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1. Introduction and Preliminaries 
The Four Color Theorem is well known in the 

mathematical community. It states that any number of 
connected locally connected regions located in the plane 
(i.e' they are all subsets of R2), intersecting only on their 
common boundaries, can be separated by four colors. In 
order to present a coherent mathematical view of the 
above theorem we need to state the following definitions 
and use the basic concepts and facts in topology. For more 
details on the basic concepts in topology we recommend 
the book, Topology (1970) by James Dugundji. 
Throughout this article the paths and closed curves are 
subsets of finite a graphs hence we use a type of digital 
geometry to prove some of the arguments. But many of 
the lemmas and theorems are stated and proved in the 
most general cases. The Jordan closed curve theorem as 
stated at [2] is the basis for many of the lemmas and 
theorems. When dealing with closed curves and paths we 
define the interior path of the given closed curve to be 
paths that except one or two points on the boundary the 
rest of the path lives in the interior of the closed curve. For 
a connected Graph G, its spectrum, spect(G) is the 
operator norm of the adjacency matrix. We say that two 
connected graphs G1 and G2 are equivalent, G1 ~ G2, if 
their corresponding adjacency matrix are unitary 
equivalent. this concept is used to define some useful 
definitions that will help proving the main theorem, 
theorem (2.21). the paths are all directed in same way. For 
example the paths located on closed curves have the same 
direction as the direction on the closed curve which is 
clockwise direction. Many of the sets we are going to deal 
with are connected, closed and bounded. These kinds of 
sets constitute a very important class of sets. 

Definition 1.1 A compact connected subspace of a 
Hausdorf metric space is called continuum. 

In particular here by region we mean locally connected 
continuum sub-set of R2. To state equivalent version of 
four color theorem represent each of the regions by a 
vertex in R2 and connect two points if and only if the 
corresponding regions intersect. This will provide us with 
a graph G. Now the four color theorem can be expressed 
equivalently to this situation as to associate a color to each 
of the vertices in such a way that no two vertices 
connected by an arc can have the same color. Note that 
without loss of generality we can assume that the above 
graphs are connected. In fact throughout this article all the 
graphs are connected. For a set Q ⊆ R2, let Qc be the 
complement of Q in R2, ie, Qc = (x ∈ R2, x not in Q). Also 
we denote the interior of Q by int(Q) In final part of this 
article we are going to deal with locally finite infinite 
graphs. These are infinite graphs with the property that 
each vertex is connected to finitely many other vertices. 
For a set Q, we set Card(Q) to be equal to the cardinality 
of the set Q. So by our definition any two region A2 and 
A2 from the collection are either disjoint or (A1) ∩(A2) = 
(Bound(A1)∩Bound(A2) ≠φ In the later case A1 and A2 
have to take different colors. Finally by Jordan closed 
curve theorem S divides the space in two regions, where 
one of the regions SC ⊇ S can be be mapped 
homeomorphically onto the closed disc corresponding to a 
circle. For simplifying the notation we write int(S) instead 
of writing int(SC). 

The following definitions are well known 
Definition 1.2 A subset of S ⊆R2 which is 

homeomorphic to a cicle is called closed curve. The above 
homeomorphism can be chosen so that can be extended to 
the homeomorphism taking SC = S∪int(S) onto the closed 
disc that corresponds to the above circle. 

Similarly the the edge or the arc connecting two 
vertices of a graph is homeomorphic to a closed interval. 
A path is a sub continuum of 2R  which is the union of 
number of arcs. It is clear that the path is also 
homeomorphic to a closed interval. Suppose S is a closed 
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curve which is the subset of a connected graph G. Let us 
adopt the following notations. 

Definition 1.3 Given a connected graph G, we denote 
the set of its vertices by V (G)), the number of its vertices 
by n(G), and the set of its edges by E(G). Suppose S ⊆ G 
be a closed curve. We set SCG = SC∩G and SCintG, to 
be equal to the set SCG minus E(G) ie' SCintG = 
SCG∩(E(G))c. 

Note that the set SCintG is not necessarily a connected 
set. Let G be a connected graph and suppose 

( ) ( )
1

i n G
i ia G=

= ⊂  be the set of all vertices of G. 

Furthermore for the vertices located on a closed curve S ⊆ 
G the sequence ( )ia S⊆  of vertices have clockwise 
orientation, ie' 1ia +  is located to the right of ia . ia  and 

1ia +  are called neighbouring vertices if they are 
connected by an edge in V(G). 

Definition 1.4 For a given connected graph G, The 
function f from V(G) to the set (1,2,3,4) is called 
colorization if for any two neighboring vertices ia  and 

1ia + , ( ) ( )1 .i if a f a +≠  
Definition 1.5 Following the same notations as in the 

above we define Cl(G), to be the set of all colorizations 
for G. 

For any two points x,y ∈ G, let d(x,y) be the usual 
Euclidean distance of x from y in 2R . Let us set the 
following notations, d(x,G) = min(d(x,y), y ∈ G) and d(G) 
=max(d(x,y), x, y∈G). For each x ∈ G let D(x,d(x,G)) be 
equal to the closed Disk with the center in x and radius 
d(x,G). Let us define ( ) ( )( )( ), , .x GD G D x d x G∈=   

Then it is easy to check that D(G) is a closed set 
containing G. 

Definition 1.6 Keeping the same notations as in the 
above, the vertex x ∈ G is called to belong to the exterior 
boundary of G, denoted by EBound(G), if x can be 
connected via a path in R2 ∩ (G)c to any point in D(G)c 
=R2 - D(G) = ((y ∈ R2), y not in D(G)). 

In the following arguments in order to shorten the 
notations for a given closed curve S we write int(S) 
instead of int(SC). 

Definition 1.7 Keeping the same notations as in the 
above, The closed curve S ⊆ G is called maximal closed 
curve if and only if S ⊆ EBound(G). It is called max 
closed curve if given some other closed curve 1S , with 
int( 1S ) ⊇ int(S), then 1S  = S. 

Suppose S is a closed curve, S G⊆ . Now let 

1 2, , ... mx x x  be number of vertices on S G , where xi can 
be reached from 1ix −  moving clockwise on encounter 
once we move from xi to 1ix +  including the two end 
points. By ( )1,i iG x x +  we mean the set of all the vertices 
of G S  that we encounter once we move from ix  to 

1ix +  excluding the two end points. Note that since we are 
moving clockwise on the closed curve we have the 
following identifications, 1 1 2 2, , ......m mx x x x+ += =  and 
so on. Note that moving clock wise along S, the intervals 

,i jx x   , (respectively ( ),i ix y ) are well defined only if 

1.i j m− ≤ −  Suppose 1 2, ,... ma a a  be the set of all the 
vertices on S moving clockwise on S. Then for each 
integer 1 ,i≤  the vertices ia  and 1ia +  are called 
neighbouring vertices. Note that S is a metric space with 
the metric inherited from 2R . Given two points 

1 2,x x S⊆  where 2x  is to the right side of 1x  (ie' moving 
clockwise from 1x  we reach 2x ), we set an order 1 2x x≤ . 
the closed and open intervals on the closed curve S have 
the same definition as the ones on real line, just with the 
points belong to S, ie, [ ] ( ), , ,x y z S x z y= ∈ ≤ ≤  and 

( ) ( ), ,x y z S= ∈  .x z y< <  In order to identify the 

intervals on S clearly, we let the set ( )ia S⊆  to take their 
indices from the well known ring .mZ  The following 
theorem is going to be used throughout the rest of the 
article. 

Theorem 1.8 Keeping the same notations as in the 
above, two max closed curves that are subsets of G can 
not intersect in more than one point, 

Proof Suppose 1S  and 2S  are are max closed curves 
that are subset of G. Let us give clockwise orientation to 
the above closed curves. Since 1S  and 2S  are not equal 
there exits a point x in 1S  not belonging to 2S . Moving 
from point x along 1S  clockwise suppose 1S  intersect 2S  
at vertices 1y  and 2y . With 1y  the first vertex on 2S  that 

1S  will encounter and 2y  the last one. Now consider the 
paths, [ ] [ ]1 1 1 2 2, , ,x y S y y S⊆ ⊆  and [ ]2 1, .y x S⊆  It is 
clear that 3S  the union of these three, paths is a closed 
curve. In order to prove the theorem it is enough to show 
the following condition, ( ) ( ) ( )( )3 1 2int S int S int S⊇   
holds. We call the above condition the U-condition. Let 

( )cv D G∈  and w be a point in ( ) ( )1 2 .int S int S  For U-
condition to hold it is enough to show that any path s 
connecting v to w will intersect 3S . To complete the proof 
we need to prove the following lemmas. 

Lemma 1.8.1 Keeping the above notations suppose 
[ ] ( ) ( )1 1 2 1 1 2,S y y s S S⊇ = =   then the U-condition 

holds. Futhermore 3S C  contains 1s . 

Proof Let ( )1x int S∈  and ( ) .cv D G∈  Suppose s is a 
path connecting v  to x . Then s has to intersect the 
boundary of 1S . Hence s either hits [ ]2 1 1,y y S⊆  or it hits 

[ ]1 2 1, .y y S⊆  Suppose in its way to v it hits 

[ ]1 2 1,y y y S∈ ⊆  for the last time at point 

[ ]1 2 1, .y y y S∈ ⊆  Now using the fact that 

( ) ( )1 2 ,int S int S φ=  at point y, s either enters the 
interior of 1S  or enters the interior of 2S . In the first case 
it will hit [ ]2 1 1,y y S⊆  before reaching v. In the second 

case it will hit [ ]1 2 2,y y S⊆  before reaching v. This 

implies that ( ) ( ) ( )1 2 3int S int S int S⊆  thus the U-
condition hold. Now we clam that 

( ) ( )3 1 2 1, .int S y y S⊇ ⊆  To show that suppose 
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( )1 2 1,x y y S∈ ⊆  Then for ( )1y int S∈  there exists a path 

[ ] ( )2 1, .s x y int S= ∈  But if x is in ( )3 ,cS C  then 2s  must 
intersect 3S . At this point the fact that 3S  does not intersects 

( )1 2 1,y y S⊆  implies that ( ) ( )3 1 2 1, .int S y y S⊇ ⊆  
Definition 1.8.2 The encounter of the closed curves Si, 

i=1,2, as stated in the above lemma is called of type-I 
Lemma 1.8.3 Keeping the above notations suppose that 

1S  and S2 intersect only on two points 1y  and 2y . 
Furthermore assume that moving clockwise from x on 1S  

we enter the interior of S2 at 1y  and leave it at 2y . Then 
the U-condition holds. 

Proof Note, it is easy to see that moving clockwise on 
S2 it will enter the interior of 1S  at 2y  and leave it at 1y . 

Let us consider the following paths. [ ]( )1 1 2 1,p y y S= ⊆  

and [ ]( )2 2 1 2, .p y y S= ⊆  Next define the closed curve 

4 1 2.S p p=   Considering 1S  and S4, note that 

1 4 1.S S p=  This using lemma 1.8.1 implies that 

( ) ( )3 1int S int S⊇ .  Similarly we can show that 

( ) ( )3 2 ,int S int S⊇  and this complete the proof. 
Definition 1.8.4 The encounter of the closed curves Si, 

i= 1,2, as stated in the above lemma is called of type-II. 
Lemma 1.8.5 Keeping the above notations suppose that 

1S  and S2 intersect only on two points 1y  and 2y . 
Furthermore suppose ( ) ( )1 2 1 2 .S int S S int S φ= =   
Then the U-condition holds 

Proof Let us define the closed curves S4 and S5, S4 

being equal to the union of [ ]2 1 2,y y S⊆  and 

[ ]1 2 1, .y y S⊆  S5 being equal to the union of 

[ ]1 2 2,y y S⊆  and [ ]1 2 1, .y y S⊆  It is easy to see that 

( ) ( )2 4 ,int S int S φ=  hence by the above lemma 

( ) ( ) ( ) ( )( )5 4 2 2 1 2,int S int S int S y y S⊇ ⊆   Where the 
directions of paths on Si, i= 1,2 are the clockwise 
directions on Si. Since [ ]( )1 5 1 1 2 1,S S s y y S= = ⊆  by 

lemma 1.8.1, ( ) ( ) ( )3 1 2int S int S int S⊇   and this 
complete the proof 

Definition 1.8.6 The encounter of the closed curves Si, 
i=1,2, as stated in the above lemma is called of type-III 

In general following the same procedure as in the above 
moving clockwise on 1S  from x , suppose 1S  intersect S2 

first time at 1y  and last time at 2y . Then let us define the 
closed curve S3, to be equal to the union of [ ]2 1 1,y y S⊆  

and [ ]1 2 2,y y S⊆  Now set 2,1S  to be equal to the union of 

[ ]1 2 1,y y S⊆  and [ ]1 2 2, .y y S⊆  But 1 2,1S S  

[ ]2 1 1, .y y S= ⊆  Thus since ( ) ( )1 2,1 ,int S int S φ=  the 

encounter of 1S  and 2,1S  is of type-I. Hence by lemma 

1.8.1 ( ) ( )3 1 ,int S int S⊇  similarly we can show that 

( ) ( )3 2int S int S⊇  and this complete the proof of theorem 
1.8. 

Lemma 1.9 Suppose 1S  is a closed curved which is the 
subset of a connected graph G. Then there exist a max 
closed curve S G⊆ , such that ( )int S  contains ( )1int S  

Proof For a given closed curve 2S G⊆  if 

( ) ( )2 1int S S⊇  then we replace 1S  by S2. Next Using 
lemma 1.8 if 1S  intersect another closed curve 2S G⊆  in 
more than two points, then by the above arguments there 
exits another closed curve 3S G⊆  such that 

( ) ( ) ( )3 1 2 .int S int S int S⊇   Now proceed inductively, 
after finite number of steps we will end up having a closed 
curve S G⊆ , such that if S intersects any other closed 
curve kS G⊆  at more than one point then 

( ) ( ).kint S int S⊇  Further more if lS G⊆  is any other 

closed curves with ( ) ( ) ,lint S int S⊆  then .lS S=  
Theorem 1.10 Let G be a connected graph. Then the 

exist a set of max closed curves ( ) 1 ,i m
i iS =

=  and paths 

( ) 1 ,i m
i is =

=  such that G is equal to the union of the above 

paths and the set Q, ( )1 .i m
i iQ S C G=
==    Furthermore 

( )( ) ( )1 1
EBound(G)=

j mi m
i i i ji j

S s
==

= =
 
 
 

    

Proof In order to prove the above theorem we need the 
following definition and lemma 

Let us consider a max closed curve 1S G⊆ , with G a 
connected graph. Suppose we have a sequence of max 
closed curves iS G⊆ , 1, 2,..., .i n=  Suppose for each 

,i n<  iS  is connected to 1iS + , via a path in G. 
Definition 1.11 Keeping the same notation as in the 

above. The sequence of closed curves (Si), i = 2,3, …, n 
are called descenders of S1. 

Lemma 1.12 Keeping the same notation as in the above, 
Let iS G⊆ , i =1.2.3,.. be a sequence of max closed 
curves. Then the above max curves can be connected to 
each other only by unique path s ⊆ G. Furthermore if S2 
and S3 are both connected to S1 via paths in G, then S2 and 
S3 or any of their descenders can not be connected to each 
other via paths in G. 

Proof Follows from the definiton of max closed curves 
and the arguments of lemma 1.8. 

Note that the above statements holds if we consider the 
vertices of the paths connecting the max closed curves as 
max closed curves. In particular if we retract each one of 
the max closed curves to a point the resulting will be a tree. 

Finally theorem 3.22 implies that any one of max 
closed curve or corresponding connecting paths between 
them are subset of EBound(G). But by theorem(1.10) any 
vertex of z G∈  is either a member of iS C G  for some 
max closed curve iS G⊆  or is a vertex on one of the 
paths ,i js  connecting two max closed curves iS G⊆  and 

jS G⊆ . This complete the proof of theorem 1.10.  
The following lemmas can be verified immediately 

therefore we skip the proofs. 
Lemma 1.13 Keeping the same notations as before. 

Given a path s G⊂ , then the vertices on s can be 
separated by using two colors. 
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Lemma 1.14 Given a closed curve S G⊂ , with G a 
connected graph. Then if the number of vertices on S, is 
even then the vertices on S can be separated by two colors. 
Otherwise three color would be sufficient to separate all 
the vertices on S. 

At this point suppose That G is a connected graph and 
S G⊆  be a max closed curve. Now let 1S G⊆  be 
another closed curve with 1S C SC⊆  and such that 

1 int .S C G φ=  Then G is equal to the union of ( )1
cS C  and 

S1. Assuming that G is located on the surface of an sphere 
implies that there exists another connected graph G1 ~ G 
such that S1 is max closed curve in G1. We denote S1 a 
semi max close curve. 

Definition 1.15 We say a connected graph G has 
property R. if there exist a colorization ( )cl Cl G∈  such 
that on every semi max closed curve ,S G⊆  

( )( ) 3.Card cl S ≤  
Now it is clear to see that if G1 is a connected graph 

with property R and G2 another connected graph such that 
G1 ~ G2, then G2 has property R too. Next let G be a 
connected graph and S G⊆  a closed curve. Let ( )ia  

1, 2, ...,i m= be a sequence of all the vertices on S. 
Definition 1.16 Let ( ),i ja a V S∈ . Given a path 

ints SC G⊆  connecting ia  to jb . Now consider the 

closed curve 1S G⊆  that is the union of ( ),i ja a S  ⊆   

and .s  We call the path s reducible if there exists another 
internal path 1 ints SC G⊆ , between two different points 

[ ],c d G a b S≤ ∈ ⊆ , such that for the closed curve 

[ ]( )2 1, ,S c d S s= ⊆   2S C  is a proper subset of 1S C . 
Otherwise s is called irreducible. suppose there exist two 
vertices ( ),i ja a V S∈  and irreducible path in ( )int S , 

connecting ia  to ja . If 1j i− >  we say S is of type-I. 
Otherwise if j = i + 1, we say S is of type-II. If S is not of 
type-I or type-II, we say S is of type-III. 

Lemma 1.17 Given a closed curve S G⊆  with G a 
connected graph. Let ( )ia , 1, 2, ...,i m=  be the set of 
vertices of S moving clockwise on S. Suppose there exists 
a vertex ,ja S⊂  such that the connected component of 

SCG  that contains ja  and does not contains any edges in 

S, contains another vertex k jS a a≠∋.  then there exits 

an irreducible path in intSC G  connecting ja  to a vertex 

.j la a S≠ ⊆  

Proof If a connected component 1G G⊆  as in the 
above contains ja  and another vertex k ja a≠ ， then by 

the fact that 1G  is connected graph too, we have a path 

1s G⊆  that connect ja  to ka . Then it is clear that there 

exits a vertex la S∈  and irreducible path ,s G⊆  
connecting ja  to a vertex .j la a S≠ ∈  

At this point we are going to introduce an special subset 
2 ,RΓ ⊂  ( ) ( )( ), ,n G Spect GΓ =  G a connected graph. 

We impose ordering ≤  on Γ  by Г ∋  ( 1x , 1y ) ≤ (x, 2y ) ∈ 
Г if 1x  ≤ 2x  and 1y  ≤ 2y . It is easy to see that ≤ is partial 
ordering on Г. Now using the fact that for every integer k 
the set spect(k) = (spect(G), G a connected graph and n(G) 
= k) is a finite set, we can order the above set by the 

magnitude of its members. Hence set ( ) ( ) 1
i mk

i ispect k r =
== . 

Where for i > j, ri> rj, r1 = lower bound(spect(k)) mkr = 
upper bound(spect(k). Also to facilitate our notations for a 
closed curve S ⊆ G we replace Cl(SCG) by Cl(S). 

Lemma 1.18 Let 1S  and S2 be subsets of connected 
graph G both being max closed curves. Suppose the above 
two closed curves are connected by a path s ⊆ G or a 
common vertex q and that they have colorizations 

( )i icl Cl S∈ , i = 1,2. Let us de_ne connected graph 

1 1 2 .G S S s=    Then There exists a colorization 

( )1icl Cl G∈  extending 1cl  or 2.cl  
Proof By lemma 1.12 Points on s can be separated by 

two colors, Thus 1cl  can be extended to 1S s  in an 
obvious way. Suppose the point 2b S s∈   is connected 
by an edge in s to the point c 6= b in s. If cl1(b) = i = cl2(b) 
= j then we are done. Otherwise if i ≠ j we define cl3 ∈ 
Cl(S2) by cl3(a) = i, if cl2(a) = j, cl3(a) = j, if cl2(a) = i or 
else cl3(a) = cl2(a). Now cl1 can be extended to G1 and we 
are done in this case. Finally If 1S  and S2 are connected 
by a common vertex q and cl1(q) = i = cl2(q) = j then we 
are done. Otherwise repeating the above arguments we 
can define a colorization cl3 on S2 ∪ 1S  = G1 and we are 
done. 

At this point note that every connected subset the 
connected graph G is also a connected graph. As before 
we define an interior graph to be a subgraph of G that does 
not contain any element from the set E(G). 

Theorem 1.19 Given a connected graph G Suppose 
every max close curve, S ⊆ G has property R. Then G has 
a colorization. 

Proof Suppose G is a connected graph and Let ( ) 1
i m

i iS =
=  

be the set of all max closed curves in G. Let ( ) 1

j l
j j

s
=

=
 be 

the set of all paths in G connecting max closed curves. 
Where some of these max closed curves consists of single 
vertex. Therefore by theorem 1.10 and lemma 1.12 we can 
assume that G is equal to the union of the max closed 
curves, the part of G they contain in their interior and the 
paths in G that connecting them. By lemma 1.12 there are 
unique pathes between the maximal closed curves and for 
any two maximal closed curve that are connected to a 
third one their descenders are not connected to each others 
via paths or common vertices. Now our assumption states 
that for any one of max closed curve S ⊆ G, SCG has 
property R. Thus each of the maximal closed curves Sj⊆G 
has a colorization clj acting on SjCG. Next let us begin 
from the max closed curve S1 with a colorization cl1∈ S1C 
⊆ G and all max closed curves S1,r ⊆ G that are connected 
to S1 by the paths s1,r ⊆ G. For each of the max closed 
curves S1,r, set G1,r= Si,rCG∪s1,r. Now by lemma 1.12, we 
can extend cl1 to become a colorization on 
G2,r=S1CG∪G1,r. Now repeating the above process from 



69 American Journal of Mathematical Analysis  

 

each of the max closed curves S1,r, using lemma 1.18 we 
are going to extend cl1 to become a colorization on each of 
the descenders of S1 and ultimately after repeating the 
above process finitely many times we will get a 
colorization acting on G. 

2. The Main Result 
In this section we are going to state the main theorem 

and its proof. 
Lemma 2.20 Suppose G is a connected graph and S a 

subset of G which is the max closed curve with SCG = G. 
Then S has property R. 

Proof In order to prove the theorem we need to state 
and proof the following lemmas 

Lemma 2.20.1 Keeping the same notations as in the 
above suppose S is of type-II. Then there are two vertices 
ai ∈ G(S), i = 1, 2 and an irreducible path s1 ⊆ int(S) 
connecting the above two vertices. Furthermore there exist 
two connected graphs G1 and and G1 each containing a 
max closed curve, S1 ⊆ G1, S1 ⊆ G1, such that S1CG1 = G1 
and S1CG1 = G1. Finally we have int(S) ⊇ int(int(S1) int(S1) 
⊇ int(int(S1) and G ~ G1. 

Proof Set ( )1
1 1 2, ,S s a a S= ⊆  then 1S G⊆  is a 

closed curve. Next we can construct a path 1
cs G⊆  

connecting a1 to a2. Let 1 1 ,G S CG=  1
1 2G G s=   and 

1 1 2.S s s=   It is clear that 1 1S G⊆  is a max closed 
curve in G1 and S1CG1 = G1. Next following their 
constructions, int(S1) ⊇ int(S1) and int(S) ⊇ int(S1). 

Before proceeding to the next lemma we need to bring 
the following definition 

Definition 2.20.2 Let G1 and G2 be a connected graph 
and Si ⊆ Gi, i = 1,2 be a max closed curves with SiCG = Gi, 
i=1,2. then we call Si a full closed curve. In particular if 
G1 ~ G2 then we write S1 ~ S2. 

Lemma 2.20.3 Let S ⊆ G be as in the above. Then S is 
either equivalent to type-I or to type-III closed curve. 

Proof If S is type-I or type-III we are done. Otherwise 
following notations and arguments of lemma 2.20.1, 
consider the full closed curve S1⊆ G1 and S1 ⊆ G. G1 
connected graph. We had S ~S1, int(S1) ⊇ int(S1), V (S1) = 
V (s1) = V (G)∩s1, int(S) ⊇ int(S1). Furthermore any path 
in the interior of S1 connecting to vertices of S1 lives in the 
interior of S1. Now if S1 is of type-I or type-III we are 
done, otherwise proceeding as in the above we have two 
closed curve S2 and S2 ⊆ G with the following properties. 
S2 is a full max closed curve subset of a connected Graph 
G2 ~ G, int(S2) ⊇ int(S2), int(S1) ⊇ int(S2), int(S1) ⊇ int(S2) 
and the interior paths connecting vertices of S2 live in the 
interior of S2. Proceeding by induction and because G is a 
finite graph after finitely many steps we get the sequence 
of closed curves, Si and Si 1 ≤ I ≤ m0 with the following 
properties. Si ~S, int(Si) ⊇ int(Si), int(Si-1) ⊇ int(Si) and 
such that any interior paths connecting the vertices of Si 
lives in the interior of Si. Hence by the fact that G is finite 
at some stage m0, either 0mG  is of type-I or of type-III. 
The proof of the lemma is complete. 

To complete the proof of the lemma we use induction 
on n(G). So suppose given an integer k such that the 
statement of lemma hold for all connected graph having 

only one max closed curve S with n(G) ≤ k. Lets 
a1,a2, …am be a set of all vertices on S ⊆ G, where ai can 
be reached from ai−1 moving clockwise on S. If all 
connected component of G intersect S at most at one point, 
ie, S is of type-III. In this case by lemma 1.14 we can 
construct a colorization cl ∈ Cl(S), cl(S) ≤ 3. Now we 
want to extend cl to become a colorization on all G. Since 
for each of the connected components Gi ⊆ G, n(Gi) ≤ k, 
then by induction and theorem 1.19, Gi has property R. 
Now using lemma 1.18 we can extend cl to become a 
colorization for G thus G has property R. Otherwise by the 
above lemma 2.20.3 we can assume that S is of type-I. 
Hence for some vertex aj 2 S there exits an irreducible 
interior path s ⊆ SCintG from aj to al, where aj and al 
vertices of S, moving clockwise on S with j + 1 <l. 
Therefore we will get a closed curve S1⊆ G which is the 
union of s and the path [al,aj] ⊆ S. Now note that S1CG is 
a connected graph with n(G1 = 1S C∩G) = k. Hence by 
induction assumption G1 = S1CG has property R therefore 
there exists a colorization cl ∈ Cl(G1) such that 
Card(cl(S1)) ≤ 3. Now note that any connected component 
of G that contains a vertex in G[aj,al] ⊆ S, does not 
intersect S at any other point. Hence using lemma 1.14 
and lemma 1.18 we can extend cl to become a colorization 
on G with Card(cl(S)) ≤ 3. This complete the proof of 
lemma 2.20. 

Theorem 2.21 every connected graph G, has property R 
thus has a colorization. 

Proof By lemma 2.20 each one of max closed curves 
has property R. Finally Theorem 1.19 completes the proof. 

Finally we are going to bring a short proof of De Bruijn 
Erdos theorem for locally finite infinite planar graphs 

Theorem(De Bruijn Erdos) Suppose G is a locally finite 
infinite graph. Then G has a colorization. 

Proof Note that without loss of generality we can 
assume that G is connected. Let v ∈ G be a vertex in G. 
Consider all the paths s ∈ E(G) of length m ∈ N from v to 
other vertices in G. The union of these paths is a finite 
connected subgraph Gm ⊆ G. By theorem(2.21), there 
exists a colorization clm ∈ Cl(Gm). Next Cl(Gm) can be 

considered as a subset of ( )n GmR  with integer entries. Let 
us pick randomly one of these graphs say 1 0mG G= . Thus 

there exist an infinite subsequence (m ≤ mi)i of (N), and a 
colorization cl1,∞ ∈ Cl(G1) such that for each Gmi the 
restriction of clmi to G1 will agree with cl1,∞. Proceeding 
inductively we can construct an increasing sequence of 
finite subgraphs of G, G1 ⊆ G2 ⊆ …… ⊆ Gk⊆ …, where 
for each ≤ k, Gk has a colorization clk,∞, with the property 
that the restriction of clk+1,∞ to Gk will be equal to clk,∞. 
But G =S(Gk)k, and this complete the proof. 

3. Appendix 
In this section we are going to proof some technical 

lemmas needed in the proof of number of the lemmas and 
theorems in the above 

Theorem 3.22 Keeping the same notations as in the 
above. let S ⊆ G be a max closed curve. Then S ⊆ 
EBound(G). 

Proof As we demostrated, if (Si), i = 1,2, … m be the 
set of all max closed curves, then G is the union of the sets 
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SiCG together with the paths si,j, i,j = 1, 2, …, m, where si,j 
is the unique path connecting Si to Sj. By the finiteness of 
the Graph G we can assume that each of the max closed 
curves is a circle and the connecting paths are straight 
lines going through the centers of corresponding circles. 
Next for each of the circles Si there exists a circle Si,l with 
the same center but strictly larger than Si. By taking Si,l 
close enough to Si we can make sure that Si,l does not 
intersect any other max closed curves or the paths 
connecting them to any other max closed curve other than 
Si. set bi,j be the intersection of si,j with Si,l. Now moving 
clockwise on Si,l, consider two points bi,j,1 < bi,j < bi,j,2 on 
Si,l. We can choose them close enough so that if we draw 
lines si,j,1 and si,j,2, parallel to si,j intersecting Sj,l at bi,j,2 and 
bi,j,1 respectively, with bj,i,2 > bj,i,1, then si,j,k, k = 1, 2 
intersect G at Si and Sj only. Next let aj,i,k, k = 1, 2, be the 
intersection of si,j,k, k = 1, 2 with Sj respectively. let us 
define the closed curve Si,j,s to be de_ned to be the union 
of [ai,j,1, aj,i,2] ⊆ si,j,1, [aj,i,2, aj,i,1] ⊆ Sj, [aj,i,1, ai,j,2] ⊆si,j,2 and 
[ai,j,2, ai,j,1] ⊆ Si. Then it is clear that Si,j,s contains si,j in its 
interior. At this point we assume that Si is connected to 
the sequence of max closed curves (Sj), j = 2, …, m1, 
where each of the above closed curves is connected to Si 
only. Next for each integer 2 ≤ j ≤ m we define a loop 
Ω(i,j) ⊆ (G)c to be a path which is the union of following 
paths, , ,1 , ,2 , ,1 , ,2 , ,1, , ,i j j i i j j i j i jb b s b b S   ⊆ ⊆     and 

, ,1 , ,2 , ,2, .j i i j i jb b s  ⊆   Now suppose Sj is connected to 

more than one closed curve ,kS G⊆  1,2,.. jk m=  
Ordering the points of intersection of sj,k with Sj. Let aj,k, 

11, 2,..,j m=  be the sequence of the above vertices. At this 
point we assume that The sequence of closed curves that 
are connected to Sj, j = 1,2, …, m1 are not connected to 
any other max closed curve. Next for a fixed 2 ≤ j1 ≤ m1 
and 1 1, 12 jk m≤ ≤  we defined the loop ( )1 1, cj k GΩ ⊆  to 

be a path going from , ,1 ,1 1 1j k j lb S∈  to ,1k lS  and back to 

,1j lS . Now we want to extend the definition of loop to 
more complicated case. we want to define a path 
Ω(i,j1)⊆Gc, going from , ,1 ,1i j i lb S∈  to ,1j lS  and back to 

Si,l. Set ( )1,i jΩ  to be equal to the union of the following 

paths, , ,1 , ,2 , ,11 1 1, ,i j j i i jb b s  ⊆   , ,2 , ,11 1 1, ,j i j i jb b S  ⊆   

, ,1 , ,2 , ,21 1 1,j i i j i jb b s  ⊆   and 

( ) ( )( )1, 1
1 , ,2 , 1 ,12 1 1
, , .

k m j
j k j kk j k b b

=
+=

 Ω     Using our 

assumptions each one of the paths ( )1, .j kΩ , is well 
defined hence the above formula is going to identify the 
path ( )1, .ci j GΩ ⊆  We call the above formula the loop 
formula. We saw that the loop formula is valid for two 
special cases. We want to show that the loop formula will 
identify the path ( )1, ci j GΩ ⊆  from ,i lS  to ,1j lS  and 

back to ,i lS  in the most general case. By the loop formula 

we can identify ( )11, cj GΩ ⊆ , if we can identify 

( )1,j kΩ  for all the max closed curves connected to 1jS  

except Si. Similarly to identify Ω(j1, k), it is enough to 

identify all the loops Ω(j2, k) where 2jS  ≠ Si is one of the 

max closed curves that are connected to 1jS , furthermore 

for each 2 ≤ k, Sk is one of the max closed curves that is 
connected to 2jS  ≠ 1jS . We call this the stage (j1, j2) of 
calculation. inductively we have stages (j1, j2, …, jn) of 
calculation. If there exists some integer n0 such that for n 
≥ n0 at every stage (j1, j2, …, jn) we can calculate (jn, k) for 
all max closed curves that are connected to jnS  and that 

are different from 1jnS − , then we are done. But because 
of the finiteness of G, there exists an integer n0 such that 
for n ≥ n0, Sjn is only connected to 1jnS − . This implies 

that at the stages (j1, j2, …, 10nj − ) we can calculate 

( 10nj − ,k), so by induction we are done. This implies the 
following lemma 

Lemma 3.22.1 Keeping the same notations as in the 
above. For every connected max closed curves Si and Sj 
there exists a path Ω(i, j) ⊆ Gc going from Si,l to Sj,l and 
back to Si,1. 

To complete the proof of the theorem we have to show 
that for any point x ∈ G, and v ∈ D(G)c, there exists a 
path s ⊆ Gc connecting x to v. Next We need to employ 
some new notation. As we mentioned we say two max 
closed curves S1 ⊆ G and S2 ⊆ G are connected, if they 
are connected by the path s1,2. By chain of max closed 
curves we mean a sequence (Si), i = 1, 2, …, m such that 
for each i ≤ m, Si and Si+1 are connected. Now without 
loss of generality we can assume S1 ∋  x = 1, ,11ja  for 

some max closed curve S1 ⊆ G, where 1jS , is a closed 
curves connected to S1. The other cases can be overcome 
using some minor technicalities. Now there exists a path s1 
⊆ (S1)c from 1, 1ja  to 1, ,11jb , furthermore by the structure 

of G we can assume that in fact s1 ⊆ Gc. Also there is a 
path 2 1,

c
ls S∈  from 1, ,11jb  to v. Moving from v to 1, ,11jb  

on s2 suppose the first point that we intersect G is y = ak,k+1 
∈ Sk, Where Sk, Sk+1 ⊆ G are connected max closed 
curves. The other cases can be overcome with minor 
technicality. At this point without loss of generality we 
can assume that s2 will intersects Sk,1 first time at , ,1k lb . 
But by the structure of G, the exists a chain of closed curves 

( ),1 1
i k

i i
S

=

=
 rom 1,lS  to ,k lS . Next let us define the path 

3
cs G⊆ , by ( )( )2 1

3 1, 1,2 1, ,111
1, 1 , .i j

i ii js i b b= +
−= +  = Ω −     In 

this paths all the intervals are on S1,l and it takes point 
1, ,11jb  to point 1,2,1b . Note since we number the max 

closed curves connected to 1S  S1 by moving clockwise on 

1S  by our definition, 2 2 1jS S += . Let us denote 3s  by 

( )1, ,1 1,2,11 , .jb bℵ  (It is also clear that if none of the points 

in the interval 1, ,1 1,2,1 11 ,,j lb b S  ⊆   were connected to 

another max closed curve then ( )1, ,1 1,2,11 ,jb bℵ  

1, ,1 1,2,11 .jb b  =  Now for an integer i ≤ k, consider the 

path s(i,i + 2) ⊆ cG , that is theunion of 
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1, ,1 1,2,1 11 ,,j lb b S  ⊆   and ( )1, ,2 1, 2,1, .i i i ib bℵ + + +  Finally 

consider the paths ( )( )2
4 2 , 2i k c

is s i i G= −
== + ⊆ , 

,5 1,1, c
k kb vs s G+  ⊆=    and ,6 , 1 1, c

k k k k Gs a b+ +  ⊆ = . 

At this end the path 7 5 6 4 3 1s s s s s s=      is a path in 
Gc taking x to v and this complete the proof of the theorem. 
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