∗9 0.1 · 0.3 unknown

w∗1 denotes the case that we access s1 and ‘sailing’ is true in s1 and we access s2 and ‘sailing’ is
true in s2. w∗2 represents the case that we access s1 and ‘sailing’ is true in s1 and we access s2
and ‘sailing’ is false in s2. The world w∗3 stands for the case that that we access s1 and ‘sailing’
is false in s1 and we access s2 and ‘sailing’ is true in s2. In world w∗4, we access both s1 and
s2, but ‘sailing’ is false in both of them. w∗5 denotes the case that we access s1 but not s2 and
‘sailing’ is true in s1. In w∗6, we access s1 but not s2 and ‘sailing’ is false in s1. w∗7 and w∗8
represent the cases that we do not access s1 but access s2; in w∗7 ‘sailing’ is true in s2, whereas
in w∗8 ‘sailing’ is false in s2. Finally, w∗9 denotes the case that we neither access s1 nor s2.
Note that all cases are disjoint. w∗1, . . . , w

∗
9 are the worlds reached by the (augmented)

contextagent d1(s1,s2) from w0, as Fig. 5.12 illustrates. We can therefore define an accessibility
relation for augmented contextagents (here: Rd1(s1,s2)) similar to those for non-augmented ones.
Furthermore, above probabilities sum to 1, so µd1(s1,s2),w0 is a probability mass function (see
(Rölleke, 1998, p. 61) for a proof). Then the probabilities for true, false, inconsistent and

118 5 POLAR Syntax and Semantics

Figure 5.12: Worlds reachable by the augmented contextagent d1(s1,s2) (probabilities omitted)

unknown in the augmented context d1(s1,s2) are the sum of the probabilities of the cases
producing the corresponding truth value:

(M,w0) |= d1(s1,s2)[0.5604/0.1324/0.2772/0.03 sailing]⇐⇒
0.5604 = µd1(s1,s2),w0({w

∗|w∗ ∈ Rd1(s1,s2)(w0) ∧ (M,w∗) |=t sailing}) and
0.1324 = µd1(s1,s2),w0({w

∗|w∗ ∈ Rd1(s1,s2)(w0) ∧ (M,w′) |=f sailing}) and
0.2772 = µd1(s1,s2),w0({w

∗|w∗ ∈ Rd1(s1,s2)(w0) ∧ (M,w∗) |=i sailing}) and
0.03 = µd1(s1,s2),w0({w

∗|w∗ ∈ Rd1(s1,s2)(w0) ∧ (M,w∗) |=u sailing})

2

We presented the knowledge augmentation approach in POOL. Although a POOL program
like the one above is a POLAR program as well, we need to extend the knowledge augmentation
approach in order to cope with the different kinds of subcontexts we find in POLAR.

5.2.3.2 Knowledge Augmentation in POLAR

In Chapter 2 we discussed some facets of annotations. One of the main findings was that
annotations can be content about content, not extending the content in the annotated docu-
ment, but saying something about this content. This motivated the introduction of meta level
annotations. On the other hand, annotations can be extensions of the content in the annotated
document, which led to the introduction of content level annotations. In our considerations
in Chapter 3, we also discussed fragments and annotation targets, which led to the definition
of fragments and merged annotation targets as special kind of subcontexts. Fragments are
important items to satisfy certain information needs regarding annotations, as shown in the
last chapter. One of the main aims of the POLAR framework is to search for documents and
annotations. To determine the relevance of an object (document or annotation) w.r.t. a query,
we also want to use the augmented context of this object, instead of only considering the object
itself. This context is made of the subparts, the merged annotation target, the fragments,

5.2 Semantics 119

the referenced objects, and of course the annotations of the object. In contrast to POOL,
where we only dealt with subparts, we need to be careful when considering the various types
of subcontext we find in an annotation scenario. Can we just augment the content of an object
with the one we find in every possible (augmented) subcontext, like POOL does? Each kind of
subcontext has some specific features which influence the propagation of its knowledge to the
supercontext. We therefore continue with a discussion of the various kinds of subcontexts and
their role w.r.t. knowledge augmentation.

Merged Annotation Targets Merged annotation targets provide the context for the annota-
tion content. Consider a fragment saying “we went to Paris” and an elaboration annotating
this fragment saying “The one in Texas, not in France”. We need the knowledge that “the
one” means “Paris” to determine that the annotation is about “Paris”. So we need to augment
our annotation with the content of the merged annotation targets, as otherwise the annotation
might not be understandable without considering the annotated object. On the other hand,
merged targets of subcontexts should not be augmented, as a small example illustrates:

d1[0.6 t1 f1|| 0.6 t1 *a1 ||]
a1[m1< 0.6 t1 >

0.7 t2 f2|| 0.7 t2 *a3 ||]
a2[0.7 t3 *a3]
a3[m3< 0.7 t2 0.7 t3 >]

When calculating the augmented context a1(m1,f2,a3), we should consider m1, because this
introduces t1 to a1. We should also consider a3, since it annotates a1 through f2. Should
we propagate the knowledge in the merged annotation target m3 as well? m3 consists of
propositions found in a2 and a1. The propositions in a2 do not have anything to do with the
ones in a1 in the first place4. The propagation of t2 in m3 to a1(m1,f2,a3) would not introduce
new information to a1(m1,f2,a3) – the fact that t2 seems to be important is already covered
in f2. Finally, by design the main purpose of m3 is to provide a context for understanding
the propositions in a3 – it was never meant to extract contextual information from m3 for
other objects than a3. These are the reasons why we should compute a1(m1,f2,a3) and not
a1(m1,f2,a3(m3)). The same argument holds for the augmented context of d1, which should be
d1(f1,a1(a3)) and not d1(f1,a1(m1,a3)) or even d1(f1,a1(m1,a3(m3))). So we need to prohibit
that merged annotation targets are propagated for an augmented context cG except for the
case that they are the merged annotation target of c.

Content Annotations If we are searching for documents about “Paris in Texas”, how can we
determine in the example above that the fragment or the document the fragment belongs to is
relevant to this query, as only “Paris” might be mentioned in this document? It seems to be
beneficial if we augment the knowledge in our document with the one in its annotations, since
it propagates the knowledge in annotations to the supercontext, where it is aggregated.

Fragments Fragments might also play an interesting part. In case of highlighting, such frag-
ments mark important parts of a document. But even if fragments are no explicit highlighting,

4It can be argued that a1 and a2 are in a way related since they are both annotated by a3. But this kind of
relation needs further discussion and evaluation and will be neglected for now, so we completely ignore a2 in
the augmented context of a1.

120 5 POLAR Syntax and Semantics

they are the parts of the document others found important enough to annotate. This informa-
tion should be considered as well, so this is the reason why we augment our knowledge about
the document with the knowledge in its fragments. Note that propagating the content of frag-
ments does not introduce new propositions to the supercontext, but can raise our belief that
the proposition is true (or false, respectively) in the supercontext by adapting the four-valued
probability of the proposition.

Polarity Another issue of content annotations is their polarity. What does it mean for the
augmentation if we have an annotation with negative polarity? In our interpretation of negative
polarity in a retrieval scenario, we said that such an annotation gives us evidence that the
annotated objects should not be indexed with the terms appearing in a negative annotation.
So if a proposition is true in a negative annotation, it gives us evidence that it is false in the
augmented context, and vice versa.

Meta annotations If we say that we want to augment the knowledge of an object with the
knowledge in its annotations, then there is one exception, which are meta level annotations.
They should not be considered for knowledge augmentation. The reason is that meta level
annotations make assertions about the content of an object, but they do not expand its con-
tent. For example, a meta level annotation saying “Good comment!” does not mean that the
annotated object is about “comment”. So our conclusion is that we exclude meta annotations
from knowledge augmentation.

Subparts Finally, we consider the subparts of an object for augmentation to allow for struc-
tured document retrieval like in POOL.

The discussion above makes clear that we cannot just declare everything as a subcontext and
reuse the knowledge augmentation routines from POOL. We have to take several special cases
into account, which are:

1. Subcontexts of fragments and meta annotations must be ignored;

2. Merged annotation targets must not be propagated if they belong to a subcontext of the
context to augment;

3. We need to include the effect of negative polarity.

For integrating polarity, we need to code the information about the polarity of an annotation
in the knowledge augmentation process into the G-agent-world-tree. We continue with the
discussion of how to handle polarity before describing how to handle merged annotation targets,
fragments and meta annotations correctly.

Handling Polarity To cope with polarity, the idea is to extend G-agent-world-trees to G-agent-
world-polarity-trees. Nodes in these trees not only convey information about which contextagent
entered the corresponding world, but also about the polarity the world has. If the contextagent
represents a negative content annotation in the world it entered the current world from, the
polarity of the entered world is the negation of the polarity of the source world. So we have to
define a polarity function pol which calculates the new polarity of a world-agent-tuple:

5.2 Semantics 121

Definition 16 (Polarity function pol):
Let ρ ∈ {0, 1} be the polarity of a world-agent tuple (W,a). 0 stands for negative, 1 for
positive polarity. The function pol reverses the polarity in case a is a negative content
annotation and does nothing in any other case:

pol(w, a, ρ) =


1 if (M,w) |=t _negcanno(a) and ρ = 0,
0 if (M,w) |=t _negcanno(a) and ρ = 1,
ρ else.

Based on the polarity function and equation (5.1) describing trees to create G-agent-world-
trees, we create G-agent-world-polarity-trees in POLAR using a new function trees.

Definition 17 (POLAR trees function):

trees((d,w0, ρ), aG) :={((a,w, ρ′), S) |w ∈ Rd(w0) ∧
ρ′ = pol(w0, a, ρ) ∧
((a,w, ρ′), S) ∈ trees((a,w, ρ′), G)}

(5.2a)

trees((d,w, ρ), Gn+1) := {((d,w, ρ), S) | ∃Sn, t : ((d,w, ρ), Sn) ∈ trees((d,w, ρ), Gn)
∧ t ∈ trees((d,w, ρ), sn+1) ∧ S = Sn ∪ {t}}

(5.2b)

Furthermore, trees((d,w, ρ), ()) = ((d,w, ρ), {}) for empty groups. (5.2a) toggles the polar-
ity flag each time it encounters a negative content annotation. In particular, if a negative
content annotation is a subcontext of another negative content annotation, the flag is
changed back to positive polarity.

We give an example to explain POLAR’s trees function.

Example 9 (G-agent-world-polarity-trees): Consider the following POLAR program:

d1[0.8 political -*a1]
a1[0.7 political]

A possible model for the POLAR program can be seen in Fig. 5.13. trees((db,w0,1),d1(a1))

122 5 POLAR Syntax and Semantics

Figure 5.13: A model for the negative polarity example

calculates the following subtrees:

trees((a1,w4,0), ()) = {((a1,w3,0), {}), ((a1,w4,0), {})}
trees((a1,w3,0), ()) = {((a1,w3,0), {}), ((a1,w4,0), {})}
trees((d1,w1,1), a1) = {((a1,w3,0), {}), ((a1,w4,0), {})}
trees((d1,w2,1), a1) = {((a1,w3,0), {}), ((a1,w4,0), {})}

trees((d1,w1,1), (a1)) = {((d1,w1,1), {((a1,w3,0), {})}),
((d1,w1,1), {((a1,w4,0)), {})})}

trees((d1,w2,1), (a1)) = {((d1,w2,1), {((a1,w3,0), {})}),
((d1,w2,1), {((a1,w4,0)), {})})}

trees((db,w0,1),d1(a1)) = {((d1,w1,1), {((a1,w3,0), {})}),
((d1,w1,1), {((a1,w4,0)), {})})
((d1,w2,1), {((a1,w3,0), {})}),
((d1,w2,1), {((a1,w4,0)), {})})}

While processing, trees((db,w0,1), d1(a1)) invokes trees((d1,w2,1), (a1)) and
trees((d1,w1,1), (a1)). trees((d1,w2,1), (a1)) invokes trees((d1,w2,1), a1) and
trees((d1,w1,1), (a1)) calls trees((d1,w1,1), a1). Finally, trees((d1,w2,1), a1) and
trees((d1,w1,1), a1) both invoke trees((a1,w3,0), ()) and trees((a1,w4,0), ()).
The resulting trees can be seen in Figure 5.14. Each node of a tree contains information about

the corresponding polarity. World w∗1 represents the case that ‘political’ is true in d1 and a1,
world w∗2 models the case that ‘political’ is true only in d1, world w∗3 stands for ‘political’ being
true only in a1 and in w∗4, ‘political’ is neither true in d1 nor in a1. In all cases, d1 accesses
a1. 2

To get the final truth value for every proposition in any of the worlds w∗1, . . . , w∗4, we again
use the union of the truth values of the proposition in each single world w0, . . . , w4. To capture
the polarity, we need to extend the truth value function π to consider polarity as well. Before

5.2 Semantics 123

Figure 5.14: Output of trees((db,w0,1),d1(a1))

we do that, we present the negation of a four-valued truth value. We follow the definition in
(Rölleke, 1998, p. 71) (see also Belnap (1977)), which is based on the set interpretation of truth
values introduced on page 57.

Definition 18 (Negation of four-valued truth values):
For a proposition ϕ and an arbitrary world w, t is an element of the truth value assignment
π(w)(notϕ) iff f is an element of π(w)(ϕ). f is an element of the truth value assignment
π(w)(notϕ) iff t is an element of π(w)(ϕ). For example, if π(w)(ϕ) = true = {t}, then
π(w)(notϕ) = {f} = false. We gain the following truth value definitions:

π(w)(ϕ) π(w)(notϕ)
true false
false true
inconsistent inconsistent
unknown unknown

Based on the definition of the negation, we define a truth value assignment function which
takes the polarity of a world into account.

Definition 19 (Polarity-based truth value assignment):
The polarity-based truth value assignment function assigns the original truth value of a
proposition ϕ in a world w if w has positive polarity in the G-agent-world-polarity-tree. It
assigns the negated value in case of negative polarity.

πp(w, ρ)(ϕ) =
{
π(w)(ϕ) if ρ = 1,
π(w)(notϕ) if ρ = 0.

Let w∗ be a world represented by a G-agent-world-polarity-tree and let (w1, . . . , wn) be the
worlds in this tree. The truth value assignment function w∗ takes the union of the polarity-
based truth value assignment functions for (w1, . . . , wn) to derive a final truth value for a
proposition ϕ in w∗:

π(w∗)(ϕ) =
⋃

w∈(w1,...,wn)
πp(w, ρ)(ϕ)

124 5 POLAR Syntax and Semantics

Taking Example 9, we obtain:

w∗ µd1(a1),w0(w∗) π(w∗)(political)
w∗1 0.8 · 0.7 inconsistent = true ∪ false
w∗2 0.8 · 0.3 true
w∗3 0.2 · 0.7 false
w∗4 0.2 · 0.3 unknown

The negative polarity of a1 in d1 directly influences the truth value assignments in the worlds
w∗1 and w∗3 – these were both true if a1 was a content annotation instead of a negative content
annotation. Finally, we get

d1(a1)[0.24/0.14/0.56/0.06 political]

for the augmented context d1(a1). The fact that a1 is a negative content annotation lowers
our confidence that ‘political’ is true, and it raises the probability that it is false. But mostly,
it raises the probability that we get inconsistent information regarding this term.

We need to handle the peculiarities of the different subcontexts, as discussed above. Ad-
ditionally, we need to discuss access from multiple contexts as well as possible cycles in our
interpretation structure.

Access from multiple contexts Consider the following POLAR program:

d1 [s1 [0.5 *a1]
s2 [0.4 *a1]]

a1 [...]

a1 annotates both subparts s1 and s2 of d1. If we augment d1, should we access a1 twice, or
should we even ignore one access of a1? And if, which one should be ignored, the access from
s1 or the one from s2? In the above example, we can identify the cases that a1 is accessed from
both s1 and s2 (with probability of 0.5 · 0.4 = 0.2), from s1 only (0.5 · 0.6 = 0.3 probability),
from s2 only (probability of 0.5 · 0.4 = 0.2) and the last case is that a1 is not accessed at all
(with probability of 0.5 · 0.6 = 0.3). All these cases occur with a certain probability. We may
argue that at least the first case should somehow be forbidden, so that a1 should be accessed
only once during knowledge augmentation. There is an argument against it: due to the fact
that a1 annotates several subparts of s1, a1 seems to be important for all of them. So we allow
the case that a1 is accessed more than once, also for the sake of keeping our model pure. If
we just neglect the first case, the probability of all considered cases does not sum up to 1,
but to 0.3 + 0.2 + 0.3 = 0.8. So πd1(s1(a2),s2(a2)),w would not be a probability mass function,
which in a way spoils our model so far. Since annotation-based information retrieval is the
main application of our approach, future evaluations should show the effect of our decision on
retrieval quality.

Avoiding Cycles In Section 3.2 we showed that the structured annotation hypertext is acyclic.
Unfortunately, this does not hold with the access structures in POLAR. While the access rela-
tion has the same direction as the references link in the structured annotation hypertext (from
the annotation to the referenced object), the hasAnnotationTarget link has the opposite direc-
tion than the access relation – hasAnnotationTarget goes from the annotation to the annotated
object, whereas annotation access (access to subcontexts which are content annotations) goes

5.2 Semantics 125

from the annotated object to the annotation. Therefore, we may get undesirable cycles in our
interpretation structure, as the following example shows.

d1[*a1]
a1[0.8 *a2]
a2[=>d1]

d1 is annotated by a1, which in turn is annotated by a2, where a2 is accessed with 0.8 prob-
ability. a2 references d1 again. If we ask for the full augmented context for d1, we would get
something like d1(a1(a2(d1(a1(a2(...)))))) which repeats itself all over again. In terms of our
interpretation structure, the situation is illustrated in Fig. 5.15. Contextagent d1 accesses the

Figure 5.15: A cycle in the interpretation structure

world w1 from which contextagent a1 either accesses w2 or w3. In the latter world, no agent
accesses another world any more. In the former world, a2 can reach w4, from where d1 again
accesses w1. When calculating, e.g., the augmented context of a1, trees would visit w2, then
w4 and then w1. After that, trees would visit w2 and w3. We do not want both cases; if w2 is
revisited, we would propagate the information in w2 twice and even continue the cycle. But we
also do not want to enter w3, because w3 stands for the case that a2 is not accessed from a1.
But having visited w2 before, we already reflected the case that a2 is reached from a1, so by
entering w3, we would consider a case which is disjoint to the one we already considered, and
this is impossible. So we must avoid that a contextagent is active more than once in a path
when performing knowledge augmentation with the trees function. We do so by defining valid
augmented context expressions.

Valid Augmented Context Expressions Augmented context expressions control the behaviour
of the trees function. The idea is now to create augmented context expressions which reflect the
considerations so far. We need an algorithm which builds a valid augmented context expression
for a contextagent and a world. For the example illustrated in Fig. 5.15, the algorithms should
yield the augmented context expression d1(a1(a2)) for d1 in w0. This expression is the used to
calculate the augmented context of d1 using trees and the corresponding truth value assignment
functions.

126 5 POLAR Syntax and Semantics

Parameters: Interpretation structure M , context to augment c, world w, path p
Return: Augmented context expression exprc
1: level := |p|
2: exprc := c
3: if w 6|= _fragment(c) then
4: SUB := {s|∃w′ ∈ Rc(w)∧

(w′ |= _subpart(s) ∨ w′ |= _canno(s) ∨ w′ |= _negcanno(s) ∨
w′ |= _reference(s)∨w′ |= _fragment(s)∨(w′ |= _mtarget(s)∧level = 0))}

5: if SUB 6= ∅ then
6: p := addToPath(p,c)
7: for all s ∈ SUB do
8: if !contained(s,p) then
9: Select w′ with w′ ∈ Rc(w) ∧Rs(w′) 6= ∅

10: exprc := concat(exprc,createAugmContextExpr(M ,s,w′,p))
11: end if
12: end for
13: end if
14: end if
Algorithm 1: Algorithm createAugmContextExpr to create valid augmented context ex-
pressions

Algorithm 1 shows the algorithm createAugmContextExpr to create valid augmented
context expressions given an interpretation structure M , a context to augment c and a world
w. Initially, the algorithm is invoked with an empty path p. Beginning from w, the algorithm
performs a depth first traversal through the connected worlds and according to the conditions
discussed above. Line 1 extracts the current level; |p| is the length of the path p and 0 if the
path is empty. The second line initialises the expression to be returned with the context c.
The third line checks if c is known to be a fragment in w. Since we do not want to augment
fragments, we only continue if this is not the case. Line 4 creates the set SUB of all considerable
direct subcontexts of c. These are all subcontexts which are known to be a subpart, (negative)
content annotation, reference, fragment or merged target in a world accessible by c from w.
Merged targets are only considered if the level is 0, which means only if they are a direct
subcontext of the context to augment. If this set is not empty (line 5), we first add the current
context to the path (l. 6). We then loop over all subcontexts (l. 7) and continue with the
next subcontext s if it is not contained in the path yet (line 8). This way, we prohibit that a
context is its own subcontext, which would indicate a cycle. Line 9 selects an arbitrary world
w′ which is reachable from w by c and from which the subcontext s reaches other worlds. In
line 10, the algorithm is again invoked with s as the context to augment, the starting world w′
and the current path p (note that p is not empty now; this means that a merged annotation
target of s would not be considered any more). The resulting augmented context expression is
concatenated with the current one.

Going back to the example in Fig. 5.15, createAugmContextExpr(M ,d1,w0,())
returns the desired augmented context expression d1(a1(a2)). In a first
recursion, createAugmContextExpr(M ,a1,w1,(d1)) is invoked. This calls
createAugmContextExpr(M ,a2,w2,(d1,a1)). The processing stops here since !con-

5.2 Semantics 127

tained(d1,(d1,a1)) in line 8 fails. The algorithm always terminates since it either detects a
cycle or there are no suitable subcontexts any more.

In this subsection we introduced a model for basic POLAR programs based on Kripke struc-
tures. We also discussed knowledge augmentation and the special cases to consider in POLAR
compared to POOL. To finish our discussion about the POLAR semantics, we will now present
the semantics of queries and rules.

5.2.4 Queries and Rules
We present the semantics of queries and rules as specified in Figure 5.2. We commence with
the discussion of queries, which includes the definition of some new syntactic constructs which
were not part of the basic POLAR knowledge modelling, but can be applied in queries and also
rules. After having introduced queries, we are going to discuss rules.

5.2.4.1 Queries

As shown in Figure 5.2 on page 92, a query consists of a subgoal list. Each subgoal can be a fact
goal consisting of an atom or its negation. Subgoals can also be complex queries containing
both facts and structure. Complex queries support several information needs arising in an
annotation scenario. When processing queries, the inference engine returns the instantiations
of the variables which return a probability > 0 for a subgoal list. We begin our discussion with
simple queries consisting of fact goals and continue with context subgoals.

Database Queries Database queries are realised by fact goals. Fact goals are atoms or negated
atoms. An atom can be a term, a classification or an attribute, where instead of an object ID,
there may be a variable. Consider the simple POLAR program

schalke
footballclub(schalke)
0.7/0.3 peter.supports(schalke)

We have the term ‘schalke’ and learn that Schalke is a football club. We guess that Peter
supports Schalke, but we are not sure, therefore the 0.7 probability that he supports Schalke
and the 0.3 probability that he does not. A POLAR query

?- schalke

returns

1.0 ()

which is the probability that ‘schalke’ is true in the db-context. We might ask for the clubs
Peter supports (variables are preceded by a capital letter in POLAR):

?- peter.supports(C)

and gain

0.7 (schalke)

The system substitutes C with ‘schalke’ and 0.7 is the probability that ‘schalke’ is true. The
query for the clubs Peter does not support

128 5 POLAR Syntax and Semantics

?- !peter.supports(S)

would yield

0.3 (schalke)

We will now give a formal definition of the probabilities of fact goals.

Definition 20 (Probabilities of fact goals):
Fact goals ask for propositions in the db-context. So formally, for a factgoal (atom or
negated atom), it is

P (ϕ) = p⇐⇒M |= db[pt/pf/pi/pu ϕ] ∧ p = pt

P (!ϕ) = p⇐⇒M |= db[pt/pf/pi/pu ϕ] ∧ p = pf

We apply a strict interpretation, saying that the probability that a proposition is true is the
probability that it is positive and not negative, and the other way around for the probability
that the negation of the proposition is true. Therefore, pi is ignored.

Content-oriented Queries The next kind of queries we are going to discuss are content-
oriented queries which return the contexts or objects for which the given conditions become
true. Such contexts might be documents, annotations or fragments. Content-oriented queries
are realised by fact goals as a context subgoal (csubgoal). Consider the following POLAR
program:

d1[0.4 moral f1||0.8 moral 0.8 *a1|| 0.6 *a2]
a1[0.5 political 0.7 @a3]
a2[0.2 political]
a3[0.6 good 0.5 comment]

The query for documents or annotations about ‘political’

?- D[political]

returns

0.5 (a1)
0.2 (a2)

In case we remember that we annotated a part containing ‘moral’ and we want to retrieve that
fragment, then the query

?- F||moral||

returns

0.8 (f1)

Now let us do some knowledge augmentation. The query

5.2 Semantics 129

?- //D[political]

returns

0.472 (d1) # from d1(f1,a1,a2)
0.5 (a1)
0.2 (a2)

We give a definition of the probabilities of object subgoals.

Definition 21 (Probabilities of context subgoals):
Formally, the probabilities of context subgoals are defined as

P (d[ϕ]) = p⇐⇒M |= d[pt/pf/pi/pu ϕ] ∧ p = pt

P (d[!ϕ]) = p⇐⇒M |= d[pt/pf/pi/pu ϕ] ∧ p = pf

P (f ||ϕ||) = p⇐⇒M |= f||pt/pf/pi/pu ϕ|| ∧ p = pt

P (f ||!ϕ||) = p⇐⇒M |= f||pt/pf/pi/pu ϕ|| ∧ p = pf

P (//d[ϕ]) = p⇐⇒M |= d(s1,...,sn)[pt/pf/pi/pu ϕ] ∧ p = pt

P (//d[!ϕ]) = p⇐⇒M |= d(s1,...,sn)[pt/pf/pi/pu ϕ] ∧ p = pf

The last two definitions cover knowledge augmentation. In order to derive
d(s1,...,sn), an arbitrary world w is chosen with Rd(w) 6= ∅. Then, d(s1,...,sn) =
createAugmContextExpr(M ,d,w,()).

Structure Queries Structure queries ask for all annotations annotating a document, all frag-
ments of a document or all referenced objects. They manifest itself as annorefgoals, reference-
goals and fragmentgoals in context subgoals. Taking the above example, the query

?- d1[*A]

would yield all (positive) content annotations annotating d1, ranked by decreasing access prob-
ability:

0.8 (a1)
0.6 (a2)

In a similar way we could ask for negative content annotations, (positive and negative) meta
annotations and referenced objects:

?- d1[-*A] # returns all negative content annotations of d1
?- d1[@A] # returns all (positive) meta annotations of d1
?- d1[-@A] # returns all negative meta annotations of d1
?- d1[=>R] # returns all objects referenced by d1

Furthermore, the query

?- d1[||F]

130 5 POLAR Syntax and Semantics

yields all fragments of d1, again ranked by decreasing access probability. In a similar way, the
queries

?- f1||*A||
?- f1||-*A||
?- f1||@A||
?- f1||-@A||

return all (positive resp. negative) content or meta annotations, respectively, of a fragment f1.
On the other hand,

?- F||*a1||
?- F||@a1||

would return all fragments a1 is (positive) content or meta annotation of, again ranked by the
access probability.

The corresponding probabilities are computed as follows.

Definition 22 (Probabilities of annorefs, references and fragments):
The probabilities of annorefs, references and fragments are defined as:

P (d[∗a]) = p⇐⇒M |=C d[p *a]
P (d[− ∗ a]) = p⇐⇒M |=C d[p -*a]
P (d[@a]) = p⇐⇒M |=C d[p -@a]
P (d[@a]) = p⇐⇒M |=C d[p -@a]

P (d[=> r]) = p⇐⇒M |=C d[p =>r]
P (d[||f]) = p⇐⇒M |=C d[p f||...||]

P (f || ∗ a||) = p⇐⇒M |=C f||p *a||
P (f || − ∗a||) = p⇐⇒M |=C f||p -*a||
P (f ||@a||) = p⇐⇒M |=C f||p @a||

P (f || −@a||) = p⇐⇒M |=C f||p -@a||

We apply context-validity (see Def. 13) to ensure that the actual structure established by
the subcontexts is reflected.

Complex Queries Complex queries consist of a subgoal list which forms a conjunction of
subgoals. We regard subgoals as being independent, so the final probability is the product of
the probabilities of each subgoal or context subgoal. As an example for lists of context subgoals,
take

?- D[good & comment]

which returns

0.3 (a3)

5.2 Semantics 131

which is the product of the probabilities of both terms in a3 (0.5 · 0.6). As a further example,
take

?- D[political & @A] & A[good & comment]

which would ask about documents about ‘political’ which are also told to be good comments.
This query would return

0.105 (a1)

because 0.105 = 0.5 · 0.7 · 0.6 · 0.5. An equivalent query would be

?- D[political] & D[@A] & A[good] & A[comment]

which leads to the same result.
Having said that we assume all subgoals to be independent, there are exceptions. Consider

the query

?- D[t1 & !t1]

There are two possible strategies handling this: return the probability that t1 is inconsistent
in a context, or return nothing. The latter interpretation would declare t1 and !t1 as disjoint
events. Which strategy to choose and how to handle such a situation is subject to the actual
implementation (e.g. by applying an intensional evaluation) and shall not be elaborated further
at this point.

5.2.4.2 Rules

After having discussed queries, we are now going to discuss POLAR rules. POLAR rules
consist of a head and, like queries, a corresponding subgoal list. Note that we do not support
probabilistic rules in POLAR yet.
In POLAR, rules like

document(D) :- book(D)

to capture dependencies or generate new knowledge in the database context db or

D[european_city(C)] :- D[german_city(C)]

for generating knowledge or describing dependencies within contexts are supported. Another
kind of rules generate new global knowledge or describe dependencies between objects in dif-
ferent contexts, for example

relevant(D) :- D[@A] & A[good & introduction]

If we recall the set notation of the four truth values, the rules above have in common that their
goal (or head) is positive. But POLAR also supports rules which generate negative knowledge,
like

!relevant(D) :- D[@A] & A[bad & introduction]

Positive and negative intensional knowledge can then be used to generate the four truth values
for the derived proposition in a context, as we will see later. But first we have to discuss how
POLAR rules are evaluated.

132 5 POLAR Syntax and Semantics

Evaluation of Rules From Fuhr (2000) we borrow the notion of event keys and event expres-
sions. An event is any fact in a context, but also the reference to a (content or meta) annotation
or another object. Let ε be a function which assigns an event key to each instantiated atom,
annoref, reference in a context. For example, let

ε(d1 [*a1]) = d1[*a1]

ε(t1) = t1

etc. Based on event keys, we define event expressions:

Definition 23 (Event expressions):
An event expression is a Boolean expression and recursively defined by a function η as
follows:

1. η(L) :=
∨
s η(s) where s is a rule whose head matches L.

2. η(L0 : −L1& . . .&Ln) := η(L1) ∧ . . . ∧ η(Ln)

3. η(c[L1& . . .&Ln]) := η(c[L1]) ∧ . . . ∧ η(c[Ln]) if c is a context name

4. η(g) = ε(g) if g is a proposition, annoref or reference in a context. g is called an event
atom.

An example shall illustrate event expressions.

Example 10 (Event expressions): Consider the following simple POLAR program:

d1[0.6 ir 0.8 db @a1 @a2]
a1[0.6 good 0.5 introduction]
a2[0.4 bad 0.7 introduction]
relevant1(D) :- D[ir] & D[@A] & A[good & introduction]
!relevant1(D) :- D[@A] & A[bad & introduction]
relevant2(D) :- D[ir]
relevant2(D) :- D[db]
relevant3(D) :- D[@A] & A[introduction]

For relevant1(d1), the event expression is

η(relevant1(d1)) =
η(relevant1(d1) :- d1[ir & @a1] & a1[good & introduction]) =

η(d1[ir & @a1] ∧ η(a1[good & introduction]) =
η(d1[ir] ∧ η(d1[@a1]) ∧ η(a1[good]) ∧ η(a1[introduction]) =
d1[ir] ∧ d1[@a1] ∧ a1[good] ∧ a1[introduction]

5.2 Semantics 133

For !relevant1(d1), the event expression is

η(!relevant1(d1)) =
η(!relevant1(d1) :- d1[@a2] & a2[bad & introduction]) =
η(d1[@a2] ∧ η(a2[bad & introduction]) =
η(d1[@a2]) ∧ ∧η(a2[bad]) ∧ η(a2[introduction]) =
d1[@a2] ∧ a2[bad] ∧ a2[introduction]

For relevant2(d1), the event expression is

η(relevant2(d1)) =
η(relevant2(d1) :- d1[ir]) ∨ η(relevant2(d1) :- d1[db]) =
η(d1[ir]) ∨ η(d1[db]) =
d1[ir] ∨ d1[db]

For relevant3(d1), the event expression is

η(relevant3(d1)) =
η(relevant3(d1) :- d1[@a1] & a1[introduction])∨

η(relevant3(d1) :- d1[@a2] & a2[introduction]) =
η(d1[@a1]) ∧ η(a1[introduction]) ∨ η(d1[@a2]) ∧ η(a2[introduction]) =
d1[@a1] ∧ a1[introduction] ∨ d1[@a2] ∧ a2[introduction]

2

Event expressions are Boolean expressions and can thus be transformed into disjunctive
normal form (DNF) like K1 ∨ . . . ∨ Kn, where each Ki is an event atom or a conjunction
of event atoms. We will now describe how we calculate the probabilities of our newly derived
facts, which is the probability of the corresponding event expressions. For event atoms, we apply
definitions 20, 21 and 22. This means that we ignore inconsistent knowledge for deducing new
knowledge, but we may induce new inconsistent knowledge.

Probabilities of Event Expressions We assume the independence of event atoms, so the prob-
ability of their conjunction is calculated as the product of their probability, i.e. P (Ki) =
P (a1) · . . . · P (an) if Ki = a1 ∧ . . . ∧ an (an exception are disjoint events like a∧!a). In or-
der to compute the probability of the disjunction, we apply the inclusion-exclusion formula
(sometimes also known as the sieve formula (Storch and Wiebe, 1989, p. 159)).

Definition 24 (Inclusion-exclusion formula):
Let K1 ∨ . . . ∨ Kn be an event expression in DNF. The probability of this expression is
computed with the inclusion-exclusion formula

P (K1 ∨ . . . ∨Kn) =
n∑
i=1

(−1)i−1

 ∑
1≤j1<
...<ji≤n

P (Kj1 ∧ . . . ∧Kji)



134 5 POLAR Syntax and Semantics

and
P (Kj1 ∧ . . . ∧Kji) = P (Kj1) · . . . · P (Kji)

For example, for the expression K1 ∨K2 we obtain:

P (K1) + P (K2)− P (K1) · P (K2).

Example 11 (Probabilities of event expressions): We recall Example 10 and the event
expressions in this example. We obtain for relevant1(d1):

P (relevant1(d1)) =
P (d1[ir] ∧ d1[@a1] ∧ a1[good] ∧ a1[introduction]) =

0.6 · 1 · 0.6 · 0.5 = 0.18

For !relevant1(d1):

P (!relevant1(d1)) =
P (d1[@a2] ∧ a2[bad] ∧ a2[introduction]) =
P (d1[@a2]) · P (a2[bad]) · P (a2[introduction]) = 1 · 0.4 · 0.7 = 0.28

For relevant2(d1):

P (relevant2(d1)) =
P (d1[ir] ∨ d1[db]) =
P (d1[ir]) + P (d1[db])− P (d1[ir]) · P (d1[db]) =
0.6 + 0.8− 0.6 · 0.8 = 0.92

For relevant3(d1):

P (relevant3(d1)) =
P (d1[@a1] ∧ a1[introduction] ∨ d1[@a2] ∧ a2[introduction]) =
P (d1[@a1] ∧ a1[introduction]) + P (d1[@a2] ∧ a2[introduction])−

P (d1[@a1] ∧ a1[introduction]) ·
P (d1[@a2] ∧ a2[introduction]) =

P (d1[@a1]) · P (a1[introduction]) +
P (d1[@a2]) · P (a2[introduction])−
P (d1[@a1]) · P (a1[introduction]) ·
P (d1[@a2]) · P (a2[introduction]) =

1 · 0.5 + 1 · 0.7 − 1 · 0.5 · 1 · 0.7 = 0.5 + 0.7 − 0.5 · 0.7 = 0.85
2

5.2 Semantics 135

Model of a POLAR program In Definition 15 we defined the model of a basic POLAR
program. Basic POLAR programs do not contain rules, and we now want to show how a model
of full POLAR programs must look like.
We have shown how to calculate probabilities for positive and negative rules by means of

event expressions. Positive rules calculate the probability that an instantiated head is true or
inconsistent, whereas negative rules compute the probability that an instantiated head is false
or inconsistent. If we combine these values, we gain the probabilities for the four truth values
for and instantiated head. An example shall illustrate this.

Example 12 (Probabilities of instantiated rule heads): Based on Example 11, we cal-
culate the probabilities for relevant1(d1):

pt = 0.18 · (1− 0.28) = 0.1296
pf = 0.28 · (1− 0.18) = 0.2296
pi = 0.18 · 0.28 = 0.0504
pu = 1− 0.18 · 1− (0.28) = 0.5904

pt is the probability that relevant1(d1) is positive and not negative. pf is the probability that
relevant1(d1) is negative and not positive. pi is the probability that relevant1(d1) is positive
and negative. Finally, pu is the probability that relevant1(d1) is neither positive nor negative.
So we get db[0.1296/0.2296/0.0504/0.5904 relevant1(d1)]. 2

The probabilities of newly derived knowledge depends on the probabilities calculated from
the corresponding event expressions. We formulate this as a constraint:

Constraint 13 (Probabilities of instantiated rule heads): For each instantiation of rule
heads, the following condition must hold:

M |= d[pt/pf/pi/pu ϕ] ⇐⇒ pt = P (η(d[ϕ])) · (1− P (η(d[!ϕ]))
pf = P (η(d[!ϕ])) · (1− P (η(d[ϕ]))
pi = P (η(d[ϕ])) · P (η(d[!ϕ])
pu = (1− P (η(d[ϕ]))) · (1− P (η(d[!ϕ]))

If the instantiated head is true w.r.t. the interpretation structure M , then the corresponding
probabilities must be derived from the subgoal list and their event expressions. On the other
hand, if we derive the probabilities from the subgoal list, then the instantiated head must be
true w.r.t. M with these probabilities. 2

With this constraint, we now define a model for a full POLAR program.

Definition 25 (Model of a POLAR program):
An interpretation structure M is a model of a POLAR program P iff

• definition 15 is applied and additionally

• constraint 13 holds.

136 5 POLAR Syntax and Semantics

Figure 5.16: Two interpretation structures for the POLAR model example

Example 13 (Model of a POLAR program): Consider the POLAR program

0.5 relevant(d1)
d1[0.3 foo]
relevant(D) :- D[foo]

The event expression for “relevant(d1)” is relevant(d1)∨ d1(foo]; the probability of this
expression is 0.5+0.3− 0.5 · 0.3 = 0.65. Figure 5.16 shows two interpretation structures. M1 is
a model of the POLAR program above, whileM2 is only a model of the basic POLAR program,
consisting of the first two lines, but not of the whole program due to different probabilities of
the worlds reachable by contextagent db. For the whole program, constraint 13 is violated in
M2. 2

5.3 Retrieval Function
In the last section we have discussed knowledge modelling in POLAR, including knowledge
augmentation, and how queries and rules are processed and interpreted semantically. This
allows for queries about the content of documents and annotations, and complex queries and
rules where knowledge from annotations and annotated objects can be combined. What is still
missing is the introduction of a “real” retrieval function which includes and combines well-known
concepts like term spaces based on measures like the inverse document frequency, within-context
term weights and probabilistic and logic-based IR. As in POOL, retrieval functions in POLAR
are based on probabilistic inference.

5.3.1 Information Retrieval with Probabilistic Inference
Probabilistic IR computes the probability that a document is relevant w.r.t. a query q and a
document d, which is denoted P (R|d, q). Van Rĳsbergen coined the paradigm of IR as uncertain
inference where the probability P (d → q) that a document d implies a query q, is estimated
(van Rĳsbergen, 1986). This probability is assumed to capture the notion of relevance, i.e. it

5.3 Retrieval Function 137

is proportional to P (R|d, q), so if we are not interested in the exact probabilities P (R|d, q), the
same ranking can be achieved by calculating P (d→ q). In van Rĳsbergen (1986), a definition
of P (d→ q) is given as

P (d→ q) := P (q|d).

Based on this, Wong and Yao (1995) show that many popular retrieval functions can be mod-
elled in terms of probabilistic inference. For example, the vector space model can be expressed
as uncertain inference:

P (d→ q) = P (q|d) =
∑
t

P (t|d) · P (q|t) =
∑
t

P (d→ t) · P (t→ q) = ~d · ~q (5.3)

given that all t are disjoint, i.e. P (ti∧ tj) = 0 if i 6= j and
∑
t P (t) = 1. ~d ·~q calculates the scalar

product of the document and query vector. P (d→ t) can be considered as a representation of
the document concepts and P (t→ q) as one of the query concepts. As argued in Wong and Yao
(1995), indexing estimates the degree to which a document is relevant to a concept, whereas
query formulation goes the other way round and describes the degree to which a concept is
relevant to a query.

5.3.2 Probabilistic Inference in POLAR
5.3.2.1 Syntax

POLAR supports retrieval based on probabilistic inference. To do so, we model queries as
contexts. For example,

q1[0.6 is 0.9 db]

says that the query q1 consists of the query terms “is” and “db”. By modelling queries as con-
texts, we are not only able to specify query term weights (in this case 0.6 and 0.9, respectively),
but also to formulate queries containing categorisations and attributes. The expression

?- D->q

retrieves all instantiations d of the variable D and their corresponding probability P (d → q).
Note that there is another advantage of modelling queries as contexts: P (d → q) calculates
the implication between contexts in general (called context implication (Rölleke, 2008)), so it
is not only defined between a document and a query, but could also be used, e.g., to compute
the similarity between documents.

5.3.2.2 Semantics

In principle, probabilistic inference in POLAR is the same as in POOL. This is possible because
in POLAR, although we calculate augmented values differently and introduce special propo-
sitions and polarity, we are using the same semantic interpretation structures as in POOL
(namely Kripke structures). This means that we can exploit POOL’s probabilistic inference as
described in (Rölleke, 1998, chapter 4) for POLAR. As indicated in Wong and Yao (1995), there
can potentially be more than one way to estimate the implication probability for a document
and a query. In (Rölleke, 1998, chapter 4) we see how the vector space model can be described
by means of our probabilistic interpretation structure. This can be done using the combina-
tion of fact, query and predicate spaces – the fact space is established by the propositions in
a context, the query space by the propositions in the query, and the predicate space is a new

138 5 POLAR Syntax and Semantics

space which reflects the importance of a certain predicate. A predicate can be a term predicate,
a category predicate or an attribute predicate. A typical example of a term predicate space
is a space consisting of terms and their associated inverse document frequencies5. Category
predicate spaces consist of category names and their associated probabilities. Analogously, at-
tribute spaces contain attribute names and their probabilities. Similar to the probabilities in
term spaces, category and attribute spaces reflect the importance of a category or an attribute.
This importance value can again be calculated by means of an inverse document frequency
(depending on the number of documents a category/attribute name appears in) or directly
given by the user.
We do not go into more detail regarding the semantics of the POLAR expression “D->q”

here. POLAR is supposed to support different interpretations of P (d → q), and to pick
and thoroughly explain a certain one would go too far here. Instead, we refer to (Rölleke,
1998, chapter 4) for a more exhaustive description on and general proof of concept of how the
implication probability can be interpreted semantically (in that particular case by means of
probabilistic inference modelling the vector space model with Eq. 5.3). The method explained
there for POOL can be applied to POLAR as well. Additionally, we refer to Section 6.2.4 where
we further discuss probabilistic inference and possible retrieval functions when introducing the
implementation of POLAR.

5.3.2.3 Predicate Spaces in POLAR

Although the predicate spaces might be extracted from the collection statistics, POLAR offers
syntactic expressions to define them explicitly (see Fig. 5.1 on page 90). The expression

0.5 ◦databases

sets P (databases) = 0.5 in the term space.

0.7 ◦◦footballclub

does the same for class “footballclub” in the category space and

0.8 ◦◦◦author

sets the probability of the attribute “author” in the attribute space to 0.8.

5.4 Summary and Discussion
In this section, we defined the syntax and semantics of POLAR, together with the under-
lying annotation-based retrieval model. With POLAR, we can model and query structured
annotation hypertexts.
As an extension to POOL, the POLAR syntax allows for specifying contexts and subcontexts,

according to a given type (subpart, merged annotation target, fragment, (negative) content
and meta annotation, and reference). Access probabilities to the subcontexts can be given.
Annotations, documents and subparts are contexts containing propositions which can have
four truth values, true, false, inconsistent and unknown. Complex queries to the underlying
structured annotation hypertext are supported in order to satisfy advanced information needs.
Rules can be used to deduce new knowledge and to support queries.

5Similar to an n-dimensional vector space: each dimension reflects a term in the collection; a term space vector
then represents the distribution of inverse document frequencies over the terms.

5.4 Summary and Discussion 139

The semantics of POLAR are described by a probabilistic variant of Kripke structures based
on possible worlds, which are known from modal logic. We described the semantics of basic
knowledge modelling and the constraints which make an interpretation structure a model of
a basic POLAR program. If propositions are made in a context, this means that the corre-
sponding contextagent reaches worlds where these propositions are contained. The probability
of a proposition to be true, false, inconsistent or unknown is determined by the probabilities
with which worlds containing the proposition are accessed. Access to subcontexts (annotations,
fragments, targets, referenced objects, subparts) is represented by accessibility relations and
the worlds a contextagent can reach from the current one. These accessibility relations deter-
mine what the contextagent believes to be possible, and they reflect the behaviour of a user
accessing annotations or other subcontexts (and believing their respective assertions) with a
certain probability. To make a distinction between the different kinds of subcontexts in PO-
LAR, special propositions for the relation type were introduced. Constraints are introduced
which need to be applied in order to make an implementation structure a model of a basic
POLAR program.
Furthermore, we discussed how knowledge augmentation, one of the core concepts behind

POLAR, works. Knowledge augmentation simulates the user accessing subcontexts and aggre-
gates the knowledge a user would gain when traversing the possible worlds. This aggregated
knowledge is again contained in possible worlds which an augmented context would access
with a certain probability. These possible worlds and its content are derived by an extension
of POOL’s trees function (which also takes the polarity of annotations into account) and a
modification of the truth value assignment function. In order to take certain peculiarities of
the different subcontext types in POLAR into account, the notion of valid augmented context
expressions is introduced and an algorithm is discussed which derives such expressions from
the interpretation structure. Such valid augmented context expressions control the creation of
the augmented subcontexts.
We further introduced how queries and rules are processed. For rules, we applied the notion

of event expressions to deduce new knowledge. This led to an additional constraint which
needs to be adhered to in order to make an interpretation structure a model of a full POLAR
program.
Finally, we sketched POLAR’s retrieval function which is based on the notion of uncertain

inference, where P (d→ q), the probability that a document d implies a query q, is estimated.
Since many interpretations of such a function are conceivable (for example a realisation of the
vector space model, as it was done in POOL), we did not restrict ourselves to only one of
them, but just presented predicate spaces which should be incorporated in possible POLAR
interpretations of P (d→ q). A precise implementation of P (d→ q) is subject to the discussion
in the next chapter.

The semantics of POOL and POLAR basically share the same interpretation structure. As
mentioned in the last chapter, POLAR is in a way a generalisation of POOL (every POOL
program is also a POLAR program) or a specialisation (POLAR specialises relation types and
offers additional functionality, a higher expressiveness, typification of contexts and relations,
which was not an issue for POOL. POOL relies on a simpler model.). This is also reflected in
the semantics, where we introduced special propositions in order to distinguish between relation
and subcontext types in POLAR, and adapted POOL’s original trees function in order to deal
with the peculiarities of the different types. We also need to handle possible cycles in POLAR’s
interpretation structure when performing knowledge augmentation.

140 5 POLAR Syntax and Semantics

To model different relation types, we used special propositions within worlds. An alternative
option would have been to distinguish between different relation types directly. For example, we
could define a set Rcannoai ⊆ Rai which contains only content annotation relations. The problem
here is that we need to extend the definition of our interpretation structure with syntactic
elements, so we cannot keep it as simple as possible, as it would be required to keep a clear
distinction between syntax and semantics. On the other hand, what does, e.g., d1[*a1]mean?
It means that contextagent d1 knows that a1 is an annotation (or, in other words, it knows
that a1 would reach another world through an annotation, at least w.r.t. context d1), so this
is certainly knowledge a contextagent has in a specific world. It is therefore straightforward to
assign this knowledge to its corresponding worlds, without further expanding the interpretation
structure. The advantage is that we can keep the semantic structure simple and no syntactic
constructs need to make their way into the definition of the interpretation structure. The
information about the relation types moves from the interpretation structure itself – as it
would be when applying the first option – to an instance of the interpretation structure. This
way, POLAR’s interpretation structure stays compatible to the one of POOL.

Having specified POLAR’s syntax and semantics in this chapter, the next question is how
POLAR can be implemented. In the subsequent chapter, a possible implementation based on
four-valued probabilistic Datalog is discussed.

6
POLAR Implementation

Logic, like whiskey, loses its
beneficial effect when taken in too
large quantities.

(Lord Dunsany)

In the last chapter we discussed POLAR’s syntax and semantics. We shed some light on one of
POLAR’s core concepts, knowledge augmentation, and besides POLAR’s knowledge modelling
abilities, we also looked at retrieval functions based on probabilistic inference. The aim of this
chapter is to introduce a possible implementation of POLAR, which is based on four-valued
probabilistic Datalog (FVPD). FVPD supports four-valued logics as we know it from POLAR,
as well as the open-world assumption. With HySpirit1, there exists an implementation of FVPD
which can be used as an engine to execute POLAR programs once we defined an appropriate
translation from POLAR to FVPD.
The chapter is structured as follows. First, four-valued probabilistic Datalog is introduced

which also discusses its translation into probabilistic Datalog. Subsequently, the translation of
POLAR programs into FVPD is described for basic knowledge modelling, queries and rules,
augmentation and possible retrieval functions.

6.1 Four-Valued Probabilistic Datalog (FVPD)

Four-valued probabilistic Datalog (FVPD) is an extension of probabilistic Datalog. Similar to
Prolog, its syntax consists of variables, constants, predicates and Horn clauses. Probabilities
can be assigned to facts. Semantically, FVPD uses the four different truth values we already
know from POLAR, true, false, inconsistent and unknown (Fuhr and Rölleke, 1998; Rölleke
and Fuhr, 1996). Therefore, FVPD can deal with the open world assumption – facts which
cannot be deduced are not assumed as false, as it would be with a closed world assumption.
This makes FVPD an excellent candidate for the implementation of POLAR. We begin with
a brief description of FVPD’s syntax. As a extension of probabilistic Datalog, FVPD can be
mapped onto Datalog rules and facts. This translation is described in Section 6.1.2, which also
contains an example of an FVPD program and how it is translated and evaluated.

1http://qmir.dcs.qmul.ac.uk/hyspirit.php

http://qmir.dcs.qmul.ac.uk/hyspirit.php

142 6 POLAR Implementation

6.1.1 Syntax of FVPD

Facts, Rules and Queries We introduce the syntax of FVPD as described in Fuhr and Rölleke
(1998). Basic elements in FVPD are predicates (alphanumeric strings starting with lower-case
letters; sometimes also referred to as relations), constants (numbers or alphanumeric strings
starting with lower-case letters) and variables (alphanumeric strings starting with upper-case
letters). A term is either a constant or a variable. A ground term is a constant. The Herbrand
Universe of a FVPD program is the set of constants occurring in it. An atom q(t1, . . . , tn)
consists of the n-ary predicate symbol q and a list of arguments (t1, . . . , tn) with each ti being
a term. A literal is an atom q(t1, . . . , tn) or a negated atom !q(t1, . . . , tn). A ground fact is
a literal where all arguments are constants. Ground facts may be preceded by a weight list,
which is equal to a POLAR weight list discussed in Sections 5.1.1 and 5.2.1.2. Rules consist of
a head and a subgoal list. Subgoal lists are conjunctions of subgoals; each subgoal is a literal. A
head is a literal with the restriction that all variables appearing in the head must also appear
in the corresponding subgoal list. Queries are headless subgoal lists preceded by “?-”.
Facts describe the extensional knowledge of an FVPD program. By applying rules, new

intensional facts are created.

Closed World Assumption and Disjointness Keys In FVPD it is possible to assume a closed
world for whole predicates and define the disjointness of events. In order to define certain
tuples of a relation as disjoint events, a disjointness key can be declared for a predicate. For
example, the expression _dk(termspace, "$1") says that all tuples of the predicate called
termspace which are equal in the first argument should are regarded as being disjoint2. In
FVPD, the expression _CWA(termspace) would declare termspace as being a two-valued
predicate with an underlying closed world assumption. In contrast to that, the expressions
_OWA(term) and _dk(term, "$1,$2") would declare term as being four-valued with an
underlying open world assumption; all tuples of this relation are disjoint if they are equal in
the first and second argument (see also Example 14 below). If the disjointness key is omitted
for a predicate/relation, we assume that it does not contain any disjoint event.

6.1.2 Translation to and Evaluation with Probabilistic Datalog

FVPD is built upon probabilistic Datalog (PD). Each FVPD program is thus translated into a
PD program, which is executed subsequently. We do not give a formal introduction to PD here,
but refer to Fuhr (2000) for an exhaustive discussion of PD. Instead, we introduce PD as needed
by giving an example. We start with the translation of FVPD facts into PD and continue with
rules and queries. Afterwards we present an example FVPD program, its translation into PD
and how the resulting PD program is evaluated.

6.1.2.1 Translation of FVPD Facts

FVPD facts are mapped onto up to 3 PD facts (one for representing a truth value). Each
FVPD fact

pt/pf/pi q(a1, . . . , an)

2To specify a closed or open world for predicates and to define the disjointness key, we use the syntax as
provided by current HySpirit implementations, which is slightly different to the one introduced in Fuhr and
Rölleke (1998), where the equivalent expression would be #termspace(dk).

6.1 Four-Valued Probabilistic Datalog (FVPD) 143

where pt/pf/pi are the probabilities for true, false and inconsistent is translated into three
two-valued PD facts

pt q(t, a1, . . . , an). pf q(f, a1, . . . , an). pi q(i, a1, . . . , an).

Each of these facts reflects one truth value. The truth value for unknown is implicitly derived
as 1− (pt + pf + pi). The PD relations are in turn used in PD rules representing positive and
negative evidence:

pos_q(a1, . . . , ak) :- q(t, a1, . . . , ak)
pos_q(a1, . . . , ak) :- q(i, a1, . . . , ak)
neg_q(a1, . . . , ak) :- q(f, a1, . . . , ak)
neg_q(a1, . . . , ak) :- q(i, a1, . . . , ak)

This way, pos_q(a1, . . . , ak) combines all evidence that q(a1, . . . , ak) is positive, which is the
case if the fact is true or inconsistent. Similarly for neg_q(a1, . . . , ak), which combines all
evidence that q(a1, . . . , ak) is negative. Note the analogy to the set notation of the four truth
values (see p. 57). Here, a proposition was positive if t appeared in the set notation of its truth
value ({t, f} for inconsistent and {t} for true). Analogously for negative propositions.

6.1.2.2 Translation of FVPD Rules and Queries

A FVPD rule has the form
h :- b1 & . . .& bn

and consists of a head h and a conjunction of subgoals b1, . . . , bn. The head h is mapped onto
the corresponding positive or negative literal in PD, depending on whether h is positive or
negative. Each positive subgoal in FVPD is replaced by a conjunction of the corresponding
positive PD literal and the negation of the corresponding negative PD literal (and vice versa
for negative FVPD subgoals). So for each FVPD rule like above, we gain the PD rule

g :- r1 & . . .& rn

with

g =
{
pos_h if h is positive,
neg_h′ if h =!h′ (h is negative),

and

ri =
{
pos_bi & !neg_bi if bi is a positive literal,
neg_b′i & !pos_b′i if b′i =!bi is a positive literal.

6.1.2.3 Example

We illustrate the translation of FVPD programs and their evaluation in PD with an example.

Example 14 (FVPD translation and evaluation): Consider the following FVPD pro-
gram with facts, rules and a query:

144 6 POLAR Implementation

1 _CWA(acc_canno)
2 _dk(term,"$1,$2")
3 0.5 acc_canno(d1,a1).
4 0.6/0.1 term(football,a1).
5 term_k(T,D) :- term(T,D).
6 term_k(T,D) :- acc_canno(D,S) & term_k(T,S).
7 ?- term_k(football,D)

The first line defines acc_canno as two-valued relation (closed-world assumption). The second
line declares the tuples of the relation term as independent. The FVPD program would be
translated into the following PD program:

1 _dk(term,"$2,$3")
2 0.5 acc_canno(d1,a1).
3 0.6 term(t,football,a1).
4 0.1 term(f,football,a1).
5 pos_term(T,D) :- term(t,T,D).
6 pos_term(T,D) :- term(i,T,D).
7 neg_term(T,D) :- term(f,T,D).
8 neg_term(T,D) :- term(i,T,D).
9 pos_term_k(T,D) :- pos_term(T,D) & !neg_term(T,D).

10 neg_term_k(T,D) :- neg_term(T,D) & !pos_term(T,D).
11 pos_term_k(T,D) :- acc_canno(D,S) &
12 pos_term_k(T,S) & !neg_term_k(T,S).
13 neg_term_k(T,D) :- acc_canno(D,S) &
14 neg_term_k(T,S) & !pos_term_k(T,S).
15 ?- pos_term_k(football,D) & !neg_term_k(football,D)

The first line in the PD listing translates the disjointness key of the second line in the FVPD
listing. In the PD term relation, the 2nd and 3rd attribute (which represent the 1st and 2nd
attribute in the corresponding FVPD relation) are independent – the disjointness key spans
over these two attributes. If two tuples in the term relation are equal regarding the 2nd and
3rd attribute, they are disjoint w.r.t. the first attribute. This way it is ensured that the four
truth values are disjoint as required. For example, in lines 3 and 4 we see the translation
of term(football,a1); here, term(t,football,a1) and term(f,football,a1) are
disjoint events, since the second and third attribute are the same. Line 2 is the PD expression of
the acc_canno fact. Since it is declared as being two-valued in the FVPD listing, it remains
unchanged in the translation. Lines 5 – 8 declare the PD relations for positive and negative
evidence w.r.t. term. Lines 9 to 14 are the translation of the rules, and the last line is the PD
version of the query.
We now show an example how the FVPD query

?- term_k(football,D).

which is translated into the PD query

?- pos_term_k(football,D) & !neg_term_k(football,D).

is evaluated for d1 and a1. After the FVPD query has been translated into PD, a PD engine
like HySpirit computes the corresponding probabilities

P (pos_term_k(football,d1) & !neg_term_k(football,d1))

6.2 POLAR Translation to FVPD 145

and
P (pos_term_k(football,a1) & !neg_term_k(football,a1))

and returns them as the final result. For the evaluation of the query, the PD engine utilises a
function η, which evaluates PD expressions and returns PD event expressions (similar to Def. 23,
where we defined POLAR event expressions), and the inclusion-exclusion-formula defined in
Def. 24 on page 133. See Fuhr (2000) for further details. During evaluation of a possible
instantiation of the variables, the query is transformed into a Boolean expression consisting of
basic event expressions for which the probabilities are known and whose combined probability
is calculated with the inclusion-exclusion formula. In Appendix B.2, we show that

η(pos_term_k(football,d1) & !neg_term_k(football,d1)) =
acc_canno(d1,a1) ∧ term(t,football,a1)

due to the application of rules 11 – 14 (which in turn invoke rules 5 to 10) and the disjointness
key of the term relation. We arrive at

P (pos_term_k(football,d1) & !neg_term_k(football,d1)) =
P (acc_canno(d1,a1) ∧ term(t,football,a1)) = 0.5 · 0.6 = 0.3.

In a similar way, we can show that

P (pos_term_k(football,a1) & !neg_term_k(football,a1)) =
P (term(t,football,a1)) = 0.6

due to the rules in lines 9 and 10. So our FVPD query “?- term_k(football,D)“ yields

0.6 (a1)
0.3 (d1)

2

We have introduced four-valued probabilistic Datalog (FVPD), which is an extension of
probabilistic Datalog capable of dealing with four truth values and an open world assumption.
We presented the syntax of FVPD and its translation into probabilistic Datalog (PD). PD
programs, in turn, can be translated into a probabilistic relational algebra (PRA) (Fuhr and
Rölleke, 1997). HySpirit, as an implementation of FVPD, does exactly this – it translates an
FVPD program into a PD one and this again into a PRA program. The PRA program is
then executed by a corresponding engine provided by HySpirit. The PRA engine conducts the
intensional analysis of the event expressions required for calculations such as the one shown in
the example above, considering disjointness of events. If we find a correct translation function
of POLAR programs to FVPD, we are done – POLAR programs would be translated into PRA
ones at the end of the chain and then be executed by HySpirit’s PRA engine.

6.2 POLAR Translation to FVPD
POLAR programs are executed by translating them into FVPD and running these programs
with the HySpirit engine. To translate POLAR programs, we use a function trans which is
going to be described in the following. trans takes 2 or 3 parameters. The first parameter is

146 6 POLAR Implementation

an expression or a set of expressions. The second one is the context of the expressions. The
optional last parameter is a flag which, if set to 1, says that knowledge augmentation should be
performed. 0 means no knowledge augmentation. We omit this parameter if it is not further
needed. We commence with the translation of programs and clauses and go deeper into the
translation routines in the following sections. We refer to the description of the POLAR syntax
in figures 5.1 and 5.2 on page 90 and 92, respectively.

trans(program,c) := trans(clause,c) trans(program’,c)
if program = clause program’

trans(clause,c) := trans(fact,c)
if clause = fact

:= trans(query,d)
if (clause = query)

:= trans(rule,d)
if (clause = rule)

:= trans(context,d)
if (clause = context)

:= trans(predicate)
if (clause = predicate)

A program consists of clauses, so the translation of a program is actually the translation of
each clause. A clause can be a fact, query, rule, context or predicate. The next section about
basic knowledge modelling describes the translation of fact and context clauses. Section 6.2.2
discusses the translation of queries and rules. Section 6.2.4 contains a discussion about the
translation of predicates.

6.2.1 Basic Knowledge Modelling
This section shows the translation of POLAR basic knowledge modelling into FVPD. We start
with a few translation examples of POLAR programs known from previous chapters. After-
wards, the corresponding translation rules are discussed.

6.2.1.1 Examples

Example 15 (Translation of POLAR programs): Recall the POLAR program from Ex-
ample 7 on page 112:

d1[0.6 soccer
0.8 s1[0.3 music]
0.7 *a1]

a1[0.5 football]
document(d1)
annotation(a1)

This example contains many important elements of POLAR programs like propositions (terms
and classifications), documents, content annotations, and subparts. The corresponding FVPD
translation is

1 0.6 term(soccer,d1).
2 0.8 acc_subpart(d1,s1).
3 0.7 acc_canno(d1,a1).

6.2 POLAR Translation to FVPD 147

4 0.3 term(music,s1).
5 0.5 term(football,a1).
6 instance_of(d1,document,db).
7 instance_of(a1,annotation,db).
8 subpart(d1).
9 subpart(a1).

Lines 1 to 3 translate the propositions of the d1 context. The binary predicate term represents
term propositions – in this example, line 1 means that “soccer” is a term of d1 with 0.6 prob-
ability. acc_subpart models probabilistic access to subparts as subcontexts, so line 2 means
that d1 accesses s1 with a probability of 0.8. acc_subpart encodes the probabilistic access
of subcontexts as well as the _subpart special proposition defined in Def. 6 on page 97. In a
similar way, line 3 deals with a1 as subcontext of d1 – a1 is a content annotation of d1 and 0.7
is the probability that a1 is accessed from d1. Lines 4 and 5 represent “s1[0.3 music]” and
“a1[0.5 football]”, respectively. The last four lines express the db-context. The predi-
cate instance_of is used for classifications. Line 6 says that d1 is an instance of the class
“document” in the global database context db. Analogously, line 7 means that a1 is known as
an annotation in context db. Lines 8 and 9 internally categorise d1 and a1 as subparts. The
subpart relation is later used to distinguish between queries looking for fragments and those
looking for documents or annotations. Each element in this relation has the probability 1 (in
contrast to the acc_subpart relation).
Let us have a look at another example, this time taken from Section 5.2.1.2:

d1[*a1 *a2]
a1[moon_made_of_cheese]
a2[!moon_made_of_cheese]

The translation into FVPD yields

1 acc_canno(d1,a1).
2 acc_canno(d1,a2).
3 term(moon_made_of_cheese,a1).
4 !term(moon_made_of_cheese,a2).
5 subpart(d1).
6 subpart(a1).
7 subpart(a2).

The translation goes analogously to the previous one. Line 4 is interesting because it contains a
negation. Negated terms in POLAR are transformed into a negated term predicate in FVPD.
Another example from the previous chapter is

schalke
footballclub(schalke)
0.7/0.3 peter.supports(schalke)

We find all 3 kinds of propositions here. The translation outputs the following FVPD program:

1 term(schalke,db).
2 instance_of(schalke,footballclub,db).
3 0.7/0.3 attribute(supports,peter,schalke,db).

148 6 POLAR Implementation

Line 3 shows how an attribute within a context (in this case the db-context) is expressed with the
attribute predicate, which takes the attribute name, the object ID, a constant as attribute
value and the context in which the proposition is made. Since the FVPD syntax also allows
for weight lists, we can just copy the POLAR weight list here.
The next example deals with fragments:

d1[0.5 information
0.8 f1|| 0.7 information 0.7 -*a1||]

a1[]

1 0.5 term(information,d1).
2 0.7 term(information,f1).
3 0.8 acc_fragment(d1,f1).
4 0.7 acc_negcanno(f1,a1).
5 0.7 acc_negcanno(d1,a1).
6 subpart(d1).
7 subpart(a1).
8 fragment(f1).

The first two lines are the propositions made in the d1 and f1 context, respectively. Line 3

denotes the fragment access from d1 to f1. The following two lines are interesting, since they
realise the access of the negative content annotation a1 from f1 as well as from d1 due to
fragment permeability. The last three lines internally categorise d1 and a1 as subparts and f1
as fragment.

6.2.1.2 Translation Rules

From the examples above we now come to the formulation of translation rules for basic POLAR
knowledge modelling. We begin bottom-up with facts, factlists and propositions.

trans(factlist,c) := trans(fact,c) trans(factlist’,c)
if factlist = fact factlist’

trans(fact,c) := trans(proposition,c)
if fact = proposition

:= !trans(proposition,c)
if fact = !proposition

:= weightlist trans(proposition,c)
if fact = weightlist proposition

trans(proposition,c) := term(termname,c).
if proposition = termname

:= instance_of(obj-id,classname,c)
if proposition = classname(obj-id)

:= attribute(attr-name,obj-id,constant,c)
if proposition = obj-id.attr-name(constant)

A fact is a proposition, a negated proposition or a proposition with a weight list. Propo-
sitions can be terms, classifications or attributes. In FVPD, “term(termname,c)” means
that termname is a term in the context c. “instance_of(obj-id,classname,c)” says

6.2 POLAR Translation to FVPD 149

that in context c, the object with the ID obj-id is instance of the class classname.
“attribute(attr-name,obj-id,constant,c)” means that in context c, the attribute
attr-name of the object identified by obj-id has the value constant.
The translation of references and annorefs goes as follows:

trans(annoref,c) := weight acc_canno(c,ca).
if annoref = weight *ca

:= weight acc_negcanno(c,ca).
if annoref = weight -*ca

:= weight acc_manno(c,ma).
if annoref = weight @ma

:= weight acc_negmanno(c,ma).
if annoref = weight -@ma

trans(reference,c) := weight acc_reference(c,r)
if reference = weight =>r

The “acc_canno” predicate models probabilistic access of a subcontext from a supercon-
text and states that the subcontext is a content annotation. “acc_canno(c,ca)” thus
means that the subcontext (in this case content annotation) ca is accessed from the su-
percontext c (with the given two-valued access probability as weight). Similarly for nega-
tive content annotations (“acc_negcanno“), and positive and negative meta annotations
(“acc_manno”,“acc_negmanno”). For references, “acc_reference(r,c)“ means that r
is referenced by c. Besides access relations, all these predicates encode the special propositions
introduced in Def. 6 and always carry the access probability as their weight.
We now turn to the translation of subparts, fragments and merged targets.

trans(mergedtarget,c) := weight acc_mtarget(c,m).
trans(factlist,m)

if mergedtarget = weight m< factlist >
trans(subpart,c) := subpart(s).

weight acc_subpart(c,s).
trans(contextprogram,s)

if subpart = weight s[contextprogram]
trans(fragment,c) := fragment(f).

weight acc_fragment(c,f).
trans(factlist,f) trans(annoref,f) trans(annoref,c)

if fragment = weight f|| factlist annoref ||
:= fragment(f).

weight acc_fragment(c,f).
trans(factlist,f)

if fragment = weight f|| factlist ||

Like annotations and references, subparts, fragments and merged targets are special kinds
of subcontexts. To distinguish between the access of distinct subcontexts, we again define
special access predicates. For merged targets, the predicate ”acc_mtarget“ is used. For sub-
parts, ”acc_subpart“ is taken and fragments are marked as such by the ”acc_fragment“
predicate. Furthermore, subparts and fragments are internally categorised as such with the
”subpart“ and ”fragment“ predicate. If a fragment has an annoref, we need to apply frag-
ment permeability, so the annoref also belongs to the same context as the fragment.

150 6 POLAR Implementation

Based on the definitions so far, we define the translations of contexts, contextprograms and
context clauses:

trans(context,c) := subpart(d).
trans(mergedtarget,d) trans(contextprogram,d)

if context = d[mergedtarget contextprogram]
:= subpart(d). trans(contextprogram,d)

if context = d[contextprogram]
trans(contextprogram,c) := trans(contextclause,c) trans(contextprogram’,c)

if contextprogram = contextclause contextprogram’
trans(contextclause,c) := trans(fact,c)

if contextclause = fact
:= trans(subpart,c)

if contextclause = subpart
:= trans(annoref,c)

if contextclause = annoref
:= trans(reference,c)

if contextclause = reference
:= trans(fragment,c)

if contextclause = fragment

A context clause can be a fact, subpart, annoref, reference or fragment. We already discussed
the translation of these elements. A context program is composed of context clauses. A context
is similar to a subcontext except that it is only accessed from the db-context and can contain
a merged target as a subcontext.

6.2.1.3 Preamble: Closed World Assumptions and Disjointness Keys

To finalise the translation of the basic knowledge modelling, we need to specify the relations
a closed world is assumed for, and which relations contain disjoint facts. This definition must
precede any FVPD translation of POLAR programs and is as follows:

1 _CWA(acc_subpart)
2 _CWA(acc_mtarget)
3 _CWA(acc_fragment)
4 _CWA(acc_canno)
5 _CWA(acc_negcanno)
6 _CWA(acc_manno)
7 _CWA(acc_negmanno)
8 _CWA(acc_reference)

10 _dk(term,"$1,$2")
11 _dk(instance_of,"$1,$2,$3")
12 _dk(attribute,"$1,$2,$3,$4")

In the first 8 lines we assume a closed world for all access relations. This is consistent with
the definition of accessibility relations in POLAR, which are two-valued. The last three lines
define the disjointness of terms, categorisations and attributes. As shown in Example 14, these
disjointness declarations are crucial to ensure that the four truth values of a proposition are
disjoint.

6.2 POLAR Translation to FVPD 151

6.2.2 Queries and Rules
Before we start the discussion of the translation of POLAR queries and rules into FVPD, we
give some examples. Recall that variables in POLAR and also FVPD begin with capital letters;
during processing of rules and queries, the FVPD engine instantiates these variables with actual
constants.

Example 16 (Translation of POLAR queries and rules): Recall the POLAR programs
in Example 15 on page 146. For the first program, a query

?- D[*A] & A[football] & document(D).

would yield all documents with a content annotation about ”football“ (the query would actually
return document-annotation pairs). The corresponding FVPD query is

1 ?- subpart(D) & acc_canno(D,A) & subpart(A) &
2 term(football,A) & instance_of(D,document,db).

The FVPD subgoal ”subpart(D) & acc_canno(D,A)“ is the translation of ”D[*A]“ and
yields instantiations of the variables D and A which fulfil the criteria that D accesses A and A
is a content annotation of D. ”subpart(A) & term(football,A)“ is the translation of
the ”A[football]“ POLAR subgoal and returns all instantiations of A (and their respec-
tive probabilities) which contain the term ”football“. The translation of ”document(D)“ is
”instance_of(D,document,db)“; this returns all instantiations of D which are an instance
of the class ”document“ in the db-context. We used ”subpart(D)“ and ”subpart(A)“ to
prohibit that fragments or merged targets are returned here. After processing, the FVPD en-
gine returns the document-annotation pairs which make all subgoals true; if we consider the
first program in Example 15 on page 146, this is

0.35 (d1,a1)

with the probability calculated as 0.7·0.5·1 = 0.35; each FVPD subgoal (and thus each POLAR
subgoal) is assumed to be an independent event, so the probability of the conjunction of these
subgoals is the product of the single probabilities of each subgoal. Now consider two rules
which say that an object should be returned if it is about ”soccer“ or has an annotation about
”football“:

retrieve(D) :- D[soccer]
retrieve(D) :- D[*A] & A[football]

This is translated into the FVPD rules

1 instance_of(D,retrieve,db) :- subpart(D) & term(soccer,D)
2 instance_of(D,retrieve,db) :- subpart(D) & acc_canno(D,A) &
3 subpart(A) & term(football,A)

Line 1 says that an instantiation of the variable D is an instance of the class ”retrieve“
in the db-context if it is a subpart and contains the term ”soccer“. Line 2 and 3 says
that it is also an instance of the class ”retrieve“ if it accesses a content annotation A
and A contains the term ”football“. The FVPD engine would create the new FVPD fact
”instance_of(d1,retrieve,db)“ and thus the new POLAR fact ”retrieve(d1)“ with
probability 0.74 (0.6 + 0.7 · 0.5− 0.6 · 0.7 · 0.5 = 0.74). Another rule might be

152 6 POLAR Implementation

D[football] :- D[soccer]

which says that each document about ‘soccer’ is also one about ‘football’ (consider the European
‘football’ and the American ‘soccer’). The translation of this rule is

1 term(football,D) :- subpart(D) & term(soccer,D).

and the FVPD engine would create the new fact ”0.6 term(football,d1)“, which in
POLAR would be “d1[0.6 football]”.
If we look at the second POLAR program in Example 15, we could ask for objects which say

that the moon is not made of cheese:

?- D[!moon_made_of_cheese]

This POLAR query would be translated into

?- subpart(D) & !term(moon_made_of_cheese,D)

and would yield a2. The following POLAR rules say that a document should be retrieved if it
states that the moon is not made of cheese, and it should not be retrieved if it asserts that the
moon is made of cheese:

relevant(D) :- D[!moon_made_of_cheese]
!relevant(D) :- D[moon_made_of_cheese]

The corresponding FVPD translation is:

1 instance_of(D,retrieve,db) :-
2 subpart(D) & !term(moon_made_of_cheese,D)
3 !instance_of(D,retrieve,db) :-
4 subpart(D) & term(moon_made_of_cheese,D)

The negation within a context in the subgoal of the first POLAR rule is translated into a
negated subgoal in the FVPD rule (lines 1 and 2). The negated head in the second POLAR
rule is turned into a negated head in the second FVPD rule. The FVPD engine generates new
facts equivalent to “relevant(a2)” and “!relevant(a1)”.
As another example, consider the third program in Ex. 15. We can ask for all clubs which

Peter does not support:

?- !peter.supports(C)

which is translated into

1 ?- !attribute(supports,peter,C,db)

and returns “schalke” with a probability of 0.3. 2

Finally, let us have a look at fragments about ‘information’:

?- F||information||

This is translated to

1 ?- fragment(F) & term(information,F).

We can see here the role of the internal predicate “fragment” which is used to return frag-
ments, but no subparts or merged targets. If we consider the fourth program in Example. 15,
also d1 would be returned besides f1 if we omitted the “fragment(F)” subgoal.

6.2 POLAR Translation to FVPD 153

6.2.2.1 Translation of Queries

We start with a discussion of queries in a top-down fashion.
trans(query,c) := ?- trans(subgoallist,c)

if query = ?- subgoallist
trans(subgoallist,c) := trans(subgoal,c) & trans(subgoallist’,c)

if subgoallist = subgoal & subgoallist’
:= trans(subgoal,c)

if subgoallist = subgoal
trans(subgoal,c) := subpart(s) & trans(csubgoallist,s,1)

if subgoal = //s[csubgoallist]
:= subpart(s) & trans(csubgoallist,s,0)

if subgoal = s[csubgoallist]
:= fragment(f) & trans(fsubgoallist,f)

if subgoal = f|| fsubgoallist ||
:= trans(factgoal,c,0)

if subgoal = factgoal
In both POLAR and FVPD, queries start with ”?-“, so we just copy this sequence. It follows a
translation of the subgoal list, which is a conjunction of one or more single subgoals. A subgoal
can be a subpart with a special context subgoal list (csubgoallist), a fragment with a fragment
subgoal list, or a fact goal. We introduce context subgoal lists because within subcontexts,
different subgoals are possible than out of subcontexts; the same holds for fragments and
fragment subgoal lists. A subpart subgoal can underlie knowledge augmentation (which is
going to be discussed in the next section). In this case, we set the knowledge augmentation
flag (see below). The translation of context subgoal and fragment subgoal lists goes as follows:

trans(csubgoallist,c,k) := trans(csubgoal,c,k) & trans(csubgoallist’,c,k)
if csubgoallist = csubgoal & csubgoallist’

:= trans(csubgoal,c,k)
if csubgoallist = csubgoal

trans(csubgoal,c,k) := trans(annorefgoal,c)
if csubgoal = annorefgoal

:= trans(referencegoal,c)
if csubgoal = reference

:= trans(fragmentgoal,c)
if csubgoal = fragmentgoal

:= trans(factgoal,c,k)
if csubgoal = factgoal

trans(fsubgoallist,c) := trans(fsubgoal,c) & trans(fsubgoallist’,c)
if fsubgoallist = fsubgoal & fsubgoallist’

:= trans(fsubgoal,c)
if fsubgoallist = fsubgoal

trans(fsubgoal,c) := trans(annorefgoal,c)
if fsubgoal = annorefgoal

:= trans(factgoal,c)
if fsubgoal = factgoal

The translation function for context subgoals has 3 parameters. The third parameter is the
flag that controls knowledge augmentation. If set to 0, no knowledge augmentation should be

154 6 POLAR Implementation

performed; if 1, knowledge augmentation should be performed. We need this parameter later
in Section 6.2.3. Each context subgoal list is a conjunction of context subgoals. A context
subgoal can be an annoref goal, a reference goal, a fragment goal or a fact goal. A fragment
subgoal can be an annoref goal or a fact goal.

trans(annorefgoal,c) := acc_canno(c,object)
if annorefgoal = *object

:= acc_negcanno(c,object)
if annorefgoal = -*object

:= acc_manno(c,object)
if annorefgoal = @object

:= acc_negmanno(c,object)
if annorefgoal = -@object

trans(referencegoal,c) := acc_reference(c,object)
if referencegoal = =>object

trans(fragmentgoal,c) := acc_fragment(c,object)
if fragmentgoal = ||object

Annoref, reference and fragment goals are used for queries which unveil annotation, reference
or fragment relations. They produce a ranking according to the given access probability. The
translation of these goals is a conjunction of the access probability and the relation type.

Fact goals are translated as follows:

trans(factgoal,c,k) := trans(atom,c,k)
if factgoal = atom

:= !trans(atom,c,k)
if factgoal = !atom

trans(atom,c,k) := term(termname,c)
if atom = termname and k = 0

:= instance_of(object,classname,c)
if atom = classname(object) and k = 0

:= attribute(attr-name,object,
attr-value,c)

if atom = object.attr-name(attr-value)
and k = 0

The rules above describe the case that no knowledge augmentation is performed, so the param-
eter k remains 0 (the knowledge augmentation case is discussed in Section 6.2.3). Fact goals
can be atoms or negated atoms. Depending on atoms being terms, classifications or attributes,
we query the corresponding predicate (term, instance_of or attribute).

6.2 POLAR Translation to FVPD 155

6.2.2.2 Translation of Rules

The translation instructions for POLAR rules are as follows:
trans(rule,c) := trans(goal,c) :- trans(subgoallist,c)
trans(goal,c) := trans(head,c)

if goal = head
:= !trans(head,c)

if goal = !head
:= trans(head,s)

if goal = s[head]
:= !trans(head,s)

if goal = s[!head]
trans(head,c) := term(termname,c)

if head = termname
:= instance_of(variable,classname,c)

if head = classname(variable)
:= attribute(attr-name,variable,

attr-value,c)
if head = variable.attr-name(attr-value)

A goal can be a head within or outside a context. Each head may be negated. Heads are
translated into a corresponding FVPD term, instance_of or attribute goal. The translation of
subgoal lists has been discussed above.

6.2.3 Knowledge Augmentation
Knowledge augmentation is applied in queries or rules. As discussed in the previous chapter,
the idea of knowledge augmentation is to augment our knowledge about a context with the
knowledge (i.e. the propositions) contained in its subcontexts. Knowledge augmentation in
POLAR is realised by providing FVPD support rules which can either be executed during
indexing or query time. We have to cope with the peculiarities of the different subcontext
types as discussed in the previous chapter – for instance, merged targets need to be treated
differently than subparts. We further have to handle cycles on the access structure. To realise
all this, the basic idea is to define new intensional FVPD predicates term_k, instance_of_k
and attribute_k, which take the same arguments as term, instance_of and attribute,
respectively. The difference is that the new intensional predicates contain the propositions and
their respective probabilities of the augmented context. By augmenting the context, new facts
are introduced to the original context relations and their probabilities are altered according to
the evidence we find in the augmented context. During query time and when defining rules,
users can decide whether to take the original context relation (e.g. by using an expression like
”D[t]“ which translates to ”term(t,D)“ for terms) to reflect non-augmented contexts, or the
augmented context relation (e.g. using ”//D[t]“ which is translated to ”term_k(t,D)“) to
consider augmented contexts in their rules or queries.
In the following we describe the support rules needed to implement knowledge augmentation

as discussed in the last chapter. We begin with a set of recursive rules and prove their correctness
w.r.t. the knowledge augmentation routines in Section 5.2.3. The rules can be adapted in a way
that only the logical document structure, the annotation context or both are considered. In
order to handle cycles, we introduce a serialisation strategy which has the additional advantage
of being more efficient in most cases.

156 6 POLAR Implementation

6.2.3.1 FVPD Support Rules for Knowledge Augmentation

To incorporate knowledge augmentation in our FVPD-based POLAR implementation, we must
propagate the truth values true, false and, if the actual application demands, inconsistent from
subcontexts to their respective supercontext. We first define some support rules in FVPD which
realise the propagation of the truth value true with respect to the context type and discuss the
application of these rules. We then present rules for the propagation of false and briefly discuss
inconsistent. Similar rules must be defined for categorisations and attributes. The whole rule
set is listed in Appendix B.1.

Propagation of true The following rules propagate the truth value true for terms in contexts
and subcontexts.

1 term_k(T,D) :- term(T,D).
2 term_k(T,D) :- term_k_logical(T,D).
3 term_k(T,D) :- term_k_anno(T,D).
4 term_k(T,D) :- term_k_reference(T,D).

6 term_k_logical(T,D) :- acc_subpart(S,D) & term_k2(T,S).
7 term_k_anno(T,D) :- acc_mtarget(D,S) & term(T,S).
8 term_k_anno(T,D) :- acc_fragment(D,S) & term(T,S).
9 term_k_anno(T,D) :- acc_canno(D,S) & term_k2(T,S).

10 term_k_anno(T,D) :- acc_negcanno(D,S) & !term_k2(T,S).
11 term_k_reference(T,D) :- acc_reference(D,S) & term_k2(T,S).

14 term_k2(T,D) :- term(T,D).
15 term_k2(T,D) :- term_k2_logical(T,D).
16 term_k2(T,D) :- term_k2_anno(T,D).
17 term_k2(T,D) :- term_k2_reference(T,D).

19 term_k2_logical(T,D) :- acc_subpart(D,S) & term_k2(T,S).
20 term_k2_anno(T,D) :- acc_fragment(D,S) & term(T,S).
21 term_k2_anno(T,D) :- acc_canno(D,S) & term_k2(T,S).
22 term_k2_anno(T,D) :- acc_negcanno(D,S) & !term_k2(T,S).
23 term_k2_reference(T,D) :- acc_reference(D,S) & term_k2(T,S).

The FVPD rules simulate the behaviour of the trees function in Def. 17 on page 121 and
Algorithm 1 on page 126 (except for the case that the access structure contains cycles, see
below). We therefore need to define two sets of rules: one which defines the predicate term_k
and marks the begin of the iteration; this set is introduced in lines 1 – 11. Lines 14 to 23 show
the second set of rules where the support predicate term_k2 is presented. For this set, no rule
for merged targets is defined any more; this is due to the fact that merged targets are only
accessed if they belong to the supercontext and ignored when they belong to a subcontext of
the context we are augmenting (see the discussion in Section 5.2.3.2).
The rule in line 1 of the FVPD listing above simply says that each term appearing in a

context also appears in its augmented context. Line 2 means that terms should be propagated
if they are accessible through the logical structure of the document. The subsequent line 3

models the propagation of terms from subcontexts which are related to annotation. Line 4

6.2 POLAR Translation to FVPD 157

propagates terms coming from referenced objects to the augmented context. The propagation
from logical subcomponents, annotations and referenced objects is again expressed by rules.
The rule in line 6 says that a term is part of the augmented context w.r.t. the logical structure if
it appears in the augmented context of a subpart of the object to augment. Similarly in lines 7 –
10 for augmented subcontexts which are related to annotation. These are: merged targets (l. 7),
fragments (l. 8), content annotations (l. 9) and negative content annotations (l. 10). The rule for
fragments adheres to the definition of valid augmented context expressions which says that no
subcontext of a fragment should be considered (merged targets do not have any subcontexts
per definition); we therefore use the (non-recursive) term relation as a subgoal, instead of the
recursive term_k2 relation. Line 10 shows the propagation of terms in case the subcontext is
a negative content annotation. As discussed in Section 5.2.3.2, we have positive evidence for
a proposition if there is negative evidence in a negative content annotation subcontext, and
vice versa. So a term should be true in an augmented context if it is false in the negative
content annotation. Therefore, ”!term_k(T,S)“ is used as a subgoal. Finally, line 11 realises
the propagation of terms from augmented subcontexts established by referenced objects. The
description of lines 14 to 23 goes analogously. As outlined in Section 5.2.3.2, there is deliberately
no rule for meta annotations, because their content is not subject to knowledge augmentation.
The rules realise the propagation of terms through the definition of a new intensional predi-

cate term_k. In the specification of the support rules, we distinguish between rules realising
access through the logical structure, the annotation context or the inter-document context
(through referenced objects). This way we are able to adapt our retrieval strategy on the fly3,
for example if we only want to consider the logical structure of documents (e.g., for classical
XML or structured document retrieval) and not their annotations, or vice versa. This provides
us with suitable means to support the special command controlling the augmentation behaviour
introduced in Section 4.3.1.2. For instance, if ”_no_structure_propagation()“ is speci-
fied, we just delete the rule in line 2. ”_no_annotation_propagation()“ means ignoring
line 3, while ”_no_reference_propagation()“ would keep line 4 from being evaluated.

Application of Support Rules The term_k relation defined by the support rules can be
applied when knowledge augmentation is requested. A POLAR query

?- D[football]

without knowledge augmentation would be translated into the FVPD query

1 ?- subpart(D) & term(football,D)

whereas the POLAR query

?- //D[football]

which requests knowledge augmentation, would be translated into the FVPD query

1 ?- subpart(D) & term_k(football,D)

forcing the FVPD engine to evaluate the support rules above (this evaluation actually leads to
the evaluation of the corresponding PD translation which is outlined in Example 14).
Since the evaluation of the support rules during query time and the definition of term_k

as an intensional relation might lead to high response times, we can make use of a property
3In case we apply the support rules during query time, that is

158 6 POLAR Implementation

of knowledge augmentation, namely that it is query-independent. This means that we can
carry out knowledge augmentation during indexing time and store term_k as an extensional
relation, so we have to apply the support rules only once. During query time we just have to
link the term_k relation. If we can detect all objects affected by changes in our structured
annotation hypertext (e.g., new annotations, new documents), it is sufficient to apply knowledge
augmentation for these objects only, which allows for incremental indexing.

Propagation of false and inconsistent The rules above propagate the truth value true in
subcontexts to the augmented context. We can apply similar rules for the truth value false:

1 !term_k(T,D) :- !term(T,D).
2 !term_k(T,D) :- !term_k_logical(T,D).
3 !term_k(T,D) :- !term_k_anno(T,D).
4 !term_k(T,D) :- !term_k_reference(T,D).

6 !term_k_logical(T,D) :- acc_subpart(S,D) & !term_k2(T,S).
7 !term_k_anno(T,D) :- acc_mtarget(D,S) & !term(T,S).
8 !term_k_anno(T,D) :- acc_fragment(D,S) & !term(T,S).
9 !term_k_anno(T,D) :- acc_canno(D,S) & !term_k2(T,S).

10 !term_k_anno(T,D) :- acc_negcanno(D,S) & term_k2(T,S).
11 !term_k_reference(T,D) :- acc_reference(D,S) & !term_k2(T,S).

14 !term_k2(T,D) :- !term(T,D).
15 !term_k2(T,D) :- !term_k2_logical(T,D).
16 !term_k2(T,D) :- !term_k2_anno(T,D).
17 !term_k2(T,D) :- !term_k2_reference(T,D).

19 !term_k2_logical(T,D) :- acc_subpart(D,S) & !term_k2(T,S).
20 !term_k2_anno(T,D) :- acc_fragment(D,S) & !term(T,S).
21 !term_k2_anno(T,D) :- acc_canno(D,S) & !term_k2(T,S).
22 !term_k2_anno(T,D) :- acc_negcanno(D,S) & term_k2(T,S).
23 !term_k2_reference(T,D) :- acc_reference(D,S) & !term_k2(T,S).

Inconsistent knowledge is not propagated by applying the rules so far. First of all
we have to decide if inconsistent knowledge should really be propagated from subcon-
texts to supercontexts. This depends on the actual application. Second, the realisa-
tion of the propagation of inconsistent is not directly supported by FVPD. This is due
to the fact that a FVPD subgoal like ”term_k2(T,S)“ is translated into the PD sub-
goal ”pos_term_k2(T,S) & !neg_term_k2(T,S)“, as we have seen in Section 6.1.2.
If we want inconsistent knowledge to be propagated, we must use a PD translation like
”pos_term_k2(T,S) & neg_term_k2(T,S)“ instead, which contradicts to the transla-
tion of FVPD into PD. So we either translate our POLAR augmentation rules directly into PD
to support subgoals propagating inconsistent knowledge, or, alternatively, use the transitive
closure over the acc relations, as it is proposed in (Rölleke, 1998, p. 135).

Correctness of Rules We have to show that the rules above and in Appendix B.1, respectively,
perform knowledge augmentation in the sense that they calculate the same probability as

6.2 POLAR Translation to FVPD 159

World Case/Event Probability
w∗1 t1 true in d, no further access 0.6 · 0.7 · 0.2 = 0.084
w∗2 t1 true in d, acc. a1, t1 unknown in a1, no further access 0.6 · 0.3 · 0.6 · 0.2 = 0.0216
w∗3 t1 true in d, acc. a1, t1 true in a1, no further access 0.6 · 0.3 · 0.4 · 0.2 = 0.0144
w∗4 t1 true in d, acc. a1, t1 unknown in a1, acc. a2, t1 unkn. in a2 0.6 · 0.3 · 0.6 · 0.8 · 0.8 = 0.06912
w∗5 t1 true in d, acc. a1, t1 unknown in a1, acc. a2, t1 true in a2 0.6 · 0.3 · 0.6 · 0.8 · 0.2 = 0.01728
w∗6 t1 true in d, acc. a1, t1 true in a1, acc. a2, t1 unknown in a2 0.6 · 0.3 · 0.4 · 0.8 · 0.8 = 0.04608
w∗7 t1 true in d, acc. a1, t1 true in a1, acc. a2, t1 true in a2 0.6 · 0.3 · 0.4 · 0.8 · 0.2 = 0.01152
w∗8 t1 true in d, acc. a2, t1 unknown in a2, no further access 0.6 · 0.7 · 0.8 · 0.8 = 0.2688
w∗9 t1 true in d, acc. a2, t1 true in a2, no further access 0.6 · 0.7 · 0.8 · 0.2 = 0.0672
w∗10 t1 unknown in d, no further access 0.4 · 0.7 · 0.2 = 0.056
w∗11 t1 unknown in d, acc. a1, t1 unknown in a1, no further access 0.4 · 0.3 · 0.6 · 0.2 = 0.144
w∗12 t1 unknown in d, acc. a1, t1 true in a1, no further access 0.4 · 0.3 · 0.4 · 0.2 = 0.0096
w∗13 t1 unknown in d, acc. a1, t1 unkn. in a1, acc. a2, t1 unkn. in a2 0.4 · 0.3 · 0.6 · 0.8 · 0.8 = 0.04608
w∗14 t1 unknown in d, acc. a1, t1 unkn. in a1, acc. a2, t1 true in a2 0.4 · 0.3 · 0.6 · 0.8 · 0.2 = 0.01152
w∗15 t1 unknown in d, acc. a1, t1 true in a1, acc. a2, t1 unkn. in a2 0.4 · 0.3 · 0.4 · 0.8 · 0.8 = 0.03072
w∗16 t1 unknown in d, acc. a1, t1 true in a1, acc. a2, t1 true in a2 0.4 · 0.3 · 0.4 · 0.8 · 0.2 = 0.00768
w∗17 t1 unknown in d, acc. a2, t1 unknown in a2, no further access 0.4 · 0.7 · 0.8 · 0.8 = 0.1792
w∗18 t1 unknown in d, acc. a2, t1 true in a2, no further access 0.4 · 0.7 · 0.8 · 0.2 = 0.0448

Table 6.1: Worlds based on trees output for our example

described in Section 5.2.3.2, if the access structure does not contain cycles (the case that the
access structure contains cycles is discussed below).

Proposition 3 (Correctness of knowledge augmentation rules): The rules for knowl-
edge augmentation are correct if the access structure does not contain cycles.

Proof. We prove the correctness of our rules using induction. Consider an augmented con-
text d(s1, . . . , sn) such that s1, . . . , sn are direct subcontexts of d (which might be augmented
contexts as well). We prove the correctness of our augmentation rules for true propositions (in
this case terms) ϕ; the same proof can be applied for false propositions. We start with an aug-
mented context containing no subcontext (n = 0) and induce over the number n of considered
subcontexts. The idea is to show that the probability of the FVPD event expression which is
created when evaluating n subcontexts always calculates the correct result for d(s1, . . . , sn). To
illustrate the proof, we use the following simple example program:

d1 [0.6 t1 0.3 *a1 0.8 *a2]
a1 [0.4 t1]
a2 [0.2 t1]

Table 3 shows the 18 worlds created by trees for the example, the cases they represent and
their probabilities.
n = 0: No subcontext of d is considered, so the augmented context is d(). In this case, ϕ is

only true in d() if it is true in d, so we take the corresponding probability from d (which is the
sum of the probabilities of worlds w∗1 – w∗9 in the example). This is exactly what the rule in
line 1 does; the corresponding event expression is term(ϕ,d). Therefore, P (term_k(ϕ,d)) =
P (term(ϕ,d)), which is the probability that ϕ is true in d. The augmentation is correct if no
subcontext is considered.
n = 1: Now we present the case that we consider one subcontext s, so we create the

augmented context d(s). According to the discussion in Section 5.2.3.2, the probability that ϕ

160 6 POLAR Implementation

is true in d(s) is the sum of the probabilities of the worlds w∗ represented by the corresponding
G-agent-world-polarity-trees in which d and s are involved, so that each of these worlds stands
for a case which makes ϕ true in the augmented context. If ϕ is the only proposition appearing
in d and s, these worlds are:

World Case/Event
w∗∗1 ϕ is true in d AND NOT d accesses s
w∗∗2 ϕ is true in d AND d accesses s AND ϕ is unknown in s
w∗∗3 ϕ is true in d AND d accesses s AND ϕ is true in s
w∗∗4 ϕ is unknown in d AND d accesses s AND ϕ is true in s

In case s is a negative content annotation, we set ”ϕ is false in s“ instead of ”ϕ is true in s“.
Note that s might be an augmented context itself. w∗∗1 combines all worlds where ϕ is true
in d and d does not access s. In our example, if s = a1, these are the worlds w∗1, w∗8 and w∗9.
P (w∗∗1) is the sum of the probabilities of the worlds w∗∗1 is composed of. w∗∗2 is composed of
w∗2, w∗4 and w∗5, w∗∗3 contains w∗3, w∗6 and w∗7, and w∗∗4 is composed of w∗12, w∗15 and w∗16. Each
of the four worlds thus describes a basic or composed event; all these events are disjoint, so for
two worlds w∗∗i and w∗∗j P (w∗∗i ∨w∗∗j) = P (w∗∗i) +P (∗∗j) if i 6= j. From the table above, we can
derive the probability of the event ”ϕ is true in d“, which we denote by Φd:

P (Φd) = P (w∗∗1 ∨ w∗∗2 ∨ w∗∗3) = P (w∗∗1) + P (w∗∗2) + P (w∗∗3).

Note that in our example, Φd consists of the worlds w∗1 – w∗9. Another event is ”d accesses s
AND ϕ is true in s“, which we call Φs. Then

P (Φs) = P (w∗∗3 ∨ w∗∗4) = P (w∗∗3) + P (w∗∗4).

Φs comprises the worlds w∗3, w∗6, w∗7, w∗12, w
∗
15 and w∗16 in our example. Furthermore, Φd ∨ Φs

denotes the event that ”ϕ is true in d OR d accesses s AND ϕ is true in s“. Then

P (Φd ∨ Φs) = P (w∗∗1 ∨ w∗∗2 ∨ w∗∗3 ∨ w∗∗3 ∨ w∗∗4)
= P (w∗∗1 ∨ w∗∗2 ∨ w∗∗3 ∨ w∗∗4)
= P (w∗∗1) + P (w∗∗2) + P (w∗∗3) + P (w∗∗4)
= P (Φd) + P (Φs)− P (w∗∗3).

Note that w∗∗3 denotes the events/worlds common in Φd and Φs (w∗3, w∗6 and w∗7 in the example).
We now turn to the evaluation of the FVPD rules for our case. Considering one subcontext s

means that during the evaluation of term_k, the variable S is substituted with s, but has not
been substituted yet with any other possible subcontext. The rule in line 1 and one (and only
one) of the rules in the lines 7 to 11 contribute to the calculation of the probability of ϕ to be true
in d(s). The corresponding FVPD event expression is4 term(ϕ,d)∨acc(d,s)∧term(ϕ,s).
Then

P (term(ϕ,d) ∨ acc(d,s) ∧ term(ϕ,s)) =
P (term(ϕ,d)) + P (acc(d,s) ∧ term(ϕ,s))−
P (term(ϕ,d) ∧ acc(d,s) ∧ term(ϕ,s)).

4We omit the relation type in the event expression and just use acc instead of, e.g., acc_canno

6.2 POLAR Translation to FVPD 161

term(ϕ,d) describes the event that ϕ appears in d, so P (term(ϕ,d)) = P (Φd). Further-
more, P (acc(d,s) ∧ term(ϕ,s)) = P (Φs), P (term(ϕ,d) ∧ acc(d,s) ∧ term(ϕ,s)) =
P (w∗3)5 and thus

P (term(ϕ,d) ∨ acc(d,s) ∧ term(ϕ,s)) = P (Φd ∨ Φs).

The rules for knowledge augmentation are correct for a context with one subcontext.
n ; n+1: Now assume the rules for knowledge augmentation are correct for n subcontexts,

d(s1, . . . , sn). We infer the correctness for n+ 1 subcontexts by adding a new subcontext sn+1.
The following events and worlds denote all events which let ϕ come true:

World Case/Event
w∗∗1 ϕ is true in d(s1, . . . , sn) AND NOT d accesses sn+1
w∗∗2 ϕ is true in d(s1, . . . , sn) AND d accesses sn+1 AND ϕ is unknown in sn+1
w∗∗3 ϕ is true in d(s1, . . . , sn) AND d accesses sn+1 AND ϕ is true in sn+1
w∗∗4 ϕ is unknown in d(s1, . . . , sn) AND d accesses sn+1 AND ϕ is true in sn+1

Again, the worlds may be composed of other worlds. For example, w∗∗1 combines all worlds
created by trees where ϕ is true with respect to d and the contexts s1, . . . , sn, and d does not
access sn+1. As above, we get

P (Φd(s1,...,sn) ∨ Φsn+1) = P (w∗∗1 ∨ w∗∗2 ∨ w∗∗3 ∨ w∗∗3 ∨ w∗∗4)
= P (Φd(s1,...,sn)) + P (Φsn+1)− P (w∗∗3)

On the FVPD side, let term_k’(ϕ,d) be the event expression created for the calcula-
tion of d(s1, . . . , sn). The partial evaluation of the knowledge augmentation rules for d and ϕ
would calculate an intermediate result P (term_k’(ϕ,d)) based on the subcontexts s1, . . . , sn;
i.e., the variable S in the augmentation rules would have been substituted with s1, . . . , sn so
far and is now substituted with sn+1. P (term_k’(ϕ,d)) denotes the probability that ϕ
is true in the augmented context with respect to s1, . . . , sn, which is the same as the prob-
ability P (Φd(s1,...,sn)). Let term_k(ϕ,d) be the event expression created when evaluating
d(s1, . . . , sn+1). Then P (term_k(ϕ,d)) is the probability that ϕ is true in the augmented
context with respect to d(s1, . . . , sn+1). We get

P (term_k(ϕ,d)) = P (term_k’(ϕ,d) ∨ acc(d,s) ∧ term(ϕ,s)) =
P (term_k’(ϕ,d)) + P (acc(d,s) ∧ term(ϕ,s))−

P (term_k’(ϕ,d) ∧ acc(d,s) ∧ term(ϕ,s)) =
P (Φd(s1,...,sn)) + P (Φsn+1)− P (w∗∗3) = P (Φd(s1,...,sn) ∨ Φsn+1).

P (term_k(ϕ,d)) = P (Φd(s1,...,sn) ∨ Φsn+1), so our knowledge augmentation rules are correct
for positive propositions. The correctness for negative propositions as well as classifications
and attributes can be shown analogously. �

5We use term_k2(ϕ,s) instead of term(ϕ,s) if s is an augmented context as well (which happens when pro-
cessing subcontexts which are not merged targets or fragments). In that case, we assume that term_k2(ϕ,s)
is fully evaluated and its probability calculated when it is applied for further computation. term_k2(ϕ,s)
is not a basic event expression in its classic sense, but a placeholder for the event expression that led to the
calculation of its probability.

162 6 POLAR Implementation

Serialisation As outlined in Section 5.2.3.2, there can be cycles in our access structure. While
the support rules above work well in cases we can ensure there are no cycles (for example if
there are no reference links), we have to cope with the situation that cycles occur. Recall our
POLAR example from the last chapter, enriched with a term in d1:

d1[*a1 t1]
a1[0.8 *a2]
a2[=>d1]

This would be translated to

1 term(t1,d1).
2 acc_canno(d1,a1).
3 0.8 acc_canno(a1,a2).
4 acc_reference(a2,d1).
5 subpart(d1)
6 subpart(a1)
7 subpart(a2)

When applied, our knowledge augmentation rules would potentially run into an infinite
loop. For instance, if we want to calculate the augmented context of d1, the evaluation of
term_k(d1,t1) would invoke term_k2(a1,t1) which in turn would result in the eval-
uation of term_k2(a2,t1), term_k2(d1,t1) and again term_k2(a1,t1). In a non-
probabilistic case, the cycle might be detected when the underlying FVPD engine is applying
fixpoint iteration (Ceri et al., 1990, section 7.2), but we cannot rely on it, especially in the
probabilistic case, in which fixpoint iteration would not work. Furthermore, since we deal with
negated subgoals, the resulting FVPD program might not be modularly stratified if the access
structure (that is, all acc_* relations) is cyclic (Ross, 1990). One of our options is to serialise
the knowledge augmentation rules and run special serialised rules for each context we like to
augment.
Serialisation works as follows. We first have to analyse the structure established by all

subcontexts accessed by the context to augment (d1 here). The result of such an analysis is
an augmented context expression which does not contain any loops within a path (similar to
those created by createAugmContextExpr (Alg. 1) based on the possible world semantics).
We outline such an analysis algorithm below. For our example above, the cycle-free augmented
context expression is d1(a1(a2)). The augmented context expression encodes all paths which
are visited during knowledge augmentation. It controls the serialisation of the support rules in
a similar way as it controlled the trees function in Def. 17. In our example expression, we find
one path d1 – a1 – a2. We now create a set of rules for each path. Each path then contributes
to the final augmentation result. For our example, we gain:

1 # rule for a2 (1st iteration)
2 term_k_it1(T,a2) :- term(T,a2).

4 # rules for a1(a2) (2nd iteration)
5 term_k_it2(T,a1) :- term(T,a1).
6 term_k_anno_it2(T,a1) :- acc_canno(a1,a2) & term_k_it1(T,a2).
7 term_k_it2(T,a1) :- term_k_anno_it2(T,a1).

6.2 POLAR Translation to FVPD 163

9 # rules for d1(a1(a2)) (3rd iteration)
10 term_k(T,d1) :- term(T,d1).
11 term_k_anno(T,d1) :- acc_canno(d1,a1) & term_k_it2(T,a1).
12 term_k(T,d1) :- term_k_anno(T,d1).

The sequence of rules is crucial. To derive the rules from the augmented context expression
d1(a1(a2)), we begin with the last element on each path. In our example above, this is a2.
Since from a2 we do not access any more subcontext, its augmented context contains only
propositions found in a2 itself. The only rule we create for this object is seen in line 2. It
creates a new intensional relation term_k_it1 which contains all terms found in a2 (note
that we pre-initialise the second argument in term_k_it1 and term with the actual object
ID, in this case a2, instead of using a variable). Each such intensional relation gets a unique
id, in this case it1. This is necessary since the same subcontext might be handled differently
in different paths, so we need to distinguish them. The next element to process is a1. The
augmented context of a1, a1(a2), contains propositions from a1 (line 5) and a2 (lines 6 and 7)6.
The rules in lines 10 – 12 are created in the next iteration step when handling d1; they compute
the desired augmented context of d1, d1(a1(a2)). When creating the serialised rules, we must
also take care of the constraints for the several subcontext types discussed in the last chapter –
no meta annotations and only merged targets of the context to augment should be considered
and from fragments, no subcontext is accessed.
When the rules in line 10 and 12 are executed, all data relevant to these rules has been

computed before due to the serialised execution of the above rule set. The serialised execution
starts with the rule in line 2 and calculates all intensional facts needed by the rule in line
7. Then, the rules 5 – 7 compute the intensional facts for the augmented context a1(a2). In
the next step, the rule in line 10 adds all terms appearing in d1 to the augmented context
d1(a1(a2)). Rules 11 and 12 add the terms of the augmented context a1(a2) to the augmented
context d1(a1(a2)). The execution would stop then. The newly created facts can now be stored
externally and be linked during query execution7.
As mentioned above, an external algorithm must analyse the structure established by all

subcontexts accessed by the context to augment. Similar to Alg. 1 on page 126 (but this time
based on a POLAR program and not possible worlds), such an algorithm creates a pruned
version of the augmented context expression by traversing the subcontexts of the context to
augment. The algorithm traverses all paths of access and stops as soon as there is no other
subcontext any more or it re-enters an object already on the path. For example, if we want to
augment d1 in the above example, we find one infinite path d1 – a1 – a2 – d1 – . . . which must be
pruned. When the algorithm reaches d1 the second time, it should stop and return d1(a1(a2)).
If an annotation can only have one annotation target and there are no references, the algorithm
can be based on a depth first traversal (Güting, 1992, p. 152) of the access structure. Such a
traversal creates a spanning tree, with the context to augment as root of the tree, and thus
contains all subcontexts, directly or indirectly accessible by the context to augment, once.
But there might be cases that a subcontext is visited more than once, for example when an
annotation is a subcontext two or more times (see the discussion about access from multiple
contexts on page 5.2.3.2) or a subcontext is referenced several times or referenced object and

6Line 7 is of course redundant and only shown for the sake of readability. An actual implementation might
merge the rules in lines 6 and 7 to
term_k_it2(T,a1) :- acc_canno(a1,a2) & term_k_it1(T,a2).

7The HySpirit distribution, which also contains an FVPD engine, offers means to dynamically link sets of facts
and rules. It also offers means for serialised execution.

164 6 POLAR Implementation

Parameters: POLAR program P , context to augment c, path p
Return: Augmented context expression exprc
exprc := c
SUB := getSubcontexts(P ,c) {SUB contains all considerable direct subcontexts of c in P}
if SUB 6= ∅ then {There are subcontexts to access}
p := addToPath(p,c) {Add c to current path}
for all s ∈ SUB do
if !contained(s,p) then {s not in path yet}
exprc := concat(exprc, createAugmContextExpr2(P ,s,p)) {add augmented subcon-
text expression to context expression}

end if
end for

end if
Algorithm 2: Algorithm createAugmContextExpr2 to create pruned augmented context
expressions

annotation at the same time. Consider another POLAR example, where d2 is referenced by
both a1 and a2:

d1[*a1]
a1[*a2 =>d2]
a2[=>d1 =>d2]
d2[]

We find 3 paths here:
d1 – a1 – a2 – d1 – . . .
d1 – a1 – a2 – d2
d1 – a1 – d2
The algorithm should prune the first path8 to d1 – a1 – a2. Since this path is contained in

the second path above, the algorithm should remove this path completely. We see that d2 is
contained in paths 2 and 3. A depth-first traversal as described in (Güting, 1992, p. 152) would
erase one of the occurrences of d2, but this is not what we want. The algorithm createAugm-
ContextExpr2, which is shown in Alg. 2, creates the augmented context expression as desired.
The algorithm is firstly invoked with the context we want to augment and an empty path p.
In contrast to a regular depth-first traversal, the algorithm only checks if a subcontext appears
in the current path, not if it has been visited before in the whole process. A subcontext might
thus appear several times in the augmented context expression. The algorithm returns the
augmented context expression which is then the basis for the creation of the serialised support
rules as described above.
Besides being able to handle cycles in our access structure, the serialisation offers another

advantage: due to the creation of different intensional relations per iteration step and object
found on a path, combined with the pre-instantiation of variables with the object ID, these
relations contain a relatively small amount of tuples. This means that a faster processing of
these rules is possible. For instance, the rule in line 6 contains a Join which we can suppose to
be processed very quickly since only few tuples are involved in the Join operation. So it makes
sense to apply serialisation even if we are sure that no cycles can occur.

8Actually, this path represents an unlimited number of path.

6.2 POLAR Translation to FVPD 165

To create the serialised support rules, the above procedure has to be applied repeatedly
for every context (document and annotation) in the POLAR knowledge base. For each such
context a set of rules is created which handles its augmentation. If we have to deal with a huge
amount of contexts, it is preferable to build and apply the serialised rules during indexing. For
each context, the corresponding serialised rules could be created, then applied by an engine,
and the resulting term_k relation could be stored externally. The created rules are not needed
any more for another context, so we do not have to store them.

Radius-1 Augmentation Another option for knowledge augmentation is radius-1 augmenta-
tion. Here, we do not consider all subcontexts which are reachable by the context to augment,
but only propagate knowledge coming from direct subcontexts. One advantage is that this
kind of augmentation is more efficient, since only direct subcontexts have to be visited and
processed. Another advantage is that there cannot occur any cycle. The disadvantage is that
we neglect every indirect subcontext. This might have a negative effect on the retrieval quality.
Especially in the case when we want to augment an object with its logical document structure,
it may be dangerous to ignore parts of the whole document which are not accessed directly.
A hybrid strategy (performing radius-1 augmentation with annotations and referenced objects,
and full augmentation with the logical document structure) may be applied here.
Radius-1 augmentation can be performed either with serialised rules or with the non-serialised

ones presented on page 156. In both cases, the augmentation rules only have to consider the
knowledge in the direct subcontext. For example, for the non-serialised rules, we would not
need the relation term_k2 any more. The rules for term augmentation based on the logical
structure, the annotation and the referenced objects would be:

1 term_k_logical(T,D) :- acc_subpart(S,D) & term(T,S).
2 term_k_anno(T,D) :- acc_mtarget(D,S) & term(T,S).
3 term_k_anno(T,D) :- acc_fragment(D,S) & term(T,S).
4 term_k_anno(T,D) :- acc_canno(D,S) & term(T,S).
5 term_k_anno(T,D) :- acc_negcanno(D,S) & !term(T,S).
6 term_k_reference(T,D) :- acc_reference(D,S) & term(T,S).

6.2.3.2 Translation Rules for Knowledge Augmentation

After having discussed knowledge augmentation and the term_k relation, we need to integrate
this into the trans function. A directive to perform knowledge augmentation can be given in
rule and query subgoals. To consider this, we have to extend the translation of atoms from
Section 6.2.2.1 as follows:

trans(atom,c,k) := term_k(termname,c)
if atom = termname and k = 1

:= instance_of_k(object,classname,c)
if atom = classname(object) and k = 1

:= attribute_k(attr-name,object,
attr-value,c)

if atom = object.attr-name(attr-value)
and k = 1

We use the predicates term_k, instance_of_k and attribute_k instead of term,
instance_of and attribute if knowledge augmentation is activated.

166 6 POLAR Implementation

6.2.4 Retrieval Function

So far, we introduced the translation of basic knowledge modelling, knowledge augmentation,
queries and rules from POLAR into FVPD. While with these mechanisms we are able to pose
many different kinds of queries to the underlying knowledge base, we still need to define retrieval
functions based on uncertain inference as discussed in Section 5.3. The POLAR expression

D->q

should, when evaluated, calculate P (d→ q) for each instantiation d of D. In principle, we can
apply the same translation as described in (Rölleke, 1998, section 6.3) for POOL, except that
in POLAR we have distinguished expressions for the application of knowledge augmentation –
the expression ”//D->q“ instructs POLAR to take the augmented context of d instead of d
alone.
Before we explain possible translations of D->q into FVPD-based retrieval functions, we

start with an example. As mentioned in Section 5.3.2.1, queries are modelled as contexts as
well. Consider the following POLAR program (with q1 as the query):

d1[0.6 ir 0.8 db]
q1[0.6 ir 0.9 db]

?- D->q1

This is translated into the following FVPD program:

1 0.6 term(ir,d1).
2 0.8 term(db,d1).
3 0.6 term(ir,q1).
4 0.9 term(db,q1).

6 ?- implies(D,q1).

The first two lines are the representation of d1 in FVPD. The next two lines represent q1. The
last line shows the translation of ”?- D->q1“. This simply contains a new predicate implies.
In this predicate lies the magic of our retrieval approach. Similar to the definition of term_k
as an intensional predicate with rules, we can define support rules for implies which are set
up and executed during query time, and thus easily integrate new retrieval functions into the
framework. This way we can customise the interpretation of probabilistic implication w.r.t. the
given application – we just need to define FVPD rules for implies which must be linked to
the actual POLAR program translation.
When talking about context implication and the estimation of P (d → q), we have to be

aware that many different interpretations of the implication probability are possible (Crestani
and Lalmas, 2001). We apply two interpretations which are based on the view of the content
of a context as a conjunction or disjunction of propositions (Rölleke, 2008). In the former case,
all propositions in the query must also be contained in the document, whereas in the latter
case, it is sufficient if only one proposition is contained in both the query and the document. In
the probabilistic case, every common proposition would raise the implication probability. We
base the following discussion on terms, but our arguments can be applied to other propositions
(categorisations, attributes) as well.

6.2 POLAR Translation to FVPD 167

6.2.4.1 Conjunctive Interpretation

The conjunctive interpretation of contexts regards a context as a conjunction of its propositions.
For example, the context d1 and also the query q1 above would be interpreted as ir ∧ db. A
document

d2[ir !db]

would be interpreted as ir ∧¬ db.
What does d → q mean then? In the non-probabilistic case, it means that the Boolean

expression of q is contained in d’s expression so that from d being true it follows that q is true
as well. In other words: each proposition in q is contained in d.
In the probabilistic case, P (d → q) is the probability that this holds. Following Wong

and Yao (1995), indexing estimates the degree to which a document is relevant to a concept
(term), and this is denoted P (d→ t). On the other hand, P (t→ q) estimates to which degree a
concept is relevant to the query. In our framework, we then set P (d→ t) = P (term(t,d)) and
P (t→ q) = P (term(t,q)). If we assume each proposition in a context as being independent,
the implication probability can be computed (for terms) as

P (d→ q) =
∏
t∈q

P (d→ t) · P (t→ q)

=
∏
t∈q

P (term(t,d)) · P (term(t,q))

To express this in FVPD, we model implies as a conjunction based on the propositions found
in the query. For the above example, we would get

1 implies(D,q1) :- term(ir,q1) & term(ir,D) &
2 term(db,q1) & term(db,D)

For d1, this is computed as
term(ir,q1)︷︸︸︷

0.6 ·
term(ir,d1)︷︸︸︷

0.6 ·
term(db,q1)︷︸︸︷

0.9 ·
term(db,d1)︷︸︸︷

0.8 = 0.2592

One of the concepts discussed in Section 5.3.2.2 are predicate spaces, which reflect the impor-
tance of a predicate (a term, an attribute or a category). They can be based, e.g., on the
inverse document frequency of a term, an attribute or a category. Many IR systems create
a ranking incorporating the inverse document frequency (idf) and the within term frequency
(tf). If we assume P (term(t,d)) to be based on the frequency of a term t in a document d,
and if we further model the term space with the relation termspace so that the weight of
termspace(t) is using the inverse document frequency of t in the collection, we can extend
implies so that it creates a tf × idf -based ranking. For our example, we get

1 implies(D,q1) :- term(ir,q1) & term(ir,D) & termspace(ir) &
2 term(db,q1) & term(db,D) & termspace(db)

Let us suppose P (termspace(ir)) = 0.5 and P (termspace(db)) = 0.2. The evaluation
of the rule for d1 yields:

term(ir,q1)︷︸︸︷
0.6 ·

term(ir,d1)︷︸︸︷
0.6 ·

termspace(ir)︷︸︸︷
0.5 ·

term(db,q1)︷︸︸︷
0.9 ·

term(db,d1)︷︸︸︷
0.8 ·

termspace(db)︷︸︸︷
0.2 = 0.02592

168 6 POLAR Implementation

If knowledge augmentation is requested (”//D->q“), we replace term with term_k for docu-
ments in a rule for implies_k:

1 implies_k(D,q1) :- term(ir,q1) & term_k(ir,D) & termspace(ir) &
2 term(db,q1) & term_k(db,D) & termspace(db)

With knowledge augmentation enabled, we ask if the augmented context of document d implies
the query. The probability for this is higher because new terms might be introduced to d as a
result of the augmentation.
The conjunctive view ensures that only documents are returned which are indexed with all

query term or propositions. Documents which do not know about all query propositions are not
retrieved. This is similar to Boolean queries with an AND conjunction. Only few documents
are retrieved, usually with low probabilities.

As already mentioned, the conjunctive interpretation ensures that only documents are re-
turned which contain all query terms. While for some applications this might be desirable, it
might be too strict for others, even when relaxed by knowledge augmentation. Furthermore, the
conjunctive interpretation calculates very low probabilities, even for documents which might be
highly relevant. Additionally, from a strict theoretic point of view, the rules presented above
are problematic, because we would expect that lower weights in the query context lead to higher
implication probabilities. For example, a document containing the term ‘ir’ but not ‘db’ would
also imply q1 with a certain probability, since the probability that q1 contains ‘ir’ is only 0.6,
which leads to a 0.4 probability that ‘ir’ is unknown in q1. In a strict sense, the lower the
probability that ‘ir’ is true in q1, the higher the probability that a document containing ‘db’
but not ‘ir’ implies q1. To solve this in the rules above, we re-interpret the term weights in
the query context as the degree of importance of query terms, expressed as P (t→ q). Another
disadvantage of the conjunctive view comes from a computational point of view. Since con-
junctions in FVPD are usually implemented as Join operations, the processing of implies is
computationally expensive. Furthermore, implies must be newly created for every query q
by analysing q’s propositions and building an according subgoal list for implies.

6.2.4.2 Disjunctive Interpretation

The disjunctive interpretation of contexts sees the content of a context as a disjunction of its
propositions. For instance, the context d1 and the query q1 above would be interpreted as ir
∨ db. The document d2 would be interpreted as ir ∨¬ db.
When interpreting a context’s content in a disjunctive way, d → q means that at least one

proposition of q must be contained in d so that from d being true it follows that q is true as
well. The rule

1 implies(D,Q) :- term(T,D) & term(T,Q)

reflects this. When evaluated, T is substituted with every term. As soon as there is one term
contained in both q1 and a document, the implication becomes true for the corresponding
document. The probability that this happens is computed by means of the inclusion-exclusion
formula (see Def. 24 on page 133). For our example document d1, P (implies(d1,q1)) is

term(ir,q1)︷︸︸︷
0.6 ·

term(ir,d1)︷︸︸︷
0.6 +

term(db,q1)︷︸︸︷
0.9 ·

term(db,d1)︷︸︸︷
0.8 −

term(ir,q1)︷︸︸︷
0.6 ·

term(ir,d1)︷︸︸︷
0.6 ·

term(db,q1)︷︸︸︷
0.9 ·

term(db,d1)︷︸︸︷
0.8 = 0.8208

6.2 POLAR Translation to FVPD 169

Again we can extend implies so that it creates a tf × idf -based ranking. This is done by
adding a termspace subgoal:

1 implies(D,Q) :- term(T,D) & term(T,Q) & termspace(T)

The calculation of the implication probability implies(d1,q1) for our example document
then yields:

term(ir,q1)︷︸︸︷
0.6 ·

term(ir,d1)︷︸︸︷
0.6 ·

termspace(ir)︷︸︸︷
0.5 +

term(db,q1)︷︸︸︷
0.9 ·

term(db,d1)︷︸︸︷
0.8 ·

termspace(db)︷︸︸︷
0.2 −

term(ir,q1)︷︸︸︷
0.6 ·

term(ir,d1)︷︸︸︷
0.6 ·

termspace(ir)︷︸︸︷
0.5 ·

term(db,q1)︷︸︸︷
0.9 ·

term(db,d1)︷︸︸︷
0.8 ·

termspace(db)︷︸︸︷
0.2 = 0.29808

To support other propositions like categorisations and attributes, we extend implies accord-
ingly to

1 implies(D,Q) :- term(T,D) & term(T,Q) & termspace(T)
2 implies(D,Q) :- instance_of(O,C,D) & instance_of(O,C,Q) &
3 categoryspace(C)
4 implies(D,Q) :- attribute(A,O,C,D) & attribute(A,O,C,Q) &
5 attributespace(A)

The relation categoryspace (attributespace) describes the importance of a certain cat-
egory (attribute), which can be determined by the inverse document frequency of the category
or attribute, respectively. If knowledge augmentation should be applied, implies becomes

1 implies_k(D,Q) :- term_k(T,D) & term_k(T,Q) & termspace(T)
2 implies_k(D,Q) :- instance_of_k(O,C,D) & instance_of_k(O,C,Q) &
3 categoryspace(C)
4 implies_k(D,Q) :- attribute_k(A,O,C,D) & attribute_k(A,O,C,Q) &
5 attributespace(A)

From a processing point of view, the disjunctive view has some advantages over the conjunc-
tive interpretation. Above rules are generic, they do not need any knowledge about the query
to be created, so we do not have to rebuild them for a new query. Furthermore, the number of
Join operations is limited. implies, as we implemented it here, makes the interpretation of
P (d→ q) a symmetric measure. P (d→ q) and P (q → d) both yield the same result. An alter-
native would be to consider the implementation of the vector space model, as it is reported in
(Rölleke, 1998, section 6.3), which would calculate different values for P (d→ q) and P (q → d).
However, although we are able to express this interpretation in FVPD, the evaluation of the
resulting rules is computationally complex; we therefore do not further discuss this option here,
but refer to (Rölleke, 1998, section 6.3) for details.
Because implies estimates the probability that a document implies a query, and we do

not ask for the probability that it does not, we can assume a closed world for the implies
relation.

170 6 POLAR Implementation

6.2.4.3 Translation Rules for Implications

We have to extend the translation of subgoals in Section 6.2.2.1 to cover implications as well:

trans(subgoal,c) := implies(c1,c2)
if subgoal = c1->c2

:= implies_k(c1,c2)
if subgoal = //c1->c2

Note that the translation of the implication might also involve the creation of suitable implies
or implies_k rules in case of a conjunctive interpretation.
In our above considerations we used term, classification (categorisation) and attribute pred-

icates. These predicates reflect the importance of the given term, category or attribute. As
POLAR allows us to specify them directly, we choose the following translation:

trans(predicate) := weight trans(term-predicate)
if predicate = weight term-predicate

:= weight trans(class-predicate)
if predicate = weight class-predicate

:= weight trans(attr-predicate)
if predicate = weight attr-predicate

trans(term-predicate) := termspace(t)
if term-predicate = ◦t

trans(class-predicate) := categoryspace(c)
if term-predicate = ◦◦c

trans(attr-predicate) := attributespace(a)
if term-predicate = ◦◦◦a

We assume a closed world for predicates, so we have to add:

1 _CWA(termspace)
2 _CWA(categoryspace)
3 _CWA(attributespace)

6.2.5 Relevance Augmentation
One of POLAR’s main concepts is knowledge augmentation. With knowledge augmentation, we
are able to take into account the annotation and structural context of a document for retrieval
by propagating propositions and their probabilities from subcontexts to their corresponding
supercontexts. But there may be cases where we cannot perform knowledge augmentation.
Consider, for instance, the scenario where an independent annotation service is connected to
several digital library management systems (DLMS) which handle the main documents, as it
is illustrated in Agosti et al. (2006) for the DiLAS service. Such an annotation service might
have access to annotations, (annotation) fragments and annotation types (plus their polarity),
but not to the full texts of the documents managed by the connected digital library manage-
ment services. But at least for annotation-based document search it would be crucial to fetch
the document-only retrieval status value in order to bias it later with the values coming from
annotations. So we need a result combination, similar to the one reported in Agosti and Ferro
(2005), where retrieval services provided by the single DLMSs return retrieval weights for its
managed documents, which are then to be merged with the retrieval status values of the anno-
tations (which are calculated within the annotation service). One possible solution for POLAR

6.2 POLAR Translation to FVPD 171

to handle such cases is relevance augmentation. The main idea of relevance augmentation is to
draw conclusions about the relevance of a supercontext from the relevance of its subcontexts by
propagating retrieval status values. This idea is inspired by the spreading activation approach
as described e.g. in Frei and Stieger (1994). An early version of relevance augmentation, which
is formulated in FVPD, too, and also takes into account the effect of negative annotations, is
introduced in Frommholz et al. (2004b). This approach is based on annotation types explicitly
given as discourse structure relations as they are used in the COLLATE annotation model. Pos-
itive annotations are used to raise the probability that the annotated object is relevant, while
negative annotations decrease this probability. We follow this philosophy in our approach as
well.

Support Rules for Relevance Augmentation Similar to knowledge augmentation, relevance
augmentation is implemented by providing a set of support rules which define the intensional
relation relevant_k. The evaluation of relevant_k post-processes the retrieval weights of
annotations, determined by the corresponding implies rules, with the retrieval status values
of documents, externally delivered by the DLMSs and stored in the relevant_external
relation. This makes relevance augmentation a two-phase process: first, the content-based
retrieval weight is calculated, then this weight is used to generate the final, context-based
result. The FVPD support rules are as follows:

1 # Phase 1: Initial content-based weight
2 relevant(D,Q) :- relevant_external(D,Q).
3 relevant(A,Q) :- implies(A,Q).

5 # Phase 2: Context-based re-weighting
6 relevant_k(D,Q) :- relevant(D,Q).
7 relevant_k(D,Q) :- relevant_k_logical(D,Q).
8 relevant_k(D,Q) :- relevant_k_posanno(D,Q).
9 relevant_k(D,Q) :- relevant_k_reference(D,Q).

10 !relevant_k(D,Q) :- relevant_k_neganno(D,Q).

12 relevant_k_logical(D,Q) :- acc_subpart(D,S) & relevant_k2(S,Q).
13 relevant_k_posanno(D,Q) :- acc_mtarget(D,S) & relevant(S,Q).
14 relevant_k_posanno(D,Q) :- acc_fragment(D,S) & relevant(S,Q).
15 relevant_k_posanno(D,Q) :- acc_canno(D,S) & relevant_k2(S,Q).
16 relevant_k_neganno(D,Q) :- acc_negcanno(D,S) & relevant_k2(S,Q).
17 relevant_k_reference(D,Q) :- acc_reference(D,S) & relevant_k2(S,Q).

20 relevant_k2(D,Q) :- relevant(D,Q).
21 relevant_k2(D,Q) :- relevant_k2_logical(D,Q).
22 relevant_k2(D,Q) :- relevant_k2_posanno(D,Q).
23 relevant_k2(D,Q) :- relevant_k2_reference(D,Q).
24 !relevant_k2(D,Q) :- relevant_k2_neganno(D,Q).

26 relevant_k2_logical(D,Q) :- acc_subpart(D,S) & relevant_k2(S,Q).
27 relevant_k_anno(D,Q) :- acc_fragment(D,S) & relevant(S,Q).
28 relevant_k2_anno(D,Q) :- acc_canno(D,S) & relevant_k2(S,Q).

172 6 POLAR Implementation

29 relevant_k2_neganno(D,Q) :- acc_negcanno(D,S) & relevant_k2(S,Q).
30 relevant_k2_reference(D,Q) :- acc_reference(D,S) & relevant_k2(S,Q).

Lines 2 and 3 implement the initial content-based phase. Line 2 uses the (possibly normalised)
retrieval status value delivered by external DLMSs for documents – this RSV is the weight
of a corresponding relevant_external fact. In line 3, we use implies, which calculates
an RSV for annotations based on the implication probability determined by the propositions
in the query and the annotation (as discussed in Section 6.2.4). Note that we do not apply
any knowledge augmentation, since we are going to propagate relevance values later; using
knowledge augmentation as well would mean to consider subcontexts twice. The rule in line 6

says that the content-based relevance weight is considered. Similar to knowledge augmentation,
we extend the context with subcontexts coming from the logical document structure (if known),
annotations and referenced objects. This is reflected in rules 7 to 10. Note that the rule in
line 10 deals with negative evidence coming from annotations. The rules in lines 6 – 10 therefore
collect positive and negative evidence about the relevance of a document. Line 12 realises the
document structure-based augmentation through the subpart relation. Lines 13 to 16 implement
annotation-based relevance augmentation in a similar manner as for knowledge augmentation.
In these lines, we collect both positive (l. 13 – 15) and negative evidence (l. 16) about relevance.
In our approach, we have negative evidence for relevance if the document accesses a negative
annotation which is deemed relevant. The rule in line 17 propagates the relevance weight of
referenced objects.
As discussed for knowledge augmentation, we also do not consider meta annotations for

relevance augmentation. Furthermore, merged targets are only considered when they belong to
the context to augment, and subcontexts of fragments are not considered. Therefore we need
a second rule set, like we needed it for knowledge augmentation, which can be seen in lines 20 –
30 and which works analogously to the first rule set.

Example 17 (Relevance Augmentation): To illustrate the effect of relevance augmen-
tation, consider the example in Section 4.2.6.3 and especially Figure 4.3 on page 70.
With relevance augmentation, the POLAR query ”?- //D->q1“ is translated to
”?- relevant_k(D,q1)“ in FVPD. For the query q1 and a document d1, an external
DLMS returns P (relevant_external(d1,q1)) = 0.3. The POLAR instance calculates
P (implies(a1,q1)) = 0.5 and P (implies(a2,q1)) = 0.2. The access probabilities from
d1 to a1 and a2, respectively, are P (acc_canno(d1,a1)) = P (acc_negcanno(d1,a2)) =
0.5. The relevance augmentation support rules combine these three retrieval weights and
generate a new context-based one for d1. Lines 6 to 9 collect the positive evidence com-
ing from d1, so we infer with a probability of 0.3 + 0.5 · 0.5 − 0.3 · 0.5 · 0.5 = 0.475
that d1 is relevant (P (relevant_k(d1,q1)) = 0.475). Considering the negative evidence
from the annotation a2, we infer that d1 is not relevant with 0.5 · 0.2 = 0.1 probability
(P (!relevant_k(d1,q1)) = 0.1). The evaluation of ”?- relevant_k(d1,q1)“ would
combine positive and negative evidence and calculate the probability that we have positive
evidence and no negative evidence from the context9, that is 0.475 · (1− 0.1) = 0.4275, which
is the final context-based retrieval status value of d1. 2

The considerations make clear that we should assume an open world for relevant_k,
since we collect evidence for relevance and non-relevance in parallel here. But in order to

9Recall from Section 6.1.2 that relevant_k(D,Q) is translated into the PD expression
pos_relevant_k(D,Q) & !neg_relevant_k(D,Q).

6.3 System Architecture and Java Implementation 173

combine positive and negative evidence from annotations correctly, the four truth values for
events in relevant_k must not be disjoint since otherwise, only positive evidence would be
considered10.
When performing relevance augmentation, we again need to take measures in case there are

cycles. To solve this, serialisation could be applied just as we did it for knowledge augmentation.
Another option would be to perform radius-1 relevance augmentation. Since relevance augmen-
tation can only be performed during query time, radius-1 relevance augmentation, where we
only consider direct subcontexts, is probably the preferred choice, as it is more efficient.
The design of the relevance augmentation rules allows for focusing on selected subcontext

types, exactly as for knowledge augmentation. So we could easily perform relevance augmen-
tation with or without the annotation context but only the structural one, for instance. An
interesting variant of relevance augmentation is including data from relevance feedback – if
a user judged documents or annotations relevant w.r.t. a query, than this knowledge can be
applied together with relevance augmentation to modify the initial ranking incorporating the
feedback data.

6.3 System Architecture and Java Implementation

6.3.1 POLAR Translation and Execution

Figure 6.1 shows the UML class diagram of the main classes in POLAR. POLAR programs are
executed with the HyPOLAREngine. This engine offers a method eval which takes the actual
POLAR program as parameter and returns a ranked list (not further specified here). During
processing, a POLAR program is first translated into FVPD and then evaluated (executed)
with an FVPD engine.

6.3.1.1 Translation

The POLARTranslator class is responsible for the translation of POLAR to FVPD. Its
translate method takes a POLAR program (an instance of HyPOLARProgram) as param-
eter and returns the FVPD translation (an instance of HyFVPDProgram) according to the
given FVPD dialect. The POLAR program is parsed with a lexer and parser (POLARLexer
and POLARParser). The parsing process transforms POLAR programs into an intermediate
syntax tree using (not further specified) classes for basic POLAR objects, which are proposi-
tions, components (subparts), annorefs, fragments, merged targets, references, predicates, rules
and queries. The intermediate format is then translated into FVPD using an implementation
of the FVPDDialect interface. We specify FVPDDialect as an interface to allow for the easy
integration of new translation rules, which we call dialects here. For example, two different
implementations of FVPDDialect might offer different interpretations of the implies rules,
so different FVPD dialects would return different translations of POLAR programs into FVPD.
Other FVPD dialects might lay the focus on certain optimisations or provide alternative rules
for knowledge or relevance augmentation (and additionally provide means to fetch RSVs from
external DLMSs in order to set up the relevant_external relation). Each implementation
of FVPDDialect must offer methods to translate the basic POLAR objects in the syntax tree
to FVPD. The trans methods either take a basic POLAR object and its context, a rule,
10If the tuples in relevant_k were disjoint, then P (relevant_k(d,q)) in FVPD would be
P (pos_relevant_k(d,q) & !neg_relevant_k(d,q)) = P (pos_relevant_k(d,q)) on the PD level,
so no negative evidence would be considered.

174 6 POLAR Implementation

POLARTranslator

-polarProgram: POLARProgram

-fvpdDialect: FVPDDialect

-fvpdTranslation: FVPDProgram

-lexer: POLARLexer

-parser: POLARParser

+setFVPDDialect(in fvpdDialect:FVPDDialect)

+translate(polarProgram:HyPOLARProgram): HyFVPDProgram

POLARParser POLARLexer

FVPDDialect

+trans(p:Proposition,context:String)

+trans(s:Component,context:String)

+trans(a:AnnoRef,context:String)

+trans(f:Fragment,context:String)

+trans(m:MergedTarget,context:String)

+trans(r:Reference,context:String)

+trans(ru:Rule)

+trans(q:Query)

+trans(pred:Predicate)

+createSupportRules(createRules:boolean)

+getTranslation(): HyFVPDProgram

fvpdDialect

parser lexer

HyPOLAREngine

-polarProgram: HyPOLARProgram

-fvpdProgram: HyFVPDProgram

-translator: POLARTranslator

-fvpdEngine: HyFVPDEngine

-knowledgeBase: HyKB

+eval(polarProgram:HyPOLARProgram): RankedList

HyFVPDEngine

-fvpdProgram: HyFVPDProgram

-knowledgeBase: HyKB

+eval(fvpdProgram:HyFVPDProgram): RankedList

HyFVPDProgram

HyPOLARProgram

 translator

polarProgram

fvpdTranslation

 polarProgram

HyKB

fvpdProgram

knowledgeBase

fvpdEngine

knowledgeBase

FVPDStandardDialect

Figure 6.1: POLAR translation and execution classes as UML class diagram

a query or a predicate. With the createSupportRules method it can be specified if the
support rules for knowledge augmentation should be created or not. getTranslation re-
turns a HyFVPDProgram object representing the FVPD translation, together with the required
support rules, if specified.

6.3.1.2 Evaluation

Once the POLAR program is translated, it is evaluated with HyFVPDEngine. This engine
takes the FVPD program together with an instance of HyKB as parameters. Any instance of
HyKB holds information about the underlying knowledge base, which contains the extensional
relations consisting of indexed propositions (terms, classifications and attributes) within doc-
uments and annotations, the access relations and their type, as well as information about the
term, attribute and categorisation spaces. It might further contain indexed augmented contexts
in case knowledge augmentation was applied during indexing time. To evaluate the FVPD pro-
gram based on the current knowledge base, the HyFVPDEngine instance invokes the FVPD
engine provided by HySpirit. It parses the output of the FVPD engine and returns a ranked
result list to the invoking HyPOLAREngine, which in turn propagates the ranked list to its
invoking application.

6.3 System Architecture and Java Implementation 175

6.3.2 POLAR Indexing

Any instance of HyPOLAREngine executes POLAR programs which contain, besides rules and
queries, contexts (documents, annotations, fragments, merged targets), their content (proposi-
tions) and their relations to other objects in the structured annotation hypertext. Expressing
the knowledge base as a POLAR program is feasible if it contains only a few objects, like all
the POLAR examples provided in the previous chapters. However, if we talk about thousands
or even millions of objects, such a knowledge base would be by far too large to represent them
as a POLAR program. We also need sophisticated indexing structures to provide fast access
for retrieval. It is therefore crucial to store the FVPD relations for basic POLAR knowledge
modelling (as described in Section 6.2.1) as well as rules and even the new relations created by
knowledge augmentation (like term_k), which can be produced offline, in an internal indexing
structure holding the whole static knowledge base. The HyKB object contains all information
about the knowledge base; this knowledge base is linked to the POLAR program executed by
HyPOLAREngine. This way, a POLAR program might consist of few query contexts, some
further rules and POLAR queries. The information about documents, annotations, fragments,
merged targets, components, their content and their interrelations, is stored in the index rep-
resented by the corresponding HyKB object. During execution of the POLAR program, the
HyKB object is linked to the POLAR program and used by the HyFVPDEngine object which
is responsible for the actual execution of the generated FVPD code.

POLARKnowledgeBase

+addAnnotation(anno:Annotation)

+addDocument(doc:Document)

+addRule(rule:String)

+addTerm(term:String)

+addClassification(class:String,objectID:String)

+addAttribute(objectID:String,attributeName:String,
 attributeValue:String)

+indexKnowledgeBase()

+getKB(): HyKB

POLARStandardKnowledgeBase

KnowledgeAugmentor

+augment(kb:HyKB)

RadiusOneAugmentorTreeAugmentor

HyKB

kb

Figure 6.2: POLAR indexing classes as UML class diagram

POLAR provides classes for indexing which return the required HyKB object. Figure 6.2
shows the main classes used for the creation of a POLAR index and knowledge base. Most
important here are two interfaces, POLARKnowledgeBase and KnowledgeAugmentor. The
first one is used to build the POLAR index, while the latter one is responsible for offline
knowledge augmentation and the creation of a persistent term_k relation.

176 6 POLAR Implementation

POLARKnowledgeBase is designed as an interface because it should support representa-
tions which need to be consistent to the applied FVPDDialect implementation. This means
that the FVPD program produced by FVPDDialect must be able to use the internal struc-
ture and relations created by the corresponding POLARKnowledgeBase object. Furthermore,
different implementations of the interface might store the knowledge base in a database or in
the file system. Annotations and documents (and their content and relations to other objects)
are added to the knowledge base with the addAnnotation and addDocument methods. For
convenience, addAnnotation and addDocument take Annotation and Document objects,
respectively, as parameter. These objects also embed fragments and merged targets. Further
methods of POLARKnowledgeBase manage rules and predicates (term, attribute and predi-
cate spaces). Once all objects are added, the indexKnowledgeBase methods can be invoked,
which indexes (or updates, in case incremental indexing is supported by an implementing class)
the objects and creates the relations and structure contained in the knowledge base. This also
involves applying stemming and stop word elimination as well as calculating (possibly four-
valued) proposition weights. getKB returns the HyKB object representing the knowledge base.
An implementation of KnowledgeAugmentor takes a HyKB object as parameter and

performs offline knowledge augmentation on all contexts contained in the knowledge base.
Offline knowledge augmentation creates a static version of the term_k (attribute_k,
instance_of_k, respectively) relation which is then stored in the knowledge base. If this
persistent version of term_k is used, no support rules for augmentation should be generated
by the FVPDDialect object.

6.3.3 POLAR Prototype

The current POLAR prototype11 is implemented in Java using a special Java API for
HySpirit called JaySpirit12. POLARLexer and POLARParser are based on the ANTLR
parser generator13. They extend ANTLR’s Lexer and Parser object, respectively.
The prototype further provides the classes POLARTranslator, HyPOLAREngine and
HyPOLARProgram. HyFVPDProgram, HyFVPDEngine and HyKB are part of the JaySpirit
package. HyFVPDEngine invokes the HySpirit engine when evaluating a HyFVPDProgram
object, using the knowledge base specified in the HyKB object.
The POLAR prototype contains an implementation of the FVPDDialect interface called

FVPDStandardDialect (see Fig. 6.1). This class implements the translation of POLAR
to FVPD for basic knowledge modelling, queries and rules, as reported in sections 6.2.1 and
6.2.2. If requested, non-serialised support rules for knowledge augmentation as shown in Sec-
tion 6.2.3.1 are created. These rules propagate both probabilities for true and false for terms,
attributes and classifications. The class translates the expression ”D->q“ to the tf × idf -based
disjunctive retrieval function implies_k in Section 6.2.4.2.
The class POLARStandardKnowledgeBase implements the POLARKnowledgeBase in-

terface and creates the index and knowledge base compatible to FVPDStandardDialect.
POLARStandardKnowledgeBase stores the knowledge base in the file system and uses a
probabilistic relational index (Rölleke, 2008), which is provided by the HySpirit distribution,
for fast access.
Another part of the POLAR prototype are classes that realise offline knowledge augmentation

with certain restrictions. The TreeAugmentor class implements the KnowledgeAugmentor
11http://www.is.inf.uni-due.de/projects/polar/index.html.en
12http://www.is.inf.uni-due.de/projects/jayspirit/index.html.en
13http://www.antlr.org/

http://www.is.inf.uni-due.de/projects/polar/index.html.en
http://www.is.inf.uni-due.de/projects/jayspirit/index.html.en
http://www.antlr.org/

6.4 Summary and Discussion 177

interface. It uses the serialised knowledge augmentation rules presented on page 162,
but assumes the underlying access structure to be a tree. Another implementation of
KnowledgeAugmentor is RadiusOneAugmentor. The class realises Radius-1 augmentation
as discussed on p. 165. Both TreeAugmentor and RadiusOneAugmentor propagate prob-
abilities of a term to be true, but do not handle false as well as categorisations and attributes
yet. The resulting term_k relation is written into a knowledge base which is compatible to
POLARStandardKnowledgeBase.

6.4 Summary and Discussion

In this chapter we presented an implementation of the POLAR framework based on four-valued
probabilistic Datalog. We chose FVPD since one of its distinctive features is that it can handle
POLAR’s four truth values and deal with an open world assumption (but a closed world can be
declared for certain relations). FVPD programs are translated into probabilistic Datalog ones,
so in essence, POLAR can utilise existing PD implementations like HySpirit. To implement
POLAR with FVPD, a translation function is defined. Access relations and their type (the
special propositions in Section 5.2 denoting if a relation represents a subpart, an annotation or
a reference) are mapped onto appropriate two-valued predicates in FVPD. Any other POLAR
proposition and its weight list is mapped onto four-valued predicates for terms, classifications
and attributes, which also contain the context the proposition belongs to as parameter.
POLAR queries and rules are translated into corresponding FVPD queries and rules by giving

a translation for each head and subgoal. The translation of subgoals can be controlled in case
knowledge augmentation is requested.
For knowledge augmentation, a set of rules can be defined which propagate probabilities that

a proposition is true or false from subcontexts to its supercontext in order to introduce new
propositions in the supercontext or modify the weight of existing ones. The FVPD rules which
control knowledge augmentation need to be attached to any FVPD translation of POLAR
programs. When performing knowledge augmentation, we have to handle cycles which may
occur in the access structure. This can be done by applying a serialisation approach (which
needs to analyse the access structure) or a restriction to radius-1 augmentation. The knowledge
augmentation approach can easily be adapted to include or exclude certain access types; for
example, only the logical document structure (subparts) or the annotation context (merged tar-
gets, fragments and content annotations) may be subject to augmentation. Another advantage
of the knowledge augmentation approach is that it can be performed during indexing.
Possible POLAR retrieval functions estimate the probability P (d → q) that a document

d implies a query q. Many such estimations are conceivable, which might be based on a
conjunctive or disjunctive interpretation of documents and annotations. Our example retrieval
functions produce a tf × idf -based ranking. Besides the propositions in the given context, these
functions also consider the term, category and attribute space, respectively. Retrieval functions
are implemented in POLAR by linking a set of helper rules which describe the intensional
implies relation.
Once a retrieval status value is calculated as an estimation of P (d→ q), we can apply another

augmentation strategy called relevance augmentation. In contrast to knowledge augmentation,
we calculate a content-only retrieval weight for each context first and then augment each context
by propagating the retrieval weights from subcontexts to supercontexts. The newly computed
context-based retrieval status value combines positive and negative evidence found in the ac-
cessed subcontexts. The big advantage of relevance augmentation is that it integrates the

178 6 POLAR Implementation

results from external retrieval services, which is important if an annotation service employing
POLAR does not have access to the full texts of external sources in order to index them, but
can call the sources’s search routines through an API. One of the disadvantages of relevance
augmentation is that it can only be applied during query time, so radius-1 augmentation might
be preferred. Similar to knowledge augmentation, relevance augmentation is implemented by
providing FVPD support rules.
The POLAR system is designed to flexibly integrate and apply different translation strategies

which must be implemented in accordance to the FVPDDialect interface. Each FVPD dialect
can implement different augmentation strategies or retrieval functions. This way we preserve
the flexibility we gain by applying the FVPD framework in the current POLAR implementation
– new augmentation and retrieval strategies can easily be plugged into the current implemen-
tation by just providing according FVPD dialects. For indexing and offline augmentation, the
interfaces POLARKnowledgeBase and KnowledgeAugmentor are defined. The current PO-
LAR prototype is written in Java and provides an implementation of the discussed classes and
interfaces.

How does POLAR’s implementation compare to the POOL one? The POLAR translation
into FVPD is naturally similar to the POOL implementation reported in Rölleke (1998). How-
ever, some differences exist and some new concept were introduced in POLAR. The main
difference between POLAR and POOL lies in the implementation of the augmentation rules.
POOL’s knowledge augmentation rules had to be refined in order to deal with the peculiari-
ties of the different access types. In contrast to POOL, the access structure in POLAR can
contain cycles, so we introduced a serialisation strategy to handle them. We also discussed
possibilities for radius-1 augmentation. As in POOL, retrieval functions in POLAR are based
on probabilistic inference. This makes POOL’s retrieval functions potential candidates for PO-
LAR. Additionally to POOL’s retrieval functions implementing the vector space model, we
presented tf × idf -like retrieval functions based on an explicit conjunctive and disjunctive view
on documents and queries. POLAR’s concept of relevance augmentation is so far unknown to
POOL.
Translating POLAR programs into FVPD is one possibility to implement POLAR according

to the semantics presented in the last chapter. The advantage of the above translation rules is
that they provide an intuitive mapping of POLAR expressions to FVPD ones. However, there
might be equivalent translations which are less intuitive but more efficient. For example, we
could split the term relation into several ones reflecting the different context types – a relation
fragment_term(t1,f1) might say that term t1 is contained in a fragment f1. This makes
queries for fragment terms more efficient, since it would not be required to search the whole
term relation. A knowledge augmentation rule like

term_k(T,D) :- acc_fragment(D,S) & term(T,S).

would turn into

term_k(T,D) :- acc_fragment(D,S) & fragment_term(T,S)

whose evaluation would be more efficient. Similar relations can be defined for other subcontext
types (e.g., term_canno for terms in content annotations).
Another option addressing efficiency is translating POLAR programs directly into PD or PRA

programs. The current translation pipe is POLAR→ FVPD→ PD→ PRA, which restricts our
options to create efficient PRA programs (which are the ones executed in the end). Our system

6.4 Summary and Discussion 179

architecture might be extended to allow for the direct translation of POLAR programs into PD
or PRA by introducing PD or PRA dialects and defining and implementing a corresponding
PDDialect or PRADialect interface. An example where the evaluation of POLAR programs
can benefit from the direct translation into PD is the propagation of inconsistent knowledge, as
we have seen in Section 6.2.3.1. Another example is relaxed knowledge augmentation (Rölleke,
2008). Let us consider the FVPD knowledge augmentation rule

term_k_anno(T,D) :- acc_fragment(D,S) & term(T,S).

for propagating terms in fragments to the corresponding supercontext. According to Sec-
tion 6.1.2, this is translated to the PD rule

pos_term_k_anno(T,D) :-
acc_fragment(D,S) & pos_term(T,S) & !neg_term(T,S).

The evaluation of the negation ”!neg_term(T,S)“ is computationally expensive, so we may
decide for a relaxed strategy which does not contain the negation, but uses the PD rule

pos_term_k_anno(T,D) :- acc_fragment(D,S) & pos_term(T,S).

instead. This variant would also propagate inconsistent knowledge and does not work exactly as
we described knowledge augmentation in the last chapter, but it is more efficient. Unfortunately,
this PD rule cannot be expressed in FVPD and would thus benefit from a direct translation of
POLAR into PD and corresponding execution with a PD engine.
We introduced retrieval functions based on the notion of probabilistic inference, which com-

pute the probability P (d → q) that a document implies a query (and the other way round).
We indicated above that we are not restricted to this particular retrieval method, but can
use the expressive power of FVPD, PD or even PRA to introduce new retrieval approaches to
annotation-based IR within POLAR. For example, Rölleke et al. (2007) shows possible alterna-
tive retrieval functions expressed in PD and based on well-known concepts like, e.g., language
models. These retrieval approaches might be integrated into POLAR as distinctive FVPD
dialects or even on the PD or PRA level.

In the last chapters we discussed the POLAR framework, the concepts and data structures
behind it, and its syntax, semantics and implementation. The next part of this thesis deals
with the question whether certain annotation-based POLAR concepts lead to more effective
retrieval results than established retrieval approaches.

Part III

Evaluation

7
Example Applications and Test Collections

Or to some coffee-house I stray,
For news, the manna of the day,
And from the hipp’d discourses
gather
That politics go by the weather.

(Matthew Green)

In the last part the POLAR framework was proposed; its core retrieval functionality is based
on augmentation and probabilistic inference. The goal of this part is to answer the question
whether or not annotations improve retrieval effectiveness. To do so, we first need a suitable
collection of documents and annotations, and second a set of example topics/queries with
corresponding relevance judgements which state whether a document or annotation is relevant
to the given query or not. While we learn from the discussion in Chapter 2 that the annotation
universe comprises a broad range of possible applications, there is the problem of finding such
a suitable test collection for the evaluation of annotation-based IR. This fact recently led to
the proposal of the automatic creation of such a collection from existing ones (Agosti et al.,
2007b).
In order to evaluate the annotation-based retrieval methods in POLAR, two collections were

chosen: an email discussion list from the World Wide Web Consortium (W3C) and a snapshot
from ZDNet News. While the first collection, which is suitable for discussion search, was created
collaboratively within an evaluation initiative, we took a seven month snapshot of ZDNet News
for the latter one and created the required topics and relevance judgements on our own in order
to set up a collection for annotation-based document search. In this chapter, the collections are
presented, we describe how testbeds were created and how the collection can be represented in
POLAR. In the next chapter, experiments and their results are described.

7.1 Emails as Annotations: The W3C Discussion Lists

7.1.1 Collection

The W3C lists are part of a crawl of the public W3C sites (*.w3.org) in June 2004. This crawl
was the official collection of the Enterprise Track at the Text Retrieval Evaluation Conference
(TREC) in 2005 and 2006. The Enterprise Track was divided in several subtasks, among which
discussion search was one (Craswell et al., 2005). The collection contains the W3C email lists

184 7 Example Applications and Test Collections

Figure 7.1: Example for the annotation view on email discussions

where topics related to the World Wide Web Consortium are discussed. From the provided
HTML representation of the email lists, 174,307 emails were extracted. In the TREC 2005 runs,
which are the relevant ones here, the participants submitted 59 topics which were considered for
the final set. For the assessments, each topic was assigned to two of the participating groups –
first to the group who suggested the topic, second to another group. For document judgements,
there were three types of answers: not relevant to the query, topically relevant, relevant with a
pro/con statement. The last answer was used for experiments where systems should not only
find out if a message was topically relevant, but also if it contained a pro or contra statement.
Subject to judgement was the new part of an email; the quotations or replies were ignored. An
email is thus relevant only if its new part is relevant. For our experiments, we only used the
judgements whether a message was topically relevant or not; we did not explicitly address the
problem of finding pro/con statements.

7.1.2 The Annotation View on Email Messages

The left hand side of Figure 7.1 shows some example email messages m1, m2 and m3, which
were taken from a W3C discussion list. m2 replies to m1, and m3 is a reply to m2. Replies,
such as m2 and m3, usually contain two different parts in their body:

• the quotations, which are passages of the original text. Quotations are identified by
quotation characters which prefix each line of the quotation1. Such a quotation character
can be ’>’ or ’:’ or probably other characters or regular expressions; combinations of them
usually define the quotation depth. In m3, quotations belonging to m1 have the depth 2
and are identified by two quotation characters (’> >’), whereas quotations belonging to
m2 are identified by the single quotation character ’>’;

1Unfortunately, there are exceptions to this rule.

7.1 Emails as Annotations: The W3C Discussion Lists 185

• the unquoted or new part containing new content by the author of the message.

In replies, the unquoted (or new) part contains annotations (here: textual, shared comments)
of passages of previous messages. These passages are determined by the corresponding quota-
tions. Quotations are thus the annotation targets. This annotation view on email messages
(Frommholz, 2005a) is illustrated on the right hand side of Fig. 7.1. The quotation in m2 defines
the fragment f_m1_m2 the new part in m2 belongs to. Due to different quotation depths we
can divide the quoted part in m3 – one fragment (f_m2_m3) actually belongs to m2, but the
part with the higher quotation depth, f_m1_m3, even belongs to m1. So the new part in m3
relates to two parts in two different previous postings, as the arrows in Fig. 7.1 indicate. The
transformation of emails into a POLAR representation thus includes parsing quotations and
assigning the fragments to their original objects (f_m1_m2 and f_m1_m3 to m1, f_m2_m3 to
m2), determined by the quotation depth. The merged annotation target of m2, q_m2, is made
of f_m1_m2, while the merged annotation target q_m3 contains f_m1_m3 and f_m2_m3,
the whole quotation of m3. This example also shows that annotations can belong to more than
one object.
Emails usually consist of several quotations and new parts following each other, for example:

>> line1
> line2
line3

>> line4
> line5
line6

Each new part of the email is seen as an annotation of the corresponding quotation (line3
as an annotation of line1 and line2, line6 as an annotation of line4 and line5). In
the experiments for the TREC Enterprise track (presented in the next chapter), the task was
to find emails whose new part is relevant to the query, but in the representation above, we are
dealing with parts of emails – when applying discussion search, we would get a retrieval status
value for each line3 and line6, but we are interested in one retrieval status value for the
whole email, comprising all new parts. We therefore combine all parts of the email by merging
all quotations and all new parts, so as a result we gain one big quotation and one big new part
for each email. In our example, the outcome of the restructuring is:

>> line1
>> line4
> line2
> line5
line3
line6

The corresponding fragment of the predecessor’s predecessor would consist of line1 and
line4, while the fragment belonging to the direct predecessor would be line2 and line5.
line3 and line6 establish the new part of the example email. In this view, the annotation
consists of line3 and line6, annotating line1, line4, line2 and line5.

186 7 Example Applications and Test Collections

7.1.3 Collection Statistics
After setting up the collection as discussed above, the index contained 174,307 emails. 79,853
of them have a merged annotation target2. 35,963 have at least one fragment, and 49,611 a
direct content annotation. As shown in Fig. 7.2, most emails with fragments (25,302) have 1
fragment; 7,186 have 2 fragments and 2,181 emails 3 fragments. 25 emails have 10 or more
fragments, 1 email has the highest number of fragments (19). On average, each email with
fragments has 1.46 fragments. There are 33,300 threads, and 38,392 emails are thread leaves
(i.e., they do not have any reply). In Fig. 7.3 we can see that most of the 49,611 emails with

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

#e
m

ai
ls

 (
lo

ga
rit

hm
ic

 s
ca

le
)

#fragments

Figure 7.2: W3C Lists: emails and fragments

direct comments, 39,948, have 1 annotation. 7,948 emails have 2 comments (or replies), 1,335
have 3 comments. Only 2 emails have more than 10 comments. Emails with replies have 1.24
comments on average.

7.1.4 Representation in POLAR
We take the discussion thread in Fig. 7.1 as an example. The root of an email discussion
thread does not reply to any other email (in theory) and can therefore not be regarded as an
annotation in our model. To reflect this, we introduce new classes Message v AnnotatableObject
and Reply v Annotation uMessage and categorise our messages accordingly:

annotation(A) :- reply(A)
message(M) :- reply(M)
annotatableObject(E) :- message(E)
message(m1) reply(m2) reply(m3)

Message m1 can be represented in POLAR as follows (we only consider a part of the term set
of messages in the example; all probabilities are fictitious):

2Also full quotes, i.e. emails which quote the whole previous message, are counted here.

7.1 Emails as Annotations: The W3C Discussion Lists 187

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

#e
m

ai
ls

 (
lo

ga
rit

hm
ic

 s
ca

le
)

#annotations

Figure 7.3: W3C Lists: emails and annotations

m1[0.5 mediation 0.6 annotation 0.5 lawsuit
0.6 people 0.4 database
0.3 f_m1_m2|| 0.7 annotation 0.6 lawsuit 0.2 *m2 ||
0.3 f_m1_m3|| 0.7 annotation 0.6 lawsuit 0.2 *m3 ||

]

This says that the body of m1 consists of terms like ‘mediation’, ‘annotation’, ‘lawsuit’, ‘people’
and ‘databases’3. A fragment of m1 containing the terms ‘annotation’ and ‘lawsuit’ is quoted by
two other emails, m2 and m3 (and is therefore their annotation target). The probability that we
access the context f_m1_m2 or f_m1_m3 to determine the augmented context m1(f_m1_m2)
or m1(f_m1_m3), respectively, is 0.3. m2 and m3 can be represented as

m2[0.9 q_m2< 0.75 annotation 0.7 lawsuit >
0.55 annotation 0.5 lawsuit 0.3 graffiti
0.4 courts 0.6 technology
0.3 f_m2_m3|| 0.8 annotation 0.75 lawsuit

0.6 graffiti 0.2 *m3 ||
]

m3 [0.9 q_m3< 0.85 annotation 0.8 lawsuit
0.5 graffiti >

0.4 happen 0.6 posts 0.3 sample 0.55 winds
]

The quotation of m2, q_m2, contains the terms ‘annotation’ and ‘lawsuits’, whereas the quo-
tation of m3, q_m3, additionally contains the term ‘graffiti’. q_m3 is a merged annotation
target from f_m1_m3 and f_m2_m3.

3We attached the title of the message to its body. An alternative would be to regard the title as a subpart of
a message, for instance “m1[title1[...]]”

188 7 Example Applications and Test Collections

7.2 ZDNet News
ZDNet News4 is a web site that delivers news and developments in information technology
and business. After registering, users can write comments on ZDNet articles, which again
can be commented. This way, discussion threads are created which are attached to its root
article. The HTMLish nature of the comments also allows for referencing external documents
via annotations.

7.2.1 Collection Statistics
We downloaded a snapshot of ZDNet News and set up a testbed for our experiments based
on this collection. Figure 7.2.1 shows an example thread of comments belonging to an article.
The ZDNet snapshot was harvested from December 2004 to July 2005. It consists of 4,704

Figure 7.4: ZDNet article and discussion thread

articles and 91,617 annotations, from which 26,107 are direct comments on the articles. 3,486
4http://news.zdnet.com/

http://news.zdnet.com/

7.2 ZDNet News 189

articles have at least one comment, and articles with comments have 7.4891 comments on
average. As we can see from the histogram in Figure 7.5, most documents only had a few
direct comments. 761 articles have 1 direct comment, 534 articles 2, and 2,778 articles have
less than 10 comments. 52 articles have more than 50 direct comments; among them 17 have
more than 100 direct comments and 3 have even more than 200. One article has the highest
number of comments, 262.

 1

 10

 100

 1000

 20 40 60 80 100 120 140 160 180 200 220 240 260 280

#a
rti

cle
s

(lo
ga

rit
hm

ic
sc

al
e)

#comments

Figure 7.5: ZDNet News snapshot: articles and direct annotations

7.2.2 Testbed Creation
To create our testbed, 20 topics and queries were defined. Since relevance assessments could not
be achieved within an evaluation initiative like INEX or TREC, we only had limited resources
for the assessments – we asked colleagues, students and IT experts outside our institute to
assess the topics. As our assessors volunteered for working on the topics in their spare time,
we asked them to assess 150 documents (articles) per topic. To create an initial ranking, a
simple approach for annotation-based document search was applied: articles and their direct
annotations were merged and regarded as one atomic document5. The resulting ranking was
used for the relevance judgements.
A 3-tier ranking system was defined. The assessment procedure was as follows: after reading

an article, the assessor looks if it is relevant w.r.t. the given topic. If so, it is judged like
that. If not, the assessor looks at the direct annotations to see if there are relevant comments.
If the assessor finds any relevant comment, the article is judged as being not relevant but
having relevant annotations. If there are also no relevant comments, the article is judged as
not relevant. Non-relevant articles might nevertheless be interesting to users when they are
indirectly relevant, i.e. there are annotations which contain the information the users seek
(and the system is able to point them to these). A similar relevance criterion is reported for

5Since the POLAR prototype was not available at the date the assessments started, no pooling procedure was
performed. The initial ranking was produced directly with HySpirit.

190 7 Example Applications and Test Collections

Web documents in Hawking et al. (1999). The scenario supports the ranking enriched with
annotation showcase in Section 4.3.2 on page 74. From all documents judged, the assessors
classified 679 articles as being relevant and 113 as not relevant but having relevant annotations.
The testbed was also used as a subcollection for the INEX Heterogeneous Track (Frommholz

and Larson, 2007).

7.2.3 Representation in POLAR

The ZDNet commenting system does not provide formal means to relate a comment to certain
fragments of a message, nor does it allow for annotating more than one target. This means
that no fragments could be extracted. Furthermore, as we set up the collection for annotation-
based document search, it would not make sense to create merged annotation targets (which
would consist of content of the whole annotated object). All comments are categorised as
being content level annotations to the object they refer to, although some of them might be
better regarded as meta level annotations. Furthermore, the titles of articles and comments
were merged with their respective body6. Additional information (like classifications/tagging
of articles) was not used. This makes the representation of ZDNet articles and comments in
POLAR quite straightforward, as the following simple example (with fictitious term weights
and access probabilities, extracted from the example in Fig. 7.2.1) shows:

document(zdnet_art1)
annotation(zdnet_com1)
annotation(zdnet_com2)
annotation(zdnet_com1_1)
annotation(zdnet_com2_1)
zdnet_art1[0.7 sun 0.6 open-source 0.8 solaris 0.4 era ...

0.4 *zdnet_com1 0.4 *zdnet_com2 ...
]

zdnet_com1[0.3 open 0.5 source 0.6 unix ...
0.4 *zdnet_com1_1 ...

]
zdnet_com2[0.6 sun 0.4 open-source 0.75 solaris 0.3 era ...

0.4 *zdnet_com2_1
]

zdnet_com1_1[0.8 sco 0.6 thing ...
]

zdnet_com2_1[0.8 purple 0.8 cat 0.85 solaris ...
0.4 *zdnet_com2_1_1
]

...

7.2.4 Polarity of Comments

One of the peculiarities of the ZDNet News snapshot is that we find many controversial discus-
sions there. Unfortunately, ZDNet does not provide any means to mark a comment as being
positive or negative to the object it replies to, so one of the experiments reported in the next

6Again, titles could be regarded as part of the logical document structure and be a subpart of the article or
comment.

7.2 ZDNet News 191

chapter dealt with the question whether it is possible to automatically detect the polarity of
a comment accurately. To perform such an experiment, another testbed based on the ZD-
Net News collection was created. Assessors classified comments into six sentiment categories:
positive, negative and neutral, all three on the content and meta level:

Content:Positive Positive sentiment on the content level, usually expressed with phrases like
“I agree”. 140 comments were judged so.

Content:Negative Negative sentiment on the content level, expressed with phrases like “I
disagree”. 327 comments were judged as being negative on the content level.

Content:Neutral Neutral sentiment on the content level, the author does not explicitly express
any sentiment. 502 comments were categorised into this class.

Meta:Positive Positive sentiment on the meta level, for example by stating how useful a a
comment was (“this helped me a lot”). 33 comments were judged so.

Meta:Negative Negative sentiment on the meta level; a classical example in discussion forums
are so-called “trolls”, which are persons whose comments usually do not convey any useful
information. The usual reaction to such comments is a phrase like “don’t feed the trolls!”.
104 comments were regarded as being negative on the meta level.

Meta:Neutral No sentiment expressed on the meta level. 135 comments were classified as
being neutral on the meta level.

Multiple classification was possible, e.g. if a comment was half positive and half negative, both
a positive and negative category could be chosen. If we do not distinguish between meta and
content level, 173 comments were judged as being positive, 637 neutral and 431 negative. This
results to 1,241 judgements given in total by 10 assessors (colleagues and students).
A procedure which automatically classifies comments into the categories positive and negative

might for instance detect that zdnet_com1_1 (the comment with the title “SCO can’t do a
thing” in Fig. 7.2.1) is negative; the above POLAR representation could then be modified to

...
zdnet_com1[0.3 open 0.5 source 0.6 unix ...

0.4 -*zdnet_com1_1 ...
]

...
zdnet_com1_1[0.8 sco 0.6 thing ...]
...

so that zdnet_com1_1 is a negative content annotation now. From a retrieval point of view, the
information about the sentiment of a comment could be exploited to determine the trustworthi-
ness of an annotation, as it is outlined in the showcase in Section 4.3.8 on page 79. Furthermore,
the fact that zdnet_com1_1 influences the propagation of its terms in the knowledge augmen-
tation process; the terms ‘sco’ and ‘thing’, for instance, would contribute to the probability
that they are negative in the augmented context zdnet_com1(zdnet_com1_1).

192 7 Example Applications and Test Collections

7.3 Summary and Discussion
In this chapter, two collections and their modelling in POLAR were presented. These are the
W3C mailing lists, which were part of the collection used for the TREC Enterprise Track, and
ZDNet News consisting of IT-related articles and discussion threads. The former collection can
be used for a discussion search task, while with the latter one, experiments on annotation-based
document search can be performed. Since a collection containing documents and annotations
was not available yet, example queries and relevance judgements had to be collected first. Based
on the ZDNet snapshot, another testbed was created to perform experiments which aim at the
classification of comments into positive and negative ones, which is a prerequisite for example
to determine the trustworthiness of annotations and influences the knowledge augmentation
process. Again, the required judgements needed to be collected.

Are the W3C lists a good test collection for annotation-based discussion search? In Bottoni
et al. (2003), newsgroup postings and email messages are not regarded as annotations. They
see quotations as part of the reply rather than of the message they belong to, and consequently
argue that a reply does not relate to a portion of the previous message. This is the main
difference to the annotation view on emails above, where we take a different viewpoint and
see quotations as a location attribute. One might further argue against the annotation view
on email messages that there is no real “main document” involved which is annotated, as is
the case with paper documents and also forums which usually refer to a main document whose
content is discussed. We might on the other hand regard the root of a discussion thread as
the document which sets the topic for the further discussion and is thus the “main document”.
This does not contradict to the definition and usage of annotations we have seen so far –
replying to a previous message usually means making critical remarks or explanatory notes,
and it can be regarded as a case of active reading. Another argument for the annotation view
on email messages is that annotation-based discussion can indeed be realised applying a similar
technical solution (“email-like” textual annotations with quotations and unquoted parts) as
used for newsgroup or mailing list postings. Furthermore, the task of discussion search focuses
on annotations rather than on annotated documents, so the lack of a “real” root document
does not play a role here.
In contrast to the W3C lists, the snapshot of ZDNet News contains a “real” root document,

namely the ZDNet article an annotation thread belongs to. This makes the ZDNet snapshot
a potential candidate for experiments on annotation-based document search. However, due to
limited resources it was only possible to create and judge 20 topics. According to a recent
study (Sanderson and Zobel, 2005), this spoils the quality of the test collection, but should
nevertheless be sufficient to provide at least preliminary results.
We have seen in Chapter 2 that there is a broad range of annotations, systems, and anno-

tation tasks. Our collections above cover only a few of them, namely public discussions about
certain topics, which follow no certain purpose, and the detection of the polarity of annotations.
However, annotation systems and the act of annotation might have a specific goal and specific
users in mind. In the COLLATE system, for example, a closed group of scholars used anno-
tations to interpret the material at hand. The fact that experts are writing the annotations
naturally raises their quality compared to open systems like ZDNet News. On the other hand,
collections like ZDNet News are a suitable playground for evaluating methods which determine
the trustworthiness of public annotations. Another example are private annotations, as they
are offered by systems like DAFFODIL, or reviews and ratings. It is clear that results of exper-
iments with the collections above cannot necessarily be transferred to other annotation tasks,

7.3 Summary and Discussion 193

but they can nevertheless gain valuable insights for the tasks and situations they cover. It is
obvious that future work should consider the creation of new annotation-based test collections.
The experiments discussed in the next chapter can only be the beginning.

8
Experiments

A statistician can have his head in
the oven and his feet in ice, and on
average he feels fine.

(Anonymous)

In the last chapter, two test collections and their POLAR representation were introduced: W3C
email discussions and ZDNet News. The first one was used for discussion search experiments,
while with the latter one, annotation-based document search as well as a machine learning
approach to determine the polarity of annotations were evaluated. This chapter presents and
discusses the experiments and their results. We begin with an introduction of the applied
methodology and evaluation measures. Subsequently, term weighting and retrieval functions
are presented. Afterwards, results of discussion and document search experiments are shown
and discussed. The chapter ends with a general reflection of the results.

8.1 Methodology and Presentation

8.1.1 Evaluation Measures

In the experiments, typical measures known from information retrieval are applied, which are
recall and precision. Both values are used to measure the effectiveness of a retrieval system,
which addresses the quality of the produced ranking. In contrast to the effectiveness, the
efficiency measures how many system resources (CPU time, memory) are used for retrieval.
Since our implementation depends on the HySpirit system and its efficiency, we do not evaluate
this, but only the effectiveness of the described annotation-based retrieval approaches. For
evaluation, the trec_eval program written by Chris Buckley1 was used. We briefly summarise
the main measures used in the experiments.

Definition 26 (Evaluation measures):
Recall denotes the ratio of relevant documents which are found by the system to the whole

number of relevant documents in the repository. Let RET be the set of retrieved

1http://trec.nist.gov/trec_eval/; see the README file in the package for further explanations on
the evaluation measures. We used version 7.3 for the evaluation.

http://trec.nist.gov/trec_eval/

196 8 Experiments

documents and REL be the set of relevant documents in the system. The recall r is
then defined as

r := |RET ∩REL|
|REL|

All relevant documents are found by a system if r = 1.

Precision is the ratio of relevant documents found to the number of retrieved documents.
Reusing the denotations above, the precision p is

p := |RET ∩REL|
|RET |

All retrieved documents are relevant if p = 1.
From the basic measures recall and precision, new measures can be derived. For a query,

it is common to measure the precision at 11 recall levels r = 0.0, 0.1, 0.2, . . . , 1.0. For
example, the recall level 0.1 is the point where 10% of the relevant documents were found;
here, p can be interpolated as the maximum of precision at all recall points >= 0.1. These
values can be displayed in recall-precision graphs, where the recall points are the x-axis
and the corresponding precision the y-axis; precision is thus plotted as a function of recall.
Some interpolation strategy might be applied to connect the precision values between the
recall points. From the precision values at certain recall points, trec_eval calculates
an average precision as the arithmetic mean of the precision obtained after each relevant
document was found. All values so far are related to one single topic. A retrieval run
usually consists of several defined topics, so we are interested in measures reflecting all
topics. For recall-precision curves, a macro-averaging strategy is applied which calculates
the precision average over all topics at each recall point. For N topics, we get

pavgr := 1
N

N∑
i=1

|RETi,r ∩REL|
|RETi,r|

at each of the recall points r = 0.0, 0.1, 0.2, . . . , 1.0; RETi,r is the set of documents retrieved
at recall point r for topic i. Furthermore, the mean average precision (MAP) is the mean
of the average precision values of all topics.
Measuring the precision at pre-defined recall levels is a bit artificial, although a good

system-oriented measure. If we assume users only examine the first K ranked documents,
we are also interested in the precision after K documents are retrieved. We denote this
precision as P@K ; for example, P@10 is the precision after 10 documents are retrieved.
Again, theses values are averaged when considering all queries.

8.1.2 Significance Tests

To compare a ranking produced by a system w.r.t. a given baseline system and evaluation
measure, paired t-tests with confidence p < 0.05 and p < 0.01 (Sanderson and Zobel, 2005)
were performed. The following null hypothesis was proclaimed:

H0 : µ1 − µ2 = 0

8.2 Term Weighting and Retrieval Functions 197

with µ1 as the mean of the baseline sample and µ2 as the mean of the sample from the system
to compare to the baseline. A sample consists of values for single topics. For instance, to
test the significance of the results for two systems w.r.t. MAP, two samples for each systems
are examined. These samples consist of MAP values for each topic. So the null hypothesis to
evaluate is that both the baseline system and the system to evaluate are equally effective with
respect to the given measure, or, in other words, that the sample values for both systems come
from the same population (Clauß and Ebner, 1972). A statistical significant difference (p <
0.05 at least) leads us to reject H0. The alternative hypothesis is as follows:

H1 : µ1 − µ2 6= 0

which means that the differences to the baseline are significant.

8.1.3 Presentation

In the tables below, we mark statistical significant and non-significant results as follows:

Significance Example
Not significant 0.25
Significant (p < 0.05) 0.25
Very significant (p < 0.01) 0.25

Furthermore, the best results achieved w.r.t. to a certain measure are printed in bold.

8.2 Term Weighting and Retrieval Functions
In the experiments, the following weighting function for term weights within contexts (docu-
ments and annotations) was used:

Definition 27 (Within-context term weights):
Consider a term t appearing in a context d. In POLAR, t is assigned a probability pt,d
depending on the term frequency of t in d (so we get “d[pt,d t]” as the POLAR represen-
tation). We calculate pt,d as

pt,d = tf(t, d)
avgtf(d) + tf(t, d)

with tf(t, d) as the frequency of term t in document or annotation d and avgtf(d) as the
average term frequency of d, calculated as

avgtf(d) =
∑
t∈dT

tf(t, d)/|dT |

and dT being the set of terms occurring in document d.

We also use global weights for terms as follows:

198 8 Experiments

Definition 28 (Global term weights):
We assign a weight pt to each term t, denoted in POLAR as “pt ◦t”. p is computed based
on the inverse document frequency as

pt = idf (t)/maxidf

with
idf (t) = − log (df(t)/numdoc) ,

df(t) as the number of objects (documents and annotations) in which t appears, numdoc
as the number of objects in the collection and maxidf is the maximum inverse document
frequency.

In all experiments, the tf × idf -based interpretation of D->q discussed in Section 6.2.4.2 was
used.

8.3 Discussion Search
In this section we present some experimental results for discussion search. First results for
discussion search were achieved while participating in the TREC 2005 Enterprise Track2

(Frommholz, 2005a) and performing subsequent experiments (Frommholz and Fuhr, 2006b,a).
The collection used are the W3C email lists introduced in Section 7.1, consisting of 174,307
emails and 59 test queries. Note that the initial discussion search runs published in (Frommholz,
2005a) were repeated, which produced different results.
As discussed, emails provide us with a rich structure from which we can extract fragments

and merged annotation targets. Therefore the main target of discussion search evaluation was
to examine the role of fragments and merged annotation targets when exploited for knowledge
augmentation3.

8.3.1 Description of Runs
For the description of the runs, we recall the example from Section 7.1.4; the message m2
contains all elements we want to evaluate:

m2[0.9 q_m2< 0.75 annotation 0.7 lawsuit >
0.55 annotation 0.5 lawsuit 0.3 graffiti
0.4 courts 0.6 technology
0.3 f_m2_m3|| 0.8 annotation 0.75 lawsuit

0.6 graffiti 0.2 *m3 ||
]

2http://www.ins.cwi.nl/projects/trec-ent/
3Note that in Frommholz and Fuhr (2006a), also experiments for relevance augmentation are reported. These
generated basically worse results than the knowledge augmentation runs. In the hindsight, the relevance aug-
mentation experiments turned out to be not expressive. The different results between knowledge and relevance
augmentation were mainly due to an inappropriate extensional evaluation of the relevance augmentation rules
(with intensional evaluation, they would have produced the same result as knowledge augmentation). We
therefore do not discuss the relevance augmentation results any further.

http://www.ins.cwi.nl/projects/trec-ent/

8.3 Discussion Search 199

We will use different POLAR representations of m2 for illustration. The following runs with
specific parameter settings were performed:

Baseline In the baseline run, we only looked at the new parts of emails. All quotations were
removed, no knowledge augmentation performed. In the annotation view, this is equiva-
lent to considering only the annotation content for retrieval of relevant annotations. The
example message m2 and the query would be modelled in POLAR as

m2[0.55 annotation 0.5 lawsuit 0.3 graffiti
0.4 courts 0.6 technology]

?- D->q

Whole Email The whole email is regarded as a document. We do not distinguish between
quoted and new parts here. In the annotation view, this would be the same as merging
the content of annotation targets with the annotation’s content. With this strategy, m2
and the query would be expressed in POLAR as

m2[0.65 annotation 0.6 lawsuit 0.3 graffiti
0.4 courts 0.6 technology]

?- D->q

(note the slightly higher probabilities for ‘annotation’ and ‘lawsuit’ due to their appear-
ance in the quoted part).

knowlaug-fragment-<acc_prob> In these runs, knowledge augmentation is performed which
only considers the extracted fragments (see Section 7.1.4). <acc_prob> denotes the
corresponding access probability; for instance, the run “knowlaug-fragment-0.1” means
knowledge augmentation with fragments and access probability 0.1. In POLAR, m2 and
the query would then be

m2[0.55 annotation 0.5 lawsuit 0.3 graffiti
0.4 courts 0.6 technology
0.1 f_m2_m3|| 0.8 annotation 0.75 lawsuit

0.6 graffiti ||]
?- //D->q

knowlaug-mtarget-<acc_prob> Knowledge augmentation with merged targets. Again,
<acc_prob> denotes the corresponding access probability; for instance, the run
“knowlaug-mtarget-0.7” means knowledge augmentation with merged targets and access
probability 0.7. A POLAR example is

m2[0.7 q_m2< 0.75 annotation 0.7 lawsuit >
0.55 annotation 0.5 lawsuit 0.3 graffiti
0.4 courts 0.6 technology]

?- //D->q

knowlaug-canno-<acc_prob> Knowledge augmentation with content annotations.
<acc_prob> is the probability that we access content annotations. In POLAR,
m2, m3 and the query are (with an access probability of 0.4):

200 8 Experiments

m2[0.55 annotation 0.5 lawsuit 0.3 graffiti
0.4 courts 0.6 technology 0.4 *m3]

m3[0.4 happen 0.6 posts 0.3 sample 0.55 winds]
?- //D->q

Note that in these runs, only radius-1 augmentation (see page 165) was performed.

knowlaug-all-<c_acc_prob>-<f_acc_prob>-<m_access_prob> In these runs, knowledge
augmentation is performed with all evidence (coming from merged targets, fragments
and content annotations). <c_acc_prob> is the content annotation access probability,
<f_acc_prob> is the fragment access probability, while <m_access_prob> denotes the
merged target access probability. If, for instance, we access content annotations with a
probability of 0.4, fragments with 0.1 probability and merged targets also with a proba-
bility of 0.1, m2, m3 and the query would be represented in POLAR as:

m2[0.1 q_m2< 0.75 annotation 0.7 lawsuit >
0.55 annotation 0.5 lawsuit 0.3 graffiti
0.4 courts 0.6 technology
0.1 f_m2_m3|| 0.8 annotation 0.75 lawsuit

0.6 graffiti
0.4 *m3 ||]

m3[0.4 happen 0.6 posts 0.3 sample 0.55 winds]
?- //D->q

(recall fragment permeability – this is equivalent to “m2[... 0.4 *m3]”). For content
annotations, radius-1 augmentation was performed again.

8.3.2 Baseline and Whole Email Results
Table 8.1 shows the results of the Baseline and Whole Email runs. Both strategies could easily
be applied outside POLAR. The Whole Email run used the information in the quotations (the
merged targets in our model). It performed better than the baseline, although a statistically
significant improvement could be gained only w.r.t. the mean average precision. The results

Run MAP P@5 P@10 P@15 P@20 P@30
Baseline 0.2834 0.4915 0.4475 0.4102 0.3822 0.3333

Whole Email 0.3125 0.5017 0.4746 0.4192 0.3941 0.3492

Table 8.1: Mean average precision (MAP) and precision at K documents retrieved (P@K) of
Baseline and Whole Email runs

give a hint that the context of an annotation, given by the content of the objects it annotates,
is an important further evidence for its relevance.

8.3.3 Results for Knowledge Augmentation
8.3.3.1 Merged Annotation Targets

In a first series of experiments, the effect of merged targets to retrieval effectiveness is evaluated.
In the annotation view on emails, merged targets actually are the quoted part of the email.

8.3 Discussion Search 201

The question is: does retrieval effectiveness benefit from performing knowledge augmentation
with merged targets/quotations?

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

Baseline
Whole Email

knowlaug-mtarget-0.1
knowlaug-mtarget-0.6
knowlaug-mtarget-1.0

Figure 8.1: Recall-precision graph of selected knowledge augmentation merged target runs

Figure 8.1 shows the recall-precision-graph of selected merged target runs, together with the
baseline and the Whole Email runs. The recall-precision curves of further experiments can
be seen in Appendix C.2. Knowledge augmentation outperforms the baseline and partly the
Whole Email run. This is also confirmed by the measures shown in Table 8.2.

Run MAP P@5 P@10 P@15 P@20 P@30
Baseline 0.2834 0.4915 0.4475 0.4102 0.3822 0.3333

knowlaug-mtarget-0.1 0.2894 0.5017 0.4542 0.4124 0.3822 0.3418
knowlaug-mtarget-0.2 0.2958 0.5119 0.4559 0.4124 0.3915 0.3475
knowlaug-mtarget-0.3 0.3019 0.5119 0.4678 0.4124 0.3992 0.3508
knowlaug-mtarget-0.4 0.3051 0.5186 0.4593 0.4260 0.4068 0.3525
knowlaug-mtarget-0.5 0.3074 0.5017 0.4525 0.4373 0.4008 0.3503
knowlaug-mtarget-0.6 0.3106 0.5085 0.4644 0.4339 0.3941 0.3565
knowlaug-mtarget-0.7 0.3089 0.4983 0.4729 0.4294 0.3975 0.3548
knowlaug-mtarget-0.8 0.3066 0.4814 0.4661 0.4328 0.3983 0.3514
knowlaug-mtarget-0.9 0.2992 0.4780 0.4508 0.4192 0.4000 0.3446
knowlaug-mtarget-1.0 0.2891 0.4780 0.4424 0.4090 0.3822 0.3339

Table 8.2: Mean average precision (MAP) and precision at K documents retrieved (P@K) of
knowledge augmentation merged target runs

We can see that using the merged annotation targets as additional evidence and combining
it by means of knowledge augmentation basically leads to better results. Many results show

202 8 Experiments

Run No merged target One merged target
Baseline 5.30/1.78 (0.34) 4.70/2.62 (0.56)

knowlaug-mtarget-0.1 5.10/1.75 (0.34) 4.90/2.72 (0.55)
knowlaug-mtarget-0.2 4.82/1.67 (0.35) 5.18/2.82 (0.54)
knowlaug-mtarget-0.3 4.48/1.60 (0.36) 5.52/3.00 (0.54)
knowlaug-mtarget-0.4 4.12/1.47 (0.36) 5.88/3.05 (0.52)
knowlaug-mtarget-0.5 3.75/1.35 (0.36) 6.25/3.10 (0.50)
knowlaug-mtarget-0.6 3.37/1.25 (0.37) 6.63/3.32 (0.50)
knowlaug-mtarget-0.7 3.07/1.22 (0.40) 6.93/3.43 (0.50)
knowlaug-mtarget-0.8 2.60/1.05 (0.40) 7.40/3.53 (0.48)
knowlaug-mtarget-0.9 2.25/0.90 (0.40) 7.75/3.53 (0.46)
knowlaug-mtarget-1.0 1.92/0.77 (0.40) 8.08/3.60 (0.45)

Table 8.3: Average number of articles with merged targets, top 10 emails considered. The first
number denotes the average number of emails, the second one the average number
of emails that are relevant. The number in parentheses is the fraction of the second
and first number.

an improvement in effectiveness compared to the baseline, and most of the improvements are
statistically significant compared to the baseline. The mean average precision increases with
increasing access probability, until it reaches its best value at access probability 0.6. Beyond
this value, it decreases with further increasing access probability.
What is happening when we incorporate merged annotation targets as additional context for

retrieval? With increasing access probability, the ratio of emails having no merged annotation
targets to those having such obviously changes. This is confirmed by the numbers in Table 8.3,
which are the basis for the further discussion. If we look, for example, at the top 10 emails in
all the rankings, we find for the baseline on average 5.3 emails without merged targets in the
ranking and 4.7 emails with. On average, 1.78 emails without merged targets are relevant (which
gains a ratio of 0.34 of relevant vs. all emails with merged targets); with merged targets, 2.62
emails are relevant (ratio 0.56). The proportion of emails without merged targets to those with
starts to change latest with an access probability of 0.2; now, we find more emails with merged
targets than without in the top 10 emails (5.18 to 4.82). With 1.0 access probability, only 1.92
emails without merged targets are found in the top 10 emails on average. This tendency is also
observable when looking at the top 5 or top 30 emails (the corresponding tables can be found
in Appendix C.1.1). But how does it come that, at least until an access probability of 0.7 (if
we look at P@10), this fluctuation in the ranking improves retrieval effectiveness? To get some
insights, we look at the proportion of relevant documents to the total number of documents.
For the baseline, we find that within the top 10 emails, 56% of the emails with merged targets
are relevant on average. This ratio decreases with increasing access probability, which means
that more irrelevant than relevant emails enter the top 10. This means that the emails entering
the top 10 do not explain the increasing performance, as their quality gets worse. What seems
to be interesting are the emails without merged targets which are replaced by those which. If
we look at the emails without merged targets, we see that their quality increases. This means
that proportionally more non-relevant emails without merged targets are kicked out of the top
ranks and replaced by ones with merged targets, than relevant ones. So the potential of merged
annotation targets (email quotations here) as a context lies in the fact that many non-relevant

8.3 Discussion Search 203

documents can be replaced by those having merged targets, and more than half of them are
relevant. The positive effect starts to vanish with higher access probabilities (> 0.7), when the
ratio of emails with merged targets to those without gets higher, and the influence of emails
without merged targets decreases. It seems that relevant emails without merged targets are
basically able to “defend” their position in the top ranks.
From the experiments with merged annotation targets we can conclude that these consti-

tute a valuable source which can be exploited in order to improve retrieval effectiveness. This
underlines the importance of merged targets as a source to find out in which context an anno-
tation was created (which is needed to understand its content). When we compare knowledge
augmentation with merged targets to the Whole Email approach (which considers the same
information), the results are mixed; knowledge augmentation does not seem to bring any signif-
icant improvement, but the opposite is true as well, so both approaches can be considered more
or less equal. This means that modelling merged targets explicitly, as we do in POLAR, does
not do any harm compared to the simpler approach of seeing the whole email as one document.

8.3.3.2 Fragments

Another focus of the experiments was the role of annotated fragments for discussion search.
Annotated fragments are the parts of the email which were quoted and annotated again. The
assumption is that these fragments are important parts of a message, and the terms contained
in the fragments are good index terms. Knowledge augmentation with fragments does not
introduce new terms, but raises the weights of the corresponding terms in an annotation or
document.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

Baseline
knowlaug-fragment-0.2
knowlaug-fragment-0.3
knowlaug-fragment-1.0

Figure 8.2: Recall-precision graph of selected knowledge augmentation fragment runs

Figure 8.2 shows the recall-precision-graph of selected fragment runs, again together with
the baseline run for comparison. The gain in effectiveness is very big, but some fragment runs
performed significantly better than the baseline. We can also see that some of the fragment

204 8 Experiments

runs performed worse than the baseline. MAP and certain precision values are displayed in

Run MAP P@5 P@10 P@15 P@20 P@30
Baseline 0.2834 0.4915 0.4475 0.4102 0.3822 0.3333

knowlaug-fragment-0.1 0.2883 0.4983 0.4492 0.4124 0.3898 0.3367
knowlaug-fragment-0.2 0.2908 0.5153 0.4610 0.4124 0.3924 0.3429
knowlaug-fragment-0.3 0.2893 0.5186 0.4644 0.4147 0.3839 0.3356
knowlaug-fragment-0.4 0.2895 0.5085 0.4627 0.4102 0.3839 0.3316
knowlaug-fragment-0.5 0.2850 0.5017 0.4610 0.4079 0.3797 0.3271
knowlaug-fragment-0.6 0.2799 0.4983 0.4407 0.4090 0.3729 0.3237
knowlaug-fragment-0.7 0.2815 0.4915 0.4492 0.4034 0.3644 0.3119
knowlaug-fragment-0.8 0.2754 0.4881 0.4508 0.3864 0.3593 0.3040
knowlaug-fragment-0.9 0.2685 0.4881 0.4339 0.3785 0.3475 0.2994
knowlaug-fragment-1.0 0.2613 0.4847 0.4271 0.3718 0.3407 0.2966

Table 8.4: Mean average precision (MAP) and precision at K documents retrieved (P@K) of
knowledge augmentation fragment runs

Table 8.4. Again, we see the tendency that with increasing access probability, MAP increases
until the top is reached, and then decreases again. In this case, an access probability of 0.2
seems to mark the top, since the corresponding MAP value is still significantly higher compared
to the baseline.
Obviously, an increasing access probability to fragments lets more emails with annotated

fragments enter the top ranks (as we can see in Table 8.5 and in the tables in App. C.1.1).
Along with this, we find that the percentage of relevant emails with fragments to all emails with
fragments entering the top ranks basically decreases. One problem seems to be emails with
more than 5 fragments. Their quality initially increases, but drops dramatically with an access
probability higher than 0.2. Apparently there exist many non-relevant messages with quoted

Number of fragments per article
Run 0 >0 >5 >10

Baseline 7.12/2.62 (0.37) 2.88/1.78 (0.62) 0.00/0.00 (0.00) 0.00/0.00 (0.00)
knowlaug-fragment-0.1 6.83/2.52 (0.37) 3.17/1.90 (0.60) 0.03/0.02 (0.50) 0.00/0.00 (0.00)
knowlaug-fragment-0.2 6.30/2.40 (0.38) 3.70/2.13 (0.58) 0.12/0.07 (0.57) 0.00/0.00 (0.00)
knowlaug-fragment-0.3 5.73/2.30 (0.40) 4.27/2.27 (0.53) 0.20/0.08 (0.42) 0.02/0.00 (0.00)
knowlaug-fragment-0.4 5.23/2.15 (0.41) 4.77/2.42 (0.51) 0.22/0.10 (0.46) 0.02/0.00 (0.00)
knowlaug-fragment-0.5 4.80/2.05 (0.43) 5.20/2.48 (0.48) 0.28/0.10 (0.35) 0.05/0.00 (0.00)
knowlaug-fragment-0.6 4.15/1.72 (0.41) 5.85/2.62 (0.45) 0.35/0.10 (0.29) 0.05/0.00 (0.00)
knowlaug-fragment-0.7 3.53/1.58 (0.45) 6.47/2.83 (0.44) 0.33/0.10 (0.30) 0.05/0.00 (0.00)
knowlaug-fragment-0.8 3.10/1.47 (0.47) 6.90/2.97 (0.43) 0.35/0.10 (0.29) 0.05/0.00 (0.00)
knowlaug-fragment-0.9 2.72/1.33 (0.49) 7.28/2.93 (0.40) 0.37/0.10 (0.27) 0.05/0.00 (0.00)
knowlaug-fragment-1.0 2.38/1.23 (0.52) 7.62/2.97 (0.39) 0.37/0.10 (0.27) 0.05/0.00 (0.00)

Table 8.5: Average number of articles with fragments, top 10 emails considered. The first
number denotes the average number of emails, the second one the average number
of emails that are relevant. The number in parentheses is the fraction of the second
and first number.

8.3 Discussion Search 205

fragments containing query terms, and they get over-emphasised by higher access probabilities
on the one hand and the amount of fragments on the other hand.
We observe an opposite tendency with emails not containing any annotated fragments: the

quality of those remaining in the ranking increases (for top 10, 37% of the emails with no
fragments are relevant in the baseline; with access probability 1.0, even 52% of the few remaining
ones are relevant on average). Increasing the access probabilities kicks out many emails without
fragments from the top positions, but these are mainly non-relevant ones, while relevant ones
are often able to resist.
The bottom line is that also quoted fragments, as the parts of a message which are annotated,

contain valuable contextual information which raises retrieval effectiveness when applied with
knowledge augmentation. The knowledge about which fragments were annotated and thus
important for the annotator helps to improve the ranking. Nevertheless, there is the danger
that non-relevant documents having fragments with query terms are over-emphasised, especially
when the number of fragments increases. This motivates the application of a more dynamic
access probability which considers the number of fragments for future experiments.

8.3.3.3 Content Annotations

Another series of experiments dealt with the role of content annotations in the knowledge
augmentation process for discussion search. Only direct annotations were considered (radius-1
augmentation). If terms appear both in the unquoted body of an email and in the new part of
its reply, then the certainty that we could index the email with the common term was raised.
This way, we hope to gain a better precision. On the other hand, direct annotations might
introduce new terms associated with the topic of the annotated object, which could result in a
better recall.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

Baseline
knowlaug-canno-0.1
knowlaug-canno-0.4
knowlaug-canno-1.0

Figure 8.3: Recall-precision graph of selected knowledge augmentation content annotation runs

206 8 Experiments

Figure 8.3 shows the recall-precision graph of selected knowledge augmentation content an-
notation runs, together with the baseline run for comparison. Many content annotation runs
significantly outperform the baseline, although with a high access probability, results tend to
become significantly worse than the baseline. Table 8.6 shows the MAP and certain precision
values. We observe a similar tendency as with merged targets and fragments. MAP raises until
an access probability of 0.4, and then decreases again. For P@5, P@10, we gain the best results
with an access probability of 0.3. The results for these values are all statistically significant.

Run MAP P@5 P@10 P@15 P@20 P@30
Baseline 0.2834 0.4915 0.4475 0.4102 0.3822 0.3333

knowlaug-canno-0.1 0.2942 0.5220 0.4695 0.4181 0.3941 0.3435
knowlaug-canno-0.2 0.3003 0.5288 0.4949 0.4249 0.4000 0.3503
knowlaug-canno-0.3 0.3035 0.5390 0.5034 0.4441 0.4000 0.3508
knowlaug-canno-0.4 0.3042 0.5356 0.5034 0.4452 0.4042 0.3508
knowlaug-canno-0.5 0.3019 0.5119 0.4932 0.4475 0.4059 0.3492
knowlaug-canno-0.6 0.2948 0.5051 0.4949 0.4429 0.4017 0.3503
knowlaug-canno-0.7 0.2842 0.5220 0.4729 0.4305 0.4017 0.3486
knowlaug-canno-0.8 0.2727 0.5051 0.4542 0.4203 0.3958 0.3345
knowlaug-canno-0.9 0.2596 0.4814 0.4407 0.4079 0.3814 0.3237
knowlaug-canno-1.0 0.2481 0.4610 0.4305 0.3921 0.3661 0.3124

Table 8.6: Mean average precision (MAP) and precision at K documents retrieved (P@K) of
knowledge augmentation content annotation runs

Table 8.7 shows the average number of articles with content annotations in the top 10 ranks
(further numbers for top 5 and top 30 can be found in Appendix C.1.1). Again, we observe
that the quality of the emails without content annotations increases with increasing access
probabilities, while their total number decreases. The ratio of relevant emails having content

Number of content annotations per article
Run 0 >0 >5 >10

Baseline 6.22/2.30 (0.37) 3.78/2.10 (0.56) 0.00/0.00 (0.00) 0.00/0.00 (0.00)
knowlaug-canno-0.1 5.68/2.17 (0.38) 4.32/2.45 (0.57) 0.05/0.03 (0.67) 0.00/0.00 (0.00)
knowlaug-canno-0.2 5.08/2.02 (0.40) 4.92/2.85 (0.58) 0.15/0.10 (0.67) 0.00/0.00 (0.00)
knowlaug-canno-0.3 4.58/1.90 (0.41) 5.42/3.05 (0.56) 0.28/0.10 (0.35) 0.03/0.00 (0.00)
knowlaug-canno-0.4 4.05/1.72 (0.42) 5.95/3.23 (0.54) 0.43/0.15 (0.35) 0.07/0.00 (0.00)
knowlaug-canno-0.5 3.52/1.55 (0.44) 6.48/3.30 (0.51) 0.50/0.15 (0.30) 0.07/0.00 (0.00)
knowlaug-canno-0.6 2.95/1.40 (0.47) 7.05/3.47 (0.49) 0.57/0.13 (0.24) 0.07/0.00 (0.00)
knowlaug-canno-0.7 2.48/1.17 (0.47) 7.52/3.48 (0.46) 0.60/0.13 (0.22) 0.05/0.00 (0.00)
knowlaug-canno-0.8 2.00/0.93 (0.47) 8.00/3.53 (0.44) 0.62/0.13 (0.22) 0.05/0.00 (0.00)
knowlaug-canno-0.9 1.67/0.87 (0.52) 8.33/3.47 (0.42) 0.60/0.12 (0.19) 0.05/0.00 (0.00)
knowlaug-canno-1.0 1.33/0.80 (0.60) 8.67/3.43 (0.40) 0.63/0.12 (0.18) 0.03/0.00 (0.00)

Table 8.7: Average number of articles with content annotations, top 10 emails considered. The
first number denotes the average number of emails, the second one the average
number of emails that are relevant. The number in parentheses is the fraction of the
second and first number.

8.3 Discussion Search 207

annotations to emails with content annotations in the top 10 ranks increases until an access
probability of 0.3, when it starts to decrease. This explains why access probabilities around
0.3 and 0.4 gain the best results, but results get worse with higher access probabilities and an
increasing dominance of emails with content annotations.
The experiments show that for discussion search, the direct annotations are an important

and strong context to consider. Direct annotations can indeed help to improve the precision
of the returned rankings. With increasing access probability, the bias from direct annotations
becomes too large.

8.3.3.4 All Evidence

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

Baseline
knowlaug-all-0.2-0.1-0.3
knowlaug-all-0.4-0.2-0.6

Figure 8.4: Recall-precision graph of selected knowledge augmentation all evidence runs

The final discussion search experiments combined the evidence coming from merged tar-
gets, fragments and direct content annotations. Figure 8.4 shows the recall-precision curves
of selected runs, Table 8.8 the precision values of the performed runs. The runs knowlaug-
all-0.2-0.1-0.3 and knowlaug-anno-0.4-0.2-0.6 performed significantly better than the baseline.
Both experiments produced the best performance values observed4. The combined runs even
outperform the Whole Email run, although only the P@15 values are statistically significant
compared to that run.
We showed in the experiments that combining all evidence can basically generate the best

results. This confirms that using the rich structure made of merged targets, fragments and
content annotations can improve retrieval effectiveness.

4Note that these experiments are two examples of combined runs. Not all possible combinations were tried, so
there may be combinations which perform even better than the ones presented here.

208 8 Experiments

Run MAP P@5 P@10 P@15 P@20 P@30
Baseline 0.2599 0.4441 0.4102 0.3955 0.3695 0.3220

knowlaug-all-0.2-0.1-0.3 0.3139 0.5424 0.5034 0.4452 0.4068 0.3616
knowlaug-all-0.4-0.2-0.6 0.3205 0.5288 0.5068 0.4633 0.4161 0.3689

Table 8.8: Mean average precision (MAP) and precision at K documents retrieved (P@K) of
knowledge augmentation all evidence runs

8.4 Document Search
The document search experiments, which are also reported in Frommholz (2007), targeted the
following questions:

Can knowledge augmentation, where the content of an article is augmented with
the content of the connected discussion threads, enhance retrieval effectiveness of
annotation-based document search? Furthermore, do we need to consider all com-
ments in the discussion threads (full augmentation) or is it sufficient to consider
only the direct comments for knowledge augmentation (radius-1 augmentation)?

The ZDNet News collection introduced in Section 7.2 was used for the document search exper-
iments.

8.4.1 Description of Runs
The following runs with specific parameter settings were performed (consider the POLAR
representation of ZDNet articles and comments in Section 7.2.3):

Baseline In the baseline run, we only looked at the articles themselves, but did not perform
any knowledge augmentation. For example, the article zdnet_art1 in Section 7.2.3 and
the query seeking for relevant articles would then be represented as
zdnet_art1[0.7 sun 0.6 open-source 0.8 solaris 0.4 era

0.4 *zdnet_com1 0.4 *zdnet_com2 ...
]

?- D->q & document(D)

Merged In this run, articles and their direct annotations are merged and viewed as a single
document. This is the approach used to create an initial ranking for relevance judgements
(see Section 7.2.2). In POLAR, this is represented as
zdnet_art1[0.9 sun 0.95 open-source 0.85 solaris 0.5 era

0.4 unix
]

?- D->q & document(D)

Note that in this representation, the terms from zdnet_com1 and zdnet_com2 are merged
with the original terms from zdnet_art1, and also the document length changed; therefore
the different term weights.

knowlaug-<acc_prob> In these runs, knowledge augmentation is performed which considers
all discussion threads attached to an article. <acc_prob> denotes the corresponding

8.4 Document Search 209

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

Baseline
Merged

knowlaug-0.1
knowlaug-0.5
knowlaug-1.0

knowlaug-r1-0.1
knowlaug-r1-0.5
knowlaug-r1-1.0

Figure 8.5: Recall-precision graph of selected document search runs. Relevant documents are
the ones judged so.

access probability; for instance, the run “knowlaug-0.1” means knowledge augmentation
with access probability 0.1. Then we get for zdnet_art1 and the query:

zdnet_art1[0.7 sun 0.6 open-source 0.8 solaris 0.4 era
0.1 *zdnet_com1 0.1 *zdnet_com2 ...

]
?- //D->q & document(D)

knowlaug-r1-<acc_prob> In these runs, knowledge augmentation is performed which consid-
ers only direct comments attached to an article. <acc_prob> denotes the corresponding
access probability. The POLAR representation is the same as the one for knowlaug-
<acc_prob>, but a radius-1 augmentation algorithm is applied instead.

The runs are evaluated with respect to the two different relevance criteria (see Section 7.2.2):

1. Documents are relevant only if they were judged so;

2. Documents are relevant if they were judge so or have relevant direct comments.

The second experiment might be interesting for users which like to consider relevant documents
but would also use them as a starting point to browse the discussions for relevant information.

8.4.2 Results
Figure 8.4.2 shows the results of some selected runs where documents are relevant only if judged
so. Table 8.9 presents some precision values for all run. We can see that the bias coming from
the annotations should not be too strong. The retrieval quality decreases with increasing

210 8 Experiments

access probability. But we also see that a slight bias, when the access probability is 0.1,
seems to be beneficial (although the results are not statistically significant). We also discover
that the difference between performing full knowledge augmentation vs. radius-1 knowledge
augmentation is only marginal, so it seems fine to apply radius-1 knowledge augmentation
instead of traversing whole annotation threads. In fact, as we can see in the recall-precision
graph in Figure 8.4.2, for high access probabilities full knowledge augmentation has a more
destructive effect. This can be explained by topic changes occurring in a discussion thread.
If the terms describing a new topic after a topic change are propagated with a high access
probability to the root document, the algorithm assumes this document to be relevant to the
new topic, which it is most probably not. With low access probability, this effect vanishes, and
with radius-1 knowledge augmentation, the probability of a topic change is small as we regard
only direct annotations here.

Run MAP P@5 P@10 P@15 P@20 P@30
Baseline 0.5609 0.7700 0.7000 0.6600 0.6150 0.5467
Merged 0.5511 0.7700 0.6600 0.5900 0.5625 0.5100

knowlaug-0.1 0.5773 0.7800 0.7050 0.6867 0.6300 0.5517
knowlaug-0.2 0.5627 0.7400 0.7050 0.6700 0.6200 0.5383
knowlaug-0.3 0.5454 0.7300 0.7100 0.6533 0.6150 0.5200
knowlaug-0.4 0.5233 0.7400 0.6750 0.6400 0.5825 0.5017
knowlaug-0.5 0.4945 0.7100 0.6650 0.6000 0.5425 0.4783
knowlaug-0.6 0.4633 0.6800 0.6450 0.5600 0.5150 0.4517
knowlaug-0.7 0.4268 0.6500 0.5900 0.5367 0.4925 0.4317
knowlaug-0.8 0.3872 0.6100 0.5500 0.5100 0.4650 0.3950
knowlaug-0.9 0.3462 0.6000 0.4850 0.4833 0.4275 0.3583
knowlaug-1.0 0.2792 0.5100 0.4550 0.4000 0.3575 0.3267

knowlaug-r1-0.1 0.5768 0.7800 0.7100 0.6867 0.6275 0.5517
knowlaug-r1-0.2 0.5670 0.7500 0.7050 0.6733 0.6275 0.5417
knowlaug-r1-0.3 0.5514 0.7100 0.7000 0.6700 0.6225 0.5300
knowlaug-r1-0.4 0.5327 0.6800 0.6800 0.6433 0.6075 0.5100
knowlaug-r1-0.5 0.5143 0.6700 0.6550 0.6200 0.5725 0.5067
knowlaug-r1-0.6 0.4980 0.6800 0.6500 0.6100 0.5525 0.4967
knowlaug-r1-0.7 0.4789 0.6700 0.6550 0.5867 0.5300 0.4800
knowlaug-r1-0.8 0.4579 0.6400 0.6400 0.5767 0.5200 0.4517
knowlaug-r1-0.9 0.4365 0.6000 0.6250 0.5633 0.5075 0.4367
knowlaug-r1-1.0 0.4184 0.6000 0.6000 0.5433 0.4950 0.4250

Table 8.9: Mean average precision (MAP) and precision at K documents retrieved (P@K) for
the document search runs. Relevant documents are the ones judged so.

The following considerations are based on Table 8.10; additional tables can be found in
Appendix C.1.2. As expected, most articles in the top ranks of the baseline run have comments
(for top 10, we find on average 1.7 articles without comments and 8.3 with), since most articles
in the whole collection are commented. With increasing access probability, the number of
articles with comments increases, while the number of articles without decreases (top 10 and
access probability 1.0: 9.87 articles on average with at least one comment, only 0.13 without

8.4 Document Search 211

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

Baseline
Merged

knowlaug-0.1
knowlaug-0.5
knowlaug-1.0

knowlaug-r1-0.1
knowlaug-r1-0.5
knowlaug-r1-1.0

Figure 8.6: Recall-precision graph of selected document search runs. Relevant documents are
the ones judged so or having relevant annotations.

(full augmentation)). Looking at the articles with comments in the top ranks, we find that the
proportion of relevant articles among them decreases with increasing access probability (from
66% in the baseline to 41% with access probability 1.0, top 10 with full augmentation). With
radius-1 augmentation, this proportion decreases less (only down to 54% for top 10). On the
other hand, for articles without annotations, the proportion of relevant ones increases, and even
goes up to 1.0 for high access probabilities in the top 5 and top 10 ranks (probably due to the
fact that in these cases, articles without comments barely appear in the top ranks). We again
have two opposing tendencies which we already observed in the discussion search experiments:
quality decreases for articles with comments, and increases for articles without. This time, due
to the huge ratio of articles with comments on articles without, the former effect dominates,
which leads to worse results with increasing access probabilities. Similar as for fragments in
discussion search, we see the tendency that articles with many comments tend to enter the
top ranks due to their amount of comments, and proportionally more of them are non-relevant
compared to articles with less comments. Like for fragments, this again motivates the usage
of an access probability which also depends on the number of comments. One reason why we
observe a slight improvement only with a small access probability seems to be that a global
access probability is not feasible here.

A weaker relevance criterion used for the relevance judgements described in Section 7.2.2
was to regard an article as relevant if it is judged so itself or if it contains at least one relevant
annotation. This was applied for the results in Table 8.11. We can see a bigger gain in retrieval
effectiveness w.r.t. the baseline for access probabilities 0.1 and 0.2, and the Merged run. Some
results are even statistically significant. This is of course not a big surprise, as our baseline
run does not consider the additional knowledge coming from (relevant) annotations. We also
observe the tendency to worse results with increasing access probabilities (Fig. 8.6).

212 8 Experiments

Number of direct comments per article
Run 0 >0 >5 >10 >50 >100 >200

Baseline 1.70/0.91
(0.54)

8.30/5.48
(0.66)

4.91/3.17
(0.65)

3.04/1.91
(0.63)

0.35/0.26
(0.75)

0.09/0.04
(0.50)

0.00/0.00
(0.00)

knowlaug-0.1 1.26/0.74
(0.59)

8.74/5.70
(0.65)

6.04/3.83
(0.63)

4.30/2.70
(0.63)

1.13/0.83
(0.73)

0.30/0.22
(0.71)

0.13/0.09
(0.67)

knowlaug-0.2 1.00/0.61
(0.61)

9.00/5.78
(0.64)

6.83/4.22
(0.62)

5.17/3.17
(0.61)

1.78/1.04
(0.59)

0.70/0.35
(0.50)

0.30/0.09
(0.29)

knowlaug-0.3 0.74/0.48
(0.65)

9.26/5.96
(0.64)

7.22/4.39
(0.61)

5.57/3.30
(0.59)

2.00/1.04
(0.52)

0.78/0.35
(0.44)

0.35/0.09
(0.25)

knowlaug-0.4 0.65/0.39
(0.60)

9.35/5.70
(0.61)

7.48/4.30
(0.58)

5.78/3.17
(0.55)

2.52/1.09
(0.43)

1.22/0.35
(0.29)

0.43/0.09
(0.20)

knowlaug-0.5 0.48/0.35
(0.73)

9.52/5.65
(0.59)

7.61/4.30
(0.57)

5.87/3.13
(0.53)

2.52/1.04
(0.41)

1.26/0.30
(0.24)

0.43/0.09
(0.20)

knowlaug-0.6 0.39/0.30
(0.78)

9.61/5.57
(0.58)

7.61/4.22
(0.55)

5.91/3.04
(0.51)

2.70/1.04
(0.39)

1.35/0.30
(0.23)

0.48/0.09
(0.18)

knowlaug-0.7 0.30/0.26
(0.86)

9.70/5.13
(0.53)

8.04/4.00
(0.50)

6.43/3.00
(0.47)

3.13/1.04
(0.33)

1.52/0.30
(0.20)

0.52/0.09
(0.17)

knowlaug-0.8 0.17/0.17
(1.00)

9.83/4.83
(0.49)

8.30/3.83
(0.46)

6.78/2.91
(0.43)

3.26/1.00
(0.31)

1.52/0.26
(0.17)

0.48/0.09
(0.18)

knowlaug-0.9 0.17/0.17
(1.00)

9.83/4.26
(0.43)

8.61/3.57
(0.41)

7.26/2.83
(0.39)

3.43/0.87
(0.25)

1.57/0.22
(0.14)

0.48/0.09
(0.18)

knowlaug-1.0 0.13/0.13
(1.00)

9.87/4.04
(0.41)

8.74/3.43
(0.39)

7.43/2.70
(0.36)

3.09/0.70
(0.23)

1.43/0.22
(0.15)

0.43/0.09
(0.20)

knowlaug-r1-0.1 1.26/0.74
(0.59)

8.74/5.74
(0.66)

6.04/3.87
(0.64)

4.26/2.70
(0.63)

1.13/0.83
(0.73)

0.30/0.22
(0.71)

0.13/0.09
(0.67)

knowlaug-r1-0.2 1.04/0.61
(0.58)

8.96/5.83
(0.65)

6.74/4.22
(0.63)

5.04/3.09
(0.61)

1.70/1.00
(0.59)

0.70/0.35
(0.50)

0.30/0.09
(0.29)

knowlaug-r1-0.3 0.83/0.52
(0.63)

9.17/5.83
(0.64)

7.04/4.26
(0.60)

5.43/3.22
(0.59)

2.00/1.09
(0.54)

0.78/0.35
(0.44)

0.35/0.09
(0.25)

knowlaug-r1-0.4 0.70/0.43
(0.62)

9.30/5.70
(0.61)

7.39/4.26
(0.58)

5.70/3.13
(0.55)

2.30/1.04
(0.45)

1.00/0.35
(0.35)

0.43/0.09
(0.20)

knowlaug-r1-0.5 0.65/0.39
(0.60)

9.35/5.52
(0.59)

7.43/4.17
(0.56)

5.74/3.04
(0.53)

2.52/1.04
(0.41)

1.22/0.35
(0.29)

0.48/0.09
(0.18)

knowlaug-r1-0.6 0.52/0.35
(0.67)

9.48/5.52
(0.58)

7.52/4.13
(0.55)

5.78/3.00
(0.52)

2.65/1.09
(0.41)

1.30/0.35
(0.27)

0.48/0.09
(0.18)

knowlaug-r1-0.7 0.43/0.35
(0.80)

9.57/5.57
(0.58)

7.57/4.17
(0.55)

5.83/3.04
(0.52)

2.65/1.04
(0.39)

1.22/0.30
(0.25)

0.39/0.09
(0.22)

knowlaug-r1-0.8 0.35/0.30
(0.88)

9.65/5.48
(0.57)

7.78/4.17
(0.54)

5.96/3.00
(0.50)

2.78/1.04
(0.38)

1.39/0.30
(0.22)

0.39/0.09
(0.22)

knowlaug-r1-0.9 0.35/0.30
(0.88)

9.65/5.35
(0.55)

7.78/4.13
(0.53)

6.09/3.00
(0.49)

2.87/1.04
(0.36)

1.39/0.30
(0.22)

0.39/0.09
(0.22)

knowlaug-r1-1.0 0.17/0.17
(1.00)

9.83/5.26
(0.54)

7.83/4.00
(0.51)

6.17/2.91
(0.47)

2.96/1.04
(0.35)

1.39/0.30
(0.22)

0.39/0.09
(0.22)

Table 8.10: Average number of articles with content annotations, top 10 emails considered.
The first number denotes the average number of emails, the second one the average
number of emails that are relevant. The number in parentheses is the fraction of
the second and first number.

8.4 Document Search 213

Run MAP P@5 P@10 P@15 P@20 P@30
Baseline 0.5257 0.7800 0.7100 0.6667 0.6225 0.5550
Merged 0.5828 0.8100 0.7100 0.6400 0.6075 0.5600

knowlaug-0.1 0.5605 0.8100 0.7200 0.7000 0.6450 0.5667
knowlaug-0.2 0.5596 0.7700 0.7250 0.6900 0.6375 0.5650
knowlaug-0.3 0.5541 0.7600 0.7350 0.6833 0.6400 0.5533
knowlaug-0.4 0.5407 0.7700 0.7100 0.6767 0.6175 0.5417
knowlaug-0.5 0.5183 0.7500 0.7000 0.6433 0.5800 0.5217
knowlaug-0.6 0.4916 0.7200 0.6850 0.6033 0.5625 0.5017
knowlaug-0.7 0.4559 0.6900 0.6350 0.5867 0.5425 0.4850
knowlaug-0.8 0.4178 0.6700 0.5950 0.5600 0.5200 0.4467
knowlaug-0.9 0.3758 0.6500 0.5450 0.5300 0.4825 0.4083
knowlaug-1.0 0.3091 0.5700 0.5200 0.4600 0.4100 0.3733

knowlaug-r1-0.1 0.5595 0.8100 0.7250 0.7033 0.6425 0.5683
knowlaug-r1-0.2 0.5616 0.7800 0.7250 0.6900 0.6450 0.5683
knowlaug-r1-0.3 0.5569 0.7400 0.7200 0.6967 0.6475 0.5600
knowlaug-r1-0.4 0.5463 0.7200 0.7150 0.6767 0.6350 0.5450
knowlaug-r1-0.5 0.5349 0.7000 0.6900 0.6567 0.6075 0.5483
knowlaug-r1-0.6 0.5235 0.7200 0.6850 0.6533 0.5950 0.5433
knowlaug-r1-0.7 0.5074 0.6900 0.7000 0.6367 0.5750 0.5300
knowlaug-r1-0.8 0.4897 0.6800 0.6850 0.6300 0.5675 0.5017
knowlaug-r1-0.9 0.4709 0.6400 0.6700 0.6200 0.5575 0.4867
knowlaug-r1-1.0 0.4543 0.6500 0.6550 0.5933 0.5475 0.4767

Table 8.11: Mean average precision (MAP) and precision at K documents retrieved (P@K) for
the document search runs. Relevant documents are the ones judged so or having
relevant annotations.

What difference it makes to apply the weaker relevance criterion, compared to the stricter
one (where articles are relevant only if judged so), can be observed in one topic about “Firefox
security”. Here, the difference between the Baseline MAP and the knowlaug-0.1 MAP is 0.09 in
the strict case and -0.14 in the weak one, so knowledge augmentation performed much better
in the weak and worse in the strict case. In this particular topic, many non-relevant articles are
judged as having relevant annotations. For example, in an article about Microsoft’s Internet
Explorer (IE) being divorced from Windows, also some Firefox security issues are mentioned in
the annotations (in fact, in this particular article, many discussions arose about Firefox vs. IE
in general, which led this article to be ranked 2nd place for the query about Firefox security).
Topics like this, having many documents with relevant annotations, thus benefit from our
knowledge augmentation as well as from the merged approach. It is up to the actual application
if such documents, which are themselves not relevant, but contain interesting information for
the user in their annotations, should be retrieved. It seems to make sense, because otherwise
relevant information would have been missed.

214 8 Experiments

8.5 Determining the Polarity of an Annotation
Some further experiments were performed to automatically classify annotations with respect
to their polarity. Such a classification is for instance used in the trustworthiness showcase in
Section 4.3.8 on page 79 and provides an important non-topical measure for certain information
needs. While in systems like COLLATE (see Section 2.1.2.2) we can infer from the annotation
type that an annotation is positive or negative (for example, the counterargument type would
be negative, whereas support argument or elaboration would be positive), in most systems
there is no explicit evidence about the polarity of annotations. This information might either
be provided manually, which is a very tedious task, or automatically, for example by machine
learning. The latter one is the approach we are following here. We briefly describe the results
of some experiments which are reported more thoroughly by Lechtenfeld (2007) and also in
Frommholz and Lechtenfeld (2008).

8.5.1 Machine Learning for Sentiment Classification in Discussions
The idea is to adapt machine learning approaches known from sentiment classification, where
the goal is to determine if messages like blog entries talk positively or negatively about a specific
product (see, e.g., Pang et al. (2002)), to the classification of ZDNet comments into positive
and negative ones. For this, the test collection described in Section 7.2.4 (p. 190) was used.
From this test collection, the three classes positive, negative and neutral were derived (so there
was no distinction between content and meta annotations).
Support Vector Machines (SVM) (Joachims, 1998) were used for the classification task. The

main challenge of the task at hand is to find suitable features representing the sentiment of a
comment. The SVM had to be trained and these features had to be extracted. The features
can be classified as follows:

• textual features like term occurrences (unigrams or bigrams), location (title, previous
comment, first term of comment), negation, comment length;

• references, mentioning of authors, article topics – are other pages referenced, is the author
of the previous comment mentioned in the reply, what is the topic of the article the thread
belongs to;

• context features regarding authors’ response behaviour, comprising the response time of
replies, duration of replying, day of week and hour of reply, number of replies to current
and previous comment, number of replies in subthread starting with current comment;

• thread and comment structure: is the current title the same as the previous one, is the
comment a direct reply to another comment or to the corresponding article, sequence of
authors, amount of quotations.

A combination of above features on a binary SVM (which directly classifies a comment
into positive or negative) achieved an accuracy5 of 0.79. Further experiments were performed
using a binary metaclassifier. Such a metaclassifier consists of three basic SVMs which classify
an annotation into positive/negative, positive/neutral and neutral/negative, respectively. The
output of the three classifiers is then used by the metaclassifier to determine the final category6.

5Number of correctly classified instances divided by the total number of classified instances
6A metaclassifier is usually applied when SVMs should make a classification decision comprising more than two
classes, but it can also be used to refine binary classification decisions.

8.6 Summary and Discussion 215

Surprisingly, neglecting the textual features gained the overall best accuracy of 0.8 for the binary
multiclassifier.
The main conclusion from the sentiment classification experiments is that this is more difficult

task than a text categorisation task, but the results look surprisingly promising, which also
makes the inclusion of measures like the trustworthiness into the retrieval function realistic.
The present experiments were meant to gain a feeling of how well a classification into positive
and negative comments could perform. Future work might refine this approach or develop new
ones to improve these first results.

8.6 Summary and Discussion

In this chapter, POLAR’s core retrieval functionality, knowledge augmentation with probabilis-
tic inference estimating P (d → q), was evaluated. We presented experiments with discussion
search (using W3C lists) and document search (using ZDNet News). Additionally, we outlined
the results of experiments to determine the polarity of annotations, which is important for
approaches satisfying sophisticated information needs, e.g. by measuring the trustworthiness of
annotations based on the number of positive and negative replies.
For the discussion search experiments, we applied the annotation view on email messages

explained in Section 7.1.2, which gave us a full set of fragments, merged targets and content
annotations. The goal of the evaluation was therefore to show if annotated fragments, merged
annotation targets and content annotations can improve retrieval effectiveness when used as
a context for discussion search. The results showed a significant improvement over a baseline
where only the new parts of emails were considered. The best results were reported for a
combination of merged annotation targets, fragments and content annotations. The annotation
view on email messages and its representation in POLAR is thus a good choice for email-
based discussion search, with the additional advantage that it supports structure queries to the
knowledge base.
The document search experiments, where comments on ZDNet News articles were used as

a context, revealed that only a very low access probability leads to minor improvements in
retrieval effectiveness. The higher the access probability, the worse the results (which then go
below the baseline). It seems to be sufficient to use radius-1 augmentation instead of the (more
expensive) full augmentation, since otherwise topic changes in the discussion seem to have a
negative influence. Such topic changes also occur within radius-1 annotations, which leads to
a slightly better performance when regarding documents as relevant if they are judged so or
have relevant direct comments.
The machine learning approach to determine the polarity of an annotation uses Support

Vector Machines and applies textual features as well as references, mentioning of authors,
article topics, context features regarding authors’ response behaviour, and features coming
from the thread and comment structure. The polarity of annotations can then be determined
with an accuracy of about 0.8.

One of the conclusions to draw from the discussion search experiments is that if we model
annotation-based discussion similar to email, that is we can identify (merged) annotation targets
as pieces of the annotated object, and therefore also the fragments which are annotated, this
rich structure is a good context for annotation-based discussion search applying POLAR’s
knowledge augmentation facilities. Since annotation authoring systems like the Multivalent
Browser (Phelps and Wilensky, 1997) contain information about annotated fragments, there

216 8 Experiments

is a good chance that retrieval tools like POLAR are able to exploit this rich context given
by annotation targets, annotated fragments and content annotations. And of course we have
shown that POLAR is a tool for email discussion search when applying the annotation view
on emails. The results of the experiments emphasise the usefulness of the model discussed in
Chapter 3 and confirm the decision to introduce merged targets and fragments as subcontexts
in POLAR.
In all experiments, we observe a common pattern: there must be a good balance between

access probabilities and the number of subcontexts. For example, per email there can only
be one merged target in the W3C lists collection; we saw here that a relatively high access
probability could achieve good results. On the other hand, articles in ZDNet News tend to
have many annotations, so only a low access probability (around 0.1) leads to at least slight
improvements. Generally, in collections like ZDNet News and other sites where users can anno-
tate articles, popular articles have many annotations, most probably more than comments have
replies. This means that for document search, a lower access probability should be applied than
for discussion search, where there are not so many subcontexts to consider for augmentation.
Regarding the document search experiments, we should be aware that the ZDNet testbed

with 20 topics and 150 documents judged per topic, and the fact that some results are not
statistically significant has an effect on the reliability of our results (Sanderson and Zobel,
2005). However, we conclude that in essence there is an improvement in retrieval effectiveness
for the given settings by applying knowledge augmentation in a very moderate way (global
access probabilities around 0.1 and 0.2), especially in cases where it is sufficient that non-
relevant articles have relevant annotations (at least some of the results are significant here).
The bottom line is that POLAR’s knowledge augmentation approach is basically able to

improve retrieval effectiveness for both discussion and document search. We can conclude that,
as initially assumed, annotations and their “indirect” objects like fragments and annotation
targets contain information from which the retrieval process can benefit when using them as a
context. This is certainly a good result for the field of annotation-based retrieval. But we have
to keep in mind that both the W3C lists and the ZDNet collection contain a very special kind
of annotation, as discussed in the previous chapter. W3C lists mainly consist of experts’ dis-
cussion, whereas comments in ZDNet sometimes lack substance regarding their quality. While
we find such annotations in various news portals on the web, we cannot necessarily expect
that our results are valid for other kinds of annotations (like personal notes or annotations in
scholarly environments or humanities) or subject areas, as the type and quality of annotations
might differ. Further experiments certainly need to be performed to learn if and how the types
and subject areas of annotations affect results, and crucial for this is the creation of new test
collections, as the ones applied here only cover a narrow set of annotations. Furthermore,
it would be desirable to perform experiments with meta annotations and distinct annotation
types (like questions, comments, etc).
The polarity experiments with support vector machines to distinguish between positive and

negative comments led to an accuracy of around 0.79 and 0.8. This shows that this task is
more challenging than the well-understood text categorisation task, but the results are promis-
ing. A possible next step would be to integrate the results of such a sentiment classification
in discussions to a retrieval framework which includes a measure of the trustworthiness of an-
notations, as it is reported in Section 4.3.8. A suitable test collection which also considers the
trustworthiness as a relevance criterion besides topical relevance needs to be created; once such
a collection is available, the effect of the categorisation accuracy on the retrieval effectiveness
can be measured.

9
Conclusion and Outlook

It’s been a long road, getting from
there to here. It’s been a long time,
but my time is fin’lly near.

(From the opening theme of “Star
Trek: Enterprise”)

Many applications allow users to annotate the material at hand. Annotations can be comments,
markings (highlighted parts) and references to other objects. Typically, users select the object
they want to annotate first; such an object can be a whole document, a set of documents, but
also a document part or only a fragment. When dealing with collections containing documents
and annotations, important information a user seeks might be contained in the annotations, but
not in the main documents. Annotations thus establish an important context documents and
even the annotations themselves are embedded in. The challenge is to exploit the annotation
context to uncover the information contained in annotations on the one hand, and to determine
the relevance of main documents w.r.t. the user’s query on the other hand. This thesis therefore
tried to answer the following question:

How and how effective can we exploit annotations for information retrieval?

To answer this question, the following three sub questions were formulated:

1. What are annotations, and what is the context established by annotations?

2. How can we model the annotation context, query it and use it for annotation-based
retrieval to satisfy advanced information needs?

3. How effective are methods exploiting the annotation context; do annotations help to gain
a better retrieval performance?

These questions were answered in the three parts of this thesis.
Part I dealt with the question what the annotation context actually is, which objects play a

role there and how they are related. Nowadays, annotations can be found in many applications
on the Web (be it the “normal” Web, the so-called “Web 2.0” or the Semantic Web) or in
digital libraries, and they serve different purposes. Annotations may be comments, reviews,
judgements, but also references which relate objects in a repository where no such relation
existed before. Annotations can be the building block for establishing scientific discussion. We

218 9 Conclusion and Outlook

saw that annotations basically are metadata (data-oriented view), content about content (meta
annotations) or additional content (content annotations) from an information-oriented view.
Furthermore, they are communicative acts. From the examinations of annotations and anno-
tation systems, a formal model of annotations, aimed at information retrieval, was derived.
In this model, all objects which are deemed important for retrieval are contained. The act
of annotation does not only produce the annotations themselves, but also additional objects
like annotated fragments. Each annotation has at least one object it refers to, which is the
annotation target. Furthermore, annotations as well as (multimedia) documents can be struc-
tured, so they need to be regarded as complex objects and their logical structure should be
made explicit. The proposed model thus contains digital objects like documents, annotations,
components and fragments, plus their typed interrelations (references, annotation targets). On
the instance level, these objects form a structured annotation hypertext, which is an acyclic
directed graph.
Part II gave an answer to the question how the annotation context can be modelled, queried

and how annotation-based retrieval can be performed. It first discussed the general challenges
of annotation-based retrieval, which are mainly document search (using annotations to find
relevant documents) and discussion search (finding relevant annotations). The information
contained in structured annotation hypertexts can potentially support sophisticated informa-
tion needs. A logical framework called POLAR was defined which enables users to formulate
complex queries to retrieve documents and annotations. With POLAR, structured annotation
hypertexts can be modelled and queried. It allows for directly specifying the logical document
structure, merged annotation targets, fragments, (content and meta level) annotations (which
can be positive or negative) and references between objects. Annotation-based IR is realised
by means of (knowledge and relevance) augmentation, which aggregates the several subcon-
texts related to annotation, and uncertain inference calculating the probability P (d→ q) that
a document (or annotation) d implies a query q. By applying four-valued logics, POLAR is
able to cope with inconsistent knowledge which naturally arises in discussions. Propositions
in POLAR can be terms, attributes and classifications; probabilities can be assigned to them
as weights. This way, we cannot only realise probabilistic term weighting in POLAR, but by
means of attributes and classifications, complex relationships between objects (needed, for in-
stance, to represent hypermedia documents and annotations) and metadata can be provided.
POLAR can be used to satisfy a variety of possible information needs, also incorporating non-
topical information, as several application examples show. In the tradition of POOL, which is
extended by POLAR, the semantics are based on possible worlds and Kripke structures. The
original semantics of POOL needed to be expanded in order to deal with structured annotation
hypertexts (and an underlying cyclic graph structure). POLAR programs are translated to
four-valued probabilistic Datalog, which is then executed with an engine like HySpirit.
In Part III, the effectiveness of POLAR’s core annotation-based retrieval approach, knowledge

augmentation with a tf × idf -based interpretation of P (d → q), was evaluated for discussion
and document search. To evaluate discussion search, a test collection consisting of W3C email
discussion lists was used. The new parts of emails were regarded as an annotation of its quoted
parts, which belongs to the antecedent email. This way it was possible to extract merged
annotation targets and fragments from emails. These extracted pieces and their interrelations
were modelled in POLAR. For annotation-based document search, a new collection had to be
created which contains both main documents and annotations. A snapshot of ZDNet News was
harvested and represented in POLAR. Discussions in ZDNet are often very controversial, which
makes the snapshot a good collection not only for document search, but also to explore methods
which try to determine the polarity of annotations. The discussion search experiments showed

219

that fragments, merged targets and direct annotations are able to improve retrieval effectiveness
significantly, depending on a suitable choice of access probabilities. A combination of these
kinds of objects showed some further improvement. For document search, annotations helped
improve the retrieval effectiveness if their content is propagated only moderately; it seems that
radius-1 augmentation is sufficient. The document search experiments, but also the discussion
search experiments, showed that the bias coming from the annotations must not be too high –
we measure a decrease in retrieval effectiveness when the access probability is too high or when
there are too many contextual objects contributing to the final retrieval status value. This
is the case for the document search experiments, where articles tend to have many attached
comments, but we can also observe this effect with discussion search. Besides the retrieval
method, a machine-learning approach to detect the polarity of annotations was evaluated,
which yielded an accuracy of 80%.

The annotation model in Chapter 3, which introduces documents, annotations, fragments,
components and (indirectly through the hasAnnotationTarget relation) annotation targets is val-
idated by the experimental results – (merged) targets, fragments and annotations can indeed
influence the retrieval process in a positive way. The results also confirmed the integration
of these elements into the POLAR framework and the application of the knowledge augmen-
tation approach in conjunction with probabilistic inference. The evaluation also shows that
annotations and their related objects indeed contain information which can be exploited for
information retrieval. The hypothesis that annotations are a valuable source of evidence for
retrieval is supported. This is one of the main findings of this thesis, besides the definition of
an annotation model for retrieval and structured annotation hypertexts, and the specification
of the POLAR framework as a flexible tool for annotation-based retrieval.
However, as annotations come in many forms and shapes and serve different purposes, the

evaluation in this thesis can only be the beginning. In Chapter 4 we learnt about different
application showcases of the POLAR framework. Many of them still need to be evaluated. For
instance, evaluation initiatives like INEX showed that using the document structure is a good
idea, but it is not clear whether annotations can aid structured document retrieval. Other ex-
periments can address the effect of negative annotations, either with knowledge augmentation,
which also considers the polarity of annotations, or by using the polarity to measure the trust-
worthiness of annotations, which is an important non-topical piece of evidence for determining
the relevance of annotations. In general, diverse test collections are needed which contain differ-
ent kinds of annotations, created with different tasks and purposes in mind – the test collections
so far contained public annotations and discussions. Every user could potentially contribute to
the discussion, which often spoils the quality of comments. This is especially the case with the
ZDNet collection, where different opinions, for example about different operating systems like
Linux or Windows, clash. Other annotation collections might be created by a different user
group, for example if the discussion is only open for scientists. Furthermore, collections con-
taining private, shared and public annotations, or coming from different domains with different
tasks in mind could be an interesting data set for evaluation. Although such collections exists,
they need to be set up to be a test collection, which requires huge efforts. Once this is done,
POLAR could be a suitable tool for the evaluation of annotation-based retrieval.
While a machine-learning approach to determine the polarity of annotation has been evalu-

ated, similar approaches might be used to distinguish meta from content annotations. Further
evaluation could also apply flexible access probabilities, taking the number of subcontexts into

220 9 Conclusion and Outlook

account. This way, we can better control the bias coming from annotations, merged targets
and fragments for discussion and document search.
The syntax and semantics of POLAR are not carved in stone, but POLAR should be under-

stood as a flexible system which is open for further enhancements. A possible extension regards
the polarity of an annotation and its classification into a meta or content one. For future ap-
plications, we might want to model to what extent an annotation is positive or negative. In
theory, annotations can even be both, at least they can contain positive and negative parts.
Furthermore, we might want to incorporate the information to which degree an annotation is
positive or negative. There is a similar case with content and meta annotations; an annotation
might contain parts on the meta and parts on the content level, and future automatic classi-
fiers might be able to detect to which degree an annotation is on the content or meta level. To
express that in POLAR, it might be feasible to expand POLAR’s syntax and semantics so that
also the probability that a subcontext is a positive or negative meta or content annotation is
reflected. Furthermore, within a structured annotation, it might be desirable to mark which
subparts of an annotations are positive and negative on the content or meta level.

Appendix A
Model of the Annotation Universe

The next page shows the annotation universe expressed in Description Logics; see Chapter 3
for details.

222 A Model of the Annotation Universe

DigitalObject ≡ (= 1 hasURI) u ∀hasURI.URI u
u (≤ 1 hasCreationTime) u ∀hasCreationTime.Timestamp

(≤ 1 hasBody) u ∀hasBody.String
AnnotatableObject v DigitalObject

Document v AnnotatableObject
Document v (= 0 isPartOf) u

(= 0 isFragmentOf) u
(= 0 hasAnnotationTarget) u

Component v AnnotatableObject
Component ≡ (= 1 isPartOf) u

∀isPartOf.(Document t Component t Annotation)
Component v (= 0 isFragmentOf) u

(= 0 hasAnnotationTarget)
Fragment v AnnotatableObject
Fragment ≡ (= 1 isFragmentOf) u

∀isFragmentOf.AnnotatableObject
Fragment v (= 0 isPartOf) u

(= 0 hasAnnotationTarget)
Annotation < AnnotatableObject
Annotation ≡ (≥ 1 hasAnnotationTarget) u

∀hasAnnotationTarget.AnnotatableObject u
Annotation ≡ (≥ 0 references) u

∀references.DigitalObject
Annotation v (= 1 hasAuthor) u ∀hasAuthor.User
Annotation v (= 0 isPartOf) u (= 0 isFragmentOf)
Annotation v (≤ 1 polarity) u ∀polarity.String
Annotation v (= 1 scope) u ∀scope.String.
Annotation v (≥ 0 seenBy) u ∀seenBy.Group.

ContentLevelAnnotation v Annotation
MetaLevelAnnotation v Annotation

User v (= 1 hasURI) u ∀hasURI.URI
Group v (= 1 hasURI) u ∀hasURI.URI
User v (≥ 0 isMemberOf) u ∀isMemberOf.Group
User v ¬Group u ¬DigitalObject

Group v ¬User u ¬DigitalObject

Appendix B
POLAR Implementation

B.1 FVPD Support Rules for Knowledge Augmentation

These FVPD rules need to be added to the FVPD translation of POLAR programs in order to
enable knowledge augmenation:

1 ######
2 # Augmentation rules for terms
3 ######

5 term_k(T,D) :- term(T,D).
6 term_k(T,D) :- term_k_logical(T,D).
7 term_k(T,D) :- term_k_anno(T,D).
8 term_k(T,D) :- term_k_reference(T,D).

10 term_k_logical(T,D) :- acc_subpart(S,D) & term_k2(T,S).
11 term_k_anno(T,D) :- acc_mtarget(D,S) & term(T,S).
12 term_k_anno(T,D) :- acc_fragment(D,S) & term(T,S).
13 term_k_anno(T,D) :- acc_canno(D,S) & term_k2(T,S).
14 term_k_anno(T,D) :- acc_negcanno(D,S) & !term_k2(T,S).
15 term_k_reference(T,D) :- acc_reference(D,S) & term_k2(T,S).

18 term_k2(T,D) :- term(T,D).
19 term_k2(T,D) :- term_k2_logical(T,D).
20 term_k2(T,D) :- term_k2_anno(T,D).
21 term_k2(T,D) :- term_k2_reference(T,D).

23 term_k2_logical(T,D) :- acc_subpart(D,S) & term_k2(T,S).
24 term_k2_anno(T,D) :- acc_fragment(D,S) & term(T,S).
25 term_k2_anno(T,D) :- acc_canno(D,S) & term_k2(T,S).
26 term_k2_anno(T,D) :- acc_negcanno(D,S) & !term_k2(T,S).
27 term_k2_reference(T,D) :- acc_reference(D,S) & term_k2(T,S).

29 !term_k(T,D) :- !term(T,D).
30 !term_k(T,D) :- !term_k_logical(T,D).

224 B POLAR Implementation

31 !term_k(T,D) :- !term_k_anno(T,D).
32 !term_k(T,D) :- !term_k_reference(T,D).

34 !term_k_logical(T,D) :- acc_subpart(S,D) & !term_k2(T,S).
35 !term_k_anno(T,D) :- acc_mtarget(D,S) & !term(T,S).
36 !term_k_anno(T,D) :- acc_fragment(D,S) & !term(T,S).
37 !term_k_anno(T,D) :- acc_canno(D,S) & !term_k2(T,S).
38 !term_k_anno(T,D) :- acc_negcanno(D,S) & term_k2(T,S).
39 !term_k_reference(T,D) :- acc_reference(D,S) & !term_k2(T,S).

42 !term_k2(T,D) :- !term(T,D).
43 !term_k2(T,D) :- !term_k2_logical(T,D).
44 !term_k2(T,D) :- !term_k2_anno(T,D).
45 !term_k2(T,D) :- !term_k2_reference(T,D).

47 !term_k2_logical(T,D) :- acc_subpart(D,S) & !term_k2(T,S).
48 !term_k2_anno(T,D) :- acc_fragment(D,S) & !term(T,S).
49 !term_k2_anno(T,D) :- acc_canno(D,S) & !term_k2(T,S).
50 !term_k2_anno(T,D) :- acc_negcanno(D,S) & term_k2(T,S).
51 !term_k2_reference(T,D) :- acc_reference(D,S) & !term_k2(T,S).

55 ######
56 # Augmentation rules for categorisations
57 ######

59 instance_of_k(O,C,D) :- instance_of(O,C,D).
60 instance_of_k(O,C,D) :- instance_of_k_logical(O,C,D).
61 instance_of_k(O,C,D) :- instance_of_k_anno(O,C,D).
62 instance_of_k(O,C,D) :- instance_of_k_reference(O,C,D).

64 instance_of_k_logical(O,C,D) :-
65 acc_subpart(S,D) & instance_of_k2(O,C,S).
66 instance_of_k_anno(O,C,D) :-
67 acc_mtarget(D,S) & instance_of(O,C,S).
68 instance_of_k_anno(O,C,D) :-
69 acc_fragment(D,S) & instance_of(O,C,S).
70 instance_of_k_anno(O,C,D) :-
71 acc_canno(D,S) & instance_of_k2(O,C,S).
72 instance_of_k_anno(O,C,D) :-
73 acc_negcanno(D,S) & !instance_of_k2(O,C,S).
74 instance_of_k_reference(O,C,D) :-
75 acc_reference(D,S) & instance_of_k2(O,C,S).

78 instance_of_k2(O,C,D) :- instance_of(O,C,D).

B.1 FVPD Support Rules for Knowledge Augmentation 225

79 instance_of_k2(O,C,D) :- instance_of_k2_logical(O,C,D).
80 instance_of_k2(O,C,D) :- instance_of_k2_anno(O,C,D).
81 instance_of_k2(O,C,D) :- instance_of_k2_reference(O,C,D).

83 instance_of_k2_logical(O,C,D) :-
84 acc_subpart(D,S) & instance_of_k2(O,C,S).
85 instance_of_k2_anno(O,C,D) :-
86 acc_fragment(D,S) & instance_of(O,C,S).
87 instance_of_k2_anno(O,C,D) :-
88 acc_canno(D,S) & instance_of_k2(O,C,S).
89 instance_of_k2_anno(O,C,D) :-
90 acc_negcanno(D,S) & !instance_of_k2(O,C,S).
91 instance_of_k2_reference(O,C,D) :-
92 acc_reference(D,S) & instance_of_k2(O,C,S).

95 !instance_of_k(O,C,D) :- !instance_of(O,C,D).
96 !instance_of_k(O,C,D) :- !instance_of_k_logical(O,C,D).
97 !instance_of_k(O,C,D) :- !instance_of_k_anno(O,C,D).
98 !instance_of_k(O,C,D) :- !instance_of_k_reference(O,C,D).

100 !instance_of_k_logical(O,C,D) :-
101 acc_subpart(S,D) & !instance_of_k2(O,C,S).
102 !instance_of_k_anno(O,C,D) :-
103 acc_mtarget(D,S) & !instance_of(O,C,S).
104 !instance_of_k_anno(O,C,D) :-
105 acc_fragment(D,S) & !instance_of(O,C,S).
106 !instance_of_k_anno(O,C,D) :-
107 acc_canno(D,S) & !instance_of_k2(O,C,S).
108 !instance_of_k_anno(O,C,D) :-
109 acc_negcanno(D,S) & instance_of_k2(O,C,S).
110 !instance_of_k_reference(O,C,D) :-
111 acc_reference(D,S) & !instance_of_k2(O,C,S).

114 !instance_of_k2(O,C,D) :- !instance_of(O,C,D).
115 !instance_of_k2(O,C,D) :- !instance_of_k2_logical(O,C,D).
116 !instance_of_k2(O,C,D) :- !instance_of_k2_anno(O,C,D).
117 !instance_of_k2(O,C,D) :- !instance_of_k2_reference(O,C,D).

119 !instance_of_k2_logical(O,C,D) :-
120 acc_subpart(D,S) & !instance_of_k2(O,C,S).
121 !instance_of_k2_anno(O,C,D) :-
122 acc_fragment(D,S) & !instance_of(O,C,S).
123 !instance_of_k2_anno(O,C,D) :-
124 acc_canno(D,S) & !instance_of_k2(O,C,S).
125 !instance_of_k2_anno(O,C,D) :-
126 acc_negcanno(D,S) & instance_of_k2(O,C,S).

226 B POLAR Implementation

127 !instance_of_k2_reference(O,C,D) :-
128 acc_reference(D,S) & !instance_of_k2(O,C,S).

132 ######
133 # Augmentation rules for attributes
134 ######

136 attribute_k(N,O,V,D) :- attribute(N,O,V,D).
137 attribute_k(N,O,V,D) :- attribute_k_logical(N,O,V,D).
138 attribute_k(N,O,V,D) :- attribute_k_anno(N,O,V,D).
139 attribute_k(N,O,V,D) :- attribute_k_reference(N,O,V,D).

141 attribute_k_logical(N,O,V,D) :-
142 acc_subpart(S,D) & attribute_k2(N,O,V,S).
143 attribute_k_anno(N,O,V,D) :-
144 acc_mtarget(D,S) & attribute(N,O,V,S).
145 attribute_k_anno(N,O,V,D) :-
146 acc_fragment(D,S) & attribute(N,O,V,S).
147 attribute_k_anno(N,O,V,D) :-
148 acc_canno(D,S) & attribute_k2(N,O,V,S).
149 attribute_k_anno(N,O,V,D) :-
150 acc_negcanno(D,S) & !attribute_k2(N,O,V,S).
151 attribute_k_reference(N,O,V,D) :-
152 acc_reference(D,S) & attribute_k2(N,O,V,S).

155 attribute_k2(N,O,V,D) :- attribute(N,O,V,D).
156 attribute_k2(N,O,V,D) :- attribute_k2_logical(N,O,V,D).
157 attribute_k2(N,O,V,D) :- attribute_k2_anno(N,O,V,D).
158 attribute_k2(N,O,V,D) :- attribute_k2_reference(N,O,V,D).

160 attribute_k2_logical(N,O,V,D) :-
161 acc_subpart(D,S) & attribute_k2(N,O,V,S).
162 attribute_k2_anno(N,O,V,D) :-
163 acc_fragment(D,S) & attribute(N,O,V,S).
164 attribute_k2_anno(N,O,V,D) :-
165 acc_canno(D,S) & attribute_k2(N,O,V,S).
166 attribute_k2_anno(N,O,V,D) :-
167 acc_negcanno(D,S) & !attribute_k2(N,O,V,S).
168 attribute_k2_reference(N,O,V,D) :-
169 acc_reference(D,S) & attribute_k2(N,O,V,S).

171 !attribute_k(N,O,V,D) :- !attribute(N,O,V,D).
172 !attribute_k(N,O,V,D) :- !attribute_k_logical(N,O,V,D).
173 !attribute_k(N,O,V,D) :- !attribute_k_anno(N,O,V,D).
174 !attribute_k(N,O,V,D) :- !attribute_k_reference(N,O,V,D).

B.2 Calculation of η(pos_term_k(football,d1) & !neg_term_k(football,d1)) 227

176 !attribute_k_logical(N,O,V,D) :-
177 acc_subpart(S,D) & !attribute_k2(N,O,V,S).
178 !attribute_k_anno(N,O,V,D) :-
179 acc_mtarget(D,S) & !attribute(N,O,V,S).
180 !attribute_k_anno(N,O,V,D) :-
181 acc_fragment(D,S) & !attribute(N,O,V,S).
182 !attribute_k_anno(N,O,V,D) :-
183 acc_canno(D,S) & !attribute_k2(N,O,V,S).
184 !attribute_k_anno(N,O,V,D) :-
185 acc_negcanno(D,S) & attribute_k2(N,O,V,S).
186 !attribute_k_reference(N,O,V,D) :-
187 acc_reference(D,S) & !attribute_k2(N,O,V,S).

190 !attribute_k2(N,O,V,D) :- !attribute(N,O,V,D).
191 !attribute_k2(N,O,V,D) :- !attribute_k2_logical(N,O,V,D).
192 !attribute_k2(N,O,V,D) :- !attribute_k2_anno(N,O,V,D).
193 !attribute_k2(N,O,V,D) :- !attribute_k2_reference(N,O,V,D).

195 !attribute_k2_logical(N,O,V,D) :-
196 acc_subpart(D,S) & !attribute_k2(N,O,V,S).
197 !attribute_k2_anno(N,O,V,D) :-
198 acc_fragment(D,S) & !attribute(N,O,V,S).
199 !attribute_k2_anno(N,O,V,D) :-
200 acc_canno(D,S) & !attribute_k2(N,O,V,S).
201 !attribute_k2_anno(N,O,V,D) :-
202 acc_negcanno(D,S) & attribute_k2(N,O,V,S).
203 !attribute_k2_reference(N,O,V,D) :-
204 acc_reference(D,S) & !attribute_k2(N,O,V,S).

B.2 Calculation of
η(pos_term_k(football,d1) & !neg_term_k(football,d1))

We show

η(pos_term_k(football,d1) & !neg_term_k(football,d1)) =
acc_canno(d1,a1) ∧ term(t,football,a1)

which is needed in Example 14 on page 145. We use the definition of event expressions and the
function η for probabilistic Datalog as given in Fuhr (2000). We sometimes refer to the rules
in the PD translation given in Example 14.

η(pos_term_k(football,d1) & !neg_term_k(football,D)) =
η(pos_term_k(football,d1)) ∧ η(!neg_term_k(football,D))

228 B POLAR Implementation

Applying rules 11 to 14 and η(!e) = ¬η(e) (Fuhr, 2000), this yields

η(pos_term_k(football,d1) :- acc_canno(d1,a1) &
pos_term_k(football,a1) & !neg_term_k(football,a1))∧

¬η(neg_term_k(football,d1) :- acc_canno(d1,a1) &
neg_term_k(football,a1) & !pos_term_k(football,a1)) =

η(acc_canno(d1,a1))∧
η(pos_term_k(football,a1) ∧ η(!neg_term_k(football,a1))∧

¬(η(acc_canno(d1,a1))∧
η(neg_term_k(football,a1)) ∧ η(!pos_term_k(football,a1)))

η(acc_canno(d1,a1)) = acc_canno(d1,a1); together with applying rules 9 and 10, we get

acc_canno(d1,a1)∧
η(pos_term_k(football,a1) :-

pos_term(football,a1) & !neg_term(football,a1))∧
¬η(neg_term_k(football,a1) :-

neg_term(football,a1) & !pos_term(football,a1))∧
¬(acc_canno(d1,a1)∧

η(neg_term_k(football,a1) :-
neg_term(football,a1) & !pos_term(football,a1))∧

¬η(pos_term_k(football,a1) :-
pos_term(football,a1) & !neg_term(football,a1))) =

acc_canno(d1,a1)∧
η(pos_term(football,a1)) ∧ η(!neg_term(football,a1))∧

¬(η(neg_term(football,a1)) ∧ η(!pos_term(football,a1)))∧
¬(acc_canno(d1,a1)∧

η(neg_term(football,a1)) ∧ η(!pos_term(football,a1))∧
¬(η(pos_term(football,a1)) ∧ η(!neg_term(football,a1))))

B.2 Calculation of η(pos_term_k(football,d1) & !neg_term_k(football,d1)) 229

Rules 5 – 8 say, e.g., η(pos_term(football,a1)) = term(t,football,a1) ∨
term(i,football,a1) (analogously for η(neg_term(football,a1)), so we get

acc_canno(d1,a1)∧
(term(t,football,a1) ∨ term(i,football,a1))∧
¬(term(f,football,a1) ∨ term(i,football,a1))∧
¬((term(f,football,a1) ∨ term(i,football,a1))∧
¬(term(t,football,a1) ∨ term(i,football,a1)))∧

¬(acc_canno(d1,a1)∧
(term(f,football,a1) ∨ term(i,football,a1))∧
¬(term(t,football,a1) ∨ term(i,football,a1))∧
¬((term(t,football,a1) ∨ term(i,football,a1))∧
¬(term(f,football,a1) ∨ term(i,football,a1))))

Because term(t,football,a1), term(f,football,a1) and term(i,football,a1)
are disjoint events, it is, e.g., term(t,football,a1) ∧ ¬(term(f,football,a1) ∨
term(i,football,a1)) = term(t,football,a1) (see also (Fuhr, 2000, example 12)).
Applying this and the distributive law1, the above formula equals

acc_canno(d1,a1) ∧ term(t,football,a1) ∧ ¬term(f,football,a1)∧
¬(acc_canno(d1,a1) ∧ term(f,football,a1) ∧ ¬term(t,football,a1)) =

acc_canno(d1,a1) ∧ term(t,football,a1)∧
(¬acc_canno(d1,a1) ∨ ¬term(f,football,a1) ∨ term(t,football,a1))

Again we employ the disjointness of the term relation and the distributive law. We gain

¬acc_canno(d1,a1) ∧ acc_canno(d1,a1) ∧ term(t,football,a1)∨
¬term(f,football,a1) ∧ acc_canno(d1,a1) ∧ term(t,football,a1)∨
term(t,football,a1) ∧ acc_canno(d1,a1) ∧ term(t,football,a1) =

acc_canno(d1,a1) ∧ term(t,football,a1)∨
acc_canno(d1,a1) ∧ term(t,football,a1) =

acc_canno(d1,a1) ∧ term(t,football,a1)

1a ∧ (b ∨ c) = a ∧ b ∨ a ∧ c

Appendix C
Further Evaluation Statistics

C.1 Ranking Statistics
Some statistics about the rankings produced in the discussion and document search experiments
are reported here. For a certain feature, the number of documents with this feature, the number
of relevant documents and the fraction of relevant documents to total number of documents are
presented. For example, a feature could be “the number of fragments per article is greater than
0”. Then, the entry “16.07/5.63 (0.35)“ means that within the given number of articles (e.g.,
30), there were on average 16.07 articles with at least 1 fragment. 5.63 of them were relevant,
which makes a fraction of 5.63

16.07 = 0.35 of relevant to all documents (in other words: 35% of the
documents with at least 1 fragment were relevant).

C.1.1 Discussion Search
The email features are the number of fragments per email (relevant for fragment access), which
can be 0, >0, >5 and >10, and if an email has a merged target or not (relevant for merged
target access). The following three pages present statistics for the top k ranked emails, with
k = 5, 10, 30. Please refer to Section 8.3 for a further discussion of these statistics.

232 C Further Evaluation Statistics

Fragments, merged targets and content annotations, top 5 emails considered:

Run No merged target One merged target
Baseline 2.75/1.12 (0.41) 2.25/1.30 (0.58)

knowlaug-mtarget-0.1 2.58/0.92 (0.35) 2.42/1.32 (0.54)
knowlaug-mtarget-0.2 2.42/1.00 (0.41) 2.58/1.52 (0.59)
knowlaug-mtarget-0.3 2.15/0.87 (0.40) 2.85/1.65 (0.58)
knowlaug-mtarget-0.4 1.88/0.80 (0.42) 3.12/1.75 (0.56)
knowlaug-mtarget-0.5 1.73/0.67 (0.38) 3.27/1.80 (0.55)
knowlaug-mtarget-0.6 1.52/0.62 (0.41) 3.48/1.88 (0.54)
knowlaug-mtarget-0.7 1.43/0.57 (0.40) 3.57/1.88 (0.53)
knowlaug-mtarget-0.8 1.25/0.50 (0.40) 3.75/1.87 (0.50)
knowlaug-mtarget-0.9 0.93/0.35 (0.37) 4.07/1.98 (0.49)
knowlaug-mtarget-1.0 0.77/0.30 (0.39) 4.23/2.05 (0.48)

Number of fragments per email
Run 0 >0 >5 >10

Baseline 3.70/1.62
(0.44)

1.30/0.80
(0.62)

0.00/0.00
(0.00)

0.00/0.00
(0.00)

knowlaug-fragments-0.1 3.42/1.50
(0.44)

1.58/0.95
(0.60)

0.02/0.02
(1.00)

0.00/0.00
(0.00)

knowlaug-fragments-0.2 3.02/1.37
(0.45)

1.98/1.17
(0.59)

0.03/0.03
(1.00)

0.00/0.00
(0.00)

knowlaug-fragments-0.3 2.72/1.23
(0.45)

2.28/1.32
(0.58)

0.12/0.07
(0.57)

0.02/0.00
(0.00)

knowlaug-fragments-0.4 2.42/1.10
(0.46)

2.58/1.40
(0.54)

0.17/0.07
(0.40)

0.02/0.00
(0.00)

knowlaug-fragments-0.5 2.20/1.05
(0.48)

2.80/1.42
(0.51)

0.20/0.08
(0.42)

0.02/0.00
(0.00)

knowlaug-fragments-0.6 1.92/0.92
(0.48)

3.08/1.53
(0.50)

0.22/0.08
(0.38)

0.03/0.00
(0.00)

knowlaug-fragments-0.7 1.57/0.80
(0.51)

3.43/1.62
(0.47)

0.27/0.07
(0.25)

0.03/0.00
(0.00)

knowlaug-fragments-0.8 1.30/0.67
(0.51)

3.70/1.73
(0.47)

0.25/0.07
(0.27)

0.03/0.00
(0.00)

knowlaug-fragments-0.9 1.12/0.58
(0.52)

3.88/1.82
(0.47)

0.25/0.07
(0.27)

0.03/0.00
(0.00)

knowlaug-fragments-1.0 0.93/0.57
(0.61)

4.07/1.82
(0.45)

0.25/0.07
(0.27)

0.03/0.00
(0.00)

C.1 Ranking Statistics 233

Number of direct comments per email
Run 0 >0 >5 >10

Baseline 3.20/1.43
(0.45)

1.80/0.98
(0.55)

0.00/0.00
(0.00)

0.00/0.00
(0.00)

knowlaug-canno-0.1 2.78/1.28
(0.46)

2.22/1.28
(0.58)

0.03/0.03
(1.00)

0.00/0.00
(0.00)

knowlaug-canno-0.2 2.45/1.13
(0.46)

2.55/1.47
(0.58)

0.07/0.05
(0.75)

0.00/0.00
(0.00)

knowlaug-canno-0.3 2.15/1.03
(0.48)

2.85/1.62
(0.57)

0.17/0.08
(0.50)

0.02/0.00
(0.00)

knowlaug-canno-0.4 1.87/0.92
(0.49)

3.13/1.72
(0.55)

0.22/0.08
(0.38)

0.03/0.00
(0.00)

knowlaug-canno-0.5 1.52/0.67
(0.44)

3.48/1.85
(0.53)

0.32/0.10
(0.32)

0.05/0.00
(0.00)

knowlaug-canno-0.6 1.32/0.57
(0.43)

3.68/1.92
(0.52)

0.37/0.08
(0.23)

0.05/0.00
(0.00)

knowlaug-canno-0.7 1.12/0.52
(0.46)

3.88/2.05
(0.53)

0.42/0.10
(0.24)

0.05/0.00
(0.00)

knowlaug-canno-0.8 0.82/0.38
(0.47)

4.18/2.10
(0.50)

0.43/0.10
(0.23)

0.03/0.00
(0.00)

knowlaug-canno-0.9 0.63/0.27
(0.42)

4.37/2.10
(0.48)

0.42/0.10
(0.24)

0.03/0.00
(0.00)

knowlaug-canno-1.0 0.45/0.20
(0.44)

4.55/2.07
(0.45)

0.42/0.08
(0.20)

0.03/0.00
(0.00)

234 C Further Evaluation Statistics

Fragments, merged targets and content annotations, top 10 emails considered:

Run No merged target One merged target
Baseline 5.30/1.78 (0.34) 4.70/2.62 (0.56)

knowlaug-mtarget-0.1 5.10/1.75 (0.34) 4.90/2.72 (0.55)
knowlaug-mtarget-0.2 4.82/1.67 (0.35) 5.18/2.82 (0.54)
knowlaug-mtarget-0.3 4.48/1.60 (0.36) 5.52/3.00 (0.54)
knowlaug-mtarget-0.4 4.12/1.47 (0.36) 5.88/3.05 (0.52)
knowlaug-mtarget-0.5 3.75/1.35 (0.36) 6.25/3.10 (0.50)
knowlaug-mtarget-0.6 3.37/1.25 (0.37) 6.63/3.32 (0.50)
knowlaug-mtarget-0.7 3.07/1.22 (0.40) 6.93/3.43 (0.50)
knowlaug-mtarget-0.8 2.60/1.05 (0.40) 7.40/3.53 (0.48)
knowlaug-mtarget-0.9 2.25/0.90 (0.40) 7.75/3.53 (0.46)
knowlaug-mtarget-1.0 1.92/0.77 (0.40) 8.08/3.60 (0.45)

Number of fragments per email
Run 0 >0 >5 >10

Baseline 7.12/2.62
(0.37)

2.88/1.78
(0.62)

0.00/0.00
(0.00)

0.00/0.00
(0.00)

knowlaug-fragment-0.1 6.83/2.52
(0.37)

3.17/1.90
(0.60)

0.03/0.02
(0.50)

0.00/0.00
(0.00)

knowlaug-fragment-0.2 6.30/2.40
(0.38)

3.70/2.13
(0.58)

0.12/0.07
(0.57)

0.00/0.00
(0.00)

knowlaug-fragment-0.3 5.73/2.30
(0.40)

4.27/2.27
(0.53)

0.20/0.08
(0.42)

0.02/0.00
(0.00)

knowlaug-fragment-0.4 5.23/2.15
(0.41)

4.77/2.42
(0.51)

0.22/0.10
(0.46)

0.02/0.00
(0.00)

knowlaug-fragment-0.5 4.80/2.05
(0.43)

5.20/2.48
(0.48)

0.28/0.10
(0.35)

0.05/0.00
(0.00)

knowlaug-fragment-0.6 4.15/1.72
(0.41)

5.85/2.62
(0.45)

0.35/0.10
(0.29)

0.05/0.00
(0.00)

knowlaug-fragment-0.7 3.53/1.58
(0.45)

6.47/2.83
(0.44)

0.33/0.10
(0.30)

0.05/0.00
(0.00)

knowlaug-fragment-0.8 3.10/1.47
(0.47)

6.90/2.97
(0.43)

0.35/0.10
(0.29)

0.05/0.00
(0.00)

knowlaug-fragment-0.9 2.72/1.33
(0.49)

7.28/2.93
(0.40)

0.37/0.10
(0.27)

0.05/0.00
(0.00)

knowlaug-fragment-1.0 2.38/1.23
(0.52)

7.62/2.97
(0.39)

0.37/0.10
(0.27)

0.05/0.00
(0.00)

C.1 Ranking Statistics 235

Number of direct comments per email
Run 0 >0 >5 >10

Baseline 6.22/2.30
(0.37)

3.78/2.10
(0.56)

0.00/0.00
(0.00)

0.00/0.00
(0.00)

knowlaug-canno-0.1 5.68/2.17
(0.38)

4.32/2.45
(0.57)

0.05/0.03
(0.67)

0.00/0.00
(0.00)

knowlaug-canno-0.2 5.08/2.02
(0.40)

4.92/2.85
(0.58)

0.15/0.10
(0.67)

0.00/0.00
(0.00)

knowlaug-canno-0.3 4.58/1.90
(0.41)

5.42/3.05
(0.56)

0.28/0.10
(0.35)

0.03/0.00
(0.00)

knowlaug-canno-0.4 4.05/1.72
(0.42)

5.95/3.23
(0.54)

0.43/0.15
(0.35)

0.07/0.00
(0.00)

knowlaug-canno-0.5 3.52/1.55
(0.44)

6.48/3.30
(0.51)

0.50/0.15
(0.30)

0.07/0.00
(0.00)

knowlaug-canno-0.6 2.95/1.40
(0.47)

7.05/3.47
(0.49)

0.57/0.13
(0.24)

0.07/0.00
(0.00)

knowlaug-canno-0.7 2.48/1.17
(0.47)

7.52/3.48
(0.46)

0.60/0.13
(0.22)

0.05/0.00
(0.00)

knowlaug-canno-0.8 2.00/0.93
(0.47)

8.00/3.53
(0.44)

0.62/0.13
(0.22)

0.05/0.00
(0.00)

knowlaug-canno-0.9 1.67/0.87
(0.52)

8.33/3.47
(0.42)

0.60/0.12
(0.19)

0.05/0.00
(0.00)

knowlaug-canno-1.0 1.33/0.80
(0.60)

8.67/3.43
(0.40)

0.63/0.12
(0.18)

0.03/0.00
(0.00)

236 C Further Evaluation Statistics

Fragments, merged targets and content annotations, top 30 emails considered:

Run No merged target One merged target
Baseline 16.52/4.32 (0.26) 13.48/5.52 (0.41)

knowlaug-mtarget-0.1 16.05/4.23 (0.26) 13.95/5.85 (0.42)
knowlaug-mtarget-0.2 15.45/4.15 (0.27) 14.55/6.10 (0.42)
knowlaug-mtarget-0.3 14.67/3.95 (0.27) 15.33/6.40 (0.42)
knowlaug-mtarget-0.4 13.88/3.85 (0.28) 16.12/6.55 (0.41)
knowlaug-mtarget-0.5 12.87/3.53 (0.27) 17.13/6.80 (0.40)
knowlaug-mtarget-0.6 11.67/3.28 (0.28) 18.33/7.23 (0.39)
knowlaug-mtarget-0.7 10.48/3.03 (0.29) 19.52/7.43 (0.38)
knowlaug-mtarget-0.8 9.30/2.72 (0.29) 20.70/7.65 (0.37)
knowlaug-mtarget-0.9 8.13/2.40 (0.30) 21.87/7.77 (0.36)
knowlaug-mtarget-1.0 6.85/2.22 (0.32) 23.15/7.63 (0.33)

Number of fragments per email
Run 0 >0 >5 >10

Baseline 21.63/6.07
(0.28)

8.37/3.77
(0.45)

0.08/0.07
(0.80)

0.00/0.00
(0.00)

knowlaug-fragments-0.1 20.55/5.85
(0.28)

9.45/4.08
(0.43)

0.12/0.08
(0.71)

0.00/0.00
(0.00)

knowlaug-fragments-0.2 19.48/5.63
(0.29)

10.52/4.48
(0.43)

0.27/0.10
(0.38)

0.02/0.00
(0.00)

knowlaug-fragments-0.3 18.10/5.15
(0.28)

11.90/4.75
(0.40)

0.33/0.12
(0.35)

0.02/0.00
(0.00)

knowlaug-fragments-0.4 16.38/4.80
(0.29)

13.62/4.98
(0.37)

0.55/0.13
(0.24)

0.07/0.00
(0.00)

knowlaug-fragments-0.5 14.88/4.43
(0.30)

15.12/5.22
(0.35)

0.65/0.15
(0.23)

0.07/0.00
(0.00)

knowlaug-fragments-0.6 13.62/4.23
(0.31)

16.38/5.33
(0.33)

0.78/0.17
(0.21)

0.08/0.00
(0.00)

knowlaug-fragments-0.7 12.23/3.87
(0.32)

17.77/5.33
(0.30)

0.88/0.17
(0.19)

0.07/0.00
(0.00)

knowlaug-fragments-0.8 10.97/3.60
(0.33)

19.03/5.37
(0.28)

0.92/0.20
(0.22)

0.07/0.00
(0.00)

knowlaug-fragments-0.9 9.80/3.37
(0.34)

20.20/5.47
(0.27)

0.98/0.20
(0.20)

0.07/0.00
(0.00)

knowlaug-fragments-1.0 8.82/3.17
(0.36)

21.18/5.58
(0.26)

1.00/0.20
(0.20)

0.08/0.00
(0.00)

C.1 Ranking Statistics 237

Number of direct comments per email
Run 0 >0 >5 >10

Baseline 18.82/5.18
(0.28)

11.18/4.65
(0.42)

0.08/0.07
(0.80)

0.00/0.00
(0.00)

knowlaug-canno-0.1 17.62/4.87
(0.28)

12.38/5.27
(0.43)

0.15/0.08
(0.56)

0.00/0.00
(0.00)

knowlaug-canno-0.2 16.05/4.57
(0.28)

13.95/5.77
(0.41)

0.42/0.12
(0.28)

0.07/0.00
(0.00)

knowlaug-canno-0.3 14.70/4.12
(0.28)

15.30/6.23
(0.41)

0.57/0.18
(0.32)

0.07/0.00
(0.00)

knowlaug-canno-0.4 12.92/3.65
(0.28)

17.08/6.70
(0.39)

0.77/0.20
(0.26)

0.07/0.00
(0.00)

knowlaug-canno-0.5 11.53/3.43
(0.30)

18.47/6.87
(0.37)

0.93/0.23
(0.25)

0.07/0.00
(0.00)

knowlaug-canno-0.6 10.10/3.17
(0.31)

19.90/7.17
(0.36)

1.03/0.23
(0.23)

0.10/0.00
(0.00)

knowlaug-canno-0.7 8.85/2.95
(0.33)

21.15/7.33
(0.35)

1.13/0.22
(0.19)

0.10/0.00
(0.00)

knowlaug-canno-0.8 7.65/2.67
(0.35)

22.35/7.20
(0.32)

1.25/0.22
(0.17)

0.12/0.00
(0.00)

knowlaug-canno-0.9 6.42/2.40
(0.37)

23.58/7.15
(0.30)

1.43/0.18
(0.13)

0.12/0.00
(0.00)

knowlaug-canno-1.0 5.33/2.07
(0.39)

24.67/7.15
(0.29)

1.42/0.15
(0.11)

0.10/0.00
(0.00)

238 C Further Evaluation Statistics

C.1.2 Document Search
For document search, the ZDNet article features are the number of direct comments per article,
which can be 0, >0, >5, >10,>50,>100 and >200. The following three tables present statistics
for the top k ranked articles, with k = 5, 10, 30. Refer to Section 8.4 for a further discussion of
these statistics.

Top 5 articles considered:

Number of direct comments per article
Run 0 >0 >5 >10 >50 >100 >200

Baseline 0.78/0.48
(0.61)

4.22/3.00
(0.71)

2.78/1.96
(0.70)

1.70/1.17
(0.69)

0.22/0.17
(0.80)

0.04/0.04
(1.00)

0.00/0.00
(0.00)

knowlaug-0.1 0.61/0.35
(0.57)

4.39/3.17
(0.72)

3.22/2.30
(0.72)

2.30/1.61
(0.70)

0.91/0.65
(0.71)

0.30/0.22
(0.71)

0.13/0.09
(0.67)

knowlaug-0.2 0.39/0.26
(0.67)

4.61/3.09
(0.67)

3.65/2.43
(0.67)

2.83/1.83
(0.65)

1.22/0.74
(0.61)

0.43/0.22
(0.50)

0.22/0.09
(0.40)

knowlaug-0.3 0.35/0.22
(0.62)

4.65/3.13
(0.67)

3.78/2.57
(0.68)

2.91/1.91
(0.66)

1.26/0.74
(0.59)

0.48/0.22
(0.45)

0.26/0.09
(0.33)

knowlaug-0.4 0.26/0.22
(0.83)

4.74/3.17
(0.67)

3.96/2.61
(0.66)

3.13/1.96
(0.62)

1.30/0.74
(0.57)

0.48/0.17
(0.36)

0.26/0.09
(0.33)

knowlaug-0.5 0.17/0.17
(1.00)

4.83/3.04
(0.63)

4.13/2.52
(0.61)

3.26/1.91
(0.59)

1.48/0.70
(0.47)

0.61/0.17
(0.29)

0.30/0.04
(0.14)

knowlaug-0.6 0.17/0.17
(1.00)

4.83/2.91
(0.60)

4.26/2.48
(0.58)

3.57/2.00
(0.56)

1.70/0.74
(0.44)

0.78/0.22
(0.28)

0.26/0.04
(0.17)

knowlaug-0.7 0.09/0.09
(1.00)

4.91/2.91
(0.59)

4.35/2.48
(0.57)

3.70/2.04
(0.55)

1.83/0.78
(0.43)

0.91/0.22
(0.24)

0.39/0.09
(0.22)

knowlaug-0.8 0.04/0.04
(1.00)

4.96/2.74
(0.55)

4.52/2.43
(0.54)

3.87/2.00
(0.52)

1.83/0.70
(0.38)

0.91/0.17
(0.19)

0.35/0.04
(0.12)

knowlaug-0.9 0.04/0.04
(1.00)

4.96/2.70
(0.54)

4.65/2.43
(0.52)

4.00/2.04
(0.51)

1.78/0.70
(0.39)

0.83/0.17
(0.21)

0.35/0.04
(0.12)

knowlaug-1.0 0.04/0.04
(1.00)

4.96/2.43
(0.49)

4.57/2.17
(0.48)

4.04/1.87
(0.46)

1.57/0.48
(0.31)

0.65/0.13
(0.20)

0.30/0.04
(0.14)

knowlaug-r1-0.1 0.61/0.35
(0.57)

4.39/3.17
(0.72)

3.22/2.30
(0.72)

2.26/1.57
(0.69)

0.78/0.57
(0.72)

0.26/0.17
(0.67)

0.09/0.04
(0.50)

knowlaug-r1-0.2 0.48/0.26
(0.55)

4.52/3.13
(0.69)

3.57/2.48
(0.70)

2.74/1.87
(0.68)

1.17/0.74
(0.63)

0.39/0.22
(0.56)

0.17/0.09
(0.50)

knowlaug-r1-0.3 0.39/0.22
(0.56)

4.61/3.04
(0.66)

3.70/2.43
(0.66)

2.83/1.78
(0.63)

1.22/0.70
(0.57)

0.43/0.22
(0.50)

0.22/0.09
(0.40)

knowlaug-r1-0.4 0.26/0.22
(0.83)

4.74/2.91
(0.61)

3.87/2.35
(0.61)

3.04/1.74
(0.57)

1.35/0.70
(0.52)

0.52/0.22
(0.42)

0.26/0.09
(0.33)

knowlaug-r1-0.5 0.22/0.17
(0.80)

4.78/2.87
(0.60)

4.00/2.35
(0.59)

3.13/1.78
(0.57)

1.43/0.74
(0.52)

0.57/0.22
(0.38)

0.30/0.09
(0.29)

knowlaug-r1-0.6 0.17/0.17
(1.00)

4.83/2.96
(0.61)

4.04/2.43
(0.60)

3.22/1.87
(0.58)

1.52/0.74
(0.49)

0.61/0.17
(0.29)

0.26/0.04
(0.17)

knowlaug-r1-0.7 0.17/0.17
(1.00)

4.83/2.87
(0.59)

4.17/2.43
(0.58)

3.39/1.91
(0.56)

1.70/0.78
(0.46)

0.70/0.22
(0.31)

0.22/0.04
(0.20)

knowlaug-r1-0.8 0.09/0.09
(1.00)

4.91/2.83
(0.58)

4.30/2.43
(0.57)

3.48/1.87
(0.54)

1.78/0.74
(0.41)

0.78/0.17
(0.22)

0.22/0.04
(0.20)

knowlaug-r1-0.9 0.09/0.09
(1.00)

4.91/2.65
(0.54)

4.39/2.35
(0.53)

3.57/1.83
(0.51)

1.91/0.74
(0.39)

0.87/0.17
(0.20)

0.26/0.04
(0.17)

knowlaug-r1-1.0 0.09/0.09
(1.00)

4.91/2.65
(0.54)

4.35/2.30
(0.53)

3.57/1.83
(0.51)

1.87/0.65
(0.35)

0.87/0.17
(0.20)

0.26/0.04
(0.17)

C.1 Ranking Statistics 239

Top 10 articles considered:

Number of direct comments per article
Run 0 >0 >5 >10 >50 >100 >200

Baseline 1.70/0.91
(0.54)

8.30/5.48
(0.66)

4.91/3.17
(0.65)

3.04/1.91
(0.63)

0.35/0.26
(0.75)

0.09/0.04
(0.50)

0.00/0.00
(0.00)

knowlaug-0.1 1.26/0.74
(0.59)

8.74/5.70
(0.65)

6.04/3.83
(0.63)

4.30/2.70
(0.63)

1.13/0.83
(0.73)

0.30/0.22
(0.71)

0.13/0.09
(0.67)

knowlaug-0.2 1.00/0.61
(0.61)

9.00/5.78
(0.64)

6.83/4.22
(0.62)

5.17/3.17
(0.61)

1.78/1.04
(0.59)

0.70/0.35
(0.50)

0.30/0.09
(0.29)

knowlaug-0.3 0.74/0.48
(0.65)

9.26/5.96
(0.64)

7.22/4.39
(0.61)

5.57/3.30
(0.59)

2.00/1.04
(0.52)

0.78/0.35
(0.44)

0.35/0.09
(0.25)

knowlaug-0.4 0.65/0.39
(0.60)

9.35/5.70
(0.61)

7.48/4.30
(0.58)

5.78/3.17
(0.55)

2.52/1.09
(0.43)

1.22/0.35
(0.29)

0.43/0.09
(0.20)

knowlaug-0.5 0.48/0.35
(0.73)

9.52/5.65
(0.59)

7.61/4.30
(0.57)

5.87/3.13
(0.53)

2.52/1.04
(0.41)

1.26/0.30
(0.24)

0.43/0.09
(0.20)

knowlaug-0.6 0.39/0.30
(0.78)

9.61/5.57
(0.58)

7.61/4.22
(0.55)

5.91/3.04
(0.51)

2.70/1.04
(0.39)

1.35/0.30
(0.23)

0.48/0.09
(0.18)

knowlaug-0.7 0.30/0.26
(0.86)

9.70/5.13
(0.53)

8.04/4.00
(0.50)

6.43/3.00
(0.47)

3.13/1.04
(0.33)

1.52/0.30
(0.20)

0.52/0.09
(0.17)

knowlaug-0.8 0.17/0.17
(1.00)

9.83/4.83
(0.49)

8.30/3.83
(0.46)

6.78/2.91
(0.43)

3.26/1.00
(0.31)

1.52/0.26
(0.17)

0.48/0.09
(0.18)

knowlaug-0.9 0.17/0.17
(1.00)

9.83/4.26
(0.43)

8.61/3.57
(0.41)

7.26/2.83
(0.39)

3.43/0.87
(0.25)

1.57/0.22
(0.14)

0.48/0.09
(0.18)

knowlaug-1.0 0.13/0.13
(1.00)

9.87/4.04
(0.41)

8.74/3.43
(0.39)

7.43/2.70
(0.36)

3.09/0.70
(0.23)

1.43/0.22
(0.15)

0.43/0.09
(0.20)

knowlaug-r1-0.1 1.26/0.74
(0.59)

8.74/5.74
(0.66)

6.04/3.87
(0.64)

4.26/2.70
(0.63)

1.13/0.83
(0.73)

0.30/0.22
(0.71)

0.13/0.09
(0.67)

knowlaug-r1-0.2 1.04/0.61
(0.58)

8.96/5.83
(0.65)

6.74/4.22
(0.63)

5.04/3.09
(0.61)

1.70/1.00
(0.59)

0.70/0.35
(0.50)

0.30/0.09
(0.29)

knowlaug-r1-0.3 0.83/0.52
(0.63)

9.17/5.83
(0.64)

7.04/4.26
(0.60)

5.43/3.22
(0.59)

2.00/1.09
(0.54)

0.78/0.35
(0.44)

0.35/0.09
(0.25)

knowlaug-r1-0.4 0.70/0.43
(0.62)

9.30/5.70
(0.61)

7.39/4.26
(0.58)

5.70/3.13
(0.55)

2.30/1.04
(0.45)

1.00/0.35
(0.35)

0.43/0.09
(0.20)

knowlaug-r1-0.5 0.65/0.39
(0.60)

9.35/5.52
(0.59)

7.43/4.17
(0.56)

5.74/3.04
(0.53)

2.52/1.04
(0.41)

1.22/0.35
(0.29)

0.48/0.09
(0.18)

knowlaug-r1-0.6 0.52/0.35
(0.67)

9.48/5.52
(0.58)

7.52/4.13
(0.55)

5.78/3.00
(0.52)

2.65/1.09
(0.41)

1.30/0.35
(0.27)

0.48/0.09
(0.18)

knowlaug-r1-0.7 0.43/0.35
(0.80)

9.57/5.57
(0.58)

7.57/4.17
(0.55)

5.83/3.04
(0.52)

2.65/1.04
(0.39)

1.22/0.30
(0.25)

0.39/0.09
(0.22)

knowlaug-r1-0.8 0.35/0.30
(0.88)

9.65/5.48
(0.57)

7.78/4.17
(0.54)

5.96/3.00
(0.50)

2.78/1.04
(0.38)

1.39/0.30
(0.22)

0.39/0.09
(0.22)

knowlaug-r1-0.9 0.35/0.30
(0.88)

9.65/5.35
(0.55)

7.78/4.13
(0.53)

6.09/3.00
(0.49)

2.87/1.04
(0.36)

1.39/0.30
(0.22)

0.39/0.09
(0.22)

knowlaug-r1-1.0 0.17/0.17
(1.00)

9.83/5.26
(0.54)

7.83/4.00
(0.51)

6.17/2.91
(0.47)

2.96/1.04
(0.35)

1.39/0.30
(0.22)

0.39/0.09
(0.22)

240 C Further Evaluation Statistics

Top 30 articles considered:

Number of direct comments per article
Run 0 >0 >5 >10 >50 >100 >200

Baseline 5.09/2.13
(0.42)

24.91/12.78
(0.51)

14.35/7.57
(0.53)

9.22/5.00
(0.54)

1.48/1.09
(0.74)

0.35/0.17
(0.50)

0.00/0.00
(0.00)

knowlaug-0.1 4.48/2.00
(0.45)

25.52/13.04
(0.51)

15.70/8.09
(0.52)

11.09/5.70
(0.51)

2.48/1.39
(0.56)

0.96/0.35
(0.36)

0.26/0.09
(0.33)

knowlaug-0.2 4.00/1.78
(0.45)

26.00/12.91
(0.50)

16.87/8.09
(0.48)

12.48/5.74
(0.46)

3.70/1.48
(0.40)

1.57/0.43
(0.28)

0.43/0.09
(0.20)

knowlaug-0.3 3.52/1.70
(0.48)

26.48/12.48
(0.47)

18.30/8.09
(0.44)

13.96/5.74
(0.41)

4.78/1.48
(0.31)

2.04/0.43
(0.21)

0.48/0.09
(0.18)

knowlaug-0.4 3.09/1.57
(0.51)

26.91/12.13
(0.45)

19.52/8.17
(0.42)

15.35/5.91
(0.39)

5.43/1.48
(0.27)

2.43/0.43
(0.18)

0.52/0.09
(0.17)

knowlaug-0.5 2.61/1.39
(0.53)

27.39/11.70
(0.43)

20.91/8.09
(0.39)

16.70/5.83
(0.35)

6.43/1.48
(0.23)

3.04/0.43
(0.14)

0.65/0.09
(0.13)

knowlaug-0.6 2.17/1.09
(0.50)

27.83/11.30
(0.41)

21.87/7.87
(0.36)

17.70/5.70
(0.32)

7.00/1.48
(0.21)

3.30/0.43
(0.13)

0.74/0.09
(0.12)

knowlaug-0.7 1.74/0.87
(0.50)

28.26/11.04
(0.39)

22.87/7.83
(0.34)

18.78/5.74
(0.31)

7.48/1.48
(0.20)

3.39/0.43
(0.13)

0.78/0.09
(0.11)

knowlaug-0.8 1.39/0.61
(0.44)

28.61/10.30
(0.36)

23.65/7.17
(0.30)

19.87/5.39
(0.27)

8.17/1.39
(0.17)

3.70/0.43
(0.12)

0.87/0.09
(0.10)

knowlaug-0.9 0.96/0.48
(0.50)

29.04/9.43
(0.32)

24.35/6.78
(0.28)

20.65/5.13
(0.25)

8.43/1.39
(0.16)

3.74/0.43
(0.12)

0.83/0.09
(0.11)

knowlaug-1.0 0.52/0.35
(0.67)

29.48/8.74
(0.30)

25.17/6.61
(0.26)

21.13/5.04
(0.24)

8.13/1.30
(0.16)

3.57/0.39
(0.11)

0.83/0.09
(0.11)

knowlaug-r1-0.1 4.57/2.00
(0.44)

25.43/13.04
(0.51)

15.61/8.09
(0.52)

10.96/5.70
(0.52)

2.43/1.39
(0.57)

0.91/0.35
(0.38)

0.26/0.09
(0.33)

knowlaug-r1-0.2 4.04/1.78
(0.44)

25.96/13.00
(0.50)

16.78/8.22
(0.49)

12.30/5.87
(0.48)

3.48/1.48
(0.42)

1.48/0.43
(0.29)

0.39/0.09
(0.22)

knowlaug-r1-0.3 3.65/1.74
(0.48)

26.35/12.74
(0.48)

17.78/8.13
(0.46)

13.26/5.78
(0.44)

4.35/1.48
(0.34)

1.74/0.43
(0.25)

0.52/0.09
(0.17)

knowlaug-r1-0.4 3.39/1.61
(0.47)

26.61/12.30
(0.46)

18.74/8.13
(0.43)

14.39/5.87
(0.41)

4.96/1.48
(0.30)

2.22/0.43
(0.20)

0.57/0.09
(0.15)

knowlaug-r1-0.5 3.04/1.57
(0.51)

26.96/12.30
(0.46)

19.52/8.22
(0.42)

15.13/5.96
(0.39)

5.35/1.48
(0.28)

2.48/0.43
(0.18)

0.61/0.09
(0.14)

knowlaug-r1-0.6 2.78/1.52
(0.55)

27.22/12.09
(0.44)

20.30/8.26
(0.41)

15.91/5.96
(0.37)

5.83/1.48
(0.25)

2.70/0.43
(0.16)

0.61/0.09
(0.14)

knowlaug-r1-0.7 2.48/1.30
(0.53)

27.52/11.87
(0.43)

21.13/8.17
(0.39)

16.65/5.87
(0.35)

6.39/1.48
(0.23)

3.00/0.43
(0.14)

0.74/0.09
(0.12)

knowlaug-r1-0.8 2.13/1.04
(0.49)

27.87/11.39
(0.41)

21.74/7.87
(0.36)

17.43/5.65
(0.32)

6.87/1.48
(0.22)

3.35/0.43
(0.13)

0.96/0.09
(0.09)

knowlaug-r1-0.9 1.96/0.96
(0.49)

28.04/11.09
(0.40)

22.30/7.78
(0.35)

18.09/5.65
(0.31)

7.39/1.48
(0.20)

3.61/0.43
(0.12)

0.96/0.09
(0.09)

knowlaug-r1-1.0 1.78/0.83
(0.46)

28.22/10.91
(0.39)

22.78/7.70
(0.34)

18.52/5.57
(0.30)

7.52/1.48
(0.20)

3.61/0.43
(0.12)

0.96/0.09
(0.09)

C.2 Recall-Precision-Graphs 241

C.2 Recall-Precision-Graphs

C.2.1 Discussion Search

The recall-precision graphs of the discussion search runs are shown here.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

Baseline
knowlaug-mtarget-0.1
knowlaug-mtarget-0.2
knowlaug-mtarget-0.3
knowlaug-mtarget-0.4
knowlaug-mtarget-0.5
knowlaug-mtarget-0.6
knowlaug-mtarget-0.7
knowlaug-mtarget-0.8
knowlaug-mtarget-0.9
knowlaug-mtarget-1.0

Figure C.1: Recall-precision graph of all knowledge augmentation merged target runs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

Baseline
knowlaug-fragment-0.1
knowlaug-fragment-0.2
knowlaug-fragment-0.3
knowlaug-fragment-0.4
knowlaug-fragment-0.5
knowlaug-fragment-0.6
knowlaug-fragment-0.7
knowlaug-fragment-0.8
knowlaug-fragment-0.9
knowlaug-fragment-1.0

Figure C.2: Recall-precision graph of all knowledge augmentation fragment runs

242 C Further Evaluation Statistics

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

Baseline
knowlaug-canno-0.1
knowlaug-canno-0.2
knowlaug-canno-0.3
knowlaug-canno-0.4
knowlaug-canno-0.5
knowlaug-canno-0.6
knowlaug-canno-0.7
knowlaug-canno-0.8
knowlaug-canno-0.9
knowlaug-canno-1.0

Figure C.3: Recall-precision graph of all knowledge augmentation content annotation runs

List of Definitions

1 Annotation Hypertext . 32
2 Structured Annotation Hypertext . 34
3 Augmented context expression . 64
4 Probability space . 96
5 Probabilistic interpretation structure . 97
6 Special propositions for relation types . 97
7 Interpretation of propositions . 100
8 Interpretation of prob. propositions in contexts . 100
9 Probabilistic access (annotations and references) 103
10 Probabilistic access (merged targets and fragments) 104
11 Probabilistic access (subparts) . 105
12 Validity . 106
13 Context-validity . 108
14 Context-seriality . 109
15 Model of a basic POLAR program . 111
16 Polarity function pol . 121
17 POLAR trees function . 121
18 Negation of four-valued truth values . 123
19 Polarity-based truth value assignment . 123
20 Probabilities of fact goals . 128
21 Probabilities of context subgoals . 129
22 Probabilities of annorefs, references and fragments 130
23 Event expressions . 132
24 Inclusion-exclusion formula . 133
25 Model of a POLAR program . 135
26 Evaluation measures . 195
27 Within-context term weights . 197
28 Global term weights . 198

List of Examples

1 Structured annotation hypertext . 34
2 Four-valued knowledge modelling . 57
3 Retrieval by implication probability . 63
4 Probabilistic propositions in contexts . 102
5 Probabilistic access . 105
6 Interpretation structures . 106
7 Model of a basic POLAR program . 112
8 Knowledge augmentation in POOL . 117
9 G-agent-world-polarity-trees . 121
10 Event expressions . 132
11 Probabilities of event expressions . 134
12 Probabilities of instantiated rule heads . 135
13 Model of a POLAR program . 136
14 FVPD translation and evaluation . 143
15 Translation of POLAR programs . 146
16 Translation of POLAR queries and rules . 151
17 Relevance Augmentation . 172

List of Propositions

1 Annotation hypertext acyclic . 33
2 Structured annotation hypertext acyclic . 36
3 Correctness of knowledge augmentation rules . 159

List of Figures

1.1 Structure of the thesis . 4

2.1 An annotation thread in COLLATE . 13
2.2 Screenshot of the COLLATE prototype . 14

3.1 Classes and properties of the object-oriented view (the TBox) 24
3.2 Example of a structured annotation hypertext 35
3.3 Cyclic component structure . 35
3.4 Self annotation and cyclic structured annotation hypertext 36

4.1 Conceptual Model of Information Retrieval . 43
4.2 An annotated snippet . 60
4.3 Relevance augmentation example . 70
4.4 Annotation-based structured document retrieval 72
4.5 POLAR and related work . 82

5.1 Basic POLAR syntax . 90
5.2 Syntax of POLAR rules and queries . 92
5.3 Worlds and accessibility relations of the football league example 94
5.4 Possible worlds with probabilities . 94
5.5 Example interpretation of “d[pt/pf/pi/pu ϕ]” 102
5.6 Examples of probabilistic access . 105
5.7 Three interpretation structures . 107
5.8 Two other interpretation structures . 110
5.9 A model of a POLAR program . 114
5.10 A possible model of the POOL program . 115
5.11 Some selected G-agent-world-trees . 116
5.12 Worlds reachable by the augmented contextagent d1(s1,s2) 118
5.13 A model for the negative polarity example . 122
5.14 Output of trees((db,w0,1), d1(a1)) . 123
5.15 A cycle in the interpretation structure . 125
5.16 Two interpretation structures for the POLAR model example 136

6.1 POLAR translation and execution classes as UML class diagram 174
6.2 POLAR indexing classes as UML class diagram 175

7.1 Example for the annotation view on email discussions 184
7.2 W3C Lists: emails and fragments . 186

250 List of Figures

7.3 W3C Lists: emails and annotations . 187
7.4 ZDNet article and discussion thread . 188
7.5 ZDNet News snapshot: articles and direct annotations 189

8.1 Recall-precision graph of selected knowledge augmentation merged target runs 201
8.2 Recall-precision graph of selected knowledge augmentation fragment runs . . . 203
8.3 Recall-precision graph of selected knowledge augmentation content annotation

runs . 205
8.4 Recall-precision graph of selected knowledge augmentation all evidence runs . . 207
8.5 Recall-precision graph of selected document search runs 209
8.6 Recall-precision graph of selected document search runs 211

C.1 Recall-precision graph of all knowledge augmentation merged target runs . . . 241
C.2 Recall-precision graph of all knowledge augmentation fragment runs 241
C.3 Recall-precision graph of all knowledge augmentation content annotation runs . 242

List of Tables

5.1 16 possible worlds with four truth values and two propositions 95

6.1 Worlds based on trees output for our example 159

8.1 Mean average precision (MAP) and precision at K documents retrieved (P@K)
of Baseline and Whole Email runs . 200

8.2 Mean average precision (MAP) and precision at K documents retrieved (P@K)
of knowledge augmentation merged target runs 201

8.3 Average number of articles with merged targets 202
8.4 Mean average precision (MAP) and precision at K documents retrieved (P@K)

of knowledge augmentation fragment runs . 204
8.5 Average number of articles with fragments . 204
8.6 Mean average precision (MAP) and precision at K documents retrieved (P@K)

of knowledge augmentation content annotation runs 206
8.7 Average number of articles with content annotations 206
8.8 Mean average precision (MAP) and precision at K documents retrieved (P@K)

of knowledge augmentation all evidence runs 208
8.9 Mean average precision (MAP) and precision at K documents retrieved (P@K)

for the document search runs . 210
8.10 Average number of articles with content annotations (ZDNet) 212
8.11 Mean average precision (MAP) and precision at K documents retrieved (P@K)

for the document search runs . 213

Index

G-agent-world-polarity-tree, 120
G-agent-world-tree, 116
G-reachable, 115

access probability, 56, 58, 81
accessibility relation, 97
annoref, 91
annotatable object, 27
annotation

as content, 18
as dialogue act, 18–19
as metadata, 17
as reference, 19
class, 27
content level, 18
email discussions, 16, 183–185, 192
linguistic, 17
meta level, 18
negative, 58
polarity, 19, 30
scope, 30
semantic, 16, 77
structured, 28
usage, 10–11
web, 15

annotation hypertext, 19, 32–33
structured, 33–36

annotation thread, 12
annotation universe, 222
augmented context expression, 64

body, 25

categorisation, 55
classification, see ctegorisation55
clause

context, 90
syntax, 89

closed world assumption, 52
COLLATE, 12–13
component, 26
conjunctive interpretation

context, 167
contentannoref, 91
context, 55, 56, 63

syntax, 90
createAugmContextExpr, 125–127
createAugmContextExpr2, 164

DAFFODIL, 13–14
datalog

four-valued, 4
db, see global database context
db-context, see global database context
dialect, 173
digital objects, 24
direct subcontext, 64
discourse structure relations, 13
discussion search, 48
disjunctive interpretation

context, 168
document

class, 26

event expression, 132–134

fact
syntax, 89

four-valued logics, 57
fragment, 59

class, 29
permeability, 59, 65, 111

254 Index

syntax, 90
FVPD, see datalog

global database context, 54, 56, 102, 106

hypermedia, 47
hypertext, 47
HySpirit, 4

inclusion-exclusion formula, 133
inconsistent, 57
inverse document frequency, 44
isPartOf, 26

linguistic annotation, see annotation

MAP, see mean average precision
mean average precision, 196
merged annotation target, 59

syntax, 90
merged target, see merged annotation tar-

get
metaannoref, 91

negative evidence, 57

object context, 54
ontology, 77
open world assumption, 52, 95

POLAR, 50
polarity, 58

annotation, 19
POOL, 50, 51
positive evidence, 57
precision, 196
predicate space, 137
probabilistic inference, 46, 136
program

context, 90
syntax, 89

proposition
syntax, 89

ratings, 79
recall, 195
recall-precision graph, 196
reference

syntax, 58, 91
relevance augmentation, 69

retrieval function, 43
retrieval status value, 43
RSV, see retrieval status value

scientific databases, 16, 17
scope

annotation, 11
semantic annotation, see annotation
social networks, 78
special proposition, 97
structured annotation hypertext, 20, see an-

notation hypertext
subcontext, 56, 63

syntax, 91
subpart

syntax, 90

term frequency, 44
termspace, 62
tf-idf, 167, 169
trans, 145
trustworthiness, 79
truth value assignment function, 97
truth values as sets, 57

unknown, 57
user, 29

validity, 106
vector space model, 44, 137
VSM, see vector space model

weight list, 89

Bibliography

Abolhassani, M. and Fuhr, N. (2004). Applying the divergence from randomness approach
for content-only search in XML documents. In 26th European Conference on Information
Retrieval Research (ECIR 2004), Heidelberg et al. Springer.

Agosti, M. (1996). An overview of hypertext. In Agosti and Smeaton (1996), chapter 2.

Agosti, M., Albrechtsen, H., Ferro, N., Frommholz, I., Hansen, P., Orio, N., Panizzi, E., Pe-
jtersen, A. M., and Thiel, U. (2005a). DiLAS: a digital library annotation service. In
Proceedings of Annotation for Collaboration – A Workshop on Annotation Models, Tools and
Practices.

Agosti, M., Bonfiglio-Dosio, G., and Ferro, N. (2007a). A historical and contemporary study
on annotations to derive key features for systems design. International Journal on Digital
Libraries (ĲDL), 8(1):1–19.

Agosti, M., Coppotelli, T., Ferro, N., and Pretto, L. (2007b). Annotations and digital libraries:
Designing adequate test-beds. In Goh, D. H.-L., Cao, T. H., Sølvberg, I., and Rasmussen,
E. M., editors, Asian Digital Libraries. Looking Back 10 Years and Forging New Frontiers,
10th International Conference on Asian Digital Libraries, ICADL 2007, Hanoi, Vietnam,
December 10-13, 2007, Proceedings, volume 4822 of Lecture Notes in Computer Science,
pages 150–159. Springer.

Agosti, M. and Ferro, N. (2003). Annotations: Enriching a digital library. In Constantopoulos
and Sølvberg (2003), pages 88–100.

Agosti, M. and Ferro, N. (2005). Annotations as context for searching documents. In Crestani,
F. and Ruthven, I., editors, Information Context: Nature, Impact, and Role: 5th Interna-
tional Conference on Conceptions of Library and Information Sciences, CoLIS 2005, volume
3507 of Lecture Notes in Computer Science, pages 155–170, Heidelberg et al. Springer.

Agosti, M. and Ferro, N. (2006). Search strategies for finding annotations and annotated
documents: the FAST service. In Larsen, H. L., Pasi, G., Arroyo, D. O., Andreasen, T.,
and Christiansen, H., editors, Proc. of the 7th International Conference on Flexible Querying
Answering Systems (FQAS 2006), volume 4027 of Lecture Notes in Computer Science, pages
270–281, Heidelberg et al. Springer.

Agosti, M. and Ferro, N. (2007). A formal model of annotations of digital content. ACM
Transactions on Information Systems, 26(13.):3.1 – 3.57.

Agosti, M., Ferro, N., Frommholz, I., Panizzi, E., Putz, W., and Thiel, U. (2006). Integration
of the DiLAS annotation service into digital library infrastructures. In Blandford, A. and

256 Bibliography

Gow, J., editors, Proc. Digital Libraries in the Context of Users’ Broader Activities Workshop
(CUBA) at JCDL 2006.

Agosti, M., Ferro, N., Frommholz, I., and Thiel, U. (2004). Annotations in digital libraries and
collaboratories – facets, models and usage. In Heery and Lyon (2004), pages 244–255.

Agosti, M., Ferro, N., and Orio, N. (2005b). Annotating illuminated manuscripts: an effective
tool for research and education. In JCDL ’05: Proceedings of the 5th ACM/IEEE-CS Joint
Conference on Digital Libraries, pages 121–130, New York, NY, USA. ACM Press.

Agosti, M. and Melucci, M. (2000). Information retrieval techniques for the automatic con-
struction of hypertext. In Kent, A. and Hall, C. M., editors, Encyclopedia of Library and
Information Science, volume 66, pages 129–172. Marcel Dekker, New York, USA.

Agosti, M. and Smeaton, A. F., editors (1996). Information Retrieval and Hypertext. Kluwer
Academic Publishers, Boston et al.

Amati, G. and van Rĳsbergen, C. J. (2002). Probabilistic models of information retrieval based
on measuring the divergence from randomness. ACM Transactions on Information Systems
(TOIS), 20(4):357–389.

Arms, W. Y. (2001). Digital Libraries. MIT Press, Cambridge, Mass.

Baader, F., Calvanese, D., McGuiness, D., Nardi, D., and Patel-Schneider, P., editors (2003).
The Description Logic Handbook – Theory, Implementation and Applications. Cambridge
University Press, Cambridge, UK.

Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval. Addison Wesley.

Balog, K., Meĳ, E., and de Rĳke, M. (2006). Language models for enterprise search: Query
expansion and combination of evidence. In Voorhees and Buckland (2006).

Beitzel, S. M., Jensen, E. C., Cathey, R., Ma, L., Grossman, D. A., Frieder, O., Chowdhury, A.,
Pass, G., and Vandermolen, H. (2003). IIT at TREC 2003, task classification and document
structure for known-item search. In Voorhees (2003), pages 311–320.

Belnap, N. (1977). A useful four-valued logic. In Modern Uses of Multiple-Valued Logic. Reidel,
Dordrecht.

Berners-Lee, T., Fielding, R., and Masinter, L. (2005). Uniform Resource Identifier (URI):
Generic syntax. Technical report, Internet RFC-3986.

Bernheim Brush, A. J. (2002). Annotating Digital Documents for Asynchronous Collaboration.
PhD thesis, Department of Computer Science and Engineering, University of Washington.

Biebricher, P., Fuhr, N., Knorz, G., Lustig, G., and Schwantner, M. (1988). The automatic
indexing system AIR/PHYS - from research to application. In 11th International Conference
on Research and Development in Information Retrieval, pages 333–342, Grenoble, France.
Presses Universitaires de Grenoble.

Biron, P. V. and Malhotra, A. (2004). XML Schema part 2: Datatypes second edition. W3C
recommendation 28 october 2004. Technical report, W3C. http://www.w3.org/TR/
xmlschema-2/, last visited 14 September 2007.

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

Bibliography 257

Bookstein, A. and Swanson, D. R. (1974). Probabilistic models for automatic indexing. Journal
of the American Society for Information Science, 25:312–318.

Bottoni, P., Civica, R., Levialdi, S., Orso, L., Panizzi, E., and Trinchese, R. (2004). Madcow:
a multimedia digital annotation system. In AVI ’04: Proceedings of the working conference
on Advanced visual interfaces, pages 55–62, New York, NY, USA. ACM Press.

Bottoni, P., Levialdi, S., and Rizzo, P. (2003). An analysis and case study of digital annotation.
In Bianchi-Berthouze, N., editor, Databases in Networked Information Systems, Third Inter-
national Workshop, DNIS 2003, Aizu, Japan, September 22-24, 2003, Proceedings, volume
2822 of Lecture Notes in Computer Science, pages 216–230. Springer.

Brocks, H., Stein, A., Thiel, U., Frommholz, I., and Dirsch-Weigand, A. (2002). How to incor-
porate collaborative discourse in cultural digital libraries. In Proceedings of the ECAI 2002
Workshop on Semantic Authoring, Annotation & Knowledge Markup (SAAKM02), Lyon,
France.

Buitelaar, P. and Declerck, T. (2003). Linguistic annotation for the semantic web. In Handschuh
and Staab (2003a), pages 93–112.

Bush, V. (1945). As we may think. Atlantic Monthly. http://www.theatlantic.com/
unbound/flashbks/computer/bushf.htm.

Cabanac, G., Chevalier, M., Chrisment, C., and Julien, C. (2007). Collective annotation:
Perspectives for information retrieval improvement. In RIAO 2007: Proceedings of the 8th
International Conference on Information Retrieval - Large-Scale Semantic Access to Content
(Text, Image, Video and Sound), Pittsburgh, PA, USA. C.I.D. Paris, France.

Camon, E., Magrane, M., Barrell, D., Binns, D., Fleischmann, W., Kersey, P., Mulder, N.,
Oinn, T., Maslen, J., Cox, A., and Apweiler, R. (2003). The Gene Ontology Annotation
(GOA) project: Implementation of GO in SWISS-PROT, TrEMBL, and InterPro. Genome
Res., 13:662–672.

Ceri, S., Gottlob, G., and Tanca, L. (1990). Logic Programming and Databases. Springer,
Heidelberg et al.

Chiaramella, Y. and Kheirbek, A. (1996). An integrated model for hypermedia and information
retrieval. In Agosti and Smeaton (1996), chapter 7.

Chiaramella, Y., Mulhem, P., and Fourel, F. (1996). A model for multimedia information
retrieval. Technical report, FERMI ESPRIT BRA 8134, University of Glasgow.

Clauß, G. and Ebner, H. (1972). Grundlagen der Statistik für Psychologen, Pädagogen und
Soziologen. Verlag Harri Deutsch, Frankfurt am Main und Zürich.

Constantopoulos, P. and Sølvberg, I. T., editors (2003). Research and Advanced Technology
for Digital Libraries. Proc. European Conference on Digital Libraries (ECDL 2003), Lecture
Notes in Computer Science, Heidelberg et al. Springer.

Cooper, W. S., Gey, F. C., and Dabney, D. P. (1992). Probabilistic retrieval based on staged
logistic regression. In Belkin, N. J., Ingwersen, P., and Pejtersen, A. M., editors, Proceedings
of the 15th Annual International ACM SIGIR Conference on Research and Development in

http://www.theatlantic.com/unbound/flashbks/computer/bushf.htm
http://www.theatlantic.com/unbound/flashbks/computer/bushf.htm

258 Bibliography

Information Retrieval. Copenhagen, Denmark, June 21-24, 1992, pages 198–210, New York.
ACM.

Craswell, N., de Vries, A. P., and Soboroff, I. (2005). Overview of the TREC 2005 Enterprise
Track. In Voorhees and Buckland (2005).

Craswell, N. and Hawking, D. (2003). Overview of the TREC-2003 web track. In Voorhees
(2003).

Crestani, F. and Lalmas, M. (2001). Logic and uncertainty in information retrieval. In Agosti,
M., Crestani, F., and Pasi, G., editors, Lectures in Information Retrieval, pages 179–206.
Springer, Heidelberg et al.

Crestani, F., Lalmas, M., van Rĳsbergen, C. J., and Campbell, I. (1998). “Is this document
relevant?. . . probably”: a survey of probabilistic models in information retrieval. ACM Com-
puting Surveys, 30(4):528–552.

Croft, W. B., Moffat, A., van Rĳsbergen, C. J., Wilkinson, R., and Zobel, J., editors (1998).
Proceedings of the 21st Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, New York. ACM.

Croft, W. B. and Turtle, H. (1989). A retrieval model for incorporating hypertext links. In
Proceedings of the Hypertext ’89, pages 213–224, New York. ACM.

Del Bimbo, A., Gradmann, S., and Ioannidis, Y. (2004). Future research directions – 3rd
DELOS brainstorming workshop report, DELOS Network of Excellence.

Delcambre, L. M. L., Maier, D., Bowers, S., Weaver, M., Deng, L., Gorman, P., Ash, J.,
Lavelle, M., and Lyman, J. (2001). Bundles in captivity: An application of superimposed
information. In Proceedings of the 17th International Conference on Data Engineering, pages
111–120, Washington, DC, USA. IEEE Computer Society.

Denoue, L. and Vignollet, L. (2000). An annotation tool for web browsers and its applications
to information retrieval. In Proceedings of RIAO 2000, Paris, April 2000.

Dowell, R. D., Jokerst, R. M., Day, A., Eddy, S. R., and Stein, L. (2001). The distributed
annotation system. BMC Bioinformatics, 2(7).

Fagin, R. and Halpern, J. (1994). Reasoning about knowledge and probability. Journal of the
ACM, 41(2):340–367.

Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. (1995). Reasoning about Knowledge.
MIT Press, Cambridge, Massachusetts.

Fraenkel, A. S. and Klein, S. T. (1999). Information retrieval from annotated texts. Journal of
the American Society for Information Science, 50(10):845–854.

Frei, H. P. and Stieger, D. (1994). The use of semantic links in hypertext information retrieval.
Information Processing and Management, 31(1):1–13.

Frisse, M. E. (1988). Searching for information in a hypertext medical handbook. Communi-
cations of the ACM, 31(7):880–886.

Bibliography 259

Frommholz, I. (2005a). Applying the annotation view on messages for discussion search. In
Voorhees and Buckland (2005).

Frommholz, I. (2005b). What did the others say? Probabilistic indexing and retrieval models in
annotation-based discussions. Bulletin of the IEEE Technical Committee on Digital Libraries.
http://www.ieee-tcdl.org/Bulletin/v2n2/frommholz/frommholz.html.

Frommholz, I. (2007). Annotation-based document retrieval with probabilistic logics. In Fuhr,
N., Kovacs, L., and Meghini, C., editors, Research and Advanced Technology for Digital
Libraries. Proc. of the 11th European Conference on Digital Libraries (ECDL 2007), Lecture
Notes in Computer Science, pages 321–332, Heidelberg et al. Springer.

Frommholz, I., Brocks, H., Thiel, U., Neuhold, E., Iannone, L., Semeraro, G., Berardi, M.,
and Ceci, M. (2003). Document-centered collaboration for scholars in the humanities - the
COLLATE system. In Constantopoulos and Sølvberg (2003), pages 434–445.

Frommholz, I. and Fuhr, N. (2006a). Evaluation of relevance and knowledge augmentation
in discussion search. In Gonzalo, J., Thanos, C., Verdejo, M. F., and Carrasco, R. C.,
editors, Research and Advanced Technology for Digital Libraries. Proc. of the 10th European
Conference on Digital Libraries (ECDL 2006), Lecture Notes in Computer Science, pages
279–290, Heidelberg et al. Springer.

Frommholz, I. and Fuhr, N. (2006b). Probabilistic, object-oriented logics for annotation-based
retrieval in digital libraries. In Nelson, M., Marshall, C., and Marchionini, G., editors,
Opening Information Horizons – Proc. of the 6th ACM/IEEE Joint Conference on Digital
Libraries (JCDL 2006), pages 55–64, New York. ACM.

Frommholz, I., Knežević, P., Mehta, B., Niedereé, C., Risse, T., and Thiel, U. (2004a). Sup-
porting information access in next generation digital library architectures. In Agosti, M.,
Schek, H.-J., and Türker, C., editors, Digital Library Architectures: Peer-to-Peer, Grid,
and Service-Orientation. Proceedings of the Sixth Thematic Workshop of the EU Network of
Excellence DELOS, pages 49–60, Cagliari, Italy.

Frommholz, I. and Larson, R. (2007). Report on the INEX 2006 heterogeneous collection track.
SIGIR Forum, 41(1).

Frommholz, I. and Lechtenfeld, M. (2008). Determining the polarity of postings for discussion
search. In Proc. of the “Information Retrieval 2008” Workshop at LWA 2008, Würzburg,
Germany.

Frommholz, I., Thiel, U., and Kamps, T. (2004b). Annotation-based document retrieval with
four-valued probabilistic datalog. In Rölleke, T. and de Vries, A. P., editors, Proceedings of the
first SIGIR Workshop on the Integration of Information Retrieval and Databases (WIRD’04),
pages 31–38, Sheffield, UK.

Fuhr, N. (1992). Probabilistic models in information retrieval. The Computer Journal,
35(3):243–255.

Fuhr, N. (2000). Probabilistic Datalog: Implementing logical information retrieval for advanced
applications. Journal of the American Society for Information Science, 51(2):95–110.

Fuhr, N. and Buckley, C. (1991). A probabilistic learning approach for document indexing.
ACM Transactions on Information Systems, 9(3):223–248.

260 Bibliography

Fuhr, N. and Buckley, C. (1993). Optimizing document indexing and search term weighting
based on probabilistic models. In Harman, D., editor, The First Text REtrieval Conference
(TREC-1), pages 89–100, Gaithersburg, Md. 20899. National Institute of Standards and
Technology Special Publication 500-207.

Fuhr, N., Gövert, N., Kazai, G., and Lalmas, M. (2002). INEX: INitiative for the Eval-
uation of XML retrieval. In Baeza-Yates, R., Fuhr, N., and Maarek, Y. S., editors,
Proceedings of the SIGIR 2002 Workshop on XML and Information Retrieval. http:
//www.is.informatik.uni-duisburg.de/bib/docs/Fuhr_etal_02a.html.

Fuhr, N., Gövert, N., Kazai, G., and Lalmas, M., editors (2003). INitiative for the Evaluation
of XML Retrieval (INEX). Proceedings of the First INEX Workshop. Dagstuhl, Germany,
December 8–11, 2002, ERCIM Workshop Proceedings, Sophia Antipolis, France. ERCIM.
http://www.ercim.org/publication/ws-proceedings/INEX2002.pdf.

Fuhr, N., Gövert, N., and Rölleke, T. (1998). DOLORES: A system for logic-based retrieval of
multimedia objects. In Croft et al. (1998), pages 257–265.

Fuhr, N. and Großjohann, K. (2004). XIRQL: An XML query language based on information
retrieval concepts. ACM Transactions on Information Systems, 22:313–356.

Fuhr, N., Hansen, P., Mabe, M., Micsik, A., and Solvberg, I. (2001). Digital libraries: A
generic classification and evaluation scheme. In Proceedings European Conference on Digital
Libraries, pages 187–199, Heidelberg et al. Springer.

Fuhr, N., Lalmas, M., and Malik, S., editors (2004). INitiative for the Evaluation of
XML Retrieval (INEX). Proceedings of the Second INEX Workshop. Dagstuhl, Germany,
December 15–17, 2003. http://inex.is.informatik.uni-duisburg.de:2003/
proceedings.pdf.

Fuhr, N., Lalmas, M., Malik, S., and Kazai, G., editors (2006). Advances in XML Information
Retrieval and Evaluation: Fourth Workshop of the INitiative for the Evaluation of XML
Retrieval (INEX 2005), Dagstuhl 28-30 November 2005, Lecture Notes in Computer Science,
volume 3977. Springer-Verlag GmbH.

Fuhr, N., Lalmas, M., Malik, S., and Szlavik, Z., editors (2005). Advances in XML Informa-
tion Retrieval: Third International Workshop of the Initiative for the Evaluation of XML
Retrieval, INEX 2004, Dagstuhl Castle, Germany, December 6-8, 2004, Revised Selected Pa-
pers, volume 3493. Springer-Verlag GmbH. http://www.springeronline.com/3-540-26166-4.

Fuhr, N., Lalmas, M., and Trotman, A., editors (2007). Comparative Evaluation of XML In-
formation Retrieval Systems, 5th International Workshop of the Initiative for the Evaluation
of XML Retrieval, INEX 2006, number 4518 in LNCS, Heidelberg et al. Springer.

Fuhr, N. and Pfeifer, U. (1991). Combining model-oriented and description-oriented approaches
for probabilistic indexing. In Proceedings of the Fourteenth Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 46–56, New York.
ACM.

Fuhr, N. and Rölleke, T. (1997). A probabilistic relational algebra for the integration of informa-
tion retrieval and database systems. ACM Transactions on Information Systems, 14(1):32–66.

http://www.is.informatik.uni-duisburg.de/bib/docs/Fuhr_etal_02a.html
http://www.is.informatik.uni-duisburg.de/bib/docs/Fuhr_etal_02a.html
http://www.ercim.org/publication/ws-proceedings/INEX2002.pdf
http://inex.is.informatik.uni-duisburg.de:2003/proceedings.pdf
http://inex.is.informatik.uni-duisburg.de:2003/proceedings.pdf

Bibliography 261

Fuhr, N. and Rölleke, T. (1998). HySpirit – a probabilistic inference engine for hypermedia
retrieval in large databases. In Proceedings of the 6th International Conference on Extending
Database Technology (EDBT), pages 24–38, Heidelberg et al. Springer.

Furuta, R., Shipman, F. M., Marshall, C. C., Brenner, D., and Hsieh, H. (1997). Hypertext
paths and the World Wide Web: Experiences with Walden’s Path. In Proc. of Hypertext
’97: the Eighth ACM Conf. on Hypertext, pages 167–176, UK. ACM.

Gertz, M., Sattler, K.-U., Gorin, F., Hogarth, M., and Stone, J. (2002). Annotating scientific
images: a concept-based approach. In Proceedings of the 14th International Conference on
Scientific and Statistical Database Management, 2002, pages 59–68.

Golovchinsky, G., Price, M. N., and Schilit, B. N. (1999). From reading to retrieval: freeform
ink annotations as queries. In Proceedings of the 22nd International Conference on Research
and Development in Information Retrieval, pages 19–25, New York. ACM.

Gonçalves, M. A., Fox, E. A., Watson, L. T., and Kipp, N. A. (2004). Streams, structures,
spaces, scenarios, societies (5s): A formal model for digital libraries. ACM Trans. Inf. Syst.,
22(2):270–312.

Güting, R. H. (1992). Datenstrukturen und Algorithmen. B.G. Teubner Stuttgart.

Halasz, F. G. (1988). Reflections on NoteCards: Seven issues for the next generation of hyper-
media systems. Communications of the ACM, 31(7).

Hammwöhner, R. and Thiel, U. (1987). Content oriented relations between text units – a
structural model for hypertexts. In HYPERTEXT ’87: Proceeding of the ACM conference
on Hypertext, pages 155–174, New York, NY, USA. ACM.

Handschuh, S. and Staab, S., editors (2003a). Annotation for the Semantic Web. IOS Press.

Handschuh, S. and Staab, S. (2003b). Annotation of the shallow and the deep web. In Hand-
schuh and Staab (2003a), pages 25–46.

Hawking, D., Vorhees, E., Craswell, N., and Bailey, P. (1999). Overview of the TREC-8 web
track. In Voorhees and Harman (1999), pages 131–150.

Heery, R. and Lyon, L., editors (2004). Research and Advanced Technology for Digital Libraries.
Proc. European Conference on Digital Libraries (ECDL 2004), Lecture Notes in Computer
Science, Heidelberg et al. Springer.

Hornby, A., Cowie, A., and Windsor Lewis, J., editors (1976). Oxford Advanced Learner’s
Dictionary of Current English. Oxford University Press.

International Organization for Standardization (1996). ISO/EIC 14977: Information technology
– syntactic metalanguage – Extended BNF.

Joachims, T. (1998). Text categorization with support vector machines: learning with many
relevant features. In Nédellec, C. and Rouveirol, C., editors, Proceedings of ECML-98, 10th
European Conference on Machine Learning, pages 137–142, Heidelberg et al. Springer.

Kahan, J., Koivunen, M., Prud’Hommeaux, E., and Swick, R. (2001). Annotea: An open RDF
infrastructure for shared web annotations. In Proceedings of the WWW10 International
Conference, Hong Kong.

262 Bibliography

Kehoe, B. P. (1993). Zen and the Art of the Internet. A Beginners Guide. Prentice Hall,
Englewood Cliffs, NJ, 2nd edition.

Klas, C.-P., Fuhr, N., and Schaefer, A. (2004a). Evaluating strategic support for information
access in the DAFFODIL system. In Heery and Lyon (2004).

Klas, C.-P., Kriewel, S., and Schaefer, A. (2004b). Daffodil - Nutzerorientiertes Zugangssystem
für heterogene digitale Bibliotheken. dvs Band.

Kleinberg, J. (1998). Authoritative sources in a hyperlinked environment. In Proceedings of
the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 668–677.

Kouzes, R. T., Myers, J. D., and Wulf, W. A. (1996). Collaboratories: Doing science on the
internet. Computer, 29(8):40–46.

Lalmas, M. and Rölleke, T. (2003). Four-valued knowledge augmentation for structured doc-
ument retrieval. International Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems, 11(1):67–85.

Lechtenfeld, M. (2007). Sentiment Classification in Diskussionen. Master’s thesis, Universität
Duisburg-Essen, FB Ingenieurwissenschaften. In German.

Lucarella, D. and Zanzi, A. (1996). Information modelling and retrieval in hypermedia systems.
In Agosti and Smeaton (1996), chapter 6.

Marshall, C. C. (1997). Annotation: From paper books to the digital library. In Proceedings
of the ACM Digital Libraries ’97 Conference, pages 131–140.

Marshall, C. C. (1998). Toward an ecology of hypertext annotation. In Proceedings of the ninth
ACM conference on Hypertext and hypermedia: links, objects, time and space – structure in
hypermedia systems, pages 40–49.

Meghini, C., Sebastiani, F., Straccia, U., and Thanos, C. (1993). A model of information
retrieval based on a terminological logic. In Proceedings of the Sixteenth Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 298–
308, New York. ACM.

Mizzaro, S. (1998). How many relevances in information retrieval? Interacting With Computers,
10(3):303–320.

Müller, A. and Thiel, U. (1994). Query expansion in an abductive information retrieval system.
In In Proc. RIAO ’94 - Intelligent Multimedia Information Retrieval Systems and Manage-
ment, pages 461–480.

Nagao, K. (2003). Digital Content Annotation and Transcoding. Artech House, Norwood (MA),
USA.

Neuhold, E., Niedereé, C., Stewart, A., Frommholz, I., and Mehta, B. (2004). The role of
context for information mediation in digital libraries. In Chen, Z., Chen, H., Miao, Q., Fu, Y.,
Fox, E., and Lim, E.-P., editors, Proc. of the 7th International Conference on Asian Digital
Libraries: International Collaboration and Cross-Fertilization (ICADL 2004), volume 3334
of Lecture Notes in Computer Science (LNCS), pages 133–143, Heidelberg et al. Springer.

Bibliography 263

Nichols, D. M., Pemberton, D., Dalhoumi, S., Larouk, O., Belisle, C., and Twidale, M. B.
(2000). DEBORA: Developing an interface to support collaboration in a digital library. In
Borbinha, J. and Baker, T., editors, Research and Advanced Technology for Digital Libraries.
Proc. European Conference on Digital Libraries (ECDL 2000), volume 1923 of Lecture Notes
in Computer Science, pages 239–248, Heidelberg et al. Springer.

Nilsson, N. J. (1986). Probabilistic logic. Artificial Intelligence, 28:71–87.

Nottelmann, H. and Fuhr, N. (2003). From uncertain inference to probability of relevance for
advanced IR applications. In Sebastiani, F., editor, 25th European Conference on Information
Retrieval Research (ECIR 2003), pages 235–250, Heidelberg et al. Springer.

Ogilvie, P. and Callan, J. (2004). Using language models for flat text queries in XML retrieval.
In Fuhr et al. (2004), pages 12–18. http://inex.is.informatik.uni-duisburg.de:
2003/proceedings.pdf.

O’Reilly, T. (2005). What is Web 2.0 – design patterns and business models for the next gener-
ation of software. http://www.oreilly.com/pub/a/oreilly/tim/news/2005/09/
30/what-is-web-20.html, last visited 2007-12-02.

Ovsiannikov, I. A., McNeill, T. H., and Arbib, M. A. (1999). Annotation technology. Int. J.
Hum.-Comput. Stud. 50, 50(4):329–362.

Paepcke, A. (1996). Digital libraries: Searching is not enough–what we learned on-site. D-Lib
Magazine, 2(5). http://www.dlib.org/dlib/may96/stanford/05paepcke.html.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies Project.

Pang, B., Lee, L., and Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using
machine learning techniques. In Proc. of the 2002 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 79–86.

Phelps, T. A. and Wilensky, R. (1997). Multivalent annotations. In Peters, C. and Thanos, C.,
editors, Research and Advanced Technology for Digital Libraries. Proc. European Conference
on Digital Libraries (ECDL 1997), volume 1324 of Lecture Notes in Computer Science, pages
287–303, Heidelberg et al. Springer.

Piwowarski, B., Faure, G.-E., and Gallinari, P. (2003). Bayesian networks and INEX.
In Fuhr et al. (2003), pages 149–154. http://www.ercim.org/publication/
ws-proceedings/INEX2002.pdf.

Ponte, J. M. and Croft, W. B. (1998). A language modeling approach to information retrieval.
In Croft et al. (1998), pages 275–281.

Robertson, S. E. (1977). The probability ranking principle in IR. Journal of Documentation,
33:294–304.

Robertson, S. E. and Sparck Jones, K. (1976). Relevance weighting of search terms. Journal
of the American Society for Information Science, 27:129–146.

http://inex.is.informatik.uni-duisburg.de:2003/proceedings.pdf
http://inex.is.informatik.uni-duisburg.de:2003/proceedings.pdf
http://www.oreilly.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreilly.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.dlib.org/dlib/may96/stanford/05paepcke.html
http://www.ercim.org/publication/ws-proceedings/INEX2002.pdf
http://www.ercim.org/publication/ws-proceedings/INEX2002.pdf

264 Bibliography

Robertson, S. E. and Walker, S. (1994). Some simple effective approximations to the 2-Poisson
model for probabilistic weighted retrieval. In Croft, B. W. and van Rĳsbergen, C. J., editors,
Proceedings of the Seventeenth Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 232–241, London, et al. Springer-Verlag.

Robertson, S. E., Walker, S., Jones, S., and Hancock-Beaulieu, M. M. (1995). Okapi at TREC-
3. In Proceedings of the 3rd Text Retrieval Converence (TREC-3), pages 109–126, Springfield,
Virginia, USA. NTIS.

Rölleke, T. (1998). POOL: Probabilistic Object-Oriented Logical Representation and Retrieval
of Complex Objects. PhD thesis, University of Dortmund, Germany.

Rölleke, T. (2008). Probabilistic Logical Models for Database (DB) and Information Retrieval
(IR) – A Seamlessly Integrated DB+IR Technology. In preparation.

Rölleke, T. and Fuhr, N. (1996). Retrieval of complex objects using a four-valued logic. In
Proceedings of the 19th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 206–214, New York. ACM.

Rölleke, T., Wu, H., Wang, J., and Azzam, H. (2007). Modelling retrieval models in a prob-
abilistic relational algebra with a new operator: the relational Bayes. The International
Journal on Very Large Data Bases (VLDB), 17(1):5–37.

Ross, K. A. (1990). Modular stratification and magic sets for datalog programs with negation.
In PODS ’90: Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, pages 161–171, New York, NY, USA. ACM.

Röscheisen, M., Mogensen, C., and Winograd, T. (1995). Beyond browsing: shared comments,
SOAPs, trails, and on-line communities. Computer Networks and ISDN Systems, 27(6):739–
749.

Sanderson, M. and Zobel, J. (2005). Information retrieval system evaluation: effort, sensitivity
and reliability. In Marchionini, G., Moffat, A., and Tait, J., editors, Proceedings of the 28th
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, New York. ACM.

Savoy, J. and Picard, J. (1999). Report on the TREC-8 experiment: Searching on the web and
in distributed collections. In Voorhees and Harman (1999), pages 229–240.

Schenkel, R., Crecelius, T., Kacimi, M., Michel, S., Neumann, T., Parreira, J., and Weikum,
G. (2008). Efficient top-k querying over social-tagging networks. In Proceedings of the 31st
Annual International ACM SIGIR Conference on Research & Development on Information
Retrieval (SIGIR 2008), Singapore, Singapore. Accepted for publication.

Schilit, B. N., Golovchinsky, G., and Price, M. N. (1998a). Beyond paper: Supporting active
reading with free form digital ink annotations. In CHI 98 Conference Proceedings, pages
249–256. ACM.

Schilit, B. N., Price, M. N., and Golovchinsky, G. (1998b). Digital library information ap-
pliances. In Proceedings of the third ACM Conference on Digital libraries, pages 217–226.
ACM.

Bibliography 265

Searle, J. (1979). A taxonomy of illocutionary acts. In Searle, J., editor, Expression and
Meaning. Studies in the Theory of Speech Acts, pages 1–29. Cambridge University Press,
Cambridge.

Shipman, F., Price, M., Marshall, C. C., and Golovchinsky, G. (2003). Identifying useful
passages in documents based on annotation patterns. In Constantopoulos and Sølvberg
(2003), pages 101–112.

Storch, U. and Wiebe, H. (1989). Lehrbuch der Mathematik. Band I: Analysis einer Veränder-
lichen. BI Wissenschaftsverlag.

Thiel, U., Brocks, H., Frommholz, I., Dirsch-Weigand, A., Keiper, J., Stein, A., and Neuhold,
E. (2004). COLLATE - a collaboratory supporting research on historic European films.
International Journal on Digital Libraries (ĲDL), 4(1):8–12.

Trigg, R. H. (1983). A network-based approach to text handling for the online scientific com-
munity. PhD thesis, University of Maryland.

Turtle, H. and Croft, W. B. (1990). Inference networks for document retrieval. In Proceedings
of the 13th International Conference on Research and Development in Information Retrieval,
pages 1–24, New York. ACM.

van Rĳsbergen, C. J. (1986). A non-classical logic for information retrieval. The Computer
Journal, 29(6):481–485.

van Rĳsbergen, C. J. (1989). Towards an information logic. In Proceedings of the Twelfth
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 77–86, New York. ACM.

van Rĳsbergen, C. J. (1992). Probabilistic retrieval revisited. The Computer Journal, 35(3):291–
298.

Voorhees, E. M., editor (2003). The Eleventh Text REtrieval Conference (TREC 2003),
Gaithersburg, MD, USA. NIST.

Voorhees, E. M. and Buckland, L. P., editors (2005). The Fourteenth Text REtrieval Conference
(TREC 2005), Gaithersburg, MD, USA. NIST.

Voorhees, E. M. and Buckland, L. P., editors (2006). The Fifteenth Text REtrieval Conference
(TREC 2006), Gaithersburg, MD, USA. NIST.

Voorhees, E. M. and Harman, D., editors (1999). The Eight Text REtrieval Conference (TREC-
8), Gaithersburg, MD, USA. NIST.

Wolfe, J. L. (2000). Effects of annotations on student readers and writers. In Proceedings of
the fifth ACM conference on digital libraries, pages 19–26. ACM.

Wong, S. K. M. and Yao, Y. Y. (1995). On modeling information retrieval with probabilistic
inference. ACM Transactions on Information Systems, 13(1):38–68.

Xi, W., Lind, J., and Brill, E. (2004). Learning effective ranking functions for newsgroup
search. In Järvelin, K., Allen, J., Bruza, P., and Sanderson, M., editors, Proceedings of
the 27th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 394–401, New York. ACM.

	Introduction
	The Annotation Universe
	The Annotation Universe -- Applications, Facets and Properties
	Digital Annotations
	Definition and Usage
	Annotations in Digital Libraries and Collaboratories
	Annotations on the Web
	Email Discussions and Usenet News
	Semantic Annotation
	Scientific Databases
	Linguistic Annotation

	Facets of Annotations
	Annotations as Metadata
	Annotations as Content
	Annotations as Dialogue Acts
	Annotations as References
	Polarity of Annotations
	Annotations and Hypertexts

	Summary and Discussion

	A Model of the Annotation Universe for Annotation-based IR
	Main Classes
	Digital Objects
	Structured Documents
	Annotatable Objects and Annotations
	Fragments
	Annotation Types
	Scope, Permission and Polarity
	Multiclassification

	Structured Annotation Hypertext
	Annotation Hypertext
	Structured Annotation Hypertext

	Summary and Discussion

	The POLAR Framework
	Annotation-based Knowledge Modelling and Retrieval with POLAR
	Information Retrieval
	Introduction
	An Overview of Retrieval Models
	Hypertext, Structured Document and Web Retrieval
	Annotation-based Retrieval

	The POLAR Framework
	Motivation
	Probabilistic Object-oriented Logics for Annotation-based Retrieval
	Document and Query Representation and Description
	POLAR Knowledge Modelling
	Querying and Retrieval in POLAR
	Knowledge and Relevance Augmentation

	Further Application Showcases
	Annotation-based Structured Document Retrieval and Discussion Search
	Enriching a Document Ranking with Annotations
	Document Access through Fragments and Highlighted Parts
	Users and Groups
	Semantic Annotations and Ontologies
	Social Networks
	Ratings
	Annotation-based Trustworthiness
	Access Probability

	Related Work
	Hypertext and Structured Document IR and Discussion Search
	Annotation-based IR

	Summary and Discussion

	POLAR Syntax and Semantics
	Syntax
	Basic Expressions
	Rules and Queries

	Semantics
	Possible Worlds
	Basic Knowledge Modelling
	Knowledge Augmentation
	Queries and Rules

	Retrieval Function
	Information Retrieval with Probabilistic Inference
	Probabilistic Inference in POLAR

	Summary and Discussion

	POLAR Implementation
	Four-Valued Probabilistic Datalog (FVPD)
	Syntax of FVPD
	Translation to and Evaluation with Probabilistic Datalog

	POLAR Translation to FVPD
	Basic Knowledge Modelling
	Queries and Rules
	Knowledge Augmentation
	Retrieval Function
	Relevance Augmentation

	System Architecture and Java Implementation
	POLAR Translation and Execution
	POLAR Indexing
	POLAR Prototype

	Summary and Discussion

	Evaluation
	Example Applications and Test Collections
	Emails as Annotations: The W3C Discussion Lists
	Collection
	The Annotation View on Email Messages
	Collection Statistics
	Representation in POLAR

	ZDNet News
	Collection Statistics
	Testbed Creation
	Representation in POLAR
	Polarity of Comments

	Summary and Discussion

	Experiments
	Methodology and Presentation
	Evaluation Measures
	Significance Tests
	Presentation

	Term Weighting and Retrieval Functions
	Discussion Search
	Description of Runs
	Baseline and Whole Email Results
	Results for Knowledge Augmentation

	Document Search
	Description of Runs
	Results

	Determining the Polarity of an Annotation
	Machine Learning for Sentiment Classification in Discussions

	Summary and Discussion

	Conclusion and Outlook
	Model of the Annotation Universe
	POLAR Implementation
	FVPD Support Rules for Knowledge Augmentation
	Calculation of (pos_term_k(football,d1) & !neg_term_k(football,d1))

	Further Evaluation Statistics
	Ranking Statistics
	Discussion Search
	Document Search

	Recall-Precision-Graphs
	Discussion Search

