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Abstract

We consider the Courier Delivery Problem, a variant of the Vehicle Routing Problem

with time windows in which customers appear probabilistically and their service times

are uncertain. We use scenario-based stochastic programming with recourse to model

the uncertainty in customers and robust optimization for the uncertainty in service

times. Our proposed model generates a master plan and daily schedules by maximizing

the coverage of customers and the similarity of routes in each scenario while minimizing

the total time spent by the couriers and the total earliness and lateness penalty. To

∗Research supported by NSF under grant CMS-0409887 and by METRANS under grant 06-11
†Corresponding author
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solve large scale problem instances, we develop an insertion based solution heuristic,

called Master And Daily Scheduler (MADS), and a tabu search improvement procedure.

The computational results show that our heuristic improves the similarity of routes and

the lateness penalty at the expense of increased total time spent when compared to

a solution by independently scheduling each day. Our experimental results also show

improvements over current industry practice on two real-world data sets.

Keywords: Vehicle routing; Robust optimization; Stochastic optimization; Insertion;

Tabu search

1 Introduction

In this study, we consider the Courier Delivery Problem (CDP), a variant of the Vehicle

Routing Problem with Time Windows (VRPTW) with uncertain service times and proba-

bilistic customers. This problem is motivated by the operations of a courier delivery/pick-up

company that serves a dense urban area. In this situation travel times between locations are

relatively short and therefore can be assumed constant when compared to the variation in

service times at each location. In a business district, for example, a driver might have several

drops and pick-ups in multiple offices at the same address. We therefore consider a routing

problem with uncertainty due to unknown service times and the probabilistic nature of the

customers, i.e. daily delivery requests from potential customers are not known beforehand

but they usually become available in the morning.

For many practical reasons it seems beneficial to create regular or consistent routes

for the CDP that assign the same driver to the same set of customers to serve them at

roughly the same time. Such consistent routes are easy to adapt to the realization of the

daily uncertainty and help courier companies realize the important goal of personalization

of services, making the driver the contact person whenever the customer needs service. This

regularity in schedules also increases driver familiarity with their own routes and territories,

which improves driver efficiency.
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A simple solution for the CDP, referred to as independent daily schedules, is to solve the

routing problem each day based on that day’s requirements when the customer locations and

service times are revealed at the beginning of the day (Savelsbergh and Goetschalckx 1995;

Beasley and Christofides 1997). However, since there is no consideration of geographical area

or regularity of service in such solution methods, it may not provide the level of consistency

or regularity that real practice needs (Malandraki et al. 2001). One method used to obtain

consistent routes is territory planning, which assigns service territories to drivers over a cer-

tain planning horizon (Zhong et al. 2007). The variations in demand are accommodated by

adjusting the border of the territories. However, adjusting driver territories efficiently is not

trivial and usually only a limited number of drivers share their capacities through territory

adjustments. Recently Groër et al. (2008) introduce the Consistent VRP (ConVRP), and

the objective is finding routes in which the same drivers visit the same customers at roughly

the same time on each day the customers need service. This differs from the CDP in that

matching drivers to customers is not an explicit objective of CDP and ConVRP does not

consider time window constraints or uncertain service times.

1.1 Scientific Contribution

In this work we present a mixed integer program model that aims to obtain a master route

or plan and develop an iterative heuristic solution method for it. This master route is then

used as a basis to construct daily schedules for couriers to meet the delivery requests at

minimum cost. Thus, the master plan eliminates significant replanning in each day, and

increases the similarity between daily schedules and the familiarity of drivers with the daily

routes, thereby potentially improving driver productivity.

Compared with territory planning, the master plan model should allow additional flex-

ibility in building daily schedules as more drivers can share their capacities in the daily

adjustment. Likewise, the master plan model also should be more flexible in constructing

daily routes than ConVRP as there is no explicit objective to match drivers to customers.

We compare the performance of the master plan method with existing methods in the com-
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putational section of this paper.

To formulate the CDP, we adapt an uncapacitated VRPTW formulation and use a com-

bination of robust optimization in a first phase master problem and stochastic programming

with recourse for daily schedules to address the uncertainty in service times and customer

occurrence. Given historical demand data, we consider each day in the planning horizon as a

scenario and generate a robust master plan for customers who are most likely to occur. The

objective of the recourse actions is, for each scenario, to maximize the coverage of customers,

to minimize the total time spent by the couriers and the total earliness and lateness penalty,

and to maximize the similarity of the daily routes with the robust master plan.

In formulating a master plan, a variety of approaches could be used in addressing uncer-

tainty in service times and customers. However, since one of the primary goals in generating

the master plan is to improve similarities in daily schedules which vary with the uncertainty

outcome, an intuitive approach is to use a method which would result in a master plan which

would stay good for all possible realizations of the uncertainty and thus would require few

modifications to adapt to the daily schedules. This suggests using a robust optimization

approach to plan the master schedule, as it would exhibit little sensitivity to data variations.

Likewise considering the customers most likely to occur when constructing the master plan

should improve the similarity of daily schedules, since the master plan would be tailored

toward these customers who appear in most days.

To solve the CDP, we develop a two-phase approximate solution procedure, called Master

And Daily Scheduler (MADS), to obtain solutions for large scale real-life problems. This

insertion based heuristic generates a master plan, which is then used to generate daily sched-

ules using the recourse actions and improved with a tabu search. Tabu search has been used

with good results on VRP (Cordeau and Laporte 2004).

1.2 Organization of the Paper

In the remainder of this introductory section we present a related literature review. In

Section 2, we present the CDP formulation for problems with service time uncertainty and
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probabilistic customers. In Section 3, we propose the two-phase heuristic for the master and

daily schedules, MADS, and present the tabu search improvement procedure. We present

our computational results in Section 4. These include a comparison of MADS to solutions

obtained by independently scheduling each day without a master plan, to current industry

practice that executes territory planning, and to ConVRP on benchmark problems. We

finish the paper with a summary and conclusions in Section 5.

1.3 Literature Review

The VRP variants related to our work are VRP with stochastic demands (VRPSD), with

stochastic customers (VRPSC), and with stochastic service and travel times (VRPSSTT).

A major contribution to VRPSD comes from Bertsimas (1992), where a priori solutions use

different recourse policies to solve the VRPSD and bounds, and asymptotic results and other

theoretical properties are derived.

A number of models and solution procedures for VRPSD and VRPSC allow recourse

actions to adjust an a priori solution after the uncertainty is revealed. Different recourse

actions have been proposed in the literature, such as skipping non-occurring customers,

returning to the depot when the capacity is exceeded, or complete reschedule for occurring

customers (Jaillet 1988; Bertsimas et al. 1990; Waters 1989). Recent work by Morales (2006)

uses robust optimization for the VRPSD with recourse. It considers that vehicles replenish at

the depot, computes the worst-case value for the recourse action by finding the longest path

on an augmented network, and solves the problem with a tabu search heuristic. Sampling

methods are also popular in solving stochastic VRP (Birge and Louveaux 1997). Recently,

Hvattum et al. (2006) develop a heuristic method to solve a dynamic and stochastic VRP

problem, where sample scenarios are generated, solved heuristically, and combined to form an

overall solution. Compared with stochastic customers and demands, the VRP with stochastic

service and travel times (VRPSSTT) has received less attention. Laporte et al. (1992)

propose three models for VRPSSTT: chance constrained model, 3-index recourse model and

2-index recourse model, and present a general branch-and-cut algorithm for all three models.
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The VRPSSTT model is applied to a banking problem and solved with an adaptation of the

savings algorithm (Lambert et al. 1993). Jula et al. (2006) develop a procedure to estimate

the arrival time to the nodes in the presence of hard time windows. These estimates are

embedded in a dynamic programming algorithm to determine the optimal routes.

Recent work on the CDP has modeled customer service for fixed route delivery systems

under stochastic demand (Haughton and Stenger 1998). Later, Haughton (2000) develops

a framework for quantifying the benefits of route re-optimization, again under stochastic

customer demands. Zhong et al. (2007) proposes an efficient way of designing driver service

territories considering uncertain customer locations and demand. Their method uses a two-

stage model to construct core service territories in the strategic level and assigns customers

in the non-core territories on a daily basis to adapt to the uncertainty in the operational

level. The territory model is based on approximation equations of the distance traveled. The

operational level makes it possible for all drivers to share their capacities by introducing the

concept of “flex-zone”. This approach however does not consider customer time windows.

Groër et al. (2008) introduce the Consistent VRP (ConVRP) model. The objective is to

obtain routes such that the same drivers visit the same customers at roughly the same

time on each day that the customers need service. They develop an algorithm, ConRTR

(ConVRP Record-to-Record travel), which first generates a template and from it generates

daily schedules by skipping non-occurring customers and inserting new customers.

Robust optimization methodology was introduced by Ben-Tal and Nemirovski (1998,

1999) and El-Ghaoui et al. (1998) for convex programs, which is recently extended to integer

programming by Bertsimas and Sim (2003). The general approach of robust optimization is

to optimize against the worst instance due to data uncertainty by using a min-max objective.

This typically results in solutions that exhibit little sensitivity to data variations and are said

to be immunized to this uncertainty. Thus, robust solutions are good for all possible data

uncertainty. Robust solutions are likely to be efficient, since they tend not to be far from the

optimal solution of the deterministic problem and significantly outperform the deterministic

optimal solution in the worst-case (Goldfarb and Iyengar 2003; Bertsimas and Sim 2004).
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The robust optimization methodology assumes the uncertain parameters belong to a given

bounded uncertainty set. For fairly general uncertainty sets and optimization problems, the

resulting robust counterpart can have a comparable complexity to the original problem.

This nice complexity result however does not carry over to robust models of problems with

recourse, where LPs with polyhedral uncertainty can result in NP-hard problems (Ben-Tal

et al. 2004). An important question, therefore, is how to formulate a robust problem that is

not more difficult to solve than its deterministic counterpart. In particular, Sungur (2009)

and Sungur et al. (2008) show that obtaining robust solutions for VRP with demand and

travel time uncertainty is not more difficult than obtaining the deterministic solutions.

2 CDP Formulation

In this section, we formulate the CDP as a mixed integer program (MIP) model. The deliv-

ery requests arrive daily from potential customers with known time windows but uncertain

service times at the beginning of each day. The locations of the customers are known but it

is not known a priori whether a particular customer requests a delivery at a given day. There

are a limited number of couriers to route for a limited time period each day. The first goal

is to construct an a priori master plan for the planning horizon to be used in constructing

daily schedules by adapting to the daily customer requests. The second goal is to modify

the master plan to construct daily schedules for couriers to serve as many customers as pos-

sible while maintaining route similarity and at the same time minimizing earliness/lateness

penalties and the total time spent by the vehicles in each day, which accounts for travel,

waiting, and service times.

We measure the similarity of a route on the daily schedule and a route on the master

plan by counting the number of customers of the daily route that are within a given distance

of any customer on that master plan route. The similarity of the daily schedule is given by

assigning each daily schedule route to a master plan route, to represent the same driver, so

that the overall similarity measure is maximized. The larger the measure, the more nodes
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are within a given distance of the corresponding master route, and accordingly, the more

nodes are visited by the same driver. This measures captures some important aspects of

territory familiarity and the visiting frequency to a customer by the same driver (Zhong

et al. 2007). They describe a driver learning model which shows that when the number of

visits to a particular cell by the same driver increases, the average time spent to serve each

stop in this cell approaches a lower limit. In addition, when a customer is visited by the

same driver, the service quality also improves.

Given a total of D days of historical data, we consider each past day (scenario) as a

realization of uncertainty and we construct scenario-based uncertainty sets for service times

and customer occurrence. In constructing the master plan, we address the probabilistic

nature of the customers by attempting to serve only the customers with high frequency of

occurrence and use a robust optimization approach to represent the uncertain service times;

both ideas aim to improve the similarity in daily schedules. Hence, we obtain robust a priori

routes for the master plan which are then used as the starting point to construct the daily

routes to serve the observed demand optimizing the combined time, penalty and similarity

objective. The goal is that the robust master plan that has been trained by the past data

or scenarios can then be used to generate future daily schedules. The implicit assumption is

that the scenarios considered are representative of future demand.

We formulate the CDP based on the uncapacitated VRP with soft time windows. Similar

to the classic VRPTW, given a network of customers and the location of the depot, the

objective is to route the fleet of vehicles to serve the maximum number of customers based

on their service times and time windows. We allow a vehicle to arrive before or after the time

window at a given penalty and consider the uncapacitated problem since packages are small

relative to vehicle capacity. The lack of capacity constraint implies that every customer will

be served by only one vehicle. The vehicles start and end their routes at the depot. The

length of a route, or total time spent, is composed of travel, waiting, and service times. There

is a common due date for the vehicles to return to the depot, which is a hard constraint. We

consider one routing problem for the master plan that serves high frequency customers and
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worst-case service times, and one routing problem for each of D scenarios of daily schedules.

These D + 1 routing problems are related by keeping track of the similarity of daily routes

to the master plan. Thus, the size of the CDP is D + 1 times the size of a VRPTW.

We now introduce the mathematical formulation of the CDP, which is given below in

Problem 1. We begin by setting the notation. The depot is located at node 0. Let K be

the set of couriers, and ND the set of integers from 0 to D to indicate scenarios, including

master plan as scenario 0. There are a total of n customers indexed by C = {1, 2, ..., n}, a

depot node 0, and |K| artificial nodes indexed by A = {n+1, ..., n+ |K|}. The frequency of

occurrence of customer i, pi, is defined as the ratio of the number of days customer i appears

over the total number of days D, which is also referred to as the probability of occurrence of

this customer. Let Cd be the set of customers that occur in a given scenario d, and V d the

set of all the nodes that occur in a given scenario d, V d = Cd∪A∪{0}. The time to traverse

the arc from node i to node j is given by tij and sd
i is the service time of node i in scenario

d. In particular ∀d ∈ ND the following is true: sd
0 = 0; ∀i ∈ A, k ∈ K, ti0k = t0ik = sd

i = 0;

∀i ∈ A, ∀j ∈ Cd, tij = t0j and tji = tj0; and ∀i, j ∈ A, i 6= j, tij = tji = 0. We let R be

the time threshold to consider two nodes near each other, and keep track of which nodes

are near with the parameter vij = 1 if tij ≤ R; and 0 otherwise. The value of ad
i represents

the earliest start time and bd
i is the latest start time to serve customer i in scenario d. The

common due date for all vehicles is L which is also referred as the route length. Let M be

a sufficiently large number.

If the arc from node i to node j is traversed by vehicle k in scenario d, then the binary

variable xd
ijk = 1; otherwise it is 0. If customer i is visited by vehicle k in scenario d, then

binary variable zd
ik = 1; otherwise it is 0. The continuous variable yd

ik is the arrival time to

node i in scenario d by vehicle k except the depot in which case it is the departure time, i.e.

yd
0k = 0. In particular, yd

ik for i ∈ A corresponds to the arrival time to the depot of vehicle k.

Note that yd
ik = 0 for a customer i which is not served by vehicle k, i.e. when zd

ik = 0. The

continuous variable ed
ik is the earliness penalty and ldik is the lateness penalty of customer i

for vehicle k in scenario d; similarly ed
ik = ldik = 0 when zd

ik = 0.
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To measure the similarity between the daily schedule of scenario d and the master plan,

we assign each daily schedule route to a master route (same driver) and count how many of

the nodes in each daily schedule route are within R of some node on their assigned master

route. We use the assignment that maximizes the overall similarity. For this we need to use

two auxiliary sets of binary variables, md
kl and ril. If route k of scenario d is assigned to the

master plan route l, then variable md
kl = 1; otherwise it is zero. If customer i is near any

node of master route l, then ril = 1; otherwise it is zero. In other words ril = 1 if and only

if vij = 1 for at least one node j in route l. We say node i is good if the vehicle k serving it

(i.e. zd
ik = 1), is assigned to a master route l (i.e. md

kl = 1), for which the node is near (i.e.

ril = 1). That is, the binary variable gd
ikl = zd

ikm
d
klril = 1 if i is good and 0 otherwise. Only

when all of md
kl, zd

ik, and ril are 1, gd
ikl is 1. We linearize the expression of gd

ikl in the model.

The similarity measure is the total number of nodes that are good. Problem 1 is presented

below.

The CDP objective function:

min
∑

d∈ND

∑

k∈K

(−α1

∑

i∈Cd

zd
ik + α2

∑

i∈A

yd
ik + α3

∑

i∈Cd

ldik + α4

∑

i∈Cd

ed
ik) (1.1)

−
∑

d∈ND\{0}

α5

∑

i∈V d

∑

k∈K

∑

l∈K

gd
ikl

Routing constraints:

s.t.
∑

j∈V d, i6=j

xd
jik = zd

ik i ∈ Cd, k ∈ K, d ∈ ND (1.2)

∑

j∈V d, j 6=i

xd
ijk = zd

ik i ∈ Cd, k ∈ K, d ∈ ND (1.3)

∑

i∈V d\{0}

xd
0ik = 1 k ∈ K, d ∈ ND (1.4)

∑

i∈V d\{0}

xd
i0k = 1 k ∈ K, d ∈ ND (1.5)

xd
i0k = 1 i ∈ A, k ∈ K, d ∈ ND (1.6)
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Time and time window violation definitions:

s.t. yd
ik + tij + sd

i ≤ yd
jk + M(1 − xd

ijk)
i ∈ V d, j ∈ V d \ {0},

i 6= j, k ∈ K, d ∈ ND

(1.7)

ad
ik ≤ yd

ik + ed
ik + M(1 − zd

ik) i ∈ Cd, k ∈ K, d ∈ ND (1.8)

yd
ik ≤ bd

ik + ldik i ∈ Cd, k ∈ K, d ∈ ND (1.9)

yd
ik ≤ Lzd

ik i ∈ Cd, d ∈ ND (1.10)

Similarity measure constraints:

s.t.
∑

j∈V d

vijz
0
jl ≥ ril i ∈ Cd, l ∈ K (1.11)

∑

j∈V d

vijz
0
jl ≤ Mril i ∈ Cd, l ∈ K (1.12)

gd
ikl ≥ zd

ik + md
kl + ril − 2 i ∈ V d, k ∈ K, l ∈ K, d ∈ ND \ {0} (1.13)

gd
ikl ≤ (zd

ik + md
kl + ril)/3 i ∈ V d, k ∈ K, l ∈ K, d ∈ ND \ {0} (1.14)

∑

k∈K

md
kl = 1 l ∈ K, d ∈ ND \ {0} (1.15)

∑

l∈K

md
kl = 1 k ∈ K, d ∈ ND \ {0} (1.16)

Domain constraints:

s.t. ed
ik ≥ 0 i ∈ Cd, k ∈ K, d ∈ ND (1.17)

ldik ≥ 0 i ∈ Cd, k ∈ K, d ∈ ND (1.18)

xd
ijk ∈ {0, 1} i, j ∈ V d, i 6= j, k ∈ K, d ∈ ND (1.19)

yd
ik ≥ 0 i ∈ V d, k ∈ K, d ∈ ND (1.20)

zd
ik ∈ {0, 1} i ∈ Cd, k ∈ K, d ∈ ND (1.21)

ril ∈ {0, 1} i ∈ V d, l ∈ K (1.22)

md
kl ∈ {0, 1} k ∈ K, l ∈ K, d ∈ ND \ {0} (1.23)

gd
ikl ∈ {0, 1} i ∈ V d, k ∈ K, l ∈ K, d ∈ ND \ {0} (1.24)

The objective function (1.1) maximizes the number of customers served and minimizes

the total time spent by the vehicles as well as the total earliness and lateness penalty, for each

scenario including the master plan. In addition, the weighted similarity of the scenario routes
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with the master plan is also maximized. We consider a set of positive weights α1, . . . , α5 to

balance these competing objectives. Although the specific values of the weights depend on

the problem and the planner’s objectives, it is reasonable to consider a higher value of α1,

so that not visiting a customer to avoid travel time or earliness or lateness penalties would

not be desirable. Note that in many real-life cases α4 = 0 since there is no explicit penalty

for waiting time but it indirectly increases the total time spent.

Constraints 1.2-1.5 are the routing constraints. Constraint 1.6 forces every artificial node

to be visited at the end of the route to keep track of the time spent by the vehicles. Constraint

1.7 defines yd
jk, the arrival time at j when customer j is served right after customer i for

vehicle k in scenario d. The increasing time would also guarantee that there are no subtours

in the solution. Constraints 1.8 and 1.9 impose the earliness and lateness penalty. Constraint

1.10 imposes the common due date of the vehicles. Constraints 1.11 and 1.12 ensure that

only when the distance between node i and at least one of the nodes in master route l is

less than R, ril = 1; otherwise it is zero. Constraints 1.13 and 1.14 is the linearization of

gd
ikl = zd

ikm
d
klril. Constraints 1.15 and 1.16 ensure every daily route is assigned to a different

master route. Lastly, constraints 1.17-1.24 are bounds on the variables. Note that constraints

1.11-1.16 are the linking constraints, relating each scenario d with the master plan. Removing

these constraints separates the CDP problem into D + 1 unrelated VRPTW.

For the master plan (scenario 0) in the CDP, we need to define the set of customers C0

and the value of uncertain service time s0
i for each customer i in this set. For the former, we

select the customers with highest probability of occurrence pi. For the latter, we use robust

optimization to construct worst-case service time values for the master plan. For customer

i we assume that the possible realizations of service times are in the convex hull of the

scenario realizations {sd
i }d∈ND

. With this model of uncertainty the worst case service time

considered by robust optimization is simply s0
i = maxd∈ND

sd
i . A general treatment of robust

optimization for VRP with scenario based uncertainty appears in Sungur et al. (2008).

The formulation is different from the conventional VRP in that: (1) to get a robust

master plan, the service time we are using is the worse-case service time; (2) the model has
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multiple objectives, since it considers not only the number of customers served, total time

spent, earliness penalty and lateness penalty, but also the similarity of the daily routes with

the master routes; and (3) the solution of Problem 1 includes both daily routes and a master

plan.

3 MADS Heuristic

Because VRP is NP-hard, it is clear that the formulation of CDP (Problem 1) is NP-Hard

since the VRP is a special case when α1 = α3 = α4 = α5 = 0. To address the challenge

of solving a large scale real-life CDP we develop a heuristic solution procedure, Master And

Daily Scheduler (MADS), based on insertion and tabu search. The approach is to separate

the CDP into D+1 problems by removing constraints 1.11-1.16 and use an insertion heuristic

to solve each of these problems. We coordinate the solutions of the master plan and scenarios

in a two-phase iterative process. The master plan is used to construct routes for each scenario

with a partial rescheduling recourse. This partial rescheduling recourse combines skipping

customers not present in the scenario and inserting the new customers. The MADS output

is a robust master plan and daily schedules for the given set of scenarios. This master plan

can then be used to generate daily schedules, once the uncertainty of a given day is realized,

through the partial rescheduling recourse; the daily schedule is then improved with a tabu

search heuristic.

When inserting customers to routes, we use an insertion routine (Algorithm 1) that

greedily minimizes the cost of insertion. That is, the cheapest among all feasible insertions is

done at each step. When scheduling the master plan, the cost of insertion of customer j in the

route of vehicle k is determined by the increase in the time spent and the increase in the total

penalty of all the customers served by that vehicle, i.e. ∆(α2

∑

i∈A

y0
ik +α3

∑

i∈H0

e0
ik +α4

∑

i∈H0

l0ik),

where Hd is the set of scheduled customers for d ∈ ND. When scheduling daily routes,

however, the cost of insertion is determined by not only the increase in the time spent and

the total penalty, but also the decrease of similarity, i.e. ∆(α2

∑

i∈A

yd
ik+α3

∑

i∈Hd

ed
ik+α4

∑

i∈Hd

ldik−
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Algorithm 1 Insertion Routine

Require: Initial routes, set of unscheduled customers

Calculate insertion cost of possible insertion locations for non-scheduled customers

repeat

Pick the cheapest insertion

Update routes

Update insertion cost

until All customers inserted or no feasible insertion possible

return The resulting routes

α5

∑

i∈Hd

rik). Without loss of generality we are constructing daily route k according to master

route k.

The first phase (Algorithm 2) is the construction of an initial solution. An initial robust

master plan is constructed by starting with empty routes and making insertions of customers

using Algorithm 1. Then, the routes of the master plan are updated by each scenario

following the recourse actions to construct daily schedules. Each scenario starts to adapt

the robust master routes by omitting (not visiting) the customers that do not occur in that

particular scenario and visiting the remaining customers following the same sequence as in

the master routes. Then greedy insertion, Algorithm 1, is used to insert the new customers

of that particular day that do not occur in the master routes.

The second phase (Algorithm 3) is iterative. At each iteration, first, the scenarios

give feedback to the master plan about the customers that could not be scheduled in

their daily routes; second, based on this feedback the master plan prioritizes these un-

scheduled customers by the number of scenarios that they appear but could not be sched-

uled. Then the master plan updates its routes by performing feasible maximum-priority

insertions in the cheapest way. Note that the selection of customers is based on the pri-

ority not on the cost of insertion. However, once a customer is selected, the cheapest

possible insertion is done for this particular customer. Then the new master plan is re-

dispatched to the scenarios which construct their daily schedules with respect to the re-

14



Algorithm 2 Phase One

Require: Distance matrix, master data, scenario data, maximum route length

Call Insertion Routine for master plan starting with empty routes

for Each scenario d do

Drop non-occurring customers from master routes

Call Insertion Routine for new customers

end for

Calculate the objective value and save the current solution

return The current solution

course action as before. At the end of each iteration, the objective function is evaluated as
∑

d∈Nd\{0}

∑

k∈K

(−α1

∑

i∈Hd

zd
ik + α2

∑

i∈A

yd
ik + α3

∑

i∈Hd

ed
ik + α4

∑

i∈Hd

ldik)−
∑

d∈Nd\{0}

α5Sd, where Sd (the

similarity of scenario d) is obtained by solving a maximum assignment problem. The prob-

lem is to assign the daily routes to the master routes optimally to get maximum similarity.

The iterations of the second phase and thus the overall two-phase algorithm stop when there

is no improvement in the objective.

Note that for the master plan, the first phase is cost driven whereas the second phase is

priority driven. For the scenarios, both phases are cost driven based on the current master

plan. The maximization of the number of customers served is mainly due to the recourse

action of partial rescheduling of the routes; the minimization of the time spent and total

penalty is mainly due to the greedy insertions; and maximization of the similarity of routes

is due to generating daily schedules based on a common master plan and the feedback

procedure between the master plan and daily schedules to prioritize the customers in the

iterative second phase.

The structure of the algorithm prioritizes serving all customers, and then focuses on

similarity, time spent, and penalties when making insertions in the construction of routes.

The algorithm makes all feasible insertions possible regardless of the impact on cost. This

behavior corresponds to considering the weight α1 much larger than α2, . . . , α5 in the CDP

(Problem 1). The setting of the remaining weights is problem dependent and not structural
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Algorithm 3 Phase Two

Require: Solution of Phase One, maximum route length

repeat

Calculate priorities of customers not served in the scenarios

repeat

In decreasing priority order, pick a customer and call Insertion Routine to insert it in

master route

until No priority customer or no feasible insertion possible

for Each scenario d do

Take the master routes as initial solution

Drop the non-occurring customers

Call Insertion Routine for new customers

end for

Calculate the objective value

if The objective value is improved then

Save the current solution

end if

until The objective value is not improved

return The current solution

to the algorithm. Although the algorithm builds the daily schedules by modifying the master

route, the degree to which this favors similarity is given by the weights used in the insertion.

We also consider a buffer capacity between phase one and phase two of the algorithm.

In the first phase, we reserve a buffer capacity by decreasing the common due date of the

vehicles. This slack time is later used in the second stage to schedule additional customers.

This parameter of the algorithm is actually a tool to balance the cost driven stage and

the priority driven stage in constructing the master plan which indirectly effects the daily

schedules as well. The algorithm must also identify a subset of the customers to be considered

in the master problem (C0) during the first phase, since in a real-life instance the total number
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of customers is too large to be feasibly scheduled. In the computational section we explore

experimentally the effect of these algorithmic decisions on the quality of the solution.

The description of MADS is given by Algorithms 1-3. Note that the output is a master

plan that depends on the given set of scenarios. This master plan is used to create daily

schedules using the partial rescheduling recourse: dropping non-occurring customers and

then using Algorithm 1 to insert the remaining customers. We then use a tabu search

algorithm (Algorithm 4) to improve the daily routes obtained by the MADS heuristic. The

tabu search algorithm is not applied to the master plan. This implementation of the tabu

search considers the neighborhoods obtained from the standard 2-opt exchange move and

the λ-interchange move. The algorithm evaluates solutions based on the objective function

of the CDP (Problem 1), i.e. the weighted sum of the number of customers served, time

spent, earliness penalty, lateness penalty, and similarity.

At each iteration the tabu search generates ηmax λ-interchange neighbors and γmax 2-opt

neighbors of the current solution. These neighborhoods are created forbidding certain moves,

referred to as tabu, for a given number of iterations θ. In our implementation, the number

of tabu iterations is randomly generated uniformly in (θmin, θmax). For λ-interchange move,

feasible moves from a solution consider that up to P and Q nodes are exchanged between

two routes of the solution. The tabu search at each iteration moves to the best neighbor,

temporarily allowing a move to a worse solution to escape the local optima. The tabu status

is overridden if the new solution is better than the best solution so far and the algorithm

terminates if there is no improvement in Imax iterations.

4 Experimental Analysis

We present two sets of experiments. In the first set of experiments, we analyze the sensitivity

of the MADS algorithm to the problem data and algorithm settings. Specifically we present

results that show how the algorithm varies with changes in the number of customers of the

master problem, the type of master problem considered, the sample size for training the
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Algorithm 4 Tabu Search Algorithm

Require: Solution of Phase Two

for Each scenario d do

repeat

Randomly choose two routes from the solution

Generate ηmax neighbors from λ-interchange operator

Generate γmax neighbors from 2-opt operator

Choose the best solution and make the move

Randomly generate tabu tenure θ from a uniform distribution U(θmin, θmax);

if The move is λ-interchange then

Make moving the exchanged nodes tabu for θ iterations

else

Make removing the new arcs tabu for θ iterations

end if

until No improvement in Imax iterations

end for

Calculate the objective value and save the current solution

return The current solution
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master plan, the service time distribution, the probability distribution of customer occur-

rence, and the weight of similarity α5. We compare the quality of the solution of the MADS

algorithm with a solution obtained by independently scheduling scenarios without a master

plan which we refer as the independent daily insertion (IDI) algorithm.

The IDI algorithm treats each scenario as an independent CDP and there is no master

plan created. The insertion routine, Algorithm 1, is executed for each day with initially

empty routes, without reserving a buffer capacity, and with the cost of insertion given by

the increase in time spent and penalties. Then the tabu search, Algorithm 4, is executed to

improve the solution obtained from Algorithm 1. Therefore the IDI algorithm does not make

any considerations in increasing the similarity of the resulting independent daily schedules

but maximizes the number of customers served while minimizing the sum of time spent and

penalties for each day.

In the second set of experiments, we evaluate the performance of MADS in obtaining

solutions to two large scale real-world CDP instances from UPS. We compare the solution of

the MADS algorithm with the current practice of a courier delivery company. In addition,

we analyze the sensitivity of the algorithm to different settings of the buffer capacity. We

also compare the results of a modified version of MADS with ConRTR over a set of ConVRP

benchmark problems.

Regarding the objective function weights of the CDP problem considered in the formula-

tion we follow two guidelines: first, we consider that satisfying all customers is an overriding

objective, therefore we set α1 much higher than α2, . . . , α5; second, we consider similarity

more important than time spent and penalties. The idea is to study the trade-off between

the similarity and other operational costs and the IDI solution provides a benchmark with a

solution that does not include similarity. In the computational results we set the objective

function weights as α1 = 10000, α5 = 5, α2 = α3 = 1 and α4 = 0 because our application

does not consider an explicit earliness penalty.

Throughout the experimental analysis, we separate the scenarios available in two groups.

We use the data for the first group to train the master plan and we use the remaining scenarios
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to evaluate the performance by treating it as future outcomes. In addition, the values of

the parameters for the tabu search algorithm (Algorithm 4) are as follows: Imax = 200;

ηmax = γmax = 100; P = Q = 2; θmin = 10; and θmax = 20. The threshold for computing

the route similarity is set as R = 0.1 mile. Finally, all experiments are performed on a Dell

Precision 670 computer with a 3.2 GHz Intel Xeon Processor and 2 GB RAM running Red

Hat Linux 9.0 and all the solutions could be obtained within one hour of CPU time.

4.1 Problem Data and Uncertainty

The CDP data obtained concerns operations of a large courier company (UPS) in an urban

area with known customer locations. At the beginning of each day, any of these potential

customers can put a delivery request with an uncertain service time. The travel time is

considered deterministic and to convert the distance measures to time units, it is assumed

that the couriers travel at an average speed of 35 mph in the city. We have two data sets

for this application, which are described in Table 1.

Table 1: Description of the two data sets

Data Set 1 Data Set 2

Number of potential customers 3715 5178

Average number of customers/day 472 610

Total number of days 29 42

Planning horizon 14 or 15 days 21 days

Number of couriers 4 5

Operation time of couriers 9:00am-8:00pm 9:00am-9:00pm

Total number of service requests 13688 25631

We now analyze the service time characteristics and customer frequency distribution for

data set 1. Similar trends are observed for data set 2. As it is common in the routing

literature and in industry, service times follow a lognormal distribution, see Dessouky et al.
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(1999). In our particular case we observe that the service times of the customers in data set 1

are closely approximated with a shifted and scaled lognormal distribution with mean 0.0953

and standard deviation 0.25. The mean and the standard deviation of the actual service

times are respectively about 6 and 4 minutes. The frequency of occurrence distribution for

the customers of data set 1 is depicted in line P2 of Figure 1. The line P4 is its continuous

approximation which is a shifted power function. Note that there are customers with prob-

ability 1 (i.e. occurring in all of the scenarios). In addition, we present two more continuous

distributions, P1 and P3, which are generated by modifying P4. In P1, the probabilities

of occurrence are decreased with respect to the original P2; and in P3, they are increased.

These three distributions, P1, P2 and P3, are used in our experiments to sample scenarios.
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Figure 1: Actual and modified probability distributions of the occurrence of customers

4.2 Sensitivity of MADS

In this first set of experiments, we only focus on data set 1 for space considerations. We

explore the effect of changing algorithmic parameters and problem data on the MADS algo-

rithm and we compare the quality of the solutions with the IDI algorithm. For the current
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experiments we fix the value of the buffer capacity and the set of customers to be scheduled

in the master plan during phase one of the MADS algorithm. We set the buffer capacity to

50%, meaning that only half of the total allowed time for the couriers is considered during

the first phase. In this way, we weight the cost driven first phase and priority driven second

phase equally. For the set of master plan customers, we refer to the distribution P2 in Figure

1 and define a cut to select the customers with high probability of occurrence. Customers

with a probability higher than the cut value are selected.

For the uncertainty in service time and probabilistic customers, we consider a base case

with respect to our fitted lognormal distribution and the probability distribution P2 in Figure

1. For each problem instance, we sample data of scenarios for the planning horizons with

respect to these two distributions. First, the occurrence data of each scenario is generated

by randomly selecting customers according to P2 until 472 customers are selected in each

scenario. Then each customer is assigned a random service time following the lognormal

distribution. Recall that the time windows and travel times are deterministic. Thus, all

the required data for a problem instance is generated by this process. Also, recall that for

the MADS algorithm, only the first half of the total data (15 days) is used to generate the

master plan for a planning horizon and the remaining half (14 days) is used to evaluate its

performance; whereas for the IDI algorithm, only the second half is used as future outcomes.

A set of experiments is done to choose a cut value for the MADS algorithm and the results

are shown in Table 2. For each case, we generate 30 random problem instances and report

the average of the solutions. The instances generate customers following the P2 distribution

in Figure 1 and with service times following the fitted lognormal distribution with standard

deviation σs = 0.250. The column “Cut” in Table 2 indicates the cut value to determine

the set of customers to be initially scheduled in master plan. The remaining 5 columns

report the average solution results: “NS” is the total number of customers which could not

be served in the daily schedules; “Time” is the total time spent by the couriers in the daily

schedules (composed of travel, waiting, and service times); “Penalty” is the total lateness

penalty in the daily schedules; “Sim” is the node similarity measure (i.e. the total number of
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nodes that are good); and “Obj” is the value of the CDP objective function. From the table,

we can see that the solution is best when the cut is 0.5. When the cut value changes, the

weighted change in similarity is larger than the change in time spent and penalties, therefore

similarity plays a much larger role in the objective value. When the cut is too low, the master

plan schedules a lot of low probability customers, resulting in low similarity, therefore the

objective value is high. However, when the cut is too high, most customers are inserted in

phase two which is priority driven, resulting in less total customers in the master plan and

accordingly low similarity, so the objective value increases again. Therefore we use a cut of

0.5 in later experiments.

When the tabu search algorithm is applied in this first set of experiments, we observe

that the time spent of the initial solution is reduced by about 5%. The tabu search also

reduces the penalty by about 99%, making the penalty almost negligible. The reason is that

it changes the positions of the customers with high penalty in the initial solution through

λ-interchange moves or 2-opt moves, so that almost all time windows are satisfied. Lastly,

we observe that the tabu search also improves the similarity. Overall, we can see that the

tabu search is effective in improving the initial solution. Similar effects are observed in later

experiments.

Table 2: MADS sensitivity to the cut value. Customers follow distribution P2, standard

deviation of service times σs = 0.250.

Cut NS Time Penalty Sim Obj

0.10 0 95884 6 6034 65699

0.30 0 97037 1 6328 65402

0.50 0 97108 0 6426 64987

0.70 0 97027 0 6328 65400

0.90 0 97125 0 6188 66214

Another set of experiments is done to explore the effect of using different methods to

choose initial customers for the master plan, and calculate service time of these customers.
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We compare three methods of choosing initial customers: choosing most likely customers

(ML), choosing customers randomly (RD), and choosing customers with longest service time

(LS). In terms of service time, we compare two methods: using worst-case service time (WC)

and average service time (AVG). This leads to six possible combinations of how to define

the master plan. We refer to these combinations with the acronyms above, for example

“WC-ML” means using worst-case service time and choosing most likely customers.

The results are shown in Table 3. The column “SD” gives the standard deviation of the

objective value over the 30 instances. From the results, we conclude that solutions with WC

service times have less variance than those with AVG service times for the same method

of choosing initial customers. The reason is that considering worst-case service times in

the master plan builds routes with more slack that are better suited to adjust to different

scenarios, giving less variance. In addition, the objective value for WC-ML is better than

that for AVG-ML, and the ML method yields better results than both RD and LS. Therefore

in later experiments we use WC-ML.

Table 3: MADS sensitivity to different methods for master plan. Customers follow distribu-

tion P2, standard deviation of service times σs = 0.250.

Method NS Time Penalty Sim Obj SD

WC-ML 0 97108 0 6426 64987 562

WC-RD 0 97592 1008 6132 67916 808

WC-LS 0 96510 2 6104 65967 517

AVG-ML 0 98146 67 5726 69881 1604

AVG-RD 0 98209 911 5334 70067 964

AVG-LS 0 96308 200 6216 65404 721

A set of experiments is done to explore the effect of the sample size to train the master

plan. We compare three variants: 7-22, 15-14, and 22-7, where the first number is the

number of days used to train the master plan, and the second number is the number of days

used to evaluate the master plan. The results are shown in Table 4. From the table, we can

see that 15-14 produces the best result. It means that a sample size of 15 days is enough to

24



produce a good solution. Thus we use 15-14 in later experiments.

Table 4: MADS sensitivity to the sample size for training the master plan. Customers follow

distribution P2, standard deviation of service times σs = 0.250.

Sample NS Time Penalty Sim Obj

7-22 0 97117 1 6412 65039

15-14 0 97108 0 6426 64987

22-7 0 97124 0 6384 65205

When comparing MADS with IDI, we generate additional cases by deviating from the

base case in two ways. First, we change the standard deviation σs of the lognormal distribu-

tion to see the effect of increased service times, with σs = 0.500, and decreased service times,

with σs = 0.125. Second, instead of P2 we sample customers from P1 and P3 in Figure 1.

When moving from one case to another we modify only one parameter at a time keeping the

rest of the problem instance the same, which allows observing the sole effect of changing this

particular parameter. Table 5 provides these experimental results. The left part is the input

parameters and the right part is the output measures. Since the IDI algorithm does not

generate a master plan we calculate the similarity of its solution based on the master plan

of MADS. Note that we do not include the cost associated with “NS” in “Obj” to prevent

it from being dominated by this cost.

First we compare MADS with IDI. Table 5 suggests that MADS improves the route

similarity at the expense of time spent. Another general comment is that high values of σs

result in customers which could not be served in the solution. In such cases, IDI performs

better in covering customers than MADS because there is no effort done in creating similarity

in scenarios, which provides flexible schedules to serve more customers.

When we analyze Table 5 in particular for MADS, we see that in general increasing the

probability of occurrence for a given standard deviation increases time spent. However, there

is no general trend for the effect of the probability of occurrence on similarity. In most cases,

increasing the standard deviation for a given probability of occurrence increases time spent,
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Table 5: Comparison of MADS with IDI

Alg Prob Std NS Time Penalty Sim Obj

MADS P1 0.125 0 94391 0 6314 62854

MADS P1 0.250 0 97067 0 6412 64979

MADS P1 0.500 12 107741 18 5544 80035

MADS P2 0.125 0 94874 39 6146 64168

MADS P2 0.250 0 97108 0 6426 64987

MADS P2 0.500 12 107821 12 5600 79827

MADS P3 0.125 0 95716 74 6314 64247

MADS P3 0.250 0 97158 0 6272 65824

MADS P3 0.500 9 107897 5 5810 78818

IDI P1 0.125 0 93553 23 5040 68369

IDI P1 0.250 0 96090 20 5222 69905

IDI P1 0.500 3 107001 6 4354 85081

IDI P2 0.125 0 93503 23 5446 66329

IDI P2 0.250 0 96097 14 5194 70135

IDI P2 0.500 3 107104 5 4256 85616

IDI P3 0.125 0 93491 13 4886 69096

IDI P3 0.250 0 96160 10 4718 72518

IDI P3 0.500 3 107066 10 3836 87845

and decreases similarity, with the addition that high values result in unserved customers,

making the objective value worse. This is expected because increased and dispersed service

times make the problem worse with respect to time spent and similarity.

Lastly, when we analyze Table 5 in particular for IDI, we find that in general increasing

the standard deviation for a given probability of occurrence increases the objective value,

again because increased and dispersed service times increases time dramatically and decreases

similarity.

A set of experiments is done to explore the sensitivity of α5. The results are shown in

Table 6. From the table, we can see that as α5 increases from 5, the solution is slightly

worse. The reason is that in the tabu search, the solution is trapped in local optima early

due to the large value of α5. As α5 decreases from 5, the solution degenerates quickly. When

α5 = 0.025, the solution is similar to the solution of IDI (the row for IDI with P2 and

σs = 0.250 in Table 5). When α5 = 0, the solution is different from IDI because the initial

26



daily schedules are constructed differently.

Table 6: MADS sensitivity to the weight of similarity α5. Customers follow distribution P2,

standard deviation of service times σs = 0.250.

α5 NS Time Penalty Sim

0 0 96330 0 4718

0.025 0 96164 1 5250

1 0 96796 0 6258

2.5 0 97307 0 6328

5 0 97108 0 6426

7.5 0 97212 0 6421

INF 0 97244 0 6414

4.3 MADS versus Real-life Solution

In this second set of experiments, we both explore the effect of changing parameters of the

MADS algorithm and compare the quality of its solution with the current practice. We run

the experiments for both data sets, and we explore the following range of percent buffer

capacity: 0%, 20%, 40%, 60%, 80%, 100%. For data set 1, the first half of the real-life data

(15 days) is treated as past realizations for the MADS algorithm and the second half (14

days) as future outcomes to evaluate and compare the solutions. For data set 2, similarly,

the first 21 days of the real-life data are used to train the master plan, and the remaining

21 days are used to evaluate the solutions.

Table 7 and Table 8 show the solutions on the real-life data instances for different buffer

capacities of our heuristic for data set 1 and data set 2, respectively. The new heading

is “BF” for the percent buffer capacity. We can omit the column for unserved customers,

since in both data sets all the customers can be feasibly served in each day of the planning

horizon. In addition, we provide the solution obtained by the IDI algorithm and the real-life

solution. The real life solution is obtained by a proprietary state-of-the-art routing algorithm
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of a courier delivery company, and the algorithm is based on territory planning. Routes

are planned according to predefined service territories. Each service territory corresponds

to a single driver’s route. The service territories may be modified and adjusted daily to

accommodate fluctuations in drivers’ workload due to the varied package volume.

Table 7: Comparison of MADS with Real-life solution for data set 1

Alg BF Time Penalty Sim Obj

Real-life - 109010 5092 4116 93522

IDI - 97927 94 2520 85421

MADS 0 98739 57 4694 75325

MADS 20 98635 13 4702 75138

MADS 40 98026 55 4689 74636

MADS 60 98727 1 4944 75017

MADS 80 99873 255 4640 76928

MADS 100 98549 6 3409 81511

Table 8: Comparison of MADS with Real-life solution for data set 2

Alg BF Time Penalty Sim Obj

Real-life - 195795 16994 9114 167219

IDI - 192060 12 7728 153432

MADS 0 195503 4 10147 144772

MADS 20 195452 11 9990 145513

MADS 40 195861 3 10347 144129

MADS 60 195545 5 10628 142410

MADS 80 195036 3 10493 142574

MADS 100 195106 4 12027 134975

From the results, we can see that the solutions obtained by MADS are better than the

real-life solution and the solution by IDI in objective value. Compared with IDI, MADS

increases the similarity at the expense of increased time spent. Compared with the current

practice, the best solution obtained by MADS is better in all measures for both data sets.

This suggests that our heuristic can be tuned to provide improvements over the current

practice. We believe that one advantage of MADS is that it does not constrain a route
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to be within a certain territory. As a result, a route may cross several territories, which

provides more flexibility. When we analyze the effect of the buffer capacity, we can see that

the solution is best when BF=40% for data set 1, and when BF=100% for data set 2. The

difference in the solutions is obvious when BF is different. BF provides a flexible tool that

can be adjusted to provide good solution. One should try different values of BF and select

the best solution. Note that the similarity measure of IDI and real-life solution is based on

the master plan of the best solution of MADS, i.e., the master plan of BF=40% for data set

1 and the master plan of BF=100% for data set 2.

Lastly, when it comes to the similarity measure, it is possible to derive an upper bound:

the total number of customers occurring in the scenarios that are used to evaluate the

solution. For data set 1, the similarity measure of the best solution is 4689, and the total

number of customers is 6489; therefore, the ratio of the similarity measure over the upper

bound is 4689/6489 = 72%. Similarly, for data set 2, the ratio is 12027/12798 = 94%. It

means 72% and 94% of the customers are within 0.1 mile of their assigned master routes for

data set 1 and 2 respectively.

4.4 MADS versus ConVRP Solution

We run MADS over a set of ConVRP benchmark problems (Groër et al. 2008) to get a

solution with consistent routes, and compare it with the solution of ConRTR. We choose data

set 2, which is available at: http://www.rhsmith.umd.edu/faculty/bgolden/vrp data.htm.

We have to make some adjustments to MADS because ConVRP has different constraints

than our problem, and the benchmark problems are generated differently. ConVRP does not

consider time windows, but it requires a customer to be always served by the same vehicle,

the precedence constraints are satisfied (if customers i and j are both served by the same

vehicle on a specific day and i is served before j, then customer i must be served before j by

the same vehicle on all days that they both require service), and service time difference is

minimized. In the benchmark problems, all customers have a probability of 0.7 of occurring

in a day. Each instance has 5 days of data. In the master plan, the initial set of customers
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C0 includes all customers that occur 2 or more times in the 5 days. We use C0 to train the

master plan, and use all 5 days to evaluate the master plan. It turns out that all customers

in C0 can be scheduled in the master plan. For each day we simply drop non-occurring

customers, and insert customers that are not in the master plan. The tabu search is run for

the master plan, but is skipped for daily routes. In this way, in the final solution a customer

is always visited by the same vehicle, and all the precedence constraints are satisfied. The

results are shown in Table 9. The column “Problem” in the table indicates the problem

instance number; “Node Number” is the total number of customers; “Time” is the total

travel time; “Avg” is the average arrival time difference; and “Max” is the maximum arrival

time difference. The last row “Average” shows the average result of the 12 instances. We

can see that the average result of our solution is better than ConRTR in all three measures.

We believe there are two reasons: first, the buffer capacity can be tuned to provide different

solutions from which we can choose the best; second, the tabu search is very effective in

improving the master plan.

Table 9: Comparison of MADS with ConRTR for a ConVRP data set

Problem Node Number ConRTR MADS

Time Avg Max Time Avg Max

1 50 2282.14 8.36 24.38 2281.05 6.15 24.27

2 75 3872.86 6.85 34.26 3954.99 4.90 30.00

3 100 3626.22 8.21 22.87 3636.66 8.79 43.24

4 150 4952.91 4.93 27.53 4993.26 4.15 29.73

5 199 6416.77 3.32 26.93 6370.41 3.59 37.15

6 50 4084.24 19.19 63.47 3967.06 19.54 71.58

7 75 7126.07 14.19 83.96 7062.52 16.25 60.88

8 100 7456.19 22.70 73.04 7461.98 20.53 67.49

9 150 11033.54 22.19 106.43 10872.44 20.10 74.87

10 199 13916.8 18.47 60.17 13646.84 18.98 59.48

11 120 4753.89 4.78 16.10 4899.94 6.25 23.69

12 100 3861.35 3.00 17.58 3938.11 3.59 16.82

Average - 6115.25 11.35 46.39 6090.44 11.07 44.93
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5 Conclusions

In this study, we consider a real-life Courier Delivery Problem (CDP), a variant of the

VRPTW with uncertainty in customer occurrence and service times. We present a problem

formulation and develop an efficient two-phase heuristic based on insertion and tabu search.

Our model represents the uncertainty in service times using robust optimization and the

probabilistic nature of customers using scenario-based stochastic programming with recourse.

Thus, we benefit from the simplicity of a robust model and the flexibility of recourse actions.

We first adapt a nominal VRPTW model for the CDP. We then define a problem specific

recourse action of partial rescheduling of routes by omitting non-occurring customers and

rescheduling new customers. Our model includes a master plan problem which represents

the uncertainty in service times using robust optimization (worst case service times) and the

subset of possible customers most likely to appear. The master plan routes created take into

account the similarity with the daily schedules to serve a given number of scenarios. To solve

large sized instances of this CDP model we develop a two-phase heuristic, MADS, based on

insertion. The daily schedules that are obtained from the master plan are improved using a

tabu search algorithm.

We explore experimentally the sensitivity of our heuristic to uncertain problem parame-

ters as well as to some control parameters. We also compare the quality of the solution with

an independent daily insertion algorithm which does not provide a master plan and to an

industry standard solution, obtained using a territory planning method. We observe that

the MADS heuristic improves in general the similarity measure at the expense of increased

time spent and that it is possible to outperform the current industry practice in all measures.

We obtain consistent routes with a slightly modified MADS, and compare them with the

solution of ConRTR over a set of ConVRP benchmark problems, and the average result of

our solution is better than that of ConRTR.
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