
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 38, NO. 11, NOVEMBER 1990 1917

Transactions Letters

Implementing the PPM Data Compression Scheme
ALISTAIR MOFFAT

Abstract-The “Prediction by Partial Matching” (PPM) data com-
pression algorithm developed by Cleary and Witten is capable of very
high compression rates, encoding English text in as little as 2.2
bits/character. Here it is shown that the estimates made by Cleary and
Witten of the resources required to implement the scheme can be revised
to allow for a tractable and useful implementation. In particular, a
variant is described that encodes and decodes at over 4 kbytes/s on a
small workstation, and operates within a few hundred kilobytes of data
space, but still obtains compression of about 2.4 bits/character on
English text.

I. INTRODUCTION

HE “Prediction by Partial Matching” data compression scheme, T developed by Cleary and Witten in 1984 [2] is capable of very
good compression on a wide variety of source data. The adaptive
nature of the scheme, and the flexibility afforded by arithmetic
coding, mean that an effective compression model will be built for
any input file that is reasonably homogeneous. Cleary and Witten
reported that their scheme was capable of representing English text
in as little as 2.2 bits/character. In comparison to other compression
methods this is very good; for example, using a zero order character
model English text will require about 4.7 bits/character, and the
Ziv-Lempel [12] algorithms will typically require about 3.3
bits/character.

The drawback of the PPM method is its resource requirements.
Cleary and Witten estimated that their scheme could at best be
expected to encode and decode at about loo0 characters/s on a
VAX 11 /780, and might require more than a megabyte of memory
when coding a large file. This high resource requirement has made
the method unattractive, and the current state of the art for practical
use is still the Ziv-Lempel schemes, of which the Unix utility
Compress is a good example [9], [lo].

The estimates of Cleary and Witten were, however, unnecessarily
pessimistic. In what follows, it is shown that by trading compression
efficiency for running time and data space a practical PPM compres-
sion scheme can be implemented. This version runs about three
times faster than those first estimates, and operates effectively within
a few hundred kilobytes of data space to obtain compression only
marginally inferior to that produced by the original PPM. PPM is a
tractable technique for high performance data compression.

U. PRF.DICTION BY PARTIAL MATCHING
One of the most effective ways to predict symbols, and hence to

obtain compression, is to bias the predictions according to the most
recent symbols seen. For example, the phrase “One of the most
effective ways to predict symbols, and hence to obtain compressio”
almost uniquely predicts the next symbol in the stream to be “n.”
As a general rule, and provided that accurate statistics are known,
the higher the order of the model the more accurate will be the

Paper approved by the Editor for Coding Theory and Applications of the
IEEE Communications Society. Manuscript received August 8, 1988; re-
vised December 18, 1989.

The author is with the Department of Computer Science. University of
Melbourne, Parkville, Victoria 3052, Australia.

IEEE Log Number 9039069.

TABLE I
EXAMPLE CONTEXT SYMBOL COUNTS

order context symbol occurrence counts

~~ 2 io 10 15

o 15 6 18 25 65
0 empty U) 15 41 68 24 12 32 282

predictions, and the better the compression. Using the same exam-
ple, in the shorter context “sio” a number of other symbols besides
“n” must also be regarded as possible, such as in “excelsior” and
‘ ‘ physiotherapy. ’ ’

Unfortunately, the sheer magnitude of the sample space for
predictions using a long context makes them almost impossible to
manage for practical compression. Even restricting the context to 4
prior characters will mean (using typical 8 bit bytes) that there are
in excess of 4 billion contexts possible. The alternative is to make
the scheme adaptive. Then statistics will be built up as the stream of
symbols is processed, without the need for a large model to be
stored or transmitted beforehand. This will reduce the space require-
ments, but does mean that during the initial part of the transmission,
while the model is learning the distribution of conditional probabili-
ties, the coding will be relatively inefficient. On the other hand,
low-order adaptive models are quick to establish useful statistics,
but over a long text will only attain limited compression.

This dilemma is solved in the PPM scheme by using an adaptive
model based on a variable length context. At each coding step the
longest previously encountered context is used to predict the next
character. If the symbol is novel to that context, an escape code is
transmitted and the context shortened by dropping one symbol. This
process of transmitting an escape code and then shortening the
context will continue until the symbol is successfully transmitted. If
the current symbol is novel even to the zero order context then a
final escape will be transmitted, and the symbol will be encoded as
an 8 bit code. The adaptive model can then add the current symbol
to all applicable contexts, thereby boot-strapping itself into longer
contexts. Cleary and Witten give a full description of this process
and give examples. The actual coding of a symbol, given its
predicted probability, is performed almost optimally by arithmetic
coding. Witten, Neal, and Cleary [111 give a detailed description of
arithmetic coding.

By way of example, Table I shows the occurrence counts that
may have accumulated at some stage during the encoding process.

Cleary and Witten discussed two methods for calculating symbol
and escape probabilities. Their method A allows a count of one for
the escape code, and correspondingly inflates the total count for the
context by one. For example, using method A in the above example
gives pa(“”” I “sio”) = (9/12), and p,(escupe I “sio”) = (1/12)
where p M (c I string) is the conditional probability assigned to
symbol c by method M in the context given by string, and p M (c)
is the overall probability assigned to symbol c by method M .
Method B created space for the escape event by subtracting one
from each count and retaining the same total, SO that
pB(“n” I “sio”) = (8/11) and pe(escape I “sio”) = (2/11).

Should the escape be transmitted while in the context ‘ ‘ sio, ” both
“n” and “t” can be excluded from consideration in the context

0090-6778/90/1100-1917$01.00 01990 IEEE

1918 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 38, NO. 11, NOVEMBER 1990

“io,” and increased probabilities can be allocated to the remaining
symbols, making the coding more efficient. Thus, pA(“u” I ‘ ‘ iq”)
= (3/4) and pB(“u” I “io”) = (2/5). This process of exclusion
will be discussed further below. The overall probability assigned to
each symbol is calculated by including the escape probabilities, so
that

p A (“ a ”) = (1/12) x (1/4) X (1/27) x (32/105), and

Note that, using method B, symbol “b” cannot be encoded using
the first-order context (it has only occurred once) and so cannot be
excluded from the zero order context.

Method A would generate a 12.05 bit code for ‘&a,’’ and method
B would generate a 7.82 bit code. This does not mean that method B
is better: method A requires 2.58 bits for “t,” while method B
generates 3.46 bits. Which is actually better depends on which
escape mechanism best captures the “true” behavior of the data.
This will be discussed further below.

III. IMPLEMENTING PPM
Central to all of the PPM implementations was a digital search

tree, or trie [5] . Each list of the trie represented one context,
tracking the number of times that context had been encountered.
Each node in the list recorded the number of times a particular
symbol had occurred in that context, and was itself the head node
for a corresponding list representing a context one symbol longer.
In simplest form, each node of the trie required 18 bytes-three 4
byte pointers and three 2 byte integers. The pointers recorded the
next node in the same context list, the first node in the “child”
context set, and the root node of the context set one symbol shorter.
For example, the node for “sio” would have pointers to the node
for perhaps “sig,” the node for perhaps “sion,” and the node for
“io,” respectively. The final pointer (the vine pointer, looping back
up the tree) was included to allow speedy context dropping after the
transmission of an escape.

The three integers in a node were used to record the symbol
represented at that node, the number of times that symbol had
appeared in its parent’s context set, and the number of times it had
been used as a context set. Two distinct values were needed as it
was necessary to keep the occurrence counts bounded, and the count
scaling was applied to individual lists when required, not to the
whole trie.

This simplest trie was only used for method A coding. For
method B another count field was added, recording the length of the
corresponding list. This enabled the escape probability to be known
without scanning the entire context list.

At each stage of the coding a “hand” of pointers into the trie was
maintained, with one finger of the hand pointing at each of the
current contexts. The context list of the deepest finger of the hand,
representing the longest permitted context, was searched first, then,
after the transmission of an escape code, the second longest, and so
on, until either the symbol was found or even the list indicated by
the root finger (the thumb) had failed to find the symbol. In this
latter case, the symbol was finally transmitted as an unweighted 1 in
257 code, with the 257th symbol reserved for an end of file marker.

While the list pointed at by the deepest finger (i.e., the longest
permitted context) of the hand was being scanned there was no need
to allow for exclusions, and so in fact two different searching
procedures were used: when it was known a priori that no symbols
had been excluded a successful search could terminate without
scanning the remainder of the list. Both versions of the list search-
ing used a “move-to-front” policy to reduce the searching time.

The symbols excluded at any stage were recorded by setting a bit
in an array. The final step in processing each symbol was to reset
this array, and there was a marked speed advantage in only resetting
bits that had been set, by scanning the appropriate context list again
rather than reinitializing the whole array to zero.

In the case when the majority of the symbols were being success-
fully predicted in the maximum permitted context, the processing of

TABLE I1
SPACE REQUIRED AND PREDICTION EFFECTIVENESS

mienodes VAXobject 4470 12012 21819 32882 44743
Englishtext 1330 8265 27374 63461 116950

predictions VAXobject 74% 53% 40% 32% 27%
English text 99% 95% 86% 74%

TABLE I11
COMPRESSION PERFORMANCE OF METHODS A AND B

(bits per char) method B 3.51 2.82 2.54 2.47 2.46

(kbyte persec) methodB 3.15 3.04 2.44 1.96

each symbol involved only a search in a relatively short move-to-
front linked list, with early termination when the symbol was found;
an arithmetic coding step using the parameters generated; and then
resetting the fingers of the hand using the sequence of vine pointers
starting at the node found. In this case it was expected that the
coding would not be significantly slower than comparable zeo order
methods, which must also undertake these same basic steps, includ-
ing searching in a longer list.

The programs were written in C and run on a Sun-3/50 under
BSD4.2 Unix. Each program required about lo00 lines of code, and
so they were relatively compact. The experiments used a suite of
nine test files, including a VAX object file, spreadsheet and database
documents from an IBM PC, a transcript of an edit-compile-run
terminal session, C source code, and English text in several forms,
with and without embedded formatting commands. File sizes in the
suite ranged from 16384 bytes to 139521 bytes, and they totalled
400325 bytes. Each 8-bit byte of the file was taken to be a symbol
for compression purposes.

A . Performance of Figures for Methods A and B
The first section of Table 11 lists for the smallest and largest files

in the test suite the number of trie nodes required during the
compression. The second section of the table lists, for the same two
files, the success rate of the searches in the maximum context, with
the maximum context varying from 1 to 5. For example, using a
fourth order model on the text file, 63461 trie nodes were required,
corresponding to 1.1 megabytes using method A and 1.2 megabytes
using method B. In the same fourth-order model 74% of the text file
(using method A) was coded using fourth order contexts. The
figures show that for English text a large fraction of the characters
can be predicted using relatively long contexts, but that the space
requirements might become very large. The object file is harder to
compress, but even so, more than half of the characters could be
coded using second order contexts.

Table 111 lists compression performance, measured as output bits
per input character, and throughput, measured in kilobytes of source
data per second, for methods A and B. The compression figure was
calculated as a weighted average over the nine input files, and the
throughput was measured as twice the total size of the nine files,
divided by the total time required to both encode and decode them
all. In almost all cases encoding and decoding required very similar
running times, and so a single throughput figure was appropriate.
There were individual discrepancies from the averages shown, and,
for example, throughput on the object file was slower than the
average and compression worse. However, in practice a data com-
pression scheme will be called upon to compress a mixture of file
types, and it seemed not unreasonable to compare the methods based
upon such an average. The fifth-order models were affected by
significant page faulting, and the times were not reliable.

In terms of compression, the two methods were very close, and
the results agree with those of Cleary and Witten. However method
B requires slightly more time than method A, caused primarily by

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 38, NO. 1 1 , NOVEMBER 1990 1919

TABLE IV
COMPRESSION IMPROVEMENTS

modification

the need for each novel character to be transmitted twice in a lower
order model.

B. Improving Compression Performance
A number of variations on the PPM theme were also tested. This

section describes these modifications, and details the improved
compression achieved by them.

The first modification was to the count scaling. Because the
arithmetic coding routines used had a limit of 16383 on the maxi-
mum frequency count that could be handled (see [111 for a discus-
sion of this), the initial implementations of methods A and B halved
all of the counts in a particular context whenever this limit was
reached. The scaling also brought the useful side effect of making
the model self-adapting to changing symbol distributions in the input
stream. For example, halving the count of the number of distinct
following symbols (method B), has the effect that, after a learning
phase when the escape has a relatively high probability, it is scaled
back toward zero more quickly than just by the sheer accumulation
of statistics. Experiments with different values of the limit showed
that as a general rule, the more often the counts were halved, the
better the compression. A limit of 64 gave marginally better com-
pression than other values tested. Because there might be up to 256
items in any particular context list, and to avoid rounding errors,
extra precision was achieved by incrementing the count variables by
8 rather than 1 at each symbol occurrence, and in fact scaling the
counts when their total exceeded the threshold of 512 = 8 x 64.
This combination meant that low probability events could still be
allocated very small regions of codespace, but that the counts
adapted rapidly. Results using this strategy in connection with
method A are given as the second row of Table IV, and show a 5%
improvement in compression.

The second modification tested was to count each symbol only in
context levels at or above the context in which it was successfully
predicted. For example, if “n” is coded in context “sio” it is
redundant to add 1 to the count of “n” in the zero order context,
the context “0,” and the context “io.” Adaptive coding is effective
because what is happening is counted and used as the basis of
subsequent coding, and so the only count that needs to be incre-
mented is the count for “n” in the context “sio.” The alternative
full counting strategy counts predictions that are in fact not being
coded. Implemented independently, this technique also improved the
method A compression by about 5 % .

The third change was to reconsider the method for calculating the
escape probability. It seemed wasteful to only start using a context
for predictions when it had already occurred twice (method B), but
it seemed desirable, at least in the initial stages of the coding when
novel symbols are relatively frequent, to allocate more than a count
of 1 to the escape (method A). As a compromise between these two
a hybrid, method C, was developed in an attempt to get the best of
both. In method C, the escape is counted as having occurred a
number of times equal to the number of distinct symbols encoun-
tered in the context, with the total context count inflated by the same
amount. For example, using the symbol counts of Table I,
pc(escape I “sio”) = (2/13), pc(“n” I “sio”) = (9/13) and, tak-
ing into account the exclusions to get an overall probability,

p c (“ a ”) = (2/13) x (3/6) x (5/31) x (32/111),

which yields an 8.13 bit code. The fourth row of Table IV lists the
compression attained by this hybrid probability calculation, still

with the original policies of full counting and count halving at
16383. The hybrid probability calculation significantly improved the
compression obtained.

The final row of the table shows the combined effect of these
three modifications, and represents the best compression obtained by
tuning the PPM strategy. This final method will be called method C.
Strictly speaking, method C is the hybrid scheme for estimating the
escape probabilities, but it will be convenient in what follows to
refer to the package of improvements as method C.

C. The Effect of Bounding the Data Space
One of the biggest obstacles to use of PPM compression is the

large amount of data space required. Even in experiments on
reasonably small files there were cases when there was insufficient
real memory available to support the model. To develop a practical
PPM it was necessary to investigate the sensitivity of the model to a
bounded workspace.

To limit the data space, a strategy described by Cormack’ and
Horspool [3] was adopted. A fixed amount of space was allocated to
trie nodes, and when that space had been filled the encoding was
temporarily halted and the entire trie discarded. To avoid very
inefficient coding while the trie was being rebuilt, the last 2048
characters transmitted were maintained in a circular buffer, and the
trie was rebuilt from the buffer before transmission was resumed.

To further reduce the space required the 32 bit pointers of the
original trie were replaced by 16 bit array indexes. This then meant
that each node was reduced to 14 bytes (method C), and that the trie
was limited to 65536 nodes, or 896 kbytes. This was accepted as a
reasonable compromise between node size and trie size. The results
in Table V arise from a restricted space implementation of method
C, and can be compared to the final row of Table IV. It was not
practical to run the fourth and fifth order models with very small
data spaces because of thrashing.

Within the range of data space allocations considered the order
three model was the best, suffering little by being restricted to as
little as 224 kbytes. Encoding became slower as the memory was
restricted because of an increased fraction of nonproductive time
that was spent rebuilding the trie when it became full. Encoding was
also slower compared to the unrestricted space method C because of
the overhead of repeatedly converting 16 bit indexes to 32 bit
pointers and vice-versa.

Other strategies for reclaiming space from the trie could also be
considered, such as garbage collection on nodes with counts of 1,
garbage collection on leaves, or some sort of least recently used
strategy [7]. However, because of the success of the simple method
described, and the complexity of the alternatives, these were not
tested. It is possible that they would provide a very slight compres-
sion advantage, but could be expected to require more running time.

D. Tuning for Speed
The bounded space variant of method C was then tuned for speed.

Because of the good performance of the third order model, the
maximum context was fixed at three, and a number of optimizations
implemented. These primarily involved unrolling loops and replac-
ing some procedure calls by in-line code, trading versatility for
speed. This made the source code about 150 lines longer, and
somewhat less understandable. Other parts of the code were also
slightly rewritten, and a number of variables, such as the fingers
into the trie, were updated lazily, that is, only when required. The
combined effect of all of these changes was to increase the speed of
the bounded space method C by about 25%. Compression was
unaffected by these changes.

Finally, a fourth method of calculating the probabilities was
considered, and in a deliberate attempt to trade compression for
improved speed, the calculation of exclusions was completely dis-
pensed with. Doing so meant that codespace would be wasted and
compression would degrade. However not having to calculate exclu-
sions meant that the searches at all context levels could make
effective use of the move-to-front lists. The escape probability was
still calculated using method C, and so this fourth program was
called method Cnx, for no exclusions. For example, again using the

1920

method

nie nodes
successful searches

method A
compression method B

method C
method Chx

method A
throughput method B

(words per sec) method C

(bits per word)

method Cnx (list)
method & (m e)

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 38, NO. 1 1 , NOVEMBER 1990

order
1 2 3

15778 37051 60970
49% 18% 8%
8.42 8.63 8.65
7.84 7.76 7.76
6.71 6.60 6.58
6.75 6.72 6.76
190 170 160
140 130 120
190 170 170
860 750 660

1740 1330 1080

TABLE V
THE EFFECT OF LIMITING THE DATA SPACE

56 kb 3.37 2.71 2.73
compression 112 kb 3.37 2.61 2.51 2.60

(bits per char) 224 kb 3.37 2.61 2.36 2.42 2.51
448 kb 3.37 2.61 2.28 2.30 2.38
896 kb 3.37 2.61 2.28 2.19 2.26

compression
(bits per char)

throughput
*byte persec)

TABLE VI
PERFORMANCE OF METHODS C AND Cnx

data methodC methodChx
space Orded Orde-3

56 kb 2.73 2.94
11 2 kb 2.5 1 2.68
224 kb 2.36 2.51
448 kb 2.28 2.40

56 kb 1.7 2.4
112 kb 2.3 3.4
224kb 3.0 4.2
448 kb 3.3 4.5

figure of Table I, pcnW(escapeI“sio”) = (2/13), Pcnx
(“n” I “sio”) = (9/13), and, as an overall probability

pc,,(“a”) = (2/13) x (3/18) x (5/70) x (32/289)

giving a code of 12.27 bits. In this latter case method Cnx is
relatively bad. On the other hand, should the current symbol be an
“n” or a “t,” both approaches would generate the same code.
Table VI lists the compression results and throughput of the final
method C, and an equivalent implementation of method Cnx.

Method Cnx runs about 40% faster than method C while giving
compression only 5% worse. Moreover, the order three version of
method Cnx outperforms even fourth and fifth order versions of
methods A and B; can be implemented to run effectively in only 200
kbyte of data space; and is capable of encoding/decoding at speeds
in excess of 4 kbytes/s. This then is the justification for the initial
claim that Cleary and Witten were somewhat pessimistic when
originally describing their PPM data compression method. (When
run on a Vax 11/780, method Cnx processed the test suite at 2.73
kilobytes/s).

By way of comparison, the Unix utility Compact, implementing
a zero order model with adaptive Huffman coding [6], was both
slower (3.36 kbytes/s) and less efficient (4.72 bits/character) than
method Cnx, while the utility Compress, implementing a form of
Ziv-Lempel coding, ran about 8 times faster but also obtained
inferior compression (3.37 bits/character) on the test files. Methods
C and Cnx can be seen to yield very good compression at a
reasonable resource cost.

IV. PPM ON LARGE ALPHABETS

The previous sections considered the application of the PPM
paradigm to a stream of characters. The technique can also be
applied to the encoding of other streams where the alphabet, the set
of allowable symbols, is not so restricted. In particular, we have
been interested in encoding streams of integers representing words
for word based compression schemes [I], [4]. Each integer in the
stream will be in the range 1 to n + 1 where n is the maximum
integer appearing in the stream so far. Such a stream is generated by
mapping distinct words onto sequentially allocated integers, so that,
for example, “to be or not to be” is represented by “1 2 3 4 1 2.”
The actual characters associated with each word must also be
transmitted in such a data compression model, as well as the
nonwords that separate the words, but those aspects will be ignored
here, and only the stream of words is considered. Further details
can be found in [8].

As an experiment into the effectiveness of the various PPM
models, each was modified to allow for numeric rather than charac-

ter input, and then applied to the stream of word numbers generated
for a large file of English text. This file contained 26257 integers,
representing Occurrences of 2408 distinct words. The results of
these experiments are listed in Table VII. Methods A and B
performed badly, with the poor compression being caused by the too
small escape probability (method A) and the need to transmit each
number twice in an unweighted raw form (method B). This trans-
mission was avoided in the other methods by making use of the
implicit knowledge that when the escape appears in the zero order
context it must indicate a word number one larger than the largest
number previously encountered. Method C included the single
counting optimisation, but the threshold value for count scaling was
retained at 16383-it made no sense to halve the counts early when
the maximum number of distinct items in the list could not be
known in advance. Methods C and Cnx obtained compressions up to
15% better than method B and 25% better than method A . The
zero-order entropy of the word distribution in the test file was 8.68
bits /word.

Character PPM is based on an alphabet of 256 distinct 8 bit
symbols. To encode a stream of integers representing words using
PPM, no such a priori bound can be placed on the size of the
alphabet, and the asymptotic efficiency of the data structure used for
the context searching must be considered. Searching in a list of n
items to calculate exclusions will take O(n) time, and will be very
time consuming when n becomes large. For this reason, methods
A , B, and C when applied to an integer input stream proved to be
very slow.

On the other hand, method Cnx makes full use of the MTF lists
and throughput was significantly better. Even more effective was to
use a binary search tree for each context set within the trie, creating
a tree trie; this required an additional pointer in each node and an
additional counter, to record the sum of the context counts of nodes
in the left subtree of the node. Use of a tree rather than a list
reduced the searching time within each context to O(1og n), and in
practical terms, resulted in a two-fold speed increase without alter-
ing the compression. Method Cnx, using a tree trie, is much better
suited to this type of input data than methods A , B, and C.

ACKNOWLEDGMENT

The author is grateful to T. Bell, who read and commented on an
early draft of this work, and to the referees, who made several
helpful suggestions.

REFERENCES

[l] J . Bentley, D. Sleator, R. Tarjan, and V. Wei, “A locally adaptive
data compression scheme,” CACM 29, no. 4, pp. 320-330, Apr.
1986.
.I. Cleary and I . Witten, “Data compression using adaptive coding and
partial string matching,” IEEE Trans. Commun., vol. COM-32, pp.
396-402, Apr. 1984.
G . Cormack and R. Horspool,” Data compression using dynamic
markov modelling,” Comput. J . , vol. 30, no. 6, pp. 541-550, Dec.
1987.

[2]

[3]

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 38, NO. 1 1 , NOVEMBER 1990 1921

[4] P. Elias, “Interval and recency-rank source coding: Two on-line
adaptive variable-length schemes,” IEEE Trans. Inform. Theory,
vol. IT-33, pp. 3-10, Jan. 1987.

[5] D. Knuth, Fundamental Algorithms Volume 3: Sorting and
Searching. New York: Addison-Wesley, 1975.

[6] -“Dynamic Huffman coding,” J . Algorithms, vol. 6, no. 2, pp.

171 V. Miller and M. Wegman, “Variations on a theme by Ziv and
Lempel,” in Combinatorial Algorithms on Words, A. Apostolico
and 2. Galil, Eds. New York: Springer-Verlag, 1985, pp. 131-140,
vol. 12.

163-180, 1985.

[8] A. Moffat, “Word based text compression,” Software Practice and
Experience, vol. 19, no. 2, pp. 185-198, Feb. 1989.

[9] S. Thomas and J. Orost, Compress (version 4.0) program and
documentation, available from petsd! joe@RUTGERS. EDU, 1985.

[IO] T. Welch, “A technique for high performance data compression,”
IEEE Comput., vol. 17, pp. 8-20, June 1984.

[I l l I. Witten, R. Neal, and J. Cleary, “Arithmetic coding for data
compression,’’ CACM, vol. 30, no. 6, pp. 520-541, June 1987.

[I21 J. Ziv and A. Lempel, “Compression of individual sequences via
variable rate coding,” IEEE Trans. Inform. Theory, vol. IT-24,
pp. 530-536, Sept. 1976.

