An Object-Oriented Framework for
Explicit-State Model Checking

Mark Kattenbelt! and Theo C. Ruys® and Arend Rensink?

Abstract.
object-oriented framework to support the development whfd ver-
ification tools (i.e. model checkers). The objective of thehétecture
is to support the reuse of algorithms and to encourage a raodet
sign of tools. The conceptual framework is accompanied oy &
implementation which provides reusable algorithms forgimeula-
tion and verification of explicit-state models as well as aleiaep-
resentation for simple models based on guard-based prdesssp-
tions. The framework has been successfully used to deveiopda|
checker for a subset ofROMELA.

1 INTRODUCTION

Model checking is the application of an automated procedsrto
mally verify whether amodel conforms to aspecification[7, 3].

This paper presents a conceptual architecture for an |

Intermediate Representation |

1 1

Algorithm Algorithm

i

Algorithm

Figure 1 — Model checking frameworks usually have a single interratedi
representation. In order to use the framework the modelnratesideration will
have to be expressed in this intermediate representation.

ial task, and therefore any opportunity to reuse functibypahould
be considered beneficial.

The need for reuse and interoperability has been acknoetedg
by several others. For example, ti@del-checking framewoiro-
GOR [12], the IF TooLSET[4], the MODEL-CHECKING KIT [20]
and the NCSU ONCURRENCYWORKBENCH[8] all offer a frame-
work to enable reuse in verfication tools, and often emplogya |

There are numerous ways in which one could express a model, bered architecture. Similar to modern compiler suites, nobshese

typically the model can be interpreted as some sort of aumma
The level of abstraction that is used to describe modelsois taries
significantly depending on the model checker, and ranges fow-
level automata-based representations (such as the tinhethata in
UPPAAL [1]) to high-level specification languages that rebée
programming languages (such as BIR in Bogor [12]). The $igeei
tion can also be expressed in various ways, but is usualgftated
in terms of properties in some type of temporal logic. Theirabf
the verification process used in model checkers is heavpgident
on the types of models and specifications it can verify.

Most model checkers are very specialised, and support osily-a
gle type of model. Additionally, it is not uncommon for moadéleck-
ers to introduce their own specification language. Althotlgé spe-
cialisation enables tools to optimise their verificatiogaalthms, it
does not encourage a reusable design. In order to reusenttef
ality contained within model checkers one often has to téearsing
the model specification language prescribed by this modstiar.
As a result, many transformations between input languafjesots
currently exist and interaction between tools can only Heexed
with considerable effort.

To emphasise the need for reuse, consider the great advantem
of model checking in recent years [6]. The aspiration to appbdel
checking to systems of an industrial scale has led to thedaottion
of many new complex techniques and algorithms (i.e. paotidér
reduction, symmetry reduction, predicate abstractianingl algo-
rithms). Implementing a state-of-the-art model checkeroisa triv-

1 School of Computer Science, University of Birmingham, ©ditKing-
dom. http://www.cs.bham.ac.uk/ ~mxk/. (Supported by EP-
SRC grant EP/D07956X/1 during the authoring of this exteratestract.)

2 Formal Methods and Tools group, Faculty of EEMCS, Univgrsif
Twente, The Netherlandbttp://fmt.cs.utwente.nl/ .

frameworks use aimtermediate representatiotm which high-level
models are translated (see Figure 1). This representatiorbe a
textual description in a modelling specification languamea pro-
grammatic representation. For the frameworks mentionedqusly,
these intermediate representations are BIRspEcification 1-Safe
Petri NetsandLabelled Transition System@spectively.

The verification functionality of these frameworks is reall by
algorithms that use this intermediate representatiorctjreHaving
a single intermediate representation is advantageoukdapitimisa-
tion of verification algorithms. However, a drawback of tapgproach
is that the applicability of the framework is limited by thepees-
siveness of the intermediate representation. Furthermadransfor-
mation of models to this intermediate representation isahwtys
optimal. The verification algorithms cannot be reused fortling
other than the intermediate representation used in thesframk.

We have developed a framework that is not limited by a single
intermediate representation. We provide a means of désgrébgo-
rithms such that they can be used by many different interatedep-
resentations. Related to our approach is th@eMUs MODELLING
ENVIRONMENT [9, 11], which uses the same principle for perfor-
mance analysis of stochastic models.

The goal of our framework is to enable the development of gene
functionality that can be used in several verification tatisctly, not
necessarily limited to model checkers, and to improve tteraper-
ability of tools. In the remainder of this article we will deibe the
core essentials of this framework. Details can be found &}.[Ihe
meaning of ‘framework’ is two-fold in this article:

e Conceptual architectureA conceptual architecture for a model
checking framework which enables reuse of code. This achit
ture enables us to define algorithms that can be reused feretit

http://www.cs.bham.ac.uk/~mxk/.
http://fmt.cs.utwente.nl/

P v The most obvious choice of a generic layer would be one to fa-
: , ‘ ‘ Abstract cilitate explicit-state model checkindn this type of model check-
Rj;fé’j;‘:g}; R[e"[jf;":n";:n R'e";f;;”;‘igzn § Layer ing each state is explicitly represented, and the verificapirocess

: can usually be reduced to some type of exhaustive searchttover
state space. Candidate types for type parameters are e&ynpes
such asstatesandtransitions whereas operations are likely to facil-
itate the on-the-fly construction of the state space (i.eof@ration

| Vodel Interface | _ to retrieve successors of a state). A generic layer for exdtate
,]\ /I\ /I\ i faey"eer”c model checking is discussed in Section 3. Other possiblergelay-
: ers could facilitatesymbolicor bounded model checkinghere can-
Algorithm Algorithm Algorithm didates for type parameters would incluskets of statesr clauses

: respectively [16].
__ ; Generally speaking, anything contained within the genleyyer
Figure 2 - The conceptual architecture of the framework, divided ageneric is meant for use with any intermediate representation, hexttore
layer and anabstract layer uses type parameters. Items in the abstract layer are spedi in-

termediate representation and therefore do not apply tgEemeters.
intermediate representations. In Section 2 we will integlthis Any specialisation relationship between the generic ardatistract
architecture. layer therefore also implies a specialisation of types.
e Concrete architectureA proof-of-concept implementation of the
conceptual architecture. On a low level, it consists of ables al-
gorithms for explicit-state verification techniques. Orighlevel, 2.2 Abstract layer
it provides a graph-based intermediate representatiochwbpre-

sents models with guard-based process descriptions. ibhisyl The abstract layer contains intermediate representatibres pro-
is introduced in Section 3. grammatic form. The basic idea is that such an intermedegiser

sentationspecialiseshe model interface in a generic layer. In other

A proof-of-concept tool is built on top of our concrete atei ~ WOrds, an intermediate representation implements theadpes of
ture and is capable of verifyingf®m™ (a subset of RoMELA, see the model interface for a particular set of types. In the enof
Section 3.4). It combines our intermediate representatith our €xplicit-state model checking, intermediate represeonatin the ab-

reusable verification algorithms to realise its functidtyal stract layer can be very diverse, ranging from ‘low-levepresenta-
tions such as Labelled Transition Systems (LTS), and GraphsI-

tion Systems (GTS) [18] to ‘high-level’ representationstsas Pro-
2 CONCEPTUAL ARCHITECTURE cess Algebras (PA) or those used in SPIN [13] ar@GBR[19].

The benefit of using type parameters is that an intermedégte r
resentation can implement its own elementary types. Faaras,
an intermediate representation that implements a modaffade of
a generic layer for explicit-state model checking can defmewn
state type. This is useful because the information condaimi¢hin
a state is significantly different for different intermewiaepresenta-
tions. For instance, the information contained within aestd a PA
model is very different from the state of ® MELA model. In terms
of an intermediate representation of an abstract layeryfotbslic
model checking, this type specialisation could be used tBeément
different ways of representingset of statessuch as BDDs [17, 5]
or MDDs[15]. Arguably, the same effect can be accomplished with
subtyping, but this introduces more flexibility (and oveatipthan
is necessary. The BBIUs tool uses a similar approach, and applies
2.1 Genericlayer subtyping [10] as well as type parametrisation [11].

An alternative conceptual architecture is employed in t2SU
CONCURRENCYWORKBENCH[8]. In this framework intermediate
representations can be translated into a LTS automatibgllysing
the Structured Operational Semantics (SOS) of these ietdiate
representations.

The conceptual architecture should enable reusable #igmito be
defined over multiple intermediate representations. Ochitecture
is based on a layered design as depicted in Figure 2, siroiather
frameworks. In contrast to other frameworks, algorithmsdorefer
to the intermediate representation directly (Figure 1j,rbfer to a
model interface instead. We distinguish two layergeaeric layer
and amabstract layer

Note that we use a slightly informal notation in our architec
tural diagrams. In general, white blocks are interfacegres grey
blocks actually contain some sort of implementatidssociations
andspecialisatiorrelationships between blocks are shown using the
notation commonly used in UML class diagrams.

The generic layer contains reusablgorithms as well as anodel
interface This model interface defines a number of operations to fa
cilitate the algorithms. Additionally, we abstract fromettypes that
are used in the model interface by means of type paramédrigatg.
generics in AvA, templates irc++).

The idea is that the model interface abstracts over the niest e
mentary types used in the algorithms, which are likely toiffergnt 3 CONCRETE ARCHITECTURE
for different intermediate representations. In this way algorithms
need not to be concerned with the implementation of thesestyp In Figure 3 an overview of our library is shown. The generigela
and intermediate representations can provide their owtogugn- consists of an explicit-state model interface and algoritior sim-
plementation of these types. The model interface definesatpes ulation and verification. The motivation for this libraryiginated
over these types such that the algorithms can efficientljseetheir ~ from the desire to offer a modular alternative to statehef-art tool
functionality using these operations, but it is the intedrate repre- SpIN [13], which is reflected in the abstract layer. The ‘software
sentations that actually implement these operations. model’ intermediate interpretation is meant for targetmgubset

.................................

%
¢ Labelled @ ! + Graph H
.T abe 1& !\ process .T \I : ot Vodal : Abstract
ransition 3 | i— | ransition oftware Model ' Layer
__ .S :
1
R L L e E L EE LT LR LR s PEL T LR EE P L LR SEETEELTLTEN .
! v H
H | Explicit-State Model Interface | ' .
H H Generic
/I\ /\ /I\ H Layer
------------------- '
Simulation Testing Verification H
Algorithms Algorithms Algorithms E
.................. H
i

Figure 3 - The concrete architecture of the framework as implementedr
library. Elements that were not implemented, but are shovthe figure to provide a
context, have dashed borders.

of PROMELA called RRomM™, and is the intermediate representa-
tion used in our proof-of-concept model checker. This regnéation
could be extended to support other model specification ages!
such as BIR, and is therefore not dedicated to a single tool.

The components of the library are written @+, and feature a
modular object-oriented design. Functionality in the genlayer in-
cludes simulation and reachability algorithms. The ‘saftevmodel’
intermediate representation comprises the largest panedfbrary,
as itis aimed to be as general as possible.

3.1 Explicit-state model interface

The definition of a model interface has two important featpeeset
of type parameters and a set of operations. These types and-op
tions should be chosen carefully because all intermedégieesenta-
tion that use this generic layer will have to conform to tiiteiface.
Additionally, the operations are to enable all prospecéilgorithms
of this generic layer to realise their functionality efficiky.

The model interface of our prototype can be found in Listing 1
This listing shows that our implementation languagecis+. Al-
though it is not necessary to understanich in order to understand
the principles of our design, we use code samples to illteswar
design. These principles could also be implemented in @nd&m-
guage, such asaa. We will provide a brief explanation with each
code sample, but we refer to [21] for a more concise referemce
CH+.

Note that we do not define the model interface for any spegibie t
of model representation (e.g. LTS or Kripke structures)aitémpt
to provide an interface for a large class of automata-basmtehs. In
our implementation we chose to abstract from the type oést@),
type of labels (), and type of transitionsI{ used in the intermedi-
ate representations. The set of operations is defined satimtidel
information can be retrieved on-the-fly. These functioresabstract
(e.g. pure and virtual it++), and will need to be implemented by
any intermediate representation. The initial state oljée model
can be retrieved using thgetinitialState function. Given a
state of the model, we can retrieve all outgoing transitiobgcts
of this state in a total order using thetFirstTransition and
getNextTransition functions.

Note that our choice of operations has already limited thee ty
of intermediate representations that can use this gereyer [(i.e.

tenpl ate <typenane S, typenane L,
cl ass ExplicitStateModellnterface

typenane T>

publi c:
vi rtual
vi rtual
vi rtual

Sk
T*
T*

getlinitialState() =0;
getFirstTransition(S
getNextTransition(T

* s)
* tr) =0

Sk
L*
Sk

vi rtual
vi rtual
vi rtual

k

getSource(T
getLabel(T
getTarget(T

* tr) =0;
* tr) =0;
* tr) =0;

Listing 1 — The model interface of our library consists of a smg+e+ class called
ExplicitStateModellnterface

number of intermediate representations and providing afsaper-
ations through which explicit-state model checking can digeved
efficiently.

To complete the interface we add methods that map trangitien
jects to the source state objegetSource), to the target state ob-
ject (getTarget) and to a label objectgetLabel). All opera-
tions are conveniently gathered in the model interface thatthere
are no restrictions on the implementation of the state | lae tran-
sition objects.

Note that all operations work with pointers to elementanyety,
to facilitate the need for sharing instances. For examplegls are
likely to label multiple transitions of the model, and it rhidpe useful
for these to be represented by the same label instance.

The prototype implementation of this generic layer acyuafies
reference counting pointers to keep track of all instanbes were
provided through the model interface. This arises from tioe that it
is written in unmanaged++, and any created instance will need to
be deleted somewhere. As instances might be shared, it Enbt
ous where this deletion should happen. Reference countimggps
provide additional flexibility to avoid this problem. We usggular
pointers in our code listings to make them easier to undwista

3.2 Generic Algorithms

To illustrate how one can define reusable algorithms oventbéel
interface we use the example of a basic depth-first searcproas
vided in [14]. Although this algorithm is not a very realtséxample
of an algorithm used in explicit-state model checkers, itssful to
illustrate how this algorithm can be implemented genelsidak. for
all intermediate representations). A more realistic eXangan be
found in [16].

In an idealistic scenario the model interface itself woutdvixe
sufficient functionality for any algorithm that we wish to plement
in the generic layer. In practice this is not feasible. Faregle, in
the case of our basic depth-first search algorithm, we arkirigo
for erroneous states. As we cannot assume anything abostatee
type, and this information is not present in the model istesf we
will need to get this information elsewhere. Furthermonstéad of
simply looking for erroneous states, we would like to gelisegthe
depth-first algorithm to look for any type of ‘goal state’.i$mesults
in the introduction an additional interface callédalCondition
which contains a single abstract functimGoalState that can
be used to determine whether a state is a goal state or natitee

preciselyoneinitial state is required and all outgoing transitions of a ing 2). Note that this interface also uses type parameteds ttzat

state are required to be in some total order). This is a comigbe-
tween generalising the model interface to be compatiblke aiarge

if an intermediate representation wishes to use the desthi-
gorithm then it will also have to provide an implementatidnttze

tenpl ate <typenane S, typenane L,
cl ass GoalCondition

typenane T>

public:
vi rtual

J

bool isGoalState(S * s) =0;

Listing 2 — TheGoalCondition interface has a single functiagsGoalState
which identifies states of interest. This function is tyflicanplemented in the
abstract layer.

GoalCondition
that type parameterE andL are not essential for this particular in-
terface, but throughout our implementation we have indualktype
parameters in all interfaces for consistency).

The definition of theGoalCondition enables a search for an
arbitrary set of states. This set will typically be specifican in-
termediate representation, and therefore will be impleetein the
abstract layer. Examples aszcepting stategor automata,erro-
neous stategor programs, or thesolved statefor Rubiks cubes.
Alternatively, the set of states could be identifiable in agge way
(i.e. for all intermediate representations). As we cangstime any-
thing about the types of states, transitions and labelsjghiot very
common. Examples are theitial state anddeadlock statedDead-
locks states can be found generically by checking whethieta Bas
any outgoing transitions.

straight-forward. For example, if there exists an interiatedrep-
resentation for automata, then checking whether a statreptng
(e.g. implementing &oalCondition for accepting statgshould
be a trivial task. Additionally, these interfaces do notén&w be im-
plemented unless the algorithm that uses these interfacsed. Fi-
nally, it is not impossible that there already exists a genenple-
mentation with the desired functionality.

Although we used a very simple example to illustrate the im-
plementation of generic functions in our framework, we argoat
this technique is scalable and can be applied to realiggioridhms
that are used in model checking today. The actual algoriihmpte-
mented in our framework provide both simulation and reaiityab

interface, specialised with the same types (notealgorithms. Rather than providing a number of distinctlgaate al-

gorithms, we chose to apply a more modular approach. We would
like to emphasise that our implementation of simulation aad
ification functionality is just one of many possible approes. A
simplified overview of the implemented generic layer is prasd
in Figure 5. As is evident from the figure, algorithms are nagler
represented by a single block, but are divided into sevéoakb to
provide a greater degree of flexibility.

The Simulation class is associated with both a
SimulationStrategy and a SimulationObserver
These are both interfaces, and can be implemented gemgrizal
can be specialised to suit a specific intermediate repratsemt

tenpl ate <typenane S, typenane L, typenane T>

Now that the issue of detecting erroneous states has been adrass BasicDepthFirstSearch

dressed we can implement the basic depth-first algorithnergen
ically. An implementation of this algorithm inside an eneap
sulating class is shown in Listing 3. This encapsulatingssla
BasicDepthFirstSearch , also abstracts over the type of state,
label and transitions used in the algorithm. It has two fighlis an
implementation of aExplicitStateModellnterface andg

is an implementation oGoalCondition , both specialised with
the paramethised types of the encapsulating classdf&he€unction

is a direct translation the algorithm in [14] to++ code, but imple-
mented generically.

If we were to includeBasicDepthFirstSearch in our archi-
tectural diagram, this would result in a generic layer asaleg in
Figure 4. TheBasicDepthFirstSearch block has an associa-
tion with the ExplicitStateModellnterface and with the
new interfaceGoalCondition , because these are fields used in
the algorithm. Thé&soalCondition has two generic implementa-
tions, and is potentially implemented for some intermediapre-
sentations in the abstract layer.

The introduction of another interfac&g¢alCondition) does
not add significant requirements to the abstract layertliimple-
menting an interface other than the model interface shoeilthioly

i

Ja.

Explicit-State Model Interface | Goal Condition | H X
H Generic
/\ /\ 1T T T Layer
= =
Basic Depth- Deadlock Initial State

First Search Condition Condition

.............

Figure 4 — The generic layer of the framework as it would look if we emooated
BasicDepthFirstSearch andGoalCondition

t
private:

/* model under consideration */

ExplicitStateModelinterface<S, L, T> * m;
/= the goal of this search */
GoalCondition<s, L, T> * g

publi c:

voi d dfs(std::set<S *>& Statespace, S * s)

[+ if s is a goal state */
i f (g->isGoalState(s)) {
/ = report goal */
}
el se {
/+ add s to state space

Statespace.insert(s);

*/

| = iterate over transitions of s */
Tx fr m->getFirstTransition(s);

while (tr 1= 0) {

/= get target state of tr */

S+ t = m->getTarget(tr);

/= if t is not in Statespace, then dfs

i f (Statespace.find(t) == Statespace.end())
dfs(Statespace, t);

/= get next transition of s */

tr = m->getNextTransition(tr);

Listing 3— A generic implementation of the basic depth-first seargbrithm in
[14]. Requires an implementation of &xplicitStateModellnterface and
aGoalCondition

...

...

v_v

' Simulation Simulation Explicit-State Search Search . . H
Condition Action '
Strategy Observer Model Interface Strategy Feedback ' Generic
i P T4 S
Random Interactive Simulation Depth First Search Deadlock Store
Strategy Strategy Strategy Adapter Condition Action

Figure 5 - The architecture of the generic layer, as implementedirframework. The

left-hand side facilitates a simulatiogosithm, whereas the right-hand side shows a

modular implementation of a reachability algorithm.

The SimulationStrategy is responsible for choosing a path
through the model, and has generic implementations forarand
interactive and guided strategies. Specialised impleatienis
could include random strategies that take into account tbegp
bilities associated with transitions, if it is a specialisa for an
intermediate representation that has such a notion of piitiEs.
The SimulationObserver provides a way for tools to ob-
serve the simulation, and would most likely consist of spks@d
implementations to update user interfaces.

The search functionality offered by our framework is sligimore
complex. TheSearchStrategy is an interface for search strate-
gies, whose implementations will have full control over dnder of
traversal of the states in the model. Currently the only anpnta-
tion available is a depth-first strategy. Any strategy setin feedback
from SearchFeedback such asthis state was previously visited
‘this is a new stateor ‘this is a goal state SearchAdapter im-
plements this feedback procedure by maintaining paicootlitions
andactions Condition identifies certain states or transitions, and
is in fact very similar toGoalCondition . When such a condition
holds then ariction is executed. Examples of such actions could
include storing a state in a store, starting a nested seanaport-
ing a goal state. The feedback given by earchAdapter is
dependent on the actions that were executed. Simple ssarahde
constructed by combining conditions and actions in a sinfgubé-
ion, e.g. always store a statand ‘if this state is in the store, report
that this state was previously visiteahd ‘if this is a goal state, re-
port this goal state The simulation and search functionality of our
framework is explained in more detail in [16].

The usage of type parameters in algorithms does not neeessar :

ily have an impact on performance. The abstraction is resbbt
compile-time, and does not add significant run-time cost audenn
compilers. For instance, the standard libraryosf+ (std) is also
based on type parametrisation and is generally considereel very
efficient.

3.3 Graph-based intermediate representation

We have explained how generic functionality can be definetthén
generic layer, but have not yet addressed any implementefithe
abstract layer. In this section we will discuss the interiatedrepre-
sentation that was implemented in our prototype tool. Weldtke
to emphasise that this implementation is only one of mangiptes
intermediate representations that could be defined.

The type of models we will be trying to target are simple
software-based models with guard-based process desasgptlobal
and local variables with primitive and pointer types, as |ved
dynamic process and data creation. We will use this intermed
ate representation to verify a subset ;#(dMELA in Section 3.4.

Listing 4 shows that we have &oftwareModel
ments theExplicitStateModellnterface and specialises
the type parameters witBoftwareState s, Statement s and
SoftwareTransition s. The remainder of this section will elab-
orate on the implementation 8oftwareModel s.

Due to the dynamic nature of our target models, we will use a
graph-based representation of states in our intermediaresenta-
tion. Our graph-based state representation is based oephesen-
tation used in BGOR[19]. Data values and process instances are
nodes whereas variables indueglgesn our state graphslIf a vari-
able has a value then it is represented as an edge origirfaimg
the scope in which it is defined (typically a process instatcehe
data value this variable evaluates to in the current statieeofnodel.
Additionally, we have a global node which acts as the staderfor
global variables.

We chose to model pointer variables as special kinds of vari-
ables, rather than introducing an additional level of iadiion. State-
graphs annotate edges that are induced by these pointabbesi
Typically, pointer variables model heap data, whereas abxari-
ables model stack data. We require heap and stack data valbes
strictly separate (i.e. a pointer variable can never pairthe value
of a normal variable).

By using the state graph representation our intermedigiere
sentation is a simplification of real-life software, becauge do not
model concepts such as memory location, functions andeda¥ge

which imple-

cl ass SoftwareModel
publ i ¢ ExplicitStateModelinterface
<
SoftwareState,
Statement,
SoftwareTransition
>
{
virtual SoftwareState
getlnitialState();
vi rtual SoftwareTransition
getFirstTransition(SoftwareState
virtual SoftwareTransition
getNextTransition(SoftwareTransition

*

*

* s);
*
*),
virtual SoftwareState *
getSource(SoftwareTransition
virtual Statement =*
getLabel(SoftwareTransition
virtual SoftwareState *
getTarget(SoftwareTransition
h

* 1r);
* tr);

* 1),

Listing 4 — An implementation of th&xplicitStateModellnterface by an

intermediate representation 86ftwareModel s.

[]

I

]
"my_flag

4 %utex my_flag “,
't'heriflag other_flag N
IE)E L
N 'stanGuard Eturnivalue turn_value :

¥

]]

Figure 6 — A graphical representation of a state in our intermedigteasentation.

consider abstraction over memory locations to be a goodtlaa
this means detecting heap symmetry reduces to checkinghamhet
two state graphs are isomorphic. The other simplificati@wbeen
made due to time limitations, and would be welcome addittormur
intermediate representation. We informally address thrigion of
features such as functions and classes in [16].

Figure 6 shows a state graph of a model, which is actuallychrea
able state of the Rom™ model shown in Listing 5. The formal def-
inition of state graphs has been explained in [16], we slhiall ¢x-
plain them informally. Circles are process instances, e&erectan-
gles are data instances. Edges induced by variable valeiéesbailed
with the variable name and are dashed only if the variabl@drater
variable.

The implementation of state graphs is relatively strafgivard
(see the top left portion of Figure 8). /SoftwareState
has an association with &Globallnstance and some
ProcesslInstance
the state graph is reachable from either the global instamca
process instance.

It is clear from the example that the models we try to target ar

very dynamic in nature. For instance, we cannot determimerhany
process instances are going to be created during runtimegaynn
of static analysis, nor can we predict what state graphs Ween4
counter. This implies that it is sensible to construct tleesspace
on-the-fly (alternatively one could construct the wholeéestpace at
once, but just feed the model interface this informatiorttoerly).

To facilitate the on-the-fly creation of our models, we wided
to implement the semantics of our model through our tramsiéind
label type. We mentioned previously thasttemenis a suitable
candidate for a label type. As is evident from Listing 5, etaénts
are part of the control-flow of process types. Multiple psx@-
stances can share the same process type, and this processatyp
be shared by multipl&oftwareStates . To facilitate the notion
of type, we introduce a type graph to our intermediate regmadion
(which is a type graph for every state graph of the model)s Type
graph includes nodes for process types, data types, ands ghmsy
sible variable relations between these types. It is herevthastore
model-wide information such as the control-flow, the typésani-
ables, statements, etc. This type graghbe extracted by means of
static analysis. Figure 7 shows the type graph extracted frist-
ing 5.

The implementation of the type graph is shown on the top right

portion of Figure 8. Similarly to the state graphs, all nouethe type
graph are reachable from tli&lobalType or aProcessType

As this information is model-wide, SoftwvareModel has associ-
ations with theGlobalType and allProcessType s. As can be
seen in Figure 8ProcessType s implement the model interface
too, because their control-flow is considered to be a typeplit-
state model too. This makes it possible to query the coffival-of
process types in an on-the-fly manner.

s. We presume that every other node in

A SoftwareModel normally only has an initial state graph
and a type graph at its disposal to realise the operations
in the model interface, which are extracted using staticl-ana
ysis. We will informally explain how aSoftwareModel
implements the model interface using only this information
The getlnitialState is simply a trivial operation to
retrieve the initial state. ThegetFirstTransition and
getNextTransition operations are responsible for construct-
ing all enabled SoftwareTransition s originating from a
SoftwareState . Although this information is retrieved in sev-
eral steps, here we will suffice with explaining how one caimaet
all enabled transitions from @oftwareState (which is given as
an argument) using Figure 8.

The idea is that eachSoftwareState contains a
certain number of Processinstance s. Each of these
Processinstance s has a ControlFlowState which

represents the program counter of this process. For each of

these Processinstance s, we look up the corresponding

byt e mutex;
bit = flag_1,
bool startGuard;

* flag_2, * turn_1, * turn_2, * turn;

active [0] proctype P(
bit * my_flag;
bit = other_flag;
bit = turn_value)
[+ Wait for initialisation */
startGuard;
do
ooxmy_flag = 1;
turn = turn_value;
(*other_flag == 0 || turn != turn_value);
/ = Begin critical section */
mutex = mutex + 1;
mutex = mutex - 1;
/+ End critical section

*my_flag = O;
od;
}

active [1] proctype Init()
mutex = 0;
startGuard = fal se;
flag_1
flag_2
turn_1
turn_2

new bit; =*flag_1 = 0;
new bit; =*flag_2 = 0;
new bit; turn = turn_1;
new bit;

run P(flag_1, flag_2, turn_1);
run P(flag_2, flag_1, turn_2);
/+* Do not break symmetry */
reset flag_1;
reset flag_2;
reset turn_1;
reset turn_2;

«/
true;

/* Now start!
startGuard =

}

Listing 5 — An implementation of Petersons mutual exclusion algoriff] in
Prom™ .

my_flag
ot_flag
turn_value
'''' A
@
e _-W' D Y
SD LN flagt
:' B : B ':flagj
1 turn
| bool | | byte | '.'turn_l
Joturn_2

startGuard KR -
Figure 7 — The type graph of all state graphs in the model describeddting 5.

ProcessType the getFirstTransition and
getNextTransition of the ProcessType
all possible ControlFlowTransition
ControlFlowState . An expression in th&tatement associ-
ated with this transition (i.e. the guard) enables us to skether
this transition is available for the current state. If it then we
can construct éSoftwareTransition
that we have just found. SoftwareTransition
a tuple of theSoftwareState
ProcesslInstance and theControlFlowTransition that
is associated with this step. ThgetSource and getLabel

functions of the model interface are therefore trivial tplement,
and if at some point thgetTarget
ControlFlowTransition along with the Statement are
responsible for copying and modifying ti8oftwareState into

Using

is basically

we can retrieve
s from the current

using the information

, a reference to the executing

function is called, then the

prom::= (multdecl'; ')* (proctype'; ')
decl::=type(‘*")” ident
multdecl::= type(‘**)” ident(*,” (‘**)” ident)*
proctype::= ‘active
“{* (multdecl’;)* (stmnt';)t}
params::= decl(‘; * decl)”
type::=‘bit ' | ‘bool ’ | ‘byte ’ | ‘short ’ | ‘int ’
stmnt::= do_stmnt| if_stmnt| assgnstmnt| new.stmnt| resetstmnt| run_stmnt|
expr| assertstmnt| ‘skip ’

"“[" number]’ ‘proctype ident‘(’ (params)7)’

do_stmnt::= ‘do’ (branch)™ ‘od’
if_stmnt::= ‘if * (branch)™ “fi
branch::=‘: '(‘else '*;")” (stmnt';")* (‘break '*;")"
assgnstmnt::= (‘+')” ident‘=" expr
newstmnt::= ident'="* new’ type
resetstmnt::= ‘reset ' ident
run_stmnt::= ‘run ’ ident‘(’ (args)7 9’
args::=expr(‘, ' expr)”
exprii= expr('< ['<=" |15 5= == S &[] |
U198) expr| (1=) expr| ‘(" expr)’ | ‘true ' |‘false |
number| (=)” ident
assertstmnt::= ‘assert ‘(' expr‘)’
ident:= (‘@' | ... |'z" ['A | ... ['Z)T
number:= (‘0" | ... |9

Figure 9 - The grammar of Rom™ in EBNF style. The syntax and semantics of
ProM™T are based on®OMELA [13].

a new stateStatement s are therefore basically programmatic mented with features for dynamic memory allocation. Thergrer

implementations of graph morphisms, and contain impleat&nts
such as assignments, expressions, assertions etc. Dedgrtamic
nature of our states implementing these statements is rioelgn
straight-forward. For instance, in order to assign to aalde, its
edge must first be located in the graph.

In addition to the functionality shown in Figure 8 we haveoats-
plemented a means of linearisiBgftwareState s to bit vectors.
Representing states as a sequence of bits is much morereffitam
representing them as a number of object instances and igpivalt
approach undertaken by model checkers. Our linearisases the
fact thatSoftwareState
tions of state graphs. By means of a simple algorithm we exnood
graphs, using the fact that there exists a type graph, tieay emode
is reachable from the global instance or a process instamcethat
the state graphs are deterministic. Details of our encodiggrithm

of PRoM™ is depicted in Figure 9.

The syntax of Rom™ is almost all interpretable asRBMELA, and
the although Rom™ syntax is much more restricted, the syntax that
is permitted has the same semantics asRPRELA. The semantics
of PROMELA are described in detail in [13]. In contrast ta ®MELA,
PromM™ only allows the declaration of variables of primitive types
and requires these to be either prior to all process deiasbr
prior to any statement in a process declaration. There iseansof
explicitly giving these variables an initialisation vajuand all vari-
ables are initialised witld. Although PRom™ lacks many features

s are actually programmatic representa- of PROMELA (i.e. channels, arrays, typedefs, mtypes), it does have

facilities for dynamic object creation thaRBMELA does not have.

We will briefly explain the semantics of the newly introducsehtax.
Pointer variables can be declared like normal variablesdiygu

an additional #’, similar to c (pointer variables are initialised as

can be found in [16] and is different to the method used in .[19] null-pointers). These pointer variables are only allowedefer to

Heap symmetry is achieved automatically, as isomophictgrape
encoded to the same bit vector with our algorithm. Additlynaro-
cess symmetry can be achieved by ignoring the process fiéeati
process instances during the encoding procedure, andtigléte
encoding algorithm look only at the type of the processesthan

program counters. This creates representatives that areenessar-

ily canonical (i.e. some thread-symmetrical states hafferdit rep-
resentatives), but offers a reasonable reduction with arlowtime
overhead.

3.4 ProMT model checker

heap data (data created bynaw statement), and cannot point to
the same data instances as normal variables.rébet statement
resets a pointer variable to a null-pointer. The assignraedtcom-
parison operators work similar to how they dodr{i.e. whether an
assignment is an assignment by reference or by value camdiepe
the variable declarations). Note that if a data instanaecated by a
new statement is no longer reachable in the state graph, thedéti
structed. Therefore one could say we employ some form ofeggrb
collection, although this is implicit as non-reachabldanses in the
state graph are simply not encoded.

It turned out to be relatively easy to combine the two laydrs o
the concrete architecture to construct a model checker kan .

As a proof of concept, the framework has been used to build dn the previous section we mentioned that all that is needed f

model checker for Rom™, which is a subset of ROMELA [13] aug-

SoftwareModel s was an initial state and all the typing infor-

Nodes of the
type graph.

I

H Nodes of the
H Variable edges of state graph.
H the state graph.

'

Variable
labels.

Scope of
variables.

Abstract
H Layer
1 * H
Instance Type Variable !
Data Global Process Global Process Data 1
Instance Instance Instance Type Type Type
/I\1 /T\i
Software 1 | 1 ControlFlow * 1
Statement
State
2
Software Software ControlFlow Assign RUn E
Transition Model Transition J H
]
<SoftwareState, <ControlFlowState,
Statement, Statement,
SoftwareTransition> ControlFlowTransition>
H Simulation Simulation Explicit-State Search Search - . H
' Condition Action '
Strategy Observer Model Interface Strategy Feedback H Generic
i N X
Random Inter-Active] Simulation Depth First Search Deadlock Store
Strategy Strategy Strategy Adapter Condition Action

Figure 8 — The conceptual architecture of the framework, divided abstract layerand anabstract layer

mation. By means of a parser we can generate this informatioible or at times even more efficient thari8. With respect to time,

in a straight-forward manner. Once tB®ftwareModel s con-
structed, one only has to instantiate the desired algositimthe
generic layer with the appropriate types in order to use them
An example of a Rom™ model can be found in Listing 5. This

is a model specification of the mutual exclusion algorithnPeyer-
son (as described in [2]). This particular model enableeimoita-
tion of thread-symmetry as the parametrisation of the meeewith
pointer variables creates state graphs that are threathstrinal. In
[16] we have developed several models in bottoR™ and equiv-
alent models in a subset of botlR&v* and RROMELA such that
we could analyse the effectiveness of our thread-symmethyation
and to compare the performance of our prototype tool to SPIN.

35 RESULTS

The primary new concept of this work is the use dagered archi-
tecturein combination withtype parametrisationo provide reusable
algorithms for explicit-state verification. We argue thatsnof the
functionality of our prototype implementation is indeedseable, and
therefore the conceptual architecture does enable reube iway
we have intended. Not only can reuse be achieved by usingthe s
algorithms for different intermediate representationerkent tools
could also use the same intermediate representation. §anire, if
we have a testing tool and a verification tool for PAs then ikesa
sense to use the same intermediate representation. Sharinter-
mediate representation would improve the interoperghilitools.
The preliminary experiments with the prototype (see [1&yéh
shown that, with respect to memory consumption (the avesame
of the bit sequences that represent states), the protatyqmampara-

however, ®IN is still three orders of magnitude faster. Obviously,
the design philosophies behind 8 are directly opposite to those
of ours, and it is therefore not surprising that the perfaroeaof
our tool is worse. 8IN has been continuously optimised to verify
PROMELA models as efficiently as possible, thereby making it very
difficult to reuse ®IN. In contrast, we sacrifice performance in order
to enable reuse. Despite this difference, it is our expiectahat we
can improve the prototype implementation to achieve paréorce
nearer one order of magnitute slower thamg without sacrificing
the principles of our conceptual architecture.

There are a few design choices that have seriously impakted t
performance of our tool. Firstly, the choice to use refeeermunting
pointers has placed a significant overhead on everythirgeiframe-
work. Secondly, the choice to implement reachability athons in a
modular fashion comes at the cost of a lot of overhead in tiva &
function calls, which could be avoided by means of more spiseid
algorithms. Finally, the choice to use graphs to represgtées in
the intermediate representation comes at the cost of expegraph
operations (such as linearisation). These issues coulthpeoved
without changing the principles of our conceptual archites

4 FUTURE WORK

The proof-of-concept framework already shows significaréptial,
but to meet our objectives the framework should be extenulsedv-
eral directions. New generic layers (e.g. for symbolic ourmted
model checking) are anticipated. Different intermediagresenta-
tions (other than the current graph implementation) shdaalcie-
veloped for the current explicit-state model interfacediidnally,

the functionality in the generic layer should be extendeddging
new reusable algorithms. This could include new searchesfies or
verification of liveness properties (informally addressefl6]).

A more basic continuation of the framework would be to inves-

[16]

tigate methods to improve the performance of the framewbhiis [17]
could include reconsidering some design decisions that werde
during the creation of the current framework, such as theotisef- (18]
erence counting pointers as well as redesigning the veidicéunc-
tionality in the generic layer.

We expect that the architecture and library will develop iatuse-
ful and reusable generic library for formal verification. [29]
REFERENCES [20]

[1] Gerd Behrmann, Alexandre David, and Kim G. Larsen, ‘Aotil on
UPPAAL’, in Formal Methods for the Design of Real-Time Systems: 4th
International School on Formal Methods for the Design of @ater,
Communication, and Software Systems (SFM-RT 2Q., Marco
Bernardo and Flavio Corradini, volume 3185ld¥ICS pp. 200-236.
Springer—\Verlag, (2004).

M. Ben-Ari, Principles of Concurrent and Distributed Programmjng
Prentice-Hall International Series in Computer Sciencenfice-Hall,
1990.

B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. PetL. Petruccie,
Ph. Schnoebelen, and P. McKenZsystems and Software Verification:
Model-checking techniques and togoBpringer-Verlag, 2001.

Marius Bozga, Susanne Graf, lleana Ober, lulian Obed amseph
Sifakis, ‘The IF TooLSET, in International School on Formal Meth-
ods for the Design of Real-Time Systems (SFM-RT 2@@&), Marco
Bernardo and Flavio Corradini, volume 3185ldICS pp. 237-267.
Springer-Verlag, (2004).

J. Burch, E. Clarke, K. McMillan, D. Dill, and J. Hwang, y&bolic
model checking:102° states and beyond’, iRroceedings of the 5th
Annual IEEE Symposium on Logic in Computer Science (LIC8)199
ed., John Mitchell, pp. 428-439. IEEE Computer Society 1@990).
Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lulehahut
Veith, ‘Progress on the state explosion problem in modetking’, in
Informatics - 10 Years Back. 10 Years Ahgad., Reinhard Wilhelm,
volume 2000 oL NCS pp. 176-194. Springer-Verlag, (2001).
Edmund M. Jr. Clarke, Orna Grumberg, and Doron A. PeMddel
Checking MIT Press, 1999.

Rance Cleaveland and Steve Sims, ‘The NCSU Concurrenagk\W
bench’, in8th International Conference on Computer Aided Verifica-
tion (CAV 1996)eds., Rajeev Alur and Thomas A. Henzinger, volume
1102 ofLNCS pp. 394-397. Springer-Verlag, (1996).

T. Courtney, D. Daly, S. Derisavi, V. Lam, and W. H. SargjefThe
MOBIUS modeling environment', ifools of the 2003 Illinois Interna-
tional Multiconference on Measurement, Modelling, and IEation of
Computer-Communication SysterResearch report no. 781/2003, pp.
34-37. Universitat Dortmund Fachbereich Informatik,q2p

Daniel D. Deavours, Graham Clark, Tod Courtney, DavalyDSalem
Derisavi, Jay M. Doyle, William H. Sanders, and Patrick G.bater,
‘The moBlus framework and its implementationfEEE Trans. Softw.
Eng, 28(10), 956-969, (2002).

Salem Derisavi, Peter Kemper, William H. Sanders, and Courtney,
‘The mOBIUS state-level abstract functional interfacBerform. Eval,
54(2), 105-128, (2003).

Matthew B. Dwyer, John Hatcliff, Matthew Hoosier, andoliby,
‘Building your own software model checker using th® 80R exten-
sible model checking framework’, ih7th International Conference on
Computer Aided Verification (CAV 200%ds., Kousha Etessami and
Sriram K. Rajamani, volume 3576 &NCS pp. 148-152. Springer-
Verlag, (2005).

Gerard J. HolzmanmheSPINModel Checker — Primer and Reference
Manual Addison-Wesley, 2004.

Gerard J. Holzmann, Doron Peled, and Mihalis Yannaakin nested
depth-first search’, ifhe Spin Verification Systerads., Jean-Charles
Grégoire, Gerard J. Holzmann, and Doron A. Peled, volumef32-
MACS Series in Discrete Mathematics and Theoretical Coengfiti-
ence American Mathematical Society, (1996).

Timothy Kam, Tiziano Villa, Robert K. Brayton, and Alte L.
Sangiovanni-Vincentelli, ‘Multi-valued decision diagna: theory and

[21]

[7]
(8]

9]

(10]

(11]

(12]

[13]

(14]

[15]

applications’,International Journal on Multiple-Valued Logig(1-2),
9-62, (1998).

Mark Kattenbelt,Towards an explicit-state model checking framework
Master’s thesis, University of Twente, Enschede, The N&thds,
2006. (available fronmttp://www.cs.bham.ac.uk/ ~mxKk).

K. McMillan, Symbolic Model Checkinélluwer Academic Publishers,
1993.

Arend Rensink, ‘Towards model checking graph grammarswork-
shop on Automated Verification of Critical Systems (AVo@3Reds.,
Michael Leuschel, Stefan Gruner, and Stphane Lo Prestiriieal
Report DSSE-TR-2003-2, pp. 150-160. University of Soufiam
(2003).

Robby, Matthew B. Dwyer, John Hatcliff, and Radu losiBpace-
reduction strategies for model checking dynamic softwdttctronic
Notes in Theoretical Computer Scien88(3), (2003).

Claus Schroter, Stefan Schwoon, and Javier Espafizee Model-
Checking Kit', in 24th International Conference on Applications and
Theory of Petri Nets (ICATPN 2003gds., Wil M. P. van der Aalst
and Eike Best, volume 2679 aNCS pp. 463-472. Springer-Verlag,
(2003).

Bjarne StroustrupThe C++ Programming Languagé\ddison-Wesley,
third edn., 2000.

http://www.cs.bham.ac.uk/~mxk

	INTRODUCTION
	CONCEPTUAL ARCHITECTURE
	Generic layer
	Abstract layer

	CONCRETE ARCHITECTURE
	Explicit-state model interface
	Generic Algorithms
	Graph-based intermediate representation
	Prom+ model checker
	RESULTS

	FUTURE WORK

