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Abstract

This paper considered a stochastic control problem for the optimal management of a contribution pension fund

model with solvency constraints. It is also strategic to accept the attitude of the fund manager who can invest in

two assets: (a risky one and a non risky one in a standard Black Scholes market) and maximize the utility function

consequent upon the current level of fund wealth. Our aim in this paper is to pose a constraint on the fund manager

by ensuring that a solvency level is maintained on the fund wealth. This implies that the wealth of the running

pension fund remains above a stipulated level i.e. the solvency level.

Keywords: stochastic control, stochastic optimal control, solvency level, defined-benefit, defined-contribution

MSC: 93E20, 91G80, 91G30, 60H35, 35R60

1. Introduction

A defined benefit pension plan is a scheme where the benefits have to do with employee’s final remuneration and

entitlement. If there is any contribution from the employee, it is predicted on the degree of remuneration which

leaves the employer with the obligation of meeting his worker’s financial benefits even on retirement. Thus, the

employer documents these benefits for the onwards long-term funding via the pension schemes facility (Society of

Actuaries in Ireland, 2003).

Usually, defined benefit pension schemes have ploughed a reasonable proportion of their assets in equities. The

aim is to plough back some good financial returns with which the employer foots the employees’ overall financial

entitlements on a long-term basis.

Notably, the surplus returns accruing from equity investment come at a certain price. However, the risk involved

with this price is that it comes at a foreseeable unstable rate of returns.

It, therefore, happens that there is the likelihood that such investment’s volatility can rise at any given time causing

a decrease in the worth of the company’s assets, posing unmanageable liability chart to the employer and his

company. Although there is no perfect gauge matching the fixed entitlement as regards the pension scheme, the

uncertainty of stable returns can be reduced by investing in various available assets including bonds (Society of

Actuaries in Ireland, 2003) .

It is strategic to accept the attitude of the fund manager who can invest in two assets (a risky one and a non risky

one, in a standard Black and Scholes market) and maximize an inter temporal utility function consequent upon the

current level of fund wealth (No Delaying).

The emphasis is posed on the constraints faced by the fund manager: by ensuring that a stipulated level is main-

tained on the fund wealth i.e. the solvency level, and the borrowing and short selling constraints on the allocation

strategies. By implication, it is expedient that the wealth of the running pension fund stays above a stipulated level-

the solvency level.

2. Formulation of the Model

First, we state the assumptions before we present the model.
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2.1 Assumptions of the Model

We consider a continuous time financial market model which is:

(a) Competitive: i.e the investor optimizes his utility function on the whole time horizon;

(b) Frictionless: i.e all assets are divisible, no restriction on short sales, no transaction costs or taxes;

(c) The asset market contains no arbitrary opportunities: i.e there are neither free lunches nor lotteries;

(d) Default free: i.e. there is no disparity between interest rate for borrowing and lending;

(e) Continuously open: i.e. the investor can continuously trade in the market.

2.2 The Mathematical Model of the Wealth Dynamics

Let (Ω, F , P) be a complete probability space with a filteration {Ft}t≥0 where t ≥ 0 is the time variable. The

filteration {Ft}t≥0 describing the information structure is generated by the trajectories of a 1-dimensional standard

Brownian motion B (t), t≥0, defined on the same probability space and completed with the addition of the null

measure sets of F .

The security market consists of two types of assets: riskless one, whose price S 0(t), t ≥ 0 is governed by the

dynamics ⎧⎪⎪⎨⎪⎪⎩ dS 0 (t) = rS 0 (t) dt,

S 0 (0) = 1,

where r ≥ 0 is the instantaneous spot rate of return and a risky asset, whose price dynamic s1 (t) , t ≥ 0 follows an

Ito process and satisfies the stochastic differential equation⎧⎪⎪⎨⎪⎪⎩ dS 1 (t) = μS 1 (t) dt + σS 1 (t) dB(t),

S 1 (0) = S 1
0.

where μ is the instantaneous rate of expected return and σ > 0 is the instantaneous rate of volatility. We assume

that the market assigns a premium for the risky investment i.e. μ > r. The drift μ is given by the relation μ = r+σλ
whereλ > 0 is the instantaneous risk premium of the market assigns to the randomness expressed by the Standard

Brownian motion B(·). The case λ = 0 i.e. μ = r is trivial in a (natural) content of risk aversion.

Note: the interest rate is taken to be a constant while the solvency constraint is not considered.

Let X(t), t ≥ 0 denote the state variable, and {Ft}t≥0-adapted process which represents the proportion of fund at any

time.

The control variable, denoted by θ (t) , t ≥ 0 is the {Ft}t≥0 progressively measurable process which represents the

proportion of pension fund or accumulated wealth is invested in the risky asset. Therefore, the positivity of the

wealth (due to the solvency constraints) and the borrowing and short selling constraints impose θ (t) ∈ [0, 1] for

every t. So the wealth dynamics satisfies⎧⎪⎪⎨⎪⎪⎩ dX (t) =
θ(t)x(t)

S 1(t) dS 1 (t) + [1−θ(t)]X(t)
S 0(t) dS 0 (t) + c (t) dt − b (t) dt

X (o) = x0 ≥ 0
(2.1)

where θ
(t)X(t)
S 1(t) and [1−θ(t)]X(t)

S 0(t) are the quantities in the portfolio of the risky asset and the riskless asset respectively,

the non-negative process c (t) , t ≥ 0; b(t), t ≥ 0 represents the flow of contributions and benefits respectively.

The wealth dynamics (2.1) can be written in the following way⎧⎪⎪⎨⎪⎪⎩ dX (t) = [(r + σλθ (t)) X(t)) + c(t) − b(t)] dt + σθ (t) X (t) dB (t) t ≥ 0

X (0) = x.
(2.2)

As mention earlier, the solvency constraint must be respected. More precisely the process x(·) describing the fund

wealth is subject to the following constraint.

X (t) ≥ l (t) p : a s ∀ t ≥ 0 (2.3)

where the non-negative deterministic function l (t) , t ≥ 0 represents the solvency level.
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2.3 Contributions

In the population stationary, the contribution rate c(·) is exogenous. We assume that the workers who enter into

the pension fund are of a homogeneous class. Moreover, we suppose that their entrance flow is constant on time

and that each participant adheres to a length of time represented to an exogenous constant T > 0. Due to these

demographic assumptions, the aggregate contribution flow increases linearly on time in the interval [0,T ] and is

equal to a constant c > 0 after time T . We can imagine that each member who is adhering to the fund pays to

the fund a contribution rate equal to αω, where αε(0, 1) and where ω > 0 is the (constant) wage rate earned by

each member. Then, denoting by c the entrance flow of people into the fund, we can write the flow of aggregate

contribution as

C(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αω · ct, 0 ≤ t ≤ T

αω · cT, t > T.
(2.4)

2.4 Benefits

Due to the demographic stationarity, again, we assume that the flow of benefits starts at time T , when the first

retirements occur, and that, after that date, it is given by a constant g representing the minimum guarantee flow. We

assume that g ≥ c, because g has to be in some way, the capitalization of the contributions paid by the members

who are retired. For instance, we can imagine that the fund pays to the generic member in retirement as (Lump

sum) minimum guarantee the capitalization at a minimum guaranteed rate δε [o, r] of the contribution paid by him

in the interval during which he was adhering to the fund. In this case, coherently with Equation (2.4), we can write

the aggregate minimum guarantee flow, for t ≥ T as

g = c
∫ t

t−T
(αω)eδ(t−u) du (2.5)

i.e.

g =

⎧⎪⎪⎨⎪⎪⎩ c, i f δ = 0;

c · (αω) eδT−1
b , i f δ > 0.

(2.6)

2.5 Solvency Level

We can now control the behavior of the fund manager to avoid unruly behavior and to ensure that the fund is

capable of paying at least the desire benefits at each time t ≥ 0 by maintaining a solvency level. Without enforcing

this constraint the fund manager may implore strategies that may fall out with the social goal of the pension fund.

Hence, we let the solvency level l(·) imposed in (2.3) be a non-decreasing continuous function, which is constant

after time T .

2.5.1 Assumptions of the Solvency Level

i) At the beginning the company should hold a given minimum startup level l0=l(0) ≥ 0;

ii) For t ∈ [0, T ] , the solvency level is the capitalization at a rate β ≤ r of initial minimum wealth l0 and of the

aggregate contributions paid up to time t, therefore

l(t) = l0eβt +
∫ t

0

αω.c seβ(t−s)ds. (2.7)

iii) After time T the solvency level is constant, i.e. l (t) = l = l (T ) for t ≥ T .

The rate β could be chosen, for example by an authority with respect to the market’s parameter.

3. The Optimization Problem

We consider a finite horizon optimization problem in the interval [0,T ] related to an objective functional with this

form

E

[∫ T

0

e−ρtU (t, X(t)) dt + f (X(T ))

]
(3.1)

Here ρ > 0 is the individual discount factor of the manager and U is the utility function.

Assumptions 1.

A. The current utility function U is such that
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i) U; C → R has the structure U (s, x) = u (x − l (s)) , where u→ [0,+∞)→ R;

ii) u ∈ C ([0, +∞) ; R) ;

iii) u is increasing and concave.

B. The exit/bequest utility function f is such that

i) f ∈ C ([l (T ) ,+∞) ; R) ;

ii) f is increasing and concave.

Remark 1 The utility functions U and f are defined where the wealth process X(.) must live; all the functions of

the form (x) = (x−x0)r

r , for x0 ≤ 0, r ∈ (0, 1) always give rise to functions U satisfying A.

All the functions of the form f (x) = (x−x0)r

r , for x0 ≤ 0. r ∈ (0, 1) satisfy B.

For (s, x) ∈ C, the problem consists in maximizing over the set of the admissible strategies.

Hence, the wealth process X(t) is governed by⎧⎪⎪⎪⎨⎪⎪⎪⎩
dX (t) = rX (t) dt + ktdt + σθ (t) X (t) dB

S
(t)

X (s) = l (s)
(3.2)

where, by Girsanov’s Theorem, the process B
s
(·) = BS (·) + λ(· − s) is a Brownian motion under the probability

P̃ = exp
(
−λBs (T ) − λ2

2
(T − s)

)
. P in the interval [s,T ].

Since X ∈ C
(
[s,T ] ; LP(Ω,P)

)
for any P ≥ 1, by Holder’s inequality it also holds

Ẽ[

∫ T

S
|X(t)|2 dt ] < +∞.

So that

Ẽ

[∫ t

s
X (γ) dBs (γ)

]
= 0, f or all t ∈ [s,T ].

Proposition 1 Suppose that assumptions A and B hold true. Then there exists a constant C > 0 such that V(s, x) ≤
C(1 + x) for all (s, x) ∈ C.

Proof. Let (s, x) ∈ C. By assumptions A and B there exists C > 0 such that U(t, y) ≤ C(1+y) for any t ∈ [s, T ] , y ≥
l (t) and ≥ f (y) ≤ C (1 + y) for any y ≥ l (t) . Let θ (·) ∈ �ad (s, x) , then setting X (t) = X(t, s, x, θ (·)) we have

E[

∫ T

S
e−ρt [U (t, X (t))] dt + f (X (T ))] ≤ CE[

∫ T

S
e−ρt (1 + X (t) dt + (1 + X (T ))] (3.3)

Taking into account that X ∈ C ([S ,T ]) ; L2(Ω)

We have

E[

∫ t

s
θ (r) X (r) dBS (r)] = 0, ∀ t ∈ [S ,T ].

Such that ⎧⎪⎪⎨⎪⎪⎩ dE [X (t)] = r E [X (t) dt + ktdt] + σλE [θ (t) X (t)] dt ≤ (r + σλ)E [X (t)] dt + kTdt

E [X (s)] = x

hence, for some C > 0

E [X (t)] ≤
(
x +

KT
r + σλ

)
e(r+ σλ)(t−s) − KT

r + σλ
≤ C (1 + x) (3.4)

The estimate (3.4) does not depend on the control, thus the claim follows putting (3.4) into (3.3) and taking the

supremum over θ (·) ∈ �ad(s, x).

Proposition 2 Let s ∈ [0, T ] ; the function x→ V (s, x) is concave on [C (s) , +∞] .
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Proof. Fix x, x1 ≥ l (s) ; for γ ∈ [0, 1] , set xγ := γx + (1 − γ) x1; of course xγ ≥ l (s) . we have to prove that

V
(
s, xγ
)
≥ γV (s, x) + (1 − γ) V

(
s, x1
)
. (3.5)

Take θ (·) ∈ �ad(s, x) and θ1(·) ∈ �ad

(
s, x1
)
ε-optimal for x, x1 respectively and X (·) , X1 (·) the corresponding

trajectories; then

γV (s, x) + (1 − γ) V
(
s, x1
)

≤ γ [J (s, x; θ (·)) + ε] + (1 − γ) [J
(
s, x1; θ1 (·)

)
+ ε]

= ε + γJ (s, x; θ (·)) + (1 − γ) J
(
s, x1; θ1 (·)

)
= ε + γE

[∫ T
S e−ρtU (t, X (t)) dt + f (X (T ))

]
+ (1 − γ)E

[∫ T
S e−ρtU

(
t, X1 (t)

)
dt + f (X1 (T ))

]
= E

[∫ T
S e− ρt

[
γU (t, X (t)) + (1 − γ) U(t, X1 (t))

]
dt
]
+ E
[
γ f (X (T )) + (1 − γ) f (X′(T ))

]
+ ε.

The concavity of u, f implies that

γU (t, X (t)) + (1 − γ) U
(
t, X′ (t)

) ≤ U
(
t, γX (t) + (1 − γ) X′ (t)

)
, ∀t ∈ [s,T ] ,

γ f (X (t)) + (1 − γ) f
(
X′ (t)

) ≤ f
(
γX (t) + (1 − γ) X′ (t)

)
, ∀t ∈ [s,T ] .

Consequently, setting

Xγ (·) := γX (·) + (1 − γ) X′(·),
we obtain

γV (s, x) + (1 − γ) V
(
s, x′
) ≤ ε + E [∫ T

S
e−ρtU(Xγ (t) + f (Xγ (T ))

]
.

If there exists θγ (·) ∈ �(s, xγ) such that Xγ (·) ≤ X
(
· ; s, xγ, θγ (·)

)
, then we would have

ε + E

[∫ T

S
e−ρtU

(
Xγ (t)

)
dt + f (Xγ (T ))

]
≤ ε + J

(
s, xγ; θγ (.)

)
≤ ε + V

(
s, xγ
)
,

i.e.

γV (s, x) + (1 − γ) V
(
s, x′
) ≤ ε + V(s, xγ)

and therefore, by the arbitrariness of ε, the claim (3.5) would be proved. We will show that

θγ (t) := α (t) θ (t) + d (t) θ′ (t) ,

Where

α (·) = γ X(·)
Xγ(·) , d (·) = (1 − γ) X′ (·)

Xγ (·) ,
is good. The admissibility of θγ(·) is clear since;

i) For any t ∈ [s,T ] we have θ (t) , θ1 (t) ∈ [0, 1] , and α (t) + d(t) = 1, so that by convexity of [0, 1] we get

θγ (t) ∈ [0, 1] ;

ii) By construction Xγ (t) ≥ l(t) for any t ∈ [s,T ] .

Note that actually we will prove that Xγ (·) = X(· ; s, xγ, θγ (·)). The equation satisfied by Xγ(·) in the interval [s,T ]

is

dXγ (t) = γdX (t) + (1 − γ) dX′(t)

= γ [[(r + σλθ (t)) X (t) + kt] dt + σθ (t) X (t) dBs (t)] + (1 − γ) [[(r + σλθ′ (t)) X′ (t) + kd] dt + σθ′ (t) X′(t)dBs(t)]

=
[
rXγ (t) + σλ (γθ (t) X (t) + (1 − γ) θ′ (t) X′ (t)) + kt

]
dt + σ

[
γθ (t) X (t) + (1 − γ) θ′ (t) X′ (t)

]
dBs (t)

=
[
rXγ (t) + kt

]
dt + σλ

[
γθ (t) X(t)

Xγ(t)
+ (1 − γ) θ′ (t) X′(t)

Xγ(t)

]
Xγ (t) dt + σ

[
γσ (t) X(t)

Xγ(t)
(1 − γ) θ′ (t) X′1(t)

Xγ(t)

]
Xγ (t) dBs(t)

=
[(

r + σλθγ (t)
)

Xγ (t) + kt
]

dt + σθγ (t) Xγ (t) dBs (t) .
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and the claim follows.

4. Dynamic Programming

We adopt a dynamic programming approach to study the optimization problem. The core of the dynamic program-

ming is the so-called dynamic programming principle, which in our context can be stated as follows.

Theorem The value function V satisfies the dynamic programming equation, i.e. for every s ∈ [0,T ] , x ∈
[l (s) ,+∞) and for any family of stopping times (τθ(·))θ(·)∈�ad(s,x) taking values in [s,T ] , the following functional
equation holds true:

V (s, x) =S UP
θ(·)∈�ad(s,) E

[∫ T

S
e−ρtU(t, X (t; s, x, θ (·))) dt + V

(
τθ(·), X(τθ(·); s, x, θ (·))

)]
.

Proof. Actually we give here only a heuristic proof. For simplicity of notation we suppress the possible dependence

of τ on θ (·) , i.e. we will write.

Simply τ to intend τθ(·). Therefore, we have

V (s, x) =S UP
θ(·)∈�ad(s,x)

E

[∫ T
s e−ρtU (t, X (t; s, x, θ (·))) dt

]
=S UP
θ(·)∈�ad(s,x)

E

[∫ τ
s e−ρtU (t, X (t; s, x, θ (·))) dt +

∫ T
τ

e−ρtU (t, X (t; s, x, θ (·))) dt
]

=S UP
θ(·)∈�ad(s,x)

E

[∫ τ
s e−ρtU(t; s, x, θ (·))) dt + E

[∫ T
τ

e−ptU(t; s, x, θ (·)))dt
∣∣∣Fs

T

]]
=S UP
θ(·)∈�ad(s,x)

E

[∫ τ
s e−ρtU (X (t; s, x, θ (·))) dt + J(τ; s, x, θ (·)))

]
≤S UP
θ(·)∈�ad(x)

E

[∫ τ
s e−ρtU (X (t; s, x, θ (·))) dt + V(t, X (τ; s, x, θ (·)))

]
.

Conversely, for fixed ε > 0, for any (s′, y) such that s′ ∈ [s,T ] , y ≥ l (s′) , let θεs′,y(·) a control ε-optimal for the pair

(s′, y) , i.e J
(
s′, y; θεs1,y (·)

)
≥ V (s′, y) − ε. Let θ(·) ∈ �ad(s, x) and define the control

θ(t) =

⎧⎪⎪⎨⎪⎪⎩ θ(t), i f t ∈ [s,T ],

θετ,X(τ;s,x,θ(·))(t), i f t ∈ [τ,T ].

Therefore we have θ (·) ∈ �ad (s, x) , such that;

V (s, x) ≥ J
(
s, x; θ (·)

)
= E

[∫ τ
s e−ρtU(t, X(t; s, x, θ (·)))dt

]
+ E

[∫ T
τ

e−ρtU
(
t, X (τ; s, x, θ (·)) ; θε

τ,X(τ;s,x,θ(·)))
)
dt
]

= E

[∫ τ
s e−ρtU (t, X (t; x, θ (·))) dt + E[

∫ T
τ

e−ρtU
(
t, X
(
t, τ, X(τ; x, s, θ (·) θε

τ,X(τ;s,x,θ(·))
)

dt
∣∣∣F s
τ

)
]
]

= E

[∫ τ
s e−ρtU (t, X, (t; T, x, θ (·))) dt + J

(
τ, X (τ; s, x, θ (·)) ; θε

τ,X(τ;s,x;(·)) (·)
)]

≥ E

[∫ τ
s e−ρtU (t, X (t; s, x, θ (·))) dt + V(τ, X (τ; s, x, θ (·)))

]
− ε.

By arbitrariness of ε and taking the supremum over all θ (·) ∈ �ad (s, x), we have the desired inequality and so the

claim.

However, we want to point out that we have proved the continuity of our value function. The inequality

V (s, x) ≥
∫ T

s
e−ρtU (t, X (t; s, x, 0)) dt + V(s′; s, x, 0)), 0 ≤ s ≤ s′ ≤ T, x ≥ l (s) .

Which can be proved without any measurable selection argument, because in this case we are on a deterministic

trajectory? Therefore we can use the argument of (Yong & Zhou, 1999) in order to prove the dynamic programming

principle without loss of generality.

4.1 The HJB Equation

We can now introduce the following Hamiltonian function associated with our problem
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H (s, x, p,Q) :=S UP
θ∈[0,1] Hcv (s, x, p,Q; θ) , s ∈ [0,T ] , x ∈ [l (s) ,+∞), p,Q ∈ R ,

where

Hcv (s, x, p,Q; θ) := e−ρsU (s, x) + [(r + σλθ) x + ks] p +
1

2
σ2θ2x2Q.

The HJB equation on the domain c formally associated with our problem is⎧⎪⎪⎨⎪⎪⎩ −vs (s, x) −H (s, x, vx (s, x) , vxx (s, x)) = 0, (s, x) ∈ ◦C,
v (T, x) = f (x) , x ∈ [l (T ) ,+∞).

Setting

H0
cv (x, p,Q; θ) := σλθxp +

1

2
σ2θ2x2Q.

We now have

H (s, x, p,Q) = e−ρsU (s, x) + (rx + ks) p +S UP
θ∈�0,1� H0

cv (x, p,Q; θ) .

To evaluate the Hamiltonian we can observe that the function

H0
cv (x, p,Q; θ) = σλθxp +

1

2
σ2θ2x2Q.

When p ≥ 0,Q ≤ 0, p2 + Q2 > 0, has a unique maximum point over θ ∈ [0, 1] given by

θ∗ =
(
− λp
σxQ

)
∧ 1

Where we meant that, for Q = 0, it is θ∗ = 1 and

H0 (x, p,Q; θ) :=S UP
θ∈[0,1] H0

cv (x, p,Q; θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− λ2 p2

2Q , i f θ∗ < 1

σλxp + 1
2
σ2θ2x2Q, i f θ∗ = 1.

When p = Q = 0 each θ ∈ [0, 1] is a maximum point ofH0
cv andH0 (x, 0, 0) = 0.

4.2 An Explicit Solution

We want to show in this section how the problem can be solved in close form when some constraints on the

parameters and a special form of u and f are considered. We let γ ∈ (0, 1) and assume that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) u (y) =
yγ

γ
, y ≥ 0.

(ii) f (x) = k (x−l(T ))γ

γ
, x ≥ l (T ) , k ≥ 0.

(iii) β = r.

(iv) λ ≤ σ (1 − γ) .
Following (Merton, 1969, 1971) we look for a solution to equation of the form

v (s, x) = C (s) e−ρt
(x − l (s))γ

γ
, (s, x) ∈ C.

We have, for (t, x) ∈ C\∂∗C (by the symbols vs (0, x) , vs(T, x) we respectively mean vs (0+, x) , vs (T−, x) ,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
vs (s, x) = −C (s) ρe−ρs

[
(x−l(s))γ

γ
+ l′ (s) (x − l (s))γ−1

]
+C′ (s) e−ρs (x−l(s))γ

γ
,

vx (s, x) = C (s) e−ρs(x − l (s))γ−1,

vxx (s, x) = C (s) e−ρs (γ − 1) (x − l (s))γ−2.

Note that, for (s, x) ∈ C\∂∗C,
− λvX(s, x)

σxvxx(s, x)
=

λ

σ(1 − γ) .
(x − l (s))

x
≤ 1,

12
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So that, for (s, x) ∈ C\∂∗C,

H0 (x, vx (s, x) , vxx (s, x)) = −λ
2vx(s, x)2

2vxx(s, x)
= Ce−ρs

λ2

2 (1 − γ) · (x − l (s))γ.

Putting the expressions for the derivation of v, we get, taking into account that l′ (s) + ks,[
1

γ
C′ (s) +C (s)

[
ρ

γ
− r − λ2

2 (1 − γ)
]
− 1

γ

]
(x − l (s))γ = 0.

Therefore, if C (s) is the unique solution to the ordinary differential equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
C′ (s) +

[
ρ − γr − λ2r

2(1−γ)
]
C (s) = 0,

C (T ) = keρT ,

then

v (s, x) = C (s) e−ρs
(x − l (s))γ

γ
, (s, x) ∈ C,

is a classical solution on C\∂∗C. Moreover such v satisfies the lateral boundary condition

v (s, l (s)) = 0, s ∈ [0,T ]

and the terminal boundary condition

v (T, x) = f (x) , x ≥ l (T ) .

Note that condition (iv) λ ≤ σ (1 − γ) , guarantees that the maximum point in the Hamiltonian is smaller than 1,

hence the no borrowing constraint is never active: this allows to keeping H̃0 in the form which is suitable to find

the explicit solution.

5. Conclusion

This paper considered the attitude of the fund manager who can invest in two assets; a risky one and a non risky

one, in a standard Black-Scholes market and maximize the utility function consequent upon the current level of

fund wealth. We propose that the wealth of the running pension fund remains above a stipulated level which is

regarded as the solvency level.
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