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Abstract— This paper addresses the problem of locating an acoustic
source using a sensor network in a distributed manner, i.e.without
transmitting the full data set to a central point for processng. This
problem has been traditionally addressed through the maxiram likeli-
hood framework or nonlinear least squares. These methodsyen though
asymptotically optimal under certain conditions, pose a dficult global
optimization problem. It is shown that the associated objetive function
may have multiple local optima and saddle points and hence anlocal
search method might stagnate at a sub-optimal solution. InHis paper,
we formulate the problem as a convex feasibility problem andapply a
distributed version of the projection onto convex sets (POCBSmethod.
We give a closed form expression for the projection phase, vith usually
constitutes the heaviest computational aspect of POCS. Coitidns are
given under which, when the number of samples increases tofinity or
in the absence of measurement noise, the convex feasibiliyoblem has
a unique solution at the true source location. In general, te method
converges to a limit point or a limit cycle in the neighborhod of the
true location. Simulation results show convergence to thelgbal optimum
with extremely fast convergence rates compared to the presus methods.

I. INTRODUCTION

a large number of cycles, rendering the distributed implementation
impractical.

In this paper the problem is formulated as a convex feasibility
problem instead of nonlinear least squares. Necessary and stfficien
conditions are given under which, when the number of samples
increases to infinity or in the absence of measurement noise, the
convex feasibility problem has a unique solution at the true source
location.

To solve the convex feasibility problem, we propose the projection
onto convex sets (POCS) method [5] (see also [6] Ch. 5). It is shown
that this method can be implemented in a distributed manner, i.e.,
each sensor performs the bulk of its computations based on its own
data and it is not required that the full data set be sent to a central
point for processing. As in Nowak’s distributed EM algorithm [7],

a number of communication cycles across the network is sufficient
for the implementation of the estimator. A closed form expression is
given for the usually computationally demanding projection phase of
POCS, which leads to a computationally efficient implementation. For
a finite number of samples, it is shown that convergence to a point
or a limit cycle in the vicinity of the true source position occurs.
Simulation results show global convergence of the proposed method
in contrast to a local search method, with extremely fast convergence
rates.

Il. PROBLEM FORMULATION

The problem of locating a source that emits acoustic waves USingThe energy attenuation model of [1] is adopted. Consider a
a wireless network of acoustic sensors has been addressed byl S&¥&hsor network composed &f sensors distributed at known spatial

authors (see [1] and references therein). This problem has b?

traditionally solved though maximum likelihood, which is equivale

is modeled as a white Gaussian process. The maximum likelih

@ations, denoted;, I = 1,..., L, wherer; € R2. Generalization to

. L . n]f{:” is straightforward but is not explored here. A stationary acoustic
to nonlinear least squares estimation when the observation noj

Brce is located at an unknown locatiéh € R2. Each sensor

. . i . . A Ogalectm noisy measurements of the acoustic signal transmitted by
estimator is asymptotically optimal, it can be applied to both tht

cases of known and unknown source power, and offers a natuggT]

source. Neglecting the propagation time from the source to the
sors, the received signal is modeled by

generalization to the multiple sources case [1]. However, there are two

major drawbacks to the method of [1]: (a) it requires the transmission
of a certain statistic from each node in the network to a central point
for processing, and (b) the solution of a global optimization problewherea

is required for the derivation of the estimator.
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Rabbat and Nowak [2], [3] proposed a distributed implementatiQp, jance 2 which is independent ofi(t). The estimation of the
of the mcrementa! grad{enF algorithm to sqlve th_e nonlinear Ieaé(!)urce location is based on the source energy estimates at each of
squares problem in a distributed manner, i.e., without the needtﬁ% Sensors
transmit the data to a central point for processing. The advantage N
of in-network computation relative to the fusion center approach in o = 1 Z 22(1)
terms of communication bandwidth and energy consumption is well n !
documented in the literature (see e.g. [4] and references therein). As
in [4] our premise is that as the network becomes denser, it is cheaJ&€re
to perform several communication cycles across the network than to
transmit the data from each sensor to a central point.

A drawback of the method in [2], [3], or any other local search n .
method, is that it is sensitive to I[O(]:al[ czptima aynd saddle points. &Qd ve=1/ny, w?(?)' Ngglegtlng the cross te.rm. due to the

il b ' h bel the obiective funcii iated with th.mdependence assumption, invoking the central limit theorem to
erobleemsisoﬁnndeeedovr:l{ulti?ncc)) dﬁc;éz :120 I?lgviszoﬁljr:be:v:)f Iocl odelv;, and subtracting the assumed known noise variarfcave
pro! - y . OCive at the energy attenuation model of [1], which was validated
optima and saddle points. Therefore, while a single commumca’nﬁ,‘n : :

: . s rough an experiment in [8],

cycle requires less energy and bandwidth than transmitting the data
to a central point, solving a global optimization problem may require g = A Gt 1=1 I )
|E | S
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wherev; is a zero-mean white Gaussian noise with varia‘m:é/n.

We first assume thatl is known. This assumption is valid when
an additional sensor is added to an already deployed network and the
new sensor transmits an acoustic signal with known power to enable
the network to estimate its location. The case of unknown source
power is treated in Sec. IV.



where for a seS C R? and a pointz € R?, Ps(z) is the orthogonal
projection ofz onto S, that is,

Ps (@) = arg min ||z — y|| ©)
yeSs
where|| - || is the Euclidean norm. Observe that (8) includes (7) as

a special case when a minimum value of zero is attainable, and note
that in generab # 6xr. Since the setd); are convex, both the
consistent and inconsistent convex feasibility problems, (7) and (8),
respectively, can be solved via the POCS method to be described
below.

Before describing POCS, we give necessary and sufficient condi-
tions for the consistency of the estimator (8). Denotétthe convex
hull of the sensors’ spatial locations, i.e.,

L L
HZ{xERQ:m:Zalm,al >0, Zalzl}.
=1 =1

It is possible to show geometrically (see Fig. 2) that when the number

—log[f(©)]

y “ow X of samplesn increases to infinity, or in the absence of measurement

noise, the convex feasibility problem (8) has a unique solution at the

Fig. 1. The negative log of the nonlinear least squares tigetunction.  true source’s location, denoted BY, if and only if 6™ lies in, that
is,

L
The maximum likelihood estimator (MLE) [1] is found by solving m {9 cR?: llr — 0| < ||ri — 9*||} ={0"}
the nonlinear least squares problem =1
A r

L ifandonlyif 0" € H
— A
e gmnE[v [Ire [

() where L > 2. As seen in Fig. 2 (bottom), when the source lies
outside’H, even in the asymptotic case there is no unique solution
The fact that the objective function is a sum &f components to (8). Rather, there is a continuous set of points (the shaded area) that
was exploited in the implementation of the distributed incrementglinimize the objective function. In this situation, our formalization
gradient method in [2], [3]. However, since the objective functiofs not appropriate for estimating the source location.
has multiple local optima and saddle points, the incremental gradienin the general case of finite number of samples and finite signal to
method may stagnate at one of these sub-optimal solutions inst@aike ratio, one of two cases can occur: [a)}~ 0, and (b)D = 0.
of converging to the optimal one. A realization of the negative log the former, the POCS method is guaranteed to converge to a point
of the objective function in (3) is presented in Fig. 1. The details & D. In the latter, the POCS method converges to a limit cycle in
the simulation that generated this figure are given in Sec. V. It cé@fe vicinity of the point that minimizes the sum of distances to the
be seen that the objective function has many local optima and sadséesD; (6), or, when a certain sequence of relaxation parameters are

points and that the global optimum is peaked. used, the method converges to the optimal solution.
An alternative formulation of the problem of estimating the
source’s location is the following. Consider thesummands in the I1l. DISTRIBUTED IMPLEMENTATION OF POCS
objective function (3). It is easily seen that the function The POCS method [5], [6] is given by the following algorithm.
A 2 1) Initialization: §° is arbitrary.
fu® = [yz - 9||2] @ 2) lterative step: For alk > 0,
obtains its minimum on the circle gr+L — gk 4 )k [PD o (07) = gk] (10)
2 . p—
G = {0 ER™: |6 —nll = v A/yl} : ®) where {\*},>, is a sequence of relaxation parameters sat-
Let D, be the disk defined by lsfylng for all k, e1 < )\k S 2 —.62 fOII' someeg, e > 0,
k(k) = k mod L, andPs(z) is defined in (9).
D, = {0 ER®: |0 —m]] < A/yz} . (6) Usually the projection operator is the most computationally demand-

ing element of POCS. In our application, however, a closed form

We propose to solve the source localization problem by letting ﬂé?(pression is available for (10). Clearly,|{f — 1|| < +/A/y then
estimator be a point in the intersection of the sBisi =1,..., L, € D, andPp, (0) = 0, otherwise -
1 — Y 3

that is,
feD= ﬁ DI CR”. (7) Ppy(0%) = i+ [arcos(@), asin(9)]" (11)
=1 wherea = /A/y;, and ¢ = atan(6*(2) — r(2),0%(1) — (1)),

where atan(-, -) is the four quadrant inverse tangent function, and
r a vectorz € R?, z(1) and z(2) denote its first and second
coordinates, respectively.

When |0 — .|| > /A/Yw() the vector[e’C —Pp,.o (9’“)]

L
N L - % ,
6 = arg min Z 160 — P, ()] (8) Points in .theksame direction & f,.x) (0"), t.he gradient off. )
OER? — at the pointd”. Hence, the POCS method is closely related to the

Note that due to observation noise the intersecfiomight be empty.
In this case, our estimator is any point that minimizes the sum
distances to the set®;, [ = 1,..., L, that is,
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phase two. At phase two the relaxation parameters are decreased at
a rate of1/k. In [10], it is shown that this relaxation sequence leads
to convergence to the point that minimizes the sum of squared
distances to the set®,, that is, tof defined in (8). It should be
noted that if the transition to phase two occurs prematurely, this
convergence result still holds. The effect will be a slowdown of
convergence. A sub-optimal but computationally cheaper alternative
to phase two is to approximateby the arithmetic mean of the points

in the limit cycle. This simple approach was used in the simulation
reported in Sec. V. Due to its global convergence properties, the
estimate resulting from the POCS method could also be used to
trigger a local search for the nonlinear least squares estimator such
as the one in [2]. However, we cannot guarantee that this initial
point falls within the attraction region of the global maximum of the
likelihood function.

Note that all the information required for the computation of
(11) (or (10)) is available at sensdr and hence a distributed
implementation is possible. Following [7], assume without loss of
generality that the indicds= 1, ..., L correspond to a cycle through
the network. Let sensdrbe initiated with a pre-specified initial value
#°. Sensorl generate®’ through (10) and transmi#' to sensor.
Upon receiving?® from sensoks(k), sensom(k+1) calculateg* !
and transmits it to senser(k + 2). The information cycle continues
until the detection of convergence to either a limit point or a limit
cycle. The convergence detection criteria can be easily implemented
in a distributed manner as well. Phase two can be implemented in a
similar way.
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A. Communication Bandwidth and Energy Consumption
Fig. 2. Source, denoted by a black dot, is located inside) @mg outside

of (bottom) the convex huft of the sensors’ locations, denoted by crosses. consider first the centralized approach, in which each sensor
transmits its coordinates, € R? (unless these are known a priori)
and its energy estimatg, (2) to a fusion center. Assume that the
incremental gradient method [9, p. 109], which was implementeghiwork is distributed over the culig, 1%. For a fixed quantization
in [2] and [3] to solve (3). The incremental gradient method general@gel of the spatial coordinates and energy estimates, conveying
a sequencg¢”},>o according to the information from the sensors to a fusion center requires the
ot — gk _ ukaK<k)(9k) (12) transmission oD(L? bitshover a distgnce ab(1) per bit [4].

In our decentralized implementation of the POCS method and
where * is a positive step size, possibly depending enThe in the decentralized implementation of the incremental gradient
difference between the two methods is that whgh — remy|| < method [2], [3], information is conveyed in communication cycles as
v A/yx), the POCS iteration i®ctl = g* whereas the incre- described above. In every communication hop, a sensor transmits the
mental gradient iteration is a step in the direction that points frogurrent source location estimate to the next sensor in the cycle. The
Tr(k) O 6%, i.e., a step towards the circtg, (). Therefore, the incre- spatial coordinates of the sensors do not need to be shared. Fad a fixe
mental gradient method (12) is more closely related to Kaczmarzlgantization level of the source location estimate, performing a single
algorithm [6] (also known as the algebraic reconstruction techniqgueymmunication cycle across the network requires the transmission of
than to POCS. In particular, if the step sjz&is determined by a line O(L) bits over a distance ab(+/log® L/L) per bit [4]. Finally, the
search in the directiofo,.C(m(G’“), then the iterates are identical tototal number of bits is obtained by multiplying the number of bits
those obtained when applying Kaczmarz’s algorithm to the probleper cycle by the expected number of cycles.
for finding the intersection of the circle§C;}/~,. In contrast to  From the above analysis it can be seen that the communication
the global convergence property of POCS, Kaczmarz's algorithmiarden grows linearly with the number of sensors in the centralized
known to converge only locally when applied to nonlinear problemgpproach and sub-linearly/(L log L) in the decentralized approach.
such as finding the intersection of the circlgs; }~ ;. To compare the two approaches for a fixed number of senBprs

The relaxation parameters® (10) play an important role in the however, one should factor in the number of cycles. As shown in
convergence of the method. At the first phase of the implementatiSec. V the implementation of the incremental gradient method [2],
of the POCS method, the relaxation parameters are sktAs the [3] may require hundreds of cycles to find the global maximum
method progresses, a convergence criterion is repeatedly checkgcthe non-linear objective function (3) and hence has advantages
If convergence to a single point is detected, e.g., by verifying thafith respect to the centralized approach only in dense networks. In
S |6F T — 081 is smaller than a threshold, it is concludectontrast, it is shown that for the same scenario the distributed POCS
that D # 0, and the final estimaté is set to the limit point. If implementation requires as few dscycles to achieve convergence,
convergence to a limit cycle is detected, i.e., each sensor convergad hence, leads to a reduction in energy and bandwidth requirements
to a different value, it is concluded that = () and the method enters as compared to the centralized approach for sparser networks.



IV. THE CASE OF UNKNOWN SOURCE POWER whose energy estimates (2) are above participate. The threshold

When the source is not collaborating with the network, the signal corresponds to an average SNR greater than 7dB at the active
power A (1) is unknown. To eliminate the dependency of th&ensors and it was chosen to balance the number of active sensors
optimization problem ont, an energy ratios based source localizatiog"d their associated SNR levels. The performance of the algorithm
method was proposed in [8] (see [1] as well). In this section it 4aS insensitive to small changes in the threshold. When this threshold
shown that it is also possible to represent the estimation of the soul¢é!séd the average number of active sensors2isvith standard
location based on the energy ratios as a convex feasibility problél@viation of5. In the realization presented herg, = 31 sensors
and hence solve it in a distributed manner as described in Sec. Ifietected the source and entered the estimation phase.

Considering the noise free problem, Li and Hu [8] showed that the A réalization of the objective function associated with the MLE (3)
ratio between the energy readings at two sensgrandy;, defines S shown in Fig. 1. To optimize the viewing angle of this figure,

a circle or a hyperplane on which the source may lie: the negative log of the objective function is presented. Hence, the
optimum point is the global maximum rather than the minimum,

o =V ye = M (13) which appears close to the true location of the source. The objective

116 =l function has multiple local optima and saddle points, which impose

When ¢, # 1, the resulting circle is given by difficulties on any local search method. In Fig. 3, the paths taken

0:110 - ClkHQ _ ka} by the steepest descent (SD) method initiated from multiple points
’ o on a grid are presented on top of the contour plot of the nonlinear
wherecy, = (1 — o3,rr) /(1 — 3), andC, = @u||r —rk|)?/(1—  objective function (3). The SD method could also be implemented in
©3.). Whenypy, = 1, (13) defines the hyperplane a distributed manner, e.g., distributed Fisher scoring [12]. The initial
T points are depicted by crosses, followed by a line which follows
{007 v = 7ur} the path taken by the algorithm, and ends at the convergence points
wherevy;, = 1, — i, andry, = (||r1])% — ||7%||?)/2. In the presence depicted by circles. It is seen that only when the method is initiated
of observation noise, given a set Bf + L, ratios, the location of close to the global optimum at the center of the plot, does convergence
the source is estimated by minimizing the cost function to the global optimum occur. The method mostly stagnates at local
Iy Lo optima or saddle points.
_ _ _ 2 T, 2 The paths taken by the incremental gradient method of [2], [3]
T0) =3 (10 ~eull = G)"+ > (07w 7o) (14 are presented in Fig. 4. Since the gradi&hf;(¢) diverges at the

. sensor location;, a small step size:, (12) is required to achieve
where L, and L, are the number of circles and hyperpl""nesconvergence, e.g., in the implementation presented in Fig. 4

respectively. In [1], this estimator is called the energy-ratio nonline%%_ As in Fig. 3, the initial points are depicted by crosses, followed

least squares. L . by a line which follows the path taken by the algorithm, and ends at
To formulatfe the problem of estlmayn_g the source location Tro[ﬁe convergence points depicted by circles. The crosses that are not
the energy ratlgs (13) as a convex fe_aS|b|I|ty pro_bler_n, assume W'th%'ﬁowed by a line correspond to initial points that lead to divergence.
loss qf generality thap,. < 1 (otherwise replace it wittpy.). Define Each path corresponds to hundreds of communication cycles and it
the discs ~ 9 9 is seen that only two of the initial points result in convergence to the
Dy ={0:110 —ci, ||I” < (11} global optimum at the center of the figure.
and the hyperplanes To combat the high variability of the gradie® f;(6) over the
optimization domain, Rabbat and Nowak suggested to normalize the
descent direction in (12) [13]. The modified algorithm is given by
Hence, the POCS method can be implemented in a distributed manner - . vfn(m(ek)
to estimate the source location by finding a point in the intersection oFtt =6" — Mm

of the convex sets ) ) ) )
L L Wher_eu is a constant step size. In _Flg. 5 the paths tak_en_ by this
ﬂ D ﬂ m T algorithm for 4 = 0.1 are given. It is seen that this variation of
! 2 the incremental gradient method is not sensitive to local maxima.
However, even in the absence of noise, a convergence proof is
Note that the projection onto a hyperplane has a closed foi@t available for this variation. In the simulation, convergence to
expression as well. To optimize the energy consumption, the eneggysingle point or a limit cycle was not detected after the first
ratios should be selected based on geographical vicinity. 200 communication cycles. An example in which the method (15)
Li and Hu also proposed to replace every two circles in (14) Withoes not converge to the global maximum is given in Fig. 6. In
a single hyperplane and then solve the resulting linear least squafgs simulation there are four sensors operating in a noise free
problem. This approach can also be converted to a convex feasibilif/ironment and a source is located[#, 50]. The paths initiated
problem. from the top four crosses do not converge to the global optimum at
[50, 50].
V. SIMULATION RESULTS In contrast to the shortcoming of the local search methods, the
This section presents a simulation of a sensor network 5000 proposed POCS method converges to the vicinity of the global
nodes, distributed randomly inl®0m x 100m field. At each sensor a optimum regardless of the initial point. In Fig. 7 the paths taken
measurement of the acoustic source energy was generated agcordinthe POCS method are presented. The order of the sensors in
to (2). The source is located @t = [50, 50]* and emits a signal with the information cycle described in Sec. Ill was selected randomly.
A (1) set to100. The energy measurement noise variancris/n = Convergence to a limit or a limit cycle is declared if at sensor
1. Following [11], [3], not all sensors participate in the estimation HekL+1 _ e(kfl)LquH <1073 (16)
task. At an acquisition phase, each sensor decides whether or not a ’
source is present using a simple threshold test. Only those sensdnge convergence is detected, the final estimate is the average of

=1 la=1

hiy ={0:60Tv, =7,}.

(15)

I1=1 lo=1
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Fig. 3. Paths taken by the steepest descent method. Fig. 5. Paths taken by the normalized IG method.
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Fig. 4. Paths taken by the IG method. Fig. 6. The normalized IG method does not always converge tjjoba

the sensors’ estimates/L Zle oR=DI+ which can be easily compared to the performance of the MLE [1]. The MLE was found by
computed in a distributed manner [2] through a single communicatiperforming a grid search over the field area followed by a local search
cycle. A better illustration of the method is presented in Fig. 8nitiated at the highest maximum. Note that due to the peakedness
in which four representative paths are superimposed on top of thiethe global maximum (see Fig. 1), a fine grid search is required.
convex sets (discs) (6). At each iteration the sequence generatedrbgrefore, a grid search based optimization is operational only in
the algorithm is projected onto a different disc, unless it is alreadlye centralized approach when all sensor readings are available at a
inside it. It is seen that the convergence is extremely fast; after @ntral location. In our implementation the grid search resolution was
few as three sub-iterations (10), the sequence reaches the vicisi#yto0.1m x0.1m. Also presented is the performance of an estimator
of the global optimum. In part of the sub-iterations (10), little owhich is obtained by performing a local search on the ML objective
no progress is made if the previous iterate is close to or insifinction (3) initiated at the POCS estimator. The performance of the
the corresponding disc, respectively, but three communication cyctbsee estimators was evaluated thro2gh00 Monte Carlo iterations,
were sufficient to satisfy the convergence criterion (16) regardiesswhereby the number of sensors in the field was increased f@m
the initial point. Adding the communication cycle required for théo 2100 in 200 increments. In Fig. 9 the square root of the mean
computing the average we conclude that it requireemmunication squared error and the median squared error of the three methods are
cycle to implement the distributed POCS method in this scenariopeesented witht-o confidence interval as a function of the average
significant reduction in energy and bandwidth requirements compamamnber of sensors that entered the estimation phase. The standard
to the incremental gradient method implementation [2], [3] or itdeviations of the mean and median estimators were estimated from
modification (15). 1000 bootstrap data samples.

The performance of POCS in terms of estimation errors wasAs shown in Fig. 9, the POCS method is more sensitive to changes
also evaluated. As a benchmark, the performance of POCS viaghe number of active sensors then the MLE in terms of estimation
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Fig. 7.
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Fig. 8. Paths taken by the POCS method superimposed on thexcsetge  [5]

errors. We have observed the same kind of behavior when the numﬂg.]r
of sensors was fixed and the SNR was varied. This equivalence it
expected since the number of active sensors is linked to the SNR
level through the detection threshold. In contrast to the sensitivity of
POCS to the number of active sensors or to the SNR level, when tHhel
intersection of the disks is in the vicinity of the source location, we
always observed extremely fast convergence rates of POCS similgy
to those shown in Fig. 7.

[10]

VI. CONCLUSIONS

The problem of distributed acoustic source localization using a
wireless sensor network was formulated as a convex feasibil%ll]
problem and solved via the POCS method. The solution has global
convergence properties with fast convergence rates. Finally we note
that this concept can be applied to other problems in which the
objective function depends on the parameters through terms of th
form ||0 — «||, where¢;, | = 1,..., L are data dependent terms.

Fig. 9.

N

08

-6~ MLE
-8 POCS
%~ MLE initiated from POCS

-6~ MLE
-8 POCS
%~ MLE initiated by POCS

=
©

o
=

-
>

o

>

-
IS

-

~
o
o

<
=

o

©
o
w

o
>

o

~

Square root of mean squared error [m]
o
= -

H
™

Square root of median squared error [m]

o
~

0 I I ] 0
10 15 0

0 5 10
Number of active sensors

5
Number of active sensors

Local performance: POCS vs. MLE, mean (left) and mediint).

VII. ACKNOWLEDGEMENT

The authors would like to thank Prof. R. Nowak and M. Rabbat for
: sharing with us their code for implementing the incremental gradient
method and its modification (15).

REFERENCES

X. Sheng and Y. H. Hu, “Maximum likelihood multiple-souréecaliza-
tion using acoustic energy measurements with wireless seesoorks,”
IEEE Trans. Signal Processing, vol. 53, no. 1, pp. 44-53, Jan. 2005.
M. G. Rabbat and R. D. Nowak, “Decentralized source lzetion and
tracking,” in Proceedings of the 2004 |EEE International Conference on
Acoustics, Speech, and Sgnal Processing, Montreal, Canada, May 2004,
pp. 921 — 924.

——, “Distributed optimization in sensor networks,” iProceedings of
the Third International Symposium on Information Processing in Sensor
Networks.  Berkeley, California: ACM Press, New York, April 2004,
pp. 20-27.

——, “Quantized incremental algorithms for distributedtiogization,”
IEEE J. Select. Areas Commun., vol. 23, no. 4, pp. 798 — 808, Apr.
2005.

L. G. Gubin, B. T. Polyak, and E. V. Raik, “The method of pcjions
for finding the commmon point of convex set$JSSR Computational
Mathematics and Mathematical Physics, vol. 7, pp. 1-24, 1967.

Y. Censor and S. A. Zenio®arallel Optimization: Theory, Algorithms,
and Applications. New York: Oxford University Press, 1997.

A R. D. Nowak, “Distributed EM algorithms for density estititm and

clustering in sensor networksEEE Trans. Sgnal Processing, vol. 51,
no. 8, pp. 2245 — 2253, Aug. 2003.

D. Li and Y. H. Hu, “Energy-based collaborative sourcedtization
using acoustic microsensor arralgfURAS P Journal on Applied Signal
Processing, no. 4, pp. 321-337, 2003.

D. P. BertsekasNonlinear programming: second edition.
MA: Athena Scientific, 1999.

Y. Censor, A. R. D. Pierro, and M. Zaknoon, “Steered semjial
projections for the inconsistent convex feasibility peshl” Nonlinear
analysis: theory, methods, and application, series A, vol. 59, pp. 385—
405, 2004.

X. Sheng and Y. H. Hu, “Energy based acoustic sourcelilzatéon,”

in Information Processing in Sensor Networks, Second International
Workshop, IPSN 2003, ser. Lecture Notes in Computer Science, Z. Feng
and G. Leonidas, Eds., vol. 2634. Palo Alto, Californianger-Verlag,
New York, April 2003, pp. 285-300.

Belmont,

%] D. Blatt and A. Hero, “Distributed maximum likelihood fosensor

networks,” in Proceedings of the 2004 IEEE International Conference
on Acoustics, Speech, and Sgnal Processing, Montreal, Canada, May

In particular, this concept can be easily generalized to the three 2004, pp. 929 — 932.
dimensional case. The effect of quantization and channel noise B M. G. Rabbat and R. D. Nowakersonal Communication, 2005.
worthy of additional study.



