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Abstract

This paper describes recent improvements to SPLICE,
Stereo-based Piecewise Linear Compensation for Environ-
ments, which produces an estimate of cepstrum of undistorted
speech given the observed cepstrum of distorted speech. For
distributed speech recognition applications, SPLICE can be
placed at the server, thus limiting the processing that would
take place at the client. We evaluated this algorithm on the Au-
rora2 task, which consists of digit sequences within the TIDig-
its database that have been digitally corrupted by passing them
through a linear filter and/or by adding different types of realis-
tic noises at SNRs ranging from 20dB to -5dB. For clean acous-
tic models, we achieve a 67.39% average decrease in word error
rate over all test sets. For retrained multi-style acoustic models,
the average decrease is 27.87%. The average relative word error
rate reduction is 47.63%.

1. Introduction
There has been a great deal of interest recently in standard-
izing distributed speech recognition applications in which the
user can have either a plain phone or a smart phone and speech
recognition is done at a centralized server. Because of band-
width limitations, one possibility is to have a cellular phone use
a standard codec to transmit the speech to the server, which
decompresses it and recognizes it. Since ASR systems only
need some features of the speech signal, such as mel-cepstrum,
more bandwidth can be saved by transmitting only those fea-
tures. ETSI has been accepting proposals for Aurora [1], an
effort to standardize a front-end for distributed speech recogni-
tion applications that offers low bitrate and is robust to noise
and channel distortions.

In a distributed speech recognition system, the SPLICE
technique described in this paper may either be applied within
the front end on the client device, or on the server. Implementa-
tion on the server has several advantages. Computational com-
plexity becomes less of an issue, and continuing improvements
can be made that benefit devices already deployed in the field.

SPLICE is a frame-based bias removal algorithm for cep-
strum enhancement under additive noise distortion, channel dis-
tortion, or a combination of the two. In [2] we reported the
approximate MAP formulation of the algorithm, and more re-
cently [3][4] described the MMSE formulation of the algorithm
with a much wider range of naturally recorded noise including
both artificially mixed speech and noise and naturally recorded
noisy speech. In this paper, we report some new developments
of the algorithm including temporal smoothing and noise mean
normalization, and present full sets of evaluation results for AU-
RORA2 digit-sequence recognition.

The SPLICE algorithm assumes no explicit noise model,
and the noise characteristics are embedded in the piecewise lin-
ear mapping between the ”stereo” clean and distorted speech
cepstral vectors. The piecewise linearity is intended to approxi-
mate the true nonlinear relationship between the two. The non-
linearity between the cepstral vectors of clean and distorted (in-
cluding additive noise) cepstra arises due to the use of the loga-
rithm in computing the cepstra. Because of the use of the stereo
training data that provide accurate estimates of the bias or cor-
rection vectors without the need for an explicit noise model,
the SPLICE algorithm is potentially able to effectively handle
a wide range of difficult distortions, including nonstationary
distortion, joint additive and convolutional distortion, and even
nonlinear distortion of the original time-series. A key require-
ment for the success of earlier versions of the SPLICE is that
the distortion conditions under which the correction vectors are
learned from the stereo data are similar to those that corrupt the
test data. Our recent work on noise mean normalization has
greatly reduced this requirement.

This organization of this paper is as follows. In Sec-
tion 2, we give a brief review of the basic SPLICE algorithm.
The extension of the basic SPLICE to its dynamic, temporally
smoothed version is presented in Section 3. A method for mak-
ing SPLICE work much better on unseen noise conditions is
presented in Section 4. Full results of digit-sequence recogni-
tion for AURORA2 are presented and discussed in Section 5.

2. A Review of SPLICE
Given the general model of distortion from a clean cepstral vec-
tor, x, into a noisy one,y, we describe the probabilistic formu-
lation of the basic (frame independent) version of the SPLICE
algorithm below.

2.1. A Model of Speech and its Degradation

The first assumption is that the noisy speech cepstral vector fol-
lows the distribution of mixture of Gaussians:

p(y) =
∑

s

p(y|s)p(s), where

p(y|s) = N(y; µs, Σs)

The discrete state variables denotes the discrete random
variable taking the values 1, 2,. . ., N , one for each region over
which the piecewise linear approximation between the clean
cepstral vectorx and distorted cepstral vector is made. One dis-
tribution p(y) is trained for each separate distortion condition
(not indexed for clarity), and can be thought as a ”codebook”
with a total ofN codewords (means) and their variances.



The second assumption made by the SPLICE is that the
conditional probability density function (PDF) for the clean
vectorx given the noisy speech vector,y, and the region index,
s, is Gaussian whose mean vector is a linear transformation of
the noisy speech vectory. In this paper, we take a simplified
form of this linear transformation by making the rotation ma-
trix to be the identity matrix, leaving only the bias or correction
vector. Thus, the conditional PDF is assumed to have the form,

p(x|y, s) = N(x;y + rs, Γs). (1)

2.2. Cepstral Enhancement

One significant advantage of the above two basic assumptions
made in the SPLICE is the inherent simplicity in deriving and
implementing the rigorous MMSE estimate of clean speech
cepstral vectors from their distorted counterparts. The MMSE
is the following conditional expectation of clean speech vector
given the observed noisy speech:

x̂MMSE = Ex [x|y] =
∑

s

p(s|y)Ex [x|y, s] . (2)

Using Eq. 1, it is clear that:

Ex [x|y, s] = y + rs, (3)

which, inserted into Eq. 2, results in

x̂MMSE = y +
∑

s

p(s|y)rs, (4)

so that the MMSE estimate ofx is the noisy speech vector cor-
rected by a linear weighted sum of all codeword-dependent bias
vectors.

A faster implementation can be achieved by approximating
the weightsp(s|y) according to

p̂(s|y) ∼=
{

1 s = argmaxsp(s|y)
0 otherwise

(5)

so that this approximation turns the MMSE estimate to the ap-
proximate MAP estimate [2] that consists of two sequential
steps of operation. First, finding optimal codewords using
the VQ codebook based on the parameters (µs,Σs), and then
adding the codeword-dependent vectorrs to the noisy speech
vector. We have found empirically that the above VQ approx-
imation does not appreciably affect recognition accuracy. All
results presented in this paper use this approximation.

2.3. SPLICE Training

Since the noisy speech PDFp(y) is assumed to be a mixture
of Gaussians, the standard EM algorithm can be used to train
µs andΣs on noisy speech. Initial values of the parameters are
determined by a VQ clustering algorithm.

If stereo data is available, the parametersrs of the condi-
tional PDFp(x|y, s) can be trained using the maximum likeli-
hood criterion:

rs =

∑
n p(s|yn)(xn − yn)∑

n p(s|yn)
, where (6)

p(s|yn) =
p(yn|s)p(s)∑
s p(yn|s)p(s)

(7)

where this training procedure requires a set of stereo (two chan-
nel) data. One channel contains the clean utterance, and the

other contains the same utterance with distortion, where the dis-
tortion represented by the correction vectors is estimated above.
The two-channel data can be collected, for example, by simul-
taneously recording utterances with one close-talk and one far-
field microphone.

For the Aurora work reported in this paper, the SPLICE pa-
rameters were trained using identical utterances from the clean
training set and the multistyle training set. This effectively tunes
our cepstral enhancement parameters on the noise types from
set A, keeping sets B and C as unseen conditions.

Note that the correction vectorsrs can also be estimated
without the need of stereo data, at the expense of modest loss in
accuracy [5].

2.4. Environmental Model Selection

The SPLICE algorithm described so far requires that the mix-
ture of Gaussians for the noisy speech be conditioned on a spe-
cific noise type and level. To satisfy this requirement, we de-
veloped an effective on-line environmental selection method,
which has been described in detail in [4].

We apply this method to the AURORA2 evaluation as fol-
lows. Seventeen separate mixture models are trained, one for
each of the combinations of noise type and level in the mul-
ticondition training set. The on-line decision for selecting the
environmental modele is made by first producing a local esti-
mate ofp(yi|e) and then smoothing it over time.

2.5. Blind Equalization

In principle, when the training data for the SPLICE contain sim-
ilar convolutional distortions to those in the test data, the meth-
ods described thus far can effectively remove that distortion.
However, for data in set C, the convolutional distortion is un-
known, so the stereo data needed for Eq. 6 is unavailable.

To account for this possible discrepancy between training
and testing data, all of the experiments reported in this paper use
a simple offline cepstral mean normalization (CMN) procedure.
After each utterance is processed, we subtract from each frame
the mean cepstrum computed over the entire utterance.

This procedure is of course not optimal, but increases the
performance on set C dramatically.

Also under investigation are joint optimization techniques
which integrate blind equalization directly into SPLICE. In
principle, using the speech model already present in SPLICE
should produce even better results.

3. Dynamic SPLICE
In this section, we present a new version of SPLICE that not
only minimizes the static deviation from the clean to noisy cep-
stral vectors (as in the basic version of the SPLICE described
in Section 2), but also seeks to minimize the deviation between
the delta parameters.

The basic SPLICE (optimally) processes each frame of
noisy speech independently. An obvious extension is to jointly
process a segment of frames. In this way, although the devi-
ation from the clean to noisy speech cepstra for an individual
frame may be undesirably greater than that achieved by the ba-
sic, static SPLICE, the global deviation that takes into account
the differential frames and the whole segment of frames can be
reduced compared with the basic SPLICE.

We have implemented the above idea of dynamic SPLICE
by temporally smoothing the bias vectors obtained from the ba-
sic, static SPLICE described in Section 2. This is an empir-



ical way of implementing the rigorous solution which would
use a more realistic model for the time-evolution of the clean
speech dynamics. Using the discrete state, we would model
p(xn|yn, sn, sn−1), or using the continuous clean speech vec-
tor estimate we would modelp(xn|yn, sn,xn−1).

An efficient way to implement an approximate dynamic
SPLICE, as is used in the current AURORA2 evaluation, is to
independently time-filter each component of the cepstral bias
vectorrsn . We have achieved significant performance gains us-
ing this efficient heuristic implementation.

In our specific implementation, we used a simple zero-
phase, non-causal, IIR filter to smooth the cepstral bias vectors.
This filter has a low-pass characteristic, with the system transfer
function of

H(z) =
−0.5

(z−1 − 0.5)(z − 2)
. (8)

This transfer function is the result of defining an objective
function of the summation of the static and dynamic deviations
from clean speech to noisy speech vectors. The optimal solution
that minimizes this objective function is of the form of Eq. 8,
where the constants are functions of the variances of our model.

In preliminary testing, using Eq. 8 instead of the exact so-
lution produces similar results, at a lower computational cost.
The results presented in this paper use this approximation rather
than the rigorous solution.

4. Noise Mean Normalization
The SPLICE mapping from the noisy cepstrumy to the cleaned
cepstrumx̂ described so far depends directly on the type and
level of noise added to the clean speech. In this section, we
describe an enhancement which we call Noise Mean Normal-
ization (NMN).

Incorporating NMN into SPLICE decreases the dependency
of the SPLICE mapping on the noise statistics. By employing
NMN SPLICE, recognition performance on unseen noise types
should improve, which is validated by experimental results in
Section 5.

4.1. Procedure

Previously, SPLICE has implicitly characterized the relation-
ship betweenx and y for a given noise type in the training
set and assumed similar relationships existed in the testing set.
This assumption is often invalid, since the testing set noise can
be quite different from the training set noise (e.g. set A ver-
sus set B). NMN SPLICE instead characterizes the relationship
between̄x andȳ, where

x̄ = x− µ

ȳ = y − µ, and

µ = predicted value ofn.

For every frame of the training and testing data, a noise es-
timateµ is created. It has been our experience that even simple
estimates, such as taking the mean of the first ten frames of
the utterance, show improvements over unmodified versions of
SPLICE.

The training procedure differs slightly from Section 2.1. In-
stead of modelingp(y), we instead build a prior distribution for
ȳ = y − µ.

The cepstral enhancement procedure consists of first find-
ing x̄ from ȳ using the SPLICE mapping, and then computing
the clean speech estimate as the sum ofµ andx̄.

4.2. Preliminary Analysis

When the training and testing noises are identical, and the es-
timateµ = 0, NMN SPLICE is identical to SPLICE. As the
estimateµ improves, there is less uncertainty about the noise in
each frame, and word error rate decreases.

For the cross-condition case, where training and testing
noises are dissimilar, our analysis of the behavior of NMN
SPLICE considers the limiting case of low instantaneous sig-
nal to noise ratio (SNR) regions of the utterance, which account
for most of the errors.

In regions of low SNR, the noisy signaly will consist pri-
marily of noise. If the noise estimation were perfect, then the
transformed input to NMN SPLICE would be

ȳ = log(1 + exp(x− n)) ≈ exp(x− n).

In contrast, SPLICE without NMN has the following rela-
tionship for low SNR:

y ≈ exp(x− n) + n.

Clearly, whenn � x, thenȳ is much less dependent than
y on the value ofn. Consequently, in low SNR regions, a code-
book built usingȳ is less sensitive to the noise type compared
to a codebook built ony.

Therefore, in these low SNR regions, the testing data will
closely resemble the training data, and the noise will be appro-
priately suppressed.

4.3. Noise Estimation

A necessary component, therefore, of NMN SPLICE is the
noise estimation algorithm. First, in Section 5.2, we explore an
upper bound for the performance of NMN splice on this task.
We derive the actual noise signals for each utterance from the
clean and noisy data available in the test set. From these noise
signals, the true noise cepstra are computed.

Then, in Section 5.3 we provide results where the noise es-
timate is generated using iterative stochastic approximation[6].
This method employs strong speech and noise models, resulting
in high quality noise estimates.

5. Experimental Results Using AURORA2
The speech recognition results reported in this paper are pro-
duced by the reference Aurora front-end version 2.0, usingc0

instead of log energy, and modified to use power spectral den-
sity instead of magnitude spectrum in its computations. We
found this configuration to be slightly superior to the default.

All experiments unless otherwise noted were performed us-
ing the blind equalization technique described in Section 2.5
and the smoothing technique of Section 3.

SPLICE codebooks and correction vectors were trained us-
ing similar utterances from the clean and multi-sytle training
sets. The noisy speech model consisted of a mixture of 256
Gaussians with diagonal covariance matrices, though we have
observed improved accuracy for some nonstationary noise types
with more Gaussians.

5.1. SPLICE

Figure 1 is a summary of the full results for the SPLICE on the
Aurora2 corpus, in the absence of noise mean normalization.

Since the SPLICE parameters were trained on fixed noise
conditions that are included in Set A, this set exhibits the best



Percentage
Subway Babble Car Exhibition Average Restaurant Street Airport Station Average Subway M Street M Average Overall Improvement

Clean 98.83 98.85 98.69 98.98 98.84 98.83 98.85 98.69 98.98 98.84 98.93 99.00 98.97 98.86 22.77%
20 dB 98.53 98.40 98.42 98.40 98.44 98.25 97.76 98.30 98.27 98.15 98.43 98.10 98.27 98.29 34.01%
15 dB 97.82 97.55 98.09 97.56 97.76 96.71 97.37 96.09 96.67 96.71 97.54 96.52 97.03 97.19 24.05%
10 dB 96.13 95.22 96.63 95.50 95.87 94.07 94.53 91.59 92.35 93.14 94.66 93.56 94.11 94.42 10.44%
5 dB 92.82 86.88 92.07 90.59 90.59 83.70 83.37 82.20 80.28 82.39 85.57 82.01 83.79 85.95 4.33%
0 dB 79.89 62.67 77.21 76.40 74.04 54.65 55.17 54.70 53.66 54.55 61.47 52.63 57.05 62.85 8.62%
-5dB 48.54 21.80 44.32 51.25 41.48 10.99 19.59 10.59 17.09 14.57 26.59 17.84 22.22 26.86 2.72%
Average 93.04 88.14 92.48 91.69 91.34 85.48 85.64 84.58 84.25 84.98 87.53 84.56 86.05 87.74

38.08% 1.61% 44.23% 30.58% 28.92% 0.58% -10.79% -24.81% -5.10% -9.37% 25.60% 1.62% 14.00%

Percentage
Subway Babble Car Exhibition Average Restaurant Street Airport Station Average Subway M Street M Average Overall Improvement

Clean 98.99 99.15 99.08 99.07 99.07 98.99 99.15 99.08 99.07 99.07 98.99 99.21 99.10 99.08 3.77%
20 dB 98.10 98.43 98.54 98.30 98.34 98.59 97.55 98.69 98.40 98.31 97.94 97.85 97.90 98.24 62.46%
15 dB 96.78 97.40 97.85 96.95 97.25 97.51 96.37 97.26 97.13 97.07 96.38 96.22 96.30 96.99 74.79%
10 dB 93.71 93.71 94.93 93.30 93.91 94.29 92.53 93.29 92.22 93.08 91.83 91.11 91.47 93.09 77.96%
5 dB 87.81 81.80 86.73 84.57 85.23 81.73 79.23 81.51 78.43 80.23 77.99 76.39 77.19 81.62 69.32%
0 dB 67.76 53.93 63.91 66.74 63.09 51.61 50.70 52.79 51.59 51.67 47.41 44.95 46.18 55.14 45.67%
-5dB 35.25 20.01 30.93 36.44 30.66 12.93 20.62 12.02 17.34 15.73 21.49 16.72 19.11 22.38 15.15%
Average 88.83 85.05 88.39 87.97 87.56 84.75 83.28 84.71 83.55 84.07 82.31 81.30 81.81 85.01

63.40% 70.18% 70.54% 65.24% 67.83% 67.82% 56.54% 67.29% 62.93% 64.00% 47.72% 44.82% 46.27%

A B C
Aurora 2 Multicondition Training - Results

62.48%

Aurora 2 Clean Training - Results

9.92%

A B C

Figure 1:SPLICE results on AURORA (Without NMN)

Set A Set B Set C Overall
96.48 97.22 96.27 96.74
93.81 95.58 93.47 94.45
95.15 96.40 94.87 95.59

Set A Set B Set C Overall
71.12% 79.77% 77.00% 76.01%
84.00% 90.01% 80.72% 86.11%
77.56% 84.89% 78.86% 81.06%

Multicondition

NMN SPLICE-True Noise

Multicondition
Clean Only

Absolute performance
Training Mode

Average

Clean Only
Average

Performance relative to Mel-cepstrum
Training Mode

Figure 2:NMN SPLICE with true noise cepstra

performance among all the three sets. While Set A only con-
tains four types of noises, we have experimented up to fourteen
noise types, giving similarly good results on a Wall Street Jour-
nal task. (We call the algorithm applied to this experimental
setup as in-task or in-condition SPLICE in [3].)

To examine the SPLICE’s ability to perform in unseen noise
conditions, we applied the SPLICE parameters developed for
set A, without modification, to enhance the cepstra in sets B
and C. This experimental setup does not allow the in-condition
SPLICE to apply. We called this more difficult experimental
setup, where the noisy condition in the stereo training data is un-
seen in the test data, the cross-task or cross-condition SPLICE
in [3]. From the results in Figure 1, we observe reasonable
performance improvement over the baseline, consistent for all
noise conditions, when using the clean acoustic model. This
improvement is less than that achieved for set A. This indicates
that the bias vectors learned from set A’s stereo data may not be
representative of those required to transform the noisy speech
to clean speech in set B.

5.2. NMN SPLICE–Perfect Knowledge

For this first NMN result, we consider the case where the noise
cepstrum is known for each frame of data. Note that even in

this case, it is impossible to infer the clean speech to an arbi-
trary precision, because there is still uncertainty in the mixing
of speech and noise.

Figure 2 was produced by computing the true noise cepstral
sequence for each utterance, and using those values to normal-
ize frames before processing with SPLICE. Notice that the rel-
ative improvement for set B is even higher than that for set A.
The addition of NMN to SPLICE not only makes it more ro-
bust to unseen noise types, NMN allows SPLICE to outperform
itself even on these unseen noises.

This result, which uses a perfect estimate of the noise, pro-
vides us with an upper bound we can not expect to exceed using
NMN SPLICE.

5.3. NMN SPLICE–Iterative Stochastic Approximation

We recently developed and implemented a novel technique
which uses iterative stochastic approximation and the “forget-
ting” mechanism to effectively track nonstationary noise. Using
a number of empirically verified assumptions associated with
the implementation simplification, the efficiency of this algo-
rithm has been improved to close to real time for noise track-
ing. The mathematical theory, algorithm, and implementation
detail of this iterative stochastic approximation technique will
be written and submitted to ASRU01 [6].

Figure 3 contains the best results we have obtained so far
using the iterative stochastic approximation for nonstationary
noise estimation in the framework of NMN SPLICE discussed
in this paper.

As expected, when we use this fast on-line estimate of noise
cepstra, performance on set A increases slightly and perfor-
mance on set B increases dramatically.

6. Summary and Discussion
The SPLICE algorithm, as described in this paper, is an effi-
cient algorithm that can be run either on the client or the server
in a distributed speech recognition system. It models cepstra of
noisy speech as a mixture of Gaussians. We can leverage this
model to identify the type of corruption currently being encoun-
tered, and to compensate for an unknown linear filter. By incor-



Percentage
Subway Babble Car Exhibition Average Restaurant Street Airport Station Average Subway M Street M Average Overall Improvement

Clean 98.59 98.70 98.69 98.95 98.73 98.59 98.70 98.69 98.95 98.73 98.65 98.82 98.74 98.73 13.58%
20 dB 98.53 98.64 98.51 98.64 98.58 98.46 97.91 98.60 98.58 98.39 98.40 98.25 98.33 98.45 40.27%
15 dB 97.64 98.07 98.33 97.69 97.93 97.79 97.49 97.44 97.47 97.55 97.88 97.16 97.52 97.70 36.95%
10 dB 95.98 96.37 96.84 95.65 96.21 95.27 94.41 95.11 95.12 94.98 95.79 93.80 94.80 95.43 25.78%
5 dB 92.08 88.94 92.78 90.25 91.01 87.63 88.06 88.16 87.04 87.72 90.97 85.85 88.41 89.18 25.01%
0 dB 78.02 65.57 76.83 74.42 73.71 65.37 68.23 69.49 65.57 67.17 72.67 65.42 69.05 70.16 26.06%
-5dB 46.02 26.12 36.53 43.13 37.95 26.22 34.34 32.12 30.70 30.85 38.23 30.08 34.16 34.35 12.82%
Average 92.45 89.52 92.66 91.33 91.49 88.90 89.22 89.76 88.76 89.16 91.14 88.10 89.62 90.18

32.85% 13.01% 45.52% 27.57% 30.15% 24.04% 16.83% 17.14% 24.99% 21.05% 47.14% 24.13% 36.01%

Percentage
Subway Babble Car Exhibition Average Restaurant Street Airport Station Average Subway M Street M Average Overall Improvement

Clean 99.11 99.12 99.11 99.04 99.10 99.11 99.12 99.11 99.04 99.10 99.14 99.12 99.13 99.10 6.11%
20 dB 98.16 98.52 98.72 98.27 98.42 98.65 97.58 98.81 98.70 98.44 98.34 98.04 98.19 98.38 65.20%
15 dB 96.65 97.64 98.09 96.61 97.25 97.88 96.89 97.97 97.84 97.65 96.81 96.40 96.61 97.28 76.33%
10 dB 93.77 94.68 95.71 93.09 94.31 94.75 93.44 95.85 94.60 94.66 93.18 91.23 92.21 94.03 80.42%
5 dB 87.47 84.46 88.46 85.53 86.48 85.08 83.71 87.03 84.94 85.19 84.31 80.35 82.33 85.13 75.04%
0 dB 65.92 57.13 63.67 63.78 62.63 59.72 57.83 63.11 57.42 59.52 59.23 52.90 56.07 60.07 51.64%
-5dB 32.42 21.25 23.80 32.58 27.51 22.75 24.58 27.83 23.94 24.78 27.17 21.37 24.27 25.77 18.82%
Average 88.39 86.49 88.93 87.46 87.82 87.22 85.89 88.55 86.70 87.09 86.37 83.78 85.08 86.98

61.96% 73.03% 71.90% 63.75% 68.48% 73.03% 63.33% 75.52% 70.02% 70.83% 59.73% 52.14% 55.93% 67.39%

Aurora 2 Clean Training - Results

27.87%

A B C

A B C
Aurora 2 Multicondition Training - Results

Figure 3:NMN SPLICE with “iterative stochastic approximation” noise estimate

porating both the dynamic and NMN modifications, the word
error rate decreases significantly across both seen and unseen
distortion conditions.

One significant contribution of this work is to show that as
long as the noise estimation is reasonably performed, the NMN
SPLICE can achieve high accuracy in even unseen noise condi-
tions. In particular, the noise estimation methods described in
this paper have not taken into account the convolutional distor-
tion. Nevertheless, the results for set C containing convolutional
distortion are comparable to their undistorted counterparts.

Our current work involves improving the noise estimation
algorithm to further enhance the performance of NMN SPLICE.
We are also investigating direct parametric methods for noise
removal[7].
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