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ABSTRACT
We propose a no-reference algorithm for video quality evalu-
ation. The algorithm relies on a natural scene statistics (NSS)
model of video DCT coefficients as well as a temporal model
of motion coherency. The proposed framework is tested on
the LIVE VQA database, and shown to correlate well with
human visual judgments of quality.

Index Terms— No-reference video quality assessment,
discrete cosine transform, natural scene statistics, motion co-
herency.

1. INTRODUCTION

The tremendous increase in personal digital assistants (PDAs),
smart phones, and tablets among consumers in the last
decade, has lead to an enormous increase in video traffic
over both wired and wireless networks. This increase has
consequently led to bandwidth and capacity challenges while
catering for consumers’ rising demands for video over wired
and wireless networks and maintaining a high quality of vi-
sual experience. The need for reliable automatic, perceptual
video quality assessment methods is hence necessary.

There do not yet exist NR-VQA algorithms that have been
shown to consistently correlate well with human judgments of
temporal visual quality. Towards designing such a model, we
have developed a framework, which we have dubbed Video
BLIINDS, that utilizes a spatio-temporal model of DCT co-
efficient statistics to predict quality scores. The attributes of
this new blind VQA model are that it 1) characterizes the type
of motion in the video, 2) models temporal as well as spatial
video attributes, 3) is based on a model of natural video statis-
tics, 4) is computationally fast, and 5) extracts a small number
of interpretable features relevant to perceptual quality.

2. NATURAL VIDEO STATISTICS FRAMEWORK

We refer to pristine/undistorted videos that have not been sub-
jected to distortions as natural video scenes, and statistical
models built for natural video scenes as NVS (natural video
statistics) models. Deviations from NVS models, caused by

the introduction of distortions, can be used to predict the per-
ceptual quality of videos. The study of the statistics of natural
visual signals is a discipline within the field of perception.
It has been shown that static natural scenes exhibit highly
reliable statistical regularities. The general philosophy fol-
lows the premise that the human vision system has evolved in
response to the physical properties of the natural environment
[1], [2], and hence, the study of natural image statistics is
highly relevant to understanding visual perception.

Our approach to blind VQA design leverages the fact that
natural, undistorted videos exhibit statistical regularities that
distinguishes them from distorted videos where these regular-
ities are destroyed. Specifically, we propose an NVS model
of DCT coefficients of frame-differences.

Figure 1 plots an example of the statistics of DCT coeffi-
cient frame differences. Specifically, the empirical probabil-
ity distributions of frame difference coefficients (from 5 × 5
spatial blocks) in a pristine video and in a video distorted by
a simulated wireless channel are shown. This motivates VQA
models that use statistical differences between the DCT co-
efficients of frame differences in pristine and distorted videos.

The new blind VQA model is summarized in Fig. 2. A lo-
cal 2-dimensional spatial DCT is applied to frame-difference-
patches, where the term patch is used to refer to an n × n
block of frame differences. This captures spatially and tem-
porally local frequencies. The frequencies are spatially local
since the DCT is computed from n × n blocks, and they are
temporally local since the blocks are extracted from consec-
utive frame differences. The frequencies are then modeled
as generated from a specific family of probability density
functions.

The interaction between motion and spatio-temporal
change is of particular interest, especially with regards to
whether motion is implicated in the masking of distortions.
The type of motion which occurs in a video is a function of
object and camera movement. In our model, image motion
is characterized by a coherency measure which we define



Fig. 1. Empirical probability distribution of frame-difference
DCT coefficients of pristine and distorted videos. Dashed
line: pristine video. Solid line: distorted video.

and use to weight the parameters derived from the spatio-
temporal NVS model of DCT coefficients. Features extracted
under the spatio-temporal NVS model are then used to drive a
linear kernel support vector regressor (SVR), which is trained
to predict the visual quality of videos.
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Fig. 2. Blind VQA framework

In this new model, the spatial and temporal dimensions
of video signals are jointly analyzed and assessed. The be-
havior of a video is analyzed along the temporal dimension in
two distinct ways: 1) By frame differencing: the statistics of
frame differences are analyzed under the NVS model, and 2)
By analyzing the types of motion occurring in the video and
by weighting features derived under the NVS model of the
previous step accordingly.

3. MOTION COHERENCY MODEL

We characterize a video’s temporal content using a 2D struc-
ture tensor model applied to a video’s computed motion
vectors. A simple motion vector estimation algorithm is ap-
plied on n× n blocks to determine the corresponding spatial
location of the blocks in one frame in the consecutive frame
in time. The motion estimation is performed via a simple
three-step search algorithm [3].

The motion coherence tensor summarizes the predomi-
nant motion directions over local neighborhoods. The 2D
motion coherence tensor at a given pixel is given by:

S =
[

f(Mx) f(Mx.My)
f(Mx.My) f(My)

]
(1)

where
f(V ) =

∑
l,k

w[i, j]V (i− l, j − k)2, (2)

and Mx(i, j) and My(i, j) are horizontal and vertical motion
vectors at pixel (i, j) respectively, and w is a window of di-
mension m×m over which the localized computation of the
tensor is performed. The eigenvalues of the motion coherence
tensor convey information about the spatial alignment of the
motion vectors within the window of computation. The rela-
tive discrepancy between 2 eigenvalues is an indicator of the
degree of anisotropy of the local motion (in the window), or
how strongly the motion is biased towards a particular direc-
tion. This is effectively quantified by the coherence measure

C =
(
λ1 − λ2

λ1 + λ2

)2

, (3)

where λ1 and λ2 are the eigenvalues of the motion coherence
tensor.

Our model accounts for the magnitude of global motion.
This is computed simply as the mode of the motion vectors
between every two consecutive frames. The mean of the mode
is computed across a video sequence and used as a feature
during the score prediction phase.

4. NVS MODEL

A good NVS (natural video statistics) model should capture
regular and predictable statistical behavior of natural videos.
Such models could be used to measure the severity of dis-
tortions in video signals since distortions may predictably
modify these statistics [4], [2], [5].

In the following we propose an NVS model of frame-
differences that is expressed in the DCT domain and define
a number of perceptually relevant features that are extracted
from the model parameters. We begin by describing an NVS



model of the DCT coefficients of patch frame differences. We
then discuss the motion analysis process and how it is used to
weight the parameters of the spatio-temporal DCT model.

4.1. Spatio-temporal Statistical DCT Model

Consider a video sequence containing M frames. Each
frame indexed i + 1 is subtracted from frame i, for i ∈
{1, ...,M − 1}, resulting in M − 1 difference-frames.

Each difference frame is then partitioned into n × n
patches or blocks. The 2-D DCT is then applied to each n×n
patch. The DCT coefficients from every block in each differ-
ence frame are modeled as following a generalized Gaussian
probability distribution. Given anm×l video frame, there are
m×l
n×n DCT blocks per frame, each containing n×n frequency
coefficients. Thus each of the n × n frequency coefficients
in a DCT block occurs m×l

n×n times per difference-frame. We
fit the histogram of each frequency coefficient from all n× n
patches in each difference frame with a parametric density
function. Fig. 3 shows a histogram of the DCT coefficients
at five different spatial frequencies F1, F2, ... F5 in an n× n
DCT decomposition of difference frames from a video that
was not distorted. It may be observed that the coefficients are
symmetrically distributed around zero and that the coefficient
distributions at different frequencies exhibit varying levels of
peakedness and spread about their support. This motivates

Fig. 3. Empirical distribution of DCT coefficients at 5 dif-
ferent frequencies from an n × n DCT decomposition of a
frame-difference.

the use of a family of distributions that encompasses a range
of tail behaviors. The 1-D generalized Gaussian density is a
good fit to these coefficient histograms:

f(x|α, β, γ) = αe−(β|x−µ|)γ

, (4)

where µ is the mean, γ is the shape parameter, and α and β
are normalizing and scale parameters given by

α =
βγ

2Γ(1/γ)
, (5)

β =
1
σ

√
Γ(3/γ)
Γ(1/γ)

, (6)

where σ is the standard deviation, and Γ denotes the ordinary
gamma function

Γ(z) =
∫ ∞

0

tz−1e−tdt. (7)

After fitting a generalized Gaussian density to the histogram
of each of the frequency coefficients from frame-difference
patches across the image, we form an n × n matrix of shape
parameters per difference-frame. The motivation behind this
approach is to characterize the statistical behavior of each of
the frequencies in the local DCT blocks over time, as well
as interactions among those frequencies. This is captured
in the matrix of shape parameters obtained from each of the
difference-frames. This characterization is typically differ-
ent between natural videos and distorted ones. The Video
BLIINDS model aims to capture this statistical disparity and
quantify it for perceptual video quality score prediction.

4.2. NVS Features

Each n×nmatrix of shape-parameters per difference frame is
partitioned into three sub-bands as depicted in Fig. 4, where
the top left band corresponds to shape-parameters modeling
low-frequency coefficients, the middle partition corresponds
to mid-band frequencies, and the lower right partition corre-
sponds to high-frequency coefficients.

Fig. 4. Frequency band partition of frame differences. Top
left: low frequency. Bottom right: high frequency

We then compute a percentile average of the shape pa-
rameters per band: The mean of the highest 10% of the shape
parameters (γ) per band is computed. Thus for each frame-
difference, the following statistical features are computed:
1) tenth-percentile low frequency band shape parameter, 2)
tenth-percentile mid-band shape parameter, and 3) tenth-
percentile high frequency band shape parameter.

The percentile averages are then weighted by the motion
coherency measure C described in Section 3. Weighting by
motion coherency is a simple and direct way to account for
the extent to which the coherency of the motion affects the
visibility of distortion in moving scenes.



4.3. Temporal Variation of DC Coefficients

To track temporal variations in the average intensity of differ-
enced video frames (from all n×n DCT blocks), the discrete
temporal derivative of the average intensity per video frame
is also computed. This is a simple measure of sudden local
changes which may arise from various temporal distortions
that result in local ’flicker. ’Let Di be the average DC co-
efficient value per frame i. The absolute discrete temporal
derivative of Di is estimated then as

Ti = |Di+1 −Di|, (8)

where Di+1 and Di are the average DC coefficients at frames
indexed i+1 and i respectively. The mean of the highest 10%

Fig. 5. Plot of the temporal derivative of mean DC coeffi-
cients for a pristine and a distorted video.

of the absolute discrete temporal derivatives is computed as a
feature for prediction along with the other extracted features.

4.4. Prediction

Given a database of distorted videos and associated human
judgments, the extracted features are used to train a linear
kernel support vector regressor (SVR) to conduct video qual-
ity score prediction. We address the question of accounting
for the temporal scale of the process by generating temporal
scores in two ways: 1) by generating scores on an instanta-
neous (frame) basis, and 2) by integrating quality scores over
10 second intervals.

Since DMOS scores on VQA databases are usually only
reported for complete video segments (10 seconds), we used
the MS-SSIM index [6] applied on a frame basis against the
reference video as a proxy for human scores. In this way it
is possible to train the SVR to generate frame quality scores.
Subjective DMOS scores were used to train another SVR to
predict quality scores over 10 second video intervals.

In both cases, a linear kernel SVR based on the imple-
mentation in [7] was used to conduct quality score prediction.

5. EXPERIMENTS AND RESULTS

The algorithm was evaluated on the publicly available LIVE
VQA database [8]. The database contains videos distorted
by four distortion types: 1) MPEG-2 compression, 2) H.264
compression, 3) wireless distortions, and 4) IP distortions.
We first evaluated Video BLIINDS by applying it on each
distortion type in isolation, then we mixed the distortions
together and applied the method on the mixture. We split the
database into content-independent train and test sets: 80% of
the content was used for training and the remaining 20% was
used for testing. We compute the Spearman rank order cor-
relation coefficient (SROCC) between predicted scores and
the subjective scores of the database for every possible com-
bination of train/test split. We report the median SROCCs in
Table 1, where we compare a number of models including
full-reference PSNR and SSIM image quality indices. We
also compare against two top-performing reduced reference
VQA approaches VQM [9], Video RRED [10] and two lead-
ing full-reference VQA indices MOVIE [11] and ST-MAD
[12]. Our approach outperforms PSNR, SSIM, and VQM,
and is competitive with the performance of the RR-VQA
RRED and the FR-VQA MOVIE and ST-MAD models. Of
course, Video BLIINDS does not rely on any information
from the pristine version of the video to make quality predic-
tions. It does, however, rely on being trained a priori on a set
of videos with associated human quality judgments.

6. CONCLUSION

We have proposed a model-based, general (non-distortion
specific) approach to NR-IQA using a minimal number of
features extracted entirely from the DCT-domain which is
also computationally convenient. We have shown that the
new BLIINDS-II algorithm can be easily trained and it em-
ploys a simple probabilistic model for prediction. The method
correlates highly with human visual perception of quality, and
outperforms the full-reference PSNR measure and the recent
no-reference BIQI index, and approaches the performance of
the full-reference SSIM index.
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