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Abstract. This paper presents a conceptual architecture for an
object-oriented framework to support the development of formal ver-
ification tools (i.e. model checkers). The objective of the architecture
is to support the reuse of algorithms and to encourage a modular de-
sign of tools. The conceptual framework is accompanied by aC++
implementation which provides reusable algorithms for thesimula-
tion and verification of explicit-state models as well as a model rep-
resentation for simple models based on guard-based processdescrip-
tions. The framework has been successfully used to develop amodel
checker for a subset of PROMELA.

1 INTRODUCTION

Model checking is the application of an automated process tofor-
mally verify whether amodel conforms to aspecification[7, 3].
There are numerous ways in which one could express a model, but
typically the model can be interpreted as some sort of automaton.
The level of abstraction that is used to describe models in tools varies
significantly depending on the model checker, and ranges from low-
level automata-based representations (such as the timed automata in
UPPAAL [1]) to high-level specification languages that resemble
programming languages (such as BIR in Bogor [12]). The specifica-
tion can also be expressed in various ways, but is usually formulated
in terms of properties in some type of temporal logic. The nature of
the verification process used in model checkers is heavily dependent
on the types of models and specifications it can verify.

Most model checkers are very specialised, and support only asin-
gle type of model. Additionally, it is not uncommon for modelcheck-
ers to introduce their own specification language. Althoughthis spe-
cialisation enables tools to optimise their verification algorithms, it
does not encourage a reusable design. In order to reuse the function-
ality contained within model checkers one often has to resort to using
the model specification language prescribed by this model checker.
As a result, many transformations between input languages of tools
currently exist and interaction between tools can only be achieved
with considerable effort.

To emphasise the need for reuse, consider the great advancements
of model checking in recent years [6]. The aspiration to apply model
checking to systems of an industrial scale has led to the introduction
of many new complex techniques and algorithms (i.e. partial-order
reduction, symmetry reduction, predicate abstraction, slicing algo-
rithms). Implementing a state-of-the-art model checker isnot a triv-
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Figure 1 – Model checking frameworks usually have a single intermediate
representation. In order to use the framework the model under consideration will

have to be expressed in this intermediate representation.

ial task, and therefore any opportunity to reuse functionality should
be considered beneficial.

The need for reuse and interoperability has been acknowledged
by several others. For example, themodel-checking frameworkBO-
GOR [12], the IF TOOLSET [4], the MODEL-CHECKING K IT [20]
and the NCSU CONCURRENCYWORKBENCH [8] all offer a frame-
work to enable reuse in verfication tools, and often employ a lay-
ered architecture. Similar to modern compiler suites, mostof these
frameworks use anintermediate representationto which high-level
models are translated (see Figure 1). This representation can be a
textual description in a modelling specification language,or a pro-
grammatic representation. For the frameworks mentioned previously,
these intermediate representations are BIR, IFspecification, 1-Safe
Petri NetsandLabelled Transition Systems, respectively.

The verification functionality of these frameworks is realised by
algorithms that use this intermediate representation directly. Having
a single intermediate representation is advantageous for the optimisa-
tion of verification algorithms. However, a drawback of thisapproach
is that the applicability of the framework is limited by the expres-
siveness of the intermediate representation. Furthermore, a transfor-
mation of models to this intermediate representation is notalways
optimal. The verification algorithms cannot be reused for anything
other than the intermediate representation used in the framework.

We have developed a framework that is not limited by a single
intermediate representation. We provide a means of describing algo-
rithms such that they can be used by many different intermediate rep-
resentations. Related to our approach is the MÖBIUS MODELLING

ENVIRONMENT [9, 11], which uses the same principle for perfor-
mance analysis of stochastic models.

The goal of our framework is to enable the development of generic
functionality that can be used in several verification toolsdirectly, not
necessarily limited to model checkers, and to improve the interoper-
ability of tools. In the remainder of this article we will describe the
core essentials of this framework. Details can be found in [16]. The
meaning of ‘framework’ is two-fold in this article:

• Conceptual architecture.A conceptual architecture for a model
checking framework which enables reuse of code. This architec-
ture enables us to define algorithms that can be reused for different
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Figure 2 – The conceptual architecture of the framework, divided into ageneric
layerand anabstract layer.

intermediate representations. In Section 2 we will introduce this
architecture.

• Concrete architecture.A proof-of-concept implementation of the
conceptual architecture. On a low level, it consists of reusable al-
gorithms for explicit-state verification techniques. On a high level,
it provides a graph-based intermediate representation which repre-
sents models with guard-based process descriptions. This library
is introduced in Section 3.

A proof-of-concept tool is built on top of our concrete architec-
ture and is capable of verifying PROM+ (a subset of PROMELA, see
Section 3.4). It combines our intermediate representationwith our
reusable verification algorithms to realise its functionality.

2 CONCEPTUAL ARCHITECTURE

The conceptual architecture should enable reusable algorithms to be
defined over multiple intermediate representations. Our architecture
is based on a layered design as depicted in Figure 2, similar to other
frameworks. In contrast to other frameworks, algorithms donot refer
to the intermediate representation directly (Figure 1), but refer to a
model interface instead. We distinguish two layers, ageneric layer
and anabstract layer.

Note that we use a slightly informal notation in our architec-
tural diagrams. In general, white blocks are interfaces, whereas grey
blocks actually contain some sort of implementation.Associations
andspecialisationrelationships between blocks are shown using the
notation commonly used in UML class diagrams.

2.1 Generic layer

The generic layer contains reusablealgorithms, as well as amodel
interface. This model interface defines a number of operations to fa-
cilitate the algorithms. Additionally, we abstract from the types that
are used in the model interface by means of type parametrisation (e.g.
generics in JAVA , templates inC++).

The idea is that the model interface abstracts over the most ele-
mentary types used in the algorithms, which are likely to be different
for different intermediate representations. In this way the algorithms
need not to be concerned with the implementation of these types,
and intermediate representations can provide their own custom im-
plementation of these types. The model interface defines operations
over these types such that the algorithms can efficiently realise their
functionality using these operations, but it is the intermediate repre-
sentations that actually implement these operations.

The most obvious choice of a generic layer would be one to fa-
cilitate explicit-state model checking. In this type of model check-
ing each state is explicitly represented, and the verification process
can usually be reduced to some type of exhaustive search overthe
state space. Candidate types for type parameters are elementary types
such asstatesandtransitions, whereas operations are likely to facil-
itate the on-the-fly construction of the state space (i.e. anoperation
to retrieve successors of a state). A generic layer for explicit-state
model checking is discussed in Section 3. Other possible generic lay-
ers could facilitatesymbolicor bounded model checking, where can-
didates for type parameters would includesets of statesor clauses,
respectively [16].

Generally speaking, anything contained within the genericlayer
is meant for use with any intermediate representation, and therefore
uses type parameters. Items in the abstract layer are specific to an in-
termediate representation and therefore do not apply type parameters.
Any specialisation relationship between the generic and the abstract
layer therefore also implies a specialisation of types.

2.2 Abstract layer

The abstract layer contains intermediate representationsof a pro-
grammatic form. The basic idea is that such an intermediate repre-
sentationspecialisesthe model interface in a generic layer. In other
words, an intermediate representation implements the operations of
the model interface for a particular set of types. In the context of
explicit-state model checking, intermediate representations in the ab-
stract layer can be very diverse, ranging from ‘low-level’ representa-
tions such as Labelled Transition Systems (LTS), and Graph Transi-
tion Systems (GTS) [18] to ‘high-level’ representations such as Pro-
cess Algebras (PA) or those used in SPIN [13] and BOGOR[19].

The benefit of using type parameters is that an intermediate rep-
resentation can implement its own elementary types. For instance,
an intermediate representation that implements a model interface of
a generic layer for explicit-state model checking can defineits own
state type. This is useful because the information contained within
a state is significantly different for different intermediate representa-
tions. For instance, the information contained within a state of a PA
model is very different from the state of a PROMELA model. In terms
of an intermediate representation of an abstract layer for symbolic
model checking, this type specialisation could be used to implement
different ways of representing aset of states, such as BDDs [17, 5]
or MDDS [15]. Arguably, the same effect can be accomplished with
subtyping, but this introduces more flexibility (and overhead) than
is necessary. The M̈OBIUS tool uses a similar approach, and applies
subtyping [10] as well as type parametrisation [11].

An alternative conceptual architecture is employed in the NCSU
CONCURRENCYWORKBENCH [8]. In this framework intermediate
representations can be translated into a LTS automaticallyby using
the Structured Operational Semantics (SOS) of these intermediate
representations.

3 CONCRETE ARCHITECTURE

In Figure 3 an overview of our library is shown. The generic layer
consists of an explicit-state model interface and algorithms for sim-
ulation and verification. The motivation for this library originated
from the desire to offer a modular alternative to state-of-the-art tool
SPIN [13], which is reflected in the abstract layer. The ‘software
model’ intermediate interpretation is meant for targetinga subset
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Figure 3 – The concrete architecture of the framework as implementedin our
library. Elements that were not implemented, but are shown in the figure to provide a

context, have dashed borders.

of PROMELA called PROM+, and is the intermediate representa-
tion used in our proof-of-concept model checker. This representation
could be extended to support other model specification languages
such as BIR, and is therefore not dedicated to a single tool.

The components of the library are written inC++, and feature a
modular object-oriented design. Functionality in the generic layer in-
cludes simulation and reachability algorithms. The ‘software model’
intermediate representation comprises the largest part ofthe library,
as it is aimed to be as general as possible.

3.1 Explicit-state model interface

The definition of a model interface has two important features, a set
of type parameters and a set of operations. These types and opera-
tions should be chosen carefully because all intermediate representa-
tion that use this generic layer will have to conform to this interface.
Additionally, the operations are to enable all prospectivealgorithms
of this generic layer to realise their functionality efficiently.

The model interface of our prototype can be found in Listing 1.
This listing shows that our implementation language isC++. Al-
though it is not necessary to understandC++ in order to understand
the principles of our design, we use code samples to illustrate our
design. These principles could also be implemented in another lan-
guage, such as JAVA . We will provide a brief explanation with each
code sample, but we refer to [21] for a more concise referenceon
C++.

Note that we do not define the model interface for any specific type
of model representation (e.g. LTS or Kripke structures) butattempt
to provide an interface for a large class of automata-based models. In
our implementation we chose to abstract from the type of states (S),
type of labels (L), and type of transitions (T) used in the intermedi-
ate representations. The set of operations is defined such that model
information can be retrieved on-the-fly. These functions are abstract
(e.g. pure and virtual inC++), and will need to be implemented by
any intermediate representation. The initial state objectof a model
can be retrieved using thegetInitialState function. Given a
state of the model, we can retrieve all outgoing transitionsobjects
of this state in a total order using thegetFirstTransition and
getNextTransition functions.

Note that our choice of operations has already limited the type
of intermediate representations that can use this generic layer (i.e.
preciselyoneinitial state is required and all outgoing transitions of a
state are required to be in some total order). This is a compromise be-
tween generalising the model interface to be compatible with a large

template <typename S, typename L, typename T>
class ExplicitStateModelInterface
{
public:
virtual S* getInitialState() =0;
virtual T* getFirstTransition(S * s) =0;
virtual T* getNextTransition(T * tr) =0;

virtual S* getSource(T * tr) =0;
virtual L* getLabel(T * tr) =0;
virtual S* getTarget(T * tr) =0;

};

Listing 1 – The model interface of our library consists of a singleC++ class called
ExplicitStateModelInterface .

number of intermediate representations and providing a setof oper-
ations through which explicit-state model checking can be achieved
efficiently.

To complete the interface we add methods that map transitionob-
jects to the source state object (getSource ), to the target state ob-
ject (getTarget ) and to a label object (getLabel ). All opera-
tions are conveniently gathered in the model interface suchthat there
are no restrictions on the implementation of the state, label and tran-
sition objects.

Note that all operations work with pointers to elementary types,
to facilitate the need for sharing instances. For example, labels are
likely to label multiple transitions of the model, and it might be useful
for these to be represented by the same label instance.

The prototype implementation of this generic layer actually uses
reference counting pointers to keep track of all instances that were
provided through the model interface. This arises from the fact that it
is written in unmanagedC++, and any created instance will need to
be deleted somewhere. As instances might be shared, it is notobvi-
ous where this deletion should happen. Reference counting pointers
provide additional flexibility to avoid this problem. We useregular
pointers in our code listings to make them easier to understand.

3.2 Generic Algorithms

To illustrate how one can define reusable algorithms over themodel
interface we use the example of a basic depth-first search, aspro-
vided in [14]. Although this algorithm is not a very realistic example
of an algorithm used in explicit-state model checkers, it isuseful to
illustrate how this algorithm can be implemented generically (i.e. for
all intermediate representations). A more realistic example can be
found in [16].

In an idealistic scenario the model interface itself would provide
sufficient functionality for any algorithm that we wish to implement
in the generic layer. In practice this is not feasible. For example, in
the case of our basic depth-first search algorithm, we are looking
for erroneous states. As we cannot assume anything about thestate
type, and this information is not present in the model interface, we
will need to get this information elsewhere. Furthermore, instead of
simply looking for erroneous states, we would like to generalise the
depth-first algorithm to look for any type of ‘goal state’. This results
in the introduction an additional interface calledGoalCondition ,
which contains a single abstract functionisGoalState that can
be used to determine whether a state is a goal state or not (seeList-
ing 2). Note that this interface also uses type parameters, and that
if an intermediate representation wishes to use the depth-first al-
gorithm then it will also have to provide an implementation of the



template <typename S, typename L, typename T>
class GoalCondition
{

public:
virtual bool isGoalState(S * s) =0;

};

Listing 2 – TheGoalCondition interface has a single functionisGoalState
which identifies states of interest. This function is typically implemented in the

abstract layer.

GoalCondition interface, specialised with the same types (note
that type parametersT andL are not essential for this particular in-
terface, but throughout our implementation we have included all type
parameters in all interfaces for consistency).

The definition of theGoalCondition enables a search for an
arbitrary set of states. This set will typically be specific to an in-
termediate representation, and therefore will be implemented in the
abstract layer. Examples areaccepting statesfor automata,erro-
neous statesfor programs, or thesolved statefor Rubiks cubes.
Alternatively, the set of states could be identifiable in a generic way
(i.e. for all intermediate representations). As we cannot assume any-
thing about the types of states, transitions and labels, this is not very
common. Examples are theinitial state anddeadlock states. Dead-
locks states can be found generically by checking whether a state has
any outgoing transitions.

Now that the issue of detecting erroneous states has been ad-
dressed we can implement the basic depth-first algorithm gener-
ically. An implementation of this algorithm inside an encap-
sulating class is shown in Listing 3. This encapsulating class,
BasicDepthFirstSearch , also abstracts over the type of state,
label and transitions used in the algorithm. It has two fields, mis an
implementation of anExplicitStateModelInterface andg
is an implementation ofGoalCondition , both specialised with
the paramethised types of the encapsulating class. Thedfs function
is a direct translation the algorithm in [14] toC++ code, but imple-
mented generically.

If we were to includeBasicDepthFirstSearch in our archi-
tectural diagram, this would result in a generic layer as depicted in
Figure 4. TheBasicDepthFirstSearch block has an associa-
tion with theExplicitStateModelInterface and with the
new interfaceGoalCondition , because these are fields used in
the algorithm. TheGoalCondition has two generic implementa-
tions, and is potentially implemented for some intermediate repre-
sentations in the abstract layer.

The introduction of another interface (GoalCondition ) does
not add significant requirements to the abstract layer. Firstly, imple-
menting an interface other than the model interface should be fairly
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Figure 4 – The generic layer of the framework as it would look if we encorporated
BasicDepthFirstSearch andGoalCondition .

straight-forward. For example, if there exists an intermediate rep-
resentation for automata, then checking whether a state is accepting
(e.g. implementing aGoalCondition for accepting states) should
be a trivial task. Additionally, these interfaces do not have to be im-
plemented unless the algorithm that uses these interfaces is used. Fi-
nally, it is not impossible that there already exists a generic imple-
mentation with the desired functionality.

Although we used a very simple example to illustrate the im-
plementation of generic functions in our framework, we argue that
this technique is scalable and can be applied to realistic algorithms
that are used in model checking today. The actual algorithmsimple-
mented in our framework provide both simulation and reachability
algorithms. Rather than providing a number of distinctly separate al-
gorithms, we chose to apply a more modular approach. We would
like to emphasise that our implementation of simulation andver-
ification functionality is just one of many possible approaches. A
simplified overview of the implemented generic layer is presented
in Figure 5. As is evident from the figure, algorithms are no longer
represented by a single block, but are divided into several blocks to
provide a greater degree of flexibility.

The Simulation class is associated with both a
SimulationStrategy and a SimulationObserver .
These are both interfaces, and can be implemented generically or
can be specialised to suit a specific intermediate representation.

template <typename S, typename L, typename T>
class BasicDepthFirstSearch
{
private:
/ * model under consideration * /
ExplicitStateModelInterface<S, L, T> * m;
/ * the goal of this search * /
GoalCondition<S, L, T> * g;

...

public:
void dfs(std::set<S * >& Statespace, S * s)
{

/ * if s is a goal state * /
if (g->isGoalState(s)) {

/ * report goal * /
}
else {

/ * add s to state space * /
Statespace.insert(s);

/ * iterate over transitions of s * /
T* tr = m->getFirstTransition(s);
while (tr != 0) {

/ * get target state of tr * /
S* t = m->getTarget(tr);

/ * if t is not in Statespace, then dfs * /
if (Statespace.find(t) == Statespace.end())

dfs(Statespace, t);

/ * get next transition of s * /
tr = m->getNextTransition(tr);

}
}

}
};

Listing 3 – A generic implementation of the basic depth-first search algorithm in
[14]. Requires an implementation of anExplicitStateModelInterface and

aGoalCondition .
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The SimulationStrategy is responsible for choosing a path
through the model, and has generic implementations for random,
interactive and guided strategies. Specialised implementations
could include random strategies that take into account the proba-
bilities associated with transitions, if it is a specialisation for an
intermediate representation that has such a notion of probabilities.
The SimulationObserver provides a way for tools to ob-
serve the simulation, and would most likely consist of specialised
implementations to update user interfaces.

The search functionality offered by our framework is slightly more
complex. TheSearchStrategy is an interface for search strate-
gies, whose implementations will have full control over theorder of
traversal of the states in the model. Currently the only implementa-
tion available is a depth-first strategy. Any strategy relies on feedback
from SearchFeedback such as ‘this state was previously visited’,
‘ this is a new state’ or ‘ this is a goal state’. SearchAdapter im-
plements this feedback procedure by maintaining pairs ofconditions
andactions. Condition identifies certain states or transitions, and
is in fact very similar toGoalCondition . When such a condition
holds then anAction is executed. Examples of such actions could
include storing a state in a store, starting a nested search or report-
ing a goal state. The feedback given by theSearchAdapter is
dependent on the actions that were executed. Simple searches can be
constructed by combining conditions and actions in a simplefash-
ion, e.g. ‘always store a state’ and ‘if this state is in the store, report
that this state was previously visited’ and ‘if this is a goal state, re-
port this goal state’. The simulation and search functionality of our
framework is explained in more detail in [16].

The usage of type parameters in algorithms does not necessar-
ily have an impact on performance. The abstraction is resolved at
compile-time, and does not add significant run-time cost in modern
compilers. For instance, the standard library ofC++ (std ) is also
based on type parametrisation and is generally considered to be very
efficient.

3.3 Graph-based intermediate representation

We have explained how generic functionality can be defined inthe
generic layer, but have not yet addressed any implementation of the
abstract layer. In this section we will discuss the intermediate repre-
sentation that was implemented in our prototype tool. We would like
to emphasise that this implementation is only one of many possible
intermediate representations that could be defined.

The type of models we will be trying to target are simple
software-based models with guard-based process descriptions, global
and local variables with primitive and pointer types, as well as
dynamic process and data creation. We will use this intermedi-
ate representation to verify a subset of PROMELA in Section 3.4.

Listing 4 shows that we have aSoftwareModel which imple-
ments theExplicitStateModelInterface and specialises
the type parameters withSoftwareState s, Statement s and
SoftwareTransition s. The remainder of this section will elab-
orate on the implementation ofSoftwareModel s.

Due to the dynamic nature of our target models, we will use a
graph-based representation of states in our intermediate representa-
tion. Our graph-based state representation is based on the represen-
tation used in BOGOR [19]. Data values and process instances are
nodes, whereas variables induceedgesin our state graphs. If a vari-
able has a value then it is represented as an edge originatingfrom
the scope in which it is defined (typically a process instance) to the
data value this variable evaluates to in the current state ofthe model.
Additionally, we have a global node which acts as the start node for
global variables.

We chose to model pointer variables as special kinds of vari-
ables, rather than introducing an additional level of indirection. State-
graphs annotate edges that are induced by these pointer variables.
Typically, pointer variables model heap data, whereas normal vari-
ables model stack data. We require heap and stack data valuesto be
strictly separate (i.e. a pointer variable can never point to the value
of a normal variable).

By using the state graph representation our intermediate repre-
sentation is a simplification of real-life software, because we do not
model concepts such as memory location, functions and classes. We

class SoftwareModel
: public ExplicitStateModelInterface
<

SoftwareState,
Statement,
SoftwareTransition

>
{
virtual SoftwareState *

getInitialState();
virtual SoftwareTransition *

getFirstTransition(SoftwareState * s);
virtual SoftwareTransition *

getNextTransition(SoftwareTransition * tr);

virtual SoftwareState *
getSource(SoftwareTransition * tr);

virtual Statement *
getLabel(SoftwareTransition * tr);

virtual SoftwareState *
getTarget(SoftwareTransition * tr);

};

Listing 4 – An implementation of theExplicitStateModelInterface by an
intermediate representation ofSoftwareModel s.
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Figure 6 – A graphical representation of a state in our intermediate representation.

consider abstraction over memory locations to be a good thing, as
this means detecting heap symmetry reduces to checking whether
two state graphs are isomorphic. The other simplifications have been
made due to time limitations, and would be welcome additionsto our
intermediate representation. We informally address the inclusion of
features such as functions and classes in [16].

Figure 6 shows a state graph of a model, which is actually a reach-
able state of the PROM+ model shown in Listing 5. The formal def-
inition of state graphs has been explained in [16], we shall just ex-
plain them informally. Circles are process instances, whereas rectan-
gles are data instances. Edges induced by variable values are labelled
with the variable name and are dashed only if the variable is apointer
variable.

The implementation of state graphs is relatively straight-forward
(see the top left portion of Figure 8). ASoftwareState
has an association with aGlobalInstance and some
ProcessInstance s. We presume that every other node in
the state graph is reachable from either the global instanceor a
process instance.

It is clear from the example that the models we try to target are
very dynamic in nature. For instance, we cannot determine how many
process instances are going to be created during runtime by means
of static analysis, nor can we predict what state graphs we will en-
counter. This implies that it is sensible to construct the state space
on-the-fly (alternatively one could construct the whole state space at
once, but just feed the model interface this information on-the-fly).

To facilitate the on-the-fly creation of our models, we will need
to implement the semantics of our model through our transition and
label type. We mentioned previously that astatementis a suitable
candidate for a label type. As is evident from Listing 5, statements
are part of the control-flow of process types. Multiple process in-
stances can share the same process type, and this process type can
be shared by multipleSoftwareStates . To facilitate the notion
of type, we introduce a type graph to our intermediate representation
(which is a type graph for every state graph of the model). This type
graph includes nodes for process types, data types, and shows pos-
sible variable relations between these types. It is here that we store
model-wide information such as the control-flow, the types of vari-
ables, statements, etc. This type graphcanbe extracted by means of
static analysis. Figure 7 shows the type graph extracted from List-
ing 5.

The implementation of the type graph is shown on the top right
portion of Figure 8. Similarly to the state graphs, all nodesin the type
graph are reachable from theGlobalType or a ProcessType .
As this information is model-wide, aSoftwareModel has associ-
ations with theGlobalType and allProcessType s. As can be
seen in Figure 8,ProcessType s implement the model interface
too, because their control-flow is considered to be a type of explicit-
state model too. This makes it possible to query the control-flow of
process types in an on-the-fly manner.

A SoftwareModel normally only has an initial state graph
and a type graph at its disposal to realise the operations
in the model interface, which are extracted using static anal-
ysis. We will informally explain how a SoftwareModel
implements the model interface using only this information.
The getInitialState is simply a trivial operation to
retrieve the initial state. ThegetFirstTransition and
getNextTransition operations are responsible for construct-
ing all enabled SoftwareTransition s originating from a
SoftwareState . Although this information is retrieved in sev-
eral steps, here we will suffice with explaining how one can extract
all enabled transitions from aSoftwareState (which is given as
an argument) using Figure 8.

The idea is that eachSoftwareState contains a
certain number of ProcessInstance s. Each of these
ProcessInstance s has a ControlFlowState which
represents the program counter of this process. For each of
these ProcessInstance s, we look up the corresponding

byte mutex;
bit * flag_1, * flag_2, * turn_1, * turn_2, * turn;
bool startGuard;

active [0] proctype P(
bit * my_flag;
bit * other_flag;
bit * turn_value)

{
/ * Wait for initialisation * /
startGuard;
do
:: * my_flag = 1;

turn = turn_value;
( * other_flag == 0 || turn != turn_value);

/ * Begin critical section * /
mutex = mutex + 1;
mutex = mutex - 1;
/ * End critical section * /

* my_flag = 0;
od;

}

active [1] proctype Init()
{

mutex = 0;
startGuard = false;

flag_1 = new bit; * flag_1 = 0;
flag_2 = new bit; * flag_2 = 0;
turn_1 = new bit; turn = turn_1;
turn_2 = new bit;

run P(flag_1, flag_2, turn_1);
run P(flag_2, flag_1, turn_2);

/ * Do not break symmetry * /
reset flag_1;
reset flag_2;
reset turn_1;
reset turn_2;

/ * Now start! * /
startGuard = true;

}

Listing 5 – An implementation of Petersons mutual exclusion algorithm [2] in
PROM+ .
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ProcessType . Using the getFirstTransition and
getNextTransition of the ProcessType we can retrieve
all possible ControlFlowTransition s from the current
ControlFlowState . An expression in theStatement associ-
ated with this transition (i.e. the guard) enables us to see whether
this transition is available for the current state. If it is,then we
can construct aSoftwareTransition using the information
that we have just found. ASoftwareTransition is basically
a tuple of theSoftwareState , a reference to the executing
ProcessInstance and theControlFlowTransition that
is associated with this step. ThegetSource and getLabel
functions of the model interface are therefore trivial to implement,
and if at some point thegetTarget function is called, then the
ControlFlowTransition along with the Statement are
responsible for copying and modifying theSoftwareState into
a new state.Statement s are therefore basically programmatic
implementations of graph morphisms, and contain implementations
such as assignments, expressions, assertions etc. Due to the dynamic
nature of our states implementing these statements is not entirely
straight-forward. For instance, in order to assign to a variable, its
edge must first be located in the graph.

In addition to the functionality shown in Figure 8 we have also im-
plemented a means of linearisingSoftwareState s to bit vectors.
Representing states as a sequence of bits is much more efficient than
representing them as a number of object instances and is the typical
approach undertaken by model checkers. Our linearisation uses the
fact thatSoftwareState s are actually programmatic representa-
tions of state graphs. By means of a simple algorithm we encode our
graphs, using the fact that there exists a type graph, that every node
is reachable from the global instance or a process instance,and that
the state graphs are deterministic. Details of our encodingalgorithm
can be found in [16] and is different to the method used in [19].
Heap symmetry is achieved automatically, as isomophic graphs are
encoded to the same bit vector with our algorithm. Additionally, pro-
cess symmetry can be achieved by ignoring the process identifier of
process instances during the encoding procedure, and by letting the
encoding algorithm look only at the type of the processes andtheir
program counters. This creates representatives that are not necessar-
ily canonical (i.e. some thread-symmetrical states have different rep-
resentatives), but offers a reasonable reduction with a lowrun-time
overhead.

3.4 PROM+ model checker

As a proof of concept, the framework has been used to build a
model checker for PROM+, which is a subset of PROMELA [13] aug-

prom ::= (mult decl‘ ; ’)∗ (proctype‘ ; ’)+

decl ::= type(‘* ’)? ident

mult decl ::= type(‘* ’)? ident( ‘ , ’ (‘* ’)? ident)∗

proctype::= ‘active ’ ‘ [ ’ number‘ ] ’ ‘ proctype ’ ident ‘ ( ’ ( params)? ‘ ) ’

‘{’ (mult decl ‘ ; ’)∗ (stmnt‘ ; ’)+ ‘}’

params::= decl( ‘ ; ’ decl)∗

type::= ‘bit ’ | ‘bool ’ | ‘byte ’ | ‘short ’ | ‘ int ’

stmnt::= do stmnt| if stmnt| assgnstmnt| newstmnt| resetstmnt| run stmnt|

expr| assertstmnt| ‘skip ’

do stmnt::= ‘do ’ (branch)+ ‘od ’

if stmnt::= ‘ if ’ (branch)+ ‘ fi ’

branch::= ‘ :: ’(‘else ’ ‘ ; ’)? (stmnt‘ ; ’)∗ (‘break ’ ‘ ; ’)?

assgnstmnt::= (‘* ’)? ident ‘=’ expr

newstmnt::= ident‘=’ ‘ new’ type

resetstmnt::= ‘ reset ’ ident

run stmnt::= ‘ run ’ ident ‘ ( ’ ( args)? ‘ ) ’

args ::= expr( ‘ , ’ expr)∗

expr ::= expr( ‘<’ |‘<=’ | ‘>’ |‘>=’ | ‘==’ |‘ != ’ | ‘&&’ |‘ || ’ | ‘+’ |‘ - ’ | ‘* ’ |

‘ / ’ | ‘%’ ) expr| ( ‘ ! ’ |‘ - ’ ) expr| ‘ ( ’ expr‘ ) ’ | ‘ true ’ | ‘ false ’ |

number| ( ∗ )? ident

assertstmnt::= ‘assert ’ ‘ ( ’ expr‘) ’

ident ::= ( ‘a’ | . . . | ‘z ’ | ‘A’ | . . . | ‘Z’ | ‘ ’ )+

number::= ( ‘0’ | . . . | ‘9’ )+

Figure 9 – The grammar of PROM+ in EBNF style. The syntax and semantics of
PROM+are based on PROMELA [13].

mented with features for dynamic memory allocation. The grammar
of PROM+ is depicted in Figure 9.

The syntax of PROM+ is almost all interpretable as PROMELA, and
the although PROM+ syntax is much more restricted, the syntax that
is permitted has the same semantics as in PROMELA. The semantics
of PROMELA are described in detail in [13]. In contrast to PROMELA,
PROM+ only allows the declaration of variables of primitive types,
and requires these to be either prior to all process declarations or
prior to any statement in a process declaration. There is no means of
explicitly giving these variables an initialisation value, and all vari-
ables are initialised with0. Although PROM+ lacks many features
of PROMELA (i.e. channels, arrays, typedefs, mtypes), it does have
facilities for dynamic object creation that PROMELA does not have.
We will briefly explain the semantics of the newly introducedsyntax.

Pointer variables can be declared like normal variables by using
an additional ‘* ’, similar to C (pointer variables are initialised as
null-pointers). These pointer variables are only allowed to refer to
heap data (data created by anew statement), and cannot point to
the same data instances as normal variables. Thereset statement
resets a pointer variable to a null-pointer. The assignmentand com-
parison operators work similar to how they do inC (i.e. whether an
assignment is an assignment by reference or by value can depend on
the variable declarations). Note that if a data instance allocated by a
new statement is no longer reachable in the state graph, then it is de-
structed. Therefore one could say we employ some form of garbage
collection, although this is implicit as non-reachable instances in the
state graph are simply not encoded.

It turned out to be relatively easy to combine the two layers of
the concrete architecture to construct a model checker for PROM+.
In the previous section we mentioned that all that is needed for
SoftwareModel s was an initial state and all the typing infor-
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Figure 8 – The conceptual architecture of the framework, divided into aabstract layerand anabstract layer.

mation. By means of a parser we can generate this information
in a straight-forward manner. Once theSoftwareModel is con-
structed, one only has to instantiate the desired algorithms in the
generic layer with the appropriate types in order to use them.

An example of a PROM+ model can be found in Listing 5. This
is a model specification of the mutual exclusion algorithm byPeter-
son (as described in [2]). This particular model enables theexploita-
tion of thread-symmetry as the parametrisation of the processes with
pointer variables creates state graphs that are thread-symmetrical. In
[16] we have developed several models in both PROM+ and equiv-
alent models in a subset of both PROM+ and PROMELA such that
we could analyse the effectiveness of our thread-symmetry reduction
and to compare the performance of our prototype tool to SPIN.

3.5 RESULTS

The primary new concept of this work is the use of alayered archi-
tecturein combination withtype parametrisationto provide reusable
algorithms for explicit-state verification. We argue that most of the
functionality of our prototype implementation is indeed reusable, and
therefore the conceptual architecture does enable reuse inthe way
we have intended. Not only can reuse be achieved by using the same
algorithms for different intermediate representations, different tools
could also use the same intermediate representation. For instance, if
we have a testing tool and a verification tool for PAs then it makes
sense to use the same intermediate representation. Sharingan inter-
mediate representation would improve the interoperability of tools.

The preliminary experiments with the prototype (see [16]) have
shown that, with respect to memory consumption (the averagesize
of the bit sequences that represent states), the prototype is compara-

ble or at times even more efficient than SPIN. With respect to time,
however, SPIN is still three orders of magnitude faster. Obviously,
the design philosophies behind SPIN are directly opposite to those
of ours, and it is therefore not surprising that the performance of
our tool is worse. SPIN has been continuously optimised to verify
PROMELA models as efficiently as possible, thereby making it very
difficult to reuse SPIN. In contrast, we sacrifice performance in order
to enable reuse. Despite this difference, it is our expectation that we
can improve the prototype implementation to achieve performance
nearer one order of magnitute slower than SPIN, without sacrificing
the principles of our conceptual architecture.

There are a few design choices that have seriously impacted the
performance of our tool. Firstly, the choice to use reference counting
pointers has placed a significant overhead on everything in the frame-
work. Secondly, the choice to implement reachability algorithms in a
modular fashion comes at the cost of a lot of overhead in the form of
function calls, which could be avoided by means of more specialised
algorithms. Finally, the choice to use graphs to represent states in
the intermediate representation comes at the cost of expensive graph
operations (such as linearisation). These issues could be improved
without changing the principles of our conceptual architecture.

4 FUTURE WORK

The proof-of-concept framework already shows significant potential,
but to meet our objectives the framework should be extended in sev-
eral directions. New generic layers (e.g. for symbolic or bounded
model checking) are anticipated. Different intermediate representa-
tions (other than the current graph implementation) shouldbe de-
veloped for the current explicit-state model interface. Additionally,



the functionality in the generic layer should be extended byadding
new reusable algorithms. This could include new search strategies or
verification of liveness properties (informally addressedin [16]).

A more basic continuation of the framework would be to inves-
tigate methods to improve the performance of the framework.This
could include reconsidering some design decisions that were made
during the creation of the current framework, such as the useof ref-
erence counting pointers as well as redesigning the verification func-
tionality in the generic layer.

We expect that the architecture and library will develop into a use-
ful and reusable generic library for formal verification.
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