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Abstract

In learned helplessness experiments, subjects first expe-
rience a lack of control in one situation, and then show
learning deficits when performing or learning another
task in another situation. Generalization, thus, is at the
core of the learned helplessness phenomenon. Substan-
tial experimental and theoretical effort has been invested
into establishing that a state- and task-independent be-
lief about controllability is necessary. However, to what
extent generalization is also sufficient to explain the
transfer has not been examined. Here, we show qual-
itatively and quantitatively that Bayesian learning of
action-outcome contingencies at three levels of abstrac-
tion is sufficient to account for the key features of learned
helplessness, including escape deficits and impairment of
appetitive learning after inescapable shocks.

Introduction
Helplessness is a failure to avoid punishment or obtain
rewards even though they are under the agent’s con-
trol. The aetiology and consequences of helplessness
have been studied extensively in the animal learning lit-
erature using the learned helplessness paradigm [1]. In
this paradigm, helplessness is induced in healthy animals
by exposure to inescapable electric shocks. Helplessness
is then measured by the subsequent failure to escape es-
capable shocks in a novel environment. The phenomenon
was first demonstrated in dogs in the context of testing
the two-factor learning theory using the shuttle-box es-
cape task [2]. In the now classical version of the task,
three animals are compared. A master rat experiences
electrical shocks. These come on unpredictably, but can
be terminated by some action, for instance turning a
wheel. A yoked rat is exposed to the exact same sequence
of shocks that are delivered to the master rat, but has
no action available to terminate the shocks. A third rat,
the control, is not exposed to shocks. Compared to the
controls, the yoked rats are impaired at acquiring new
instrumental responses, but the master rats are either
unimpaired or may even show an improvement [1,3]. Ef-
fects reminiscent of those in animal learning have been
demonstrated in humans. For instance, people who have
been exposed to uncontrollable loud noise or insoluble
problems are more likely give up on solving anagrams in
a subsequent task [4]. Hopelessness theory is a trans-
lation of the helplessness concepts to the human and
attributional realm [5].

Extensive animal and human experimentation and
theoretical work have clarified that the crucial compo-

nent is a perceived lack of control rather than more spe-
cific explanations. First, exposure to one type of uncon-
trollable reinforcer in one situation can profoundly im-
pair the acquisition of many other types of behaviours
(including escape, jumping, immobility, lever pressing,
and complex sequential behaviours) in a wide range of
different situations [1]. Second, the effect of inescapable
shocks is not due to shock-induced analgesia, because it
also impairs reward seeking in the absence of negative
reinforcers [6]; and as uncontrollable rewards can also
induce helplessness [7–9]. Third, it is not reducible to
an interference between learned motor inactivity as it
also affects the ability to acquire behavioural suppres-
sion as an escape response [10]. Furthermore, in ac-
cordance with the finding that the probability of gen-
eralization increases with the variability of the examples
(see [11]), learned helplessness lasts longer when it is in-
duced by experiencing multiple mild stressors (chronic
mild stress; [12]) than when it is induced by a single se-
vere stressor. In conclusion, there is strong evidence sug-
gesting that helplessness is learned by generalizing from
one uncontrollable situation to believing that situations
are uncontrollable in general.

Maier and Seligman formalized controllability in terms
of the conditional probability of the reinforcer RF (re-
ward or punishment) given whether or not action A is
taken (A or Ā) [1]. According to their definition, the
agent has control if and only if P (RF|A) 6= P (RF|Ā).
Huys and Dayan formalized the essence of this defini-
tion, i.e. that helplessness exists when altering behaviour
does not alter outcomes, for multiple actions, outcomes,
and degrees of desirability [13]. Here we continue [13]’s
argument that generalization is central to learned help-
lessness by investigating two crucial interactions between
perceived control and generalization:

1. Learning about the controllability of one situation
transfers to novel situations via generalization.

2. Abstract knowledge about control determines how
strongly the observation that a particular action had
a particular effect will be generalized.

Using a hierarchical Bayesian model of action-outcome-
contingencies we show that these interactions are suffi-
cient to explain various deficits observed in the learned
helplessness paradigm.



Figure 1: Hierarchical Bayesian model of state-
transitions and controllability. θs,a are the transition
probabilities for taking action a in state s (level I). The
second level, abstracts away from particular actions and
represents the general outcome tendency βs of situation
s and its controllability αs. The third level abstracts
away from any particular state and represents how con-
trollable the world is in general (c) and how much states
differ with respect to controllability (σ2

c ).

Methods

In a novel situation s, a rational agent may have to learn
how likely each of the available actions a1, · · · , am is to
lead into each of the potential successor states s1, · · · , sn.
In the absence of knowledge about the particular situa-
tion s, the agent can bring experience in other situations
s′ to bear on the problem, i.e. it can use its knowl-
edge about one part of the transition matrix to inform
its belief about others. Hierarchical Bayesian formula-
tions provide a normative framework for such general-
izations [11,14]. In this section, we present such a model
of state-transition probabilities with three levels of hi-
erarchy (see Figures 1 and 2). At the lowest level are
the probabilities that taking action a in state s will lead
to state s′. At the second level, the model represents
the typical outcome probabilities of actions in any one
particular situation s and how different the outcomes of
different actions tend to be. The more actions are be-
lieved to have similar outcomes, the less control there
is. At the third and most abstract level, the model rep-
resents knowledge about how controllable situations are
in general. In this model beliefs about the world’s con-
trollability acts as an over-hypothesis that shapes how
the agent learns state-transition probabilities (cf. [14]).
Concretely, the agent’s belief about the state St+1 result-
ing from taking action a in state s is a multinomial distri-
bution (Equation 1). The agent assumes that the transi-
tion probabilities θa,s of the actions a available in state
s are all drawn from the same distribution: a Dirichlet
distribution with the state-specific mean vector βs and

∀a, s : St+1|St = s,At = a ∼ Multinomial (θa,s) (1)

∀a, s : θa,s ∼ Dirichlet (αs · βs) (2)

∀s : − log(αs) ∼ N
(
c, σ2

c

)
(3)

∀s : βs ∼ Dirichlet (1) (4)

c ∼ N (µ, σ2
µ) (5)

σ2
c ∼ InvGamma(ασ, βσ) (6)

Figure 2: The functional dependencies of the graphical
model in Figure 1.

a second parameter αs that determines the controllabil-
ity of situation s (Equation 2). If αs goes to ∞, then
the agent becomes sure that the transition probabilities
θa1,s, · · · ,θaN ,s are independent of the agent’s action a.
This means that the situation is uncontrollable (corre-
sponding to the second notion of controllability in [13]).
Values of αs close to zero corresponds to the belief that
the transition probabilities θa1,s, · · · ,θaN ,s for different
actions are uninformative about each other and hence
can differ. To allow for the transfer of knowledge be-
tween states, a further level is needed: in addition to its
belief about the controllability αs of individual situations
s, the agent also has a belief about how controllable situ-
ations are in general. This belief is described by a normal
distribution on − log(αs) (Equation 3). The parameter
c = E[− log(α)] expresses how controllable situations are
on average, and σ2

c expresses how much controllability
varies from situation to situation.

The average controllability c and the variability of con-
trol σ2

c are unknown properties of the world that have
to be learned from experience. We describe the agent’s
prior beliefs about these quantities by a normal distri-
bution on c (Equation 5) and an Inverse-Gamma distri-
bution on σ2

c (Equation 6). In this model helplessness
results from a probabilistic belief that one’s control over
the world is low on average (low c) and varies very little
across situations (low σ2

c ).

Assuming that this hierarchical Bayesian model cap-
tures the subjects’ internal representation of transition
probabilities and control, we can examine how they infer
the controllability c of the world in general from the ob-
servations o = {(s1, a1, s2) , · · · , (st−1, at−1, st)} of the
state transitions (s1, s2), · · · , (st−1, st) and their actions
a1, · · · , at. In addition, we can simulate the weaker
generalization on the situation-specific controllability αs
and transition-tendency βs by computing P (αs,βs|o).
Finally, we can investigate how this generalization is
shaped by abstract beliefs about control (P (c, σ2

c )).

Simulations The effects of controllable and uncontrol-
lable shocks were modelled by simulating the learning
process taking place during the shocks as Bayesian in-
ference on c and σ2

c . The naive subjects’ belief about
controllability was modelled by a probability distribu-
tion with E[α] = 10 and Var[α] = 100; the variance of
the prior beliefs was 100 for c and 0.1 for σ2

c . To model
the observations resulting from controllable (oc) versus
uncontrollable shocks (o¬c), we assumed one observation



per second during 64 shocks lasting 60 seconds each. For
controllable shocks there was one action (a1) that would
always terminate the shock (s1 → s2) and four actions
that did not (s1 → s1), whereas there was no such action
for uncontrollable shocks.

Learning after exposure to shocks was modelled as
Bayesian inference on α,β given c = E[c|o¬c] and σ2

c =
E[σ2

c |o¬c] for uncontrollable shocks versus c = E[c|oc]
and σ2

c = E[σ2
c |oc] for controllable shocks.

Inference was performed using Markov chain
Monte-Carlo (MCMC) methods. To sample from
P (α,β, c, σ2

c |o), we used a Metropolis-Hastings
algorithm with Gaussian random-walk proposals
on c and − log(α). The proposal for βt+1 was
Dirichlet(10n · βt) where n is the number of states,
and the proposal for σ2

c,t+1 was an Inverse-Gamma

distribution with mean σ2
c,t and variance 1. 50 Markov

chains were run for 51000 iterations with a burn-in
period of 1000 iterations. P (α,β|c, σ2

c ,o) was com-
puted in the same way. The posterior expectation
of θ was computed using Monte-Carlo integration:
E[θ|o, c, σ2

c ] =
∫
E[θ|α, β,o] · p(α,β|o, c, σ2

c )dαdβ ≈
1
mΣmi=1E[θ|αi,βi,o] with αi,βi ∼ P (α,β|o, c, σ2

c ).

Results

As a first step in assessing whether generalization can
account for the differential effects of controllable ver-
sus uncontrollable stress, we simulated Bayesian learning
from these experiences according to the model shown in
Figure 1. Figure 3A shows the simulated changes in
perceived controllability induced by the escapable and
inescapable shocks administered in the learned help-
lessness paradigm [15]. After inescapable shocks, the
subjects’ perceived control c was reduced, whereas con-
trollable shocks increased it. Furthermore, control-
lable shocks increased the estimated variability of con-
trol across situations, whereas no such change was ob-
served after inescapable shocks (Figure 3B). Thus, the
two kinds of shocks have opposite effects on the subjects’
high-level beliefs about controllability.

We next asked whether the beliefs induced by uncon-
trollable shocks were sufficient to impair escape learn-
ing in a different task, and whether the beliefs induced
by controllable shocks have the opposite (mastery) ef-
fect. We modelled these beliefs by the inferred mean
and variance of c for escapable and inescapable shocks
and simulated learning in the shuttle-box escape task.
As a first step, we simulated learning from given obser-
vations with one action that did (a1) and four actions
that did not cancel the shock (a2, · · · , a5). Concretely,
we simulated how strongly naive subjects, subjects who
had experienced inescapable shocks (yoked), and sub-
jects who had experienced escapable shocks (masters)
would believe that action a1 cancels the shock after hav-
ing taken action a1 for 0, 1, 2, 4, 8, 16 or 32 times and
each of the four other actions 8 times. Figure 4 shows
that yoked subjects (red) acquired the escape response
more slowly than naive subjects (blue): more evidence
was required before they believed that the action was ef-
ficient in terminating the shock. Furthermore, the model

Figure 3: A: Expected controllability learned from con-
trollable or uncontrollable electric shocks. The values
on the x-axis are the change ∆c relative to the con-
trollability expected by naive subjects and height of the
bars shows how strongly the simulated agent beliefs in
the corresponding value of c. B: Variance of controlla-
bility learned from controllable and uncontrollable elec-
tric shocks. The values on the x-axis are the change
∆c relative to the variability expected by naive subjects
and height of the bars shows how strongly the simulated
agent beliefs in the corresponding value of σ2

c .

Figure 4: Simulated effects of controllable and uncon-
trollable shocks on the speed of learning that action 1
terminates the shock.

also captured mastery effects, whereby prior exposure to
controllable shocks leads to faster learning (green; [16]).

To more quantitatively relate the learning dynamics
shown in Figure 4 to empirical data, we simulated learn-
ing and decision making in the fixed-ratio operant con-
ditioning task of [17]. In this task, rats have to learn
to press a lever, but only every third lever press termi-
nates the shock. This task was modelled as sequential-
decision making. To do so, we partitioned the 60 sec-
onds of each trial in [17]’s experiment into 30 bins, each
2 seconds long, and simulated one decision, one observa-
tion, and one belief update for every bin. The simulated
choices were to stay still (a0), to push the lever (a1),
or to perform a different action (a2). The reward for
staying still and receiving the shock was modelled as -1
(r(s1, a0, s1) = −1). Moving and receiving a shock was
assumed to incur a small additional cost (r(s1, a2, s1) =
−1.2). If the action stopped the shock, it was assumed
to incur only the cost of movement (r(s1, a0, s2) = 0 and
r(s1, ai, s2) = −0.2 for i ∈ {1, 2}). We assumed that rats



Figure 5: The left panel shows empirical data acquired
by [17] as shown in [1]. The plots on right show our
simulations of the experiment.

learn the probability P (St+1 = s2|St = s1, At = ai) that
an action ai terminates the shock (an alternative model
might consider treating different numbers of lever presses
as separate actions). The subjects’ internal representa-
tion of transition probabilities was modelled as the hi-
erarchical Bayesian model shown in Figure 1. The rat’s
decision making was simulated by a sampling algorithm
to produce behaviour akin to probability-matching [18].
Specifically, we assumed that the rat simulates five out-
comes ui,j = r(s, ai, s

′
j), s

′
j ∼ P (St+1|St = s,At = ai)

of each action ai and chooses the action ai for which
the average utility 1

5

∑5
j=1 ui,j was largest, and ties were

broken at random. Under these assumptions, the learn-
ing dynamics shown in Figure 4 capture the qualitative
effects of uncontrollable shocks on the probability to es-
cape shock and the time required to do so [17]: yoked
subjects failed to escape more often than naive subjects
(Figure 5, left panel), and when they succeeded to escape
it took them longer (Figure 5, right panel). Furthermore,
our model accounts for the mastery effect that rats who
had been exposed to controllable shocks prior to the task,
escaped faster than rats with no prior exposure to shock.

As outlined in the introduction, learned helplessness
impairs not only the ability to learn from punishments
but also from rewards. To assess whether our model
captures this effect, we simulated the experiment by [6].
In the experiment’s appetitive choice task, rats were re-
warded with food for going into one of two chambers
after they had been trained to prefer the other cham-
ber. We modelled this task as a sequence of decisions,
observations, and belief updates as described above. As
Figure 6 shows our model captures that uncontrollable
shocks reduced the probability that a rat would first seek
out the chamber in which a reward would be delivered.
Thus this apparently anhedonic behaviour can be ex-
plained purely in terms of impaired associative learning
due the generalization that the world is uncontrollable.

Next, we asked whether our model can account for
the finding that the effect of learned helplessness is most
pronounced in tasks that are complex and require per-
sistence. To answer this question, we simulated decision

Figure 6: Simulation of the appetitive choice distinction
task by [6]. Our simulation captures that yoked rats
performed worse than naive rats across all 10 blocks of
the experiment.

Figure 7: Simulation of the experiment by [19]. Dashed
lines are model predictions; diamonds are data points.
The three columns correspond to the experimental con-
ditions requiring 1, 2, or 3 lever presses.

making and learning in the experiment by [19]. In this
experiment, yoked rats did learn to escape response when
one or two, but not when three lever presses were re-
quired. In Figure 7, we show that the model can quanti-
tatively capture the increasing penetrance of inescapable
shock exposure with increasing escape response require-
ments.

Discussion

Our results indicate that a normative account of gener-
alization of action-outcome contingencies is sufficient to
produce a wide range of phenomena observed in learned
helplessness experiments. The account captures (i) how
helplessness is induced by uncontrollable stressors and
why it transfers to novel situations, (ii) why control-
lable stress fails to induce helplessness, (iii) that helpless-
ness results from impaired learning that different actions
have different effects, (iv) mastery effects, (v) impaired
reward seeking, and (vi) the interaction between help-
lessness and task requirements. This suggests that the
generalization of experienced control may be sufficient
to account for many learned helplessness effects.

Note that our model explains helplessness as the con-
sequence of rational learning and generalization (cf.
[11, 14]) from uncontrollable stress. Mirroring the fact
that learned helplessness induces depression-like states
in healthy animals and affects healthy humans, this sug-



gests one pathway by which learned helplessness may
arise as a rational adaptation to an uncontrollable en-
vironment rather than from negative biases or dysfunc-
tional information processing. In the present account,
the generalization that leads to helplessness is that dif-
ferent actions tend to have the same effect. This gen-
eralization can occur at two levels of abstraction: (i)
from the outcomes of some actions in a given situation
to the outcomes of all actions available in that situation,
and (ii) from the controllability of one situation to the
controllability of situations in general. Our model pre-
dicts that after uncontrollable stress generalizations of
the first type will be unusually strong. This may cap-
ture overgeneralization – a frequent feature of depressive
thought in humans [20] – and the model explains how
this learning style increases the risk for helplessness by
fostering the belief that all actions are equal.

According to the classical notion [1], control requires
that taking an action or not alters the probability of out-
comes. Our model generalizes this notion by allowing for
multiple actions, multiple outcomes, and two additional
levels of abstraction, and it expands it from a binary
distinction to a graded, quantitative measure of control-
lability. As a result, our model instantiates [13]’s second
type of controllability which captured on the achievabil-
ity of different outcomes. While the notion of control
presented here does not take into account the outcomes’
desirability (type 3 in [13]), it refines [13]’s proposal
of how helplessness might be learned by generalization
in two regards. First, [13] juxtaposed two extremes of
generalization: the controllabilities of different environ-
ments are (i) independent (no generalization) or (ii) iden-
tical (full generalization). Arguably, both extremes cor-
respond to pathologically inaccurate models of the world.
By contrast, the hierarchical generative model proposed
here formalizes the more realistic intermediate assump-
tion that although some situations are more controllable
than others, knowing about the controllability of one sit-
uation is informative about the controllability of other
situations. Second, inference in this model captures an
important aspect of attribution: Was the outcome due
to the action I took or due to the situation I was in?
In the model, a perceived lack of control induces mis-
attributions that impair learning: the over-hypothesis
that the world is uncontrollable renders implausible any
interpretation according to which different actions have
different effects. Therefore the perceived lack of control
biases people to attribute the outcome of taking action
a in state s to the state s rather than to the action
that they have taken. For extreme helplessness the situ-
ation’s action-independent outcome tendency βs will be
updated just as much as the outcome probabilities θs,a of
taking action a in this situation. Conversely, the action-
specific outcome probabilities θs,a will be updated no
more than βs, and the outcomes of actions b, c, d, · · ·
will influence the belief about θs,a almost as much as the
outcomes of action a itself. This increases the amount of
evidence required to discover that there is an action that
achieves the goal while most other actions do not, and
this is how the perceived lack of control impairs learn-

ing. Thus, according to our model, helpless behaviour
in simple tasks results from slowed learning of transition
probabilities. This complements a recent model of how
the perceived lack of control impairs planning in com-
plex, sequential decision problems [21].

Despite the encouraging results reported here, more
research is needed to establish the validity of this mod-
elling approach. Our simulation of the experiment re-
ported in [19] did not fully capture the rats’ learning
dynamics and overestimated their performance in the
simplest condition. These discrepancies could be due
to the simplistic assumption that rats do not associate
shock termination with the number of lever presses but
only with their most recent action. As a result, the fit
achieved by the reported simulation is not substantially
better than the fit obtained by reducing the subjective
intensity of the shock (data not shown). Therefore the
results of our simulations (Figure 7) could be mimicked
by analgesia [19, 22]. Furthermore, our model failed to
capture the precise pattern of the data in [6]. However,
the two hypotheses might be discernible using data that
reveal the dynamics of learning, or by directly probing
subjects’ beliefs about outcome probabilities in the ab-
sence of rewards.

There are important aspects of helplessness that our
model does not capture yet. It needs to assume sur-
prisingly weak priors to explain why helplessness can be
learned so rapidly—an assumption that is difficult to ex-
tend to mature animals with a lifetime of experience.
Conversely, it would be challenging to explain with our
model why even severe shock-induced helplessness tends
to fade within 48 hours. To capture these two sugges-
tions of temporal (in)stability of helplessness, our model
could be extended by replacing the constant c by a Gaus-
sian random walk C(t). This would take into account
that how much control a person has, changes through-
out his or her life. It could be used to explain why a
very brief period of uncontrollable stress can induce help-
lessness despite a lifetime of experience in a controllable
environment. This extension may also explain why the
speed of learning about controllability increases with the
environment’s perceived volatility (cf. [23, 24]). Beyond
these cognitive signatures of helplessness, our model has
yet to engage with the affective and subjective aspects
of helplessness.

Our model suggests a number of avenues for future
work. As normative inference, exposure to sufficient con-
trollability will lead to the correct inference, suggesting
that experience of control should heal helplessness, and
thus that the escape deficit should be temporary. Why
and how the experience of shocks that an animal did not
attempt to escape may nurture helpless beliefs may ne-
cessitate adaptations in the inference. Nevertheless, the
model does capture that controllable stress can immu-
nize subjects against the effects of uncontrollable stress,
and suggests two computational mechanisms: first a
higher expected controllability, and second a higher esti-
mate of the variability of control across situations. If the
initial expected controllability is higher, then a given re-
duction in perceived control may no longer be sufficient



to induce learned helplessness. Alternatively, a higher
estimate of the variability of control across situations
would reduce the strength of the generalization from un-
controllable stress in one situation to the controllabil-
ity of the world in general. This theoretical work does,
however, also echo the likely limited benefits of exposure
because a subjects’ helpless choices in some situations,
paired with strong tendencies to generalise, can produce
sufficient evidence of lack of control to drown any islands
of controllability.

Our model may be able to illuminate why and how the
effects of chronic-mild stress [12] differ from the effects
of severe-acute stress in their scope, severity, and du-
ration. The results suggests that the underlying mecha-
nisms can be understood in terms of well-studied general
generalization phenomena [11]. For instance, since the
strength of a generalization increases with the variabil-
ity of the examples, the experience of multiple stressors
should render the effects of chronic mild stress more gen-
eral than the equivalent amount of stress experienced in
a single situation.

Learned helplessness is a behavioural paradigm with
parallels in humans and animal models, and with es-
tablished validity in research on depression [25]. Using
methods from reinforcement and machine learning, this
work has shown that abstract learning and generalization
about controllability explain many of the key features of
learned helplessness in animals.
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