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Abstract

In this paper we develop a first step towards the recogni-
tion of hand activity by detecting objects subject to manip-
ulation, and use the results to build a visual summary of
events. The motivation is to extract information from hand
activity without requiring that the wearer is explicit as in
gesture-based interaction. Our method uses simple image
measurements within a probabilistic framework and allows
real-time implementation.

1 Introduction

Hands are a highly effective means for providing input to
computers, and have been widely used to do so. For a wear-
able, hands can serve to recover two strands of information.
In the most commonly found case, a wearer’s hand gesture
is used to signify an action or command, in the second and
less studied case, hand activity itself could provide an extra
cue to user context and intention.

Several camera-based methods have been devised for
hand gesture recognition in computer interfacing, and re-
cently they have been extended to the wearable domain e.g.
the work of Kölsch et al. for outdoors hand gesture recog-
nition [3], Starner et al. [5] who used a hat-mounted cam-
era for sign language recognition, and the work of Kurata
et al. [6] for detecting gestures within a cursor-and-click in-
terface.

Consider now, for example, the task of building an in-
struction book from the subtle motions produced by an ar-
tisan as he makes a craft. The problem is how to build a
summary of his actions when the involved hand gestures are
not known in advance. Gesture recognition methods place
the user in an imperative rôle, demanding that he/she is ex-
plicit and attention-focused. Hand activity recognition is
different from gesture recognition in that there is no explicit
announcement of meaning: it is events (here associated to
objects) that give cue to the detection of hand actions.

In this paper, a probabilistic framework that employs

simple image measurements is developed, allowing the au-
tomatic selection of key video frames that detect manipula-
tion events and summarise a span of wearer’s hand activity.

The paper is organised as follows. Section 2 reviews
methods for hand detection and object recognition, Sec-
tion 3 describes the wearable sensor before presenting the
method to filter attention in Section 4. Section 5 describes
the methods used for detecting hands and recognizing ob-
jects of interest and a method to account for the spatial dis-
tribution of activity around the wearer. Section 6 introduce
the methods for event detection and filtering. Section 7 de-
scribes the experiment before the paper ends with discus-
sion and future work.

2 Visual detection of hands

The literature for detecting hands from images can be clas-
sified into two main groups. The first group of work
uses a structural model of the hand, which can be three-
dimensional as used by Rehg and Kanade [1] or a simpler
two-dimensional contour as used by MacCormick and Isard
[2]. These model-based approaches purse a correspondence
between the observed hand and the model so that explicit
degrees of freedom can be recovered. The second group of
work, the view-based approach, uses a database of views
of the hand and usually low-dimensional features are com-
puted on them, such as in [3, 7].

When considering more complex hand activity such as
object manipulation, the hand’s high number of degrees of
freedom and motion involved even in the simplest manual
tasks, makes it currently unfeasible to establish direct cor-
respondence between hand images and templates, particu-
larly if the templates are articulated and three dimensional.
In the same manner, holding a dictionary of multiple hand
views is impractical due to the large number of variations
involved. Instead of recovering hand configuration, an al-
ternative possibility is to use a more invariant (and rougher)
hand representation but concentrate instead on the recogni-
tion of the objects that are being subject to the manipulation.
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Figure 1: The Wearable Visual Robot. 1) elevation axis, 2)
pan axis, 3) cyclotorsion axis, 4) CCD and optics.

Here, this invariance comes from the use of colour-
histograms for detecting both, hands and objects. In this
respect, the approach is similar to the work of Swain
and Ballard [8] who developed a system that used colour-
histograms for identifying objects around a robotic arm
equipped with vision. Another relevant work is by Schiele
and Pentland [9], who developed a feature histogram based
on Gaussian derivatives within a probabilistic framework.
These example works clearly show that an object recog-
nition system using feature histograms can perform well
under challenging conditions such as substantial object oc-
clusion, viewpoint and scale changes, and multiple objects
within an image. However, two essential questions remain
open: 1) where to look and 2) how to use the observed in-
formation usefully.

3 A wearable visual robot

A shoulder-mounted wearable active camera (Figure 1) first
presented in [10] is used as the sensor to observe hand ac-
tivity. We have used this device for a number of other ap-
plications that range from large-displacement image stabi-
lization [10], gesture recognition [12] and real-time simul-
taneous localization and map building [13]. This device is
intended as a front-end for a wearable computer, and be-
cause it has a larger degree of sensing autonomy than the
one achieved by a passive camera, we prefer the term wear-
able visual robot. The current implementation uses three
motors to compensate orientation in elevation, pan and cy-
clotorsion axis, has a 640x480 pixel non-interlaced image
sensor with 42◦of field of view (FOV) and a control inter-
face connected to the computer. A speech synthesiser [14]
provides feedback to the wearer on the state of the system.

The real advantage for an active camera is the concen-
tration of sensor resolution in a small volume. In this work,
the robot helps twofold, first towards a greater degree of in-
dependence from the posture of the wearer and second to
attain a wider field of view, however the methods here de-
scribed are equally applicable to a non-active camera.

In terms of wearability and sensor placement, the shoul-
der area is a good alternative to head-mounted devices

(a) (b)

Figure 2: Sensor Placement. (a) View of the handling space
(dashed box) from different locations (polygons) around a
humanoid figure, the darker the shade the better. (b) As
before, a darker polygon is better, but here we consider field
of view, view of the handling space and a walking motion
as discussed in [11].

which are highly dependent on wearer’s attention. Figure
2 show the relative weights obtained through simulation
for camera locations when considering large field of view,
view of the handling space and motion during walking for a
humanoid-shaped model1 (see [11] for details).

4 Attentional filtering

First, we have to select what to look at. In [15] Schiele and
Pentland propose an attentional filter based on a motion cue
that extracts image regions which, because that the camera
is head-mounted, moves jointly with the wearer’s attention.
Image regions that remain static for a number of frames are
considered of interest since the wearer may have turned his
head towards them as he walks or followed them as the ob-
ject moves. A similar idea is used in the work of Cheatle
[16] that show impressive results for the summarization of
wearer’s attention, during say, a day out in the zoo.

In the case of an autonomous wearable camera observing
hand manipulation in a workspace, the background is the
one that is likely to remain static on the image and a global
motion cue becomes less useful — objects of interest may
remain relatively fixed to a wall or table. Furthermore, one
of our aims is to remove the wearer’s attention from non
essential tasks, and object manipulation is a good example
of where this is desirable as we do not gaze to supervise all
manual activities.

For selecting the area of attention, we notice that there
is a set of fine manipulation tasks that involves both hands
working spatially close to the user’s chest. Hands are de-
tected using the skin detection method described in section
5.1, and the centre of mass (COM) derived for the de-

1Original VRML figure by Cindy Ballreich, 3Name3D
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tected skin. When there is a single sleeved hand in view,
the COM will usually lie within a skin patch, but when
both hands are involved in fine handling or manipulating,
the COM falls within or near the object subject to manipu-
lation. This allows the wearable camera to centre and follow
a single hand in view as it reaches for objects, or when both
hands are involved in fine manipulation, it follows the area
between them which is likely to fall within the object being
handled. This simple procedure provides an active focus of
attention.

5 Hand activity categorisation

5.1 Preprocessing

The first step in the detection of hands in colour imagery
here consists of skin colour segmentation. Building a 2D
colour histogram in UV-space provides a degree of illu-
mination invariance, and, as the wearable camera delivers
image pixels with separate luminance (Y) and colour (UV)
channels, this is a convenient and cheap operation.

The histogram bins are populated by manually select-
ing regions from training exemplars of various classes Ci,
allowing the conditional probabilities p(c|Ci) that an arbi-
trary pixel colour c(x, y) originated from class Ci to be de-
termined. The classification likelihoods for this colour are
then

p(Ci|c) =
p(c|Ci)p(Ci)

∑N

j=1
p(c|Cj)p(Cj)

(1)

and classification is determined from the largest likeli-
hood. Here the simplest case of just two classes, skin and
background, with uniform priors is considered.

After classifying image pixels, high frequency noise is
removed by spatial filtering with a 5 × 5 mask. The re-
sulting skin image S(x, y) = 1, 0, for skin and background
respectively, is then passed on for centre of mass detection,
COM = (x̂, ŷ) which is straight-forward to obtain

x̂ =
M10

M00

; ŷ =
M01

M00

where

Mmn =
∑

i

∑

j

xm
i yn

j (S(xi, yj)).

Figure 3 shows the main steps involved in image prepro-
cessing.

5.2 Classification cues

The validity of the observation of a manipulation event is
obtained by a combination of measurements that include the

(a) (b) (c)

Figure 3: (a) View from the wearable camera. (b) Colour
classification is applied though the segmentation obtained
is noise. (c) Image after spatial filtering.

image’s overall area of skin, object classification and event’s
spatial distribution. The joint likelihood

Pe = PsPmPD (2)

represents the validity of event classification. Following
we introduce each one of these elements.

5.2.1 Ps: Overall area of skin

The likelihood of having enough skin area Ps is here simply
computed as the ratio of detected skin pixels to image size.
The rationale is that if there is little skin on the image, there
is little prospect that a valid event is being observed.

5.2.2 Pm: Object classification

As we mention before, we use object recognition at the core
of our event classification algorithm. For an object q (in-
cluding the hand), a template colour histogram Hq with
nu bins is first derived offline from a rectangular sampling
window of size nv pixels placed over a training image re-
gion. Within the current colour image frame of an online se-
quence, a histogram Hk is computed in a sampling window
V positioned at the centre of mass COM of skin pixels.
The similarity between normalised histograms Ĥk and Ĥq

is obtained via the sample of the Bhattacharyya coefficient

bkq =

nu
∑

i=1

√

ĤkiĤqi . (3)

This coefficient represents the cosine of the angle be-
tween histograms, and has been recently used with great
success in the context of object tracking [17]. The class
q that maximises this coefficient labels the classification.
Other methods that have been used for histogram compar-
ison include the χ2 as used in [9, 15] and histogram inter-
section [8].

The use of colour histograms is favoured here as a way
to gain robust classification under fast manipulations and
view invariance, with the price being that we currently cant
recover other object properties such as pose.

Pm, the membership to the assigned object class is di-
rectly given by Equation 3.
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Figure 4: (a) Event distribution around the view sphere as declared by Pm (most events lie to the right of the centre as the
camera is worn on the left shoulder). (b) The view sphere (as seen from the workspace) with crosses indicating the position
of the COM and the border line computed by the convex hull of all the observed positions during the sequence.

5.2.3 PD: Spatial distribution of events

Further information can be obtained by incorporating some
prior knowledge on the spatial distribution of events. Fig-
ure 4 show the event distribution around the camera’s view
sphere for a given manipulation sequence. Each symbol in
Figure 4(a) represents a detected event at a given frame and
the temporal path is represented by the line linking each
pair of symbols. Fast single hand motions with velocities
of several hundreds of degrees per second are observed (1
frame = 1/30s), and are spread within the FOV. This con-
centration of events has a level of resemblance to the visual
exploration patterns observed by Yarbus [18].

The likelihood PDk of an observation window V k at
time k at position (θek, θpk

) in the view sphere belonging
to class qi, is obtained as the conditional probability

PDk = P (qi|θek, θpk
) =

P (θek, θpk
|qi)P (qi)

∑

j P (θek, θpk
|qj)P (qj)

.

Where θek and θpk
represent the angle in the view sphere

(relative to the camera’s placement) in the elevation and pan
axis respectively. The probability P (θek, θpk

|qi) that the
pair (θek, θpk

) belongs to qi is drawn from a continuous
density estimated by a normalised linear angular difference

P (θek, θpk
|qi) =

∑

i6=k(|θeV i − θeV k| + |θpV i
− θpV k

|)

2(n − 1

2
)

.

The incorporation of knowledge of where a manipulation
event is expected to occur (and where it is unlikely), is used
here to refine the response of event detection.

Figure 5 plots the instantaneous likelihoods Ps, Pd, Pm

and the joint likelihood Pe for the manipulation sequence
accompanying this paper (please see video at [20]).

Although, strictly, at some extreme conditions there is
a degree of dependency between the elements composing
Pe, we neglect it. If Pe is greater than a threshold, an in-
stantaneous event is declared detected and the object class
ratified, otherwise the frame is labelled as “transitional”.

The response of the classification process is however
noisy and filtering is necessary as described in the following
section.

6 Event detection

This work is about detecting manipulation events and build-
ing visual summaries. However, this prompts the question
on how to detect keyframe events?. Zelink and Irani [19]
define a video event as something that usually extends for
hundreds of frames, which is suitable for say a human figure
crossing the FOV at a distance. However, when considering
manipulation events, the spans of time involved are signifi-
cantly smaller.

In this case, there are five different events to be recog-
nised via their associated objects: Single hand (HS), hands
resting on table (HR), handling a tennis ball (HB), hands
operating a keyboard (HK) and hands operating a calcula-
tor (HC).

Figure 6 (a) shows the result of classification when a
0.5s mode filter that uses only frames up to the moment
under analysis is used. The result is noisy, but, as the fil-
ter is causal (since we use information up to the moment of
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Figure 5: Likelihoods for different measurements of hand activity as a function of frame number. Ps indicates the likelihood
that there is enough skin area in the image, Pm indicates the likelihood of the object belonging to the assigned class. PD

indicates the likelihood of observing a valid event based in the event distribution around the view sphere and Pe is the joint
likelihood of all three. Notice that the class is assigned using Equation 3, and Pe is the confidence of such assignment.
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Figure 6: Activity identification results shown in bold blue as frames progress. Events are: observing single hand (HS),
hands at keyboard (HK), handling a tennis ball (HB), hands resting on a table (HR) and hands operating a calculator (HC).
(a) result of using a causal (on-time) mode filter. (b) results of using a non-causal (delayed) mode filter. Thin red line is the
groundtruth.
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Figure 7: Results for the selection of keyframes that sum-
marise the manipulation sequence. Stars indicate keyframes
selected on the ground truth and squares those selected on
the curve of detected events in Figure 6(b).

analysis), it is suited to real-time operation. Increasing the
size of the window makes a cleaner recognition, however
the larger this becomes the more out-of-phase the classifi-
cation would be. If we relax the causality condition so that
the filter can work delayed using events ahead of the mo-
ment under analysis, the filtering window can be larger and
still produce in-phase smoother transitions. This is shown
in Figure 6(b) for a ±0.5s window. The fit to groundtruth is
roughly the same for both filtering conditions (differing in
about 3%), but a smoother state recognition simplifies fur-
ther stages of processing. For example, it allows an event
detector routine to summarise the manipulation sequence.

Figure 7 show the automatically selected keyframe ma-
nipulation events obtained by considering state continuity
that lasted for a minimum of 0.5s. When an event lasts
longer than this threshold, the midpoint gives the index to
the selected keyframe. The algorithm detects all the peaks
similarly detected for the groundtruth, and the extra “hallu-
cinated” events correspond to real activity (they lie over the
groundtruth) but activity that lasted for less than the 0.5s
threshold.

7 Summarization experiment

For experiments we use various office objects that are ma-
nipulated by the wearer and observed from the wearable ac-
tive camera producing a 600 frames sequence (please see
video at [20]). In the experiments reported here, V has
nv = 402 pixels, corresponding to about 5◦ of FOV, and
the total number of histogram bins is 256.

Images usually contain several of the recognisable ob-
jects, but the attentional filter based on the COM “illumi-
nates” only the area of interest, area that is fed into the ob-
ject recognition stage.

Figure 7 show when detected events occur, but of more
immediate visual impact are the images themselves auto-
matically selected to summarise the sequence. These are
shown in Figure 8. The summarization algorithm considers
the results shown in Figure 7 but it now enforces a threshold
Pe ≥ 0.002 to declare a valid event. Figure 9 show some
of those frames that have Pe < 0.002 and are thus declared
outliers or non-events.

8 Discussion and future work

Most work involving hands and computers (wearable or
not) has been concentrated in recognizing gestures. In this
work however, we are interested in the detection of hand
activity as a cue to context and intention understanding.

The hand’s high number of degrees of freedom and swift
motions involved in common manipulation, demands the
use of robust methods to detect hands and a way to detect
the actions being performed. Here we have used a num-
ber of simple yet robust techniques within a probabilistic
framework for the detection and summarization of hand ac-
tivity. The focus of attention is linked to the centroid of skin
colour which is tracked by a wearable active camera and the
objects falling under a window driven by the focus of atten-
tion, categorized. The recognition of these events allow us
to build a visual summary of wearer’s hand activity.

Here, object templates are pre-learnt as a way to re-
cover hand activity but without directly recognizing hand
gestures. Certainly it would be possible to attempt to cate-
gorize objects automatically, and for this a number of well
known clustering techniques such as KNN could be used.
Also, the combination of the presented method and a more
robust hand tracker e.g. the one presented in [4] would be
desirable.

We believe that recognizing hand activity will open a
number of applications in context recognition useful in the
form of assistive devices and the building of models of in-
terruptibility.

References

[1] J.M. Rehg and T. Kanade. Digiteyes: Vision-based hand
tracking for human-computer interaction. In Workshop on
Motion of Non-Rigid and Articulated Bodies, pages 16–24,
1994.

[2] J. MacCormick and M. Isard. Partitioned sampling, articu-
lated objects, and interface-quality hand tracking. In Euro-
pean Conf. Computer Vision, volume 2, pages 3–19, 2000.

6



25, RESTING HANDS 59, KEYBOARD 130, CALCULATOR

187, BALL 208, KEYBOARD 333, SINGLE HAND

372, KEYBOARD 392, RESTING HANDS 422, BALL

485, CALCULATOR 532, SINGLE HAND

Figure 8: Automatically obtained keyframes that summarise a sequence of 600 frames of continuous manipulation of office
objects. The wearable active camera follows the skin’s centre of mass indicated by the cross and recognises objects within
the square region via colour histograms. Labels indicate the state of the identified handling activity. Numbers indicate frame
index for the video at [20].

163, OUTLIER (0.0045) 263, OUTLIER (0.0016) 304, OUTLIER (0.0004) 349, OUTLIER (0.0039) 525, OUTLIER (0.0001)

Figure 9: Some of the detected outliers which have a joint likelihood Pe below threshold. Examples include errors due to
colour misclassification, low skin area and events distant from their densities in the view sphere. Numbers indicate frame
index and numbers in brackets their likelihood.

7
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