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Abstract 
Neuroscience evidence supports the idea that 

biological adaptive behavior may utilize combination 
and sequences of movement primitives, allowing the 
motor system to reduce the dimensionality of 
movement control. 

We present a framework, using sampling-based 
motion planning, that is able to automatically 
determine the sequencing of parametric movement 
primitives needed to execute a given motion task. 

Our approach builds a search tree in which nodes 
are configurations reachable with one or more 
movement primitives, and edges represent valid 
paths connecting parent and child nodes. The paths 
are determined by a motion planner that operates in 
the parameter space of a single movement primitive. 
The search tree is expanded with A*-like best-first 
search using greedy problem-specific heuristics. 

The benefits of our approach are twofold: 1) 
planning complex motions becomes more efficient in 
the reduced dimensionality of each movement 
primitive, and 2) the ability to plan entire motions 
containing heterogeneous types of constraints, such 
as collision-free, balanced, alternating support 
contacts, etc. 

We present a general framework and several 
simulation results of statically stable biped walking 
motions among obstacles. The presented planning 
capabilities enable robots to better handle 
unpredicted situations, and can be used as a method 
of self-organization of higher-level primitives. 

1. Introduction 
The control of complex robot motions remains a key 
challenge in robotics. While the number of degrees of 
freedom (DOF) can characterize the complexity of a robot, 
the complexity of its motions is further influenced by the 
constraints they are subjected to. 

Evidence from neuroscience supports the idea that 
complex and adaptive motor behavior might be obtained 
through the combination of motor primitives [TS00] [Ma02]. 

In the frog and rat, for instance, the presence of spinal force 
fields, when appropriately combined through supra-spinal 
inputs, results in the entire repertoire of observed movement 
[Gi+93]. Studies of human movement [TS00] also provide 
evidence towards an encoding of primitives. 

In robotics, most work in this domain has focused on the 
design, learning, and combination of different kinds of motor 
primitives [SS98] [AM02] [Wi96]. In contrast, our work 
focuses on the problem of automatic adaptation and 
sequencing of movement primitives in order to satisfy a 
given motion task in an unknown environment. 

We consider that a movement primitive affects the 
configuration of a robot through a proper parameterization, 
respecting a set of motion constraints. Our method is then 
able to plan motions traversing different configuration sub-
spaces, each being covered by a single primitive. As a result, 
we are able to plan entire motions respecting heterogeneous 
types of constraints, such as: collision free, in balance, 
alternating support contacts, etc (see Figure 1). 
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Figure 1:  Climbing motion obtained with movement primitives 
designed to operate in the different support modes. 

Our method finds the sequencing of primitives by means 
of a search tree in which nodes are configurations reachable 
by more than one movement primitive, and edges represent 
valid paths connecting parent and child nodes. A sampling-



 

based motion planner operating in the parameter space of a 
single movement primitive determines each valid path. 
Therefore, edges represent primitive motions leading to 
nodes that serve as connection points allowing primitive 
change. The tree is expanded with A*-like best-first search 
using greedy problem-specific heuristics [RN95], until the 
desired task is satisfied. 

The given vocabulary of movement primitives is 
responsible for reducing the planning complexity, which is 
related both to the number of DOF to be controlled and to the 
diversity of motion constraints to be satisfied. If the 
vocabulary of movement primitives is able to express the 
motions required to satisfy the task, the planner will easily 
find connection points between primitives, allowing the 
search tree to approach a solution. The chosen planner 
dictates the strategy of how movement primitives are 
adapted to overcome obstacles towards connection points. 

Our method focuses on the generation of kinematic 
trajectories, assuming that a PD controller is available in 
order to transfer motions to the real robot. This choice is 
motivated by three main reasons: 

• Kinematic plans are independent of motor commands, 
thus more suited to support the idea that complex 
motions are structured trough combination and 
sequencing of movement primitives. 

• There is neuroscience evidence of representation of 
kinematic trajectory plans in the parietal cortex and 
inverse dynamics models in the cerebellum [SS98]. 

• We are able to plan motions respecting more difficult 
constraints, such as maintaining support contacts during 
locomotion or object manipulation. 

We present a general framework, applicable to different 
problems and several simulation results of a statically stable 
biped walking among obstacles. 

2. Related work 
Very few works have attempted to plan complex robot 
motions by sequencing movement primitives. Typically, 
research has independently addressed the problems of 
designing and learning control policies, or the general 
problem of motion planning in configuration spaces. We 
review the main works addressing these issues. 

Motor primitives Most previous work in robotics related 
to motor primitives has focused on the design and learning of 
control policies, based on the combination of different kinds 
of motor primitives [SS98] [AM02] [Wi96]. Note that, 
although motor, movement, and motion primitives are 
commonly interchangeable terms, the term motor primitive 
usually deals with motor commands. Motor primitives are 
often divided in two classes: oscillatory and postural 
(discrete). Being influenced by neuroscience, these works 
mainly concentrate on learning or skill acquisition, in 
dynamically simulated or real humanoid robots. 

Motion planning Several algorithms are available for the 
general problem of robot motion planning [La91]. In 
particular, sampling-based methods provide general 

algorithms applicable to problems of arbitrary dimensionality 
of control. These methods can be divided into two main 
categories: multi-query and single-query. 

Multi-query methods build a Probabilistic Roadmap 
(PRM) [Ka+96] that can be used for several different queries 
in a single static environment. The basic procedure consists 
of randomly sampling the configuration space, creating 
nodes when samples are valid, and connecting pairs of nodes 
each time the connection is tested to be valid and the nodes 
are considered to be close enough. Several variations to the 
basic PRM approach have been proposed [Be03] [Si+00] 
[BK00]. A good overview and comparison is given in 
[GO02]. 

Single-query methods are used when the environment is 
not static. Roadmaps are built specifically for each query, 
but, for better efficiency, trees are used instead of graphs. 
The Rapidly-exploring Random Tree (RRT) [KV00] [Va98] 
is a popular single-query method. Its basic idea is to expand 
nodes of the tree toward random samples until reaching the 
goal configuration. Another efficient method is based on 
Expansive Spaces Trees [Hs+99], where nodes in low-density 
locations are locally expanded. An efficient bi-directional 
version [SL01] incorporating lazy collision detection [BK00] 
is also available. 

We make use of probabilistic roadmaps constructed in 
the valid portion of the configuration space covered by one 
movement primitive. Nodes of the roadmap are candidate 
configurations to serve as connection points to another 
movement primitive. Although the choice of a planner 
should take into account problem-specific issues, we use in 
this work an RRT [KV00] [Va98] approach to create 
roadmaps in the parametric space of movement primitives. 

Legged locomotion Several different approaches have 
been presented for the control of legged locomotion. Genetic 
algorithms [RN95] have been used to adjust synapse weights 
of neural networks in central pattern generators [Ij01], and to 
evolve developmental programs based on pre-designed 
specific grammars [Fi+99]. Dynamic biped locomotion is 
usually achieved through the design of specific control 
policies [Zo+02], or based on the Zero Moment Point 
[Mi+95]. 

Our work is limited to statically balanced motions. Our 
approach can be seen as a complementary way to plan 
different patterns of motions required to overcome 
unanticipated situations. 

Some works in the virtual reality and computer games 
domain have also addressed the locomotion problem of 
legged characters. In particular, motion planners were 
proposed for the multi-modal locomotion of a 2D character 
[KP01], and for planning footsteps locations, which can be 
connected with warped motion-captured sequences applied 
to virtual characters [Ch03]. 

The work presented by Kuffner et al. [Ku+01] [Ku+02] 
also relies on a search procedure in order to sequence pre-
designed leg motions of a simulated humanoid robot. Their 
approach is more efficient than ours, however is limited to 
pre-designed motions. In our approach new types of motions 



 

are generated, for instance to avoid obstacles of any shape or 
use them as support. 

3. Definitions and notations 
Let d be the number of degrees of freedom (DOF) of a given 
robot and let C be the d-dimensional configuration space of 
the robot. A configuration in C is said to be valid if it 
satisfies problem-specific validity requirements. Examples of 
validity requirements are: collision-free, balanced, etc. The 
subset of all valid configurations in C is denoted as Cfree. 

Movement primitive As d might be too high and C 
might be too complex due to motion and environmental 
constraints, we are limited to manipulating the robot only by 
means of a finite set of movement primitives. Each primitive 
defines a control policy that locally alters a given 
configuration, according to a proper parameterization space. 
Therefore, each movement primitive Pi, i∈{1, …, n}, when 
instantiated at a given configuration s∈C, becomes a 
function of the type: 

Pi
s: Si

s → C (1) 

Si
s is the parameter space of primitive i, instantiated at 

configuration s. Configuration s is also said to be the starting 
point of movement primitive Pi

s. There are two main reasons 
for having the parameterization space dependable on s: first, 
parameters are often considered in relation to a local frame 
relative to s, and second, s might imply specific limits on the 
parameterization. We also allow that the dimension of the 
parameterization space change according to the instantiation. 

Each primitive Pi has instantiation conditions to satisfy. 
If, for a given s∈C, the instantiation conditions of Pi cannot 
be verified, we say that Pi cannot start at configuration s. For 
example, a movement primitive for balanced knee flexion 
might be designed to start only when both feet are in contact 
with a proper support. 

Each movement primitive has to be constructed in such a 
way as to allow the implementation of some required 
operators. These operators vary according to the motion 
planner selected to operate on the primitive parameter space. 
Typical motion planners considered in our framework 
require, for each instantiated primitive Pi

s, the existence of a 
distance function and an interpolation function. The motion 
planner is responsible for building a roadmap graph 
connecting s to other configurations in the free portion of the 
configuration space covered by primitive Pi

s. 
Roadmap Let Ci

s ⊂ C denote the image of movement 
primitive Pi

s, i.e., for any s∈C, Ci
s = Pi

s(Si
s) if Pi

s can be 
instantiated at s, and Ci

s≡∅ otherwise. Ci
s represents the 

subspace of C covered by primitive Pi
s.  

We define the roadmap of a movement primitive instance 
as a single connected graph R(Pi

s). Nodes in the graph are 
valid configurations belonging to Ci

s∩Cfree, and edges in the 
graph represent valid paths in Ci

s∩Cfree joining the edges 
endpoints. The starting node s of the primitive is required to 

be a node of R(Pi
s). For simplicity of notation, we may also 

refer to the nodes of a roadmap as the configurations of the 
roadmap. 

Usually, for computational efficiency, roadmap edges are 
determined by checking the validity of the interpolation 
between the edge endpoints, and thus it is assumed that 
primitive Pi

s has a proper efficient interpolation function 
interpi

s of the type: 

interpi
s: Si

s × Si
s × [0,1] → Si

s (2) 

As usual, the interpolation function is parameterized over 
the interval [0,1], so that interpi

s(p1, p2,0)= p1, and interpi
s(p1, 

p2,1)= p2, for a given pair of points {p1, p2}∈Si
s. We say that 

the interpolation of a pair of points {p1, p2} is valid if, for all 
t∈[0,1], Pi

s ( interpi
s (p1, p2, t) ) is a valid configuration, i.e., 

belongs to Cfree. 
Analogously, we say that there is a valid path joining 

q1∈Cfree and q2∈Cfree if there is an instantiated primitive Pi
s 

and two points {p1, p2}∈Si
s, such that q1=Pi

s(p1), q2=Pi
s(p2), 

and the interpolation between p1 and p2 is valid. 
Note that the interpolation function is defined in 

parameter space, meaning that paths are first generated in 
parameter space and then transformed into the configuration 
space for validity testing. With this formulation all the 
roadmap computation is done locally to the movement 
primitive, and does not require the computation of the 
inverse of the movement primitive function. 

Besides the interpolation function, a distance metric is 
often required during the roadmap construction process. In 
Section 4 we describe an algorithm that constructs roadmaps 
following the RRT [KV00] [Va98] expansion strategy. 

Roadmaps are used as a sampling strategy to transform 
the continuous parameterization of a movement primitive 
into a discrete set of configurations (the nodes of the 
roadmap), which are suitable for inclusion in a search tree. 

Problem definition Let Pi, i∈{1, …, n} be a given set of 
movement primitives manipulating a robot as defined above. 
Consider that the task to be accomplished is defined as a 
function that returns 1 if a given configuration q satisfies the 
task, and zero otherwise, i.e.: 

task (q) : C → {0,1} (3) 

The problem we want to solve is determining a sequence 
of configurations (qj)j=1,m, such that: 

• The current robot configuration is equal to q1 
• task (qm) = 1 
• For each pair of configurations qk, qk+1, 1≤k<m, there is 

a valid path connecting qk and qk+1. 
Note that the determination of each valid path requires 

the determination of the instantiated primitive that generates 
it (trough the primitive’s interpolation function). 

The solution (qj)j=1,m implies the determination of a 
sequence of paths joining q1 to qm. For simplicity of notation, 
we also say that a valid path between two configurations 
exists when in fact there is a sequence of paths joining them. 



 

When needed, we distinguish these two cases with the terms: 
composed path and direct path. 

4. General method 
Our approach is based on a search tree where nodes represent 
reachable valid configurations, and edges contain paths 
between parent and child nodes. At any point, a partial 
solution can be constructed by concatenating the paths in the 
unique sequence of edges joining the root node to a given 
node. 

The algorithm starts by initializing the root of the tree 
with the current robot configuration, and then an expansion 
process adds nodes to the tree until the task function is 
satisfied. A cost is associated with each node and represents 
the cost of the path constructed so far. The root node is 
initialized with cost 0. A priority queue is used to efficiently 
store the leaves of the tree according to their priority of 
expansion. 

Generally, an A* expansion [RN95] is followed, where 
the highest priority is given to the leaves with less heuristic 
cost. The simplest heuristic cost for a given node n sums the 
cost of n with an estimate of the distance to achieve the goal 
task from n. Several problem-specific heuristics can be 
added to this basic formula, and they are important in 
ensuring that the search tree grows toward the solution. 

After initialization, the highest priority leaf q is removed 
from the priority queue (not the tree), and a roadmap is 
constructed from q. Nodes in the roadmap that allow 
primitive change are added to the priority queue as new 
leaves, and added to the search tree as children of q. 

The following algorithm summarizes this expansion step: 
 
    expand ( tree, queue ) 
 1. q = remove higher priority leaf from queue; 
 2. if task(q)==1, do: 
      return composed path from root(tree) to q; 
 3. for i = 1 to n, do: 
 4.   if Pi can be instantiated at q, and 
      Pi was not instantiated by q parent, do: 
 5.     R(Piq) = build_roadmap ( i, q ); 
 6.     for all configurations qr≠q in R(Piq), do: 
 7.       if qr can be instantiated by a different  
          movement primitive than Pi, do: 
 8.         edge = add_child ( tree, q, qr ); 
 9.         store in edge the path in R(Pi

q) 
            joining (q,qr); 
10.         add leaf qr to queue; 
11. return null path; 
 
    build_roadmap ( i, s ) 
 1. R(Pis) = init roadmap with node s 
 2. failures = 0 
 3. while failures<MaxTries, do: 
 4.   prand = random point in Sis; 
 5.   pnear = nearest node to prand in R(Pi

s); 
 6.   dist = distance ( pnear, prand ); 
 7.   pnew = interpis (pnear, prand, IncrementalStep ); 
 8.   if ( pnear and pnew interpolation valid ), do: 
 9.     add node pnew and edge {pnear,pnew} to R(Pis); 
10.     failures = 0; 
      else 
11.     failures++; 
12. return R(Pis); 

Procedure expand is called until a non-null path 
sequence (the solution) is returned. Each time a node is 
expanded, procedure roadmap returns a single connected 
roadmap graph. The nodes of the graph are candidate to 
become new leaves in the search tree. 

Procedure build_roadmap implements a general 
roadmap construction method following the RRT [KV00] 
[Va98] expansion strategy. It requires the definition of two 
parameters. Parameter MaxTries specifies the number of 
failures that are needed in order to decide that the roadmap 
cannot grow any more. Parameter IncrementalStep 
provides control over the length of the edges in the graph. 
For more uniform resolution control, a length step measured 
in configuration space should be used whenever possible. 

Several problem-specific issues can be addressed during 
roadmap construction. For instance, in the biped robot case 
presented in the next section, whenever a node in the 
roadmap is detected to be close to a configuration serving as 
a connection point, we move the node to that connection 
point. 

Note that a random generator routine is used in procedure 
roadmap in order to generate the points in parameter space 
that guide the roadmap expansion. There is no problem if the 
free portion of the parametric space is much smaller than the 
whole parametric space. The RRT expansion strategy 
provides a suitable gradual exploration of the free space, and 
its implementation is simple and efficient. However, 
whenever possible, the choice of the roadmap construction 
strategy should be problem-(and primitive-)-specific. 

As roadmaps represent a discretization of a continuous 
space, it is not possible to guarantee that the search tree will 
find the optimal solution. However, usually we are not 
interested in finding the optimal solution as the search tree 
easily becomes prohibitively large and greedy heuristics are 
always preferred. In addition, problem-specific optimizations 
are likely to be crucial for having acceptable running times 
for complex problems. 

In the next section we demonstrate how our framework 
can be applied to generate motions for the control of a 
statically stable biped robot. 

5. Biped robot example 
We have implemented and tested the algorithm described in 
the previous section on planning statically stable walking 
motions for a biped robot moving in a planar environment 
containing polygonal obstacles. Obstacles are avoided during 
motion and are also used as support, allowing the generation 
of climbing sequences (see Figure 1). 

The designed biped robot has a total of 9 DOF: the first 
two specify the position of the body center in the Cartesian 
plane. The remaining DOF are rotation angles: one to specify 
the orientation of the body, and three for the articulations of 
each leg (see Figure 2). 

Each rotational DOF of the robot has specific lower and 
upper articulation limits. The two positional DOF have no 
limits, however when they are controlled by a movement 



 

primitive, they have limits imposed by the instantiated 
parameterization space of the primitive. 

Configuration validity Let C be the 9-dimensional 
configuration space of the biped robot. We define a 
configuration q∈C to be valid if q: 

• Satisfies the articulation limits of the robot. 
• Is collision-free, i.e., does not intersect with obstacles. 
• Is in balance, i.e., its center of mass projects inside the 

support segment of the robot. 
As the simulated robot is constructed in a planar 

environment, the validity tests have a straightforward 
implementation. However, some special care is required in 
geometric tests, such as deciding support contacts. In our 
implementation, all geometric tests are based on an epsilon 
precision distance. 

When the two endpoints of a foot are close enough to an 
obstacle segment, but without crossing it, the foot is 
considered to be in contact with the segment and a support 
segment is defined. When both feet are in support, the 
support segment is increased to contain the support segment 
of the two feet. 

For the computation of the center of mass we associate a 
mass value mk, k∈{1, …, 7}, to the center of each robot part 
Pk, each being a limb or the body. The center of mass 
position is then determined by the following weighted 
average sum: 

( ∑center(Pk)mk ) / 7 (4) 

The robot is considered in balance if its center of mass 
vertically projects inside the support polygon. Collisions are 
detected whenever a limb segment crosses an obstacle 
segment or another limb segment. 

 
 
 
 
 
 
 
 

 
 

Figure 2:  The planar biped robot and its nine DOF. 

The defined task function checks if the center of mass of 
the robot is close enough to a desired location, according to a 
given precision. 

Movement primitives Three movement primitives are 
defined, each specific to a support mode: 

• Movement primitive PL is used to move the right leg of 
the robot while balance is maintained only with the 
support of the left foot. Therefore the instantiation 
condition of this movement primitive requires support 
on the left foot. 

• Movement primitive PB was designed to move the body 
while the two legs remain attached to the floor. The 

instantiation condition is support on both feet, and its 
parameterization controls the position and orientation 
of the robot’s body, keeping the feet fixed at their 
support location. 

• Similarly to PL, PR is designed to move the left leg 
while the robot keeps support on the right leg. 

The parametric spaces of movement primitive PL and PR 
both have dimension 4. The affected rotational angles have 
the same range limits as those originally defined by the 
robot, except for body rotation, which is allowed only in the 
direction that favors the free leg to reach higher positions. 
Whenever body rotation is changed, the angles of the support 
leg have to be adjusted in order to maintain the support foot 
in the same place. This adjustment is done by employing a 
straightforward analytical Inverse Kinematics formulation 
for the foot to be fixed. 

Movement primitive PB defines specific range limits for 
the two translational DOF it controls. Let s∈Cfree be a 
configuration and assume that PB can be instantiated at s, i.e., 
s has support in both feet. Let p be the body center point of 
the robot at s. The translational parameters of PB

s are limited 
to be inside a rectangle of center p and sides with double the 
length of the body sizes. In this way we have a much smaller 
range of motion for the motion planner to explore the free 
portion of the parameterization space. 

An Inverse Kinematics formulation is also applied to 
maintain both feet fixed at their original places while the 
translational and rotational DOF of primitive PB are changed. 
Table 1 summarizes the main characteristics of the 
movement primitives. 

 

Movement 
Primitive 

Instantiation 
Condition Type of Motion 

Parametric 
Space 

Dimension 

PL support in 
left foot 

moves right leg 
articulations and 

body rotation 
4 

PB support in 
both feet 

moves body, legs 
fixed with IK 3 

PR support in 
right foot 

moves left leg 
articulations and 

body rotation 
4 

Table 1:   Summary of used movement primitives. 
 
Note that some configurations allow the instantiation of 

two different movement primitives. This happens when the 
configuration allows two different types of support, i.e., 
when the robot has support in both feet, and, at the same 
time, support in one foot alone. Such configurations serve as 
connection points between two different movement 
primitives. Figure 3 illustrates the different kinds of support 
modes. 

Motion planner A single motion planner was 
implemented to operate in the parameter space of primitives 
PL, PB, and PR, and it closely follows the algorithm 
build_roadmap of Section 4. 

X
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The random function we used simply selects values 
inside the range defined for each parameter of each 
movement primitive. The interpolation function linearly 
interpolates the corresponding parameters of two given sets 
of parameters of a primitive. 

As a distance function, instead of operating in the 
parameter space, we compute the mean of the Euclidian 
distances between the corresponding articulation points of 
two given configurations. The same distance function is used 
regardless of the movement primitive being considered.  

 

 
  (a)      (b)       (c)       (d)     (e) 

Figure 3:  Example of configurations in different support modes: 
only in left support (a), simultaneous left and both feet support (b), 
only both feet support (c), simultaneous right and both feet support 

(d), and only in right support (e). 

In order to promote the appearance of configurations in 
more than one type of support, we include a test during 
roadmap construction that detects configurations which are 
close to making contact with a new support. The test consists 
on measuring the distance between each foot of the 
configuration to its nearest obstacle. If one distance is 
smaller than the pre-specified snap distance, the 
configuration is adjusted with Inverse Kinematics in order to 
precisely place the foot in contact with the support. Such 
adjustment is critical, because the achievement of new 
supports is the only way to find configurations allowing 
primitive change. The specified snap distance trades the 
ability to find new supports with the ability to avoid 
obstacles, and should be set according to the environment. 

Search Tree Heuristics After initialization, the search 
tree is expanded following the general algorithm given in 
Section 4. The heuristic cost of a leaf in the priority queue is: 

hc(n) = cost(n) + distance(n mass center, target point) (5) 

Term cost(n) is the cost of the path from the 
configuration at the root of the tree to n. The cost is defined 
as the length of the path, according to the same metric used 
for the roadmap construction: the average of the Euclidean 
lengths of the articulations paths. The target point is the same 
point considered by the task function, which tests if the 
center of mass is close enough to the target point. 

The leaf with lowest heuristic cost has higher priority and 
will be removed first from the priority queue. Removed 
leaves are then expanded. 

Figure 4 illustrates the expansion process. Figure 4a 
shows the roadmap constructed for the robot in a 
configuration with both feet in support. Each node in the 
roadmap represents a full configuration, but in this image, 
only the position of the body center is used to draw the 
roadmap. The roadmap in Figure 4b shows a mark (a cross) 
on each node allowing primitive change, which are the nodes 
becoming new leaves in the search tree. Figure 4c shows the 
robot configuration in the highest priority leaf, which is the 

one selected for node expansion, now with a single leg 
support. The roadmap in Figure 4d shows the coverage of the 
free foot in free space, and shows marks in two 
configurations again allowing a primitive change, and thus 
becoming new leaves in the next expansion of the tree. In all 
images, the circle identifies the root of the roadmaps. 

 

 
(a) 

 
(b) 

 
(c)  

(d) 

Figure 4:  Node expansion example starting with both feet support. 

Although the heuristic cost function is rather standard, 
three greedy optimizations were tested in order to reduce the 
branching factor and direct the search to the goal: 

• The first optimization, and the most important, relies on 
the observation that some sequences of nodes in the 
search tree are not useful. This occurs when three 
adjacent nodes in the three have the support modes on: 
left foot, both feet, and left foot, respectively; or all 
have support simultaneously in both feet and in the left 
foot alone. The same occurs to the analogous sequences 
in relation to the right foot. Therefore, before inserting 
nodes in the search tree, we ensure that such sequences 
are not formed by checking the parent and grandparent 
nodes in the tree. More complex analysis in the search 
tree could be investigated, as, for instance, collapsing 
different nodes with the supporting feet located at the 
same place. 

• Long locomotion sequences can easily demand 
prohibitively large time and memory consumption. The 
search tree is not suitable for planning long paths 
around a large amount of obstacles, but for planning leg 
motions for nearby obstacles. Therefore, whenever the 
current node n being expanded is sufficiently far away 
from the root node of the tree, the partial path until n 
can be stored, the whole tree deleted, and initialized 
again with the new root being n. 

• Another optimization can be used to limit the creation 
of excessive nodes in the same location of the 
environment. A planar grid can be easily implemented 



 

in order to control, for each cell, a maximum number of 
nodes occupying that cell. This procedure can speedup 
the search in some situations, but has some negative 
impact on the quality of the generated paths. 

6. Discussion and results 
Our implementation is able to find simple motions in a few 
minutes. Complex motions, however, require several minutes 
or more to be computed on a 2.8GHz Pentium 4. The 
required computation time is related both to the difficulty to 
overcome obstacles and to the chosen parameters of the 
planner and of the implemented heuristics. As example, the 
motion shown in Figure 5 took 50 minutes to be computed 
and generated a search tree of about 600K nodes. 

The branching factor of the search tree is greatly 
influenced by the resolution step used in the motion planner. 
This step affects the number of nodes computed in each 
roadmap, and thus also the branching factor. With a small 
resolution step, the solutions are likely to be closer to an 
optimum, but large branching factors are not efficient and 
can quickly exhaust memory resources. 

Parameter MaxTries (see Section 4) can be usually set 
to low values, allowing fast computation of roadmaps. 
However, in environments with many obstacles, larger 
values are required. In such cases, roadmaps only generate 
child nodes in the search tree after many random tries. 

Due to the sampling strategy of roadmaps, solutions are 
clearly not optimal. However, few optimal characteristics 
could be noted: large steps are generated towards the goal in 
the absence of obstacles and few finer steps are performed 
next to obstacles in order to determine the best position 
before overcoming them. 

Figures 1, 5 and 6 show some of the results obtained. 
Note that the final result may exhibit some jerky motions, 
due to the exploration strategy of the roadmap computation. 
A simple and efficient smoothing process consists of trying 
to replace pair of points in the path by valid straight 
interpolations [Sc+02]. However, the presented results were 
not smoothed. Videos showing further results can be found 
at: http://robotics.usc.edu/~kallmann/biped2d/ 

 

 
Figure 5:  Example motion over an obstacle. 

Although the robot design used in this work is quite 
simple, we note that it is rather difficult to make it overcome 
obstacles by manually controlling the parameters of the 
movement primitives by means of a user interface. The 
validity constraints leave a small motion range in several 
situations, and precise positioning prior to obstacles is often 

required before overcoming them. Nevertheless, the planner 
successfully found several non-trivial solutions. 

7. Conclusions 
We have presented a search method for planning 

complex motions trough the concatenation of paths 
generated by biologically-inspired movement primitives. Our 
approach introduces a way to apply sampling-based motion 
planning techniques in order to compose motions controlled 
by heterogeneous types of parameterizations.  We are thus 
able to respect different types of constraints, e.g., alternating 
support contacts. In addition, planning complex motions 
usually becomes more efficient in the reduced 
dimensionality of each movement primitive. 

Our method is able to find motions for unanticipated 
situations. This adaptive behavior characteristic is of key 
importance and is supported by neuroscience evidence 
showing that complex motions in animals might be 
structured through the use of movement primitives. 

The framework presented in this paper can be applied to 
other kinds of problems as well. Examples include mobile 
manipulators equipped with different primitives for 
locomotion and manipulation, and the automatic generation 
of higher-level primitives based on motions planned with 
simpler ones. For instance, portions of planned motions that 
are detected to be useful can be directly encoded and used as 
a new time-parameterized primitive. 

In general, any control policy with a suitable 
parameterization can be treated as a movement primitive. 
However, the success of the best-search method greatly 
depends on the availability of efficient problem-specific 
heuristics; otherwise the branching factor of the search tree 
can easily become prohibitively large. 
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Figure 6:  Two example sequences of planned motions. The vertical line illustrates the projection of the center of mass, which is always 
inside the support segment of the robot. In the bottom row sequence, the trajectory of the center of mass is also shown. The last image 

shows the center of mass of all nodes in the search tree, colored according to the support mode. 


