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Abstract

We propose a novel approach to learn and recognize nat-
ural scene categories. Unlike previous work [9, 17], it does
not require experts to annotate the training set. We repre-
sent the image of a scene by a collection of local regions,
denoted as codewords obtained by unsupervised learning.
Each region is represented as part of a “theme”. In previ-
ous work, such themes were learnt from hand-annotations
of experts, while our method learns the theme distributions
as well as the codewords distribution over the themes with-
out supervision. We report satisfactory categorization per-
formances on a large set of 13 categories of complex scenes.

1. Introduction

The ability to analyze and classify accurately and rapidly
the scene in which we find ourselves is highly useful in
everyday life. Thorpe and colleagues found that humans
are able to categorize complex natural scenes containing
animals or vehicles very quickly [12]. Li and colleagues
later showed that little or no attention is needed for such
rapid natural scene categorization [6]. Both of these studies
posed a serious challenge to the conventional view that to
understand the context of a complex scene, one needs first
to recognize the objects and then in turn recognize the cate-
gory of the scene [14].

Can we recognize the context of a scene without having
first recognized the objects that are present? A number of
recent studies have presented approaches to classify indoor
versus outdoor, city versus landscape, sunset versus moun-
tain versus forest using global cues (e.g. power spectrum,
color histogram information) [3, 11, 15]. Oliva and Torralba
further incorporated the idea of using global frequency with
local spatial constraints [9]. The key idea is to use interme-
diate representations before classifying scenes: scenes are
first labelled with respect to local and global properties by
human observers. Similarly, Vogel and Schiele also used an

intermediate representation obtained from human observers
in learning the semantic context of a scene [17].
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Figure 1. Our dataset consists of 13 categories, the largest nat-
ural scene category dataset to date. Detailed description of the
dataset is in Section 3.

A main requirement of such approaches is the manual
annotation of “intermediate” properties. In [9], human sub-
jects are instructed to rank each of the hundreds of training
scenes into 6 different properties (e.g. ruggedness, expan-
siveness, roughness, etc). In [17], human subjects are asked
to classify 59, 582 local patches from the training images
into one of 9 different “semantic concepts” (e.g. water, fo-
liage, sky, etc.). Both cases involve tens of hours of man-
ual labor. These works clearly point to the usefulness of
these intermediate representations and motivate us to think
of methods for learning such representations directly from
the data: both because hand-annotating images is tedious
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and expensive, and because expert-defined labels are some-
what arbitrary and possibly sub-optimal.

Much can also be learnt from studies for classifying dif-
ferent textures and materials [10, 5, 16]. Traditional texture
models first identify a large dictionary of useful textons (or
codewords). Then for each category of texture, a model is
learnt to capture the signature distribution of these textons.
We could loosely think of a texture as one particular in-
termediate representation of a complex scene. Again, such
methods yield a model for this representation through man-
ually segmented training examples. Another limitation of
the traditional texture model is the hard assignment of one
distribution for a class. This is fine if the underlying images
are genuinely created by a single mixture of textons. But
this is hardly the case in complex scenes. For example, it
is not critical at all that trees must occupy 30% of a suburb
scene and houses 60%. In fact, one would like to recognize
a suburb scene whether there are many trees or just a few.

The key insights of previous work, therefore, appear to
be that using intermediate representations improves perfor-
mance, and that these intermediate representations might be
thought of as textures, in turn composed of mixtures of tex-
tons, or codewords. Our goal is to take advantage of these
insights, but avoid using manually labeled or segmented im-
ages to train the system, if possible at all. To this end, we
adapt to the problems of image analysis recent work by Blei
and colleagues [1], which was designed to represent and
learn document models. In this framework, local regions
are first clustered into different intermediate themes, and
then into categories. Probability distributions of the local
regions as well as the intermediate themes are both learnt in
an automatic way, bypassing any human annotation. No su-
pervision is needed apart from a single category label to the
training image. We summarize our contribution as follows.

• Our algorithm provides a principled approach to learning rel-
evant intermediate representations of scenes automatically
and without supervision.

• Our algorithm is a principled probabilistic framework for
learning models of textures via codewords (or textons) [5,
16, 10]. These approaches, which use histogram models of
textons, are a special case of our algorithm. Given the flex-
ibility and hierarchy of our model, such approaches can be
easily generalized and extended using our framework.

• Our model is able to group categories of images into a sensi-
ble hierarchy, similar to what humans would do.

We introduce the generative Bayesian hierarchical model
for scene categories in Section 2. Section 3 describes our
dataset of 13 different categories of scenes and the experi-
mental setup. Section 4 illustrates the experimental results.
We discuss in Section 5 our results and future directions.

TRAINING TESTING
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Figure 2. Flow chart of the algorithm.

2. Our Approach

Fig.2 is a summary of our algorithm in both learning and
recognition. We model an image as a collection of local
patches. Each patch is represented by a codeword from a
large vocabulary of codewords (Fig.4). The goal of learning
is to achieve a model that best represents the distribution of
these codewords in each category of scenes. In recognition,
therefore, we first identify all the codewords in the unknown
image. Then we find the category model that fits best the
distribution of the codewords of the particular image.

Our algorithm is modified based on the Latent Dirich-
let Allocation (LDA) model proposed by Blei et al. [1].
We differ from their model by explicitly introducing a cat-
egory variable for classification. Furthermore, we propose
two variants of the hierarchical model (Fig.3(a) and (b)).

2.1 Model Structure

It is easier to understand the model (Fig.3(a)) by going
through the generative process for creating a scene in a spe-
cific category. To put the process in plain English, we begin
by first choosing a category label, say a mountain scene.
Given the mountain class, we draw a probability vector that
will determine what intermediate theme(s) to select while
generating each patch of the scene. Now for creating each
patch in the image, we first determine a particular theme
out of the mixture of possible themes. For example, if a
“rock” theme is selected, this will in turn privilege some
codewords that occur more frequently in rocks (e.g. slanted
lines). Now the theme favoring more horizontal edges is
chosen, one can draw a codeword, which is likely to be a
horizontal line segment. We repeat the process of drawing
both the theme and codeword many times, eventually form-
ing an entire bag of patches that would construct a scene of
mountains. Fig.3(a) is a graphical illustration of the gener-
ative model. We will call this model the Theme Model 1.
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Figure 3. (a) Theme Model 1 for scene categorization that
shares both the intermediate level themes as well as feature level
codewords. (b) Theme Model 2 for scene categorization that shares
only the feature level codewords; (c) Traditional texton model
[5, 16].

Fig.3(b) is a slight variation of the model in Fig.3(a). We
call it the Theme Model 2. Unless otherwise specified, the
rest of the paper will focus on Theme Model 1. Now we are
ready to show the mathematical details of the formulation
of this model and how we learn its parameters.

2.1.1 The Theme Models

We begin with some notations and definitions for the Theme
Model 1 in Fig.3(a). We will contrast explicitly the use of
terminology with both [1] and the texture studies [5, 16].

• A patch x is the basic unit of an image, defined to be a
patch membership from a dictionary of codewords indexed
by {1, . . . , T}. The tth codeword in the dictionary is repre-
sented by a T-vector x such that xt = 1 and xv = 0 for
v �= t. In Fig.3(a), x is shaded by common convention to in-
dicate that it is an observed variable. Nodes in the graph that
are unobserved have no shading. The equivalent of an image
in [1] is a “document”. And a codeword (or patch) in our
model is a “word” in [1]. In texture and material literature, a
codeword is also referred as a “texton” [5, 16].

• An image is a sequence of N patches denoted by x =
(x1, x2, . . . , xN), where xn is the nth patch of the image.

• A category is a collection of I images denoted by D =
{x1, x2, . . . , xI}. In [1], this is equivalent to a “corpus”.

We can now write down the process that generates an
image i formally from the model.

1. Choose a category label c ∼ p(c|η) for each image, where
c = {1, . . . , C}. C is the total number of categories. η is a
C-dimensional vector of a multinomial distribution;

2. Now for this particular image in category c, we want to
draw a parameter that determines the distribution of the in-
termediate themes (e.g. how “foliage”, “water”, “sky” etc.
are distributed for this scene). This is done by choosing
π ∼ p(π|c, θ) for each image. π is the parameter of a
multinomial distribution for choosing the themes. θ is a ma-
trix of size C×K, where θc· is the K-dimensional Dirichlet
parameter conditioned on the category c. K is the total num-
ber of themes.

3. for each N patches xn in the image
• Choose a theme zn ∼ Mult(π). zn is a K-dim unit

vector. zk
n = 1 indicates that the kth theme is selected

(e.g. “rock” theme).
• Choose a patch xn ∼ p(xn|zn, β), where β is a ma-

trix of size K × T . K is again the number of themes
and T is the total number of codewords in the code-
book. Therefore we have βkt = p(xt

n = 1|zk
n = 1).

A K−dimensional Dirichlet random variable π has the
property such that πi ≥ 0,

∑K
i=1 πi = 1. It is a conjugate

distribution of a multinomial distribution. Since the themes
z are best described as a discrete variable over the multino-
mial distribution, Dirichlet distribution becomes the natural
choice to describe distribution of π [2]. It has the following
probability density:

Dir(π|θc·) =
Γ

(∑K
i=1 θci

)

∏K
i=1 Γ(θci)

π
(θci−1)
i . . . π

(θcK−1)
K (1)

Given the parameters θ, η and β, we can now write the
full generative equation of the model. It is the joint proba-
bility of a theme mixture π, a set of N themes z, a set of N
patches x and the category c is

p(x, z, π, c|θ, η, β) = p(c|η)p(π|c, θ) ·
N∏

n=1

p(zn|π)p(xn|zn, β) (2)

p(c|η) = Mult(c|η) (3)

p(π|c, θ) =
C∏

j=1

Dir(π|θj·)δ(c,j) (4)

p(zn|π) = Mult(zn|π) (5)

p(xn|zn, β) =
K∏

k=1

p(xn|βk·)
δ(zk

n,1) (6)

As Fig.3(a) shows, Theme Model 1 is a hierarchical repre-
sentation of the scene category model. The Dirichlet para-
meter θ for each category is a category-level parameters,
sampled once in the process of generating a category of
scenes. The multinomial variables π are scene-level vari-
ables, sampled once per image. Finally, the discrete theme
variable z and patch x are patch-level variables, sampled
every time a patch is generated.

If we wish to model the intermediate themes for each
category without sharing them amongst all categories, we
would introduce a link between the class node c to each
patch xn, such that xn ∼ p(xn|zn, β, c), where there are C
different copies of β, each of the size K × T , where βc

kt =
p(xt

n|zk
n = 1). The generative equations above (Eq.2-6)

are hence changed according to this dependency on c. Due
to space limitation, we shall omit deriving the learning and
inference rules for this second theme model. We will release
a technical note with this paper online for completeness.
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2.1.2 Bayesian Decision

Before we show how we could proceed to learn the model
parameters, let us first look at how decisions are made given
an unknown scene. An unknown image is first represented
by a collection of patches, or codewords. We keep the nota-
tion x for an image of N patches. Given x, we would like
to compute the probability of each scene class

p(c|x, θ, β, η) ∝ p(x|c, θ, β)p(c|η) ∝ p(x|c, θ, β) (7)

where θ, β and η are parameters learnt from a train-
ing set. For convenience, the distribution of p(c|η) is al-
ways assumed to be a fixed uniform distribution in which
p(c) = 1/C. Therefore we will omit to estimate η from
now on. Then the decision of the category is made by
comparing the likelihood of x given each category: c =
argmaxc p(x|c, θ, β). The term p(x|c, θ, β) is in general
obtained by integrating over the hidden variables π and z
in Eq.2.

p(x|θ, β, c) =

�
p(π|θ, c)

�
N�

n=1

�
zn

p(zn|π)p(xn|zn, β)

�
dπ (8)

Unfortunately Eq.8 is not tractable due to the coupling
between π and β [1]. However, a wide range of ap-
proximate inference algorithms can be considered, includ-
ing Laplace approximation, variational approximation and
MCMC method [1]. In the following section, we briefly
outline the variational method based on Variational Mes-
sage Passing (VMP) [18], a convenient framework to carry
out variational inferences.

2.1.3 Learning: Variational Inference

In learning, our goal is to maximize the log likelihood term
log p(x|θ, β, c) by estimating the optimal θ and β. Using
Jensen’s inequality, we can bound this log likelihood in the
following way.

log p(x|θ, β) ≥
� �

z

q(π, z) log p(π, z, x|θ, β)dθ −
� �

z

q(π, z) log q(π, z)

= Eq [log p(π, z, x|θ, β)] − Eq [log q(π, z)]

where q(π, z|γ, φ) could be any arbitrary variational dis-
tribution. By letting L(γ, φ; θ, β) denote the RHS of the
above equation, we have:

log p(x|θ, β) = L(γ, φ; θ, β) +
KL(q(π, z|γ, φ) ‖ p(π, z|x, θ, β)) (9)

where the second term on the RHS of the above equation
stands for the Kullback-Leibler distance of two probabil-
ity densities. By maximizing the lower bound L(γ, φ; θ, β)

with respect to γ and φ is the same as minimizing the KL
distance between the variational posterior probability and
the true posterior probability.

Given Eq.9, we first estimate the variational parameters
γ and φ. Substituting the variational lower bound as a sur-
rogate for the (intractable) marginal likelihood, we can then
in turn estimate the model parameters θ and β. The iter-
ative algorithm alternates between the following two steps
till convergence. We will soon publish a technical note with
detailed derivations on our website.

1. (E-step) For each class of images, optimize values for the
variational parameters γ and φ. The update rules are

γi = θi +

N�
n=1

φni (10)

φni ∝ βiν exp

�
Ψ(γi) − Ψ(

K�
j=1

γj)

�
(11)

where i is the image index, n the patch index and Ψ(·) a
digamma function.

2. (M-step) Maximize the reuslting lower bound on the log like-
lihood with respect to the model parameters θ and β. We can
do this by finding the maximum likelihood estimates with ex-
pected sufficient statistics computed in the E-step [1, 8].

2.1.4 A Brief Comparison

We can compare this hierarchical model with a traditional
texton model for texture recognition, for instance [5, 16].
Fig.3(c) is a graphical representation of a traditional texton
model. We see here that for a given class of textures or
materials, only a single multinomial parameter β is associ-
ated with the class. In other words, to generate an image, all
patches are drawn from a single “theme”. This might be fine
when the training data are “pure” textures segmented man-
ually. Since there is no “contaminations” of other “themes”,
the single mixture learnt from the codewords might suffice.
As shown by [5], this framwork may be further extended by
training different models for the same category of textures
under different lighting and view point conditions. This
again requires manual separations of data and labelling of
the segmented textures. In Section 4, we will show empir-
ically that by explicitly modelling the intermediate themes
in these complex scenes, our model achieve better recog-
nition performances than the traditional “texton” model in
Fig.3(c).

2.2 Features & Codebook

In the formulation of the theme model, we represent each
image as a collection of detected patches, each assigned a
membership to a large dictionary of codewords. We show
now how these patches are obtained and memberships as-
signed.
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Figure 4. A codebook obtained from 650 training examples
from all 13 categories (50 images from each category). Image
patches are detected by a sliding grid and random sampling of
scales. The codewords are sorted in descending order according
to the size of its membership. Interestingly most of the codewords
appear to represent simple orientations and illumination patterns,
similar to the ones that the early human visual system responds to.

.

2.2.1 Local Region Detection and Representation

While most previous studies on natural scene categorization
have focused on using global features such as frequency dis-
tribution, edge orientations and color histogram [3, 11, 15],
recently it has been shown local regions are very powerful
cues [17]. Compared to the global features, local regions
are more robust to occlusions and spatial variations. We
have tested four different ways of extracting local regions.

1. Evenly Sampled Grid. An evenly sampled grid spaced at
10 × 10 pixels for a given image. The size of the patch is
randomly sampled between scale 10 to 30 pixels.

2. Random Sampling. 500 randomly sampled patches for a
given image. The size of the patch is also randomly sam-
pled between scale 10 to 30 pixels.

3. Kadir & Brady Saliency Detector. Roughly 100 ∼ 200 re-
gions that are salient over both location and scale are ex-
tracted using the saliency detector [4]. Scales of each inter-
est point are between 10 to 30 pixels.

4. Lowe’s DoG Detector. Roughly 100 ∼ 500 regions that are
stable and rotationally invariant over different scales are ex-
tracted using the DoG detector [7]. Scales of each interest
point vary between 20 to 120 pixels.

We have used two different representations for describ-
ing a patch: normalized 11 × 11 pixel gray values or a
128−dim SIFT vector [7]. Table 1 compares and contrasts
the experimental results of the model based on different lo-
cal region detectors and representations.

2.2.2 Codebook Formation

Given the collection of detected patches from the training
images of all categories, we learn the codebook by perform-
ing k-means algorithm [5]. Clusters with too small a num-
ber of members are further pruned out. Codeswords are then
defined as the centers of the learnt clusters. Fig.4 shows the
174 codewords learnt from the gray value pixel intensities.

3. Dataset & Experimental Setup

Our dataset contains 13 categories of natural scenes
(Fig.1): highway ([9], 260 images), inside of cities ([9],
308 images), tall buildings ([9], 356 images), streets ([9],
292 images), suburb residence (241 images), forest ([9],
328 images), coast ([9], 360 images), mountain ([9], 374
images), open country ([9], 410 images), bedroom (174 im-
ages), kitchen (151 images), livingroom (289 images) and
office (216 images). The average size of each image is ap-
proximately 250 × 300 pixels. The 8 categories that are
provided by Oliva and Torralba were collected from a mix-
ture of COREL images as well as personal photographs [9].
The rest of the 5 categories are obtained by us from both
the Google image search engine as well as personal pho-
tographs. It is also worth noting that 4 (coast, forest, open
country and mountain) of the categories are similar to the 4
of the 6 categories reported in [17]. But unlike them, we
only use grayscale images for both learning and recogni-
tion. We believe that this is the most complete scene cate-
gory dataset used in literature thus far.

Each categories of scenes was split randomly into two
separate sets of images, N (100) for training and the rest for
testing. A codebook of codewords was learnt from patches
drawn from a random half of the entire training set. A model
for each category of scenes was obtained from the training
images. When asked to categorize one test image, the de-
cision is made to the category label that gives the highest
likelihood probability. A confusion table is used to illus-
trate the performance of the models. On the confusion ta-
ble, the x-axis represents the models for each category of
scenes. The y-axis represents the ground truth categories
of scenes. The orders of scene categories are the same in
both axes. Hence in the ideal case one should expect a com-
pletely white diagonal line to show perfect discrimination
power of all category models over all categories of scenes.
Unless otherwise specified, all performances in Section 4
are quoted as the average value of the diagonal entries of
the confusion table. For a 13-category recognition task, ran-
dom chance would be 7.7%. Excluding the preprocessing
time of feature detection and codebook formation, it takes a
few minutes (less than 10) to obtain 13 categories of mod-
els (100 training images for each category) on a 2.6 Ghz
machine.
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Figure 5. Internal structure of the models learnt for each cat-
egory. Each row represents one category. The left panel shows
the distribution of the 40 intermediate themes. The right panel
shows the distribution of codewords as well as the appearance of
10 codewords selected from the top 20 most likely codewords for
this category model.
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4. Results
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Figure 9. Dendrogram of the relationship of the 13 category
models based on theme distribution. y-axis is the pseudo-euclidean
distance measure between models.

Fig.7 is an overview of the performance of the Theme
Model 1. We used a total number of 40 themes. A closer
look at the confusion table (Fig.7(a)) reveals that the high-
est block of errors occurs among the four indoor categories:
bedroom, livingroom, kitchen and office. Another way to
evaluate the performance is to use the rank statistics of
the categorization results (Fig.7(b)). Using both the best
and second best choices, the mean categorization result in-
creases to 82.3%.

Both Fig.5 & 8 demonstrate some of the internal struc-
ture of the models learnt for each category. Take the “high-
way” category as an example in Fig.5. The left panel shows
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Figure 10. (a) Number of training examples vs. performance.
(b) Number of themes vs. performance. (c) Number of codewords
vs. performance. All performances are quotes from the mean of
the confusion table.
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Figure 11. (a) Number of significant codewords as a func-
tion of the number of categories learnt. “Significance” is defined
as 90% of the probabilistic weight. (b) Performance comparison
among Theme Model 1 (M1), Theme Model 2 (M2) and the tradi-
tional texton model (M3, e.g. [16].)

the average distribution of the 40 intermediate themes for
generating highway images. In the right panel, we show
that after a large number of samplings (1000), the average
distribution of all codewords for generating highway im-
ages. Clearly, this distribution of codewords (174, Fig.4)
is very much influenced by the distribution of themes. We
show in the right panel 10 of the top 20 codewords that are
most likely to occur in highway images. Note that horizon-
tal lines dominate the top choices. This is to be constrasted,
for instance, to the likely codewords for the tall building
category. We see that most of the top-choice codewords are
vertical edges in the case of tall buildings. The 4 indoor cat-
egories all tend to have sharp horizontal and vertical edges.
This is quite revealing of the scene statistics for these man-
made, indoor structures. The distribution of both the themes
and the codewords of the four indoor categories further in-
dicates the confusion among these four categories. Fig.6
then shows some testing image examples.

We can further establish some relationship among the
categories by looking at the model distances among them
(see the dendrogram in Fig.9). When the distribution of the
themes are close, the categories would also be close to each
other on the dendrogram. For example, the closest cate-
gories are the 4 indoor environments.

Fig.10 illustrates 3 different aspects of the algorithm:

Descriptor Grid Random Saliency [4] DoG [7]

11 × 11 Pixel 64.0% 47.5% 45.5% N/A
128-dim Sift 65.2% 60.7% 53.1% 52.5%

Table 1. Performance comparison given different feature detec-
tors and representations. The performance is quoted from the mean
of the confusion table similar to that of Fig.7. SIFT representa-
tion seems to be in general more robust than the pixel grayvalue
representation. The sliding grid, which yields the most number of
patches, out performs all other detectors.
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performances versus the number of training examples (a), of
themes (b) and of codewords in the codebook (c). Fig.11(a)
shows that by sharing the resources of codewords and in-
termediate themes, the number of significant codewords
for learning more and more new models tend to level off
quickly [13]. Table 1 shows how different feature detection
and representation influences the performance.

5. Summary & Discussion

We have proposed a Bayesian hierarchical model to
learn and recognize natural scene categories. The model
is an adaptation to vision of ideas proposed recently by
[1] in the context of document analysis . While previous
schemes [9, 17] require a detailed manual annotation of the
images in the training database, our model can learn char-
acteristic intermediate “themes” of scenes with no supervi-
sion, nor human intervention and achieves comparable per-
formance to [17] (see Table 2 for details.).

# of
categ.

training #
per categ.

training requirements perf.
(%)

Theme
Model 1

13 100 unsupervised 76

[17] 6 ∼ 100 human annotation of 9 semantic
concepts for 60, 000 patches

77

[9] 8 250 ∼
300

human annotation of 6 proper-
ties for thousands of scenes

89

Table 2. Comparison of our algorithm with other methods. The
average confusion table performances are for the 4 comparable cat-
egories (forest, mountain, open country and coast) in all methods.
We use roughly 1/3 of the number of training examples and no
human supervision than [9]. Fig.10(a) indicates that given more
training examples, our model has the potential of achieve higher
performances.

Our model is based on a principled probabilistic frame-
work for learning automatically the distribution of code-
words and the intermediate-level themes, which might be
thought to be akin to texture descriptions. Fig.11(b) shows
that this model outperforms the traditional “texton models”
where only a fixed codeword mixing pattern is estimated
for each category of scenes [16]. One way to think about
our model is as a generalization of the the “texton models”
[5, 16] for textures, which require samples of “pure” tex-
ture to be trained. By contrast, our model may be trained on
complete scenes and infer the intermediate “themes” from
the data. In the future, it is important to further explore this
relationship between the “themes” to meaningful textures
such as the semantic concepts suggested by [9, 17]. In ad-
dition, we provide a framework to share both the basic level
codewords as well as intermediate level themes amongst
different scene categories. Similarly to what [13] found,
the number of features to be learnt increases sub-linearly as
the number of new categories increases.

We tested our algorithm on a diverse set of scene types,
introducing a number of new categories (13 here, as op-

posed to 4+4 in [9] and 6 in [17]). The lackluster perfor-
mances for the indoor scenes suggest that our model is not
complete. At a minimum, we need a richer set features: by
using different cues as well as a hierarchy of codewords, we
might be able to form much more powerful models for these
difficult categories.
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