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Abstract

We use embeddings in continuous time Branching processes to derive asymptotics for
various statistics associated with different models of preferential attachment. This powerful
method allows us to deduce, with very little effort, under a common framework, not only
local characteristics for a wide class of scale free trees, but also global characteristics such
as the height of the tree, maximal degree, and the size and structure of the percolation
component attached to the root. We exhibit our computations for a number of different
graph models of preferential attachment. En-route we get exact results for a large number
of preferential attachment models including not only the usual preferential attachment but
also the preferential attachment with fitness as introduced by Barabasi et al ([6]) and the
Competition Induced Preferential attachment of Berger et al ([5]) to name just two. While
most of the techniques currently in vogue gain access to the asymptotic degree distribution
of the tree, we show how the embedding techniques reveal significantly more information
both on local and global characteristics of these trees. Again very soft arguments give us the
asymptotic degree distribution and size of the maximal degree in some Preferential attachment
network models (not just trees) formulated by Cooper and Frieze [11] and van der Hofstad
et al [12]. In the process we find surprising connections between the degree distributions,
Yule processes and α-stable subordinators. We end with a number of conjectures for the
asymptotics for various statistics of these models including size of the maximal component in
percolation on these trees.

Key words. Preferential attachment, branching processes, Fringe distribution, Poisson process,
random trees, multi-type branching processes, percolation, age-dependent branching processes.
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1 Introduction

In the last few years, coupled with the explosion in data on ”real-world” networks, there has
also been a phenomenal growth in the various network models proposed to explain the structure,
growth and development of these networks. At a theoretical level, it is hoped that the study
of these networks, as well as various dynamics on these models, including routing and ranking
algorithms, models of congestion and flow and epidemic models would give us a clearer picture
of the behavior of these processes on the real networks. In this context one model of network
growth that has received a significant amount of attention is the preferential attachment model.

Preferential attachment models: At the simplest level the network grows as time evolves;
new vertices are added into the network, and a new node joins the network by forming (a fixed
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number say one) links to existing nodes with some probability depending on some characteristic
of these nodes, usually the degree or some function of the present degree of the existing nodes.
See Section 2.1 for more details.

Our contribution: To a large extent many of the existing (rigorous) theoretical studies on
these models focus solely on the degree distribution. Using very clever ideas, largely from Polya
Urn theory coupled with concentration inequalities (see e.g. [5],[9]), researchers are able to prove
the convergence of the degree distribution to some distribution (usually a power law) as the size of
the network grows large. However these techniques don’t seem powerful enough to handle more
complicated functionals of the network wether they be local functionals such as the structure
of the network about a typical vertex upto some distance k from the vertex, or more global
functionals such as the diameter of the network, maximal degree, and degree of the root to name
just a few. This is the ground we plan to break.

The essential fact we shall use is that many of the preferential attachment models considered in
the literature can be embedded in continuous time branching processes (Ft)(t>0) (see Section 6
for more details ) via appropriate formulations of the rate of offspring birth of these processes;
thus writing Gn as the network tree on n vertices and letting Tn denote the stopping time:

Tn = inf{t > 0 : |Ft| = n}

we have
FTn =d Gn

While some studies have used quite clever formulations of continuous time Markov Chain ideas
(see [5],[9]) to explore the degree distribution there does not seem to be any work done in exploring
the connection between continuous time branching processes and preferential attachment trees.
Our contention is that this embedding technique gives us almost everything we would ever want to
know it terms of asymptotics for these networks, via a few very simple calculations. Though there
have been beautiful proofs using the more abstract theory of age-dependent branching processes
in some special cases interspersed in the literature([30] for the height) this are seems to be largely
unexplored at least in the context of preferential attachment. Thus this study has two main aims:

(a) Bring to the attention of theoreticians the sheer power of this more abstract approach via
explicit computations in a wide variety of models. Some of the following results (mainly regarding
the degree distribution) are already known in the literature. However we perform far more
intricate computations which have the potential of revealing much more information about the
local structure of the network.

(b) Push the envelope and do more complicated analysis including global computations such as
asymptotics for the maximal degree, degree of the root and structure of the percolation component
of the root.

Other than the initial conceptual idea of embedding the attachment trees into continuous time
branching process, none of the remaining computations are very hard. The basic point of this
paper is that after the initial learning curve involved in understanding various properties of
continuous time branching processes, almost all the subsequent calculations are almost trivially
easy. In some sense much of the hard work has been done and asymptotics for at least the local
structure of the network follows from the stable age distribution theory of general continuous time
branching processes (see e.g. [19, 25, 2]). One of the basic point of this paper is that for many
of the preferential attachment models, one can do explicit calculations using such results to get
an enormous amount of asymptotic information about preferential attachment tree and network
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models. Global results such as height and size of the maximal degree, although requiring slightly
more work can still be carried out in all the models we study. It is also not very clear to the author
if there is possibly any other technique which gives the same amount of information, essentially
because in almost all the cases, the Malthusian growth parameter corresponding to the particular
model in question seems to play such a significant role. To cite just three examples,

(a) We find that in many of the models the percolation properties of the model depend on two
quantities, the Malthusian growth of the original process and the Malthusian rate of growth of an
associated pruned branching process. Both quantities do not seem to have an easy combinatorial
interpretation and thus it is difficult to imagine getting information on the percolation properties
of these trees other than through these continuous time branching process arguments. See e.g.
Theorem 19 for more details.

(b) The maximal degree in a number of models turns out to be of order dictated by the Malthusian
growth parameter, namely is of order nγ where γ is the Malthusian rate of growth of the model.
See e.g. Theorems 14, 18 and in full generality, Theorem 71 for more details.

(c) Finally the results on the fitness models also suggests that the maximal degree of the tree
has asymptotics almost completely governed by the Malthusian rate of growth parameter. See
Theorem 29 and 31 for more details

Finally we find that these methods are powerful enough to deal with the asymptotic degree
distribution not just in the tree models but also in some models of growing networks. Also see
Section 7 where we compare the techniques we use with the techniques currenly in vogue.

1.1 Related literature

Due the enormous amount of interest in these models and the explosive growth of research in
this area it seems a fruitless task to provide a complete bibliography of all work, rigorous or
otherwise. As we describe each of the models we analyze we shall try to give suitable references
to the particular model. However here we shall mention some of the more wide-ranging works
including those particularly pertinent to our work.

In the past few years along with the proposal of new preferential attachment schemes, there has
also been a concerted effort by a number of mathematicians to both rigorously prove conjectured
results on these models as well as discover further properties of these models. For the Barabasi-
Albert preferential attachment model and in the more general case of the linear preferential
attachment model we should mention the fundamental contribution of Bollobas and Riordan (see
e.g. [8], [7] to name just two works in their far ranging effort).

In developing new schemes of preferential attachment as well as rigorously proving various aspects
of other preferential attachment schemes, we have been heavily influenced by Christian Borgs,
Jennifer Chayes and their co-workers. Rigorous results on the degree distribution for the prefer-
ential attachment scheme with fitness and the entire theoretical basis for the connection between
the competition induced scheme and preferential attachment as wells as the computation of the
asymptotic degree distribution of this scheme is due to them (see [9] and [5] respectively). We
have mentioned only two of their far-reaching efforts to both derive rigorous results for the pref-
erential attachment scheme as well as discovering how preferential attachment schemes underlie
far more complicated attachment schemes.
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In the recent past there has also been a parallel program to develop preferential attachment
models in the spatial context. See [16] and the references therein. The techniques developed in
this paper do not carry over to this setting however.

In terms of more general references, the studies closest to this methodology is the book [14]
where branching random walk techniques are used to explore functionals such as the height
for the Barabasi-Albert preferential attachment model, although the emphasis is still largely on
recursions. As mentioned before [31] already uses embedding techniques to compute the limiting
degree distribution and load for the Barabasi-Albert Preferential attachment tree and the Linear
preferential attachment tree. Also see [23] for a nice historical account of generative power law
models. Another good source of rigorous work is the forthcoming book [10].

Finally on the Statistical physics end of things see [22] for some examples of the models looked
at and an exposition of the recursion method to derive asymptotics. Also [1],[26] and [13] pro-
vide beautiful surveys and extensive references. We define the various preferential attachment
models in Section 2.1 and along the way, shall try to mention the works where the corresponding
preferential attachment schemes were first defined.

1.2 Plan of the paper

Section 2.1 describes the basic construction of these models as well as the various cases we shall
be dealing with. Due to a lack of space we shall not describe in overmuch detail the actual applied
motivations for the creation of the various models but shall give representative references as to
origin of each model model and rigorous computations if any related to the model. Section 3
delves into various aspects of random tree methodology and particular constructions of infinite
trees which will be useful for stating our main local structural results. In Section 4 we describe
the functionals of the trees we will be interested in. Section 5 contains all the results which we
have obtained from this theory. Note that the results regarding the limiting degree distribution
known, however the method of proof here is novel as compared to the usual techniques in vogue
(Although see [31] where similar computations for the linear preferential attachment model have
been done for the degree distribution ). More importantly the degree distribution is just one
among many functionals that we get asymptotics for. We devote a reasonable amount of space
for the Standard preferential attachment model since this is what has been studied to the greatest
degree. However similar results carry over almost trivially to most of the other modes. Section
6 contains the various results on branching process methodology that helps us in proving our
main results and proofs of the actual results. Due to the large number of results, we have tried
to show proofs illustrating the sort of computations that need to be performed and have skipped
proofs which add nothing new to the discussion. Note that for one particular model (preferential
attachment with fitness) we need some multi-type branching process methodology and thus deal
with this in a separate section, Section 6.4. We finally conclude in Section 7 with a wide ranging
discussion about the drawbacks of this method, how it compares with the current techniques
being used, future work, conjectures and open problems.
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2 Attachment models

2.1 Preferential attachment trees

We now outline the mathematical models of growing trees that we shall be interested in.

Basic Construction of Preferential Attachment trees:

The basic construction of these trees is as follows

• Start with one node at time one labeled 1 .

• At time n we have a tree on n vertices [n] := {1, 2, . . . , n}. A new node n + 1 is added
to the tree by attaching one link from the new node to a pre-exisiting node. The existing
node v is chosen from [n] with probability proportional to some function f(v, n). Call this
function the attractiveness of node v at time n.

Depending on the choice of the function f(v, n) we get different models. Since we will be mainly
dealing with trees which we think of growing (directed) downwards away from the root, we shall
let

D(v, n) = out− deg(v, n)

i.e. D(v, n) is the out-degree of the vertex v at time n. Note that the actual degree of any vertex
(other than the root) is just D(v, n) + 1.

Different Models

Albert-Barabasi-Simon-Yule Preferential attachment: This model is given by the at-
tractiveness function f(v, n) = D(v, n) + 1. See Durrett [14] and the extensive references cited
within for more details for it’s extensive use and origin. For simplicity we shall refer to this model
as the BA-model, However it has it’s origins dating back to the beginning of the 20th century.

Linear Preferential Attachment model: This is modification of the previous model with
f(v, n) = [D(v, n) + 1] + a where a ≥ 0. Again see Durrett [14] for origins etc.

Preferential attachment with additive fitness: Fix a probability measure ν on R+. We
think of each node v being born with some fitness fv chosen independently from ν and which
remains equal to this value after birth. At time n an existing node v has attractiveness f(v, n) =
(D(v, n) + 1) + fv. See [15] where this model was first introduced.

Preferential Attachment with multiplicative fitness: Fix a probability measure ν on R+.
We think of each node v being born with some fitness fv chosen independently from ν and
which remains constant and equal to this value after birth. At time n an existing node v has
attractiveness f(v, n) = fv(D(v, n) + 1). See [6] and [9] for more details.

Competition Induced Preferential attachment model: Fix an integer A. Then this model
is given by the following Markov scheme:

• There are two types of nodes, fertile and infertile nodes. Only fertile nodes are able to
reproduce at the next step while infertile nodes remain dormant.

• At time t = 1 start with one fertile node.
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• At each time t a new node is born which is designated as infertile. It is attached to an
existing fertile node v with probability proportional to

min(D(v, t) + 1, A)

where as before D(v, n) is the out-degree of the fertile node. Note this includes both fertile
and infertile nodes.

• After attaching this newly infertile node if the number of infertile children attached to node
v is greater than A− 1 then choose one of these infertile children uniformly at random and
make it fertile.

It turns out that this model is equivalent to an attachment model on the real line which starts with
one node at the origin and where nodes arrive at uniform points on the unit interval and decide
to attach themselves to pre-exsting nodes by minimizing some linear combination of hopcount to
the origin and euclidean distance to the existing potential parent. See [5] for more details where
the degree distribution is worked out. We shall see that the continuous time branching process
approach results in much more information both locally and globally.

Sub-linear Preferential attachment: Here the attractiveness function is given by f(v, n) =
(D(v, n) + 1)α where 0 < α < 1. See [14] and the references therein for known results.

Preferential Attachment with a cutoff: Fix some integer A > 1. Here the attractiveness
is as in the Preferential Attachment scheme until the out-degree of a node reaches A and then
remains constant. More precisely:

f(v, n) = D(v, n) + 1 if D(v, n) ≤ A
= A+ 1 if D(v, n) > A

Note that in all of the above examples the attractiveness function can be written as

f(v, n) = f(D(v, n))

namely the attractiveness function at any time point is given by a (possibly random as in the
fitness model ) function of the degree at time n.

Definition 1 (Point process associated with an attractiveness function) Given an attrac-
tiveness function as above the associated Point process on R+ is a Markov point process with the
function f as it’s rate function. More particularly P is a point process on R+ with

P(P(t+ dt)− P(t) = 1|P(t) = k) = f(k).dt+ o(dt)

with the initial condition P(0) = 0.

Thus for example the point process associated with the random multiplicative fitness model is a
point process which is constructed as follows:
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(a) At time t = 0 choose a random variable X from the distribution ν.
(b) Conditional on X

P(P(t+ dt)− P(t) = 1|P(t) = k) = X · (k + 1)

A crucial role in many of the computations is played by the standard Yule process which we
define now:

Definition 2 The Yule process with rate γ for some constant γ > 0 is the point process with
the conditions:
(a) P(0) = 0
(b) P is a point process on R+ is a point process with

P(P(t+ dt)− P(t) = 1|P(t) = k) = γ · (k + 1).dt+ o(dt)

If γ = 1 then we shall call such a process the standard Yule process.

Remark: The Yule process shall appear as one of the central constructs in this paper. It’s
connection to preferential attachment models was observed quite early, see [3] for a nice account.
The general practice is to assume the parametrization P(0) = 1 and the rate function f(k) = k
instead of k + 1 but we find the above parametrization more convenient to state results.

Definition 3 To deal with the Competition induced preferential attachment model we have to
make a slight modification. Note that the first a node produces a fertile node only after producing
A − 1 infertile nodes. The time to produce this fertile node has the same distribution as that of
the amount of time it takes a Yule process to produce A nodes namely

∑A
1
Yi
i where Yi ∼ exp(1)

distribution. After producing the first fertile node, each of the following nodes are fertile and
are produced at rate A. Thus the associated point process of fertile nodes can be modeled by the
following point process on R+.
(a) Let S1 =

∑A
1
Yi
i

(b) Si+1 = Si + Yi+1

A .

Now consider (S1, S2, . . . , ) as a point process on R+. This gives the times of birth of a fertile
offspring of a node.

2.2 Preferential attachment networks

If each new node comes with more than one edge to connect to the network then instead of
growing trees, one can also define a growing network. We analyze the particular case where the
new node attaches to existing nodes with probability proportional to the present degree of the
vertex, namely the analogue of the Albert-Barabasi-SImon-Yule model for networks. Note that
various aspects of this model have been analyzed in fundamental papers see e.g. [8, 7]:

Construction 4 (a) Let (Wi)i≥i be iid positive integer valued random variables.
(b) Start with a single node having W1 self loops.
(c) Recursively construct a network as follows; once we have the network on n nodes, create a
new node (n + 1) with degree Wn+1. Let the out edges of this node be denoted by 1, 2, . . .Wn+1.
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Edge 1 is attached to one of the n nodes with probability proportional to the degree. We think of
node n+1 now having it’s existence and starting out with degree 1. Recursively attached the other
edges to nodes with probability proportional to the current degree, update the degree and iterate
till all Wn+1 edges have been attached.

This general setup is due to [11] and the particular formulation is from [12].

The reason as to why our methods easily carry over to this setup is because of the following fact
which follows immediately from the above construction.

Lemma 5 Let Nn denote the network constructed on n nodes. Then one construction of the
above network is as follows:
(a) Generate (Wi)1≤i≤n. Let Sn =

∑n
1 Wi.

(b) Construct the tree on GSn nodes using the Preferential attachment scheme.
(c) Let Si =

∑i
1Wi with S0 = 0. Merge nodes (Si−1 + 1, . . . , Si) and call this node i.

Proof: Obvious.

Note that the above networks are allowed to have self-loops so that edges between the nodes
(Si−1 + 1, . . . , Si) are retained. Such self-loops of course become extremely rare as the size of the
network grows.

3 Methodology related to trees

Here we briefly describe various notations regarding both deterministic and random models of
trees that we use in our study.

Continuous time Branching process: There are a number of different ways to define a
Markov process with age dependent branching structure. We shall stick to the Point process
model which is defined as follows:

Definition 6 Fix a point process P on R+. Then a continuous time branching process Ft, driven
by P is defined as follows: We start with one individual at time zero. This individual gives birth
to individuals at times of the point process P0 where P0 =d P. Each individual born has its
own iid copy of the point process and gives birth to individuals at these times after its birth.
The continuous time branching process associated with a particular preferential attachment model
with attractiveness function f is a branching process as above where the driving point process is
as given in Definition 1.

Note that Ft contains the complete information of the population upto time t, namely not only
does it contain information about the number of individuals born upto time t but also the entire
genealogy of the population upto time t.

On most occasions we shall think of the point process in its equivalent formulation as a sequence
of random variables 0 < S1 ≤ S2 ≤ . . ..

Sin trees: We restate the following definition of sin-trees from [2]. Call an infinite rooted tree
(where each node has finite degree) a sin-tree (for single infinite path) if for each vertex w there
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exists a unique infinite path (w0 = w,w1, w2, . . .) from w. The following definition encompasses
a particular construction of a sin-tree.

Definition 7 Fix α > 0, a probability measure µ on R+ and a point process P on R+. Then we
call the following construction an (α, µ,P) random sin-tree (rooted at 0) :

• Let X0 ∼ Exp(α) and for i ≥ 1, Xi ∼ µ. Consider the renewal process (started
with a non uniform start) Sn =

∑n
0 Xi.

• Conditional on the sequence (Sn)n≥0 let

1. FX0 be a continuous time branching process driven by P observed upto time
X0;

2. for n ≥ 1 let FSn,Sn−1 be a continuous time branching process observed upto
time Sn with the only difference being that the distribution of the points of
birth of the first ancestor is P conditioned to have a birth Xn time units
after the birth of the founding ancestor.

3. Given (Sn)n≥0 construct FX0 ,FS1,S0 ,FS2,S3 , . . . independent of each other.

• Finally construct the sin-tree via the following procedure; Let the infinite path be
the integer lattice 0, 1, 2, . . . with 0 designated as the root. Consider FX0 to be
rooted at 0 and for n ≥ 1 consider FSn,Sn−1 to be rooted at n.

Denote such an infinite random tree by the notation T sin
α,µ,P . We shall call

fk(T sin
α,µ,P) = (FX0 ,FS1,S0 ,FS2,S3 , . . . ,FSk,Sk−1

)

the sin-tree T sin
α,µ,P truncated at distance k on the infinite path.

Although the definition seems slightly complicated, conceptually it is very simple: See Figure 1
for more details.

To make precise the idea of “convergence of the local neighborhood of rooted random tree about
a random vertex ” we restate Aldous’s [2] definitions of fringe and extended fringe namely:

Definition 8 Fringe and extended fringe for finite trees: Given a finite rooted tree T
define the fringe subtree at a vertex v is defined as follows: Suppose v is at height h, let (v =
v0, v1, . . . vh = ρ) be the unique path from v to the root ρ. Let b0(T , v) as the subtree consisting
of all those vertices s such that the unique path from the root to s pass through v. This is
called the fringe subtree rooted at v. For 1 ≤ i ≤ h let bi(T , v) be the set of vertices x such
that the path from the root to x hits vi but does not hit vi−1. The total collection f(T , v) =
(b0(T , v), b1(T , v), . . . , bh(T , v)) will be called the extended fringe of T rooted at v.

See Figure 2 for details.

We come to probably the most important conceptual definition in this paper, namely the concept
of convergence of trees, and extended fringes both in expectation and in empirical proportions.
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Figure 1: The sin-tree construction
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Figure 2: The fringe and extended fringe construction

For this we need some notation. Let Ttr be the set of finite rooted trees. Then note that T∞tr
corresponds to the space of sin-trees.

We will think of the extended fringe as a map from the tree space Ttr to the infinite product
space T∞tr via the map T to f(T , v) = (b0(T , v), b1(T , v), . . . , bh(T , v), ∅, ∅, ∅, . . .). Call fk(T , v) =
(b0(T , v), b1(T , v), . . . , bk(T , v) be the extended fringe truncated at distance k on the path from
v to the root.

Definition 9 (convergence of random trees) Fix a random tree Tn on |Tn| vertices. We
shall always use Vn to denote a vertex chosen uniformly at random among all the |Tn| nodes. We
shall always assume that for our sequence of trees, the size explodes namely |Tn| −→d ∞. (In
most of the cases that we deal with |Tn| ↑ ∞ a.s.) Fix any k ≥ 1 and trees (t1, t2, . . . tk) ∈ T ktr.

We define two notions of convergence of the random trees Tn to the infinite sin tree T sin
α,µ,P :

(a) Mean convergence: Say that a sequence of random trees Tn converges in mean fringe
sense to the sin tree T sin

α,µ,P if for any k ≥ 1 and (t1, t2, . . . tk)

P(fk(Tn, Vn) = (t1, t2, . . . tk)) −→ P
[
fk(T sin

α,µ,P) = (t1, . . . tk)
]

as n→∞. We shall denote this notion of convergence as

Tn −→mn.−fr. T sin
α,µ,P

13



(b) Convergence in probability: Say that a sequence of random trees Tn converges in
probability-fringe sense to T sin

α,µ,P if the empirical proportions converge in probability namely

1
|Tn|

∑
v∈Tn

1{fk(Tn,v)=(t1,....tk)} −→P P
[
fk(T sin

α,µ,P ] = (t1, . . . tk)
)

as n→∞.

Denote this convergence by

Tn −→P−fr. T sin
α,µ,P

We record some simple facts of the above convergence.

Proposition 10 (a) Convergence in probability-fringe sense implies convergence in mean-fringe
sense.
(b) Suppose Tn converges in mean-fringe sense to T sin

α,µ,P . Fix k ≥ 1 and denote the number of
nodes with degree k in Tn as Nk(n). Then mean-fringe sense convergence implies

E
(
Nk(n)
|Fn|

)
−→ pk

where pk = P (deg(ρ) = k) where ρ is the root of T sin
α,µ,P .

(c) If the above convergence is in probability-fringe sense the this can be strengthened to

Nk(n)
|Fn|

−→P pk

Proof: Obvious by the definition of mean-fringe sense and probability-fringe sense convergence.

Remark: Since we deal with trees where there is a natural sense of direction namely away
from the root, we shall usually henceforth let Nk(n) to be the number of nodes with out-degree
k. Note that we only need to modify the above result so that pk is the degree of the root in FX0 .

4 Functionals of interest

In this Section we briefly define the functionals we are interested in. Below we shall always use T
to denote a tree. When we are interested in asymptotics we shall add a subscript n to denote a
sequence of trees whose size is growing with n. We will be interested in the following functionals

Local Functionals: Let Vn denote a vertex picked uniformly at random from the tree. Then

• empirical degree distribution : Let Nk(n) be the number of nodes with out-degree k in Tn

• Fix an integer k ≥ 1. Let Tk(Vn) denote the subtree consisting of all nodes within a distance
k of V .

14



• Fringe subtree at Vn: Let F(Vn) denote the fringe subtree rooted at Vn.

• Load on Vn namely Ld(Vn) : This is defined as the number of vertices which have Vn in
the shortest path from the root to the vertex, namely Ld(Vn) = |F(Vn)| where F(Vn) is the
fringe subtree rooted at Vn.

Global Functionals

• Height of the tree ht(T ) or hn.

• Degree of the root: deg(ρ).

• Maximal degree of the tree: max(deg).

• Fix an integer k. Label the kth vertex to be born by the integer k and let Sn(k) denote the
size of the subtree attached to vertex k at time n. We will occasionally abuse notation and
call this the load on vertex k.

5 Results

Now we state the main results if this study.

A note about the organization of the paper: Since we wanted to make the paper “readable”
and useful despite the number of different models analyzed we have taken the following editorial
decision in the organization of the paper: When stating the results we shall deal with each
individual model, state results of all the functionals analyzed for that model and then move on to
the next model. When proving results however we take each functional say the height, prove the
necessary result for that functional for all the models and then move onto the next functional.
Since the method of proof for each functional is essentially the same across the models, we believe
this makes the paper readable and concise.

5.1 Preferential attachment

Through out this section we shall let Tn denote the Preferential Attachment tree on n vertices.
We shall also let Vn be a vertex in the tree chosen at random.

Theorem 11 (Detailed structure of the local neighborhood) Let Tn denote the tree con-
structed via the preferential attachment method on n nodes. Then

Tn −→P−fr. T sin
(2,Exp(1),Yule)

i.e. the limiting sin tree has the same distribution as one of the random sin trees constructed in
Section 3 with α = 2, with the distribution on R+ identified as the exp(1) distribution and the
associated point process is the rate one Yule process. Note that this convergence also takes place
in the mean sense by Proposition 10.
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Corollary 12 (Local properties) Let Lk(n) =
∑

v∈Tn 1{|f(Tn, v)| = k} namely the number
which have load k and let Nk(n) =

∑
v∈Tn 1{out− deg(v) = k} namely the number of nodes

which have out-degree k. Then
Lk(n)
n
−→P P(Z = k)

Nk(n)
n

−→P P(D = k)

The random variables Z and Dsatisfy the following properties:
(a) Let g(s) denote the generating function of Z. Then

g(s) = 1− 1− s√
s

sinh−1

(√
s

1− s

)
(b) The random variable Z has infinite expectation.
(c) The degree distribution satisfies the following property:

P (D = k) =
4

(k + 1)(k + 2)(k + 3)
for k = 0, 1, 2, . . .

Before we state the next result we need some notation:

Let X be an exponential random variable with rate 2. Let N0(t), N1(t), . . . , be IID standard Yule
processes independent of X.

Let T be another random variable independent of Xi with

P (T = k) =
2

k(k + 1)
for k = 2, 3, . . .

Finally define the random variables Z1 := N0(X) and let Z2 :=
∑T

1 Ni(X) + (T − 1). Note that
because of the occurrence of the exponential random variable X, the two random variables are
not independent.

Corollary 13 For any node v let mother(v) denote the mother of the node v. For any two
integers k ≥ 0, l ≥ 1 let Xk,l(n) =

∑
v∈Tn 1{{out− deg(v) = k} ∩ {out− deg(mother(v)) = l}}

i.e the number of nodes whose degree is k and whose mother’s degree is l.

Then
1
n
Xk,l −→P P(Z1 = k, Z2 = l)

where Z1 and Z2 are the random variables defined above.

Remark: Note that Lemma 87 coupled with Corollary 13 implies that the asymptotic degree
distribution of the mother of a uniformly chosen node has asymptotic degree distribution qk ∼
1/k2 namely with a degree two exponent.
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Theorem 14 (Global properties) (a) Let Skn denote the size of the subtree rooted at the kth

node to be born. Then
Skn
n
−→a.s. β(2, 2 · (2k − 1))

(b) Let deg(ρ) denote the degree of the root vertex. Then

deg(ρ)√
n
−→a.s.

W√
W̃

Note that 2.W̃ ∼ Γ(2, 1) distribution that is, it has the density xe−x on R+.

Also note that W and W̃ are not independent but satisfy the following distributional identity: Let
ξ1, ξ2, . . . be the points of birth of a rate one Yule process. Let N(t) be the number of individuals of
this Yule process born before time t. Let W̃1, W̃2, . . . independent of the ξi process, be independent
and identically distributed as 1

2Γ(2, 1) random variables. Then the limit random variables W and
W̃ satisfy the following distributional identities:

N(t)
et
−→a.s.L2 W

.

W̃ =
∞∑
1

e−2ξiW̃i

(c) Given any ε, ∃ a constant Kε such that

lim sup
n→∞

P(
max(deg)√

n
> Kε) < ε

(d) The height of the tree, hn satisfies the following asymptotics:

hn
log n

−→P
1

2γ

where γ is the unique positive root of the equation γeγ+1 = 1

Note that (d) was proved in a very beautiful paper by Boris Pittel [30]. We generalize his
technique to a much wider class of models.

It is very likely that our methods can be modified to prove this as well but we shall not explore
this here.

Consider percolation on the tree namely retain each edge with probability p and delete otherwise.
A component or percolation cluster is a connected tree of the resulting random forest. Denote
by Cn(v) the size of the component attached to any vertex v and let max |Cn| denote the size of
the largest component. Then the next theorem says that the size of the percolation cluster at
the root is of order n

1+p
2 . Further it gives explicit structural limiting properties of this cluster

including limiting degree distribution and asymptotics for the height of the cluster.
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Theorem 15 (Percolation cluster connected to the root) (a)Consider Cn(ρ) the percola-
tion cluster at the root ρ. Then there exists a random variable Wp > 0 such that

|Cn(ρ)|
n

1+p
2

−→L Wp

as n→∞.
(b) Let N≥k(n) =

∑
v∈Cn(ρ) 1{out− deg(v) ≥ k}, i.e. the number of nodes in the subtree corre-

sponding to the percolation cluster about the root which have out degree greater than k. Then the
empirical fraction

N≥k(n)
|Cn(ρ)|

−→P E

Pk
1 Xi∏
1

(
i

i+ 1 + p

)
as n→∞, where Xi are i.i.d. Geometric(p) random variables namely the have probability mass
function

P (X = k) = p(1− p)k−1

(c) There exists a constant Cp > 0 such that the height of the cluster

ht(Cn(ρ))
log n

−→ Cp

as n→∞.

Notation: To avoid repetition we shall let Nk(n) be the number of nodes in the tree with
out-degree k and N≥k(n) the number of nodes with out degree greater than or equal to k.

5.2 Linear Preferential attachment

We first define the Malthusian rate of growth of the associated branching process in this setup:

Define

γ =
a+ 2 +

√
a2 + 4

2
Note that γ satisfies the equation:

1
γ − 1

+
a

γ
= 1

Define the following probability measure µ on R+ as the mixture of two exponential random
variables with differing rates namely

µ(∗) =
a

γ
.νexp(γ)(∗) +

1
γ − 1

.νexp(γ−1)(∗)

Theorem 16 (Local properties) For this model we have we convergence in probabilty fringe
sense namely

Tn −→P−fr. T sin
(γ,µ,Pa)

as n→∞.

18



Corollary 17 (Limiting degree distribution) Fix any k ≥ 0. Then the empirical proportion
of nodes with out degree k satisfies

Nk(n)
n

−→P
γ

(k + 1 + a) + γ

k∏
1

(
i+ a

i+ a+ γ

)
as n→∞. Note that the limiting distribution has a power law tail with exponent γ + 1.

Theorem 18 (Global properties) (a) Let deg(ρ) denote the degree of the root vertex. Then
there exists a random variable X > 0 such that

deg(ρ)
n1/γ

−→P X

(b) Given any ε, ∃ a constant Kε such that

lim sup
n→∞

P(
max(deg)
n1/γ

> Kε) < ε

Thus the maximal degree is of the same order as the degree of the root vertex. (c) There exists a
constant Ca > 0 such that the height of the tree, hn satisfies the following asymptotics:

hn
log n

−→P Ca

Remark: Note that even is more is true namely Mori [24] proves that in both this and the
Preferential attachment model (with γ = 2) there exists a random variable µ such that

max(deg)
n1/γ

−→P µ

It is probably true that our methods can be used to prove this stronger result here but we shall
not explore the above in this study.

For simplicity we plot the graph of a versus the exponent γ−1 which seems to arise in many of
the properties.

Theorem 19 (Percolation cluster about the root) Fix p > 0. As before let Cn(ρ) denote
the percolation component about the root. Define

γp =
1 + p(a+ 1) +

√
(1 + p(a+ 1))2 − 4ap

2

(a)There exists a random variable Wa,p > 0 such that

Cn(ρ)

n
γp
γ

−→P Wa,p

(b) Consider the number of nodes with out degree at least k in Cn(ρ). Then

N≥k(n)
n

−→P E

Pk
1 Xi∏
1

(
i+ 1 + a

i+ 1 + a+ γp

)
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as n→∞, where Xi are i.i.d. Geometric(p) random variables namely the have probability mass
function

P(X = k) = p(1− p)k−1

(c) There exists a constant Cp,a > 0 such that the height of Cn(ρ) satisfies

ht(Cn(ρ))
log n

−→P Cp,a

as n→∞.

5.3 Sub-linear Preferential attachment

Fix 0 < α < 1. Let θ = θ(α) be the unique solution to the equation

∞∑
1

i∏
j=1

(
jα

θ + jα

)
= 1
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Note that θ satisfies the following properties

Proposition 20 (a) 1 < θ(α) < 2 for all 0 < α < 1
(b) θ(α) is a monotonically increasing function of α.

We have the following structural results regarding these trees:

Theorem 21 (local properties) Let Tn denote a random tree on n vertices, constructed via
the sub-linear preferential attachment model. Then

Nk(n)
n

−→P P(Z = k)

where Z is an integer valued random variable with

P(Z ≥ k) =
k∏
1

1
1 + θ/jα

Note that the above implies that the tail of Z satisfies

P(Z = k) ∼ 1
kα

exp(− θ

1− α
k1−α)

Note that in this setup as well there is convergence in the probability fringe sense to some sin-tree,
however the sin measure does not have an easy expression so we do not state it explicitly.

Theorem 22 (Global properties) (a) The random variable deg(ρ) is OP ((log n)
1

1−α ). More
precisely

deg(ρ)

(log n)
1

(1−α)

−→P

(
1

θ(α)

) 1
(1−α)

where as before θ(α) is the Malthusian rate of growth.

(b) Given any ε > 0 there exists a constant Kε such that

lim sup
n→∞

P

(
max(deg)

(log n)
1

1−α
> Kε

)
≤ ε

(c) There exists a constant Cα > 0 such that the height hn satisfies the relation

hn
log n

−→P Cα

as n→∞.

Remark: It might be a worthwhile task to see if one is able to explicitly derive the properties
of the limit constants Cα that arise in the asymptotics for the height and their dependence on
α. There is an explicit construction of the limit constant but in most of these models it does not
seem amenable to any algebraic treatment.
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5.4 Preferential attachment with a cutoff

Fix an integer A > 1. Denote by θA the unique positive root of the equation

A−1∑
1

j∏
1

(
i

i+ θ

)
+
A+ θ

θ

A∏
1

(
i

i+ θ

)
= 1

The solution θA satisfies the following properties

Proposition 23 (a) 1 < θA < 2 for all A > 1.
(b) θA is a monotonically increasing function of A

Theorem 24 (Local properties) Let θA be as defined in Propn (23). Let ΠA be the associated
point process on R+ and let µA be the measure on R+ defined by the density with respect to the
Lebesgue measure as

µA(dx) = e−θAx

[
A−1∑

0

(j + 1)e−x(1− e−x)j +A(1− e−x)A
]

Then we have convergence in the probability fringe sense namely

Tn −→P−fr. T sin
θA,µA,PA

Corollary 25 (Limiting degree distribution) For the number of nodes with out-degree k in
the tree we have the following law of large numbers :

Nk(n)
n

−→P
θA

θA + k

k−1∏
1

(
i

i+ θA

)
for k ≤ A

and
Nk(n)
n

−→P
θA

A+ θA

(
A

A+ θA

)k−1−A
[
k−1−A∏

1

(
i

i+ θA

)]
for k > A

as n→∞

Theorem 26 (Global properties) (a) For large n the root has asymptotic size A
θA

log n. More
precisely:

deg(ρ)
log n

→P
A

θA
as n→∞.
(b) Given ε > 0 we can choose a constant Kε such that

lim sup
n→∞

P(
max(deg)

log n
> Kε) ≤ ε

(c) For the height of the tree ∃CA > 0 such that

hn
log n

−→P CA
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5.5 Preferential attachment with fitness

In this Section we shall analyze only the “proper” case namely where the Malthusian parameter
associated with the corresponding multi-tpe branching process actually exists. More precisely we
make the following assumptions regarding the distribution ν on R+. We assume that the fitness
assigned to each node is strictly positive namely:

ν(0,∞) = 1

Assumption 27 (a) We assume in both the additive and multiplicative model that the probability
measure ν is finitely supported namely there exists a constant M > 0 such that ν(M,∞) = 0.
Note that this immediately implies that if X ∼ ν then E(X) <∞.
(b) For the Multiplicative model we assume that the equation∫ M

0

s

α− s
ν(ds) = 1 (1)

has a solution for some α > M . As a matter of notation call this root α×,ν , the “×” symbol being
used to remind us of it’s connection to the multiplicative model. Define the new measure ν̂α×,ν
via the equation:

ν̂α×,ν (ds) =
s

α− s
ν(ds)

Note that by Equation (1), ν̂α×,ν is a probability measure.
(c) Assumptions 80 are satisfied for the fitness distribution and the associated multi-type branching
process.

5.5.1 Additive model

This model was introduced in [15]. Compare this model to the Linear preferential attachment
model. Note that in this model the attractiveness of a node at time n is (D(v, n) + 1 + fv) with
fv random whereas for the Linear Preferential attachment model we had attractiveness given
by (D(v, n) + 1 + a) where a was fixed and constant for all the nodes. Our results confirm the
simulation based studies of [15] that at least the degree distribution looks similar to the Linear
preferential model with parameter aν =

∫
R+ x · ν(dx) i.e. the mean of the fitness measure ν.

Throughout this section we let

γ+,ν =
aν + 2 +

√
a2
ν + 4

2
Note that γ+,ν is the unique positive solution of the equation:∫

R+

(
1

γ − 1
+
r

γ

)
ν(dr) = 1 (2)

Define the measure ν̂γ+,ν by the equation

ν̂γ+,ν (dr) =
(

1
γ − 1

+
r

γ

)
ν(dr)

and note that Equation (2) implies that ν̂γ+,ν is a probability measure.

23



Theorem 28 (a) Let Nk(n) be the number of nodes with out- degree k in Tn. Then

Nk(n)
n

−→P

∫ M

0

[
γ+,ν

k + 1 + r + γ+,ν

k∏
1

(
i+ r

i+ r + γ+,ν

)]
ν(dr)

as n→∞.
(b) Fix any two sets A,B ⊂ [0,M ] and define

Nn(A,B) =
∑
v∈Tn

1{fit(v) ∈ A, fit(mother(v)) ∈ B}

where fit(v) denotes the fitness of a vertex v. Then the empirical proportions satisfy

Nn(A,B)
n

−→P P(Z1 ∈ A,Z2 ∈ B)

where Z1 and Z2 are independent, with Z1 ∼ ν and Z2 ∼ ν̂γ+,ν .

Theorem 29 (Global properties) (a) There exists a random variable Wν > 0 such that

deg(ρ)

n
1

γ+,ν

−→a.s. Wν

as n→∞. Here as before γ+,ν is the Malthusian rate of growth parameter.
(b) Given any ε > 0 there exists a constant Kε dependent only on M and independent of ν such
that:

lim sup
n→∞

P

(
max deg(ρ)

n
1

γ+,ν

> Kε

)
≤ ε

(c) Consider the height hn. Then there exists a constant 0 < Cν <∞ such that

hn
log n

−→P Cν

Remark: It would be interesting to check if we find similar asymptotics for the size of the
maximal degree if we did not assume finite support.

5.5.2 Multiplicative model

This model was introduced in [6] and the degree distribution rigorously analyzed in [9]. We first
begin with asymptotic statements regarding the degree distribution:

Theorem 30 (a) Let Nk(n) be the number of nodes with out degree k. Then the empirical
proportions satisfy

Nk(n)
n

−→P

∫ M

0

[
α×,ν

α×,ν + r · (k + 1)

k∏
1

(
r · i

α×,ν + r · i

)]
ν(dr)
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(b) As before for a vertex v ∈ Tn, let mother(v) be it’s immediate predecessor in the tree. For
A,B ⊂ R let

Nn(A,B) =
∑
v∈Tn

1{fit(v) ∈ A, fit(mother(v)) ∈ B}

Then
Nn(A,B)

n
−→P P(Z1 ∈ A,Z2 ∈ B)

where Z1 and Z2 are independent with Z1 ∼ ν and Z2 ∼ ν̂α×,ν .

Remark: We have analyzed completely, the “regular” setup where the Assumptions 80 are sat-
isfied. Theorem 30(b) was originally proved in [9]. They also prove a similar result as Theorem
30(b) in the setup where the assumptions do not hold and a Malthusian growth parameter solv-
ing Equation (1) does not exist. Building on heuristics by [6], they identify a “Bose-Einstein”
condensation phase where part of the mass escapes to M .

Theorem 31 (Global properties) (a) The degree of the root node is of order Ω(nfρ/α×,ν ).
More precisely there exists a random variable Wν > 0 such that

deg (ρ)

n
fρ
α×,ν

−→a.s. Wν

as n→∞. Here fρ is the fitness of the initial node and as before α×,ν is the Malthusian rate of
growth parameter.

(b)The correct asymptotic order of the maximal degree is O(n
m−o(1)
αν,× ). More precisely suppose the

measure ν satisfies the following two properties:

1. ν attaches no measure to the set (M,∞), i.e. ν(M,∞) = 0.

2. Given any ε > 0, ν(M − ε,M ] > 0.

Then given any ε > 0 there exists a node of degree O(n
M−ε
α×,ν ) with high probability as n → ∞

namely there exists a constant K1
ε > 0 such that

lim inf
n→∞

P

(
max (deg)

n
(M−ε)
α×,ν

< K1
ε

)
≤ ε

Further there exists another constant K2
ε so that

lim sup
n→∞

P

(
max (deg)

n
M

α×,ν

> K2
ε

)
≤ ε

(c) Consider the height hn. Then there exists a constant 0 < Cν <∞ such that

hn
log n

−→P Cν
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As an example of the implications of the above result we work through a particular case of the
fitness model and establish mathematical results first conjectured in Bianconi and Barabasi [6]
where through heuristics and numerical simulation, they analyze the particular case when the
fitness distribution is uniformly distributed on [0, 1]. We find the exact limiting degree distribution
in this example. We go further and get lower bounds on the size of the maximal degree.

Corollary 32 (a) Consider the Multiplicative fitness model with ν = U [0, 1]. Using pk to denote
the asymptotic degree distribution we find that

pk ∼
1

k1+α · log k

as k →∞. Here α is the Malthusian exponent α×,ν computed for the uniform distribution and is
the unique solution of the equation

1− 1
α

= e−
2
α

(b) Given any ε with high probability for large n there exists a node of degree n
1−o(1)
α×,ν . More

precisely there exists a constants K1
ε ,K

2
ε > 0 such that

lim sup
n→∞

P(
max(deg)

n
1−ε
α×,ν

< K1
ε ) ≤ ε

lim sup
n→∞

P(
max(deg)

n
1

α×,ν

> K2
ε ) ≤ ε

5.6 Competition induced preferential attachment

Theorem 33 (Local Properties) Fix an integer A ≥ 1. Let α = 1. Let µ(∗) be the probability
measure on R+ given by the density:

µ(dx) = A. exp(−x) [1− exp(−x)]A−1

Let T fert
n denote the subtree of Tn consisting of only the fertile nodes. Then we have convergence

in probability fringe sense namely

T fert
n −→P−fr. T sin

α,µ,PA

Corollary 34 Let Nk(n) be the number of fertile vertices in T fert
n with out-degree k. Then

the limiting empirical proportions are qualitatively similar to the Preferential attachment with a
cutoff model namely:

Nk(n)
|T fert
n |

−→P
1

1 + k

k−1∏
1

(
i

i+ 1

)
for k ≤ A

and
Nk(n)
|T fert
n |

−→P
1

A+ 1

(
A

A+ 1

)k−1−A
[
k−1−A∏

1

(
i

i+ 1

)]
as n→∞
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Theorem 35 (Global Properties) (a) For large n the root has asymptotic size A log n. More
precisely:

deg(ρ)
log n

→P A

as n→∞.
(b) Given ε > 0 we can choose a constant Kε such that

lim sup
n→∞

P (
max(deg)

log n
> Kε) ≤ ε

(c) For the height of the tree there exists a constant CA depending on the parameter A such that

hn
log n

−→P CA

5.7 Preferential attachment Networks

Recall the construction, namely Construction 4 of these networks via the preferential attachment
tree model. Recall that each node came with Wv edges, where Wv ∼iid ν and these edges were
attached to the nodes already present in a preferential method. Before we state the main results
we need to setup some notation. Let us write the probability mass function of W as

P (W = j) = rj

We shall consider three separate cases depending on the tail behavior of the random variable
W ∼ ν.
(A) The random variables are a constant i.e. there is a constant integer m ≥ 2 so that rm = 1.
Note that the m = 1 case is the usual preferential attachment model so we shall not consider it
here.
(B) E(W ) <∞ so that there exists α > 1 so that

xαP(W > x) −→ 0

as x→∞.
(C) Fix 0 < α ≤ 1. Then there exists a constant C such that

xαP(W > x) −→ C (3)

as x→∞. Note that the last case belongs to the domain of attraction of the subordinator which
has Levy measure:

ν(dx) =
C

x1+α
x > 0

where C is the same constant as in Equation (3)

Let the associated Levy process be denoted by (Xt)t≥0 with X0 = 0. Let U be uniformly
distributed in [0, 1] independent of (Xt)t>0. Note that since the process X is increasing, 0 ≤
XU
X1
≤ 1.

Let Zα denote the positive random variable:

Zα = −1
2

(
1
α

log (U) + log (
XU

X1
)
)

(4)
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Theorem 36 Consider models (A) and (B). Let Vn be as before a randomly picked node from
the network Nn. Then

deg(Vn) −→L

W∑
1

Ni(T2) (5)

where (Ni(.)) are standard Yule processes and T2 ∼ Exp(2) independent of Ni and W ∼ ν
independent of Ni and T2. In particular

P(deg(Vn) = k) −→ 2
k(k + 1)(k + 2)

k∑
j=1

rj · j(j + 1) (6)

as n→∞.

Write pk for the asymptotic degree proportions. Then note that Theorem 36 implies the following
results:

Corollary 37 (A) In case of model A the asymptotic network degree distribution has a power
law exponent of 3 i.e. pk ∼ k−3 as k →∞
(B) If E(W 2) <∞ then pk ∼ k−3

(C) If rj ∼ jα for 2 ≤ α < 3 then pk ∼ kα

Thus the smaller tail exponent (when comparing usual linear preferential attachment and the
distribution of W ) always wins.

There is an even stronger result that can be proved namely:

Theorem 38 Suppose the random variables Wi satisfy the property:

ω(n)
n2

n∑
1

W 2
i −→P 0

as n→∞ for some function ω(n) ↑ ∞ arbitrarily slowly.

Let Nk(n) be the number of nodes with degree k. Then

Nk(n)
n

−→P pk

where pk are the limiting degree distribution constants given by Theorem 36.

As a result we have the following Corollary which was also proved in [12] through completely
different methods (they also get finite n error bounds, an aspect which we have not explored):

Corollary 39 Suppose W has a 1 + ε moment for some ε > 0. Then

Nk(n)
n

−→P pk

as n→∞.

28



See Section 6 for some details as to how to prove Theorem 38. The main point is that Theorem
36 with minor work implies Theorem 38. Thus the main work is in proving Theorem 36.

Theorem 40 Consider Model (D) where we have P(W > x) ∼ x−α for some 0 < α ≤ 1. In this
case we have

deg(Vn) −→L

W∑
1

Ni(Zα) (7)

where as before (Ni(.)) are standard Yule processes and Zα is as defined in Equation (4) inde-
pendent of Ni and W ∼ ν independent of Ni and Zα.

Thus what this implies is that the expected number of nodes with degree k converges namely:

E
(
Nk(n)
n

)
−→ P(U = k)

where U =
∑W

1 Ni(Zα).

Remark: Note that in this case we have not been able to prove that the “higher exponent
always wins. The essential problem is that the concentration inequalities we use break down at
this point and are not strong enough to show the concentration of the proportions of vertices
with degree k about their mean value.

Global analysis: Now we come to a Theorem regarding the maximal degree distribution which
probably requires more work using combinatorial techniques but which follows very easily from
our techniques. Instead of dealing with completely general ν we shall look at special cases,
depending on the extremal behavior of the random variables Wi. More precisely we shall look at
3 different cases depending on the tail behavior

(A) There exists a constant m ≥ 1 so that P(W = m) = 1 or has finite support namely there
exists m such that P(W ≤ m) = 1.
(B) W = bXc+ 1 where X ∼ Exp(1) and bxc denotes the integer part of x.
(C) There exists an α > 2 so that P(X > x) ∼ 1

xα .
(D) There exists α < 1 so that P(W > x) ∼ 1

xα where α < 1

Case (A) is very simple and essentially follows from the already known asymptotics for the
Preferential attachment model. The other models are slightly more tricky to analyze due to the
unbounded support and the fact that as n becomes large, there are nodes which arrive with a
large number of out edges, of order O(log n) for model (B) and of order n

1
α for model (C).

Theorem 41 Consider the degree distribution of either (A) , (B) and (C). Then given any ε > 0
there exists constants 0 < K1

ε < K2
ε <∞ so that

lim sup
n→∞

P
(

max(deg(Nn))√
n

/∈ [K1
ε ,K

2
ε ]
)
≤ ε

In the case where α < 1 we get an easy upper bound. For this case write p = 1
α and note that

p > 1.

29



Theorem 42 Given any ε > 0 there exists a constant Kε > 0 such that

P
(

max(deg(ρ) > Kεn
p
2

)
≥ 1− ε

2

where ρ is the initial starting node.

Remark:

(1) The Case where 1 < α < 2 seems to be hard to analyze. See the Proof of Lemma 102 as to
exactly where we need the condition α > 2.

(2) Note that in the case α < 1 extremal theory for the maximum of independent identically
distributed random variables implies that the maximum out-degree max1≤i≤nWi = OP (np) where
p = 1

α whereas the above result implies that the degree of the root is n
p
2 . Thus in this setup

the size of the maximal degree and the degree of the root differ by several orders of magnitude,
something we do not see in the other models.

6 Proofs

Due to sheer number of different models and results we hope to present and constraints on the
physical size of the manuscript the organization of this section has proved to be a little tricky. We
shall prove all the main results and whenever we feel that a particular result for some model can
be proved via identical methods in some previously analyzed model we shall take an opportunity
to skip the proof as it adds nothing new to the discussion. We shall also try to collect the common
ingredients required in the proofs in the various models and then delve into each model separately.

In this section we shall analyze all models other than the random fitness models which require
multitype branching process theory. In this Section whenever we say “ all models in Section 2.1
” we mean all models excluding the above mentioned random fitness model.

All the proofs are based on the following obvious fact:

Proposition 43 Consider any of the models in Section 2.1 which are given by attractiveness
defined by f(v, n) = f(Deg(v, n)). Let Gfn denote the random tree constructed on n vertices.
Consider the associated Continuous time branching process as defined in Definition (6). For this
branching process let (Nf (t),Ff (t)) denote the size of the population and the entire population
tree respectively at time t. Define the stopping time

Tn = inf{t : Nf (t) = n}

Then
Ff (Tn) =d Gfn

Proof: Obvious
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6.1 Malthusian rate of growth

All the models in Section 2.1 are regular in the following sense: For the associated point process
P of a preferential attachment model as in Definition 1, let the mean intensity measure µ(t) be
defined as µ(t) = E(P(t)). Then for each of the above models there exists a constant θ > 0
(depending on the distribution of the point process P) such that

θ

∫ ∞
0

e−θtµ(t)dt = 1 (8)

This constant θ is called the Malthusian rate of growth for the particular branching process model
and plays a crucial role in what is to follow. It can be explicitly computed in some particular
cases. We start with a trivial Lemma exhibiting how it can be computed in the most general
setup. See [31] where similiar such computations were carried out for the Linear preferential
attachment model.

Lemma 44 Given a point process P defined by the rate function f , the Malthusian rate of growth
parameter θ is the unique positive solution of the equation

∞∑
0

i∏
0

(
f(i)

θ + f(i)

)
= 1

Proof: Uniqueness follows since the integral

θ

∫ ∞
0

e−θtµ(t)dt = E(P(Xθ)) (9)

where Xθ is an exponential random variable with rate θ independent of the point process P.
Thus the above function of θ is monotonically decreasing. Note that point process P can be
constructed as follows: Let (Yi)i≥0 be independent exponential random variables with rate f(i).
Then the point process P on R+ is the collection of points Si where

Si =
i∑
0

Yi

Now note that

E(P(Xθ)) = E(
∞∑
i=0

1{Xθ > Si})

=
∞∑
i=0

P (Xθ > Si)

=
∞∑
i=0

E(e−θSi)

since for a rate θ exponential random variable P (Xθ > x) = e−θx.

Now use the fact that for an exponential rate f(i) random variable

E(e−θYi) =
f(i)

θ + f(i)
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Although the above gives us a formula for computing θ in most cases we need to use special
properties of the point process involved to get explicit values of θ. Below we compute explicitly
the Malthusian rate of growth for some of the models in Section 2.1.

Proposition 45 The Malthusian rate of growth is given by the following explicit values
(a) Preferential attachment: θ = 2.
(b) Linear Preferential attachment with parameter a: θ = a+2+

√
a2+4

2 .
(c) Competition Induced Preferential attachment with parameter A: θ = 1.

Proof:

Note that we have to solve the Equation (8). In the particular cases analyzed in this Lemma, the
special properties of the Yule process help us to solve this particular equation.

For the preferential attachment model of part(a), the point process P is the Yule process. The
following is known for the Yule process :

Lemma 46 Consider the standard Yule process P(t). Then
(a) The distribution at finite time is given by

P(P(t) = k) = e−t(1− e−t)k k = 0, 1, 2, . . .

so that intensity measure is equal to
µ(t) = et − 1

(b) N(t)
et is a martingale and

N(t)
et
−→a.s. W

where W is a rate 1 exponential random variable.

Substituting in Equation (8) gives part (a).

For the linear preferential attachment with parameter a the associated point process offspring
distribution can be decomposed as P(t) = N(t)+Y (t) where N(.) is a standard Yule process and
Y (t) is a Poisson process with rate a. Plugging this into Equation (8) implies we have to solve
the equation

1
θ − 1

+
a

θ
= 1

Solving the corresponding quadratic equation for the positive root gives us part (b) of the Lemma.

Finally in the case of the Competition Induced preferential attachment model, looking at the
subtree of only fertile nodes we have a branching process driven by the point process of Definition
3. In this setup, solving the Equation (8) boils down to solving the equation

A+ θ

θ

A∏
1

(
i

i+ θ

)
= 1
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The unique positive solution of this equation is θ = 1.

In the other cases although we don’t have explicit formulae for the Malthusian rate of growth,
we prove the properties of this constant and how it depends on the model parameters namely:

Proof of Prop 20 and Prop 23 : Obvious from the probabilistic interpretation of the
Malthusian rate of growth given by Equation (9). Alternatively this is obvious from Lemma 44

In the above setup, given the Malthusian rate of growth constant θ define the following measure:

Definition 47 The sin-measure ν associated with a continuous time branching process is the
measure on R+ with density

ν(dt) = e−θtµ(dt)

where µ is the mean intensity measure of the offspring distribution P and θ is the Malthusian
rate of growth parameter.

6.2 Local computations

Now we state the essential results we use to prove our basic results. In their full generality they
were proved by Jagers and Nerman ; see [19] and [25]. A very readable account is given in Aldous
[2]. Before coming to the actual statement we need to make a very important technical assump-
tion. In spirit, it implies that the Malthusian growth parameter gives the true exponential
rate of growth of the Branching process.

Assumption 48 For the Branching process driven by the point process P we assume that
(a) There exists a Malthusian rate of growth parameter θ i.e Equation (8) has an explicit positive
solution.
(b) The x log+ x condition is satisfied, that is, defining the random variable P̂(θ) :=

∫∞
0 e−θtP(dt)

where θ is the unique positive solution of Equation (8) and log+(x) = {max log(x), 0} we assume:

E
(
P̂(θ) · log+(P̂(θ))

)
<∞ (10)

Theorem 49 ([19],[25]) Consider a regular continuous time branching process driven by a point
process P and Malthusian growth parameter θ that satisfies Assumption 48 Let ν be the associated
sin-measure ν given by Definition 47. Let F(t) be the random tree at time t. Then

F(t) −→P−fr. T sin
θ,ν,P

i.e the convergence takes place in the probability fringe sense. The same fact holds if we look at
Ff (Tn) where Tn are a sequence of increasing almost surely finite stopping times Tn, with Tn ↑ ∞
a.s..

An obvious corollary of this Theorem is the convergence of the degree distribution. Note that we
do not need to use any concentration inequalities to prove this convergence.
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6.2.1 Convergence of the empirical degree distribution:

Corollary 50 As before fix any sequence of finite stopping times Tn ↑ ∞ almost surely. Let
N≥k(n) be the number of nodes with out-degree greater than or equal to k in F(Tn). Then:

lim
n→∞

N≥k
n
−→P

k−1∏
0

(
f(i)

θ + f(i)

)
for k = 1, 2, 3, . . .

Proof: Theorem 49 gives us convergence in probability fringe sense and describes the lim-
iting extended fringe distribution. By the definition of convergence in probability fringe sense
(Definition 9) we have

lim
n→∞

N≥k(n)

n
−→P P(P(Xθ) ≥ k)

where Xθ is an exponential rate θ random variable independent of the point process P. Now note
that

P(P(Xθ) ≥ k) = P(Xθ > Sk)
= E(e−θSk)

where Sj is the jth point of the Point process P. Now note that by the rates description of the
point process P we have

Sj =d

j−1∑
i=0

1
f(i)

Yi

where Yi are distributed as iid rate one exponential random variables. Combining with the above
equation gives us our result.

Corollary (50) proves all our degree asymptotic assertions in Section 5 using the appropriate
attractiveness function f corresponding to the particular model of interest.

However before we fully use the above results we first need to verify that in our setup Assumption
48 is satisfied. We seperate the analysis into two cases, one where the offspring point process
grows at an essentially Linear rate and another where it grows at an exponential rate.

Validity of the x log x assumption for our models:

Proposition 51 Consider the Preferential attachment with a cutoff and the Competition induced
preferential attachment models defined defined in Section 2.1. Then for both models, using P to
denote the associated point process of the offspring distribution, we have:

E
(

[P̂(θ)]2
)
<∞

where θ is the associated Malthusian rate of growth of parameter for the model.

Note that this is stronger than the condition required by Equation (10).
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Proof:

Let θ be the Malthusian rate of growth in either case. Note that in both models, the associated
point process is stochastically dominated by a Poisson process with rate A i.e.

PA(.) ≤st PoiA(.)

Thus it is enough to prove

E([P̂ oi(θA)]2) = E(
[∫ ∞

0
e−θAxPoiA(dx)

]2

) <∞

Now note that the by Fubini’s theorem, for any counting measure ξ(.) on R+, with ξ(0) = 0 we
have

∫ ∞
0

e−θxξ(dx) = θ

∫ ∞
0

e−θxξ(0, x]dx = E(ξ(0, Tθ]|ξ)

where Tθ is an exponential random variable with rate θ independent of ξ.

Thus

E
(

[
∫ ∞

0
e−θxξ(dx)]2

∣∣∣∣ ξ) = E
(
ξ(0, T 1

θ ] · ξ(0, T 2
θ ]
∣∣ ξ)

where T iθ are iid rate θ exponential random variables independent of ξ.

Now using the lack of memory property of the Exponential random variable and the homogeneity
of a rate A Poisson process we have:

E(PoiA(0, T 1
θ ] · PoiA(0, T 2

θ ]) = 2 · E
(
PoiA(0, T 1

θ ] · PoiA(0, T 2
θ ])1{T 1

θ<T
2
θ }

)
= 2E

(
PoiA(0, T 1

θ ] ·
(
PoiA(0, T 1

θ ] + PoiA(T 1
θ , T

1
θ + T 2

θ

))
= 2 · E

(
Poi2A(Tθ)

)
+ 2 · [E(PoiA(Tθ))]

2

= 2
(

2A2

θ2
+
A

θ
+
A2

θ2

)
<∞

where in the second line we have used the lack of memory property of the Exponential distribution.

Now we analyze the remaining three models. We first restate the crucial identity derived in the
previous proof namely

Lemma 52 For any point process ξ on R+, with ξ(0) = 0 we have

ξ̂(θ) = E(ξ(0, Tθ]|ξ) (11)

where Tθ is an exponential rate θ random variable independent of ξ.
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In each of the models below we shall let ξ be the associated point process.

Proposition 53 (a) Consider the Linear Preferential attachment model where the Malthusian
growth parameter is θ = 2. Then for any 1 < β < 2 we have

E(
[
ξ̂(θ)

]β
) <∞

(b) Consider the Linear preferential attachment model with a > 0. Let γa be the Malthusian
growth parameter. Then for any 1 < β ≤ 2 we have:

E(
[
ξ̂(γa)

]β
) <∞

(c) Consider the sub-linear preferential attachment model with parameter α < 1. Let θα be the
Malthusian growth parameter. Then for any β > 1 we have

E(
[
ξ̂(θα)

]β
) <∞

Proof:

Note that by Jensen’s inequality applied to the function f(x) = xβ for β > 1 coupled with Lemma
11 we have

E([ξ̂(θ)]β) ≤ E([ξ(0, Tθ]]β) (12)

Thus we shall analyze the distribution of the random variable ξ(0, Tθ] occurring in the right side
of Equation (12).

Thus in each case it is enough to prove that

E([ξ(0, Tθ]]β) <∞ (13)

Now note that Corollary 50 gives us the exact distribution of this random variable. More precisely
the corollary implies that for any model, with θ denoting the Malthusian rate of growth and f(i)
denoting the attractiveness function f , we have:

P(ξ(0, Tθ] = k) =
θ

θ + f(k)

k−1∏
0

(
f(i)

θ + f(i)

)
(14)

For the usual preferential attachment model, using Equation (14)

P (ξ(0, Tθ] = k) ∼ 1
k3

This implies Equation (13) for the preferential attachment model.

For the linear preferential attachment model, identical computations imply that

P (ξ(0, Tθa ] = k) ∼ 1
kγa+1

Since for a > 0 we have γa > 2 we get part (b).
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Finally to prove (c), note that Equation (14) implies that

P (ξ(0, Tθα ] = k) ∼ 1
kα

exp(− θα
1− α

k1−α)

This implies (c).

6.2.2 Computation of the sin-measures

Here we quickly show how to compute the sin- measures ν in whichever models have a nice
analytic form for this measure.

Proposition 54 (a) The sin measure for the usual preferential attachment model is the rate one
exponential distribution, namely ν(dx) = e−xdx on R+.
(b) The sin-measure for the Linear preferential attachment model is given by a mixture of a rate
(γ − 1) Exponential random variable and a rate γ Exponential random variable. Here γ = γ(a)
is the Malthusian rate of growth for this model.
(c) For the Preferential attachment with cutoff at A, the sin-measure is given by

ν(dx) = e−θAx

[
A∑
0

(j + 1)e−x(1− e−x)j + (A+ 1)(1− e−x)A
]
dx

where θA is the Malthusian rate of growth parameter for the associate branching process.
(d) For the Competition induced preferential attachment model the sin-measure is given by

ν(dx) = Ae−x[1− e−x]A−1dx

Proof: (a) For the preferential attachment model note that θ = 2. Since the offspring distri-
bution is just the Yule process the mean intensity measure is given by µ(dt) = etdt. Now use
Definition 47 of the sin-measure to compute ν.
(b) Note that in this case the offspring distribution

P(t) = N(t) + Poia(t)

where N(.) is a rate one Yule process and Poia is a rate a Poisson process independent of N(.).
Thus the mean intensity measure satisfies the formulae:

µ(dt) = (et + a) · dt

Also note that the Malthusian rate of growth parameter satisfies the equation:

a

γ
+

1
γ − 1

= 1

By the definition of the sin measure, we can write the sin measure in this case as:

ν(dt) = e−γt · (et + a)dt

=
1

γ − 1
·
[
(γ − 1)e−(γ−1)t

]
dt+

a

γ
·
[
γe−γt

]
dt
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This gives the result for the linear preferential attachment model.

(c) For the preferential attachment model with a cutoff note that the offspring distribution P(.)
has the same rates as that of a standard Yule process till the number of offspring reaches A, and
then remains constant A+ 1. A simple coupling argument with a Yule process then gives us

P(P(0, x] = k) = P(N(0, x] = k) = e−x(1− e−x)k ∀x, ∀k < A (15)

where N(.) is a Yule process Thus

P(P(0, x] ≥ A) = (1− e−x)A (16)

Note that the mean intensity measure satisfies the relation

µ(dx) = P(P[x, x+ dx) = 1) =
∞∑
0

P([x, x+ dx) = 1|P(0, x] = j) · P(P(0, x] = j) (17)

The rates of the Preferential attachment with a cutoff model are:

P([x, x+ dx) = 1|P(0, x] = j) = (j + 1)dx+ o(dx) for j < A

= A+ 1dx+ o(dx) for j ≥ A

Combine the above with Equations (17), (15) and (16) to get the result.

(d) Recall the construction of the offspring distribution of the fertile nodes from Section 2.1
namely Definition 3. Once the first fertile node is produced, the process produces at a constant
rate A. Equation (17) implies

µ(dx) = A · P(S1 ≤ x)dx

Note that S1 has the same distribution as the time of the Ath birth in a Yule process. Thus
P(S1 ≤ x) = P (N(x) ≥ A) = (1− ex)A. This proves the result after noting that the Malthusian
rate of growth in this case is θA = 1 and using the definition of the sin-measure.

6.2.3 Proofs for the BA-Preferential Attachment model

In this section we provide the rest of the proofs for the special case of the usual preferential
attachment model where we had found some extra results to illustrate the method of computations
and had computed the limiting distribution of some more local functionals including the joint
distribution of a node and it’s mother, etc.

Theorem 11 follows from Theorem 49 and the explicit computation of the sin measure carried
out in Proposition 54.

Proof of Corollary 12 :

Part (a): By Theorem 11 we have that the number of nodes with load k, namely Lk(n) satisfies

Lk(n)
n
−→P P(|F0| = k)
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while the number of nodes with degree k, namely Mk(n) satisfies

Nk(n)
n

−→P P(deg(F0,ρ) = k)

Where F0 is the fringe subtree (see Definition 7) in the construction of the limiting sin- tree
corresponding to this model and F0,ρ is used to denote the root of this tree. By previous compu-
tations, the fringe tree in this setup coressponds to:

F0 = F(T2)

where F(·) is continuous time branching process with offspring distributions distributed as stan-
dard Yule processes and T2 is an exponential random variable with rate 2 independent of F(·).
Thus we first need to find the distribution of Z = |F(T2)|. To do so, consider the following
construction:

Construction 55 Consider the following continuous time Markov process :
(a) Start with one node at time t = 0.
(b) Each node lives for an exponential (rate 1) amount of time and then gives rise to 3 identical
offspring and dies.
(c) Each of the offspring behave in the same manner namely each of them have their own inde-
pendent exponential lifetimes before splitting into 3 new nodes and dying.

Let N(t) denote the number of nodes alive at time t. Then it is easy to verify the following
relations

|F(t)| =d
N(t) + 1

2

Let F (s, t) = E(sN(t)). Then N(t) is also a special time of Markov branching process (belonging
to the class Bellman-Harris branching processes )Then the dynamics of the process allows us to
simply compute (via solving a differential equation in t for a fixed s ) F(s,t) as

F (s, t) =
se−t√

1− (1− e−2t)

See [4] Chapter III, Section 5 for a complete proof of this result. Simple algebraic manipulations
using this now give us the generating function of Z.

Part (b): Differentiating this at 1 gives us that E(Z) =∞. Note that this also follows from [2],
where Aldous proves that the expected size of a any limiting fringe tree is equal to infinity.

Part(c): This follows from the limiting degree computations carried out in Corollary 50 and are
not repeated here.

Proof of Corollary 13: By Theorem 11 and the definition of convergence of fringe in proba-
bility sense and our knowledge about the limiting sin-tree, we know that writing:

Xk,l(n) =
∑
v∈Tn

1{out− deg(v) = k, out− deg(mother)(v) = l}
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we have
Xk,l

n
−→P P(Z1 = k, Z2 = l)

as n→∞, where (Z1, Z2) can be reconstructed as follows:

Let X1 ∼ Exp(2) and X2 ∼ Exp(1). Then Z1 ∼ (P1(X1) − 1) and Z2 ∼ PX2
2 (X1 + X2) where

Pi are independent with P1(.) being a usual Yule process, and PX2
2 (t) being a Yule process

conditioned to have a point at the point X2.

Now note that by the Markov property

PX2(X1 +X2) =d

T∑
1

Pi(X1)

where T =d PX2(X2) i.e the size of a Yule process at time X2 conditioned to have a point at X2.

To find explicit distributions of the quantities occurring in the previous paragraph, we collect
the following Lemma for future reference. The proof follows from routine calculations using the
exact distributional properties of the Yule process and are omitted.

Lemma 56 Fix a constant t > 0. Let Pt(.) be a Yule process conditioned to have a birth at time
t. Then

(a) The distribution of Pt(t) is given by the probability mass function:

P(Pt(t) = k) = (k − 1)e−2t(1− e−t)k−2 for k = 2, 3, . . . ,

(b) For any s > t, the distribution of Pt(s) is given by the distributional identity

Pt(s) =d

Pt(t)∑
1

Yi(s− t)

where Yi(.) are independent Yule processes independent of Pt(t).

Thus integrating over the density of the conditioned point X2, we find that the p.m.f of PX1(X1)
is given by:

P (PX1(X1) = k) =
∫ ∞

0
P (N t(t) = k)e−tdt

=
∫ ∞

0
(k − 1)

[
e−2t(1− e−t)k−2

]
e−tdt

=
2

k(k + 1)

Combining all these properties easily gives us Corollary 13.
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6.3 Global computations

6.3.1 Time to reach size n

It is well known that the branching processes we consider grow at a truly exponential rate with
the rate being the Malthusian rate of growth parameter. More precisely we state the following
theorem from [19]:

Theorem 57 Consider a branching process driven by a point process P satisfying Assumption
48. Then there exists a random variable W > 0 such that:

N(t)
eθt

−→a.s.,L1 W

as t→∞, where θ is the Malthusian growth parameter associated with the process.

In particular this implies the following

Proposition 58 Assume we are in the setup of Theorem 57. Consider the stopping times Tn
defined as the first time the population grows to size n. Then

n

eθ·Tn
−→a.s. W

In particular this implies the following relations:

n1/θ

eTn
−→a.s. W

1/θ,
1
θ

log n− Tn −→a.s.
1
θ

logW

and
Tn

1
θ log n

−→a.s. 1 (18)

Note that the we have crucially used the fact that W > 0. Thus Assumption 48 is absolutely
essentially for us.

Recursive Distributional Equation for the Limiting random variable: For any given
model (with N(t) denoting the size of the population at time t ) let (Ni(.))(1≤i≤∞) be i.i.d. copies
of N(.) and let ξ1, ξ2, . . . denote the times of birth of the offspring of the initial ancestor. Then
note that

N(t) = 1 +
∑
ξi≤t

Ni(t− ξi)

Thus
N(t)
eθt

= e−θt +
∑
ξi≤t

e−θξi
Ni(t− ξi)
eθ(t−ξi)

Letting t→∞ we have

W =d

∞∑
1

e−θξiWi (19)

where Wi are i.i.d copies of W
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Distribution of the limiting random variable: The explicit analytic form of the distribution
of the limiting random variable W occurring in Theorem 57 is known in only a few cases. We
collect what seems to be known, relevant to our context.

Lemma 59 (a) Let N(t) be the Yule process (where the offspring distribution of each node is a
rate one Poisson process). Then

N(t)
et
−→a.s.,L2 W

where W has density e−x, i.e is an Exponential rate 1 random variable.
(b) Let N(t) be the branching process associated with the BA preferential attachment model (where
the offspring distribution of each node is a standard Yule process). Then

N(t)
e2t

−→a.s.L2 W

where 2 ·W has a Gamma distribution namely 2 ·W has the density x.e−x on R+

Proof: (a) follows from Lemma 46.

(b) follows from Construction 55 and the explicit form of the probability generating function
F (s, t), by replacing s by e−λ and letting t → ∞ for a fixed λ, to give us asymptotics for the
Laplace transform of the limiting random variable .

We finally conclude this brief tutorial on continuous time branching processes with the following
bound on the first moment. Although much more is known including bounds on the higher
moments, see [18] for more details, the following shall suffice for our purposes:

Theorem 60 Consider a continuous time branching process satisfying Assumptions 48. Let
N(t) be the size of the population at time t and let γ be the associated Malthusian rate of growth
parameter. Then there exists a constant C depending on the distribution of the point process P
of the offspring distribution, such that for any fixed time t,

E (N(t)) ≤ Ceγ·t

6.3.2 Asymptotics for the root degree

Write P0 as the point process representing the times of birth of the offspring of the root. Then
note that

deg(ρ) =d P0(Tn) (20)

where deg(ρ) denotes the degree of the root ρ in Tn. This is the fundamental equation which
coupled with Proposition 58 allows us to derive all our asymptotics for the root degree.

Computations for different models:

(a) Preferential attachment: The offspring distribution P0 here is given by the Yule process.
By Lemma 59(a) we have

deg(ρ)
eTn

−→a.s W
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where W is an exponential rate one random variable. This implies by Proposition 58 using the
fact that in this case the Malthusian rate of growth is 2 that

deg(ρ)√
n
−→a.s.

W√
W̃

where W̃ is the random variable in Lemma 59(b). Equation (19) gives us the relation between
W and W̃ . This completes the proof for the BA preferential attachment model.

(b) Linear Preferential attachment: A similar argument works in this case as well, with the
caveat that we are unable to find the explicit form of the limiting random variable.

(c) Sub-linear Preferential attachment: First note that in this case, the offspring distri-
bution P(t) can be constructed as follows: Let Yi be iid exponential rate 1 random variables.
Define the partial sums:

Sn =
n∑
1

Yi
iα

where α < 1. Then
P0(t) = sup{n : Sn ≤ t}

We first start with a preliminary Lemma analyzing the growth rate of the above offspring distri-
bution for large t.

Lemma 61 (a) consider the partial sum sequence Sn as above. Then

Sn
n1−α −→P 1

asn→∞ (b) The offspring distribution P satisfies:

P(t)

t
1

1−α
−→P 1

Proof: Note that E(Sn) =
∑n

1
1
iα ∼ n

1−α. Also V ar(Sn) =
∑n

1
1
i2α

so that V ar(Sn)/E(Sn)→ 0
as n→∞. Now use Chebyshev’s inequality.

To prove (b) we note that from (a) we have

(SP(t))
1

1−α

P(t)
−→P 1

Also note that
(SP(t))

1
1−α

P(t)
≤ t

1
1−α

P(t)
≤

(SP(t)+1)
1

1−α

P(t) + 1
P(t) + 1
P(t)

Now let t→∞ and use (a) to prove (b).

To get asymptotics for the degree of the root note the following relations:

deg(ρ) = P0(Tn)

43



where P0 is the offspring distribution of the root and Tn is the time for the branching process to
reach size n.

Now note that Proposition 58 implies that

Tn
1
θ log n

−→a.s. 1

where θ = θ(α) is the Malthusian rate of growth associated with the branching process with
offspring distribution P. Finally Lemma 61 implies that:

P0(Tn)

T
1

1−α
n

−→P 1

Combine to get the asymptotics for the root degree.

(d) Preferential attachment with a cutoff: Note that here we can construct the offspring
point process as follows:

P0(t) = min{A,N(t)}+ YA(t− SA) (21)

where N(.) is a Yule process independent of YA which is a rate A Poisson process independent
of N(.) (with the obvious convention that YA(t) = 0 for t <∞) and SA is the stopping time

SA = inf{t : N(t) = A}

By the law of large numbers for the Poisson process we have

YA(t)
t
−→a.s. A

as t→∞ By Equation (21) we have similar asymptotics for the offspring distribution P0 namely:

P0(t)
t
−→a.s. 1

This coupled with Proposition 58 and Equation (20) implies that:

deg(ρ)
1
θA

log n
−→a.s. A

(e) Competition induced preferential attachment: Note that here θA = 1 for all A
Also note that from the description of the offspring distribution of fertile nodes, for any time t
can be constructed as in the Cutoff model as:

P0(t) = min{A,N(t)}+ YA(t− SA)

Also note that the actual total degree of the root at time t is (A − 1) + P0(t) since the birth of
the first fertile node is preceded by the birth of A− 1 infertile nodes.

The rest of the analysis is now identical to Model (d) and we omit the details.
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6.3.3 Asymptotics for the Maximal Degree:

The analysis of the maximal degree combines the following two ingredients:

(a) Fix any node v born say t units of time after the initial progenitor (namely the root). Then
its degree at time Tn is equal to Pv(Tn − t) where Pv denotes the point process representing the
offspring distribution for node v.
(b) Large deviations for the above quantity: Here we show that the degree of any node born a
sizeable amount of time after the initial progenitor cannot have a large degree. Thus the size of
the maximal degree has to be of the same order of magnitude as the size of the root degree.

The above two are enough to get probabilistic bounds on the size of the maximal degree. We
exhibit the general mode of calculations via deriving explicit bounds in the case of the Preferential
attachment with a cutoff at A and the BA-Preferential attachment model. Since the analysis for
the maximal degree for all the other models follows similarly lines as the analysis of one of these
two models, we shall omit explicit proofs for the other models.

Maximal degree analysis for the Cutoff model:

Here we analyze the first example, exhibiting the typical mode of analysis. First note that by
Proposition 58 we know that given an ε > 0 we can choose a constant Bε > 0 large enough so
that

lim sup
n→∞

P(Tn >
1
γA

log n+Bε) ≤
ε

2
(22)

where γA is the Malthusian rate of growth of this particular model and Tn denote the stop times
for the population to reach size n. Let F(t) denote the population tree at time t. Write “max(t)”
for the maximum degree of a node in F(t) and tn = 1

γA
log n + B. Then by Equation (22) it is

enough to show that there exists a constant Kε such that

lim sup
n→∞

P
(

max(tn)
log n

> Kε

)
≤ ε

2

Now note that since the offspring distribution P in this case is stochastically dominated by a rate
A Poisson point process, we have by large deviations for the Poisson distribution, for any fixed
time t > 0 and any constant K:

P (P(t) > K ·At) ≤ exp(−c(K)t) (23)

where c(K) is the large deviations rate function for the Poisson distribution and c(K) → ∞ as
K → infty. Thus we have

P (max tn > K ·Atn) ≤ P(P (tn) > K ·Atn) · E(N(tn))

The result now follows by combining Equation (23) with Theorem 60 on the size of the branching
process by time tn by choosing K large enough.

Maximal degree asymptotics for the BA-model:

We start with a “large deviations” lemma for the Yule process.

Lemma 62 Let P(.) denote the standard Yule process started at time 0. Fix a constant K. Then

P
(
P(t− t0) > Ket

)
≤ e−Ket0
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Proof:

Note that P(t− t0) ∼ Geom(et−t0). Thus for any integer M

P(P(t− t0) > M) = (1− e−t−t0)M ≤ e−Met−t0

Now set M = K · et.

The following Lemma collects the basic distributional facts we need to complete the proof:

Lemma 63 (a) Consider the Branching process N(t) driven by a standard Yule process offspring
distribution as in the construction of the Linear preferential attachment model. Then for any fixed
time t:

N(t) ≤st Z1(2t) + Z2(2t)

where Z1 and Z2 are two independent standard Yule processes.
(b) Fix time t > 0 and t0 with t0 + 1 < t. Let the event At,t0,K be:

There exists a node born in the interval [t0, t0 + 1] such that the degree of the node by
time t is greater than Ket.

Then
P (At,t0,K) ≤ e−(t0+1) + 2e−[Ket0−2(t0+1)−log 2(t0+1)]

Proof:

Part (a) follows via comparing the rates of the two Point processes N(t) and Z1(2t) + Z2(2t)
(More precisely there is a coupling of the two process so that N(t) ≤ Z1(2t) + Z2(2t) for all t).

Part (b): To prove this part, note that

P(At,t0,K) ≤ P
(
N [t0, t0 + 1] > 2(t0 + 1)e2(t0+1)

)
+ P

(
{N [t0, t0 + 1] ≤ 2(t0 + 1)e2(t0+1)} ∩ At,t0,K

)

where N [a, b] are the number of births of the branching process N(.) in the interval [a, b].

Now note that by (a)

P
(
N [t0, t0 + 1] > 2(t0 + 1)e2(t0+1)

)
≤ e−(t0+1)

Again by the union bound and Lemma 62 we have

P
(
{N [t0, t0 + 1] ≤ 2(t0 + 1)e2(t0+1)} ∩ At,t0,K

)
≤ 2(t0 + 1)e2(t0+1)e−Ke

t0

Simple algebraic manipulations now give us the required result.

Now we are finally in a position to prove the following:
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Proposition 64 Given any ε > 0 there exists a constant Lε such that

lim sup
n→∞

P
(

max(deg)√
n

> Lε

)
≤ ε

Proof: First choose t0 > 0 large so that the infinite series

∞∑
i=0

e−[et0+i−2(t0+i)−log 2(t0+i)] ≤ ε

3

Then let K = a · t0 where a > log 2
ε + 2t0 + log 2t0

Note that by Proposition 58 for any ε > 0 there exists Bε so that

lim sup
n→∞

P(Tn >
1
2

log n+B) ≤ ε

3

Finally let Lε = KeB. Note that

P
(

max(deg)√
n

> Lε

)
≤ P(Tn >

1
2

log n+B) + P(A 1
2

logn+B,≤t0,K) + P(A 1
2

logn+B,>t0,K
)

where A 1
2

logn+B,≤t0,K is the event

There is a node born before time t0 whose degree by time t = 1
2 log n+B is greater

that K.et

and A 1
2

logn+B,>t0,K
is the event

There is a node born after time t0 whose degree by time t = 1
2 log n + B is greater

that K.et

By choice of t0 and using Lemma 63 we have for all n

P(A 1
2

logn+B,>t0,K
) ≤ ε

4

Finally note that by the union bound

P(A 1
2

logn+B,≤t0,K) ≤ P
(
N(t0) > 2t0e2.t0

)
+ 2t0e2.t0P

(
P(t) > Ket

)
where for simplicity we gave written t for 1

2 log n+B.

Note that by Lemma 63, by choice of t0

P
(
N(t0) > 2t0 · e2t0

)
≤ e−t0 ≤ ε

4

Finally note that
2t0e2.t0P(P(t) > Ket) ≤ 2t0e2t0e−K ≤

ε

4
by choice of K

47



Remark 1: The asymptotic probability bound for the maximal degree for the other models is
similarly computed. The analysis is essentially split up into two general modes of analysis. In
the first class of models the models are essentially similar to the cutoff model where the offspring
distribution grows at the most super-linearly in time namely P(t) ∼ tβ where β ≥ 1. The proofs
in this case tend to be relatively easy and follow from simple large deviation type inequalities.
In the second class of models, the associated offspring distribution grows exponentially namely
P(t) ∼ eλt for some λ > 0. In this case we need more advanced “bracketing” techniques, according
to the time when the node is born to complete the proof. This is exhibited in the analysis of
the BA-preferential attachment model where we analyzed the behavior of nodes according to the
interval [t, t+ 1] when the node was born.

Remark 2: What the above computations also imply is that the maximal degree essentially
occurs at a finite distance from the root ρ, namely in the local “neighborhood” of the root. More
precisely we have for BA-Preferential attachment model and the Linear preferential attachment
model, the following theorem:

Theorem 65 Fix B and time t. Recall that Ft denotes the Branching process tree observed till
time t.

lim sup
t→∞

P (node with max degree in Ft born at time > B after ρ) ≤ ε(B)

where ε(B)→ 0 as B →∞.

See Section 7 where we briefly mention how this theorem can presumably be used to prove
distributional convergence of the maximal degree of Tn, properly normalized.

6.3.4 Height

The analysis of the height in all of the above models follows almost immediately from a general
result of Kingman [21]. This was essentially what was used in a beautiful paper of Pittel [30] to
prove the result in the special case of the Linear attachment model. To paraphrase Kingman’s
result in our context, we first need some notation.

Consider a continuous time branching process as in Section 3, driven by a point process P(.),
with mean intensity µ(t).

Define
φ(θ) = θ

∫ ∞
0

e−θtµ(t)dt

Let Bk be the first time that an individual in the kth generation (namely an individual at graph
distance k from the root) is born. Then Kingman [21] proves the following

Theorem 66 [21] Assume that there exists a θ0 so that

1 < φ(θ0) <∞

For a > 0 write
µ(a) = inf{φ(θ) · eθa; θ ≥ θ0}

and write
γ = sup{a : µ(a) < 1}
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Then
lim
k→∞

Bk
k
−→a.s. γ

To prove our results about heights note that, letting hn be the height of the tree we have for the
times of birth, the following inequality:

Bhn ≤ Tn ≤ Bhn+1

Dividing by hn we have
Bhn
hn
≤ Tn
hn
≤ Bhn+1

hn

Now letting n→∞ and using Kingman’s result and Proposition 58 we have

hn
1
θ log n

−→a.s.
1
γ

where θ is the Malthusian growth parameter corresponding to the particular model.

Thus we find for each model, the normalized random variables hn/ log n converges to a constant.
Call this the height limit constant for the particular model. Although the above gives us a
formula to compute the limit constants, other than the Preferential attachment model, it seems
very hard to compute explicitly the limit constants in any of the other cases. It might be
interesting to numerically solve for these constants. What is easily provable is that all the models
have strict logarithmic growth namely:

Proposition 67 For all the models we deal with, the limit constants associated with the height
are strictly positive.

Proof: Note that the limit constant in all the models is by construction equal to γ
θ where θ is the

Malthusian rate of growth of the model and γ is as defined above. Thus to prove the Proposition,
it is enough to show that for all our models, γ > 0. Note that by definition γ := sup{µ(a) < 1}
where

µ(a) = inf{β ≥ θ : φ(β)eβa}

Thus it is enough to show that
µ(a)→ 0 asa ↓ 0

This follows easily since for fixed a and θ,

φ(θ)eθa = eθa · E(P(0, Tθ])

where P is the point process of the offspring distribution and Tθ is independent of P and is a
rate θ exponential, and thus mean 1

θ exponential random variable. This implies in particular that
E(P(0, Tθ])→ 0 as θ →∞. Thus µ(a)→ 0 as a ↓ 0.
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6.3.5 Relative sizes of subtrees

Let vk be the kth node born into the population and let Lk(n) be the load on k at time n,
namely Ln(k) is the size of the subtree attached to vertex k at time n. We are able to derive
asymptotics for the special case of the Preferential attachment model, where the special structure
of the offspring distribution and the explicit knowledge of the limiting random variable namely
Lemma 59, help us to get a simple proof of the fact that in the case of the Preferential attachment
model

Ln(k)
n
−→L β(2, 2 · (2k − 1))

To see this, consider the continuous time branching process construction of this model. Let Lk(t)
be the size of the subtree attached to vertex vk at time t and note that Lk(t) = 0 when t < Tk.
Thus it is enough to prove that

Lk(t)
N(t)

−→a.s. B

where the random variable B ∼ β (2, 2 · (2k − 1))

Also note that at the time of birth of vk, namely Tk, the process grows at an infinitesimal rate
of 2k − 1, whatever be the internal structure of the tree uptil this time. Suppose the k − 1
preceding nodes have out degree d1, d2, . . . dk−1 with dk = 0, This implies that at time Tk, vertex
i reproduces at rate di + 1. We consider the following construction of the branching process after
time Tk:

(a) Let (F i(.))1≤i≤(2k−1) be independent continuous time branching process driven by the Yule
process.

(b) For t > 0 and 1 ≤ i ≤ k, let Ai(t) as the size of the subtree attached to vertex i at time t+Tk.
Then we can construct these processes as A1(t) = ∪d1+1

1 F i(t)− d1, A2(t) = ∪d2+3
d1+2F

i(t)− d2, . . .
, Ak(t) = F2k−1(t). Note that by construction, for any t > 0, conditional on F(Tk), the size of
the population at time t+ Tk satisfies the identity

N(Tk + t) =
k∑
1

|Ak(t)| =
2k−1∑

1

|F i(t)| − (k − 1)

Thus the proportion of the population which is a direct descendent of vertex k is given by

Lk(t+ Tk)
N(k + Tk)

=
|F2k−1(t)|∑2k−1

1 |F i(t)| − (k − 1)
(24)

=
|F̃2k−1(t)|∑2k−1

1 |F̃
i
(t)| − (k − 1)/e2t

(25)

where we define F̃ i(t) := F i(t)/e2t
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Now note that by Lemma 59 we have

|F̃ i(t)| −→a.s. Wi/2

where Wi are iid and have a gamma distribution with density xe−x on R+. This implies that

Lk(t)
N(t)

−→a.s.
W2k−1∑2k−1
1 Wi

The result follows since by the properties of the Gamma distribution

W2k−1∑2k−1
1 Wi

∼ β(2, 2 · (2k − 1))

Remark: The above argument can be suitably modified to get convergence in many of the
other preferential attachment models. However due to the lack of an explicit analytic knowledge
of the distribution of the limiting random variable for the other models, we do not delve deeper
into this aspect for the other models.

6.3.6 Asymptotics for the percolation component of the root

For proving properties regarding the percolation component of the root, we first consider the
following coloring process associated with the original continuous time branching process.

Construction 68 Fix any one of the models in Section 2.1. Denote the point process repre-
senting the offspring distribution as P(.) ≡ (S1, S2, . . .). Let Tn denote the tree on n vertices,
grown according to the particular attachment scheme of the model under consideration. Define
the following coloring of the nodes of the branching process as:
(a) Mark the root blue.
(b) Mark each new birth blue with probability p or alternatively red with probability (1− p).

Denote the blue component attached to the root at time t by FB(t). Then this subtree of Ft
corresponds to the percolation component of TN(t) where Tn is the tree on n vertices.

From the above construction we immediately have the following distributional fact about FB(t)

Proposition 69 Fix any of the preferential attachment models for growing trees of Section 2.1.
Let P(.) ≡ (S1, S2, . . .) be the point process representing the offspring distribution and let F(.) be
the branching process with offspring distribution P. Let X1, X2, . . . be i.id. Geometric(p) random
variables namely

P (X1 = k) = p(1− p)k−1 k = 1, 2, 3, . . .

Consider the pruned point process given by the points S̃pi where

S̃pi = SX1+...Xk

Then the blue component defined in construction 68, namely FB(t), has the same distribution as
branching process driven by the point process Pp with distribution

Pp ≡ (S̃p1 , S̃
p
2 , . . .)
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Proof: Obvious.

Given any model of attachment, let γp denote the Malthusian parameter associated with the
corresponding pruned branching process (FB(t))t>0 Then note that by the above construction,
since the percolation component of the root essentially behaves as a continuous time branching
process, the whole theory of fringe and extended fringe distributions and -sin-trees carries over
to this setup as well. In particular, the percolation component of the root also converges in
probability fringe sense to an infinite sin-tree. We shall not analyze this sin-tree in it’s entirety
but show one can do analysis such as understand the limiting degree distribution of the percolation
component of the root.

To analyze the local structure of the percolation component of the root, note that Corollary 50
implies the following:

Corollary 70 Assume that the associated branching process FB(.) satisfies the Assumptions 48.
Let Np

≥k(n) be the number of nodes in the percolation component of the root, Cn(ρ) which have
out-degree greater than k. Then

N≥k(n)
n

−→P E(e−γpS̃
p
k )

as n→∞.

This fact is enough to prove the local structural assertions of Section 5 pertaining to the perco-
lation cluster of the root namely Theorem 15(b) and Theorem 19(b) .

Finally to get asymptotics for the size of Cn(ρ) we have the following Theorem.

Theorem 71 Let γ denote the Malthusian rate of growth of the original process and let γp de-
note the Malthusian rate of growth of the imbedded FB(t) process. Assume that the associated
branching process satisfies the Assumptions 48. Then there exists a random variable Wp > 0 such
that

|Cn(ρ)|

n
γp
γ

−→a.s. Wp

as n→∞.

Proof: Note that we have
Cn(ρ) = FB(Tn)

where Tn are the stopping times as described in Proposition 58 and FB(·) is the pruned branching
process whose construction was described above. Now note that by Theorem 57, we have

FB(t)
eγpt

−→a.s. Xp

where Xp > 0.

This in particular implies
|Cn(ρ)|
eγpTn

−→a.s. Xp
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Also note that by Proposition 58

n
γp
γ

eγpTn
−→W

γp
γ

where W is the limiting random variable associated with the original process. Note that W and
Xp are not independent. Combining and writing Wp = Xp

W
γp
γ

, we get the result.

To use Theorem 71 we need to verify that the branching processes FB(t) associated with the
Preferential attachment model and the Linear Preferential attachment models satisfy the As-
sumptions 48. The calculations are very similar to the computations done in Proposition 53 and
we don’t repeat it here. Thus Theorem 71 implies Theorem 15(a) and 19(a).

Finally to prove statements regarding the heights of the percolation component of the root, we
use Kingman’s result [21]. The analysis is identical to the one carried out in Section 6.3.4 and
we skip it here.

6.4 Preferential attachment with Fitness

To analyze the fitness models, we first need to introduce the concept of multi-type branching
processes. The basic conceptual idea is the same as that of the usual branching processes intro-
duced in Section 3. The minor variation is that each node is born with a particular type belonging
to a type space. Although these processes can be constructed on abstract type spaces, all our
processes are constructed with type space restricted to some bounded subset A of the interval
[0,M ] for some fixed constant M > 0.

6.4.1 Multi-type branching processes:

We now delve into the properties of Multi-type branching processes. Most of the theory has been
taken from [20] and paraphrased to suit our particular needs. The technical conditions used in
Assumptions 73 are taken from [27]. The nice part of this abstract theory is that, in the setting
of the fitness models, one can often do explicit computations, essentially because of the nice exact
distributional properties of the Yule process.

Before describing multi-type branching processes we need some extra notation. Although nec-
essary for mathematical completeness, on a first reading, this notation seems to obfuscate the
essential idea, so we first describe the process in words.

We have a continuous time branching process where each node v is born with a type
fv ∈ R+. This type determines the rate at which the node reproduces, and the
corresponding types of children it has. Given a node’s type it reproduces at times
which are independent of the rest of the population and giving birth to nodes of type
which depend only on the type of this parent node and independent of the rest of the
population.
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More precisely:

Notation: Let N = {1, 2, 3, . . .}. Identify the tree representing the genealogy of the population
the with the labeling

{0} ∪ ∪∞n=1Nn

with the understanding that 0 corresponds to the root, and (i1, i2, . . . ik) is the ithk child of
(i1, . . . , ik−1). Let (N (R+ × R+),M) denote the measure space of counting measures on R+×R+,
with M denoting the sigma field making all projection maps fB : N (R+ × R+)→ N ,

fB(µ) = µ(B)

measurable for all B ∈ B(R+ × R+). We shall think of the first co-ordinate as the type of the
node born and the second co-ordinate representing the time of birth of the niode .

Thus all the point process measures n(.) in N (R+ × R+)we work with can be enumerated as

n(.) ≡ {[σ(1), τ(1)], [σ(2), τ(2)], [σ(3), τ(3)], . . .}

with τ(1) < τ(2) < . . . representing the times of birth and σ(i) representing the corresponding
types of offspring.

Note that if we have counting measures such that say (0, 0) is a limit point of points in the
support of the counting measure or there exist more than one point with the same y co-ordinate,
then obviously we cannot enumerate the points as described. For the type of counting measures
we deal with, the above construction can always be done.

Finally we shall let Q denote the reproduction kernel, giving us the offspring time and type
distribution conditional on the type of the parent. More precisely let Q(., .) : R+ ×M → [0, 1]
satisfying the properties:

(a) For each fixed r, Q(r, .) is a probability measure on (N (R+ × R+),M)
(b) For each fixed B ∈M, the function Q(., B) is a measurable function on (R+,B(R+)).

In our context the mean intensity measure µ of this kernel is extremely important and is defined
below. Fix r ∈ R+ and let the random point process ξ(., .) ∼ Q(r, .). Define µ(., .) : R+×B(R+×
R+)→ R+ as the measure:

µ(r, dt× ds) := Er(ξ(ds× dt)) (26)

where the subscript r in Er is used to emphasize the fact that the distribution of ξ depends on r.

Construction 72 (Multi-type BP with type space R+ :) A multi-type branching process with
reproduction kernel Q and initial probability distribution κ, is a Markov process constructed as
follows:

1. Start with a single initial ancestor labeled 0 with type f0 ∈ R+, chosen at random with
distribution κ.

2. Given f0 chose the reproduction point process of the root with distribution ξ0 ∼ Q(f0, .).
Write ξ0 as

ξ0 ≡ {[σ(1), τ(1)], [σ(2), τ(2)], [σ(3), τ(3)], . . .}
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The interpretation being that that ξ0 represents the reproduction process for the root, with
the first child born at time τ(1) with type σ(1), the second child born at time τ(2) with type
σ(2) and so on.

3. The process is defined iteratively: Given the time of birth of a node v ∈ {0} ∪ ∪∞n=1Nn and
it’s type fv conditional on the rest of the information upto time Tv, chose ξv ∼ Q(fv, .).
Write this reproduction process for node v as:

ξv ≡ {[τv(1), σv(1)], [τv(2), σv(2)], [τv(3), σv(3)], . . .}

Then the times of birth of the offspring of node v are Tv + τv(1), Tv + τv(2), . . . with corre-
sponding types σv(1), σv(2), . . ..

To actually be able to construct such a Markov process without worrying about technicalities such
as explosion etc, we need to make some technical assumptions on the mean intensity measure µ.
These assumptions will involve the concepts of α− recurrence and irreducibility for general state
Markov Chains. Since stating and developing these concepts in the general case requires a lot
machinery we shall not state the full definitions but quickly mention what needs to be checked
in our particular setup.

First we need some notation. Define the Laplace transform of the mean intensity measure µ
(Equation (26)) as

µ̂(r, ds;α) =
∫ ∞

0
e−αtµ(r, ds× dt) (27)

For simplifying calculations later on in the proof, we note that a simple Fubini-type calculation
implies that we have the more probabilistic interpretation of µ̂:

µ̂(r, ds, α) = E (#of offspring of type ds born in the interval (0,Tα]|mother-type = r) (28)

where Tα is an exponential rate α variable independent of the offspring reproduction point process
ξ.

Assumption 73 (a) The process is Malthusian and supercritical, namely in the terminology
developed in [28], the mean intensity kernel µ is is irreducible and there exists an α > 0 such
that the Laplace transform of the kernel µ, namely µ̂(r, ds, α) is α−recurrent. This α is called
the Malthusian rate of growth of the process. By general theory (see [33]), there exists a σ−
finite measure π on R+ and a [π] a.e. finite and strictly positive function h (both unique upto
multiplicative constants) such that∫

R+

π(dr)µ̂(r, ds;α) = π(ds)∫
R+

h(s)µ̂(r, ds;α) = h(r)

Also assume strong α-recurrence namely h ∈ L1[π] and:

0 < β =
∫

R+×R+×R+

t · e−αth(s)µ(r, ds× dt)π(dr) <∞

Then π is a finite measure and we shall normalize h and π so that π is a probability measure and∫
R+

hdπ = 1
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(b) Assume that the reproduction kernel µ for the reproduction kernel Q satisfies the boundedness
property

sup
s∈R+

µ(s,R+ × [0, ε]) <∞

Note that µ[s,R+ × [0, ε]] has the verbal meaning

“The expected number of offspring of all types born in the interval [0, ε] starting from
a mother of type s”.

(c) The xlogx condition: Define the random variable

ξ̄ =
∫

R+×R+

e−αth(s)ξ(ds× dt)

=
∫ ∞

0
h(s)E(#of points of fitness ds in [0, Tα] |ξ)

Here Tα is independent of ξ and has an exponential distribution with rate α ; α being the Malthu-
sian rate of growth parameter and the expectation is taken over the randomness in Tα with ξ
fixed.

Then we assume that
Eπ(ξ̄ · log+ (ξ̄)) <∞

where π and h are as defined in part (b).

See [20] and the references cited within for more details. The essential point is that the above
technical conditions are easily checkable in our setup.

6.4.2 Connection to the fitness model

Note that the input for the two fitness models was a probability measure ν with bounded support
on R+. Similar to Proposition 43, we shall see that this branching process, sampled at times Tn,
has the same distribution as our trees Tn. This is the crucial link which helps us carry out our
analysis. We state the exact specialization of the reproduction kernel Q and initial measure κ,
for our two models. For both models, the initial probability measure, namely the fitness of the
root is the same as ν, namely κ = ν.

Additive fitness: Fix a fitness (or type) s ∈ the support of ν. Then the random point process
P on R+×R+ with distribution Q+(s, ·) is constructed as follows: Let τ(1), τ(2), . . . be the points
of a Markov point process Cs (constructed independently of the sequence σ) with transition rates:

P (Cs(t+ dt)− Cs(t) = 1| Cs(t) = k) = (k + 1 + s) · dt+ o(dt) (29)

Then P is defined as:
P := ((σ(1), τ(1)), (σ(2), τ(2)), . . .)

We call Q+ the reproduction kernel associated with the additive fitness model, and we call the
associated multi-type branching process, the additive fitness branching process.

Multiplicative fitness: Fix a fitness (or type) s ∈ the support of ν. Then the random
point process P on R+ × R+ with distribution Q×(s, ·) for the multiplicative fitness model is
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constructed as follows: Let τ(1), τ(2), . . . be the points of a Markov point process Cs (constructed
independently of the sequence σ) with transition rates:

P (Cs(t+ dt)− Cs(t) = 1| Cs(t) = k) = s(k + 1) · dt+ o(dt) (30)

Then P is defined as:
P := ((σ(1), τ(1)), (σ(2), τ(2)), . . .)

We call Q× the reproduction kernel associated with the multiplicative fitness model, and we call
the associated multi-type branching process, the multiplicative fitness branching process.

The connection between the fitness models for generating random trees and the multi-type branch-
ing processes with the respective kernels as above is given by the following trivial result:

Proposition 74 Consider the additive (resp. multiplicative) fitness branching process denoted
by (N(t),F(t)) say. Assume that the fitness measure ν is supported on a bounded subset of R+,
and satisfies the Assumptions of 73. Define Tn as the stopping times:

Tn = inf{t : N(t) = n}

Then we have the distributional identity

F(Tn) =d Tn

where Tn is the tree on n nodes constructed via the additive (resp. multiplicative) fitness scheme.

Proof: Obvious by our definition of the rates of the point processes.

We begin by collecting some simple facts about the mean intensity measure connected to the two
models. First note that a simple Fubini-type computation implies that:

µ(r, ds, [0, t]) = E (# of offspring with fitness ds born in time [0,t]|mother-type = r) (31)

Lemma 75 (a) For the additive fitness model:

µ(r, ds, [0, t]) = ν(ds)(et − 1 + r · t)

Thus the kernel µ̂(., .;α) is given by the formula:

µ̂(r, ds, α) = ν(ds)
(

1
α− 1

+
r

α

)
(b) For the multiplicative model we have:

µ(r, ds, [0, t]) = ν(ds)(ert − 1)

Thus the kernel µ̂(., .;α) is given by the formula:

µ̂(r, ds;α) = ν(ds) · r

α− r

The kernel µ̂ for the multiplicative model is defined only for α > M .
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Proof: Note that for the additive model, for a mother of type r, the number of offspring in the
interval [0,t] has the distribution

Cr([0, t]) =d N(t) + Poir(t)

where N(.) is a standard Yule process independent of Poir(.), which is a rate r poisson process.
Also note that each offspring has type s with probability ν(ds). Now use Equation (31)

For the multiplicative model we have the same argument, except that in this case

Cr([0, t]) =d N(rt)

where N(rt) is a standard Yule process.

The following Proposition describes the assumptions that need to be made on the fitness measure
so that the general theory is applicable to our setting. We shall not give a complete proof since
this would involve an unnecessarily long detail into the theory of general state Markov Chains.
Let it suffice to say that the following is trivial to check via the methodology developed in [28].

Proposition 76 (Irreducibility) Assume that the fitness measure ν is supported on some strictly
positive and bounded subset [0,M ] of the real line. Then the kernel µ(r, ds) in both the additive
and multiplicative models is irreducible with maximal irreducibility measure ν.

Thus the irreducibility assumption of Assumption 73(a) is always satisfied.

To check the condition of α-recurrence and to explicitly compute the Malthusian rate of growth
parameter, we have the following Proposition. We also show how to compute the eigen-measure
π and the eigen-function h occurring in Assumption 73 for the two models. Note that these
two quantities play a central role in describing local asymptotics, so it is very important to have
explicit forms for these quantities.

Proposition 77 (α-recurrence) Assume that ν is supported on some strictly positive and bounded
subset [0,M ] of the real line. Also without loss of generality we shall assume that M is the es-
sential supremum of the fitness measure ν.

(a) For the additive fitness model note that the equation

g(β) = 1 (32)

always has a unique positive solution, where g(β) is the monotonically decreasing function on the
interval (1,∞):

g(β) =
∫

R+

ν(dr)
(

1
β − 1

+
r

β

)
(33)

Denote this root of the equation by α. Then the kernel µ̂(r, ds, α) is α-recurrent. The eigen-
measure π is given by π = ν and the eigen-function h is given by

h(r) =
(

1
α− 1

+
r

α

)
(b) For the multiplicative fitness model assume that the equation

g(β) = 1 (34)
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where g(.) is the monotonically decreasing function defined on (M,∞)

g(β) =
∫

R+

r

β − r
· ν(dr) (35)

Denote the root of the equation by α. Then the kernel µ̂(r, ds, α) is α-recurrent. The eigen-
measure π is given by π = ν and the eigen-function h is given by the formula

h(r) =
r

α− r

Remark: In either case the α is called the Malthusian rate of growth parameter for the model
in question.

Proof: The explicit formulas for the eigen-measure and eigen-function follow from the defining
and normalizing Equations of π and h in Assumption 73 where we use the formulas of µ̂ from
Lemma 75. Thus we need to only prove α-recurrence. For this we first need some notation.

First define the collection of Borel sets getting positive measure under ν

B+ := {A ⊂ [0,M ] : ν(A) > 0}

For a fixed β, let us define the nth iterate, µ̂(n) of the Laplace transform µ̂(r, ds;β) recursively as:

µ̂(n)(r, ds;β) =
∫ M

0
µ̂(n−1)(r, dz;β)µ̂(z, ds;β)

Define the R(β) kernel as:

R(r, ·;β) =
∞∑
1

µ̂(n)(r, ·, β)

Note that by the Fubini interpretation of the the kernel µ̂, namely Equation(28),for a fixed
r µ̂(r, ·;β) is monotonically decreasing in β. Thus define the convergence parameter α as the
number:

α := inf{β > 0 : R(r,A;β) <∞ for some r ∈ [0,M ], A ∈ B+} (36)

Now we come to the definition of α-recurrence (see [28],[33]) modified for our setup:

Proposition 78 In our setup, the kernel µ̂ is called α-transient if

R(r,A;α) <∞

for some r ∈ [0,M ] and A ∈ B+ and is called α-recurrent otherwise.

The proof of this fact is obvious from the definition of α-recurrence as stated in [28] and we shall
not prove it.

To prove that solutions of Equations (33) and (35) is the same as α-recurrence as defined above,
we need explicit formulas for the kernel R(·, ·;β) in our setup. Using the definitions of the various
constructs it is not hard to prove
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Lemma 79 The nth iterate of the kernel µ̂ for both models satisfy the relation:

µ̂(n)(r, ds, β) = [g(β)]n−1 µ̂(r, ds;β)

where g is the function defined by Equation (33) and (35) corresponding to the two cases.

Thus Lemma 79 proves the α-recurrence in our setup since

R(r, ds;β) = µ̂(r, ds;β)
∞∑
1

[g(β)]n−1

which converges for g(β) < 1 and diverges for g(β) ≥ 1. The Malthusian rate of growth parameter
defined in Proposition 77 is the same as the convergence parameter of the kernel R(·, ·;β).

Summarizing our findings and paraphrasing the general assumptions 73 in the special case of the
fitness models implies we make the following assumptions on the fitness measure ν

Assumption 80 (a)The measure ν has support on some finite bounded positive subset [0,M ],
with M denoting the essential supremum of the measure ν.
(b) For the multiplicative fitness model, we assume that there exists a positive solution of the
equation: ∫ M

0

s

β − s
ν(ds) = 1

For both models, let α denote the Malthusian rate of growth parameter as given by Eqns (33) and
(35)
(c) Consider the random variable ξ̄ constructed as follows:

1. Choose a random fitness X ∼ ν.

2. Conditional on X = s, choose a random point process Cs with distribution as given by
Equations (29) and (30) in the two cases. Let ξ denote the joint point process of births and
fitnesses, where the times of birth are given by the times of Cs and each birth is independently
given a fitness, distributed according to ν

3. Let Tα be independent exponentially distributed with rate α, where α is the Malthusian rate
of growth parameter.

4. Finally define the random variable

ξ̄ =
∫ M

0
h(s)E (# of points of fitness ds in [0, Tα]|ξ)

where h(·) is the eigen-function.

Then we assume
E(ξ̄ log+ ξ̄) <∞
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6.4.3 Local Properties

We are now in a position to state the main result of [20], relevant for our local computations.
However we need to recall some notation.

Definitions: Recall that T denoted the space of all finite rooted unmarked trees. Given a rooted
tree T and a vertex v ∈ T recall the definition of the fringe subtree rooted at v b0(T , v), namely
Definition 8.

Fix a continuous time multi-type branching process (F(·))t>0., Fix any time t > 0 and consider
F(t) is a marked rooted tree (giving us all the information relevant for the population upto time
t, such as times of birth etc) and consider the projection g : F(t) → T , namely we retain only
the lineage structure of the population up to time t and remove all marks from F(t).

Finally for any fixed time t, and any vertex v ∈ F(t), let fv denote the fitness of the vertex v and
let fmom(v) denote the fitness of the mother of vertex of v.

Fix any two subsets A1, A2 ⊂ [0,M ] and a subset T ⊂ T and consider the empirical average:

Xt(A1, A2, T ) =
1

|F(t)|
∑
v∈F(t)

1{fv ∈ A1, fmom(v) ∈ A2, b0(F(t), v) ∈ T}

Then we paraphrase the local results of [20] as follows:

Theorem 81 Assume that the multi-type branching process satisfies all the Assumptions 73.
Then the empirical averages satisfy

Xt(A1, A2, T ) −→P P(f1 ∈ A1, f2 ∈ A2,F∗ ∈ T )

as t→∞.

Here the random variables f1, f2 and the random rooted tree F∗ are constructed as follows:
(a) f1 ∼ π where π is the eigen-measure constructed in Assumption 73.
(b) The conditional distribution of f2 given f1 is given by:

P (f2 ∈ ds|f1 = r) = π(ds) · µ̂(s, dr;α)
π(dr)

(c) F∗ is conditionally independent of f2, given f1 and has the distribution g(F(Tα)) where F(·)
is a multi-type branching process with the initial ancestor having fitness f1; Tα is an exponential
random variable with rate α independent of all the other random variables; and the process F(·)
and g is the projection of the marked random tree F(Tα) into the unmarked space T .

The same result holds if Tn are a sequence of almost surely finite stopping times with Tn ↑ ∞.

This immediately gives us the necessary information to derive the local asymptotics in the two
models via the embedding of the fitness models Tn into the associated multi-type branching
processes as described in the beginning of Section 6.4.2. To see this, note that Lemma 75 gives
us the formulaes for µ̂. Note that in both the models π = ν and µ̂(s, dr;α) = ν(dr) ·h(s). Simple
algebraic manipulations using the above theorem, now gives us Theorems 28 (b) and Theorems
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30 (b) regarding the asymptotics for the empirical distribution of fitness of nodes and fitness of
the mothers of the nodes.

To get asymptotics for the degree of nodes, note that by the above theorem, letting Xk(n) denote
the empirical distribution of nodes with degree k in Tn, we have:

Xk(n) −→P P (deg(ρF∗) = k)

where ρF∗ denotes the root of the tree F∗.

Now to compute the quantity on the right note by the joint distribution law specified in Theorem
81, we have

P (deg(ρF∗) = k) =
∫ M

0
P
(
deg(ρFs(Tα)) = k

)
ν(ds)

where Fs(Tα) is the associated continuous time branching process where the initial ancestor
has fitness s. Now note that conditional on the fitness, the degree of the root at time Tα has
distribution Cs(Tα) where Cs are the point process of offspring described by equations (29) and
(30). Thus

P
(
deg(ρFs(Tα)) = k

)
= P(Cs(Tα) = k)

where Tα is independent of Cs. Given the rates description of the point process Cs, Equations
(29) and (29), via computations similar Corollary 50, it is easy to compute that for the additive
fitness model:

P(Cs(Tα) = k) =
α

k + 1 + s+ α

k∏
1

(
i+ s

i+ s+ α

)
while for the multiplicative fitness model

P(Cs(Tα) = k) =
α

α+ s · (k + 1)

k∏
1

(
s · i

α+ s · i

)
This computation gives us required result for asymptotics regarding the degree distribution,
namely Theorem 28 (a) and Theorem 30 (a) respectively.

6.4.4 Global properties

We now state the main theorem required for performing global computations in our setup. It is
essentially the same as Theorem 2 in [20], however reformulated to suit our needs.

Theorem 82 Assume ν has bounded support and the corresponding (additive or multiplicative
fitness) multi-type branching process model (N(t),F(t)), driven by ν, satisfies all the Assumptions
of 73. Then there exits an almost surely positive random variable W such that

N(t)
eαt

−→L1 W

as t→∞. Here α is the associated Malthusian rate of growth parameter computed in Lemma 77
for the two models.
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In particular we have convergence in means as well namely there exits a constant C such that

E[N(t)]
eαt

−→ C (37)

as t→∞.

Let the stopping times Tn := inf{t : N(t) = n}. Then analogous to Proposition 58 we have the
following:

Proposition 83 The stopping times Tn satisfy the following properties

n

eα·Tn
−→P W

In particular this implies the following relations:

n1/α

eTn
−→P W

1/α,
1
α

log n− Tn −→P
1
α

logW

Thus
Tn

1
α log n

−→P 1 (38)

This is essentially enough to prove the various global properties.

Analysis of the root degree:

Write P0(t) for the degree of the root at time t. Note that for both the additive and and
multiplicative models the size of the degree grows as a Yule process. More precisely:

Lemma 84 We have the following asymptotics for the root degree in the two fitness models:
(a) For the additive model we have

P0(t)
et
−→a.s. W̃

(b) For the multiplicative model we have

P0(t)
efρ.t

−→a.s. W̃

Here fρ is the fitness of the root in the multiplicative model and W̃ is an exponential rate one
random variable.

Note that by definition of the stopping times and the tree Tn, we have:

ρ(Tn) =d deg(ρ) (39)

Thus combining Proposition 83, Lemma 84 and Equation (39) we have, for the additive model

deg(ρ)

n
1
α

−→d
W̃

W
1
α
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while for the multiplicative model we have

deg(ρ)

n
fρ
α

−→d
W̃

W
1
α

Analysis of the maximal degree:

Here we analyze the two models separately.

Additive model: We start by noting that for a fixed B

P

(
max(deg)

n
1

γ+,ν

> K

)
≤ P

(
Tn >

1
γ+,ν

log n+B

)
+ P

(
max(tn) > Kn

1
γ+,ν

)
where for simplicity we have written tn = 1

γ+,ν
log n + B and max(tn) is the maximum offspring

size (namely degree) of all nodes born before time tn. By Proposition 83 given any ε > 0, we can
choose Bε > 0 a constant large such that ,

lim sup
n→∞

P
(
Tn >

1
γ+,ν

log n+B

)
≤ ε

2

Thus it is enough to prove that given ε > 0 and the fixed constant Bε, as above we can choose
Kε > 0 so that

lim sup
n→∞

P
(

max(tn) > Kεn
1

γ+,ν

)
≤ ε

2

Since etn = Bn
1

γ+,ν it is enough to show the following

Proposition 85 Let tn be a fixed sequence ↑ ∞. Then given any ε > 0 we can choose Kε < ∞
so that

lim sup
n→∞

P
(

max(tn)
etn

> Kε

)
< ε

Proof: Dealing with nodes of different additive fitnesses turns out to be a nuisance. Via a
simple coupling argument, note that it is enough to prove the above, for the case where all the
nodes have additive fitness level M . Then note that we now have a linear preferential attachment
model (see Section 2.1) with parameter M , namely the associated continuous time branching
process has offspring distribution, the Markov point process PM with rates

P(PM (t+ dt)− PM (t) = 1|PM (t) = k) = (k + 1 +M)dt+ o(dt) (40)

For a fixed time t0 > 0 note that

P
(

max(tn)
etn

> Kε

)
= P

(
A[0,t0]

)
+ P

(
A(t0,tn]

)
where the events A[0,t0] is the event having the verbose description

there exists a node born in the interval [0, t0] such that by time tn, the number of
offspring (direct descendants ) it has is greater than Ketn .
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and A(t0,tn] has an equivalent description for nodes born after time t0. Thus it is enough to prove
that the probabilities of the above two events are small for large n for Kε chosen large enough.

The following simple Lemma plays a crucial role in what is to follow:

Lemma 86 (a) Let PM (.) be the offspring distribution point process in a linear preferential
attachment model with parameter M as defined in Equation (40). Assume that the constant
K > M . Then for any fixed times t and 0 ≤ t0 < t we have

P(PM (t− t0) > 2Ket) ≤ 2e−Ke
t0

where we have written PM (t− t0) = PM (0, t− t0) for the number of offspring born in the interval
(0, t− t0).

(b) Let (N(t),F(t)) be the branching process with offspring distribution PM . Then there exists a
constant C such that, for any fixed t and fixed constants A:

P
(
N(t) > ACt2eγM t

)
≤ 1
At2

where γM = M+2+
√
M2+2

2 is the Malthusian rate of growth parameter associated with the process
N(t).

Proof: Part (a) follows from the fact that we can write

PM (.) = Y (.) + PoiM (.)

where Y , PoiM are independent rate one Yule and Rate M Poisson processes respectively. Now
see the proof of Lemma 62.

(b) To prove (b) note that by Equation (37), there exists a constant C so that E(N(t)) ≤ CeγM t.
Now use Markov’s inequality.

To complete the proof choose K and t0 integers, large so that the following conditions are satisfied:

(a) C
K

∑
m≥t0

1
m2 <

ε
10 where C is the constant in Lemma 86 (b) .

(b)
∑

m≥t0 Km
2eγM (m+1)e−Ke

m
< ε

10 .
(c) t20e

γM t0e−K < ε
10 .

Then note that by the union bound

P
[
A[0,t0]

]
≤ P

[
N(t0) > Kt20e

γM t0
]

+Kt20e
γM t0 · P

[
P(tn) > Ketn

]
By choice of constants in condition (c) above and Lemma 86(a) we have

Kt20e
γM t0 · P

[
P(tn) > Ketn

]
< Kt20e

γM t0 · e−K <
ε

10

Again by Lemma 86(b) we have

P
[
N(t0) > Kt20e

γM t0
]
<

C

Kt20
<

ε

10
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so that
P
[
A[0,t0]

]
≤ ε

5
To finish the proof, for any integer m with m+ 1 ≤ tn, write A[m,m+1] as the event

There exists a node born in the time interval [m,m + 1] so that by time tn it has
degree > Ketn .

Note that

P(A(t0,tn]) =
tn∑
t0+1

P (A[m−1,m])

Finally note that

tn∑
t0+1

P (A[m−1,m]) ≤
tn∑
t0+1

P (N [m− 1,m] > K(m+ 1)2eγM (m+1))

+
tn∑
t0+1

K(m+ 1)2eγM (m+1)P (P(tn −m) > Ketn)

≤ ε

10
+

ε

10

by the conditions on the constants (a),(b) and (c).

Multiplicative model The proof of the upper bound is almost identical to the above proof for
the additive model so we shall skip it. The lower bound states that with high probability, there

exists a node with degree > Ke
M−ε
αν,×

logn
. To prove this first note that again by Propn 83 we can

choose a constant B large enough so that

P
(
Tn >

1
αν,×

log n−B
)
> 1− ε

4

For simplicity, write tn = 1
αν,×

log n−B. Then given any ε > 0, it is enough to prove that there

exists a constant K such that by time tn, there exists a node with degree > Ke(M−ε)tn with
probability 1− ε/2 for n large enough. Define

pε = ν(M − ε,M ] > 0

where ν is the fitness distribution. Since the offspring from the root come at the times of a Yule
process of rate fρ, we can choose t0 large so that

P(ρ has an offspring in interval [0, t0] with fitness > M − ε) > 1− ε

10

Finally we can choose a constant K ′ so that for a Yule process PM−ε, growing at rate M − ε

P
(
PM−ε(0, tn − t0) > K ′e(M−ε)[tn−t0]

)
> 1− ε

10

The proof is concluded by writing K1
ε = K′

eMt0
and noting that the event that there exists a vertex

with degree Ke(M−ε)·tn is contained in the event that a node of fitness level in (M −ε,M ] is born
before time t0 and by time tn this node has more than K ′e(M−ε)[tn−t0] offspring.
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Analysis of the height: This is the same as for all the previous models namely, coupling
Proposition 83 and Kingman’s result, Theorem 66.

Proof of Corollary 32: Here we analyze the special case where the fitness distribution is the
uniform measure on [0, 1]. By Theorem 30, the Malthusian rate of growth parameter in this
particular case is given by the unique positive solution of the equation∫ 1

0

s

α− s
ds = 1

i.e. ∫ 1

0

[
α

α− s
− 1
]
ds = 1

Thus α is the unique solution of the equation

1− 1
α

= e−2/α

To show that this gives rise to a degree distribution with pk ∼ 1
k1+α log k

, note that Theorem 30
implies that

fk =
∑
j≥k

pj =
∫ 1

0

k∏
1

(
x · i

α+ x · i

)
dx

It is thus enough to prove that fk ∼ 1
kα log k . Note that for each fixed i the factor

(
x·i

α+x·i

)
is an

increasing function of x. Thus fix some 1 > ε > 0, small. It is enough to prove that

f εk =
∫ 1

ε

k∏
1

(
x · i

α+ x · i

)
dx ∼ 1

k1+α log k

Let iε = inf{j ≥ 1 : j · ε > α}. Note that for any x > ε

k∏
iε

(
x · i

α+ x · i

)
= e
−

Pk
j=iε

log (1+ α
x·j )

Now use the Taylor expansion for the log function to conclude that for large k
k∏
iε

(
x · i

α+ x · i

)
∼ α log k

x

so that

f εk ∼
∫ 1

ε
e−α log (k)/xdx =

∫ 1/ε

1

e−y·(α log k)

y2
dy

Finally we get the result by noting that

ε2
∫ 1/ε

1
e−y·α log kdy ≤

∫ 1/ε

1

e−y·(α log k)

y2
dy ≤

∫ 1/ε

1
e−y·α log kdy

and ∫ 1/ε

1
e−y·α log kdy ∼ 1

α log k
e−α log k =

1
αkα log k

Proof for the Maximal degree: This follows immediately from Theorem 31
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6.5 Preferential attachment networks

In this Section we shall provide a complete analysis for the Preferential attachment networks
Nn. As before let Vn denote a node picked uniformly at random from Nn. We start with a
basic Lemma, which helps us perform computations, once we have managed to establish the
convergence of the distribution of deg(Vn). The basic plan of this Section will be as follows.
We shall first assume the distributional convergence given by Equation (5) and (7) and derive
the exact probability mass functions of the Limiting random variables as well as the power law
exponents of these random variables. We shall then go on to the proof of the main results, namely
Theorems 36 and 40.

6.5.1 Limiting probability mass functions

Lemma 87 Let (Ni(.))1≤i≤m be independent Yule process, and let Tβ be an exponential random
variable independent of the sequence Ni. Define

Z :=
m∑
1

(Ni(Tβ) + 1)

Note that Z ≥ m. Then for any k > m

P(Z = k) = β
Γ(k) · Γ(β +m)

Γ(m) · Γ(k + β + 1)

Proof: Note that by Lemma 46 on the exact distributional properties of the Yule process, we
have, for any 0 ≤ s < 1

E
(
sZ |Tβ = t

)
=
[

se−t

(1− s(1− e−t))

]m
where se−t

(1−s(1−e−t)) is the probability generating function of random variable X + 1 where X is a
geometric(e−t) random variable. Writing φZ(s) for the probability generating function of Z we
get

φZ(s) = β

∫ ∞
0

e−βt
[

se−t

(1− s(1− e−t))

]m
dt

Now use the fact that

P(Z = k) =
1
k!

dk

dsk
φZ(s)

∣∣∣∣
s=0

to get the result.

Proof of the limiting p.m.f, Equation 6:

Now note that Lemma 87 coupled with Equation (5) gives us the appropriate probability mass
function of Equation (6).

Proof of Corollary 37:

From Equation (6), since we now have n explicit form of the probability mass function, simple
algebraic derivations now imply Corollary 37.
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6.5.2 Local Analysis: Proofs of Theorems 36 and 40

We first start by giving the basic idea of the proof. We will assume the simplest case, where each
new node is born with a fixed number m of out edges, and tries to attach these edges recursively
to the existing tree. Throughout this Section we shall be focussed on only the BA-preferential
attachment model, so whenever we mention “continuous time” branching process, we mean the
branching process associated with this model, namely with the Yule process as the offspring
distribution. Now note that Theorem 11 has the following interpretation: Fix a large time t > 0
and pick a node uniformly at random from the tree F(t). Then

(a) The age of the node, say T ∗, has approximately, an exponential distribution with rate 2.

(b) The degree of this node has distribution P(T ∗), where P is a Yule process, independent of
T ∗.

Now suppose we pick a random node and the m−1 consecutive nodes born immediately after the
random node chosen. Due to the exponential growth of the branching process, all these nodes
have the same value of age but are essentially born at different places in the tree, so that if we
write Z as the combined degree of these m nodes then the distribution of Z is approximately∑m

i=1 Pi(T ∗) where Pi are independent Yule processes, independent of the common age T ∗ as
well. This gives us Theorem 36.

For the case where the distribution of out-edges have heavy tails, this heuristic fails and we have
to resort to other techniques. Consider the construction of the network from te branching process
where we first run the branching process and then coalesce consecutive nodes. Call the “age” of
a node v in the network, the time of birth of the last node in F(t) which was used to construct
the node v. Then we prove that the age of a randomly picked node in the network namely T ∗,
is no longer approximately exponentially distributed, but because of the presence of nodes with
large out-degree, the age of this node has the distribution:

T ∗ =d Zα

where Zα has the distribution specified by Equation (4). Thus the distribution of the degree of
the random node Vn is given approximately by

Z =
W∑
1

Pi(T ∗)

and this gives us Theorem 40. Our proof is essentially a formalization of these ideas.

We start with an initial Lemma which shall play a crucial role later.

Lemma 88 Let Wi > 0 be i.i.d integer valued random variables and define the partial sums
Si :=

∑i
1Wj. Let N be uniformly distributed on {1, 2, . . . , n} independent of the sequence Wi.

Then
(a) If E(Wi) <∞ then

SN
Sn
−→d U

as n→∞.
(b) If xαP(W > x)→ C for some 0 < α ≤ 1 and some C > 0. Then

SN
Sn
−→d U

1
α · XU

X1
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asn→∞, where U ∼ U(0, 1) and (Xt)t>0 is the associated Levy process with Levy measure C/xα

on R+.

Proof: We shall use the basic fact that

N

n
→L U (41)

Proof of (a) follows immediately from Equation (41) and the strong law of large number by
writing

SN
Sn

=
SN/N

Sn/n
× N

n

Proof of (b) follows using Equation (41) and the fact that the process(
S[it]

n
1
α

)
0≤t≤1

−→L (Xt)0≤t≤1

as n→∞.

We finally come to the main ingredients of the actual proof. Note that each node v ∈ {1, 2, . . . , n}
arrives with Wv edges where Wv ∼iid ν and which are then connected to nodes already present in
the network. We shall think of these edges as directed away from the node and directed towards
the node they connect to, and shall say that node v has out− deg = Wv. Let Vn be a node
picked uniformly at random from the network Nn. Fix m > 0. Since we want to prove that

deg(Vn) −→d

W∑
1

Ni(Z)

where Z is either T2 or Zα and W ∼ ν independent of Z and the Yule processes Ni. Thus it is
clearly enough to show for each fixed m, conditionally:

L (deg(Vn)|out− deg(Vn) = m) −→L

m∑
1

Ni(Z)

Thus fix m. All computations will be done conditional on WVn = m. We first start with an
equivalent construction of the network Nn (conditional on the degree of the random node Vn,
WVn = m).

Construction 89 (Network Nn) Consider the following construction:

1. Use the continuous time branching process construction to generate the BA-preferential
attachment tree. Label the nodes in the order they are born with the root labeled as 1. Let
the process be denoted as (N(t),F(t))t>0.

2. Fix n > 0. Then to generate Nn generate the following random varibles all of which are
independent of each other and independent of the process F(t).
(a) Generate N ∼ Unif{1, 2, . . . , n}.
(b) Generate W1,W2,WN−1,WN+1, . . .Wn ∼iid ν. Define WN := m.
(c) Define the partial sum sequence Si =

∑i
1Wj with S0 = 0.
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3. Define the sequence of stopping times TSi = inf{t > 0 : |F(t)| = Si}. Consider the tree
F(TSn). For i > 0 coalesce the nodes Si−1 + 1, . . . Si. Call the resulting node, the ith

super-node and say that the ith super-node has been fully born at time TSi.

4. Since we are interested in the degree of the N th super-node call this ego. Note that by
construction ego is made up of m normal nodes to be henceforth denoted as

ego(1), ego(2), . . . , ego(m)

labeled in the order of the time of birth, namely ego (1) is the oldest node, ego (2) is the
next oldest and so on.

Lemma 90 The resultant network constructed above, consisting of all the super-nodes is the
same as Nn, conditional on the event that the random node N node picked has out− degree = m.

Proof: Obvious.

Some notation: Note that ego is made of the nodes SN−1 + 1, . . . SN−1 + m = SN nodes to
be born into the population. Also note that ego is fully born at time TSN . Write

Ln = TSn − TSN (42)

for the life span of ego namely, the amount of time that elapses between the full birth of ego
and the time for the entire network to be constructed namely TSn .

The following Lemma is essentially the heart of the whole argument. We will deal with slightly
more complicated versions of this Lemma later but they tend to obfuscate the following Lemma
in technical details and are essentially minor variants of the following Lemma.

Lemma 91 As n→∞ we have
Ln −→d Z

where Z is a generic random variable, used to denote T2 if E(W ) <∞ and Zα otherwise.

From here on end we shall use µZ to denote the distribution of Z.

Proof: The proof is almost obvious, and essentially combines the “exponential growth ” of the
branching process F(.) and the Law of large numbers result of Lemma 88. We want to show that

P(Ln ≥ x) −→ µZ(x,∞)

as n→∞.

Note that

P(Ln > x) = P
(
e2·(TSn−TSN ) > e2x

)
The above equation can be rewritten as

e2·(TSn−TSN ) =
e2TSn/Sn

eTSN /SN
× Sn
SN
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By the exponential rate of growth of the branching process, Theorem 57, there exists a single
random variable W > 0 such that e2TSn/Sn → W and eTSN /SN → W almost surely. The result
then follows, since by Lemma 88 we have

e2·(TSn−TSN ) −→d
1
U

if E(W ) <∞ and

e2·(TSn−TSN ) −→d
X1

U
1
α ·XU

where Xt is the associated Levy process.

We collect without proof some more basic properties of the branching process F(t).

Lemma 92 (a) For the Markov process F(t), conditional on F(t), the rate of growth of F(t)
depends only on the size of |F(t)|, irrespective of the actual graph-theoretic structure of F(t) and
is equal to 2|F(t)| − 1. More precisely

P ( |F(t, t+ dt)| − |F(t)| = 1| F(t)) = (2 · |F(t)| − 1)dt+ o(dt)

(b) Given any fixed leaf v in F(t), the probability that the next birth is a daughter of v is

1/(2 · |F(t)| − 1)

Remark: Thus Lemma was crucially used in Pittel’s [30] beautiful paper, analyzing the height
of the linear preferential attachment model.

Write the set Gn (G being a mnemonic for good) for the event

none of the m nodes in FTSn which make up the super node ego , share a mother-
daughter relationship.

More precisely, there does not exist exist 1 ≤ i < j ≤ m such that ego(i) is a mother of ego(j).
Write

Ak = {ego(k) is not a child of ego(i) for i < k}
so that we have the relation:

Gn = ∩m1 Ai
By Lemma 92

P(Ak|F(TSN ),∩k−1
1 Ai) =

(
1− k − 1

2 · (SN−1 + k − 1)− 1

)
Taking expectations, we have the following fact:

Lemma 93 For fixed n

P(Gn) = E

[
m∏
1

(
1− k − 1

2 · (SN−1 + k − 1)− 1

)]
Since we have SN →∞ a.s. this implies

P(Gn)→ 1 as n→∞
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Thus Lemma 93 implies that with high probability:

(a) The nodes constituting the super-node ego are essentially born at different disjoint portions
of the tree, and

(b) Till the last node ego (m) is born, none of the other nodes ego(1), . . . , ego(m − 1) do not
reproduce.

Thus by conditions (a) and (b), for a fixed time t > 0, write A(t) as the random forest consisting
of the nodes (ego(i))1≤i≤m and its children observed at time TSN + t, namely t time units after
the birth of all the nodes that make up ego . By the Markov property of the growing branching
process F(·), on the set Gn

A(t) =d ∪m1 F i(t) on Gn conditional on F(TSN ) (43)

where F i are independent branching process driven by the Yule point process and independent
of F(TSN ) and with ego(i) as the root of F i.

In the above setup, for t > 0 write degi(t)as the number of offspring of ego(i) at time t (after
TSN ). By the definition of the branching process and Equation (43), on the set Gn the random
variable degi(t) has the same distribution as a Yule process upto time t. Note also that on the
set Gn the degree of ego in Nn, degNn(ego) is the same as

degNn(ego) =
m∑
1

degi(Ln)

where Ln is the lifetime of the node ego , as defined in Equation (42).

To prove our result, it is enough to show that Ln and the process A(.) are “asymptotically
independent”. Define the space Hm as the space of all finite graphs with m distinguished vertices,
labelled by the integers {1, 2, . . . ,m}. For a fixed time t > 0, think of A(t) as a random graph
on Hm. Then it is enough to prove, for any set B ∈ Hm, and any fixed t > 0

P (A(t) ∈ B,LN > t) −→ P
(
∪m1 F i(t)

)
· µZ(t,∞) (44)

as n → ∞, where Z is the generic random variable used to denote T2 or Zα in the two cases.
This proves Theorems 36 and 40, since Equation (44) in particular implies

degNn(ego) =
m∑
1

deg(i)(Ln) −→L

m∑
1

deg(F i)(Z)

where Z is independent of (F i)1≤i≤m and F i are independent Yule processes.

Define Form ⊂ Hm, to be the subset of Hm, consisting of graphs with m distinguished nodes
where the graphs consist of m disjoint trees one tree corresponding to, and rooted at, each of the
distinguished vertices. Note that Lemma 93 implies

P(A(t) ∈ Form) −→ 1

as n→∞.

Fix any such forest say E ∈ Form. Let the number of nodes in the forest, |E| = k ≥ m. Then it
is enough to prove that

P(A(t) = E , Ln > t) −→ P(∪m1 F i(t) = E) · µZ(t,∞)
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By Lemma 93 we have

P(A(t) = E , Ln > t) = P({A(t) = E , Ln > t} ∩Gn) + o(1)

as n→∞.

For t > 0, define the process F̃(t) := F(TSN + t)\A(t), namely the process excluding the lineages
of ego(1), . . . ego(m) seen t units of time after the birth of ego . By the Strong Markov property
for the Markov process for the full branching process F(t), conditioning on F(TSN ), and using
Equation (43), on the set Gn

P ({A(t) = E , Ln > t}| F(TSN )) = P
(
∪m1 F i(t) = E

)
· P
(
F̃(t) < Sn − k|F(TSN )

)
(45)

Now take expectations and note that by Lemma 92

Ln = TSn − TSN =d

Sn∑
SN

Yi
2i− 1

where Yi ∼iid Exp(1) independent of all of the other variables. By Lemma 91

Ln :=
Sn∑
SN

Yi
2i− 1

−→d Z

as n→∞. For any fixed k and m, this also implies that

Lkn :=
(Sn−k)∑
(SN−m)

Yi
2i− 1

−→d Z

Taking expectations in Equation (45) implies:

P ({A(t) = E , Ln > t} ∩Gn) = P
(
∪m1 F i(t) = E

)
· E (Cn ·Dn)

where Cn = 1{Gn} and Dn = 1{F̃(t) < Sn − k} = 1{T̃Sn−k > t} and the random TSn−k is the
stopping time defined as

T̃Sn−k := inf{s : F̃ (s) = Sn − k}
Note that on Gn, the distribution of T̃Sn−k =d L

k
n. Now use the fact that

Cn →P 1 and Dn →L 1{Z > t}

to get that
P ({A(t) = E , Ln > t} ∩Gn) −→ P

(
∪m1 F i(t) = E

)
· µZ(t,∞)

Proof of Theorem 38

The proof of this theorem follows from a careful reformulation of the Azuma-Hoeffding inequality.
The basic idea is very easy but to give a full rigorous proof takes some notation.

Note that the Theorem 36 can easily be modified, via Construction 89, where instead of dealing
with a random sequence Wi, we deal with a deterministic sequence (w1, . . . , wn) satisfying some
regularity conditions. Although we shall not fact, it is essentially obvious because we only use
the Law of large numbers in Lemma 91, in the case where the random variables have finite mean.

Thus we first prove the following result which is a reformulation of Theorem 36 and deals with
purely deterministic degree sequence.
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Proposition 94 Let (w1, w2, . . . , wn) be a purely deterministic sequence of strictly positive inte-
gers satisfying
(A) 1

nwi −→ µ for some µ > 0.
(B) max1≤i≤n

wi
n → 0 as n→∞.

(C)Let Fn is the empirical distribution of the weight sequence (w1, w2, . . . wn)and ν be a distribu-
tion on integers. Then

Fn ⇒ ν

where the above denotes convergence in law.

Consider the previous construction of Nn, via running the Branching process first, and then
coalescing nodes. Define Lk(n) to be the number of degree k nodes in Nn.

Then
pnk =

E(Lk(n))
n

−→ pk

as n → ∞. Here pk is the asymptotic expected degree sequence when vertex i appears with Wi

edges with Wi ∼iid ν. More precisely the sequence pk denotes the probability mass function of the
random variable Z, where Z has the distribution:

Z =d

W∑
1

Pi(T2)

with W ∼ ν

Proof: Go back to the proof of the Theorem and see that we have used only the strong law of
large numbers and the condition (B).

To prove the main Theorem, the following is enough:

Proposition 95 Consider a degree sequence (w1, w2, . . . , wn) which satisfy the three stipulated
conditions (A), (B) ,(C) of Proposition 94, and the added condition:
(D) There exists a sequence w(n) ↑ ∞ such that

w(n)
n2

n∑
1

w2
i → 0

Then for any δ > 0,

P
(
|Nk(n)

n
− pk| > δ

)
−→ 0

as n→∞, where pk is the expected asymptotic degree sequence of Proposition 94.

Proof: In the light of Proposition 94, since we have convergence for the expected values, note
that it is enough to prove that:

P
(
|Lk(n)

n
− E(

Lk(n)
n

)| > δ

)
−→ 0

as n→∞.
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For the increasing sequence of graphs as Nm and consider the Martingale sequence

Yi = E(Lk(n)|Ni)− E(Lk(n)|Ni−1)

Note that |Yi| ≤ 2wi

Now use Azume Hoeffding’s inequality (see e.g. [32]) to conclude that:

P

(
|Lk(n)

n
− E(

Lk(n)
n
| > δ√

w(n)

)
≤ 2 exp

(
− δ2n2

8w(n)
∑n

1 w
2
i

)
The result now follows from condition (D).

Proof of Corollary 39: The fact that Wi satisfies the conditions (A), (B) and (C) is obvious
by the strong law of large numbers and the fact that W has a 1 + ε moment. Condition (D) is
also satisfied, since Theorem 1 in Section 22 of [17] easily implies that if W has a 1 + ε moment
then

w(n)
n2

n∑
1

W 2
i −→P 0

for Wi ∼iid ν and the sequence wn = log n.

6.5.3 Global Analysis: Maximal degree

Here we shall provide complete proofs of Theorem 41 and Theorem 42. This essentially combines
two of our previous ideas namely:

(a) The time required to observe the branching process before one can finish constructing the

network, namely TSn is equal to 1
2 log n

+
− OP (1)

(b) The maximal degree of the network essentially occurs at a finite distance from the root of the
tree.

However making this precise requires quite a bit of work. They key ideas are as stated above.
First note that for the bounded out-edge setup namely in model (A) where P(W ≤ m) = 1 for
some integer m, the result is obvious, since by Construction 4, we have

max(deg(Nn)) ≤st m ·max(deg(Tm·n))

where Tn·m is the Preferential attachment tree on n ·m vertices. Further by Theorem 14, we have
already proved that for large n, the maximal degree in Tn·m is of order n1/2.

Now consider the case where W ∼ bXc+ 1 where X ∼ Exp(1). We start with a simple Lemma
regarding the extremal behavior of such a random variable:

Lemma 96 Let Wi be iid and distributed as bXc+ 1, where X ∼ Exp(1). Fix any t > 0. Then

P
(

max
1≤i≤et

Wi > 2t
)
≤ e−(t−1)
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Proof: This follows from the union bound and the fact that for an exponential random variable:

P (Wi > 2t) ≤ P (X > 2t− 1) = e−(2t−1)

Now we come to a stopping time Theorem which gives us asymptotic information on the amount
of time we need to observe F(t) before we have enough data to construct Nn.

Proposition 97 Consider construction 4, where we first run a continuous time branching process
(N(t),F(t)) driven by a Yule offspring, then generate a sequence Wi ∼iid ν having the above
distribution and finally coalescing nodes Si−1 + 1, . . . , Si to form node i, where Si was the partial
sum sequence. Define the stopping time

TSn = inf{t > 0 : N(t) = Sn}

i.e. the random variable describing the amount of time needed to observe the branching process
F(·), to construct Nn. Then there exists a random variable 0 < W <∞ such that

TSn −
1
2

log n −→P logW

Proof: Note that by Theorem 58,
Sn
e2TSn

−→a.s W̃

where {W̃} has density x · e−x on R+. Now note that by the Strong Law of Large numbers we
have

logSn − log n− logµ −→a.s. 0

where µ = E(X).

.

Proof of the Lower bound in Theorem 41: This is easy since

max(deg(Tn)) ≤st max(deg(Nn))

By Theorem 14(a), with high probability as n→∞, the root degree is of order ΘP (
√
n).

The upper bound requires more work. It involves the usual bracketing technique used in deriving
the asymptotic bounds for the maximal degree in Theorem 14 and showing that the node with
the maximum degree could not have been born at a time much after time 0. Here we have the
added complication of making sure that we can ignore the effect of nodes born with a large out
degree.

To simplify the proof, we shall define what is essentially a “moving average sequence” associated
with the degree sequence. This moving average sequence is supposed to provide a caricature of the
construction of the degree sequence, but is easier to analyze. Consider the following construction:

Construction 98 Fix B > 1. Let tn = 1
2 log n+B

(a) Consider F(tn). Label each node in F(tn) according to the order in which it was born, with
the root labeled by the integer 1, the second node to be born is labeled by 2 and so on.
(b) Each node i born is also given a integer valued random variable Wi, independent with the
distribution ν.
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(c) For the time tn defined above, let degi(tn) be the degree of node i at time tn. Consider the
moving average sequence defined as the sequence Mi with

Mi =
i+Wi∑
j=i+1

degj(tn)

and Mi = 0, for i > N(tn) = |F(tn)|.

Define the random variable
Hn = max

i
Mi (46)

We collect some properties of the above moving average sequence in the Lemma below. The
Lemma basically says that to get asymptotics for the maximal degree in Nn, it is enough to get
asymptotics for the random variable Hn.

Lemma 99 Let Si =
∑i

1Wj be the partial sum sequence and define the random variable M as,

M := sup{j : Sj < |F(tn)|}

Note that by using the construction 4, observing the branching process F(·) up till time tn, one
can construct the BA-random preferential attachment network NM on M nodes.

Then
max(deg(NM )) ≤st Hn

In particular,
lim sup
n→∞

P(Sn < tn) ≤ ε

2
implies, for any constant K

lim sup
n→∞

P
(
max(deg(Nn)) ≥ K ·

√
n
)
≤ ε

2
+ lim sup

n→∞
P
(
Hn ≥ K

√
n
)

Proof: Observe that the subsequence of the moving average sequence:

(M1,MS1 ,MS3 , . . .MSM−1
)

gives the degree sequence of NM .

Now note that by Prop 97 , given any ε > 0, we can choose a constant B large so that

lim sup
n→∞

P
(
N(

1
2

log n+B) > Sn

)
> 1− ε

2
(47)

Thus consider the previous construction for this B. Then it is obvious to complete the proof it is
enough to prove:

Proposition 100 Fix B so that Equation (47) is satisfied. Then given any ε > 0 we can find a
constant Kε <∞ so that

lim sup
n→∞

P
(
Hn > Kε

√
n
)
≤ ε

2
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Proof:

We start with a basic Lemma which captures the behavior of both the number of nodes born in
various intervals of time, as well as the relative size of the out-edges Wi of the node i.

Lemma 101 For notational convenience, we shall without loss of generality assume that tn is
an integer. Let m ≤ tn be any integer. Then
(a) Define N([m,m + 1]) as the number of births born in the time interval [m,m + 1] for the
associated branching process F(·). Then there exists a constant C > 0 such that:

P
(
N(m,m+ 1) > e3(m+1)

)
≤ C · e−m

(b)Define Jm := max{Wj : j born in the interval [m,m+ 1]}. Then

P (Jm ≥ 5 ·m) ≤ 2Ce−m

(c) Define the random variable Dm := max{degi(tn) : i born in the time interval [m,m + 1]}.
Then for any fixed constant K > 0,

P
(
Dm > Ketn−

m
2

)
≤ Ce−m + e3m · e−Ke

m
2

(d) Finally define the random variable Hn,m := max{Mi : i is born in the interval [m,m+ 1] }.
Then for any K > 0

P
(
Hn,m > 5m ·Ketn−

m
2

)
≤ 3Ce−m + e3m · e−Ke

m
2

Proof: Part (a) follows from Theorem 60, since the number of individuals born before time m
namely N(m) has expectation E(N(m)) ∼ C · e2m. Now use the Markov’s inequality.

Part (b) follows from combining Part (a) with Lemma 96 on the extremal behavior of the distri-
bution ν.

Part (c) follows from the union bound and Lemma 86 since

P
(
Dm > Ketn−

m
2

)
≤ P (N(m+ 1) > em) + P

(
N(m+ 1) < e3m, Dm > Ketn−

m
2

)
Now note that for each of the nodes born in the interval [m,m + 1], the number of offspring
this node has by time tn is bounded stochastically by a Geometric random variable with param-
eter e−(tn−m), (which we shall denote by G(e−(tn−m))), since the offspring distribution by the
properties of the Yule process has a Geometric distribution. Thus by the union bound

P
(
N(m+ 1) < e3m, Dm > Ketn−

m
2

)
≤ e3mP

(
G(e−(tn−m)) > Ketn−

m
2

)
Now use the large deviation properties of the Geometric distribution (see Lemma 62) to get the
result.

Part (d) follows from combining (a), (b) and (c).

.
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To analyze the moving average sequence, define

Hn,≥m := max{Mi : i is born after time m }

and let Hn,<m have a similar interpretation for nodes born before time m. Note that for any
choice of K and m,

P
(
Hn ≥ Ketn

)
≤ P

(
Hn,≥m > Ketn

)
+ P

(
Hn,<m > Ketn

)
To complete the proof, fix a K > 1 and choose m > 1 large, so that the following two conditions
are satisfied:

(a)
∞∑
j=m

3Ce−m + e−Ke
m/2+3m ≤ ε

4

and
(b)

5j · e
j
2 < 1 for all j ≥ m

By Lemma 101 (d) we have for this choice of K and m

P(Hn,≥m > Ketn) ≤ ε

4

Finally choose a K1 > K so that e3me−K < ε
4 . Then note that

P(Hn,≤m ≥ K1e
tn) ≤ P(N(m) > e3m) + e3mP (P(tn) > K1e

tn)

where P(.) is a standard Yule process.

The argument of Lemma 101 and the choice of K and m gives that

P(N(m) > e3m) ≤ Ce−m ≤ ε

4

Finally Lemma 86 gives us
P(P(tn) > K1e

tn) ≤ e−K1

Combining and writing K̂ε = K1 ·B we have

P
(

max(deg(Nn)) > K̂ε

√
n
)
≤ ε

Model (C): The case where for some α > 2 we have

P(W > x) ∼ 1
xα

is very similar to the above analysis and we shall only describe the modifications that need to be
made to Lemma 101. Note that due to the finiteness of the mean in this setup, Proposition 97
still holds in this setup. First we need some notation :

Since α > 2 write α
2 = 1 + δ for some δ > 0. Write β := 1 + δ/2. As before we shall assume that

tn is a integer. Then we have the following Lemma
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Lemma 102 Let m ≤ tn be any integer. Then
(a) Define the random variable N([m,m + 1]) as the number of births born in the time interval
[m,m+ 1] for the associated branching process. Then there exists a constant C > 0 such that

P
(
N(m,m+ 1) > m2 · e2(m+1)

)
≤ C

m2

(b) Define Jm := max{Wj : j born in the interval [m,m+ 1]}. Then

P
(
Jm ≥ m

4
α e

2m
α

)
≤ 2

C

m2

(c) Define Dm := max{degi(tn) : i born in the time interval [m,m + 1]}. Then for any fixed
constant K > 0,

P
(
Dm > Ke

tn−mβ
)
≤ C 1

m2
+m2e2m · e−Ke

(β−1)·m
β

(d) Finally define Hn,m := max{Mi : i is born in the interval [m,m+ 1] }. Then for any K > 0

P
(
Hn,m > m

4
α ·Ketn−

δ·m
2·(1+δ)(1+δ/2)

)
≤ 3C

1
m2

+m2e2(m+1) · e−Ke
(β−1)·m

β

The rest of the analysis is similar and we shall skip the full discussion.

Proof of Theorem 42 : We first observe the counterpart of Prop 97 in this setup. Let ν be
the distribution of W so that the tail behaves as

ν[x,∞) ∼ 1
xα

Then we have the following theorem for the amount of time we have to wait before the associated
branching process F(·) grows to size Sn.

Proposition 103 Consider construction 4 where we first run a continuous time branching pro-
cess (N(t),F(t)) driven by a Yule offspring, then generate a sequence Wi ∼iid ν having the above
distribution and finally coalesce nodes Si−1 + 1, . . . , Si to form node i, where Si is the partial sum
sequence. Define

TSn = inf{t > 0 : N(t) = Sn}

for the time to observe the branching process F(·), so as to construct Nn. Then there exists a
random variable 0 < W <∞ such that

TSn −
p

2
log n −→L logW

Proof: It is enough to observe
Sn
e2Sn

−→a.s. W

and
Sn
np
−→L X1

where (Xt)t≥0 is a Levy process with Levy measure 1
xα .
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Define the random variable deg(ρ(FTSn )) ≤ max(Nn) for the degree of the root at time TSn . By
Proposition 103, given ε > 0 we can find a B > 0 large, such that

lim sup
n→∞

P(TSn >
p

2
log n−B) ≥ 1− ε

2

Write tn = p
2 log n−B. Since the offspring distribution of the root is a rate one Yule process, the

offspring at time tn has the distribution Geom(e−tn). Thus we can find K such that

lim sup
n→∞

P(deg(ρ(Ftn)) ≥ Ketn) ≥ 1− ε

2

The result follows by noting that etn = 1
Bn

p
2 .

7 Conclusion

We end with a some general remarks, summarize our contribution and state some related conjec-
tures:

(a) We went back to the very basics of embedding trees in continuous time branching processes to
derive many results. The analysis of Urn schemes crucial to the conventional analysis of the degree
distribution in many of the models, also use embedding into continuous time Markov processes
to derive results for the degree distribution. However those methods are not pushed further to
derive more explicit asymptotic information for local characteristics of the tree. We have used
general branching process theory to derive much more detailed asymptotics for local and global
aspects of the tree. The method does have the disadvantage of involving more mathematical
abstraction such as point processes and renewal theory but seems to make up in the sheer amount
of information it reveals.

(b) Much of the fundamental theory of continuous time branching process theory and the powerful
theorems we have used, has been previously developed see e.g. [18], [19], [25], [2], [30]. The main
contribution of this study has been to do explicit computations in a number of different models
and show how this general theory actually helps us get explicit distributional asymptotics.

(c) Various special properties of the Yule process, such as the geometric distribution of finite time
population sizes and the limiting random variable being exponentially distributed, allow us to do
explicit computations in the BA-Preferential attachment model, where we were able to perform
detailed asymptotics for various local statistics, including the empirical joint distribution of the
degree of a node in the tree and the degree of it’s mother. It is probably a little more difficult
but presumably tractable to do similar computations in the more general setup of some of the
other models.

(d) The work [5] analyzes the competition induced preferential model in some detail using clever
continuous time Markov chains. Their analysis is equivalent to Corollary 34 in this paper. We
see more information can be gleaned by using the abstract ideas of point process and continuous
time branching processes. The work [5] analyzes some more preferential attachment schemes and
it might be worth seeing if one can use the techniques exhibited in this paper to analyze those
models as well. We have not pursued this line of thought in detail.

(e) Elimination of the use of concentration inequalities: The usual method of proof in these cases
is via finding recurrence equations for means of random variables and concentration inequalities
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for random variables about their mean. See (i) for more details on the present techniques in use.
However the general methods outlined in this paper, eliminate the need for such concentration
inequalities, and result in one or two line arguments for statistics such as the asymptotic degree
distribution.

(f)Drawbacks: It is fair to mention some of the drawbacks of the techniques outlined in this
paper. They do not give rise to explicit finite n error bounds or rate of convergence results
for quantities such as the degree distribution. See for example [12], where they analyze the
Preferential attachment network models of Section 5.7 and establish finite n error bounds for the
asymptotic degree distribution. The techniques used here also involve a higher technical overhead
in terms of dealing with Point processes and renewal theory. However the exercise definitely seems
worth the effort given the sheer amount of new information that results.

(g) It is the author’s belief that the techniques used in this paper can be used to solve a wide
variety of graph theoretic asymptotics for these random tree models. To state one concrete
problem, note that we have proved, (see Theorem 71) that the size of the percolation component
attached to the root is of order nγp/γ where γ is the Malthusian rate of growth of the original
branching process and γp is the Malthusian rate of growth of the associated pruned branching
process FB(.). We believe something like the following is true:

Conjecture 104 In most of the previous models there exists a random variable Wp such that if
max(Cn) denotes the largest percolation cluster then:

|max(Cn)|

n
γp
γ

−→P Wp

Another simple conjecture which should be provable easily is the “Thus the smaller tail expo-
nent always wins !! ” in Theorem 40. We state this as a Conjecture:

Conjecture 105 Suppose P(W > j) ∼ j−α. Then the limiting degree distribution has the same
power law exponent α.

(h) We shall finally make some conjectures regarding the size of the maximal degree. Before we
do so we need some notation. We shall split the class of models that we have analyzed into two
classes:

Class I models: These are the models such as the BA preferential attachment model and
the linear preferential attachment model where the point process P representing the offspring
distribution of the associated branching process grows exponentially with time t, namely P(t) ∼
eλt.

Class II models: These are the models, including the attachment model with cutoff, the
competition induced preferential attachment model and the sub-linear preferential attachment
model where the process grows linearly or at most super linearly, namely P(t) ∼ tβ for some
β ≥ 1.

Now note that for all the models, we have found probabilistic bounds of the form, given any ε > 0
there exists a constant Kε such that

lim sup
n→∞

P
(

max(deg)
ωn

> Kε

)
≤ ε
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for some sequence of scaling constants ωn → ∞. For e.g ωn =
√
n for the BA-preferential

attachment model. Now we believe the above techniques could be massaged to prove something
stronger namely:

Conjecture 106 (a) For the Class I models there exist random variables W (depending on the
model) such that we have:

max(deg)
ωn

−→d W

(b) For the Class II models we have:

max(deg)
ωn

−→P C

where C is a constant and depends on the model.

A starting point could be Theorem 65 which essentially states that to “observe” the size of the
maximal degree, we need to only restrict our attention to nodes born within a large finite time say
B after the root. Nodes born after this time have a very small probability of being the maximal
degree node in Tn.

(i) There are a number of Preferential attachment models formulated in the Spatial setting, see
e.g. [16]. The methods exhibited in this study do not seem developed enough to work in the
above settings but, it is the author’s feeling that they might still be massaged to get something
useful. Verifying the above statement seems a worthy topic of future research.

(j) Another model which is not amenable to the general stable age distribution theory is the
superlinear preferential attachment model, where the attractiveness function is given by:

f(v, n) = (D(v, n) + 1)β

where β > 1. This model has been comprehensively analyzed in [29].

(k) Comparison with existing techniques: As remarked before, for most models, the main
functional (and in many cases the only functional) to have been rigorously analyzed is the degree
distribution. The standard way of analysis in may of the cases is a sfollows: Let Nk(m) to be
the number of degree k vertices in Tm. Then to show that random variables Nk(m) satisfy the
property:

Xk(m)
m

−→P pk

for some probability mass function (pk)k≥1, the following two step procedure is followed:

1. Note that for all the tree models, the degree distribution vector (N1(m), N2(m), . . .)m≥1 is
a Markov chain. This allows us to setup recursions for Xk(m) = E(Nk(m)) via conditioning
on what happens on step m, given the degree distribution at step m − 1. It is then not
very hard to prove via these recursions that (although there are some mathematical caveats
involved, see e.g. Durrett [14] Chapter 4 more details)

E (Nk(m))
m

−→ pk (48)

as m→∞.
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2. Prove concentration for the random variables Nk(m) via concentration inequalities such
as the Azuma-Hoeffding inequality or through more subtle methods see e.g. [5]. These
methods essentially state that for large m, |Nk(m) − E(Nk(m))| = o(m), which coupled
with Equation (37) implies that

Nk(m)
m

−→P pk

as well. One of the contributions of this study has been to provide an alternate route
to obtain such results. If one is able to formulate a related continuous branching process
mechanism via an appropriate formulation of the rates which satisfies some easily checkable
conditions, such as Malthusianity and the xlogx conditions, then we immediately get, via
the stable age distribution theory of such processes, all of the above and in fact much more
regarding the statistical properties of fringes and extended fringes. Not only this the above
results in a lot of global information as well, which we hope Section 5 illustrates.
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[6] Ginestra Bianconi and Albert-László Barabási. Bose-einstein condensation in complex net-
works. Phys. Rev. Lett., 86(24):5632–5635, Jun 2001.
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