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Abstract

In this article we claim that we are going to give a priori and a posteriori error estimates for a Crank Nicolson type scheme.
The problem is discretized by the finite elements in space. The main result of this paper consists in establishing two types
of error indicators, the first one linked to the time discretization and the second one to the space discretization.
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1. Introduction
Let Q be a bounded smooth sub domain of R” and y(x) = [yi, j]?j:l be a real positive definite matrix-valued function. Let
(0, T) denote a subinterval of R where T € (0, o) is a fixed final time. Denote by n(x) the unit outward normal vector at

x € I'. We intend to work with the following problem,

div(yVu) = 0,in (0, T) x Q
%u(t, x) + yn(x).Vu(t,x) = 0, on (0,T) x T (1)
u(0, x) = up(x), on T’

where I' is the boundary, u is the unknown and uy is the initial condition at time ¢ = 0.
The solution of the above problem can be represented on the boundary by the Dirichlet-to-Neumann semigroup (Vrabie,
2003) defined as

SO x) = u, 0l

In (Cherif, Arwadi, Emmamirad & Sac Epee, 2014), the authors showed that the Lax semigroup is the Dirichlet-to-
Neumann semigroup in the particular case where Q = B(0, 1) is the unit ball of R* and y(x) is the identity matrix. P.
Lax showed in his book (Lax, 2002) that the DtN semigroup has an explicit representation. This was a motivation for
the authors in (Cherif, Arwadi, Emmamirad & Sac Epee, 2014) and (Emmamirad & Shariftabbar, 2013) to introduce
semi discrete implicit and explicit Euler’s schemes to approximate the DtN semigroup numerically. They also showed the
convergence of these schemes using the Chernoft’s product formula.

For more than twenty years, an impressive amount of work has been accomplished concerning a posteriori analysis and
mesh adaptivity for the finite element discretization of the elliptic problems. Their main results were to exhibit local error
indicators which can be computed explicitly as a function of the discrete solution and the data.

In (Arwadi, Dib & Sayah, 2015), they studied the time dependent linear elliptic problem, and established optimal a priori
and a posteriori error estimates using the backward Euler’s scheme in time and finite elements in space.

The Crank Nicolson scheme is one of the most popular time-stepping method; however optimal a priori and a posteriori
error estimates for elliptic equations have not yet been derived. The aim of this work is to provide optimal a priori and a
posteriori estimates and some numerical investigations.

The term ““a posteriori error estimator” was first used by Ostrowski (Ostrowski, 1940). It is the quantity which bounds or
approximates the error, i.e. an upper bound of the error between an exact solution and a numerical one.

The error estimator is obtained as a sum of local indicators expressed on each element of the mesh (Mishra, 2012). We
have two types of computable error indicators, the first being linked to the time discretization and the second to the space
discretization.

We say that the a posteriori error estimates are optimal if we are able to bound each one of this indicators by the local
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error of the solution around the corresponding element. In this work, we propose a low cost discretization relying on the
Crank Nicolson’s scheme in time combined with the finite elements in space, and then prove a priori and a posteriori error
estimates for the discrete problem.

The outline of the paper is as follows. In section 2, we give some notations that will be used in the sequel. Section 3 is
devoted to study the discrete problem and the uniqueness of its solution. In section 4, we study the a priori errors and
derive optimal estimates. Section 5 is devoted to study the a posteriori errors where two types of error indicators are
established.

2. Notations

In this section we will introduce some notations that will be used in the sequel.

e /1 the maximal diameter of the elements of all 7,,,

e /1, the maximal diameter of the elements of 7,,, for each n
e i, the diameter of

e 1, the diameter of the edge e

e A, the union of elements of 7, that intersect

e A, the union of elements of 7, that intersect the edge e

o ¢, the set of edges of « that are not on I’

o ¢ the set of edges of « that are on I"

o [.], the jump through e for each edge e in €

e , the bubble function which is equal to the product of the three barycentric coordinates associated with the vertices
of x

e [, the lifting operator defined on polynomials on e vanishing on de

e X, the finite dimensional space of functions such that their restrictions to any element « of 7,;, belong to a space of
polynomials of degree one. In other words,

X = {vﬁ e C'(Q), VZIKisaffineVK € Tnh}

o [, the approximation operator in L(H 2(Q); X,,») such that for m = 0, 1,

Vv € HA(Q), [I,(v) = Vo < CH* " o

e We introduce the Sobolev spaces:
H™(Q) = {v e LX(Q),0"v € LA(Q), Yol < m},

equipped with the following semi-norm and norm:

1

2
Vo = Z f 107v(x)I* dx
Q

lal=m

and

1
2
2
M0 = {Z |v|k,g}

k<m
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3. The Discrete Problem

Assume that Q is a polyhedron and y denotes a positive smooth bounded function. We introduce a partition of the interval
[0, T'] into sub intervals [#,-1,7,], | <n < N,suchthat 0 =7y <1} <.. <ty = T. Denote by 7, the length of [¢t,-1,¢,], by

|7] the maximum of the 7,, by 7 the N-tuple (71, ..., Ty), and by o, the regularity parameter
Tn
Or = MaxXa<psN —-
Tn-1

Theorem 1 If u(t) € H>(Q), then Problem (1) is equivalent to the variational problem,

Find u(f) € H'(Q), such that
u(0, x) = up(x), on T’ 2
Joy yVuVvdx + [ (1, s)v(t, s)ds = 0,¥v(1) € H'(Q)

Proof. Let u(t) be a solution of problem (1). Multiplying the first equation of problem (1) by v(¢) € H'(Q), integrating
over Q, applying Green’s formula and using the second equation of problem (1), we obtain that u is also a solution of
problem (2). Conversely, if u is a solution of problem (2), we take v(f) € D(Q) to get the first line of problem (1).
Then multiplying the first equation of problem (1) by v() € H'(Q), integrating over Q, using the Green’s formula and
comparing with problem (2), we get the second line of problem (1).

Proposition 1 The solution of Problem (2) satisfies the following bound:
”u”i""((),T,Lz(r)) < ||u0||L2(T)
Now, the full discrete problem associated to the variational problem (2) is:

Given uj € Xy,

Yvp(t) € Xup, u (1) is the solution of 3)
uu+] —u"

Jo YVl )V, x)dx + 2 [ A= (x)vy(t, )dx — [, yVulVvpdx = 0

Tn

Theorem 2 The problem (3) admits a unique solution in X,

Proof. We introduce the bilinear form ,

a(uZ“,vh)z an)’VMZHVVthJrzfMZHVth'
Q r

and the linear form

L(vy) = f‘r,,quZVvhdx—i-quthdO'
Q r

Then the previous problem can be written as
Vvi € X, auy,vp) = L(vp)
It is obvious that a is bilinear and continuous in X, X X,+1 4, and that L is linear and continuous in X, and then, the
Lax-Milgram theorem states the existence and the uniqueness of the solution. See (Arwadi, Dib & Sayah, 2015).
4. A Priori Error Estimate
To get an a priori error estimate, we need the following Gronwall’s lemma.
Lemma 1 Gronwall’s lemma:

Let (a,), = 0, (by), = 0 and (c,), = 0 be three real positive sequences such that (c,), > 0 is an increasing sequence.
Suppose that

ap + b() < ¢
there exists A > 0 such that:
n—1
VYn>0,a,+b,<c, +/lZam
m=0
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then we have

VYn>0,a,+b, < c,e™

Theorem 3 Ifu € L™ we have,
m: 2 S
ity =l + k1G] D Jttn) = [f < e+ 22)
where c is a constant independent of h and k.

Proof. Denote by k the time step, & the parameter of the mesh and Xj, the discrete space. Suppose that 7, and 7, are
constants during time iterations. Consider the equation,

fVu(t x)Vv(t, x)dx + 2[—0 s, $)ds = 0,Yv(t) € H'(Q)

For ¢t € (t,,1,,1) take v = v;”l integrate in time

f f Vult, VY (1, x)dx + 2 f f (. VI, s)ds = 0 @)

The discrete variation formulation for the Crank Nicolson scheme taken in the time step n + 1, is

v/ +1V n+1d 2 Mn+l B MZ n+ld V'V n+1d =0
'y u, Vi X+ . T—Vh o — 'y u,vvy X =
n

Integrating in time between ¢, and #,,,; we get,

Tnt1 Tn+1 "+] Tn+1
f f VU VI dx 42 f f i Vitldo — f f YUV ldx = 0 (5)
tll

Taking the difference between (4) and (5) we get,

Tnt1
f f YW - +u)Vitdx + 2 f [(W(tns1) — u(ty) = @ = uvitdo = 0
t Q

Now inserting =V (I, (u(t,+1))), V(I (u(t,))) ,V(u(t,+1)) and V(u(t,)) into the first term, and +1j,(u(t,.)) and I;(u(t,)) into
the second term, we obtain

T+l Tn+1
- f f YV (ultyr) — ut,)) Vv dxdt - f f YV (ultyi1)) = utner) Vi dxdt
ty Q
Tnel Tn+1
+ f f YV (utyrr)) — uf Vi dxdt — f f YV (uty)) — ul)Vvit dxde
T+l Tn+l
f f YV (u(ty)) — ut,) Vit dxdt + f f YV (u(t,) Vit dxdt

+2 f(am —ap)(s)vytlds =2 f(lh(u(lm)) = ultns1)) = Un(u(ty)) = ult,)Vy*'ds = 0
r r

where a,41 = I(u(tys1)) — u)*! and a, = I(u(t,)) — u}
Now we will bound the third and fourth terms of the previous equation. Choosing v’“rl = auy1

1

f f YVa,. Vv dxdt
1

f f yVa?, dxdt

k |Cy| |an+1|1’Q

Tn+l
f f YV (Utes1)) — VI dxde
ty Q

IA
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In+1
f f yVa,Va, dxdt
I Q

k|Cy|lanh o lansili o

In+1
f f YV (u(ty)) — ul) Vit dxdt
1y Q

IA

we obtain

2 [(ane1 — a)(WVids + k|Cy|lanali o — k|Cy|lanliq lansi ] 0

2 fr (I (@t 11)) = utns1)) = Un(u(ty)) = ult)Vy* ' ds

+

In+1
f f YV (ultnr) — u@®)VviH dxdt
ty Q

+

[ [ 79ttt = oy and = [ [ P - utny 9y
ty Q tn Q

o+l
f f YV (u(t,))Vvit dxdt
ty Q

We denote by T the first term of the left hand side, T, and T3 the first and second terms of the right hand side, T4 the
third and fourth terms, and T's the last term of the equation.

The term T can be expressed as

Ty =2 [ - a)onilds = 2 [ (@ - aards
r r

= fai+lds—faids+f(an+1—an)zds
T T T

The term T, can be bounded as
T, = 2 f T ute)) = ultnr) = () = u(t)Vy ds
r

= 2 f(g(tn+1) - g(tn))an+lds
r

In+1
= 2f fg'(‘r, S)apdsdr
)’ Q

n

In+l
f
1,

n

IA

& o Nlans1lor d7

But
g/(T)Ho,r < c g’(T)“LQ
< ¢h ”,(T)”z,ﬂ
< ¢h ||M'(T)||Lw(o,T,H2(Q))
then,

T < cthk || O] o 112y Nt lor

Using the inequality ab < 5—-a* + $ 17,
with @ = ¢ h Vk|lu'l|~ and b = Vk|lan1llor» we get

1
T, < —c*h’k
2 26161

, 2 €1 2
W Ol o + 5 Kllanllor
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The term 753 can be bounded as

Tn+1
T; = f ny(u(t,Hl)—u(t))VvZ“dxdt
n Q

Tn+1 T+l
f f f vV (1, x))Va, 1 dxdrdt
tn t Q

Tn+1 T+l
[ [ @l gl dedr
tn t

lc)

IN

ul

IA

L=(0,T,H (Q)) |an+1 | 1,Q

Using the inequality ab < 2'T2a2 + $0%,
with a = k2C, |||~ and b = Vk|lays 1]l . We get

2

1 3~21,,”
T3 < 2_62k Gl 0,12 <)

€ 2
+ 3k|an+1|1’g

Now the term 74 can be bounded as

Tn+1 In+1
T, = f f YV U(Utys1)) = ttn1)) Vv dxdt — f f YVUn(u(ty)) — u(ty))Vay,. 1 dxdt

' Q Iy Q
Tn+1

= f ny(g(tnn)—g(tn))Vdnndde
tn Q
Tn+l Tnrl

= f f f vV(¢' (1, x))Va,1dxdrdt
I t Q

< Blo|llg @, qlamha

< K|c)|ch ”,(T)HZ,Q lan+1l1.0

< Kch |C7| ||u/“L°°(O,T,H2(Q)) ln+1l1.0

Using the inequality ab < 5-a* + $b7,
with a = |Cy| chk? |||~ and b = VK la,ill; 0. We get

1 2 252,31 € 5
< — .
Ty < 26 |C7| chk “” ”Lm(o,T,HZ(Q)) *t3 klan1li o
Finally, the term 7’5 can be bounded as

Ts

Tn+1
f f yV(u(t,,))VvZ”dxdt
fn Q

k|Cy| el g lans1s @

IN

IA

k|Cy | el 0.7 11100 s 110

Using the inequality ab < i a2+ & b2,

with a = |C)| k2 llull~ and b = k3 ||l o, we get

1 2 2 €4 2
Is < 5o [Cof KNl 0741100+ 5 K lamsa I

Now using all the previous bounds, we obtain

2 2 2 2
fr 2. ds - fr d2ds + fr (nst - ands + K|y lann P o K |Cy|lanh b 1
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I 5 2 €1 2 15 5 2 €
< ’ =0 . ’ el 2
< st Kl @l ooy + 5 K lanallsr + 356 PP ey + Fhlannlia
1 2 2721312 & 2 1 2 2 & 2
toe [0 e/ Sl 74 WA > klansiliq = e || el F o 7111y — S kllanilit

. C c c
Choosing € = SLT, 6 = %, € = % and ¢ = %, we get

3
2 2 2 2
fr @2, ds - fr d2ds + fr (s = s + 3k |G lana o = KIC, |l b1

k
< ck(h* + k*) + Tor lanstlor
Taking sum fromn = 0, 1, ..., m and replacing A,, = 4 ||Clm+1||3,r’ Cy = 4c'(P+k*) and B,, = 4k ly| oo (3 |ai+1 |—|6ln| lans1l)
with &= < 1, we get
m—1

A, + By, scm+/IZA,,
n=0

Using Gronwall’s Lemma and the properties of 1, we obtain the result.
5. A Posteriori Error Estimate

In this section a posteriori error estimates between the exact solution and the numerical one will be established.
Proposition 2 (Verfurth, 1996) Denote by P,.(k) the space of polynomials of degree less than r on k, we have Yv € P,(k)

1
v

clvllox < < vllow

0,

-1
Wk < el [Vllox

Proposition 3 (Verfurth, 1996) Denote by P,(e) the space of polynomials of degree less than r on e, we have ¥v € P,(e),

1
clvlloe < |we|| < IVllo

0,e

and for all polynomials in P,(e) vanishing on Oe,

1
”LeVHO,K + h, |L6V|1,K <ch; ”V“(),e

For the a posteriori error estimates, consider V¢ € (¢,-1, t,) the piecewise affine function u;(¢) which take the values

t—1,-1 _ _
u (up — uyy l)+uﬁ1

up(t) =

n

The solutions of Problems (2) and (3) verify the following

() f YV = ) V(t, x)dx + 2 f OW =) (vt x)dx
Q r ot

0 0
nyqudx—fquthdx—2fﬂ(t,x)v(t,x)dx+2f—uvdx
o) Q r Ot ot

Ouy,
—nyuthdx—Zf u (t, x)v(t, x)dx
Q r Ot

adding and subtracting u} and uZ‘l to the first term, then using the value of u;, we get
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u' — un—l
T = - f YV (uy — ul)Vvdx — f YV — u " )Vvdx - f Vi ' Vvdx - 2 f S (1, (e, x)dx
Q Q Q r Tn
=1y n n—1 n n—1 n—1 ”2 B Z_l
= - YV, —uy,)Vvdx — | yV(u, —uy )Vvdx — | yVu,~ Vvdx -2 | ————(1, x)v(t, x)dx
™ Ja Q Q r Tn
n n—1
f—t, 5 _ u' —u
= ——»nt f YV (u, — uj, YWVvdx - f yVu, "Vydx -2 f S h @ o, x)dx
Tn Q Q r Tn

adding and subtracting vj, to the second and third terms, we get

I =1l n n— n— n—
T(wv) = ——]ny(uh—uh I)Vvdx—nyuh 'V(v—vh)dx—nyuh 'Vy,dx
Tn Q Q Q
ut — un—l ' — Mn_l
- ZIu(v—vh)dx—quvhdx
r Tn r Tn
t—1,- _ -
= ——lny(uZ—uZ 1)Vvdx—nyuZ 1V(v—v,,)dx—nyuZVvhdx
Tn Q Q

-1
U — ul
_ 2fuvhdx
r Tn

adding and subtracting v to the third term,

t—1,-
Tv) = R f YV(u; — uZ’l)Vvdx - f quZ’lV(v —v)dx — f YVu, V(v — vp)dx
n Q Q Q

uZ — uz_l
- 2| ——@-wdx+ | yVu,Vvdx
r Tn Q

Applying Green’s theorem on the second and third terms we get

=1l n n—1
T(v) - f yV(u, —u,” )Vvdx —
N h T Up 2

Tn

(fdiv(quZl)(v —v)dx — f (VuZ’l.n)(v —vp)dx
k Ok

ket,h
_ Z (fdiv(quZ)(v —vp)dx — f (Vup.n)(v — vh)dx) + f YVu,Vdx
ke h \WK K Q
u' — un—l
- 2 f u(v —vp)dx
r Tn
t—1t,-
= it f YV(u; — uZ’l)Vvdx - Z (VuZ’l.n)(v —vp)dx
Tn Q Ik
ket,h
u' — n—1
- Z (Vuy,.n)(v — vyp)dx + f yYVu,Vvdx -2 f S h (y—yy)dx
ketoh Ik Q r Tn

We define, for every edge e of the mesh, the function

n_n—1
YV(uy).n + 7V(MZ‘1).n $2975% . ee IS4

. v|Vul.n »€ € €&,
((ph,n) — { [ h ]e
We get the following equation

f YV = wp)V(t, x)dx + 2 f = (e, x)dx
o) r ot
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In-1—1 n—1 n—1 f
= — Vu; — Vvdx + Vv Vvdx — E E d
o Ly (u, — uy)Vvdx fy u,  Vvdx <phn(x)(v vp)dx

kety, ecok

For each k in 1, we introduce the indicators
N ) L N
ho\2 e |2
W = D helleallye

ecok

5.1 Upper Bounds of the Error
Theorem 4 Forallm =1, ..., N, we have the following upper bound

m
c|IV(u - uh)IILz(O 2@y T Hu(t,,,) - uZ’Hﬁr <c [(n;_,f + Z Z rn(ni',k)z + ||uo - u2||(2)r
n=1 k

where c is a constant.
Proof. We denote by L(v) the following,

ou — uy,

o vds

L) = f yV(u — up)Vo(t, x)dx + 2
o) r

and we define the function w(¢, x) by
W(t’ -x) = e—f(u - Mh)(t, X)

which verifies the equation
ow . _,0(u — up)
w2
ot ot

Multiplying L(v) by e™" and taking w = v,

e'Lv) = ny(e_r(u—uh))Vvdx+2fe_’%vds
= nywVvdx+2fwvds+2f—vds
A(w 2)
= f [Vw[? dx+2f 2ds+f
2
> fy|Vw|2dx+f (M;)ds
>

C||VW||OQ+f—dS

Note that e™* < 1, so L(w) < L(u — uy,), then we have the following ¢ ||Vw||0 ot fr W g

< f V(= u)V(u — up)dx + f 0w =) (s
Q r ot

Integrating in (#,-1, t,,), we get

fn a 2 Iy
f CIVWIR o dt + f W) dsdr < f Lu — up)dt
th-1 ty1 YT 8t Ih-1
Iy n
f clIVwllgq dt + f w2 (t,, $)ds — f W (ty_1, s)ds < f L(u — up)dt
taoi T r th-1

Taking the sum from 1 to m, we get
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Zf Ve (u - uh)||fmdt—fe—2’|u—uh|2(0,s)ds+fe—2’|u—uh|2(zm,s)ds
” T

=1 Y1 r

m tn
< L(u — uy)dt
2.
m ty
e {CZ( f IVt = up)l g i + f = 1 (rm,s>ds)]
faoi r

n=1

m Iy
< Z; j;_l L(u — up)dt + \frlu — ) 0, $)ds

so that

fo c|lV(u — uh)llOQ dt + ||u(tm) uy, ”or [ L(u — up)dt + ||u0 - ”2||(2)r}

l‘n 1

We decompose L(v) = L;(v) + Lp(v) and denote v = u — u;,.
Now we have to bound L;(v),

Li(v) = t"T_tny(uh—u )Vvdx—nyuZ_IVvdx
= Z ny(uh —u "Vvdx — Z nyuZ 'Vvdx
Tn k€T, ke,
ty—t Z ¢y ”V(uZ - ”Z_l)”(),k IVl + Z ¢, ”VVZ_IHO,k 1V vlo
kety, ket

Integrating in (#,-;, t,,), then taking the sum from 1 to m, we get

Iy [ 1 _ 2 3 f
[ = B[ et o [

"= ket L n-l

* Z fltl (CVHVV" ]”()k ] [ft ||VV||0kdt]

1

VW1 4 dt]

IA

1

kety, L
- Z [ 2T ”V( up — )||0k U ||Vv||0kdt]
kety,
_ 1 - 5
e HVVZ‘l“éykdt]z[ f t ||Vv||(2)‘kdt]2
ketp, In-1
1
. 1
= f ”VVH%J‘ dt Z CV[ % HV(“Z - ”Z_l)”o,k + ‘/EHVVZ_IHM
L i 1 kety,
1
. o
= | [ wikear] Y el
L Tt 1 ket
_ " 1 1
= f ||VV||%,1< dt ’ Z ci [(n;’k)z]z
L Tt 1 ket

1 1
Using the inequality ab < —a + 9%, witha = ( %(n;’k)z)z and b = (f IVVIIG 4 dt)2

we get

f Ly(v)dt < —C Z(Unk) +2 ”VV“L’(t,, L 2(Q)

In-1 kET/, n

10
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Taking sum from n = 1, .., m, we get

, m

;f Li(vydt < c, Z Z () + 3 IV Q@ = w20, 12000

In-1 n=1 kety,

Next, we will bound L,(v), using the following proposition (Clement, 1975) The clément regularization operator R, :
H'(Q) — X, has the following property,

Vk € 1,;, and Yv € H'(Q), we have the following
[[v = Ruav||y, < el V¥l s,

and 1
||v - Rn’hVHO,e < ch |[VVllg a,

Ly(v)

- Z Z @ a (O = vp)dx

kety,, eedk ¢

Z Z ”(’D/el,n”(),e ”V(t) - Vh(t)“O,e

kET;,{,l ecok

IN

Now we take v, () = R, ,(v()), and use the above preposition to get

Le) < > > letally Mo - Ruso],,
kety,, ecdk
< 3 S eally, 2k 19Ol a0
ket , ecok

Using the inequality 3, ab < (3, a®)? (3 b*)?, with a = he? |j¢¢ | 0.0 A0d b = [Vv()]lo .- we obtain

[STE

2 ) D he ||¢;,n||§,e]2 > HVv(r)ué,Ae}

Lz(V) <
ketp, Lecok ecok
- 2L 1
2 2
ho\2 2
< al 2ot | D D IR,
LkE€Thn ket ecdk
- 1L
ho\2
< o) L@ IVvOllg
»kEThyn ]
Integrating in (¢,—1, t,,),
' ! ]
In In - In 2
ho\2 2
f Lwdr < ¢ f >l [ f ||Vv(t)||(mdt]
th-1 | th-1 kET;,,,, th-1
- 1
2
h N2
< o3| D ml | 19V, o]
| KETh

Taking the sum from n = 1, ...,m, we get

3 f " Ldr < e li 3wl
n=1 Yin-1

n=1 kery,

1
2
[||VV||L2(o,t,,,,L2(Q))]

11
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Using ab < ﬁaz + 2% we get

m ‘ m
! €3 h & 2
; L LZ(M - uh)dt < 2_62 Z Z Tﬂ(nmk) + 5 ”V(M - uh)”Lz(O,t,,,,Lz(Q))

-1 n=1 kety,

m
hy2 o, e 2
¢ ) D Tl + 5 IV =i, )

n=1 kety,

Using the above bounds, and choosing €; = § and &, = § we get

2 2
V@ = w0, 20y + 1) = o

< [Z St Y S e + oo - u2lli,r}

n=1 kety, n=1 kety,

Theorem 5 Forallm=1,2,..,N we have

Hé’(u —up)|]?
ot

< lZ 0 + 50,00 + o - uﬁ“ir\

1
a1
L2(0.1,,H™ 2 (1) oy

where ¢’ is a constant.

Proof. Define the functions r(t,x) € H %(F) and w(t, x) = e”"(u — uy)(t, x) € H'(Q), and consider the problem

diviyVw(t,x)) =0 , in (0,7T) x Q,
w(t, x) = r(t, x) ,on(0,T)xT.

which admits a unique solution w(r) € H'(Q) verifying,

IVw®lloo < cilirlly

Consider the equation

6 —
f YV = wp)V(t, x)dx + 2 f 4 s
Q r ot

In—1 n n—1 n—1 e
= yV(u, —u,  )Vvdx — f yVu,” Vvdx — E E @ (X = vp)dx
f h h h h,

n ke, ecok V€

Using the inequalities

Liv) < ﬂ‘ S eV = 9V + > e[ o 19V
Tn ket | kEThp ’

and 1

2

L) <es| Y G| 1I9v0llog
ket
we get
f YV (U = u)Vv(t, x)dx + 2 f O =) s
a r ot
< ||VV(I)||0,Q{ e D IR (R R I 2 G SR
ket ket kET)p

dividing by ||v|l; o then using Cauchy-Schwartz inequality, we get

2 o(u — uy)
,8)d.
||v(r)||1,gfr o (s

12
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1 1
_ 2 3
<o 19 = woa + o[ (S - o Sk | (Sl

K

For every r(t) e H 2 (), consider the harmonic lifting in v € H' (Q)satisfying,

div(yVv(t,x)) =0 , in (0,T)x Q,
v(t, x) = r(t, x) ,on(0,T)xT.

where
MOl < ctlilly = crlvily
)
1 1
<
vl VOl o
but Sy
A u—uy,
wup e =5 Vds_”(?(u—uh)
OV o lsr

therefore, after integrating over (#,-1, t,), and taking sum from n = 1, .., m we get

< lz 0 + 50,00 + oo - uﬁ“ir\

n=1 kety,

Hé’(u —up)|]?
ot

1201, H 2 ()

Theorem 6 For allm = 1, ..., N, we have the following
- 2
VGt = et oy < €| D D (L% + Talr 0P + [luo = uhs
n=1 kery,

where c is a constant.

Proof. We have, using the previous theorem, the following bound

IV (u — up + up — meup)ll 2

IV (u — rup)ll 2

A

< VG = upllpz + IV = 7eup)ll 2

l—

’
C

IA

D0 0+ Tl 0D + o - u2||§4 + 19 Gy — meeten)l 2

n=1 kety,

Now we have to bound ||V (uy, — m-up)l|;2.
For t € (ty-1,1,), we have 7oy, () = ) and wy — u) = = (uj} — u}~"), we have

IA

Ry
VG, - mulEy < L lZ IlV<uZ—uZ“>Il§,k}
k

=1y i n n— n—
< RIS -+ e
k
integrating over (f,-1,t,), we get

Ly . _ 2
f IV Gup — o) g di (= b) [ZIIV(uZ—u’F)HQk
k

2
In—1 -1 Tn

Cl Z(’];,k)z
k

IN

] K

IA

13
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Finally we conclude

1

m 2

2 2 2 |
IV @ = 7ewn)ll 204, 260 < € Z Z (1) + 7,07 + [Juo = ]|

n=1 kety,

5.2 Upper Bounds of the Indicators

Theorem 7 For allm = 1, .., N we have the following estimate

2 2 2
(n;,k) <|IV(u - ﬂTuh)”LZ(I,,,l,t,,,Lz(k)) +1IV(u - Mh)”Lz(t,,,],t,,,Lz(k))

Proof. We have

t—1t,

V(uy, - uZ_l) V(uy, — mouyp)

n

V(u — up) + V(u — mup)

then

2

t—t,
‘ IV = ) + V= 7o)

n

n n—1
V(uy, — uj,

IA

IV(u = up)* + IV(u = 7o)

but
2 v - u < 22 vag - wHf + v
Tn Tn

integrating over k and on (#,-;, ,,) we get

In t— tn n . 2 In . 2 In
f f (— |V — | + f f |Vu; | < f f IV — up)? + |V(u — moup)
toot JE - Tn ti1 Jk ti1 Jk

Tn n n—15[|2 n—1|2 2 2
3 (O )”(),k S\ HO,k < VG = metti)lag, g, 0200 + IV = WMz, g, 2200,

then

REMARK: The numerical simulation will be done in a forthcoming paper.
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