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From the Editor

Rediet Abebe
Harvard University '13
Cambridge, MA 02138

r tes faye@co l lege .harvard .edu

When I took on the role of Editor-in-Chief of the Harvard College Math Review in May 2010,1
was not sure how HCMR was going to turn out, or if we were even going to have an HCMR by the
end of the school year. After more than a year of inactivity, HCMR was potentially faced with ma
jor changes and decisions. It was not until we recruited new staff and executive board members that
I became fully confident that, once again, we were going to have an issue that would help students
learn and appreciate advanced mathematics like the founder and former Editors had envisioned it
would.

Since September when we started accepting applications for the different position until a few
weeks ago when we were making final edits on the articles, members of the HCMR executive board
and the staff have worked tirelessly to make this issue one of the strongest ones we have had. To
this end, I would like to thank the Articles Editor, Francois Greer, the Features Editor, Katherine
Banks, the Problems Editor, Lucia Mocz and their staff for all the hard work. I would also like to
thank Eric Larson for taking up several roles and working on each flawlessly.

The executive board is thankful for Professor Peter Kronheimer, the Harvard University
Mathematics Department and the staff at the Student Organization Center at Hilles for their
continual advice and support. You continue to make the HCMR a success and we are glad to have
your support year after year.

We also thank the HCMR advisors and sponsors, whose generous contributions have been a
foundation for the journal's success.

I would also like to personally express my deepest gratitude to Editor Emeriti Zach Abel, Scott
D. Kominers and Ernest E. Fontes for constantly being there to answer all the major and minor
questions I had even after their graduation from Harvard College. Your invaluable expertise and
guidance has inspired the entire staff.

Finally, the executive board would like to thank all our writers and readers in the United States
and around the world. We are honored at all the feedback and contributions we have received so
far. As always, please direct your comments, questions and submissions to hcmr@hcs.harvard.edu.
As the board is in the process of discussing potential changes in the structure, web and print output,
your feedback is more valuable than ever. For updates, check www.thehcmr.org/

Rediet Abebe
Editor-in-Chief, The HCMR



STUDENT ARTICLE
1

Artin's Conjecture

Christopher Policastro*
Massachusetts Institute of Technology ' 11

Cambridge, MA 02138
cpol i@mit .edu

Abstract
We survey Artin L-functions by providing the necessary background to describe Artin's conjecture.
Having detailed the basic properties of Artin L-series, we show that they extend meromorphically
to the plane, and discuss recent research on this continuation. We assume the reader has some
knowledge of group representations, algebraic number theory, and complex analysis.

1.1 Introduction
Certain arithmetic properties of a number field are contained within holomorphic functions called
L-series. These series are defined in some right half-plane and can be meromorphically continued
to C. The resulting L-functions share several analytic properties that can be used to characterize
them.

The L-series for a number field take two rather different forms that can be reconciled in some
cases. The abelian type were introduced by Erich Hecke, who constructed them from characters of
ray class groups in an attempt to generalize the Dirichlet L-series

* > x ) = Z * & ( i . D
n > l

where \ : (Z/raZ)* -+ C* is a homomorphism for some ra. The nonabelian type owe to Emil
Artin, who defined them by representations of Galois groups following the work of Takagi. Some
years after he described the basic properties of these L-series, Richard Brauer proved that they
admit a meromorphic continuation to the plane.

Artin famously conjectured that with few exceptions this continuation was holomorphic. Though
progress continues to be made on the conjecture, it remains one of the most important outstanding
problems in mathematics. The goal of this paper is to attract readers to this very active branch of
analytic number theory.

The rest of the paper is as follows. Having recalled several facts about representations of fi
nite groups and Hecke L-functions, we define incomplete Artin L-series and prove their functorial
properties. Having shown that these series meromorphically extend to C, we verify Artin's conjec
ture for a class of extensions, and briefly discuss works of Langlands and Selberg as they apply to
the conjecture.

Before continuing let us fix some notation. Throughout we have k denote a number field,
that is, a finite extension of Q. Let Ok be the ring of integers, and for an ideal o in Ofc, let
91(a) = Card(Ojt/a). For K/k a finite extension, and ^J|p primes, we let ff and ef denote
the residual degree and ramification index. By a place v of k, we mean an equivalence class of
nontrivial valuations of k. These are of three sorts: finite places corresponding to primes of k, real
places corresponding to the real embeddings of A:, and complex places corresponding to the pairs
of conjugate complex embeddings of k.

t Christopher Policastro is a senior studying mathematics at the Massachusetts Institute of Technology. His
mathematical interests lie somewhere between geometry and algebra. At the moment, he is leaning towards
representation theory.
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1.2 Representations of Finite Groups
In this section, we review results from the representation theory of finite groups that will be used
in section 3. The basic definitions and properties that we omit here can be found in [3, Ch. 1,2].

1.2.1 Definitions
We recall that a representation of a finite group G on a finite dimensional C-vector space V is a
homomorphism p : G -> GL(V") of G into the group of invertible linear operators on V. This is
equivalent to saying that V is a finite C[G]-module.

The complex valued function \(s) = Tr(p(s)) s e G is called the character of the representa
tion p. We know that a character completely determines a representation, in the sense that two finite
C[G]-modules are isomorphic iff they have the same character. The character of a 1-dimensional
representation is called abelian.

By Maschke's theorem, C[G] is semisimple. Therefore each finite C[G]-module decomposes
into a direct sum of irreducible representations. Characters of irreducible representations are them
selves called irreducible; we denote the set of irreducible characters by G.

The group of virtual characters K(G) is the free Z-module spanned by the irreducible charac
ters of G. Since a product of characters is itself a character, we see that K(G) is also a ring.

A class function on G is a complex valued function that is constant on conjugacy classes. The
space of class functions Fc(G) is a Hilbert space with respect to the Hermitian form

<*'*>:=cdb^5*«-*w- (L2)
for x, ip € Fc(G). The elements of G form an orthonormal basis of Fc(G).
It will be important for us to have a way of relating a representation (W, p) of a subgroup

H C G to a representation of G. We call the process of lifting p to G induction. It can be defined
in two ways:

Indg W := C[G] ®C[H] W or Indg W := {/ : G -> W \ f(rs) = pT(f(s)), Vr G H} .

Note that the action of C[G] on the second is given by g(f) = /(•#) forg e C[G]. The definitions
are easily seen to be equal, and each will have its uses for us.

Given a representation (V,p) of G and a subgroup H c G, we obtain a representation
(Resn V,p\h) by restricting p to H. Let \ be a character of G, and ip a character of H. We
recall that with respect to the formula in (2), Ind and Res act like adjoints, that is,

(lnd% ip,x) = (^,ResHx)H

This equation is called Frobenius reciprocity.

1.2.2 Mackey's Theorem
Let G be a finite group with H, K C G subgroups. Let N < K, and (W, p) be a representation of
H. For V =: Indg W, we want to determine the restriction Res^ V of V to K, and in particular
determine the subspace (Res*: V)N of iV-invariants. Note that (Res^ V)N is a representation of
if since iV is normal in K.

Choose a set K \ G/H of representatives for the (H, K) double cosets of G; this means G is
the disjoint union of KsH for s e K \ G/H. Let Hs = sHs~x n K. Note that Hs is a subgroup
of K, and the rule ps(#) := p(x) for a: e #s gives a homomorphism ps : Hs -+ GL(sW), where
sW is taken in V. Inducing ps to K for each s, we have the following result.
Proposition 1. (Res* Indg W)N =i ©s€/AG/H(Indgs sW)N.

The proposition can be obtained as an immediate generalization of [6, Sec. 7.3].
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1.2.3 Brauer's Theorem
As we will see in later sections, an L-series can be associated to abelian or nonabelian characters
of certain groups. To make the connection between abelian and nonabelian L-series, we will need
a way of relating arbitrary characters to abelian characters. A precise statement of this relation is
given by Brauer's theorem.
Theorem 2. Let G be a finite group. Each character ofG is a Z-linear combination of characters
induced from abelian characters of subgroups.

A version of the proof can be found in [6, Ch. 10].

1.3 Hecke L-functions
In this section, we review facts about a type of Hecke L-series. These functions have nice properties
that apply to Artin L-series in certain cases. In particular, they extend with few exceptions to entire
functions. This is exactly the kind of result we are after!

1.3.1 Definitions
Define a modulus m as the formal product of a nonzero ideal m/ of Ok, and a set rrioo of real places
of k. For a,b e Ok such that (a),(b) are relatively prime to m/, we take a = b(modx m) to mean
that a/b = l(modm/) and a„(a/b) > 0 for each embedding au with v G moo. We can partially
order moduli by the rule m < n if n/ C m/ and m^ C noo.

Let I* be the group of fractional ideals of k relatively prime to m/. We call the subgroup P*
of principal ideals (a) such that a = l(modx m) the ray class of m, and C/m := Im/Pm the ray
class group of m. Ray class groups are known to be finite.
Example 3. If k — Q and m = ra • oo for ra > 0, and we identify elements of /£ with their
positive generators, then we have a surjective map /£ -> (2/mZ)* with kernel given by those
ideals (a) such that a = l(modra). This implies that the ray class group is (Z/raZ)*.

We call the quotient Cl^/H, for some subgroup H, a class group of m. A Galois extension
K/k is called a class field of Cl^/H if every prime which ramifies in K divides m/, and the
primes which split completely1 are given by P^ • H. A basic result tells us that for every class
group of k, we can find a corresponding class field unique up to equivalence.
1.3.2 Hecke i>-series
A Dirichlet character modulo m is an abelian character \ of the ray class group C/f^, which we
extend to Ik by the rule x(a) = 0 for a and m not relatively prime. For m < n, the identity
homomorphism on ideals gives a surjective homomorphism C/„ -+ Cl1^. This lets us think of
characters modulo m as characters modulo n. Moreover, for a Dirichlet character modulo m, we
can find a smallest modulus mc dividing m such that \ factors through Cl^c. We say that \ is
primitive modulo mc.

The Hecke L-series corresponding to a Dirichlet character modulo m is defined as the sum

L(s,X) = Yl X(a)
W(a)s

for Re(s) > 1, where a varies over integral ideals of k.
Proposition 4. L(s, x) is holomorphic in the domain Re(s) > 1 + 6 for all 8 > 0, and has the
product decomposition L(s,x) = Ylp(l ~ x(p)^(p)~s)_1 where p ranges over all primes.
Proof. Let

■ x ( p W p ) -

!That is, the ramification index and residue class field degree are both 1.
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for Re(s) > 1 + 8 and p such that x(p) ¥" 0- Formally taking the logarithm gives

. x(P)n
1

P n > \p n > \ V r /

Since x is abelian, and C7* is finite, we have \x(p)\ = 1. As |91(p)s| = 9t(p)Re(s) > pf*(1+6) >
p1+6, and at most [k : Q] primes lie above p, we have that

p n > l v r / p n > l ^

This bound does not depend on s. So we see that log E(s) converges absolutely and uniformly for
Re(s) > 1 4- S. Theref6re E(s) is holomorphic in this half plane, and we are left showing that
E(s) = L(s,X).

Expand the factors in E(s) corresponding to the finitely many primes pi... pr such that
W(pi) < N, and multiply them. This yields

l l l - x f a W P i ) - l l A K ( P i ) s J ^ < l i ( * Y L , O T ( a ) » u }t = l A v r t / v r t / 1 = 1 x v r i / ' m ( a ) < N V ' m ( a ) > N V '

where the prime indicates that the second sum in the last equality is only over integral ideals a that
are divisible only by the primes pi... pr. By (4) we have

r 1 1

Ui-x(Pin(Pi)-s~L{s'x) -„?..wS
« n ( o ) > N v ;i = l

so we need to show that this last term tends to zero as N —> oo to complete the proof. Now

1 ' 1 1

where the second sum is over integral ideals only divisible by pi... pr. So using the bound in (3)
for the case of x trivial and s = 1 + S, we see that Yl<y\(a)<N 9t(a)-1-(5 is monotone increasing
and bounded above by C(l 4- £)[fc:Q] as N -+ oo. Hence the tail J2m(a)>N ^(a)-1-5 converges
t o z e r o a s N — > o o . D

From Example 3, we see that Hecke L-series do indeed generalize Dirichlet L-series. Though
it requires some work, we can extend Hecke L-series to the plane in much the same way we extend
Dirichlet L-series. We obtain the following result, due to Hecke.
Proposition 5. L(s, x) can be holomorphic ally continued to Cfor \ nontrivial. For x trivial, it
extends to a meromorphic function with poles at s = 0,1.

For a proof of this fact see [5, VII.8].

1.4 Artin L-functions
We are at last ready to describe Artin L-series. Since (1) is the Riemann zeta function for ra = 1,
the series L(s, Xtriv) for m = Ok has historically been denoted as Qk(s). When Artin introduced
a L-series in [1] attached to nonabelian characters, he hoped to verify a conjecture of Dedekind
concerning the poles of C/r.W/C* (s) for K/k a Galois extension.

Assuming that K/k is a class field, Weber had shown that Ck(s)/0c(s) could be decomposed
into a product of L-series for nontrivial characters of the corresponding class group. By Hecke's
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result, these L-serie's could be holomorphically extended to the plane. Now Artin was aware of
Takagi's work on class field theory, and realized, in particular, that every abelian extension of k is
a class field. So knowing that Oc(s)/Cfc(s) is entire for abelian extensions, he wanted to show that
the same was true of nonabelian extensions.

This prompted his research on L-functions, and led to further advances in class field theory.

1.4.1 Definition
Let K/k be a Galois extension, and p : Gai(K/k) -+ GL (V) a representation. For a prime
p in Ok, choose ^3|p. Let Dy and Lp be the decomposition and inertia groups of <P over p,
and choose an element Fr ĵ G D<# that reduces to the Frobenius automorphism under the map
D<# r-» Gal((OK/^)/(Ok/p))- By abuse of notation, we will call Fr*p a Frobenius element of <$.

For Re(s) > 1, we define the Artin L-series as

u „ f , K m - n m » » m - n J e , ( 1 _ P ( R ^ ( > ) - , , l v , v ■

The notation means that we consider Fr.^ as an element of the decomposition group Dy, and
take its image under the representation (Resz^ V)1^. Note that restricting to the space of Lp
invariants yields a well-defined representation since L# is normal in D<#. We call Lp(s, p, K/k) a
local factor. Our first task is to show that this definition even makes sense.
Proposition 6. The local factors in the L-series are well-defined, and do not depend on the iso
morphism class of the representation ofGd\(K/k).
Proof Let us show that Lp (s, p, K/k) does not depend on our choice of Frobenius element.

For a given *J3, each Frobenius element is of the form Fr̂  r for r G I<#. As the action of D<#
is on I<#-invariants, we see that Fr<p r and Fr># determine the same map. Suppose that instead of
<P, we picked Q\p. Choose g G Ga\(K/k) such that Q = g(ty). We recall that gFr^g'1 is a
Frobenius element of £3, and Iq = gl<#g~l. So VIq = gVLv, and we would like to prove that

det(l-p(Fr^)01(p)-s \viv)=det(l-p(gFrvg-1)yi(p)-s |^) .
This equality, however, is immediate, since the determinant does not change under conjugation.

Finally, we should check that the L-function does not depend on the isomorphism class of the
r e p r e s e n t a t i o n . B u t t h i s i s c l e a r f r o m t h e d e f i n i t i o n . □

For ease of notation, we will start suppressing p in the expressions for local factors.
Proposition 7. The Artin L-series is holomorphic in the domain Re(s) > 1 4- 8 for all 5 > 0.
Proof. Consider Lp(s, p, K/k) for the N-dimensional representation (V, p). We can diagonalize
the matrix corresponding to Frqj to obtain

- s \ - lM',P,*/*) = det(l-Fr^(P)-*)U = lid ~^(PD

where d is the dimension of the representation (Reso^ V)Iv, and ei are the eigenvalues. So
formally taking the logarithm, we have

i o g L ( 3 , x , ^ ) = E E E ^ F • ( L 5 )

Note that \si\ = 1 since Fr*p has finite order. So

1^ [1^2^ n01(p)n Re(s> ) ~ ^ 1^^(p)nRe(S) J - Z-, Z^ n9i(p)nRe(s)
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Therefore the result follows by comparison with the logarithm of Cfc(s), and the argument in Propo
s i t i o n 4 . □

Considering that the L-series depends on the representation of Ga\(K/k) only up to isomor
phism, we will sometimes denote it as L(s, x, K/k) for the corresponding character x- In fact, we
can define the Artin L-series strictly in terms of a character. From (5), we have

p S i n > l V r / p n > l K r j

(Here the prime indicates that the terms are slightly different for the ramified primes; we omit the
details.) Hence we can take L(s,x, K/k) to be

L ( S , X , T O = e x p ^ i : ^ ) - ( 1 - 6 )
Using this definition, we can make sense of Artin L-series for virtual character; namely, for — x G
K(Gal(K/k)) with x a character of Gal(K/k), we have

L(s,-x,K/k) = L(s,X,K/k)-1 .
Example 8. Consider the extension Q(i)/Q. While this example will not show us the real strength
of Artin L-series, it will let us see some of their basic properties at work. So Gal(Q(i)/Q) =
{l,e}, and we recall that primes congruent to l(mod4) split, and 3(mod4) stay inert, while 2
ramifies. Hence

( l i f q } | p w i t h p - l ( m o d 4 )v \ e i f < P | p w i t h p E E 3 ( m o d 4 ) { }

Letp: Gal(Q(z)/Q) -> GL2(C) be the map given by p(e) = (- n ). Since inertia is trivial for. 1 0
unramified primes, we see that

L p ( s , p , Q ( i ) / Q ) = ^ n 2 x( l - p ~ s ) - 2 i f p = l ( m o d 4 )
(l-p-28)'1 ifp = 3(mod4) '

Forp = 2, we have (1 4- i)\2, and h+i = Gal(Q(z)/Q). The subspace of ^-invariants is spanned
by the vector (1,1)*. Since p reduces to the trivial representation on this subspace, we conclude
that L2(s, p, Q(i)/Q) = (1 - 2~s)_1 whether we choose 1-or e for the Frobenius element. Hence

l ^ q w / q h ^ n ( r r ^ i n r ^ -
p = l ( m o d 4 ) v ^ ' p = 3 ( m o d 4 ) ^

Since (C2, p) is not irreducible, we can decompose C2 as U © W = C(\) © C(_\) corresponding
to the eigenspaces of e. Since V is a direct sum of U and W, we can express each local factor
as Lp(s,pu,Q(i)/Q)Lp(s,pw,Q(i)/Q)- As pv is trivial, it follows that L(s,pu,Q(i)/Q) =
(q(s). On W, pw(e) is scaling by — 1. Forp ^ 2, inertia is trivial and so by (7) we have

xfl if ^|p with p ee 1 (mod 4)Pw( rvj-|__1 if qjjp withp _ _i(mod4) '

For p = 2, WIl+i = 0 which by convention yields L2(s, pw,Q(i)/Q) = 1. Therefore

L ( 8 , P w M i ) / ® ) = n t ^ n- ^ i + v ~ s
p = l ( m o d 4 ) p = 3 ( m o d 4 )
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We notice that the right hand side is the Hecke L-series for modulus 4 • oo and the nontrivial
irreducible character of (Z/4Z)*, which we denote as X4- So we conclude that

L ( s , p , Q ( i ) / Q ) = ( q ( s ) L ( s , X 4 ) • ( 1 . 8 )

From this example, we can already see some of the important facts about Artin L-series. In particu
lar, we guess that the L-series corresponding to the trivial representation is merely the zeta function
of k; namely L(s, Xm\,K/k) = Cfc(s). We will have more to say about such basic properties in
the following section.

1.4.2 Functorial Properties
In this section, we prove three results that will be crucial to our understanding of Artin L-series. In
particular, we learn how L-series corresponding to different fields relate to one another.
Proposition 9 (Additivity). Ifx and x' are virtual characters ofGal(K/k) then L(s, x+x'> K/k) -
L(s,x,K/k)L(s,Xf,K/k).
Proof. This follows immediately from (6). We note that rearrangement is allowed since the series
c o n v e r g e s a b s o l u t e l y , a s w e s a w i n P r o p o s i t i o n 7 . □
Proposition 10 (Towers). Let k C K C L be such that K/k is Galois, and let xoea char
acter ofGa\(K/k). Extend x to a character x ofGa\(L/k). It follows that L(s, x , L/k) =
L(s,X,K/k).
Proof. Let x correspond to a representation (V", p). Let ^P'|^3|p be prime ideals in Ol, Ok, and
Ok- Gal(L/k) acts on V according to the projection Gal(L/k) -» Gal(K/k). This map induces
surjective homomorphisms D<$> -> D<$ and Ly -+ I<#. So we obtain a surjective homomorphism
Dy/Iy —> Dqj/Lp that sends Fr^/ to Frqj. Therefore the action of Fr^/ on V1^' is the same as
the action of Fr^ on V1^. This implies that

det (1 - Frr 9t(p)-) |vV=det(l-Fr¥0I(p)-s) \y,v

w h i c h g i v e s t h e r e s u l t . □
Lemma 11. Let G be a finite group with H C G a subgroup. IfN<G, and (W, p) is a represen
tation ofH, then

(Indg W)** Ind^HnN)W»™ .

Proof. We will use our function definition of induction to obtain a natural isomorphism. We note
that a ^-function / : G -+ W is N invariant iff f(xr) = f(x) for all r e N, namely, / is
constant on right, and so also left, cosets of N. This holds iff / is a H/(H n Af)-function on G/N.
Such a function takes values in WHnN since rf(x) = f(rx) = f(x) for r G H n N. □
Proposition 12 (Induced Representations). Let L/k be a Galois extension. For K an intermediate
field, and \ a character ofGa\(L/K), one has

L(s,X,L/K) = L(s,x\L/k)

where X' := Ind^J^^ X-

Proof. Let G — Gal(L/k) and H = Gal(L/K). Suppose that x corresponds to a representation
(W, p) of H, and take V to be Ind§ W. Consider a prime p in Ok- Let qi,..., qr be the primes
in Ok lying above p, and for each q^, choose a prime ^ in Ol dividing it. We want to show that

L p ( 8 , X \ L / k ) = l [ L q i ( 8 , x , L / K ) ( 1 . 9 )

and will proceed by reducing to the case r — 1, and then the case that p is unramified.
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Denote the decomposition and inertia groups of ^ over p by Di and U. We see that D[ :=
H n Di and ![ \— H D U are the decomposition and inertia groups of *}3i over q*. As G acts
transitively on the primes lying above p, we can choose elements n G G such that t"1^ = tyi.
Since H acts transitively on the primes dividing each q», we note that the set {n \ 1 < i < r} is a
system of representatives for the double cosets Di \ G/H.

We recall that A = r^Din, h = r^hn, and r"1 FrVl r. = FrVi. For /* the residual
degree of q* over p, we know that 9t(q0 = ^(p)^, and Fr£. is a Frobenius element of tyi over

To reduce to the case of r = 1, we will use Mackey's theorem. We can take

Lp(s,x,L/k) = d e t ( l - F V V l « n ( p ) - ) l v ' i
Since Fr^ G L>i, this can be rewritten as

Lp(s,X',L/k) = (det (1 - FrVl tt(pp) |(ReSDi Indo w)h )"1 .

By Proposition 6, we know that local factors are equivalent under isomorphism. So by Proposition
1, we have

Lp(s,X',L/k) = (det(l - FrVl %p)-° | ©(^nr,^-' nW)h) J
r

= rj(det(l - Fr.Vl 9t(p)- J (Ind£ __, r^)'1))"1 .
i = l * *

We can conjugate each factor by r~* to obtain

Lp(s,X',L/k) = n(det(l - r"1 FrVl r^pp | (Ind'C!"1^ HO7'"''1"))-1
r

= n(det(! - n*< *(P)~5 I (Ind§ WT )̂)"1.
z = l

Therefore (9) can be rewritten as

n(det(l-Fr^*(p)-s I (Ind^W)1^))-1 = Y[L,t(s,x,L/K)
i = l * i = l

= n(det(l-F4^(p)-^s)|vv7,)"1 .
i = l

This equation will follow from equality of the ilh factors on either side. So without loss of general
ity, assume that r = 1. We are left showing that

(det(l - FVV. m(p)~s | (Ind£j Vy)^))"1 = (det(l - FV* ^(p)"^s | W^))"1

for all i. By Lemma 11, this can be rewritten as

(det(l - ErVi np)~S I (Ind^/J] W^)))"1 - (det(l - Rr* <tt(p)-'*s | t^'))"1 (1.10)

If we can convince ourselves that equation (10) corresponds to the tower LDi c LD*7i c L7i,
then we can further assume that p is unramified.
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In this case, we have Gal(L77LD*) £ Di/U, and Gal(L77LD^) * D'Ji/h ^ D^/Il
The latter isomorphisms let us make sense of W1* as a representation of Gal(L7i/LD'̂ h). Let

Qd :=. Old, H %, QD,t := OlDJ/. n<ft, Qj := £>L/Z n % -

Since

fSL = \Lh : LD*} = Card(A//0 = ff\ /^„ = [^ : ^''l = Card(D{//0 = /*'

we find that f^'1 = fi. Note that 9t(p) = 0I(QD), and that the Frobenius element of Q/ over
Qd is FrVi. We conclude that for the sake of proving (10), we can take p, q», and q?i to be QD,
£}D//,and£}/.

Keeping the initial notation, we can assume that *}3 is the only prime in Ol dividing p, and
that it is unramified. We have that G = Gal(L/k) is generated by FV«p, and H = Gal(L/K) is
generated by Fr^ for / := /pq = [G : H]. Using our extension of scalars definition of induction,
we have that

/ - i
V = @FvlvW.

i=0

Let A be the matrix of Fr^ with respect to the basis wi,... ,Wd of W. If I is the d x d unit matrix,
then

/ 0 • • • 0 A \
I • • • 0 0

\ 0 . . . / 0 /

is the matrix of Fr*p with respect to the basis {Fr^ Wj} of V. This yields

det(l-Fr^9T(p)-s |V) = det
-01(p)-s7

V -vi(prsi

-Vl(p)-SA\
0

/

(1.11)

Now multiply the first row by ^(p) s and add it to the second, and then multiply the second row
by 9I(p)~s and add it to the third, and so on. Continuing in this way, we see that the determinant
o f t h e m a t r i x i n ( l l ) i s d e t ( l - F r j [ J 9 t ( p ) ~ s / ) \ W - □

Consider the character Xtriv of Gal(K/k) induced from the trivial character Xtriv of the sub
group {1}. By Frobenius reciprocity we have

(Xtriv,^) Gal(K/fc) (Xtriv,ReS{i}^){ = V(l)

for each xp G Gal(K/k). Hence xtriv = X^ggTi(k//c) ip(l) • V>- So by Propositions 9 and 12, we
obtain the following result.

Corollary 13. <*(,) = <*Wn*eSa(*/*>\{i} L{s^,K/k)^\
Given that each L(s,ip,K/k) could be extended to an entire function, we would have the

sought after generalization of Weber's result on abelian extensions! This remains conjectural, how
ever, as we will soon discuss.
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1 . 4 . 3 A b e l i a n C h a r a c t e r s . . . .
Havine described some of the basic properties of Artin L-series, we want to know their relation to
S^e!^Sular, we Jght wonder whether an Artin L-series attached to an abelian
cSci gW us aTecke Series8 This seemed plausible to Artin who needed *-relate to
tTorization of <K(S) (cf. Corollary 13) to Weber's factorization of Ck(s) in the case that K/k is

"Sbs/t/on id<*tiirF**"« JCJs a class field for some class group CT /̂jf/. Moreover, he knewProposition l4(Artm Kec.proc.ty,. ^j «««»m««wa-4u,)«x'flw-ni^m^:§.SqiB^on_ _
Pf in its kernel.

nf n l̂f^f™ °f thiS "dual f0rm" of Artin Re^procity see [7]. Let v be an abelian charactero'Gal(K/k) Composing with the Artin symbol, and noting that Ms ma f̂factors through /"/?'
simenJof SSi ? ChTT, m°f ° f °f thC ^ d3SS ^ This iws ™ «» Sve a Predsestatement of the relation of abelian L-series to nonabelian L-series.

iSomt? ( /l X 'heCOrresP°ndi»8character ofCI*. For S := {p|f | X(IV) = 1},
L(s,x,K/k) = L(s,x')T[ 1

then C v = {0}. So the corresponding local factor is 1. If p|f and X(IV) = 1, then

L P ( s , x , K / k ) = *i - x(Fvv)«n(p)- •
Hence

L ( s , x , t f / A ) = T T F T 1
pt| 1 - X(ttv)9t(p)- 11 i _ x(FVv)OT(p)- •

We recall that

By construction *'(p) = x ((*£)). Therefore X'(p) = x(F^). This gives the result. □
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a-w = L(a,x')j]r
P„- w(p)-.-

^ ( - S ^ t 0 * " * * * * C — 1 3 . w e c a n

C q ( o ( « ) = C q ( * ) £ ( « , X 4 ) . ( 1 1 2 )

1 . 4 . 4 M e r o m o r p h i c C o n t i n u a t i o n . ^ _ • . .

1.5 Artin's Conjecture
Recall that the starting point of Artin's investigation of nonabelian L-series was the question of
whether {*-(*)/&(*) was an entire function for K/k a nonabelian Galois extension. By Corollary
13 and Theorem 17, we see that Cx(s)/Cfc(s) extends to a meromorphic function on C. The results
discussed do not, however, let us conclude that this extended function lacks poles. The difficulty
is that, in the notation of Theorem 17, Brauer's theorem does not tell us which m are positive, or
which Vi are nontrivial. Artin believed though that his nonabelian L-series could be analytically
continued, given that the character \ did not contain any copies of xt™; namely, he made the
following conjecture.

Artin's Conjecture. For K/k a Galois extension, and \ a nontrivial irreducible character,
the Artin L-series L(s, \, K/k) extends to an entire function.

Though progress has been made on this conjecture, it remains an open question. Before dis
cussing some present work on this problem, let us note a class of Galois groups for which it is true.
Suppose that Gal(K/k) is a monomial group, that is, each irreducible character \ of Gal(K/k) is
induced from an abelian character </>' of some subgroup H. This would include, for instance, the
case that Gal(K/k) is a p-group for some prime p.
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1.4.3 Abelian Characters
Having described some of the basic properties of Artin L-series, we want to know their relation to
Hecke L-series. In particular, we might wonder whether an Artin L-series attached to an abelian
character gives us a Hecke L-series. This seemed plausible to Artin, who needed to relate his
factorization of (k(s) (cf. Corollary 13) to Weber's factorization of £k(s) in the case that K/k is
abelian.

In this case, Artin knew that K is a class field for some class group Cl̂ /H. Moreover, he knew
that there exists a surjective homomorphism C/£ -» Gal(K/k). However, Takagi's construction
of this map was not explicit. If Artin could show that it took a canonical form, then he could prove
that the Hecke L-series discussed in section 2 were subsumed under his L-series.

More specifically, let K/k be an abelian extension of number fields. There exists a certain
modulus f called the conductor with the property that a prime p is unramified iff p \ f. Since the
extension is abelian, each unramified prime has a unique Frobenius element, which we denote as
(^p). We obtain a canonical homomorphism

by setting

f ___A : /* _> Gal(K/k)

(M)_n(^v
for a = Y\p Pnp • We call ( ^p J the Artin symbol. Artin's rephrasing of Takagi's work is given by
the following celebrated result.

Proposition 14 (Artin Reciprocity). ( —*— j determines a surjective homomorphism that contains
Pffc in its kernel.

For a discussion of this "dual form" of Artin Reciprocity see [7]. Let x be an abelian character
of Gal(K/k). Composing with the Artin symbol, and noting that this map factors through if/Pf,
we obtain a Dirichlet character modulo f of the ray class group. This allows us to give a precise
statement of the relation of abelian L-series to nonabelian L-series.
Proposition 15. Let K/k be an abelian extension with conductor f. Let x ¥" Xtriv be an abelian
character of Ga\(K/k), and x' the corresponding character of Cif. For S := {p|f | x(Iv) = 1}>
it follows that

Proof. Since f is the conductor of K/k, we recall that p|f iff p is ramified. If p|f and x(Iy) / 1.
then C/$p = {0}. So the corresponding local factor is 1. If p|f and x(?v) = 1»tnen

Lp(s,X,K/k)
l -x (Frv)9 I (p) - * '

Hence
Hs, x, K/k) = yi ______ rj _____.

We recall that

L(s'x')=ni-x'(PW)--
By construction x(p) = X ((^))- Therefore x'(p) = x(Fr^). This gives the result.
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So if x is injective, then S = 0, and we conclude that L(s, x, K/k) = L(s, x')- In tne case
that x = Xtriv, then \' is the trivial character modulo f, and we see that

CK{s) = L(s,x')Y[r^{
P l f K r j

Example 16. Let us see how the previous results apply to Example 8. By Corollary 13, we can
replace L(s, p, Q(i)/Q) by Cq(o(5) in (8)t0 obtain

C q ( z ) W = C q ( s ) L ( s , X 4 ) - ( 1 . 1 2 )

Since the discriminant of Q(i)/Q is 4, we know that the finite part of the conductor is either 2
or 4. We know that a prime p > 0 splits completely iff p = l(mod4). So f = 4 • oo with
CZ^oo — (Z/4Z)* by Example 3. Hence Proposition 15 explains why X4 appears in expression
(12).

1.4.4 Meromorphic Continuation.
Having connected Artin L-series to Hecke L-series, we can use Proposition 5 to meromorphically
extend Artin L-series to the plane.
Theorem 17. Let L/k be a Galois extension, and x a character ofGal(L/k). The Artin L-series
L(s,x, L/k) admits a meromorphic continuation to C.
Proof. By Theorem 2, we can express \ as X = YhLi n* * Inc*Hz ^ for m £ ^> where Hi c G
are subgroups, and xpi is abelian. By Proposition 9 we obtain

m

L(s, x, L/k) = fj L(s, Indg, Vi, L/fc)n' .
1 = 1

By Proposition 12, we have L(s,Indtf. ipi,L/k) = L(s,ipi,L/Ki) where K* is an interme
diate field such that GaI(L/A'i) = h\. By Proposition 15 and Proposition 5, we know that
L(s, ipi, L/Ki) can be meromorphically continued to C. This gives the result. □

Phew! Artin was unable to prove Theorem 17, though he made progress on it by showing a
weaker version of Brauer's theorem. He proved that a character of a finite group can be expressed
as a Q-linear combination of characters induced from abelian characters of subgroups. So clearing
denominators, he concluded that a sufficiently large power of the L-series admitted a continuation.

1.5 Artin's Conjecture
Recall that the starting point of Artin's investigation of nonabelian L-series was the question of
whether CtfM/CfcW was an entire function for K/k a nonabelian Galois extension. By Corollary
13 and Theorem 17, we see that Of W/Cfc(s) extends to a meromorphic function on C. The results
discussed do not, however, let us conclude that this extended function lacks poles. The difficulty
is that, in the notation of Theorem 17, Brauer's theorem does not tell us which m are positive, or
which fa are nontrivial. Artin believed though that his nonabelian L-series could be analytically
continued, given that the character x did not contain any copies of XtnV; namely, he made the
following conjecture.

Artin's Conjecture. For K/k a Galois extension, and x a nontrivial irreducible character,
the Artin L-series L(s,x,K/k) extends to an entire function.

Though progress has been made on this conjecture, it remains an open question. Before dis
cussing some present work on this problem, let us note a class of Galois groups for which it is true.
Suppose that Ga\(K/k) is a monomial group, that is, each irreducible character x of Ga\(K/k) is
induced from an abelian character i/j' of some subgroup H. This would include, for instance, the
case that Gal(K/k) is a p-group for some prime p.



C h r i s t o p h e r P o l i c a s t r o — A r t i n ' s C o n j e c t u r e 1 5

From Frobenius reciprocity, we see that if \ is nontrivial, then xp' is nontrivial. By Proposition
12, we know that that L(s, x, K/k) = L(s, xp', K/KH). If N C H is the kernel of xp', then
by Proposition 10, we have that L(s, xp', K/KH) = L(s, xp, KN/KH) where xp : H/N <-+ C*.
So by the remark after Proposition 15, and Proposition 5, we conclude that L(s,xp,KN/KH)
analytically extends to C. Therefore Artin's conjecture holds for monomial Galois groups.

What stinks is that not every group is monomial.

1.5.1 Langlands program
While Artin was able to prove many important analytic properties of his nonabelian L-series, and
connect them to abelian L-series using his reciprocity theorem, he was unable to give the appropri
ate n-dimensional analogues of Dirichlet characters and L-functions. Although at the time, Hecke
was researching such functions in the case of n = 2, it remained for Robert Langlands many years
later to see a connection, and provide some precise statements. His vast set of conjectures offer
not only, a solution to Artin's conjecture, but a synthesis of many of the classical ideas in number
theory.

We will very roughly describe Langlands' insight. For a more detailed survey the reader should
see [2, Sec. IIIJV] and [4, Sec. 7]. Given a place v ofk, let kv denote the corresponding completion
with valuation ring Ov- Let Gn(A) be the subgroup of Ylv GLn(ku) formed by tuples (gu) such
that gu € GLn(Ou) for all but finitely many v. Suppose 7r is an irreducible unitary representation
of Gn (A) in some Hilbert space Hw. By defining local factors for almost all primes, Langlands
described an L-series L(s,n) given by their product. Jacquet and Langlands then proved that
for arbitrary n, local factors could be added so that the product could be taken over all primes.
Moreover, if n takes a certain form, they were able to show that L(s,ir) extends to an entire
function, unless n = 1 and n is trivial. Motivated by a search for a sort of converse to this result,
Langlands made the following conjecture.

Langlands' Reciprocity Conjecture. Let K/k be a Galois extension, and cr : Gal(K/k) ->
GLn(C) an irreducible n-dimensional representation. There exists a representation ira ofGn(A)
such that L(s, ira) = L(s, cr, K/k).

When n=l and K/k is abelian, this conjecture reduces to Artin's reciprocity theorem. For
arbitrary n, the truth of this result would imply Artin's conjecture.

As we will see in the next section, there appear to be other ways of arriving at Artin's conjec
ture. But given the scope of the Langlands program, this route would be a momentous achievement
for number theory.

1.5.2 Selberg conjectures
In the course of this paper, we have seen several different constructions of L-series. The similar
ities of these constructions lead us to wonder whether we could study a broadly defined family
of L-functions, rather than a single construction. These sorts of concerns led Alte Selberg to ax-
iomatically define a class S of L-functions. Elements F(s) e S are complex valued functions
of a complex variable that satisfy several of the properties we have discussed; they should be rep-
resentable as a series for Re(s) > 1, but also have an expression as a product, and they should
meromorphically extend to the plane.

Since S is multiplicatively closed, Selberg wanted some notion of factorization and irreducib-
lity. He called a function F e S primitive if the equation F — FiF2 for Fi,F2 e S implies
either F = F\ of F = F2. It can be shown that each element of S factors into a product of
primitive functions. The uniqueness of this factorization would be among several consequences of
two conjectures made by Selberg. For statements, we refer the reader to [4, Sec. 1].

Using the Chebotarev density theorem, and the basic properties of Artin L-series developed
here, it is easily shown that unique factorization implies Artin's conjecture. For a proof of this fact,
and a more detailed discussion of the relation of Selberg's conjectures to Artin's and Langlands'
conjectures see [4].
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Abstract
We prove Hilbert's Nullstellensatz from a geometric perspective, and use it to motivate the begin
nings of scheme theory.
Disclaimer. In the rest of this paper, "ring" is shorthand for "commutative ring with unit".

2.1 Introduction, Statement, and Start of Proof
In differential geometry, we study manifolds—spaces that look like Rn in small neighborhoods.
The simplest kinds are curves and surfaces. Level sets of smooth functions are also manifolds
(possibly with singularities). So are the solution sets of systems of equations involving smooth
functions.

In algebraic geometry, we study algebraic analogs. The classical objects of study are called
algebraic varieties. These are solution sets to systems of algebraic equations, i.e., common zeroes
of polynomials over some field K. Familiar examples include finite collections of lines, planes,
hyperplanes, and even points, as well as conic sections, quadric surfaces, elliptic curves, and graphs
of polynomials. We can consider solutions in different contexts. We may consider solutions in
affine n-dimensional K-space, that is, Kn. However, it is often convenient to work in projective
space, which allows certain statements that are "almost always" true (e.g., "any two distinct lines
meet in one point") to become statements that are always true. Still, projective space is "locally"
affine, in the sense that every point has a neighborhood (in fact, quite a large one—almost the entire
space) that looks like affine space.

One pleasing result from classical algebraic geometry is Bezout's Theorem ([6], III.2), which
says (in its elementary form) that any two curves of degrees ra and n (in a projective plane over
an algebraically closed field) meet in ran points, if multiplicity is counted carefully. This seems
intuitive—after all, it matches the case where the curves are just collections of lines. However, it
is not easy to prove, in part due to the fact that it is tricky to define multiplicity of intersection in a
precise way. Another charming result is the fact that every cubic surface in projective space (over
an algebraically closed field) contains 27 lines ([3], V.4).

Hilbert's Nullstellensatz is a result (or collection of results) that connects n-dimensional affine
if-space (where K is an algebraically closed field) with its ring of (polynomial) functions in a
precise and intimate way. Without further ado, we present the theorem—or at least, one version of
the theorem.
Theorem 1 (Hilbert's Nullstellensatz, Version 1). Let K be an algebraically closed field. Then the
maximal ideals of the ring K[x\,... ,xn] are precisely of the form I(p), where I(p) denotes the
set of polynomials that vanish at the point p in n-dimensional K-space.
Start of proof. We first note that I(p) is always a maximal ideal of K[xi,... ,xn], as it is in
fact the kernel of the evaluation map K[xi,...,xn] -+ K that evaluates polynomials at p. This
map is clearly surjective, as K[xi,. ..,xn] contains all the constant polynomials. It follows that

t Miles Dillon Edwards is a sophomore studying mathematics and cello performance at Indiana University.
He has taught at PROMYS and works for the Art of Problem Solving. He has particular interest for group
theory, number theory, and most things algebraic.
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K[xi,...,xn]/I(p) is a field isomorphic to K, so I(p) is maximal. It thus remains to show that
every maximal ideal of K[xi,..., xn] arises in this way.

This is the difficult part of the proof, but it is plausible. If we have a maximal ideal I of
K[xi,. ..,xn), then the quotient field K[xi,..., xn]/I is canonically a field extension of K. This
is suspicious, because K is supposed to be algebraically closed, and we are only working with
finitely many variables. The only way things could possibly go wrong would be if we somehow got
a transcendental extension of K. This seems highly unlikely, as such an extension would have to
contain a transcendental t, as well as 1/P(t), for every nonzero polynomial P. Our proof involves
a little more work, as we could have an extension that is not purely transcendental, but this is the
main idea.

2.2 Rings of Integers and the End of the Proof
We now develop some commutative algebra that will be familiar to students of algebraic number
theory.
Definition 2. Let A be a subring of a ring B. An element x of B is integral over A if it is a zero
of a monic polynomial with coefficients in A; that is, if there are elements ao,..., an_i in A such
that

xn 4- an-ix71'1 H h aix + ao = 0.

The motivation for this terminology comes from number theory, where B is usually a number
field (i.e., a finite extension of the field of rationals) and A is usually Z, the ring of ordinary integers.
In this case, the algebraic integers are the zeroes of monic polynomials with integer coefficients.

It turns out that the elements of B that are algebraic over A constitute a ring, called the integral
closure of A (in B). Furthermore, if B has no zero divisors, then every element of B that is
algebraic over A is equal to some x/a, where x is an integer over A and a is an element of A. We
now prove these facts.

Proposition 3 (Criterion for Integrality). Let B be an extension of a ring A. An element x of B is
integral over A if and only if A[x] (a subring ofB) is finitely generated as an A-module.
Proof. First, suppose that A [x] is a finitely generated A-module. Consider the ascending chain of
submodules

AcA + AxcA + Ax + Ax2 C • • • .

The union of this chain is the entire module A[x\. On the other hand, A[x] is finitely generated.
Thus if we fix a generating set, then there must be some finite n such that A + Ax-\ h Ax71'1
contains each of the elements of the generating set of A[x\. But then this submodule A + Ax +

h Axn~x must be equal to A[x]—in particular, there must exist elements ao,. ..,an-i of A
such that

n i i i n — 1x = ao + aix + h an-ix
It follows that x is integral over A.

Conversely, suppose that x is integral over A. Let

xn + an-ixn~l -\ ha0

be a monic polynomial in x which evaluates to zero. Then from the polynomial division algorithm,
every element of A[x] is equal to some polynomial in x of degree at most n—1, with coefficients
in A. Thus A[x] is generated by the f in i te set {1, x1, . . . , xn~1}. □

The next proposition resembles a familiar result from field theory, that dimension of field ex
tensions is multiplicative.

Proposition 4. Let B be a ring, and let Abe a subring ofB. Let C and D be subrings ofB that
contain A.IfC and D are finitely generated as A-modules, then so is CD, the least subring of B
containing C and D.
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Proof Let {ci,..., cm} be a generating set for C, and let {di,..., dn } be a generating set for D.
We claim that the elements of the form ddj generate CD as an ^-module. To this end, we note
that the elements of CD are the elements of B that are sums of elements of the form cd, for c
in C and d in D. It thus suffices to show that every element of the form cd lies in the submodule
generated by the Cidj. For this, we note that for any c in C, there are elements ai,... ,am of A
such that m

c = } a j C j ;
i = l

similarly, for any d in D, there are coefficients a[,..., a'n such that
n

3 = 1

Then we have
cd = ^ aid ^2 a'jdo = y^^(aia'j)cidj,

i j i , j

which lies in the submodule spanned by the Cidj. Thus the set of elements of the form adj generate
CD as an A-module; since the generating set in question is finite, we are done. □

Now we get the result we wanted from the previous two propositions.
Definition 5. A ring A is Noetherian if one of the following equivalent conditions is satisfied:

• Every ascending chain jof ideals Io C h C • • • is eventually constant.

• Every ideal of A is finitely generated.

• Every submodule of a finitely generated A-module is finitely generated.

Proposition 6 (The Set of Integral Elements is a Ring). Let Abe a subring of a ring B. Then the
set of elements ofB that are integral over A constitute a ring.

Proof. Though this proposition is true generally, it simplifies the proof (and is sufficient for our
purposes) to deal with the case where the ring A is Noetherian.

Suppose that x and y are integral over A. Then A[x] and A[y] are finitely generated A-modules.
Since A[x] = A[—x], it follows that — x is integral over A. Now, x + y and xy both belong to
A[x, y], which is the subring of B generated by A[x] and A[y\. But the ring A[x, y] is a finitely
generated ^-module, by proposition 4. Since A is Noetherian, the submodules A[x + y] and A[xy]
are also finitely generated. Therefore x + y and xy are integral over A. This gives us what we
w a n t e d . □
Proposition 7 (All Algebraic Elements Arise from Integral Elements). Let B be a ring, and let A
be a subring ofB. Let y be an element ofB that is algebraic over A. Then there is some nonzero
element a of A and some element x ofB, integral over A, such that x = ay.
Proof. By definition, there are some elements ao,... ,an such that

5_â  = 0'
i=0

with an 7^ 0. Let x = any. Then we have
n n — 1

i = 0 i = 0 i = 0

Then x is integral over A, and x = any, where an belongs to A, as desired.
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We finish with a result that allows us to determine concretely whether elements of B are integral
over A, if B is a field.
Proposition 8 (Concrete Criterion for Integrality). Let B be afield, and let Abe a subring ofB
which is a unique factorization domain. Let C be the field of fractions of A. Then an element x
of B is integral over A if and only if it is algebraic over C, and all the coefficients of its (monic)
minimal polynomial (over C) lie in A.

Proof. It is clear that if the latter condition holds, then x is integral. For the converse, suppose that x
is integral; then by definition, x is algebraic over C. Let / be the (monic) minimal polynomial of #,
and let h be a monic polynomial with coefficients in A such that h(x) = 0. Then there must be
some a with coefficients in C such that fg = h. But by Gauss's lemma, both / and g must have
coefficients in A. In particular, /, the minimal polynomial of x, has coefficients in A. □
Conclusion of the Proof of the Nullstellensatz. Suppose for the sake of contradiction that / is an
ideal of K[x\,..., xn] such that K[x\,..., xn]/I is a transcendental extension L of K. We pick
a transcendence base ti,...,tk for L, i.e., a maximal set of elements with no polynomial relations
among them. (We can even take the U to be a subset of the Xi. For more details on transcendence
bases, we refer the reader to section VIII. 1 of [4].) Then L is an algebraic (in fact, finite) extension
of the purely transcendental extension K(t\,..., tk). Let A be the subring K[ti, ...,£&]. Then A
is a unique factorization domain. (The interested reader may find a proof of this fact in Theorem 2.3
of [4], in chapter IV, related to Gauss's lemma.) It is also a Noetherian ring, by Hilbert's Basis
Theorem ([1], 7.5; [4], section IV4). Since all algebraic elements in this situation arise from
integral elements, every element of L is of the form x/a, where x is integral over A and a is an
element of A, i.e., a polynomial in ti,..., tk with coefficients in K.

Now, let ai,..., an be nonzero elements of A such that the elements _*_* (of L) are all integral
over A. We claim that the ai cannot all be units (i.e., elements of K)—indeed, otherwise, the Xi
(or rather, their images in L) would all be algebraic integers over A, so all the elements of L would
be integral over A. This implies in particular that 1/ti is not in L, as its minimal polynomial is
P(z) = z — 1/ti, in violation of our concrete criterion for integrality. Thus the a* are not all
units—that is, they are not all constant polynomials. Then their product _i • • • an is not constant,
so ai • • • an + 1 is not zero. Consider, then, the element

1
ai • • • on + 1

of L. Since L is a quotient of K[x\,..., xn\, this element must be equal to some polynomial in
_ i,..., xn- It follows that there must be non-negative exponents ei,..., en such that

ai • - an + 1

is integral over A = K[ti,..., tk]- But this cannot be—indeed, this element belongs to the field
of fractions of A, but not to A (since the numerator and denominator have no common factors, and
the denominator is not a unit). Therefore it cannot be integral over A, from our concrete criterion.
Th is i s a con t rad ic t i on , so L mus t be an a lgebra ic ex tens ion . □

If we examine our methods carefully, we see that we only used the algebraic closure of K when
we noted that all algebraic extensions of K are trivial. Thus the following, slightly more general
version of the theorem is true.
Theorem 9 (Hilbert's Nullstellensatz for a General Field). Let K be afield, and let I be a max
imal ideal of the polynomial ring K[x\,..., xn\- Then the quotient K[xi,..., xn]/I is a finite
extension ofK.

2.3 The Strong Form
The Nullstellensatz we have given is called the "weak version". The "strong version" is as follows.
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Theorem 10 (Hilbert's Nullstellensatz, Strong Version). Let K be an algebraically closed field,
and let a be an ideal of K[x\,..., xn]. Let V (a) be the variety in Kn of points at which all the
elements of a vanish. Then the ideal of elements that vanish on V(a) is the radical of a.

We recall that the radical of an ideal a is the collection of elements a such that an belongs to a
for some positive n; it is an ideal, and it is sometimes denoted r(a), or y/a. If we use I(V) to
denote the ideal of elements vanishing on a variety V, then we can express the strong form as a
pithy equation :

I(V(a)) = ^~a.

In our proof, we use the fact that the radical of an ideal is the intersection of the prime ideals
containing that ideal. This is equivalent to the statement that the nilradical of a ring (i.e., the
collection of nilpotent elements) is the intersection of the ring's prime ideals. We prove this fact in
our appendix; the reader may also refer to [1], chapter 1.

Proof of the Strong Version. It follows from our definitions that if fn belongs to a, then / must
vanish at every point in V^a). Thus the radical of a is a subset of the ideal of V(a), so it suffices to
show that the opposite inclusion holds. This reduces to showing that if / is a polynomial that van
ishes on K[xi,..., xn], then / belongs to every prime ideal containing a, from the characterization
of the nilradical of the ring K[xi,..., xn]/a.

To this end, let p be a prime ideal containing a, and let q be the ideal generated by p in the
ring K[xi, ...,xn,y\- We note that the variety of the ideal (q, 1 - yf) has no points (in Kn+1);
indeed, if a point vanishes under all the elements of q, then it must vanish under /, so 1 — yf must
evaluate to 1. By the weak version of the Nullstellensatz, this means that there is no maximal ideal
that contains (q, 1 — yf), so K[xi,... ,xn,y]/(c\,l — yf) must be the zero ring. But this ring is
just the localization of the ring K[x\,..., xn]/p by the element /. Since this quotient ring has no
zero divisors (as p is a prime ideal), this means that / must be zero in this ring—that is, p must
c o n t a i n / . □

This theorem shares its name with the "weak" form because the weak form follows from the
strong form thus: if an ideal a has no points on its variety, then its radical must be the collection
of polynomials that vanish on the empty set, which is (vacuously) the collection of all polynomials
in our ring. In particular, a cannot be a maximal (proper) ideal, as its radical is the unit ideal; it
follows that the only maximal ideals are those that arise from points.

As we have seen, the other direction is not as easy. The idea of introducing a variable y to stand
for 1// is called the Rabinowitsch trick, after J. L. Rabinowitsch, who published it in a one-page
paper in 1929. There are many ways of proving the weak form of the Nullstellensatz, but modern
proofs of the strong form seem, as a rule, to deduce the strong form from the weak form using this
trick. Curiously, little seems to be known about Rabinowitsch—he is not currently listed in the
Mathematics Genealogy Project. Rabinowitsch's paper was apparently submitted from Moscow,
but this author has not succeeded in finding any other information about him.

The method is called a "trick", but it seems a little less arbitrary if we are aware of the Jacobson
radical of a ring R, which is both the intersection of all maximal ideals of R and the collection of
elements x such that 1 — yx is invertible for every element y of x ([1], ch. 1). We know that /
belongs to the Jacobson radical of K[xi,..., xn]/a, and we want to wreak havoc on any prime
ideals p to which / does not belong. And what could cause greater havoc than requiring 1 — yf to
be zero, when it is supposed to be invertible?

2.4 Historical Aside
The German word Nullstellensatz roughly means "theorem of the zeroes". The reason for this name
becomes more apparent if we state the classical versions of the theorems. These are equivalent to
the versions we have seen so far; they have the advantage of making the theorem appear more
striking and making the connection between the two versions more apparent, but the disadvantage
of obscuring the geometric intuition.
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Theorem 11 (Hilbert's Nullstellensatz, Classical Weak Form). Let K be an algebraically closed
field, and let f\,..., fT be polynomials in n variables over K. Then either the fi have a common
zero, or there exist polynomials gi,..., gr such that

_ 9ifi = 1.
l < i < r

Theorem 12 (Hilbert's Nullstellensatz, Classical Strong Form). Let K be an algebraically closed
field,and let fi,..., fr be polynomials in n variables over K. Let f be another such polynomial.
If f vanishes on all the common zeroes of the fi, then there exist polynomials gi,... ,gr and an
integer ra such that

_ 9ifi = r.
l < i < r

When we express the theorems like this, the weak form is the special case of strong form where
/ is the constant polynomial 1.

2.5 Varieties and Schemes
Hilbert's Nullstellensatz gives us some hope of expressing results from algebraic geometry more
purely in the language of commutative algebra—points correspond to maximal ideals, and more
generally, sub-varieties correspond to (radical) ideals. We can think of a ring of the form

K[x i , . . . ,xn} /a

as the ring of functions on the variety V(a). Maximal ideals of this ring correspond to maximal
ideals of K[x\,..., xn] that contain the ideal a—i.e., points on the variety of a. In general, ideals
correspond to sub-varieties.

But why limit ourselves to finitely generated rings over algebraically closed fields? It is some
times useful to work over fields that are not algebraically closed—indeed, in number theory, we
often want to work over Q or finite extensions of Q. So we could be tempted to define an abstract
variety as the collection of maximal ideals of an arbitrary (commutative) ring. The problem with
this idea is that ring homomorphisms do not induce convenient general relations between maximal
ideals of rings. But they do induce nice relations between prime ideals: specifically, the inverse
images of prime ideals under ring homomorphisms are again prime ideals. This motivates the defi
nition of the spectrum of a ring as the set of all prime ideals of the ring; it comes with a topology,
where a closed set is the collection of prime ideals containing a given ideal. In the case where our
ring is K[xi,..., xn\, these are just the varieties of n-space; intuitively, closed sets of the spectrum
are (sub)varieties of the space.

This gives us a generalized notion of affine varieties. For the generalizations of projective
space and other things, we allow spaces in which every point has a neighborhood isomorphic to
some affine space, i.e., to the spectrum of some ring, in such a way that the isomorphisms. This
construction is done precisely, and in more detail in [3], II. 1-2.

This definition is slightly strange, in part because of the presence of non-maximal prime ideals.
These are "points" in the spectrum, but they also define closed sets containing other points. As it
turns out, the closed sets they define are irreducible; that is, they cannot be expressed as a union
of two strictly smaller closed sets. We think of these ideals as generic points on these irreducible
closed subsets. It turns out that this relation is bijective; every irreducible closed subset has a
generic point that is a prime ideal (see [1], ex. 19; [3], III, 3.1).

Another strange aspect of this definition is that our space is endowed with a very weak topology.
We have already noted that there may be many "generic" points whose closures contain other
points. Our open sets will be very large—after all, in our model case, affine n-space, our closed
sets have dimension smaller than the space itself. For example, the spectrum of C[x] consists of the
points of the complex plane (corresponding to maximal ideals), along with a generic point of the
entire space, corresponding to the zero ideal. But the only open sets are those obtained by removing
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finitely many closed points. This means that, among other things, every injective function from any
Hausdorff space into the spectrum of C[x] is continuous, as long as we avoid the generic point! This
strange topology makes standard topological tools difficult to use, but certain cohomology theories
have been developed for use with schemes and related spaces; some of these theories are developed
in [3], chapter III. This theory of schemes seems strange at first, but it has been influential, and it
lies behind some of the more spectacular recent advances in number theory.
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2.7 Appendix: the Nilradical
Proposition 13. Let R be a ring. Then the nilradical of R is the intersection of the prime ideals
ofR-
Proofi Suppose first that an element a belongs to the nilradical of R. Then an = 0 for some
positive integer n; it follows that a must be zero in any quotient of R that has no zero divisors.
Thus a lies in every prime ideal of R.

Suppose on the other hand that an ^ 0 for every positive integer n. Consider the set S of
ideals that avoid all powers of a, ordered by inclusion. This set is non-empty (since it contains the
zero ideal), and the union of any totally ordered family of elements of S also belongs to S. Thus
S satisfies the hypotheses of Zorn's lemma, so it has a maximal element; let p be such a maximal
element. We claim that p is a prime ideal.

Indeed, suppose that x and y are elements of R such that xy = 0 in R/p. Since p is a maximal
element of S, we know that either p contains x, or the ideal p + (_) contains an for some integer n.
Similarly, either p contains y, or the ideal p + (y) contains am for some integer ra.

Suppose that powers of a belong both to p 4- (x) and to p + (y). Then there exist elements d
and e of R such that dx = an (mod p) and ey = am (mod p). Then we have

0 ee d;r?/e = am+n (modp),

a contradiction. Therefore one of x and y must belong to p. Thus p is a prime ideal that avoids all
powers of a.

Thus if a does not belong to the nilradical of R, then R has a prime ideal not containing a, so
w e a r e d o n e . □
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Abstract
A topological space X is said to be a Toronto space if it is homeomorphic to all its subspaces of
the same cardinality. In this paper, we present some results in the area of set theoretic topology
concerning these spaces and the so-called Toronto problem, an open question about the existence
of a Toronto space that is uncountable, non-discrete and Hausdorff. We conclude the paper that
such a space, if it exists, must be separable (assuming the Continuum Hypothesis).

3.1 Introduction
One often hears in mathematical circles that the field of point set topology is dead. It is certainly not
a popular area of research; however, there are many interesting open problems which are accessible
to young researchers and have connections with other areas of mathematics, such as logic and set
theory. In this paper, we present some results and questions about Toronto spaces, assuming only
the basic notions of point-set topology. We begin by reviewing some preliminary concepts before
describing the nature of Toronto spaces.
Definition 1. If X is any set, the collection of all subsets of X is a topology on X which we call
the discrete topology. We say a topological space X is non-discrete if there exists a subset of X
which is not an open set in X.
Definition 2. Let X be a topological space with topology r. If Y is a subset of X, the collection
t' = {Y DO : O e t}\ssl topology on Y, called the subspace topology.

Now, we define our main object of study, which was introduced by J. Steprans in [4]:
Definition 3. Let X be a topological space. We say X is a Toronto space if it is homeomorphic to
all its subspaces of the same cardinality as X.

In other words, we say a topological space X is a Toronto space if for any subspace Y c X
such that \Y\ = \X\, Y is homeomorphic to X (Y _i X).

Note that any set X with the discrete topology is a Toronto space. For if Y C X then the
subspace and the discrete topologies on Y are equivalent. Hence, if \Y\ = \X\, any bijection
between X and Y induces a homeomorphism. However, not every Toronto space must have the
discrete topology. For example, let Z be any set and consider the collection r = {A C Z : A = 0
or Z — A is finite}. It is straightforward to check that r is a topology on Z; we call it the finite
complement topology. A space with the finite complement topology is a Toronto space, since if X
has the finite complement topology so does any subspace.

We can narrow our study by considering Hausdorff Toronto spaces. First, recall the definition
of a Hausdorff space:

+Manuel Rivera graduated from MIT in 2010 with an undergraduate degree in mathematics. He is currently
a graduate student at the Graduate Center of The City University of New York working in algebraic and ge
ometric topology. In his free time, he enjoys thinking about problems in mathematical logic, set theory and
combinatorics.
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Definition 4. A topological space X is Hausdorff if for any two distinct points x and y of X, there
exist open sets Ux and Uy in X such that x G Ux, y G Uy, and Ux fl £/y = 0

In the finite complement topology, each open set contains all but finitely many points, so if
the space is infinite, any two open sets intersect. Hence, an infinite topological space with the
finite complement topology is not Hausdorff. It is much harder to find examples of non-discrete
Hausdorff Toronto spaces. We will show that every countable Hausdorff Toronto space is discrete.
For the uncountable case, the question is still open. This is known as the Toronto problem:

Question 1. Is there an uncountable, non-discrete, Hausdorff Toronto space?

3.2 Countably Infinite Toronto Spaces
As usual, we denote by u the least infinite ordinal, by ui the first uncountable ordinal and by N0
and Hi their respective cardinalities. From now on, we are interested in Hausdorff Toronto spaces.
In this section we will prove that the set of isolated points of any Hausdorff Toronto space of infinite
cardinality is infinite. From this, it will follow that any Hausdorff Toronto space of cardinality N0
is discrete. Recall the following definition and notation:
Definition 5. Let X be a topological space. We say a point xGXis isolated if the set {x} is open
inX .

If X is a topological space, we will denote by X* the set of all isolated points in X. Now
we can prove our first theorem: the existence of an infinite set of of isolated points in any infinite
Hausdorff Toronto space.
Theorem G.IfX is an infinite Hausdorff Toronto space, then the set X* is infinite.

Proof. First, let us show that X* is non empty. Let x and y be two distinct points in X. Since X
is Hausdorff, there exist disjoint open sets U and V such that x G U and y G V. Let A denote
the cardinality of X, i.e. A = \X\. Consider the set A = X - U. It follows that we have either
\A\ < A or \A\ = A.

If \A\ < A, then we know by cardinal arithmetic that \U U {y}\ = A. Consider the subspace
Y = U U {y} of X, and note that V n Y = {y}. Hence, {y} is an open set in Y. We know
\Y\ = A = \X\ and that X is a Toronto space, so there exists a homeomorphism h : Y —> X.
Since {y} is open in Y it follows that {h(y)} is open in X. Therefore, the point h(y) is isolated in
X, so h(y) eX*.

Now, suppose that \A\ = A. Consider the subspace Z = AU {x} of X. It follows, again by
cardinal arithmetic, that \Z\ = A, so we can apply an argument similar to the previous case. Note
that U fl Z = {x}, so the set {x} is open in Z. Since \Z\ = A = |X| and X is a Toronto space
we have that there is a homeomorphism h : Z -+ X. It follows that {h(x)} is open in X, so
h(x)ex*.

We have proved that X* is nonempty; now we show that it contains an infinite number of
points. For the sake of a contradiction, suppose X* is finite. Let X* = {_i,..., Xk}- Consider the
subspace W = X - {xi} of X. By cardinal arithmetic we know that \W\ = A = \X\. Hence,
since X is a Toronto space there is a homeomorphism h : X -> W. It now follows that the only
isolatedpointsinH/are/i(xi),...,/i(xfc),sol¥* = {h(xi), ...,h(xk)}. Also,{xi}nW = {_*}
for i = 2,..., k and since {x^ is open in X for all i = 1,..., k, we have that the points x2, ...,xk
are isolated in W. We also know that W has exactly k isolated points, so let x0 be the remaining
isolated point of W which is not in the set {x2, ...,xk}. By the definition of the subspace topology,
there is an open set O in X such that O n W = {x0}. Hence, O - {x0} C X - W = {xi}. So,
we have two cases: either O - {x0} = 0 or O - {x0} = {xi}.

If O - {x0} = 0 then the point x0 would be an isolated point in X not in the set X* =
{xi,..., xk}, contradicting the fact that X* is the set of all isolated points in X. If O - {x0} =
{xi} then O = {x0,xi}. Since A' is Hausdorff, the set {xi} is closed in X. But, {x0} =
O fl (X - {xi}), and since both O and X - {_i} are open in X it follows that {x0} is open in X
as well, thus x0 G X*. This contradicts with the fact that X* = {xi,..., xk}-



2 6 T h e H a r v a r d C o l l e g e M a t h e m a t i c s R e v i e w 3

Both cases have led to a contradiction, so it follows that the set X* contains an infinite number
o f p o i n t s . □

Now, we can completely classify countably infinite Hausdorff Toronto spaces. As a direct
consequence of Theorem 6, we have that these spaces must have the discrete topology.
Theorem 7. IfX is a Hausdorff Toronto space of cardinality Ho, then X has the discrete topology.

Proof. Let X be a countably infinite Hausdorff Toronto space. By Theorem 6, we have that X* is
an infinite subset of X. Therefore, |A| = Ho = |^*|» and since X is a Toronto space, it follows
that X = X*. Thus, every point in X is isolated, so X has the discrete topology. □

3.3 Uncountable Toronto Spaces
We have pinned down, up to homeomorphism, countably infinite Hausdorff Toronto spaces. The
natural generalization is to consider higher cardinalities. We will restrict out attention to spaces
of cardinality Hi. There has not been much research on Toronto spaces of cardinality greater than
Hi, since this case already poses a difficult problem, i.e. Question 1. As the reader may suspect,
when studying spaces of cardinality Hi, we need to assume the Continuum Hypothesis to obtain
results. Recall the Continuum Hypothesis (CH): There is no set S satisfying H0 < \S\ < 2*°, or
equivalently 2N° = Hi.
Theorem 8. IfX is a non-discrete Hausdorff Toronto space of cardinality Hi, then, assuming CH,
X is separable.

Proof. Let us prove that X* is a countable dense subset of X. Denote by X* the closure of X*,
so we must show X* = X.

We claim that \X* | = Hi. By Theorem 7, we have that X* is not finite and if \X* \ < Hi, then,
assuming CH, \X*\ = Ho. But then, \X - X*\ = Hi = \X\ implying that X is homeomorphic to
X — X* which is a contradiction, since X contains isolated points and X — X* does not.

Since |A*| = Hi = |A|, there is a homeomorphism h : Y* -> X. Note that X = h(X*) =
h(X*) C X*, as desired. Thus, X* is a dense subset of X.

Moreover, we can use a similar argument to show X* is countable. If not, then by CH, \X* \ =
Hi = \X\ and therefore X is homeomorphic to X*. Thus, since all points in X* are isolated, it
follows that A' must have the discrete topology, contradicting the initial hypothesis. □

Note that in the proof above we only used the fact that X is non-discrete when proving that
A* is countable. So, the set of isolated points of a Hausdorff Toronto space A of cardinality Hi is
a dense set. If we require A to be non-discrete, then A* is countable.

3.4 Conclusion
Theorem 8 is the only known result about Hausdorff Toronto spaces of cardinality Hi. It appears
that more advanced tools from set theory are required to study deeper properties of Hausdorff
topologies on u\. There are some results about Hausdorff spaces of cardinality Hi, assuming
properties weaker than the Toronto property. The deepest result, as far as we know, is due to
Soukup [3] who proved that it is consistent that there is a hereditarily separable, O-dimensional,
Hausdorff space A of cardinality Hi such that for each uncountable subspace Y of X there is a
continuous bijection (p : Y —> X and there is a partition (Yi)i<n of Y into finitely many pieces
such that 0 is a homeomorphism when restricted to Yi for each i < n. The proof is dense and it
relies mainly on set theoretic tools. However, it looks like Question 1 might be studied using more
topological tools. This short note is intended to spark interest in the Toronto Problem among young
researchers, and to prevent the area of set theoretic topology from being forgotten with time.
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Abstract
We introduce the two simplest combinatorial sieves: the ancient Sieve of Eratosthenes and the
related Sieve of Legendre. We then use the ideas developed to explore the Brun Sieve, proving
Brun's bound on the number of twin primes less than N. Finally we describe the more modern
Selberg Sieve, and highlight some of the major contributions of sieve theory.

4.1 Introduction
Sieve theory is a set of tools in number theory that estimate (bound) the size of sets of sifted integers.
Sifted integer sets are sets that do not follow a known pattern. For example, the set of primes less
than N is the most basic example of a sifted set. Our concept of an arithmetical sieve is based
on the following principle: if we take an integer sequence A, a set of primes B, and a number
z > 2, and sift out from A all numbers divisible by primes p G B,p < z, then the remaining
integers in A can only have prime divisors from B greater than z. The object of Sieve theory is
to estimate S(A, B, z), the number of unsifted elements of A. We first examine the most basic
sieve, the Sieve of Eratosthenes, which is used to generate the prime numbers. We then examine
the related Legendre Sieve which uses the principle of inclusion-exclusion (PIE) to obtain a precise
count of S(A, P, z). We move on to the more complicated Brun Sieve which uses PIE and a simple
inequality to bound S(A, P, z), and use this bound to prove a bound on the number of twin primes
less than N. Finally we discuss the Selberg Sieve and the state of modern sieve theory.

4.2 The Sieve of Eratosthenes and the Legendre Sieve
The primes are the simplest example of a sifted set, and accordingly the simplest example of a sieve
is the Sieve of Eratosthenes; an ancient method for generating all the primes up to an integer N.
The algorithm is summarized below:

1. List all the consecutive integers from two to N: 2,3,..., N.

2. Let p = 2 be the first prime number, and strike from the list all multiples of p greater than p.

3. Find the first number on the list greater than p\ this is the next prime; let p equal this number.

4. Repeat steps 2 and 3 until p2 > N; all remaining unsifted numbers are prime.

Note that in the Sieve of Eratosthenes A is the set of naturals up to N, B is the set of primes
p such that p < [\/N\, and z = [y/N\. It is easy to see that any unsifted numbers are prime
because if they are not prime they must have two factors greater than [y/N\ which means they are
greater than N and thus not in the set. Now let us try to count the primes in the interval [1, N]

+ Seth Neel is a senior at The Wheeler School in Providence, Rhode Island. He has taken math courses at
Brown University since his junior year, and in the summer of 2009 he attended the Program in Mathematics for
Young Scientists at Boston University. His interests include squash, chess, and rap music.
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explicitly, which will take us from the Sieve of Eratosthenes to the related Sieve of Eratosthenes-
Legendre or the Legendre Sieve. While the set of primes does not have enough structure to be
easily counted, there are other sets in [N, 2N] thai we can count with relative ease; for example
| {n G [N, 2N] : n = a (mod q)} \ = ^ + Rq. Here the error term Rq depends on what Af is
modulo q, but it is quite small as long as q is small relative to N\ when q gets large we can even
have Rq > -.
Theorem 1. The principle of inclusion-exclusion states that given finite sets Bi,B2,... ,Bn

BiUB2u---uBn\= [J2\Bi\\- ]T \B*nBj\ +--- + (-i)n~1|£in---n_?n|
\ l < i < j < n J

Example 2. Let us count all integers k G N, k < n coprime to 3,5. Because 3 and 5 are primes, k
is coprime to them both if 3,5 | k. The number of integers less than n divisible by p is |_- J. Thus
by inclusion-exclusion \{k G N\k < n, k coprime to 3,5}| = n - |_f J - |_f J + LfsJ-

The Sieve of Legendre simply counts the primes in [ 1 ,N] by sifting out the numbers divisible
by primes using inclusion-exclusion. More formally if we have A = {n : n < N}, and B —
{p : p < z} , the Legendre Sieve states:

S(A,B,z) = N-^2
p<z

+ E
Pl<P2<z

___
_PlP2 E

P1<P2<P3<Z

N
P1P2P3

+ '

where the expansion has 27r(2) terms, where 7r(z) is the prime counting function. If we use -
to approximate the term |_| J we can have very large error in the Legendre Sieve due to the large
number of terms in the sieve and the fast growth rate of the product of the primes less than N.
However, we can still obtain some simple bounds for S(A, B,z). The obvious lower bound (known
as the union bound) is

S(A, B, z) > N - Y^ N
p<z Pi

and the slightly less obvious upper bound is

S(A,B,z) <N ■ E
p<z

+ E
Pl<P2<z

N
PlP2

In general from the notion of inclusion-exclusion we can see that if we take the first n terms in the
Legendre Sieve (excluding N) we get a lower bound for n even and an upper bound for n odd.
Definition 3. The Mobius function is defined by p(d) = 0 if 3p a prime such that p2\d, and
p(d) = —lu, where u is the number of prime divisors of d if not.

Then if we take P = Ylp<z Pi we can rewrite the Legendre sieve more concisely as:

S(A,B,z) = ̂ 2p(d)
d \ P

4.3 The Brun Sieve and Brun's Theorem
We give part of Brun's proof that the sum of the reciprocals of the twin primes converges. A twin
prime is a prime p such that p + 2 is prime (or alternatively p - 2). We will prove an upper bound
for the number of twin primes less than N, which is an important step in Brun's proof. In the proof
we prove an upper bound S(A, P, z) or the number of elements in A with no prime factors greater
than z which is of course a much larger set than the set of all twin primes in A.
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Theorem 4 (Brun). Let n2(N) denote the number of twin primes less than N. Then

N(hglogN)27T2(N) < (log AT)2

Proof. We make a simple observation: if p, p + 2 are twin primes than p(p + 2) has no small
prime factors; i.e. no prime factors less than p. Now let f(x) — x(x + 2) and our sequence
A = f(l), f(2),..., f(N). Let P be the set of primes pi < p2 < p3 < • • • and Ad denote the
elements of A that are divisible by d. Then inclusion-exclusion (the Legendre Sieve) gives us:

S ( A , P, z ) = Y I ( - 1 ) 8 E A p w - K . ( 4 - D
s € N U 0 K i i < - - - < i s

As we saw earlier Ad is difficult to count when d is large relative to z\ the error term becomes
significant. When d = p we have Ap = ^^- + #p where e(p) — 2 for p > 2. This is because
we will have roughly two times as many terms that are divisible by p in A than if we were sifting
A' — 1,2, ...,N because numbers d congruent to 0 or -2 modulo p will have f(d) = 0 (mod p)
and e(p) = 1 forp — 2. Rp < 2 is the error term. We can extend this for d = YlPiiPi2 '"Vis t0
get

Ad = __? i l l __> N + Rd> Rd < 2* (4 .2 )a
But now any attempt to substitute into (4.1) is futile because of the large error term Rd if s is at
all large. The crux of Brun's way to get around this problem relies on the fact that we can truncate
(4.1) at an even integer t, and we will get an upper bound for S(A, P, z). Substituting into (4.1) we
get

t

S (A ,P,z )<J2 ( - lY E AP i lP i2 . . .P im (4 .3 )
s = 0 l < i i < - - - < i s

Substituting (4.2) into (4.3) we get

s ( A , P, z ) < N ± { - i y £ ^ y ^ ^ - f ^ ^
s = 0 l < n < - < z s P i l P i 2 " - P i s S - 0 W

We use heuristics to point us in the right direction. Let us guess at the value of S(A, P, z). We
assume that p|n G A with probability ^^, and that these events are independent over different
p (we are assuming that the error Rp in the expression for Ap is 0). Then we have S(A, P, z) =
N Ylp<z (1 ~~ ĵT ) • So we perform manipulations to make N Ylp<z (1 — ^rr~ ) trie main term

II f1 - it) = E(-ds+1 E f̂ l-1 + E (-ds+1 E ̂ r̂̂ -2 (4-5)
p < 2 ^ ^ ' s = 0 l < i i < - - < i s s = t + l l < i i < - < i s

I

p < 2 ^ ^ ' s = 0 \ / s = t + l l < i i < - . . < i a
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A closer analysis shows that N Ylp<z (1 ~ ~) dominates the upper bound in (4.6), so we can

simply estimate N Ylp<z (* ~~ ~^) • We claim

\ ) \ p ) l o g z 2 '

To see this, note that

; ^ z \ p J ( l o g * ) 2

where the first equation holds because 1 — x < e~x, and the second is left to the reader. Finally
n2(x) < S(A, P, z) < (lo^)2, and letting z = c ^^ N establishes the theorem. □

4.4 Modern Sieves
4.4.1 The Selberg Sieve
As with the Legendre and Brun sieves, many other sieves revolve around carefully choosing which
terms to include, and using them to find bounds. These sieves are known as combinatorial sieves.
Because of its large error terms, the Legendre Sieve is not very useful in practice. Modern sieves
include Brun's Sieve, Gallagher's Sieve, the Turan Sieve, and the Selberg Sieve, which resolve the
problems of the Legendre Sieve by seeking to bound S(A,B,z), instead of computing it exactly.
We now describe the Selberg Sieve, and its most important application. This requires a bit more
background on the Mobius function.
Definition 5. An arithmetic function / is a complex valued function defined on the positive inte
gers. A multiplicative function is an arithmetic function such that Va, b where (a, b) = 1, f(ab) =
f(a)f(b). The summation function F of / is an arithmetic function defined by

F(n) = £/(d).
d\n

Theorem 6 (Mobius inversion formula). If f is an arithmetic function and F is the summation
function of f then

/(n) = 2>(d)F(J).
d\n

Proof Following [4], we have:

E ̂ F (1z) = Y,Il /(c) = E E >̂ )/(c) = E /(*) E /*(<<) = /(«)
d \ n d \ n c \ % c \ n d \ ^ c \ n _ | ~ -

where the last equality follows from the fact that for ^ > 1, J2d\ * ^(d) = 0. □
Now that we've familiarized ourselves with Mobius inversion, we can state the Selberg Sieve.

Let A be a set of positive integers < t, and P be a set of primes. Note that if d is a product of
distinct primes, then Ad is the intersection of the Ap for all p|d. Let P(k) denote the product of
the primes less than the real number k. As usual S(A, P, k) will denote the set of elements in A
that aren't divisible by any prime p < k. It turns out that |i4d| can be estimated by



3 2 T h e H a r v a r d C o l l e g e M a t h e m a t i c s R e v i e w 3

where / is a multiplicative function and Rd is the error term. Let g be the Mobius inversion of /,
i-e- 9(n) = Ed,n^)/(t),and/(n) = £d|nfl(d). Let V(k) = Ed<k,dlP(k) ^§- Using
this estimation and an inclusion-exclusion argument similar to the one we gave for Brun's Sieve we
have an upper bound due to Selberg:
Theorem 7 (Selberg Sieve).

S ( A , P , k ) < ^ - + 0 [ £ | * I d f d a I | ]V ' \ d 1 , d 2 < Z , d 1 , d 2 \ P ( z ) )

Among its many other uses the Selberg Sieve can be used to establish Brun's Theorem, and
most notably:
Theorem 8 (Brun-Titchmarsh Theorem). If S(x, a, q) denotes the number of primes p < x con
gruent to a modulo q then

2x
s{x>a>q)-m^

4.4.2 The Future of Sieve Theory
Like many branches of mathematics, sieve theory evolved in pursuit of a few legendary problems,
namely the Goldbach Conjecture and the Twin Prime Conjecture. The Goldbach conjecture states
that every integer greater than 2 can be written as the sum of two primes. The Twin Prime Con
jecture is that there are infinitely many twin primes. Sieve Theory has managed to approximate
these problems in incredible ways; in 1966 Chinese mathematician Chen Jingrun proved that every
sufficiently large even number can either be written as the sum of two primes or a prime and a num
ber that is the product of two primes, and as we've seen Brun showed the sum of the reciprocals
of the twin primes converge. Another strong Sieve Theory result is the Friedlander-Iwaniec The
orem which states that there are infinitely many primes of the form a2 + b4. While Sieve Theory
techniques do seem powerful, they are limited by what is known as the "parity problem": sieve
methods can't distinguish between numbers with an even number of prime factors, and numbers
with an odd number of prime factors. Even the formidable Terence Tao who used sieve methods
to prove his Tao-Green theorem on primes in arithmetic progression despairs on his blog that "it
is probably premature with our current understanding to try to find a systematic way to get around
the parity problem in general but it seems likely that we can get around it in some cases."
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Abstract
In the spirit of a proof that was done in 15th century India long before the birth of James

Gregory, and without any explicit mention of the arc tangent function, Gregory's series is shown
by a geometric argument to sum to one-fourth the area of the unit disc.

5.1 Introduction
One of the most famous formulas involving ir is the infinite series known as "Gregory's series:"

T T , 1 1 1
4 = 1 - 3 + 5 - 7 + - '

The usual derivation of this series relies on the differentiation rule for the arc tangent function:

C r e t a n * = 'd x 1 + x 2 '

from which it follows that
— = arctan 1=1 -—-—- dx.

Jo 1 +
According to the binomial expansion,

/ - , , 2 \ - l - , 2 , 4 6 ,
( 1 + X ) = 1 — „ + X — X +

H'« ■ x2 + x4-x6 + -.)dx = l-l + l-± + -

This formula was known to the great 15th century mathematicians of Kerala, India, notably
Nilakantha and Jyestadeva, who wrote about it in Sanskrit verse [1], but they could not have known
it as Gregory's series, for the simple reason that James Gregory (1638-1675) had not been born yet.
Neither, for that matter, had Newton, inventor of differential calculus and of the binomial theorem
for arbitrary exponent, both needed for the standard derivation. Furthermore, the standard deriva
tion makes no contact with a geometrical definition of n either in terms of the area or circumference
of a circle.

tPaul Bamberg studied physics at Harvard and Oxford, taught physics at Harvard from 1967 to 1995, and
returned to Harvard in 2000 as a member of the mathematics department. Between 1980 and 2000, as a founder
of Dragon Systems, he invented and implemented algorithms for speech recognition on personal computers, but
his first love has always been teaching.
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My purpose is to present a simple derivation of Gregory's series that defines 7r as the area of
the unit circle, that uses no differentiation formulas except for the definition of the derivative, and
that never mentions infinite series. It was inspired by a proof first done by Jyestadeva [1], but every
detail has been changed. In particular, Jyestadeva set out to calculate the length of a circular arc,
while I have used an "area squeeze" argument.

5.2 A Geometric Proof

Figure 5.1: Area Squeeze Diagram

Everything is based on Figure 5.1. The circle through A and B has a radius of 1 and an area of
7r. The radius OB intersects the horizontal axis at x = 1, and so the wedge AOB has area ̂ .

Regard the area of a circular wedge as a function of ̂ -coordinate of the point where the radius
intersects the #-axis. Thus, in the diagram, A(x) is the area of wedge AOE, while A(x + h) is the
area of wedge A OF.

The area of a wedge scales as the square of the radius, so the wedge EOF, when scaled up so
that it is bounded by a circular arc through C, has area (A(x + h) — A(x))(l + x2). The same
wedge, when scaled up so that it is bounded by a circular arc through D, has area (A(x 4- h) —
A(x))(l + (x + h)2).

Look at the triangle COD, whose area is \. This triangle contains the smaller wedge (through
C) and is contained in the larger wedge (through D). Since the area of a wedge is a continuous
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function of its radius, it follows that there is a value H, satisfying 0 < H < h, such that

'l = (A(x + h)-A(x)).(l + (x + H)2).

Now we can calculate the derivative A'(x) directly from its definition:

A i ( ^ y A ( x + h ) ~ A ( x ) 1A ( x ) = l i m — j — ^ = l i m - — - . t t t x t .v ) h - + o h h - + o 2 ( l + ( x + H ) 2 )

As h —> 0, so does H. We conclude that

A ' ( x ) l2(1 -fx2)"

It follows that

Once you understand the result, it makes intuitive sense. If you evaluate the integral fQ dx,
you get the area of a triangle with base 1 and height 1. If, instead, you want the area of the circular
wedge, you merely scale down the integrand by a factor of y^-j.

How, now, do we proceed without the binomial expansion? First observe that

1 1 2 1 - . 2 f - . 2= 1 — x • 7: = 1 — x - 1 — x -
i - \ - x 2 i + x 2 y i + x 2

Iterating n times, we get the exact result
1 = i - _ 2 + _ 4 - a 6 + . . . ± _ n l

1 + x 2 1 + x 2 '

Integrating term by from 0 to 1 (Jyestadeva found this hard to do), we obtain

4 3 5 7 2 n + l '

where, since 0 < yir < 1 over the interval of integration, C must lie between 0 and 1.
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Can the "identity" 1 = 1 + 1 make any mathematical sense? While most people would in
stantly say, "No way!," it turns out that under certain conditions, the answer to this question is
positive. Indeed, although this strange "identity" may seem quite contradictory at first, there are
rigorously proved results in mathematics which favor it. For example, such a mathematical paradox
was proved by the Polish mathematicians Stefan Banach and Alfred Tarski in the 1920s and can be
stated as follows:
Theorem 1 (Banach-Tarski Paradox). A solid sphere in R3 can be divided into finitely many pieces
which, using only rigid motions, can be reassembled to form two distinct spheres of the same volume
as that of the original one.

In this article, we are going to outline a rough idea of why this theorem holds, following the
exposition in [3].

But let us first consider an example that will make us prone to believe that 1 = 1 + 1 may
actually hold. Let P be the set of all polynomials in eiv? with nonnegative integer coefficients. We
partition P into two non-intersecting subsets, A and B, where A is the set of all polynomials in P
with a zero constant term and B is the set of all polynomials in P with a nonzero constant term.
We have that P is the disjoint union of A and B. We will show that using only rigid motions, i.e.,
those motions of the plane that preserve relative distances between points, we can get P from A
and from B separately.

Indeed, if we multiply all elements in A by e~w, i.e., rotate A by <p radians clockwise, we
obtain the whole set P. Also, if we add the constant 1 to the elements of B, i.e., translate B by 1,
we again obtain the whole set P. Thus we showed that P is decomposable into two copies of itself.
Quite amazing! This helpful example is an illustration of the Sierpinski-Mazurkiewicz Paradox.
The reader is encouraged to learn more about this mathematical phenomenon in [2] and [3].

Now, let's turn to the proof of the Banach-Tarski Paradox. How is it possible to decompose
a solid sphere into finitely many pieces that, when reassembled, give two distinct spheres of the
same volume as the original one? The key points are the properties of the irrational numbers and
the Axiom of Choice.

For simplicity, imagine that the Earth is an ideal solid sphere. Consider two axes of rotation
for the Earth — the first one (/i) with endpoints being the north and south poles and the second one
(/2) with endpoints being the two intersections of the Greenwich meridian with the equator.

Let 6 be an irrational number. We denote by ri the clockwise rotation of 6 degrees around h
and by r2 the clockwise rotation of 6 degrees around l2. Let rfx and rf1 be the inverse rotations
of n and r2, respectively. We define S to be the free group generated by n, r2, rfl, rf* where
the rotations in the pairs (n, rf:) and (r2, rfx) cancel each other. In other words, S is the set of
all finite strings of rotations ri, r2, rf \ and rfl such that no string has the rotations n and r^1
or r2 and rf* adjacent to each other in its expression. Each element of S can be considered as a

t Katrina is a sophomore in Mather house concentrating in Math. She is an international student from
Bulgaria who is currently most interested in abstract algebra. In the past, Katrina has conducted research in
representation theory.
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sequence of rotations which are applied from the left to the right. Note that by the irrationality of 0,
the orders of elements in S are infinite, since there is no positive integer n such that after applying
either of the rotations n or r2 exactly n times, we end up at the point that we started with. Namely,
for a point P, we have that r?(P) / P since otherwise, it would follow that n6 is a multiple of
360°, i.e., that 0 is rational. Therefore, there are infinitely many elements in S.

In order to keep things simple, we will consider only the points on the surface of the Earth.
Let us denote them by the set E. The following is a sketch of an algorithm for partitioning E into
smaller disjoint subsets. Note that the effectiveness of this algorithm is not rigorously proved, as
our aim is just to get a sense of the general idea of the proof. Let A\ be a point in E. Let Ei be the
subset of E obtained by applying all elements in S to A\. We choose a point A2 in E such that A2
is not in E\. Such a point exists since the number of points in S is countably infinite, whereas the
number of points in E is uncountably infinite. Again, we apply all elements of S to it and continue
in the same manner. Thus, we obtain the disjoint sets E\, E2, - - - C E. We need uncountably
many points At in order to cover all points in E by the union of all Ei since a countable union of
countable sets is still countable but E is uncountable.

Now, by the Axiom of Choice, we can choose a unique point from each of the subsets Ei and
thus construct a new subset D of E. By the way D is constructed, we conclude that every point in
E can be covered by applying a unique element of 5 to a unique point in D. In other words, each
point in E has a unique representation as an element of 5 applied to a point in _>.

Let Eri be the subset of E of points obtained by applying an element of S, starting with the
rotation n, to some point in D. We define ET2, J_(ri)-i, and £(r2)-i in a similar way. The last
major point in our outline is to note that by applying the rotation r^1 to the points in Eri, we
obtain all the points in Eri U EV2 U £(r2)-i. Similarly, applying rfx to Er2 gives all the points
in Eri U Er2 U £(n)-i • Therefore, the set E can be partitioned in the following two ways:

E = rY1(Eri)uEr-i,

E = r21(EV2)UEr-i.

These two decompositions imply that starting with the set E, we can partition it into 4 subsets from
which, using only rigid motions, we can construct two sets E. This result is very similar to the
Banach-Tarski paradox, but we are still missing a few important points which we are just going to
state. The first one is that we restricted ourselves to the surface of the Earth. We need to extend
the outlined algorithm to the whole volume of the Earth. The second one is that when we extend,
it there are some points that are left out by our algorithm, namely the points on the two axes of
rotation h and l2 and the points in D. In the end, it turns out that the Earth can be divided into
exactly 5 pieces which, when reassembled, give two spheres of the same volume as that of the
Earth. This is exactly what Banach and Tarski proved. As mentioned above, what we outlined so
far is just the idea of why 1 holds. If you are interested in a more rigorous proof of this fact, you
are encouraged to consult [3].

But you should not think that you can actually perform the decomposition just sketched. It
is not physically possible since matter is not infinitely divisible. In spite of that, this counterin
tuitive result is a brilliant example of the beauty of mathematics and its power to challenge our
imagination.
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With the food on my tray, I started the mundane process of finding a dinner buddy again. But
what caught my eyes instead was a beautiful girl with big eyes and sweet lips sitting alone. Taking
down a shot of confidence, I put my tray down right across from her and introduced myself...

What are the chances for us to be together?

For the sake of simplicity, let's assume the following:

• We meet everyday and hang out.

• Each day I have a probability p of making her happier and q of making her less happy, where
p + q = 1. Similarly she has a probability r of making me happier and s of making me less
happy, where r + s = 1.

• We can measure the happiness of each person with the other by an integer. On day 0, each
person has happiness 0. Every day after that, the happiness of each person either decreases
or increases by 1, with the probability described above.

• Suppose when I have happiness C (a positive integer), then I'm ready for a relationship, and
correspondingly define D for her. Thus, only when I have more happiness than C and when
she has more happiness than D will we date.

Then we can map our "Happiness State" with an ordered pair (P, K)i at day i on a 2-dimensional
plane. Let U[(P, K%] be the probability that this happiness state is (P, K) on day i. We have the
following equations, given the above assumptions:

U[(0,0)o} = l,
U[(x, y)i+1] = prU[((x - 1), (y - 1)),] + qrU[((x + 1), (y - l))i]

+ psU[((x - 1), (y + 1))*] + qsU[((x + 1), (y + 1)),].

Thus now we ask (slightly qualifying the initial question): What's the chance of us dating at time
ti In math terms, what's the probability of (P, K) with P > C and K > D at ti In other words,
we seek to find

P>C,K>D

Theorem 1. Given that a particle starts at 0 on the number line at time 0, and that at each second
it can either move left or right by 1, the number of ways to arrive at position k at time t is ((t_ /̂2)-

tGreg Yang, Harvard '14, plans to concentrate in mathematics. He has much experience from High School
Math Olympiads in solving difficult problems. Since coming to Harvard, he has begun to explore interesting
applications of math to social sciences.
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Proof: At time t, the particle has taken t steps, each either left or right (denoted L or R respec
tively). We may represent the sequence of steps with a sequence of letters L and R. If k > 0, then
(t — \k\)/2 of them are L; if k < 0, then (t - \k\)/2 of them are R. Then we just need to choose
where those (t — \k\)/2 letters appear from the total t letters, which is ((t_|Juw2)- This is also

((t+,l|)/2),sooneofthemmustbe ((t-fc)/2)- D
Corollary 2. The polynomial (x+y)1 generates the above sequence, with the coefficient ofxayt~a
being the number of ways to arrive at position (2a — t).

If we extend the result of this corollary to our 2 dimensional grid, and observe that vertical
movement happens simultaneously but independently from horizontal movement, we get the fol
lowing:
Corollary 3. In (x + y)f(n + ra)', the coefficient ofxayt~anbmt~b corresponds to the number
of ways to get to (2a — t,2b — t).
Corollary 4. Define the polynomial

Et(x,y,n,m) := YI xayt-anbmt-b( [xayt-anbmt~b](x + y) \n + ra) ' ) ,
2 a - t > C , 2 b - t > D

where [xk] represents the coefficient extractor of the polynomial succeeding it. Then Et(p, q, r, s)
is the probability that we are dating at time t.

Notice that

Et(x,y,n,m) = ( £ sV~>V~°](* + ! /) ' ] •( £ nbmt-b[nbmt-b](n + m)« j .
\ 2 a - t > C J \ 2 b - t > D J

Let Ft(x,y) = Y,2a-t>c xayt~a[xayt~a](x + y)f. If we use Ft to represent Ft(p,q) for the
sake of simplicity, then with a little algebra we can show that

z ? v ^ f ^ + ^ + i L c + H i J r + i v ^ / C + 2 h \ c + h h + i , -
h = 0 \ / h = 0 \ /

where Fc —pC-
This series is easily calculable with Mathematica for finite k. But what happens as k goes to

infinity? In other words, what's the chance that she is willing to date me forever? (I hope it's 1.)Let sc=Er=0 (ci2+r)Pc+h+y+i - £r=o (%.a>c+v+i+Pc-1** ̂  i™*-
tigate the case when (7=1. Then

NolicethaEr- fi^V+V-" - J IXo CTp'*V*'. ButCd) = 5\,„ e,>V(i+
1) generates the Catalan numbers Cn+\ = YJk=o^kCn-k- This recursive relation gives C =
1 + xC2, which by the quadratic formula implies C(x) = 1~^~4x. When C is treated as a
Taylor expansion around 0, it has convergence radius 1/4. (This is a brief treatment of the Catalan
numbers and their generating function. For more information, consult combinatorics textbooks.)

Note that £(xC) = ^(1~v^r^) = (1 - 4x)~1/2. On the other hand,

i > 0 \ / i > 0 \ /
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This sum is convergent for x e (-1/4,1/4). If p ^ 1/2 => pq = p(l — p) < 1/4, we find

S i = p ( ^ ( x C ) ( M ) - l ) - i ( | ( * C ) ( M ) - l ) + P
1 1 , , . . s -1 /2

p - ^ J { { l - 4 p q ) - l / " - l ) + p
= (p-i)(l-4p(l-p))-1/2 + ±

= (P-l)/\i-M + l

=Ksgn(p_0+i)
1 i f p > l / 2 ,
0 if p < 1/2.

In the case of p = q = 1/2, we may just use the definition of Ft:

l i m F t = l i m V | * | p V " °t - » o o t - ¥ o o z — ' \ a I2a-t>C \ /

= ** £ Q(V4)(
2a-t>C \ /

\ t - C < 2 a < C + t

However, by Stirling's approximation,

2nVim2n , . v / 4^ (2n /e )2n , , y „2nl i m ( l / 4 ) " n = l i m v l _ l v v y - ( 1 / 4 )n ^ o o \ n / y n - * x > ( , / 2 ^ i ( n / e ) n ) 2

= lim 4=(V4)2n
= 0.

And because (2nn) > (2fcn) for all/c, we have 0 = lim„_>oo (2nn)(l/4)2n > limn->oo (2fcn)(l/4)2n >
0, so we actually have equalities here. Similarly,

lim (2n-l)(l/4r-i= lim l(2;Vl/4)2''(4)=0.
n - * o o \ n I n - x x > 2 \ 7 1 I

And 0 = limn^oo (2nn"1)(1/4)2n_1 > lh~n->oo (2nfc""1)(l/4)2n"1 > 0 for all k, so we actually
have equalities here as well.

Then lim^oo Ylt-c<2a<c+t C)(V4)* = 0, as the sum has a finite number (at most C) of
terms, and each of these terms goes to 0. Hence linit->oo(l —5_t-c<2a<c+* C)(V4)*)/2 = 1/2
is the probability that she is willing to date me forever, if p = q = 1/2. (Well, at least it's pretty
fair.)

We can use the same strategy above to prove that Sc is constant regardless of C. In other
words, limt->.oo Ft is the same for any value of C.
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This is a surprising result. It means that if the girl makes me happier in more than half of the
days, then I am willing to date her forever; if she makes me happier in less than half of the days,
then I would not want to date her in the long run. Applying the same logic on her, it follows that
we will date (and probably be married) eventually if and only if each of us makes the other happier
in more than half of the time.

We can generalize this model by changing the time interval that corresponds to t (for example,
change "day" to "hour"). This model may even apply to other social situations that involve quasi-
random interactions such as friendships.
Now we must consider the flaws of this random walk model used for a dating scenario.

1. Even though one cannot predict the effects of one's actions on another, he or she still has a
choice of whether to show signs of affection or annoyance. This model completely ignores
choice.

2. The behaviors of the two are different in different stages of their relationship. So perhaps
the p and r should vary depending on the happiness state.

3. There are many other social factors influencing the two. By only considering the interactions
between them and not between them and everyone else, the model is ignoring effects of
things like peer pressure and multiple suitors on the happiness state.

4. The practicality of the model still rests on the knowledge of one's p value, which is not
easily extracted.

5. We should consider different degrees of happiness. So perhaps we should use a probability
distribution more complex than the dichotomy presented above.

6. And more.

But if I neglect these flaws for a second, it seems that we are either destined to be together or...

"May I sit here?"
"Oh sorry, my boyfriend is sitting there."
... destined to be apart.
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Abstract
The formalized theory of geographic profiling has advanced substantially, both theoretically and in
terms of wide-spread practical use, since its beginnings in 1989. In this paper, we propose a novel
model for geographic profiling, using a dual-layered approach that incorporates more than simply
spatial considerations to predict future criminal behavior. We implement our model by generating a
three-dimensional plot laid upon a city grid that plots "danger zones" where a serial criminal might
next strike. We test our model against intuitively obvious cases, and follow up by applying the
model to the case of the arsonist Mr. Thomas Sweatt. Finally, we suggest some natural extensions
and variants for further research and implementation.

8.1 Introduction
This paper on geographic profiling is a modified version of our submission to the Mathematical

Contest in Modeling, a four-day international competition where teams of up to three people pro
pose an original model to a given real-world problem. Our team was ranked Finalist for a discrete
model that can be used for catching serial criminals.

Given a serial criminal, the place and time of his or her crimes can be used to generate a
prediction of either where the criminal resides or where the next crime will be committed. Such

tZhao Chen is a senior in Pforzheimer House at Harvard College concentrating in Physics and Mathemat
ics. His primary experimental interests lie in atomic/molecular/optical physics and condensed matter, but as a
mathematical hobbyist he also enjoys graph theory and algebra. His other interests include food and East Asian
history/literature.

* Kevin Donoghue is a senior at Harvard concentrating in Mathematics. Currently, he is mostly concerned
with geometry and analysis, although he enjoys all kinds of pure math. He is also interested in classical music.* Alexander Isakov is a senior at Harvard concentrating in Physics and Mathematics. His primary inter
ests are physics generally, and nonlinear dynamics in particular, but as a hobby he enjoys programming and
mathematical modeling with friends. He is also interested in the classics.
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predictions are known as geographic profiles, and they have been used in a variety of cases, such
as the one of the serial arsonist Thomas Sweatt [7], whose crime map [18] is shown in Fig. 1.

Indeed, as geographic profiling becomes more prevalent in investigative strategies, the need for
more accurate methods of modeling criminal activity has grown. Preexisting models rely heavily on
geographic data [10], and as such do not take fully into account the crime information available. We
have found that it is possible to prevent such waste of information, and create a more sophisticated
profiling system which incorporates more of the available data.

8.1.1 Problem Background
Serial criminals exhibit certain pathologies that allow predictive measures to be taken against

them. Most importantly, in contrast to one-time criminals, serial criminals tend to target strangers,
which makes their actions more prone to patterns [11]. Beginning with the seminal work of Brant-
ingham and Brantingham in 1981 [2], criminologists began to turn to geographic profiling as a
useful complement to crime investigations [11]. According to Brantingham and Brantingham, se
rial criminals tended to operate within a relatively limited "activity space." Fueled by these ideas,
investigators began to use the geographic and temporal information about committed crimes to
generate a probabilistic map that helped them predict where the criminal resided. The majority of
models used various spatial metrics to define a "geographic center" of the crimes committed, and
predicted that the criminal resided in close proximity of this center. Such methods were often very
simple, using basic mathematical operations to determine this central point [12].

Kim Rossmo, a student of the Brantinghams, attempted to modify this model in 1987 with a
"buffer zone," reasoning that the criminal would not be too comfortable committing crimes in a
certain radius around his or her home [13]. In later work, Rossmo's model was further refined to
include multiple "anchor points" (as opposed to a single point) where the suspect was predicted to
live. In other work, location of body dump sites were taken into consideration by looking at how
far a suspect would be able to take the body [12]. Despite such refinements, however, Rossmo has
admitted that these methods are far from perfect and must always be used in tandem with traditional
tried-and-true methods [13]. Many studies have shown educated individuals consistently coming up
with just as accurate geographical predictions as the most sophisticated modeling software. [5, 14]

Moreover, despite the effort put into geographic profiling as a tool to locate criminals, relatively
little attention has been given to predicting an uncaught serial criminal's next target. Given the
wealth of information on how serial criminals think and plan out their crimes, this type of crime
prediction holds much promise.

We propose a new model to be used for geographic profiling. After testing our model against
a series of limiting cases, we use it to determine the correct place of residence and a very accurate
danger zone in the case of the Washington D.C. arsonist Thomas Sweatt. We show that from the
data of the first ten Sweatt arson locations, our model accurately predicts the neighborhoods that are
affected by later crimes as well as the residence of the arsonist. Indeed, one of the neighborhoods
that the model designates as most likely to contain the criminal actually does contain Mr. Sweatt's
residence.

The paper is organized as follows. First, we detail the model. Then, we describe how our
model performs with a fictitious criminal who exhibit distinct behavioral patterns. We also provide
a thorough treatment of the real-life Thomas Sweatt case. Finally, we conclude and suggest possible
opportunities for further research.

8.2 The Model
8.2.1 Definitions and Terms

Our model will be based on an N x N grid called a city. Every point on the grid is identified
by its unique Cartesian coordinate (x, y), and is known as a neighborhood. Each neighborhood is
assigned parameters such as densities of different races, average wealth, etc., as shown in Table 1.

Throughout this paper, we deal with serial criminals and glean information from the crimes they
commit. A crime refers to a certain cartesian coordinate (x, y) and an index i that orders the crimes
by time, as well as information about the neighborhood and the particular victim (race, gender, age,
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average wealth of neighborhood, average safety of neighborhood, etc.). Such information together
is called the crime vector. Every crime that the serial criminal commits has its own associated crime
vector. The crime vector of the zth crime is denoted £*, and its different components are denoted
^ .component. For example, if the third crime were committed against race Ra, then &3-R = Ra-
If this crime were committed at the neighborhood (3,3), then €i.x = £i.y = 3. For ease of
notation, we denote the location of the iih crime as the point d = (£»._, £i.y):

The metric we use for distance in our model is a modified version of the Manhattan Distance,
which was used in Rossmo's original model [12]. The Manhattan Distance between (x,y) and
(x', y') is \x — x'\ -f \y — y'\- However, we also account for more efficient transportation available
(highways, subways, bus routes, etc.) by saying that the distance between two points pi = (x, y)
and p2 = (x1', y') connected by fast transportation is a(\x - x'\ + \y — y'\), where 0 < a < 1. We
use a = | and all points with coordinate x = 3 are connected by public transportation. Hence, we
define the distance between two points D(pi, p2) as the minimum distance of any path on our grid
leading from pi to p2. In our test city, where fast transportation lies along the line x = 3, this is
precisely:

D(pi,p2) = min{|;r - x'\ + \y - y'\, \x - 3| + \x' - 3| + a\y - y'\}. (8.1)

The goal is to generate a danger map which is our generated grid along with a value (by our
algorithm, this value will be between 0 and 2) associated with each cell that is correlated with the
probability of the serial criminal's next crime being committed there. We do this by generating a
psychological danger mapping and a spatial danger mapping, and superimposing these two maps
with appropriate weighting. More precisely, for a grid of size k x £, we define two mappings

S p : { 0 , . . . , k - 1 } x { 0 , . . . , £ - 1 } - > R ( 8 . 2 )

S s : { 0 , . . . , k - 1 } x { 0 , . . . , £ - 1 } ^ R ( 8 . 3 )

and call Sp(a, b) the psychological danger at the neighborhood (a, b), and Ss(a, b) the spatial dan
ger at point (a, b). We also look for the psychological weight (pp and the spatial weight (ps (both
real numbers between 0 and 1 inclusive), and we construct the map

& = x P ( ( P P ) 8 p + x P ( < p s ) 5 s ( 8 . 4 )

where

This A is the total danger mapping, and we call A(a,b) the total danger at the neighborhood
(a,b)1. This total danger will give us a quantitative measure of how likely a serial criminal will
next commit a crime.

Table 1 shows the relevant parameters that will be assigned to each neighborhood in our model.

2The function xp in this expression is there to reduce noise, k in xp is an empirically determined constant.
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List of Crime Independent Parameters
Parameter Name Symbol Meaning Comments

Race Ri Density A*
The fraction of residents
belonging to race Ri
in a neighborhood.

For our generated city,
there are 4 races,
Ra, Rb, Rc^nd Rd-

Gender Gi Density Pr The fraction of residents
belonging to gender Gi
in a neighborhood.

For our generated city,
there are 2 genders,
Gm and Gp-

Age Ai Density ^
The fraction of residents
belonging to age group Ai
in a neighborhood.

For our generated city,
the age distribution is
AY = 15%, AM =65%,
A0 = 20%.

Total Population p
Total population of
a neighborhood.

P is correlated with
a neighborhood's position
in the city.

Average Wealth UJ
The average wealth
of a resident
of a neighborhood.

w can be measured
by land value
or average income.

Average Safety (J
The average safety
of a resident
of a neighborhood.

<j can be measured
by crime rate.

Table 1: List of Crime Independent Parameters.
We now present the set of crime dependent parameters associated with each neighborhood. By
central point, we mean a point pc such that (D(p, Ci)) (the average distance between p and the
crime scenes) is minimized. Note that such a point need not be unique; in this case, we allow the
computer to randomly choose one of the minima as the center point2.

List of Crime Dependent Parameters for a Neighborhood p
Parameter Name Symbol Meaning Comments

Distance to ilh crime. D ( p , d )
The distance from
the zth crime to
the neighborhood.

The metric for distance
is as defined
above.

Distance from central point. D(p,Pc)
The distance from
the central point
to the neighborhood.

None.

Table 2: List of Crime Dependent Parameters.
Because every one of these parameters is defined for a neighborhood, they are all functions of
(x, y). Hence, we notate the racial density of race Ra at point (a, b), for example, as p"A (a, b).
The parameter Di is also dependent on the crime (the value of i in d).

8*2.2 The Urban Grid
We consider a double-tiered crime prediction model that maximizes the use of information

available to law enforcement authorities. Clearly, information about crimes encompasses not only
the basic location/date/time of crime, but also the type of crime and victim characteristics, such as
gender. Whereas many current models primarily use the most basic available information about
specific crimes, such as place and time, to predict a base of operations [5] and hence "hot zones",
it is more useful to intelligently weight all relevant available information in predicting potential
targets. After all, neighborhoods clearly have individual flavor, and the salient characteristics of
a crime are not immediately obvious, since there is a strong temptation to guess at psychological

2In such a case, this random choice will not distort the results to an appreciable degree. In any situation in
which there are two or more minima, the distance on our map between these minima will be small.
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motivation and use such guesses in predictions [10]. Insofar as we consider serial crimes [1] that
neither target specific individuals (as opposed to contract killings or political abductions) nor spe
cific neighborhoods for their peculiar "local flavor", it is best to first strip the city of all except the
most relevant factors that can lead to accurate predictions. We generate a city as follows.

1. Specify a grid size. We use a 10 x 10 grid, which allows for a wide mix of characteristics
to be dispersed through the city.

2. Specify P for each neighborhood. We assume that population is denser around easy-to-
access places, so we choose from a uniform distribution based on distance from the line x —
3. We have the population for each neighborhood drawn from [Unif(10,100—10(|_ — 3|))J,
so that each neighborhood has at least 10 people.

3. Specify w and a for each neighborhood. These relative numbers will be useful in gaug
ing a criminal's psychological parameter. We suppose that on average wealthier and safer
neighborhoods are farther from the city center, a, u> are drawn from [Unif(l, 2 4- l/2(|x -
4| + .J2/ — 4|))J, which will avoid unreasonable disparities in wealth and safety.

4. Input transporation. Adjacent points connected by fast transportation are counted as only
I units of distance apart. This is important since serial criminals often take transportation
into account when they plan their actions [1,2].

5. Assign demographic information to each person. For each person in a neighborhood i, we
assign a race, gender, and age. At the onset, only the age types are not equally distributed,
but we will later modify racial distributions to test our model in circumstances where race is
an issue.

Our model of a city as a grid has some important features that bear mentioning. For one, note
that all parameters are chosen independently of each other. Also, all parameters (including wealth)
are discrete for faster coding and to represent the easily avilable information (it is easier and often
more useful to classify someone as "middle class" rather than assigning a real number to his or her
wealth). Certain parameters are specific to the individual (e.g. race), while some are specific to a
neighborhood (e.g. wealth).

8.2.3 Calculating Probabilities and Weights on the Urban Grid

Suppose that we have the crime vectors £1,..., £n- We need at least n = 5 crime incidents
in a serial case, which is a threshold for useful geographic profiling [4]. We assume that every
neighborhood on our grid has either zero population data or an appreciable population size, which
allows us to use densities rather than absolute numbers (e.g. using p\ ' rather than the total number
of residents of race Ri) to draw conclusions.

In terms of criminal characteristics, we suppose that the criminal is attacking strangers, con
sistent with many criminology studies [1]. Serial criminals who attack known associates are much
less prone to victim selection patterns, and hence the sporadic nature of their attacks are not suit
able for geographic profiling. We assume that the criminal is acting on his own, and his actions
are apolitical and not associated with any organization (legal or otherwise). Further, we assume
that parameters in the psychological map are independent of one another as viewed by the crim
inal. Although it is also reasonable to suppose that serial criminals are generally aware of their
surroundings, or at least have some working knowledge of the makeup of the nearby environment,
our model nonetheless takes the possibility of random action seriously by subtracting the consistent
characteristics of victims from the overall relevant population characteristic averages to account for
the "state of readiness" to commit a crime [1].



Zhao Chen, Kevin Donoghue, Alexander Isakov—Geographic Profiling 47

8.2.3.1 Calculation of the Psychological Danger Map
Our five psychological characteristics are race (R), gender (G), age (A), average wealth of neigh
borhood (oo), and average safety of neighborhood (a). We first calculate the percentage of the total
population that has a certain property. Hence, for race A, for example, we have

p r / ? - R ^ - _ _ _ _ _ _ _ _ 1 < X Mp { r ~ R a ) - e , , p ( * , » ) ( 8 ' 6 )
This is precisely the percentage of those belonging to the group R = Ra across our entire grid.
After these probabilities have been calculated, we then compare them to the crime vectors. Given
that there are Nr=ra crime vectors £j such that di.R = Ra out of a total of N crime vectors, we
define

* ( R = R A ) = ^ - ^ ( 8 - 7 )

as the probability that a randomly chosen crime vector will have this characteristic. Then, we
consider the value

M r = m a x { | P ( i ? = R , ) - t t ( r = R j ) \ } ( 8 . 8 )
where j is any race (in our case, j = A, B, C, or D). We do this for every psychological parameter
(R, G, A, oo, a), and consider the set

{ M r , M g , M a , M u , M * } ( 8 . 9 )
These values Mi we define as the criminal selectivity of i, and are an indication of how randomly
the criminal is acting with respect to a certain parameters. This number is between 0 and 1, and
measures the difference in how the criminal acts and how he should act given that he does not select
for victims based on characteristic K. If the criminal does not select for a particular characteristic,
then we expect that the percentage of victims he has of each type for characteristic K will be equal
to the percentage of the total population that falls into that type.

The two psychological parameters corresponding to the two largest of the M values are our key
psychological parameters. We will ignore the psychological parameters that are not key psycholog
ical parameters; this is because it is more reasonable that a serial criminal will be psychologically
consistent in one or perhaps two parameters rather than all five. Suppose K and K' are our two
key psychological parameters. We then can calculate both the weight <pp and the value of the
psychological danger map Sp at each neighborhood.

We have

5 r ( a M = \ \ £ * < , K = K i ) P ? \ a M + ^ ^ K > = K i ) p f \ a , b ) \ ( 8 . 1 0 )

where the first sum is summed over all possible values of K and the second summed over all pos
sible values of K'. If K = a or K — uj (i.e. if K is a parameter that characterizes a neighborhood
rather than an individual), then for a neighborhood (a, b) where K(a, b) = Km, p\K\a, b) = 0
for i t£ m and p^(a, b) = 1. If, for example, our culprit were to attack only those of race Ra
and age Ay, and if race and age were our key psychological parameters for that criminal, then
any neighborhood (a, b) with only individuals belonging to race Ra and age group Ay will have
Sp(a, b) = 1. Note that 5P e [0,1). Similarly, we define

< I > p = \ ( M k + M k > ) ( 8 . H )

The psychological weight is thus just defined as the average of the two largest values for criminal
selectivityThis definition makes intuitive sense and reduces noise; the values M describe how
much a criminal is selecting for a certain victim characteristic, and hence a very psychologically
selective criminal will have by this definition a high value for <pp.
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8.2.3.2 Calculation of the Spatial Danger Map and Total Danger Map
For every point p = (a, b) on our grid, we can calculate

(D(p,d)) (8.12)
the average distance between p and the crime coordinates d. The point pc such that this average
is at a minimum is known as the central point. If there is more than one possible value for pc, we
randomly select one.

We now calculate the values of the spatial danger map. First, we assign a value to every point p
on our grid based on its proximity to the crimes, weighted towards the later crimes (consistent with
the idea that serial criminals tend to spread out as they commit more crimes, and hence a crime
committed later would tend to be closer to other later crimes [15]). Namely,

£(P) = £(i.irD(p,a) (8.13)

The 1.1 is our weight factor*. We normalize this quantity and form

S(P) E„(i- i)<P(p,CQ
max{£} (8.14)

where by max{£} we mean the maximum value of £ for all points in our grid. Hence, we now have
a value between 0 and 1 to describe the proximity of any point to our crime scenes, with weight
towards the later crimes.

Next, given all the values D(pc, C\) for every d, we can define the radius 1Z of crimes as the
average of these values, and the radial variance V of crimes as the variance of this set of values.
Then, for any point p = (a, b), we have that

Ss(p) = S(a,b) = - (Exp (D(p,pc)-K)2
2V

+ £(P) (8.15)

The first term is a Gaussian with variance V and mean K. Hence, the first term produces a value
between 0 and 1 describing how much the D(p,pc) deviates from 11. This contribution follows the
theory that many criminals operate out of a "home base" [9], and hence their crime scenes tend to
orient themselves to be approximately the same distance from this home base4. The second term
describes how far away a point is from the crime scenes in general, and follows the theory that
crime scenes tend to radiate outwards [14], which means that points closer to later crimes are more
likely to be chosen as subsequent crime sites. With these two contributions, we can define Ss(p), a
value between 0 and 1, and the psychological danger of a point.

What remains is to calculate the weight (ps. Given ak x £ grid,

= Exp - 0 V
Vkl. (8.16)

The parameter 0 > 0 depends on qualities of the city. The larger the value for 0, the more sensitive
to variance the weight (ps becomes. Hence, we would expect 0 to be larger for locales that are more
crowded or for larger grids in general, where the criminal has a larger activity region to function in.
For our 10 x 10 grid, we use 0 = 5, and in this case we have

= Exp (8.17)

3The weight factor 1.1 is large enough to substantially weight £ towards the later crimes, but not large
enough to completely wash out data from the older crimes.

4Note that in this case, distance doesn't mean that we would geometrically expect a circle, since there exists
a line of fast transportation down x = 3.
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and hence a variance of 2 will result in the weight becoming 1/e.
We can now form the total danger map as

A(a, b) = xP((Ps)Ss(a, b) + xP(<PP)6p(a, b) (8.18)

where

^ ) = ^ r ( i + e - ^ ) , - T T ^ ) ( 8 1 9 )
which assigns to every (a, b) a value between 0 and 2. xp is recognizable as a logistics curve which
is slightly modified so that ^(0) = 0 and xp(l) = 1 (to 4 significant digits), k is a value that
will determine how steep the xp function is, and for our present model we use the value k = 4. We
apply the xp function in order to ensure that significant weight values for (pp, <ps are amplified, while
less significant weight values are made negligible. With this model, higher values of (pi are more
prevalent in the final sum, and as (pi decreases, the function xp((pi) begins to drop off rapidly. This
allows us to gauge differences between the spatial and psychological models with greater clarity
than a purely linear model.

8.3 Results and Case Analysis
As described above, our model takes both spatial and psychological data from the crimes,

and based on how statistically significant each set of data is, produces two weights (ps and (pp.
Thus, there are four possible general cases, based on whether (ps and (pp are each high or low. In
limiting cases where only (ps is high, our model produces a high danger value around the locations
of the crimes - these cases are less interesting and we omit a full analysis from this paper. We
hence present here results after running our model with two cases - one where the criminal's crimes
produce a high (pp and high <ps, and one using real data from the Thomas Sweatt arsonist case.
8.3.1 Test Case: The Cunning Murderer

Mr. X, with vengeance in his heart due to perceived wrongs, decides to murder 30-40 year old
(Am) males (Gm) of Race Ra- He feels comfortable committing crimes only small distances from
neighborhood X, at coordinate (6,6). However, he does not commit crimes at X, but rather within
a distance of between one and two from that point. Ss (Fig. 2) is weighted by xp((ps) = 0.944,
which is not too far from 1. It is farther from 1 since the crime pattern is not perfectly circularly
distributed but shows a highly symmetrical spatial cluster with a radius of 1.3. Sp (Fig. 3) also
has a high overall weight of .751, since the criminal is consistent. We see that it highlights the
neighborhoods with similar demographics to the intended targets.

The choice of weights makes A (Fig. 4) represent the situation correctly. There is a danger
zone about X (with X itself having a lower danger than the surrounding neighborhoods), and there
is a rapid drop in danger as we move away from the radius, due to the heavy spatial organiza
tion. This is a clear reflection of the "buffer zone effect", as explained in [13]; X is relatively
safe, but neighborhoods around the average radius of the crime scenes are very dangerous, with a
deformation of symmetry due to weighting towards the later crimes.
Recommendation: Station police officers in the very high danger zones and put those neighbor
hoods on high alert. Put neighborhood X on medium alert, but do not station a police officer there.
Do not issue warning to neighborhoods outside of the immediate hot zone. Since Mr. X is both
spatially and psychologically organized, and hence has a reasonably high probability of targeting
the specific area without living there, the model should not necessarily be used to make a predic
tion as to the criminal's residence, despite the fact that the current models would put it at X. It is
possible to implement a search effort within the given radius, given that it is not overly expensive
to do so.

8.3.2 Washington DC: Thomas Sweatt Arson Case
Now we apply our model to a real-life case. From 2002 to 2004, Thomas Sweatt set fire

to 46 apartments and cars in Washington D.C. First, we split our city into four quadrants, for
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which we use available data on race distribution in Washington D.C. to give each quadrant the
appropriate distribution in expectation. We assume that gender is uniformly distributed, and that
the age distribution from a 2000 census is the same for all four quadrants. Then, we manually
overlay a 10 x 10 grid onto the city map and mark where the crimes were committed. We take
careful note of the Washington Post article on the subject, where there is a report that Thomas "told
investigators that he chose his targets at random" and that "he was acting largely on impulse while
scoping targets in a car" [17]. This suggests that Thomas was spatially organized (insofar as he did
not in general get very far from his place of residence before setting a fire) and not psychologically
organized, which we see from the random nature of 5P (Fig. 5), while Ss (Fig. 6) shows peaks
centered at (7,4).

Since Washington D.C. is far from homogenous [19], the crimes seem to have some consistency
in them, which we see in Sp. However, these values are close to city averages, so the weight of the
psychological danger map is only .200, less than half the weight of the spatial danger map (.924).
Putting the two together, we obtain a total danger map (Fig. 7) that is very consistent with Thomas'
actual future crimes.
Recommendation: Based on these ten crimes, we recommend heavily increased police presence in
the immediate hot zone (within a distance of roughly two neighborhoods of (7,4)). The heavy spa
tial organization as compared to the weak psychological organization suggests a residence search
starting at a radius of .9 from the center point. A general community advisory is not suggested
outside of the hot zone, since we see that the topography of the danger map is almost completely
flat compared to the peak.
Comments on this Case: Considering the rest of the available crime data, we see that the model
works incredibly well. The above recommendations would have helped prevent the next two
crimes, would have missed crime 13, 14, 165, and would have helped with crimes through 22,
after which he started radiating outwards. However, we likewise note that once he started radiating
out, the heavy time weight of the later crimes compared to the early crimes would have made the
radius calculation larger. However, Mr. Sweatt was actually located at (6,3)- right within the first
or second line of search. So, our geographical profiling model would have helped prevent the next
few crimes that Thomas wanted to commit, and would ensure that he was caught at his place of
residence before he could set the rest of the city on fire!

8.4 Conclusion
As seen in various test cases and in the above, our model generates useful predictions for

crimes that are not completely random. While we do not recommend that our model replace good
intuition and solid detective work, we have shown that it produces results that complements pro
fessional intuition in serial crime cases and helps direct search efforts and warn the inhabitants
of neighborhoods in imminent danger from a serial criminal without causing undue widespread
panic. The 2005 case of the Washington D.C. arsonist Thomas Sweatt case is a perfect proof of
concept. Using mild demographic assumptions informed by recent census data [19] and a manual
grid-overlay6, our model not only predicted the danger area of most of the subsequent offenses
(given only the first 10 data points), but also accurately put the residence of Mr. Sweatt on the
correct radius. In essence, the search space was limited to about five neighborhoods, which would
have facilitated Mr. Sweatt's arrest long before the rest of the string of arsons could unfold.

This outlines the general procedure for using the model and its advantages. A map of the
city, complete with necessary parameters, would be put on a grid and synchronized with police
information systems to automatically update. For a string of serial crimes, victim information and
location would be put into the model, and after five or more data points7 were entered, the model

5Located at (6,6),(4, 5), and (6, 2), respectively.
6Of course, accuracy would be greatly improved and the results would be even clearer in real life due to the

data and technology available to law enforcement that allows near-instantaneous localizations and data input on
grids.

7Fewer are possible, of course, but then the predictions will likely be rather inaccurate due to lack of data
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would generate the recommendations similar to those outlined here. Any recommendation would
be used to either confirm or modify existing police efforts and community warnings, which would
make the city safer.

The dual-layered design of the model provides obvious advantages over the simple existing
models. The calculations of (ps and (pp based on the crime data would allow one to automatically
and intelligently place criminals on the gradient between selecting for victim location and selecting
for "victim type" (e.g. race, gender). The ability to make this distinction allows our profiling system
to go one step beyond pre-existing geographic profiling systems and deal with a more diverse
pool of serial crimes, saving resources and serving as a tool to pinpoint danger zones even if no
prediction about criminal residence is appropriate.

For further research, we suggest that increased accuracy can be achieved if the nature of the
crime is considered. For example, we would expect gender to always be a strong factor in serial
rape cases, but this factor does not give us much information about the psychological consistency
of the culprit; hence, it may be reasonable to omit the contribution from the gender parameter in the
calculation of (pp. Likewise, one could take a different account of parameters depending on the area
in question. For example, gender may be weighted less in a city where it is too evenly distributed
to be much help and would only add noise into the model. Practical spatial considerations, such as
accessibility due to roads or railways would impact the likelihood of a criminal being more spatially
than psychologically motivated. The psychological equivalent to this, which would make the model
more sophisticated, is the use of coupled parameters, i.e. if a culprit exclusively attacks citizens of
race Rb and gender (7m, then those neighborhoods with high densities of citizens who are both of
race Rb and male can be weighted more heavily as dangerous areas. We hope that further work on
this approach will provide a great ally for law enforcement.
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9.1 Introduction
Pick any natural number n. As the 18th-century mathematician Joseph Lagrange proved, you can
always write n as a sum of four perfect squares. Not impressed? Try to do the same for three
squares — you'll find that it is already impossible at 7. Think a greedy algorithm will work? Just
try 23. Still not impressed? Then read on to find out why this seemingly simple theorem makes it
as this issue's My Favorite Problem.

We begin with a completely elementary proof by descent, a straightforward method exempli
fying the apparent simplicity of elementary number theory. Armed with more machinery, we then
present solutions via Minkowski's theorem, lattices, and modular forms, demonstrating this theo
rem's intrinsic connection to modern techniques in algebraic and analytic number theory and ge
ometry. These solutions highlight the beauty of elementary number theory. It is a subject concerned
with seemingly simple problems regarding the properties of numbers — integers in particular —
with surprising connections and deep consequences for the rest of mathematics.

9.2 First Proof: Method of Descent
In this section, we give a completely elementary proof of the theorem by Fermat's classical method
of descent. First, we prove the following lemma.
Lemma 1. Given a prime p, there exist a,b £ Z such that a2 + b2 + 1 = 0 (mod p).

Proof. Consider the equation
a = — 1 — b (mod p).

There are (p+ l)/2 possible values for a2 and (p+-1)/2 possible values for -1 - b2, so they must
c o i n c i d e a t s o m e v a l u e , b y t h e p i g e o n h o l e p r i n c i p l e . □
Theorem 2 (Lagrange). Every natural number can be written as the sum of four perfect squares.
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complex analysis and number theory, but I also like philosophy, algorithms, fiction, and cooking desserts.
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Proof. Note the identity

(a2 + b2 + c + d2)(w2 + £2 + y2 + 22) = (aw + bx + cy + dz)2
+ (ax — bw — cz + dy) + (ai/ + bz — cw — dx) -h (az — by + ex — dw) .

This shows that the property of being a sum of four squares is closed under multiplication (this
identity is motivated by the quaternionic norm). Therefore, it suffices to prove that every prime is
a sum of four squares.

Now fix a prime p. By lemma 1, there exist integers x and y such that x2 4- y2 + 1 is divisible
by p. Thus, there exists a number ra such that mp may be expressed as the sum of the squares of
at most four integers:

m p = x \ + x \ + x l + x \ . ( * )
We can consider ra < p as an additional constraint.1 We will show that if ra > 1, then ra can be
"reduced"; that is to say, we can always find a smaller number n < ra such that np can also be
expressed as the sum of at most four squares.

We have two cases. Suppose first that ra is even. Then (*) is even, and we have three sub
cases: all four Xk (k = 1,2,3,4) are even, exactly two of the Xk are even, or all four Xk axe odd.
In each case, the numbers can be paired such that each pair consists of two numbers with the same
parity. Without loss of generality, we pair x\ with x2 and £3 with X4. Then the numbers

(xi+x2)/2, (xi-x2)/2,

(x2 + xa)/2, (x3 -xa)/2,
are integers. Thus

r a / £ i + # 2 \ 2 , / r X i - X 2 \ 2 , / X ' 3 + X 4 \ 2 , / r X 3 ~ X 4 \ 2
- 2 - p = \ - ^ r ) + \ — r - ) + ( — 2 — ) + \ — r - ) ■

That is, (m/2)p can be expressed as the sum of the squares of at most four integers.
Now consider ra to be odd. Let yk (k = 1,2,3,4) be the remainder smallest in absolute value

when Xk is divided by ra, i.e.:

xk = mqk + yk (k= 1, 2,3,4)

where yk can be either positive or negative and \yk\ < ra/2.
We thus have

x\ = m2ql + 2mqkyk + yl = mQk + Vk (k = 1,2,3,4)

where Qk = rag2, + 2qkyk is an integer. Therefore,

rap = x\ + x\ + x\ + x\ = rag + y\ + y\ + y\ + 2/4
where g = Qi -j- Q2 + Q3 + <?4, and

2/i + vl + J/3 + yi = mn
where n = p — q. We also have n < ra since

mn = 2/? + 2/| + y\ + y| < 4(ra/2)2 = ra2

and moreover, n / 0, or else all the Xk would be divisible by ra and thus (*) would necessarily be
divisible by ra2, which is impossible since p is prime and ra ^ 1 and m < p.

!In the cited lemma, we can select a and 6 to be both less than p/2, that is, so that the sum a2 + b2 +■ 1 is
less than p2 and therefore the quotient m resulting from dividing x2 +■ y2 +- 1 by p will be less than p.
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We now want to show that np can also be expressed as the sum of not more than four squares.
Use the identity cited at the beginning of this solution once more to show that the product mp-mn =
m2np may be expressed as the sum of the squares of four numbers (since ran and rap are each the
sum of four squares):

m2np = (xiyi + x2y2 + x3y3 4- rr42/4)2+

(xiy2-x2yi -\-x3y4-x4y3)2 4- (xiy3-x3yi +x4y2-x2y4)2 4- (xiy4-x4yi -\-x2y3-x3y2)2.
We show that both sides of this equality are divisible by in2. Since Xk = rag/c4-2/fc, each expression
in the parentheses on the right side of the equality is divisible by ra. Furthermore, in the first set of
parentheses, we have that 2/1+2/2 + 2/3+2/4 — win, which is divisible by ra, and in the remaining
three sets, all products of the form yiyj cancel. Dividing both sides by rn2, we get

2 2 2 2np = zx 4- z2 4- z3 4- z4,

as desired.
Therefore, if ra in (*) is not equal to 1, it can always be decreased, i.e., there will always be a

positive n < ra such that a similar equality exists. If n ^ 1, we can decrease n further. Thus we
can always find a sequence of positive integers ra > n > ni > n2 > ... until we have for natural
numbers Xk (k = 1, 2,3,4) that

p = x2i+xl + xl + xl

9.3 Second Proof: Geometry of Numbers
The geometry of numbers has a close relation with other fields of mathematics, and an especially
interesting one with number theory. Informally, it is the study of convex bodies and integer vectors
in n-dimensional space. To understand its connection to this particular problem in number theory,
we first develop a little machinery.

A lattice in a finite-dimensional euclidean space Rn is a discrete abelian subgroup that spans
Rn; it turns out a lattice in Rn is necessarily free of rank n.

Now let L C Rn be a lattice. Let A be a fundamental domain for L, i.e., the smallest area
bounded by points in the lattice. If L is the group generated by vi,..., vn G Rn, then we could, for
example, take A = {tivi 4 f- tnvn,U G [0,1), Vz}. Then this set has the property that the
translates of A by elements of L cover the plane and do not overlap. We denote by p the Lebesgue
measure onRn.
Theorem 3 (Minkowski). Let K C Rn be a convex region symmetric about the origin with

p (K )>2nfi (A ) .

Then K contains a lattice point of L other than the origin.

Proof. We first show that the translates of \ K by the elements of L are not all disjoint. If we show
this, then we will be done. Indeed, we will then have found pi,p2 G \K and £1 ^ £2 G L such
that

Pi +^1 =P2 + ^2,

which gives
e l - t 2 = P 2 - p i e K ( 9 . 1 )

since p2 — pi G \K — \K c K, as K is convex and symmetric about the origin. Then (9.1) is
also a nonzero element of L, which is what we want.
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So suppose the contrary. Then we have a set of disjoint-translates \ K + £ for £ e L. As a
result, the intersections A D (|K 4- £) are disjoint. If we take their measures (with p denoting the
standard Lebesgue measure), we find that

MA)>X)^(An(|A- + <))=X;M((A-<)ni/f)=/i(iA-) = ^(n
a contradiction. Here we are using the fact that the Lebesgue measure p is translation-invariant and
additive for disjoint sets, as well as the fact that the sets A — £,£ e L cover R2. □

The proof of Lagrange's theorem is now a straightforward application of Minkowski's theorem
and Lemma 1. The key idea to the following solution is a clever selection of our lattice to show
that each prime number can be written as a sum of four squares, i.e., p = a2 4- b2 4- c2 4- d2, where
(a, b, c, d) is a point in our lattice.
Proof. (Lagrange's theorem). Fix a prime p. By the previous lemma, we may pick a, b such that

a24-62 + l = 0 (modp).

Consider the lattice

where

L = {aiui 4- a2v2 4- 03^3 + a4^4 I a* G .

vi = (p, 0,0,0),
i* = (0,p,0,0),
V3 = (a, b, 1,0),
V4 = (-6, a, 0,1).

The volume of the fundamental parallelogram is

p(A) = det
p 0 0 0 ^
0 p 0 0
a b 1 0
- b a 0 1 )

= P2.

Let K be a four-dimensional sphere around the origin with radius y/2p,

K = {(xi,x2,x3,X4) G R I Xi +x2 +x3 +x4 < 2p}.

Then p(K) = ^7r2(v/2p)4 = 2p27r2 > 2V(A). By Minkowski's theorem, K contains a nonzero
lattice point (ui, u2,U3,U4) G L. Furthermore, we must have

0 < u\ 4- u\ + u2 + u\ < 2p.

Since this is an element of the lattice, we may write

(ui,u2,u3,U4) — ai^i +a2v2 4-03^3 + 04^4.

Then
u\ 4- U2 + ul + ^4 = a2(a2 + 62 4- 1) + a2(a2 + 62 4- 1) = 0 (mod p).

So we must actually have u\ + u\ 4- u! + u2 = p.
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9.4 Third Proof: Modular Forms
Modular forms play a central role in modern number theory. Briefly put, they are a class of very
special functions that generalizes the notion of periodic functions. For brevity, we will have to take
some facts on faith in this section.

Let T be the modular group SL2(Z). For any finite-index subgroup V of T, we make the
following definition.
Definition 4. A complex function / is called a modular form of weight k for T' if

• / is holomorphic in the upper half-plane HI.

-(: J)^.• For 7 = ( „ w ) € T', we have:

f(fz) = (cz + d)kf(z)

where 7 acts on z by Mobius transformation.

• / is holomorphic at the "cusps" in some sense.

The second condition is the, key symmetry property of modular forms. Note that as a special
case, it implies f(z) is periodic, and the third condition is a technical point about the resulting
Fourier series of /.

Clearly, the constant functions are trivial examples of modular forms. It is not at all obvious
that nontrivial modular forms even exist, and indeed this is the point: the symmetry properties of
modular forms (of weight k) are so special that they form a finite-dimensional vector space. We
will not prove this fact here, but it is a standard result in many references (e.g. [1]).

Proof. (Lagrange's theorem). Let r4(n) = #{(a, b, c, d) G Z4 \ a2 + b2 4- c2 4- d2 = n}, i.e. the
number of quadruples of integers whose squares add up to n. Let

00

— OO

Then 0(g)4 is precisely the generating function for r4(n). Moreover, one can show that

0(g)4 is a modular form of weight 2 and level 4.

Here "level 4" refers to the precise subgroup r'cT with respect to which 0(g)4 is a modular
form. We also have the following fact:

The space of modular forms of weight 2 and level 4 is a 2-dimensional vector space.

It turns out that

J2 (sJ2d-32 J2d)qn
n > 0 \ d \ n 4 d \ n J

is also a modular form of weight 2 and level 4. Therefore, we can verify that the two functions are
actually equal by checking the first few terms of their Fourier expansions. This gives an explicit
formula: r4(n) = 8 J2d\n d ~ 32 I^4d|n d, which is clearly positive. □



58 The Harvard Col lege Mathemat ics Review 3

9.5 Conclusion
Lagrange's theorem has even further consequences in the evolution of number theory. Additional
solutions exist using Hurwitz quaternions, Aubry's lemma, and a combination of Ramanujan's
bilateral formula and Jacobi's triple product identity. There even exists a randomized polynomial-
time algorithm (running in O(log(n)2) time!) for computing a representation n = a24-&2+c2+d2
for a given integer n.

But given such a representation, is it unique? No, for we immediately see that

4 = l2 4-12 + l2 + l2 = 22 4- 02 4- 02 4- 02.

We next ask the natural question of just how many ways we can write a number as the sum of four
squares. In fact, Jacobi proved a much stronger result of Lagrange's theorem, that the number of
ways in which a positive integer can be so written equals 8 times the sum of its divisors that are not
multiples of 4 (can you see why Lagrange's theorem follows from this as a direct corollary?). We
encourage the enthusiastic reader to find further generalizations of this problem and to explore its
wide set of solutions.
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Problems

The HCMR welcomes submissions of original problems in any fields of mathematics,
as well as solutions to previously proposed problems. Proposers should direct prob
lems to hcmr-problems@hcs . harvard, edu or to the address on the inside front
cover. A complete solution or a detailed sketch of the solution should be included, if
known. Unsolved problems will not be accepted. Solutions to previous problems should
be directed to hcmr-solut ions@hcs . harvard. edu or to the address on the inside
front cover. Solutions should include the problem reference number, the solver's name,
contact information, and affiliated institution. Additional information, such as general
izations or relevant bibliographical references, is also welcome. Correct solutions will
be acknowledged in future issues, and the most outstanding solutions received will be
published. To be considered for publication, solutions to the problems below should be
postmarked no later than December 24, 2011. We encourage all submitters to typeset
their submissions in I#TeX and submit the source code along with the pdf.

All - 1. Let a, b, c be positive real numbers. Prove that:

6(ab 4- be 4- ac)Va3 + b3 y/b3 + c3 y/c3 4- a3
a2 + b2 + b2 + c2 + c2 + a2 ~ (a + & + c)^(a4.&)(& + c)(c4-a)

Proposed by Tuan Le (Fairmont High School, Anaheim, CA)
All - 2. Are there any simple groups of order p(p 4- 1), where p is prime?

Proposed by Eric Larson '13.

All-3. Let£ = {M G Mat3x3(R) : tr(M) = 0 and 4(^(M*))3 + 27(det(M))2 > 0} where
M* is the adjugate matrix of M. Let A,B G E such that A and B have no common eigenvectors.
Suppose

(Bei,e3)(Be2,ei)(Be3,e2) = (Bei,e2)(Be2,ei)(Be3,ei)
where (,) denotes the inner product and (ei,e2,e3) is the canonical basis of R3. Suppose as well
that

Ani Bqi An'2 Bq2 • • -AnkBqk =1
where n*, qi G Z. Prove that

A-niB'qiA~n2B'q2-' .A~nkB~qk =1

Proposed by Moubinool Omarjee (Paris, France).
All - 4. Let x, y, z be three positive real numbers such that x 4- y + z = xyz. Prove that

3
^ Vx^Tl ~ t^ X2 + 1 ^ J(X2 + 1)^2 +

<
l)(2/2 + l) -2e y e Y e y e e y e

Proposed by Cezar Lupu (University of Bucharest, Bucharest, Romania).
All - 5. Let a G N* be a fixed integer. Prove that there are an infinity of positive integers ra such
that cr(ara) < cr(am 4-1) where a(n) is the sum of the divisors of the positive integer n.

Proposed by Vlad Matei (University of Bucharest, Bucharest, Romania).
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All - 6. Consider the set S of all strings over an alphabet of three symbols. Give it a group
structure where the law of composition is concatenation and each word w in the group satisfies the
relation ww = 1. Compute the structure of the group and show that although it is finite there exists
an infinite string with no substring of the form ww, where w is a word.
Note. There is an interesting generalization of this problem by replacing the relation w2 = 1 with higher
powers. We encourage the interested reader to submit his or her solution to this generalization as well.

Proposed by Lucia Mocz ' 13 and Dmitry Vaintrob '11.

Editor's Note: The following problem from the previous issue is released again as it
received no solutions.

S08 - 2. Professor Perplex is at it again! This time, he has gathered his n > 0 combinatorial
electrical engineering students and proposed:

"I have prepared a collection of r > 0 identical and indistinguishable rooms, each of
which is empty except for s > 0 switches all initially set to the 'off' position. You
will be let into the rooms at random, in such a fashion that no two students occupy the
same room at the same time and every student will visit each room arbitrarily many
times. Once one of you is inside a room, he or she may toggle any of the s switches
before leaving. This process will continue until some student chooses to assert that
all the students have visited all the rooms at least v > 0 times each. If this student
is right, then there will be no final exam this semester. Otherwise, I will assign a
week-long final exam on the history of the light switch."

What is the minimal value of s (as a function of n, r, and v) for which the students can
guarantee that they will not have to take an exam?

Proposed by Scott D. Kominers '09/AM' 10/PhD' 11, Paul Kominers (MIT ' 12), and Justin Chen
(Caltech '09).
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Solutions

All Things Being Inequalities

S08 - 4. Consider a, b, c three arbitrary positive real numbers. Prove that

Ev/^ £,/db ..1 + fc±»-*+«>-8*h + C) V 4£cyca(a + &)(a + C)

Proposed by Cosmin Pohoata (Bucharest, Romania).
Solution by Greg Yang 914. Note that if J2 appears without subscript, it will denote a sum over
all symmetric variants of the polynomial that follows. For example, ]T ab = ab-\- bc-\- ca while
^2 a2b — a2b+a2c+b2a+b2c+c2a+c2b. Explicitly, if the monomial that follows has 3 different
exponents, then there are 6 terms in the sum; otherwise there are 3 terms in the sum. Similarly for
f| without subscript.

We will replace the 4 Y ĉyc «(a + b)(a + c) with 3 J2cyc a(a + ̂ )(a + c)t0 prove a stronger
version of the problem statement. Manipulate the inequality into the following form:

Scyc V H~ \z2cycy-bh) f (a + b)(b 4- c)(c 4- a) - Sabc
2 £ « E < * V 3 £ e y e a ( a + W « ' + C )

Let f(x) = x~1^2. f is convex for x > 0. By weighted Jensen, the LHS is

Ecyc(& + «)/((« + b)c) / Ecyc(& + «)^\ _ / 2 £ a
E f l + i * \ 2 £ a y y E a ^ + e n a '

On the other hand, let g(x) = x1/2. g is concave for x > 0. Again by weighted Jensen,

^cyc y b+Z ) Ecyc a9 \ (c+b)a )
E a £ «

,Ecyc(^)T, /Ecyc 4fc T,cyda + b)(b + C)~9{ E« j V E« V (E")(n(« + »))
/ E«2 + 3E«fe' (E«)(n(«+&))'

Hence it suffices to prove

2£a > / Ea2 + 3E«^ i^ + (a + fc)(fc + c)(c + a) - 8o6c
Eo2& + 6ria- V(Ea)(n(a + &))V 3EBta(fl + 6)(a + c)
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Since

3 ̂ 2 a(a+b)(a+c)+II(a+b>) ~Sabc=3 (Ya3+Y °*h+3abc)
eye

4- (J2a2b + 2a6c) ~ 8afec
= 3 (]T a3 4- ]T a )̂ + (Y a2*> + 3a&c)

= (E")(3Ea2 + £<4
(note that factorability here is the reason we replaced the 4 with the 3), we have

(2Ea) (Il(a + fo)) (3Ea(a + b)(a + c))
>(E«2&+6n (̂Ea2+3E«b)(3E°2+E«6)-

Now we painfully expand. The easiest way is to note that the expansion is a 7-degree polynomial
and then count the coefficient of each 7-degree monomial on each side. After expansion we get

3 ^ a 6 6 + 5 ^ a V + 5 ^ a 4 6 3 - 2 ^ a 5 6 c - 1 4 ^ a V c - 2 ^ a 3 6 3 c + 2 ^ a 2 6 2 c 3 > 0 .
But we have by AM-GM

l-a3b3c+2-a«c>a%c =» ? ^aVc+?^a6c > 2^a56c (11.1)

±a2b2c3+l-c%2>c%2a => ^a262c3 + ^c562>^c462a (11.2)

la3b3c+±a6c>a4b2c =» ^a3b3c+ l^aec > X>Vc. (11.3)

Using one of (11.1) and (11.3) and two of (11.2), the inequality simplifies to

2 ^ a 6 6 + 4 ^ a V + 5 ^ a 4 6 3 - ^ l l a V c > 0 .
Now this inequality is true by Muirhead as (6,1,0), (5,2,0), (4,3,0) all majorize (4,2,1). □

Cruel Mistress Induction

F08 -1. Let p, q be two positive integers, and let n be integers such that n > p 4- q. Prove that the
following identity holds:

S(:)(p!,)(;:;)=e0(-)(",-'
Proposed by Cosmin Pohoata (Bucharest, Romania).

Solution by Arnav Tripathy '11. The right-hand side is

y[ P j fn\ fn - q \ = fn\ (n -q + pMp-vW\ { ) W\ p
where the last step follows from noting that after factoring out a (") we are, in effect, just counting
the number of ways to choose p people from n — q males and p females in two different ways.
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Hence, the problem follows by substituting r = n + p (and replacing i with p — i) in the following
claim: for any r > p + q,

p\ I q\ I r — i \ _ I r — p\ I r — qY, , , , , , .^oW\V\p+9/ V q J V p
which is in turn the special case d = 0 of the following more general claim: for any 0 < d <
p, r > p 4- g — d, we have

y"(p\(q\( r~{ \ = Vi^\[rJri~p\(r~q\
£<\i)\i)\p + q-d) ^J^-d + jJ^-j)

Indeed, denote the left- and right-hand sides above by f(p,q,r,d) and g(p,q,r,d), respec
tively. We prove that f(p,q,r,d) — g(p,q,r,d) by simultaneous induction on r and reverse
induction on d. In other words, we first note that the identity holds for r as small as possible, i.e.
r — p-\-q — d, where f(p, q, r, d) = g(p, q, r, d) — 1, and for das large as possible, i.e. for d — p,
where we have

i = 0 \ / \ / \ ^ / i = o \ / v / \ /

as desired.
We finish by noting that

f(p, q, r, d) = f(p, q, r - 1, d) 4- f(p, q, r - 1, d + 1)

and

g(p, q, r, d) = g(p, q,r-l,d)-\- g(p, q,r-l,d+l)

so that the induction step follows. Indeed, using Ah(r) to denote h(r + 1) - h(r), we have

= f (p ,q , r,d+ 1 )

= y ^ / d \ / / r + d - . ? ' - p \ / r - q \ / r + d - j - p + l \ / r - q \ \
f ^ 0 V ' \ S q - j - 1 ' { p - d + j ) V q - j ) \ p - d + j - i ) j

= g(p,q,r,d+ 1)

as claimed.

Also solved by Greg Yang '14



6 4 T h e H a r v a r d C o l l e g e M a t h e m a t i c s R e v i e w 3

Editor's Note: The following problem required a correction from the previous issue. A
solution by the editor is presented for the corrected problem.

Fun with Fermat

F08 - 2. Let p be an odd prime. For every positive integer n, let

A(n) = ln + 2n + --. + (p-2)n and B(n) = ln .+ (p - l)n.
Let {ai} î be the sequence defined by ai — 2, a2 = p2 4- 2 and

an+2 = A(n)an+i 4- B(n)an ifp - 1 \ n,
an+2 = [A(n) + B(n)]an+i + an if p - 1 | n.

Prove that no an is equal to the product of any p - 1 terms of the sequence {ai} î.

Proposed by Daniel Campos Salas (Costa Rica).
Solution by Lucia Mocz '13. In this proof, we rely heavily on the result of the following theorem:
Fermat's Little Theorem. If p is a prime number, then for any a e Z, ap — a is evenly divisible
by p. In modular notation, this can be stated as aP = a mod p. A variant to this statement is that
if a e Z is coprime to p then op_1 - 1 is evenly divisible by p. Again, in modular notation, we
write this as a?~l = 1 mod p.

By this theorem, if we show that each term in the sequence is congruent to 2 modulo p, then
the product of any p - 1 terms is congruent to 1 modulo p. It follows that as the product of any
p - 1 terms in the sequence is not congruent modulo p to any an, no an can be equal to the product
of any p — 1 terms of the sequence.

We thus proceed by induction on n to show that all terms of the sequence are congruent to 2
modulo p. We already have this is true for n = 1 and n = 2. Assume it holds for n and n 4-1. We
want to show it also holds for n + 2. Then we have the following two cases:

1. First suppose that p - 1 \ n. Then we have

an+2 = A(ri)an+i 4- B(n)an = 2(A(n) 4- B(n)) mod p
We want to show that A(n) 4- B(n) = 1 mod p. From the previous calculation, we know

A(n) + B(n) = 1 4- (ln + 2n 4-... + (p - 2)n + (p - l)n) = 1 + x mod p
Note that since Z/pZ is a field, then (Z/pZ)x (i.e., its group of units) is cyclic and acts on
Z/pZ. Let (g) — (Z/pZ)x, where g generates the group. Then:

gn.x = gn + (2g)n + ... + (g(p-l))n=x mod p

It follows that x(gn — 1) = 0 mod p. However, since p - 1 \ n, we must have gn ^ 1
mod p, which implies that x = 0 mod p. We are thus left with A(n) 4- B(n) = 1 mod p as
desired.

2. Now suppose that p — l|n. Then we have

an+2 = (A(n) + B(n))an+i + an = 2(A(n) + B(n)) 4- 2 mod p
We want to show that A(n) 4- B(n) = 0 mod p. We have, as in the previous case:

A(n) + B(n) = 1 4- (ln + 2n 4-... + (p - 2)n 4- (p - l)n) = 1 + x mod p
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Since p - l|n, by Fermat's Little theorem, we have:

x = (lk)p~l 4- (2kY~l + ... 4- ((p - l)fc)p_1 = p - 1 mod p

where k — -^y. We are thus left with A(n) 4- B(n) = 1 + (p — 1) = 0 mod p as
d e s i r e d . □

On a Rolle

F08 - 3. Let / : [0,1] -+ R be a differentiable function with continuous derivative such that

/ f(x) dx = / xf(x) dx.
J o J o

Prove that there exists £ G (0,1) such that

/(0 = /'(O f f(*)dx.
Jo

Proposed by Cezar Lupu (University of Bucharest, Bucharest, Romania).
Solution by Paolo Perfetti (Dipartimento di Matematica, Universita degli di Tor Vergata Roma,
Italy). If f = 0 there is nothing to prove, so we suppose / ^ 0. Define F(x) = fQx f(y)dy and
observe that

f F(x)dx = [ dx [ f(y)dy = [ dyf(y) e\ dx = f dyf(y)(l - y) = 0J o J o J o J o J o
We claim the set of points of [0,1], say iV, where F(x) — 0, is not dense on [0,1]. For otherwise
we would have F(x) = 0 on a dense set in [0,1] and then F(x) = 0 by continuity of F(x), but
this is forbidden by / ^ 0 via the continuity of f(x).

As a consequence, there exists an open interval (a, b) C [0,1] where F(x) ^ 0. Now define:

g : [ 0 , l ] \ N ^ R

g(x) = f(x)-ln\F(x)\
We affirm that there exists the point x\ G [0, a], nearest to x = a, such that lim + g(x) = -hoo
and a point x2 G [b, 1], nearest to x = b, such that lima._>x- g(x) — -hoc (this is proved in a
moment). By continuity of g(x) in the interval (x\ ,x2), for any y = y0 large enough there are two
points vi and v2 both in (xi,x2) such that g(vi) = g(v2). Rolle's theorem tells us that g'(£) = 0
at a point £ G (vi,v2) yielding

or

/(0 = /'(0 ff(x)dx.
Jo

the existence of xi. Let A = {x e [0, a] : F(x) = 0}. A is nonempty since F(0) = 0 and
bounded and then there exists sup A which is attained (is a maximum) since F(x) is continuous.
The proof of existence of x2 is quite similar, but notice that it is essential J1 F(x)dx = 0 because
otherwise the set of points B = {x e [b, 1] : F(x) = 0} might be empty. □
Also solved by Arnav Tripathy ' 11
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Oh, the Choices You'll Make

F08 - 4. Do there exist functions /, g : R -+ R such that

• both are periodic, i.e. there exist nonzero real a, b such that for all x G R, f(x) = f(x 4- a)
and g(x) = g(x 4- b), and

• their sum is equal to the identity, i.e. for all x G R, /(x) 4- #(#) = x?

Proposed by Robert Obryk (August Witkowski High School, Krakow, Poland).

Solution by Oliver Knill (Harvard University). We can assume a = 1 by rescaling the axes. We
can assume b irrational because for rational b = p/q the condition f(x) 4- g(x) = /(x 4- qb) 4-
#(x 4- qb) = x 4- go collides with f(x) 4- #(#) = x. The condition /(x) 4- g(x) = x means

f(x 4- fc6 4- /) + g(x 4- fc& 4- /) = x 4- fc6 + /
for all x and all integers k, I. By the a = 1 periodicity of / and the b periodicity of g, this is

f ( x + k b ) + g ( x + l ) = x + k b + l . ( 1 1 . 4 )

Define an equivalence relation on the reals by

x ~ y <=> x 4- kb 4- / = 2/ for some integers /c, /.

Let X be the quotient X = R/ ~. We can chose a member x(s) in each equivalence class of X
by the axiom of choice. Define f(x(s)) = x(s) and g(z(s)) = 0. Now the values of / and g on
each equivalence class is determined with

f(x(s) + kb) = f(x(s) 4- A:6 + /) = x(s) + kb
g(x(s) + l) = g(x(s) + kb + l) = l

This defines the values of / and g for every x because every real x can be written as x = x(s) 4-
/c6 + /, with s e X,k,l eZ. Adding these two equations gives (11.4). Note that the functions /, g
are given in a nonconstructive way and non Lebesgue measurable but they do exist if one accepts
t h e a x i o m o f c h o i c e . □
Also solved by the Missouri State University Problem Solving Group and Arnav Tripathy ' 11

Three's a Charm

F08 - 5. Let ABC be an arbitrary triangle and let / be the incenter of ABC. Let D, E, F be
the points on lines BC, CA, AB respectively such that /.BID = AC IE = ZAIF = 90°, and
define the following measurements: ra,n,rc are the exradii of the triangle ABC, A' is the area
of DEF, and A is the area of ABC. Prove that

A^ _ 4r(ra + rb 4- rc)
A ~ (a + b + c)2 '

Proposed by Mehmet §ahin (Ankara, Turkey).
Solution by Kee-WaiLau (Hong Kong, China). Let a = BC, b = CA, c = AB. Denote by r
and s, respectively, the inradius and semiperimeter of triangle ABC. It is well-known that r = y.
We have

AF = ^/sec(^/2) = rcsc(A/2)sec(^/2) = -^- = 2 (-) (£-) = -
S i n / \ . \ S J \ Z / L A / s
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and similarly CE = ab/s.
Hence AE = AC - EC = b- ab/s = b(s - a)/s and the area of triangle AFE is:

(AF)(AE)sinA _ 1 (bc\ (b(s-a)\ /2A\ _ b(s - a)A
2 2 V s J V s J V b e

Similarly, the area of triangle BDF and CED are c(s — b)A/s2 and a(s — c)A/s2. Thus

, _ b(s - a)A 4- c(s - b) A 4- a(s - c)A _ 2(ab + bc + ca) - (a2 + b2 +■ c2)~ s 2 ~ ( a 4 - 6 + c ) 2

It remains therefore to show that 4r(ra + rb + rc) = 2(ab + be 4- ca) — (a2 + b2 4- c2). Using
the well-known results: _ A _ _A_ - ^_^ " a — , r b — T 5 r c —s — a s — b s — c

and Heron's formula for A, we see that:

, 4 A / A A A4 r ( r a + n + r c ) = — I \ +s \s — a s — b s — c,

_ 4A2 ((s - b)(s - c) + (s - c)(s - a) + (s - a)(s - b))
s(s — a)(s — b)(s — c)

= (a - 6 4- c)(a + b-c) + (a + b- c)(-a + 6 + c) -h (-a 4-6 4- c)(a -b + c)
= 2(a6 + be 4- ca) - (a2 + 62 4- c2)

as desired.
Also solved by Arnav Tripathy ' 11
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The Three-Legged Theorem
Michael J. Hopkinst
Harvard University

Cambridge, MA 02138
mjh@math.harvard.edu

The summer after my senior year in high school, I had a job driving a truck for a small company
in Nebraska. I'd start every day in Fremont, pull orders, load a truck and drive it to Lincoln. There I
would unload the truck, shoot the crap with the guys in the warehouse, re-load and head to Council
Bluffs. From Council Bluffs, I drove back to Fremont. It was a pretty good job if you like driving
around in the country and shooting the crap with guys in warehouses. The only problem was that I
had trouble staying awake behind the wheel.

I tried several strategies. My first was to yell "hey!" and point every time I saw a bale of hay.
My father did this all the time on family trips and I thought maybe I was at last old enough to do it
myself. Evidently I wasn't.

My next idea was to insult the cows. There are a lot of them scattered around the Nebraska
countryside and mostly they just kind of stand there. I thought it would be really cool to have a
cow to go, "wtf?!" This worked pretty well. I could get really worked up yelling insults at cows
and it definitely kept me awake. I pulled into Lincoln the first time I tried it, pumped up and in a
great mood. In the middle of shooting the crap, one of the warehouse guys asked me why I was so
excited and so hoarse. I stalled a bit before coming up with, "big night."

This went on for a couple of weeks during which I got a lot of respect from the warehouse
guys, but no reaction at all from the cows. I started to wonder why. I had two theories. The first
was that cows are stupid and that they couldn't hear me from the road anyway. I quickly dismissed
that as ridiculous. A more realistic explanation, I reasoned, was that cows are incredibly chill and
that they are born nearly enlightened, with a natural understanding that the world is an illusion and
life is suffering. They probably felt pity for me. That seemed about right, but it pretty much killed
my strategy for staying awake. I felt too guilty. That, and the fact that serenely slipping past fields
of bovine buddahs was way too zen to keep me awake.

I needed a new idea and there happened to be one in my lunch bag. It was the textbook for a
class in point set topology I had taken at UNO that spring. I decided to road test my understanding,
starting from page one. Before each trip I'd read the statement of a theorem and then try and prove
it on the road. For a while I was doing pretty well. Then I got to the Heine-Borel Theorem.

The Heine-Borel theorem is the one characterizing compact subsets of Euclidean space. It's
not that the proof is so hard, but you really have to be organized in your mind to come up with it.
I wasn't. I got all the way to Lincoln without getting anywhere at all. The warehouse guys asked
me why I was so distracted. All I could come up with was, "big night." I got back in the truck and
drove to Council Bluffs. Still nothing. When I finally got back to Fremont I had to peek. In the
end, I drove all three legs of my trip without even coming up with a clue on where to start.

This was my first encounter with a "three-legged theorem." They are something pretty special:
little theorems that aren't that hard, but require really clear thinking. You meet,them from time to
time, and if you're lucky, you cannot get anywhere at all trying to prove them. That's when you
learn something. Now that you know what to look for, keep your eyes open. They are all over the
place.

t Michael Hopkins has a PhD from Northwestern University and a D. Phil from Oxford University. He taught
at Princeton, the University of Chicago and MIT before coming to Harvard in 2004.
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