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Radar Problem

Transmit a waveform s(t) and
analyze the radar return r(t):

r(t) = hs(t−τo)e−jω(t−τo)+n(t)

h: target scattering coefficient; τo = 2do/c: round-trip time;
ω = 2πfo 2vo

c : Doppler frequency; n(t): noise

Target detection: decide between target present (h 6= 0) and
target absent (h = 0) from the radar measurement r(t).

Estimate target range d0.

Estimate target range rate (velocity) v0.
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Ambiguity Function

Correlate the radar return r(t) with the transmit waveform
s(t). The correlator output is given by

m(τ − τo, ω) =

∞∫
−∞

hs(t− τo)s(t− τ)e−jω(t−τo)dt+ noise term

Without loss of generality, assume τo = 0. Then, the receiver
output is

m(τ, ω) = hA(τ, ω) + noise term

where

A(τ, ω) =

∞∫
−∞

s(t)s(t− τ)e−jωtdt

is called the ambiguity function of the waveform s(t).
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Ambiguity Function

Ambiguity function A(τ, ω) is a two-dimensional function of
delay τ and Doppler frequency ω that measures the correlation
between a waveform and its Doppler distorted version:

A(τ, ω) =

∞∫
−∞

s(t)s(t− τ)e−jωtdt

The ambiguity function along the zero-Doppler axis (ω = 0) is
the autocorrelation function of the waveform:

A(τ, 0) =

∞∫
−∞

s(t)s(t− τ)dt = Rs(τ)
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Ambiguity Function

Example: Ambiguity function of a square pulse

Picture: Skolnik, ch. 11

Constant velocity (left) and constant range contours (right):

Pictures: Skolnik, ch. 11
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Ambiguity Function: Properties

Symmetry:
A(τ, ω) = A(−τ,−ω)

Maximum value:

|A(τ, ω)| ≤ |A(0, 0)| =
∞∫
−∞

|s(t)|2dt

Volume property (Moyal’s Identity):

∞∫
−∞

∞∫
−∞

|A(τ, ω)|2dτdω = |A(0, 0)|2

Pushing |A(τ, ω)|2 down in one place makes it pop out
somewhere else.
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Waveform Design

Waveform Design Problem: Design a waveform with a good
ambiguity function.

A point target with delay τo and Doppler shift ωo manifests as
the ambiguity function A(τ, ωo) centered at τo.

For multiple point targets we have a superposition of
ambiguity functions.

A weak target located near a
strong target can be masked
by the sidelobes of the
ambiguity function centered
around the strong target.

Picture: Skolnik, ch. 11
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Waveform Design

Phase coded waveform:

s(t) =
L−1∑̀
=0

x(`)u(t− `∆T )

The pulse shape u(t) and the chip rate ∆T are dictated by
the radar hardware.

x(`) is a length-L discrete sequence (or code) that we design.

Control the waveform ambiguity function by controlling the
autocorrelation function of x(`).

Waveform design: Design of discrete sequences with good
autocorrelation properties.
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Phase Codes with Good Autocorrelations

Frank Code Barker Code

Golay Complementary Codes
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Waveform Design: Zero Doppler

Suppose we wish to detect stationary targets in range.

The ambiguity function along the zero-Doppler axis is the
waveform autocorrelation function:

Rs(τ) =

∞∫
−∞

s(t)s(t− τ)dt

=

L−1∑
`=0

L−1∑
m=0

x(`)x(m)

∞∫
−∞

u(t− `∆T )u(t− τ −m∆T )dt

=

L−1∑
`=0

L−1∑
m=0

x(`)x(m)Ru(τ + (m− `)∆T )

=

2(L−1)∑
k=−2(L−1)

L−1∑
`=0

x(`)x(`− k)Ru(τ − k∆T )

=

2(L−1)∑
k=−2(L−1)

Cx(k)Ru(τ − k∆T )

Radar Signal Processing



Impulse-like Autocorrelation

Ideal waveform for resolving targets in range (no range
sidelobes):

Rs(τ) =
2(L−1)∑

k=−2(L−1)

Cx(k)Ru(τ − k∆T )≈ αδ(τ)

We do not have control over Ru(τ).

Question: Can we find the discrete sequence x(`) so that
Cx(k) is a delta function?

Answer: This is not possible with a single sequence, but we
can find a pair of sequences x(`) and y(`) so that

Cx(k) + Cy(k) = 2Lδk,0.
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Golay Complementary Sequences (Golay Pairs)

Definition: Two length L unimodular sequences x(`) and y(`)
are Golay complementary if the sum of their
autocorrelation functions satisfies

Cx(k) + Cy(k) = 2Lδk,0

for all −(L− 1) ≤ k ≤ L− 1.
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Golay Pairs: Example
x

x y

y

Time reversal:

x : −1 1 1 1 1 −1 1 1

x̃ : 1 1 −1 1 1 1 1 −1

If (x, y) is a Golay pair then (±x,±ỹ), (±x̃,±y), and
(±x̃,±ỹ) are also Golay pairs.
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Golay Pairs: Construction

Standard construction: Start with
(

1 1
1 −1

)
and apply the

construction (
A
B

)
−→


A B
A −B
B A
B −A


Example:

(
1 1
1 −1

)
−→


1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

 −→



1 1 1 −1 1 1 −1 1
1 1 1 −1 −1 −1 1 −1
1 1 −1 1 1 1 1 −1
−1 −1 1 −1 1 1 1 −1

1 −1 1 1 −1 1 1 1
1 −1 1 1 1 −1 −1 −1
−1 1 1 1 1 −1 1 1

1 −1 −1 −1 1 −1 1 1



Other constructions:

Weyl-Heisenberg Construction: Howard, Calderbank, and
Moran, EURASIP J. ASP 2006
Davis and Jedwab: IEEE Trans. IT 1999
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Golay Pairs for Radar: Zero Doppler

The waveforms coded by Golay pairs x
and y are transmitted over two Pulse
Repetition Intervals (PRIs) T .

Each return is correlated with it’s corresponding sequence:

Cx(k) + Cy(k) = 2Lδk,0

x

x y

y

Discrete Sequence Coded Waveform
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Golay Pairs for Radar: Advantage

Frank coded waveforms Golay complementary waveforms

Weaker target is masked Weaker target is resolved

Radar Signal Processing



Sensitivity to Doppler

Asx(τ, ν) + ej2πνTAsy(τ, ν)

“Although the autocorrelation
sidelobe level is zero, the
ambiguity function exhibits
relatively high sidelobes for
nonzero Doppler.” [Levanon,
Radar Signals, 2004, p. 264]

Why? Roughly speaking

Cx(k) + Cy(k)ejθ 6= α(θ)δk,0
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Sensitivity to Doppler

Range Sidelobes Problem: A weak target located near a strong
target can be masked by the range sidelobes of the ambiguity
function centered around the strong target.

Range-Doppler image
obtained with conventional
pulse train
x y · · · x y
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