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Univ. of Southern California
Dept. of Computer Science

Los Angeles, California, USA
mataric@usc.edu

ABSTRACT

Several machine learning techniques are used to model the
behavior of children with autism interacting with a humanoid
robot, comparing a static model to a dynamic model using
hand-coded features. Good accuracy (over 80%) is achieved
in predicting child vocalizations; directions for future ap-
proaches to modeling the behavior of children with autism
are suggested.

Categories and Subject Descriptors

H.1.2 [Models and Principles]: User/Machine System;
I.2.9 [Robotics]: Miscellaneous

General Terms

Performance, Design, Experimentation, Human Factors

Keywords

Human-robot interaction, machine learning, autism

1. INTRODUCTION

The use of robotic systems is a promising technological
possibility for enhancing therapy for children with autism,
a common and often debilitating developmental disorder af-
fecting between one in 80 and one in 240 children in the
United States [6]. Anecdotal evidence and case studies sug-
gest that not only are robots highly salient to children with
autism, but that those children may exhibit social behav-
iors with robots that they do not otherwise use (e.g., [7]).
A number of research groups (including our own) have used
robots with children with autism (e.g., [7], [3], and [2]). On
the machine learning side, modeling the behavior of chil-
dren with autism has mainly focused on diagnosis; machine
learning techniques have been used to discriminate between
children with autism and typically developing children such
as in [5] and [9]. Other work has attempted to model behav-
ior in children with autism, but has either been focused on
nonsocial behavior ([1]) or has been limited in the general-
izations that could be made due to the heterogeneity of the
population ([8]). The approach of this work is unique in the
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use of multimodal features to model social behaviors in chil-
dren with autism. We use a combination of audio and video
features in order to identify one particular social behavior:
child vocalizations. We use two different machine learning
techniques to model the interaction in order to predict vo-
calizations.

2. EXPERIMENTAL DESIGN

The dataset comes from a study comparing children’s in-
teractions with a robot behaving in a way that is contingent
on the child’s behavior, a robot that behaves randomly, and
a non-robotic toy. A description of the system used appears
in [2]. There are three primary experiment conditions, but
for this preliminary work we use data from sessions for six
children with autism interacting with the humanoid robot
where the robot’s behavior is contingent on the child’s be-
havior. At this time, these data are annotated by a single
coder (the author). There are 18 features, with 44 total pos-
sible feature-value pairs, including such features as where the
child was standing and whether the child was touching the
robot, the wall, or the parent. Additionally, the PrAAt au-
dio analysis software was used to extract pitch and intensity
features from the audio.

Two machine learning algorithms are used in the analysis
of the data. Conditional Random Fields (CRF) are used be-
cause their dynamic nature and ability to both classify and
segment data are well-suited to the time-series data gener-
ated by the experiment (using code by Kevin Murphy [4]).
As a comparison, we also examine the performance of deci-
sion trees (generated using the C4.5 algorithm in the Weka
toolkit). One social behavior of particular interest to us is
child vocalizations, since that behavior is used in the exper-
iment as one that receives the “reward” behavior from the
robot (blowing bubbles). Thus we focus on the recognition
of vocalizations, with the following hypotheses:
H1: CRF will outperform decision trees for recognition of
child vocalizations.
H2: Recognition using the full multimodal feature set will
outperform recognition using only audio features.

3. RESULTS

Additional time-shifted features were added to the feature
set five, ten, and fifteen frames in the past (up to half of a
second). This results in a total feature set size of 241 fea-
tures. The learning algorithms were evaluated using leave-
one-out validation, first on the full set of features, then on
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the set of audio features only. CRF was additionally tested
on a subset of 64 optimal features chosen using information
gain. Additional analysis was performed with k-means clus-
tering, but is beyond the scope of this abstract.

Because of the limited numbers of children on whose data
we could train the models, there was limited statistical sig-
nificance in the results. The only statistically significant
pairwise difference in performance was for the F1 values in
the audio only case, with p < 0.05.

For the full set of data, the CRF yielded a mean F1-value
of 0.0889, with a variance of 0.0156, and an error rate of
26.35% with a variance of 1.62%. The decision tree gave an
F1 value of 0.1181 (variance: 0.0017) and an error rate of
28.19% (var: 1.74%). For the audio-only data, the CRF’s
mean F1 value was 0.1784 (var: 0.0035) and had an er-
ror rate of 21.48% (var: 3.22%). The decision tree had a
mean F1 value of 0.0714 (var: 0.0021) and an error rate of
20.02%(var: 2.51%). Finally, for the set of best features,
the CRF had a mean F1 value of 0.2281 (var:0.0700) and an
error rate of 19.81% (var:1.61%).

4. DISCUSSION

Hypothesis 1: CRF outperforms decision trees:

The outcome of this hypothesis depends on the set of fea-
tures used. Although the conditional random field and the
decision tree seem to perform comparably in terms of error
rates, when we look at the F1 value (the harmonic mean
of precision and recall), we see that the decision tree out-
performs the conditional random field in the set of all data,
while the conditional random field outperforms the decision
tree on audio features only, as well as on the set of best
features. Furthermore, CRF on audio features only outper-
forms the decision tree on the set of all features. This is
likely because the decision tree is a pruned decision tree,
which prevents over-fitting on the data, and desensitizes it
to noise. On the full set of data, CRF (which does not re-
duce the feature set in any way) is hampered by the noise
as well as by over-fitting. Our hypothesis is tentatively con-
firmed, with the caveat that, on a large feature set, it will
be necessary to somehow reduce the size of the feature set.

Hypothesis 2: Multimodal feature set outperforms

audio-only feature set: The data do not support this
hypothesis for CRF in the comparison between the audio
and full feature sets. However, as discussed above, this is
likely because an overabundance of features caused over-
fitting and an increase in the model’s sensitivity to noise.
When we reduced the feature set size to the 64 best features,
we achieved performance above that of the audio-only fea-
ture set, confirming that multimodal information is useful
for predicting child vocalizations.

5. CONCLUSIONS

The population of individuals with autism spectrum dis-
orders (ASD) is exceedingly heterogenous when it comes to
social behavior–hence the difficulty of both diagnosis and
treatment. The primary contribution of this work is the suc-
cessful application of machine learning techniques to model
vocalization behavior in children with ASD. We have used
machine learning to model one social behavior with rela-
tively high accuracy. We have also demonstrated that con-
ditional random fields outperform decision trees with this
particular dataset, suggesting that future work should focus

on the use of dynamic rather than static classifiers in order
to capture temporal structure in the data of this type.
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