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Abstract: By directly simulating Maxwell’s equations via the finite-
difference time-domain (FDTD) method, we numerically demonstrate the
possibility of achieving high-efficiency second harmonic generation (SHG)
in a structure consisting of a microscale doubly-resonant ring resonator
side-coupled to two adjacent waveguides. We find that& 94% conversion
efficiency can be attained at telecom wavelengths, for incident powers
in the milliwatts, and for reasonably large bandwidths (Q∼ 1000s). We
demonstrate that in this high efficiency regime, the system also exhibits
limit-cycle or bistable behavior for light incident above a threshold power.
Our numerical results agree to within a few percent with the predictions of
a simple but rigorous coupled-mode theory framework.
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1. Introduction

In this paper, we develop concrete designs for ring-resonator devices (depicted schemat-
ically in Fig. 1) that achieve compact, high-efficiency second-harmonic generation (SHG:
ω1 ω2 = 2ω1) by second-order (χ(2)) optical nonlinearities. By employing a combination
of abstract coupled-mode theory (CMT) models and full nonlinear Maxwell finite-difference
time-domain (FDTD) simulations, we identify key design criteria for achieving low-power high
efficiency operation. Our results extend earlier work which established the theoretical parame-
ters of high-efficiency intra-cavity SHG independent of any particular geometry choice [1, 2],
and demonstrates the predictive accuracy of CMT when confronted with the complexities of
realistic systems. Intra-cavity SHG in ring-resonator geometries is attractive because of the
amenability of such geometries to lithographic fabrication in a variety of materials, but we
show that special care is required to satisfy both the frequency-matching condition (ω2 = 2ω1)
and also the symmetry-induced selection rules (below). Unlike previous designs for SHG in
ring resonators, which focused on either large (millimeter) resonators with ultra-small band-
widths [3–5] or on low-power schemes that ignore down-conversion (or depletion) [6], our
design focuses on micron (wavelength-scale) resonators with relatively small bandwidths and
large (≫1%) conversion efficiencies, and fully incorporates competing effects such as bend-
ing losses, down-conversion, and instabilities, which become relevant in this regime. Key to
our design is the presence of input/output coupling ports based on waveguides with intentional
cutoff frequencies, that allow independent control of the input/output coupling lifetimes, and
which play a crucial role in establishing the sensitivity, bandwidth, and critical power of the
device. To illustrate these design principles, we begin with a 2d example, and then consider a
full 3d design involving a AlGaAs resonator on oxide designed for input light at 1.55µm, in
which we predict≈ 94% conversion efficiency with aQ of only 1000 (0.1% bandwidth), for an
input power of 30 mW. (We expect that much lower powers can be readily achieved with further
optimization, or at the expense of bandwidth and/or efficiency.) Although 2d calculations are
quicker, we show that some aspects of the design actually simplify in 3d, as more complicated
ring and waveguide structures turn out to be required in 2d in order to achieve the required
frequency-matching. In 2d, we are able to validate the semi-analytical CMT against nonlin-
ear FDTD simulations that capture the full complexities of the system. Such low-power high
conversion efficiencies could find applications in high-frequency sources [7–9], imaging [10],
optical storage [11], and other spectroscopic devices [12] that suffer from a lack of coherent
lasers at various wavelengths.

SHG has been studied in many different contexts [13–19], most commonly in waveg-
uides [20–22], in the so-called undepleted pump limit in which down-conversion effects are
negligible [6, 23–27]. More recently, as devices have become smaller and as these nonlinear
processes have become more important for integrated and ultracompact applications, there has
been increased interest in designing techniques and/or devices that lower the power require-
ments and dimensions, as well as increase the efficiency of these systems [28–32]. Microcav-
ities serve as a promising avenue for such applications: when light is confined in a cavity,
restricted to small modal volumesV and confined for long timesQ, nonlinear effects are en-
hanced due to the increased field strength and temporal confinement of the interacting modes,
leading to significantly lower power requirements [1,30,31,33] in addition to novel dynamical
effects [2,34]. In doubly-resonant cavities, such benefits are obtained both at the pumpω1 and
harmonicω2 frequencies, leading to orders of magnitude improvements in efficiency and power
requirements [1,23,35]. Specifically, SHG in doubly-resonant cavities bears a number of unique
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χ(2)

output ω2 = 2ω1

ω1 , ω2 = 2ω1

(ω1 cut off)

Fig. 1. Schematic ring-resonator waveguide-cavity system: input light from a waveguide
supportinga propagating mode of frequencyω1 (input powerP1,in2) is coupled to a ring-
resonator cavity mode of frequencyω1, converted to a cavity mode of twice the frequency
ω2 = 2ω1 by a nonlinearχ(2) process, and coupled out by another waveguide supporting
a propagating mode of frequencyω2 (the waveguide does not support a propagatingω1
mode).

features [1]: First, there exists a critical powerPcrit , proportional toV/Q3, at which 100% effi-
ciency is achieved. For input powers below and above this critical power, the SHG efficiency is
significantly reduced. Second, for large powers, the stability of the conversion process is com-
promised due to bistable behaviors and the system exhibits limit cycles (mathematically known
as Hopf bifurcations [36]).

Recently, ring resonator geometries have become an attractive venue for realizing efficient
and device-integrated SHG [3–6, 30–32, 37–39]. Ring resonators, like waveguides, offer an
advantage over other geometries in that they readily yield modes satisfying the frequency-
matching requirementω2 = 2ω1. To date, however, most works have focused on large (millime-
ter) ring resonators with long modal lifetimesQ& 103, (and hence narrow bandwidths 1/Q)
in which the long lifetimes (and hence narrow bandwidths 1/Q) compensate for the relatively
large modal volumes [3,4,31,37–39], or on smaller-scale (micron) resonators with more moder-
ate bandwidths (Q= 104) that operate at low (1%) efficiencies where down-conversion effects
can be neglected [5, 6], a drawback for applications involving ultracompact integrated devices
requiring broad-bandwidth operations, e.g. integrated optical switches [40]. In this paper and
unlike previous works, we focus on small (micron-scale) doubly-resonantχ(2) resonators sup-
porting modes at frequenciesω1 andω2 = 2ω1, with moderate lifetimesQ∼ 1000s, and at high
efficiencies where down-conversion effects cannot be neglected. Here, the significantly smaller
Qs are offset by the smallerV, and we find that nearly 100% conversion efficiency is feasi-
ble for input powers in the mW range. Our geometry is advantageous in several ways: First, the
smallerV translates into more compact operation as well as lower power requirements. Second,
in addition to providing a larger bandwidth of conversion, a lowerQ also makes the device less
sensitive to manufacturing errors—a key consideration since the ring parameters must be care-
fully chosen to match the frequencies of the fundamental and second-harmonic modes. Third,
as noted below, and unlike large-etalon or waveguide setups, the conventional phase match-
ing requirement is replaced by a selection rule on the symmetry of the modes of the resonator
that proves significantly simpler to satisfy [41, 42], both experimentally and theoretically. The
lack of a phase matching condition is attractive in that it opens up the possibility of studying
SHG in materials (e.g. Gallium Arsenide) that are highly nonlinear and practical, but for which
phase-matching is difficult because of material dispersion and other issues [43]. A challenging
aspect of designing low-power SHG in small ring resonators is the well-known tradeoff be-
tween modal volumeV and radiation or bending losses (lifetimeQrad) [44]. (Such a tradeoff
is absent in complete-gap photonic crystals [1] where SHG has also been considered [45], but
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in these systems it seems challenging to procure a design that satisfies the frequency match-
ing condition because of the difficulty of obtaining simultaneous complete gaps at harmonic
frequencies in more than one dimension [46]. Recent designs involving PhC nanobeam cavi-
ties [47, 48] are promising for both sum-frequency generation [49] and SHG [50, 51].) More
importantly, it is well known that side-coupling a waveguide to a small resonator yields ad-
ditional (and ultimately prohibitive) radiation losses [44], and so we design our geometry to
overcome these and other limitations. To aid our design, we employ a CMT formalism that
allows us to predict the critical power at which the highest efficiency occurs, and the largest
such efficiency, in terms of the lifetimes, modal volumes, and coupling coefficients of the linear
modes of the resonator [1]. We supplement this with a full Maxwell simulation via the FDTD
method, which incorporates all the complexities of the full system that are neglected by CMT,
and we find excellent agreement with CMT.

2. Computational methods

In order to develop the harmonic-generation design, we needed to compute microcavity modes,
frequencies, and lifetimes (Q), as well as waveguide dispersion relations. The final design was
evaluated both semi-analytically with coupled-mode theory (CMT) and with a full nonlinear
Maxwell simulation. We began by studying a two-dimensional (2d) model system, and con-
tinued to full 3d calculations. The computational methods for these calculations are described
here.

The basic cavity design is that of a ring resonator coupled with one or two adjacent waveg-
uides, as depicted in Fig. 1. To begin with, we studied the isolated cavities, uncoupled to any
waveguide. Since the isolated waveguide is axisymmetric, it can be modeled in cylindrical
coordinates. We did so using a free finite-difference time-domain (FDTD) software package
(Meep) [52]. The simulation cell is surrounded by a perfectly matched layer (PML) absorbing
boundary region. The use of cylindrical coordinates in this simulation reduces the 2d problems
to a 1d problem, thereby reducing simulation times significantly. Another advantage is that,
the angular dependence of the fields in systems with continuous rotational symmetry can be
given by the angular momentum parameter (input variable)m, which is easy to control. To be-
gin with, we inserted a broad Gaussian pulse in the structure in order to excite all of the (TM
polarized) modes within a chosen bandwidth and with a fixedm; we then re-ran the simulation
with a narrow-band source around each mode and outputted the corresponding fields at the end.
The resonance frequency and lifetimeQrad were obtained by Harminv, which is a free program
to solve the problem of harmonic inversion [53]. The waveguide modes were computed using
an iterative eigenmode solver in a planewave basis, using a freely available software package
(MPB) [55].

The combined waveguide-cavity system, with waveguides adjacent to the ring resonator, is
not axisymmetric and requires a full 2d FDTD calculation. Bringing in the waveguides, there
are two decay mechanisms for the modes in this cavity: the mode can decay into the adjacent
waveguides, and it can radiate into the surrounding air. The total dimensionless decay rate
1/Qtot can be written as the sum of two decay rates: 1/Qtot = 1/Qw + 1/Qrad, where 1/Qw

and 1/Qrad are the waveguide and radiative decay rates, respectively. We obtainQtot from a
filter-diagonalization analysis of the field decay in FDTD [52]. However, we also need to know
Qw andQrad individually, both of which are modified for different ring–waveguide separations.
Therefore, for each separation, we computed the linear transmission spectrum in FDTD. Then,
comparing with the transmission equation obtained from coupled mode theory [46],

T(ω) =
Pout

Pin
=

ω2
0(1/Qw−1/Qrad)

2 +4(ω −ω0)
2

ω2
0(1/Qw +1/Qrad)2 +4(ω −ω0)2

, (1)
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one can solve for bothQrad andQw givenT(ω0) (the minimumT) andQtot.
Given the waveguide modes, frequencies, andQ values, the resulting nonlinear system can

be modelled semi-analytically using the coupled-mode equations of Ref. [1]. A key parameter
of this model is the overlap integralβ1 between the fundamental (ω1) and harmonic (ω2 = 2ω1)
modes, which is computed from the following integral:

β1 =
1
4

∫

d3x∑i jk ε0χ(2)
i jk

[

E∗
1i(E2 jE∗

1k +E∗
1 jE2k)

]

(
∫

d3xε|E1|2)(
∫

d3xε|E2|2)
1/2

, (2)

This coupling coefficient can be obtained by applying perturbation theory to Maxwell’s equa-
tions in the presence of aχ(2) nonlinearity, as explained in Ref. [1]. Within the CMT, theβ1

coefficient is related to the rate of energy down-conversion. Similarly, there is a corresponding
coefficientβ2 that relates to the rate of frequency up-conversion [1]. As shown in [1], these two
coefficients are related to one another via conservation of energy:ω1β1 = ω2β ∗

2 .
CMT makes several approximations: it assumes that cavity-waveguide and cavity-radiation

coupling is weak (highQ), it neglects nonlinear coupling to modes not at 2ω1 (the rotating-
wave approximation), it assumes that the input waveguide couples only to a single direction
mode of propagation around the ring (clockwise or counterclockwise), and correspondingly
that each ring mode couples out to only a single direction of propagation in the waveguides
(despite the fact that we use waveguides that are not identical to the ring structure for reasons
described below). To ensure that the full complexities of the nonlinear Maxwell equations in
this geometry were accurately captured by the coupled-mode equations, we also performed
fully nonlinear FDTD simulations (where the nonlinear constitutive equations are solved by
Pad́e approximants [52]). In particular, we excited the input waveguide with a continuous plane
wave of frequencyω1, and computed the SHG power escaping through the output waveguide at
ω2. The nonlinear FDTD calculations were then checked against the CMT predictions, using the
frequencies, decay rates, andβ1 coefficient computed from a set of linear FDTD simulations.

In the absence of losses or reflections, 100% conversion is achieved in the steady state. In-
cluding losses [1] (Qrad finite), the critical power can be related to the various model parame-
ters,

|Pcrit |
2 =

ω1Q1

2|β1|
2Qw,2Q3

w,1

, (3)

and ends up scaling asV/Q3 [1]. Hence, one can in principle obtain very low-power efficient
harmonic conversion by increasingQ and/or decreasingV (i.e., maximizeβ ) [1]. The efficiency
decreases if the power is either too low (in the linear regime) or too high (dominated by down-
conversion) compared to|Pcrit |

2.

3. 2D Design

In Ref. [1], we showed, conceptually, that 100% second-harmonic conversion efficiency, in the
absence of loss, can be obtained by coupling a single input channel to a single output channel
via a cavity with two resonant frequencies,ω1 andω2 = 2ω1, that are coupled by a second-
order nonlinearity. However, a number of difficulties must be addressed in order to obtain a
realistic cavity design that achieves the desired characteristics.

• First, the cavity should be compact and support modes of the requisite frequencies. Gen-
erally, in order for them to couple nonlinearly, one must also ensure that the modes of the
cavity satisfy certainselection rulesarising from the presence of any cavity symmetries
(exact or approximate), a generalization of the “phase-matching” requirement of earlier
works [42,43].
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• Second, the cavity quality factorsQ shouldbe carefully controlled, as they affect several
tradeoffs:

– The (fractional) bandwidth of conversion is 1/max(Q1,Q2).

– The critical power is proportional to 1/Q21Q2.

– The sensitivity to perturbations in the structure is determined by min(Q1,Q2).

Therefore, it is desirable to have a design in which one can chooseQ1 andQ2 indepen-
dently (e.g. to obtainQ1 = Q2 to minimize power for a given bandwidth).

• Third, the design of the input/output waveguide(s) is critical to ensure that the system sup-
ports only a single incoming and a single outgoing wave at bothω1 andω2—additional
channels will lower the efficiency (unless they have much larger couplingQ) [46].

Before delving into the details of our design, we briefly summarize our findings. To obtain
strongly confined modes at both fundamental and harmonic frequencies, the most attractive
candidate cavities seem to be microring cavities and related geometries (whereas mechanisms
like photonic bandgaps typically cannot confine light at bothω and 2ω in more than one di-
mension). However, we find (below) that the basic ring-resonator design must be somewhat
modified to obtain a strong coupling (β1) between theω and 2ω modes. We chose to operate
at totalQ’s of only a few thousand, which allows our design to cover significant bandwidths
(e.g. a 10 Gbit/s telecom channel) and this proved computationally convenient because it re-
quired simulations of only a few thousand optical periods. It also means that fabrication errors
of up to about 0.1% frequency-mismatch can be tolerated (although some mismatch can be
compensated by post-fabrication tuning [5, 42]). As described below, we found that obtaining
much smallerQs by decreasing the ring-waveguide separation is also possible (at the cost of
higher critical power), although this is ultimately limited by the increasing radiation losses. For
the same ring-waveguide separation, it is well known that higher-frequency modes will have
higherQ, so coupling the ring to a single waveguide would yieldQ2 ≫ Q1. Thus our design
goals above favoredtwo waveguides coupled to the ring: one waveguide for theω1 input and
another for theω2 output. The third requirement of a single in/out channels led to an unusual
requirement in the waveguide design: the output (ω2) waveguide was designed to have alow-
frequency cutoff> ω1 in order to eliminate itsω1 guided mode.

As a 2d proof of concept, we considered LiNbO3 (permittivity ε = 4.84) as the nonlinear
material. When it is poled in the vertical (z) direction (in the direction of the axis of symmetry),

LiNbO3 has a nonlinear susceptibilityχ(2)
zzz≈41×10−12 m/V [41] coupling theEz field to itself,

which means that we can work with purely TM-polarized (E‖ ẑ) waves. (The use of a diagonal
χ(2) component also simplifies FDTD calculations [52].) Our design is such that no additional
quasi-phase-matching is necessary, e.g. we need not resort to schemes like alternatingly poling

the LiNbO3 in the±z directions to have an oscillatingχ(2)
zzz [56] (which requires complicated

electrical contacting for the oscillating poling field).

3.1. Ring-resonator design

Previously, achieving efficient SHG in waveguides or Fabry–Perot etalons required techniques
to obtain “phase-matching” of the fundamental and harmonic modes [43]. Phase matching is a
selection rule arising from the approximate translational symmetry for propagation over long
uniform regions, according to which the fundamental and harmonic modes must have the same
phase velocities in order to couple efficiently. In microcavities where the fields are confined
to within a few wavelengths, such a constraint is instead replaced by selection rules result-
ing from symmetry considerations, which determine whether the overlap integral in Eq. (2) is
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nonzero. In our geometry, involving cylindrically symmetric cavities, the fields can be chosen to
have azimuthal dependence∼ eimφ , determined by the conserved angular momentum “quantum

number”m∈Z. By simple inspection of Eq. (2) forχ(2)
zzz coupling, this leads to the requirement

m2 = 2m1, wherem1 andm2 are the corresponding quantum numbers of the fundamental and
harmonic modes, respectively. Becausem is constrained to integer values, perturbing the cavity
parameters does not alter them of a given mode, so them2 = 2m1 condition is easy to satisfy
and robust. On the other hand, perturbing the cavity parameters does change the frequencies of
the modes at givenm values, so the key difficulty is to find modes at a given pair ofm’s that
satisfyω2 = 2ω1.

For any given geometry and givenm, we compute the resonant modes of the linear system
by FDTD in cylindrical coordinates, which reduces to a 1d problem inr for a givenm. We then
compute the modes atm1 and 2m1 for various choices ofm1, and vary the geometry until we
find a pair of modes withω2 = 2ω1. (More precisely, the finite bandwidth means that there
is some tolerance∼ 1/Q on the frequency mismatch∆ω = ω2 − 2ω1 . ω2/Q.) We began
exploring the simplest possible space of designs: we considered a fixed ring widtha and varied
the inner radiusR, as depicted in the right inset of Fig. 2. However finding modes that satisfy
both phase- and frequency-matching requirements for this single-ring design, at chosen index
contrast, turned out to be unfeasible. In particular, Fig. 2 shows the frequency mismatch∆ω
(units of 2πc/a) corresponding to two phase-matched modes withm1 = 15 andm2 = 30, as
a function of the ring radiusR. As observed,∆ω is always positive and large& 0.04 (2πc/a)
relative to the mode bandwidths (Q∼ 1000s) considered here, and we obtained similar results
for other values ofm1 and other pairs of modes. We therefore abandoned the single-ring design
and instead considered a double-ring structure, depicted schematically in the left inset of Fig. 2.
(Note that Ref. [6] considered a set of different double-ring structures for SHG, consisting of
either multi-layered stacks in thez direction or adjacent rings, in larger resonator geometries.
Similar multilayering designs have been studied in the context of phase-matching in waveguides
as well [43].) The reason to consider such a structure is based on the fact that, for the single
ring resonator, theω2 = 2ω1 condition was most nearly matched by a pair of modes where the
ω1 mode has approximately even symmetry through the middle of the waveguide and theω2

mode was approximately odd-symmetrical. We therefore expect that an air groove introduced
within the resonator will affect theω1 mode more than theω2 mode (which has a node), thereby
allowing us to shiftω1 into ω2/2. Furthermore, by introducing the air groove off-center in the
resonator, we break the approximate mirror symmetry (that is only slightly broken by the small
curvature), and thereby allow theω1 mode andω2 modes to have a much larger overlap integral.
(Exactly even and odd modes would not couple at all, a fact we return to in 3d.) Thus, this
structure yields two additional degrees of freedom, the widths of the inner and outer rings,w1

andw2 respectively, with which it is possible to shiftω1 relative toω2. After a relatively small
search through the design space, we settled on a structure havingw1 = 0.45aandw2 = 0.35a,
wherea denotes the total width of the double-ring structure including the air groove of width
a−w1−w2 = 0.2a (labeled in the left inset of Fig. 2). For this configuration, we find that, for
the same azimuthal modesm1 = 15 andm2 = 30 as above,∆ω switches sign asR increases
and is zero atR≈ 4.51a, as shown by the red line of Fig. 2. Using the field patterns of these
modes, we also computed the coupling coefficientβ1, which we found to beβ1 ≈ 3.178×10−5

(in units ofχ(2)/a3/2).
As described below, the final ring parameters are slightly perturbed by the presence of the

input/output waveguides, so our design procedure was to design the isolated ring, design the
coupling waveguides as described below, and then tweak the ring design to restore theω2 = 2ω1

condition. We obtained a final ring radius ofR= 4.585afor frequenciesω1 = 0.277172·2πc/a
(vacuum wavelength 3.6a) andω2 = 0.554344·2πc/a (vacuum wavelength 1.8a).
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Fig. 2. Plot of the frequency difference∆ω = ω2−2ω1 (units of 2πc/a) of two LiNbO3
ring-resonator modes of frequenciesω1 andω2, and azimuthal momentumm1 = 15 and
m2 = 30, respectively, corresponding to two different ring-resonator geometries (insets),
as a function of inner radiusR. The blue and red lines correspond to the single-ring (right
inset) and double-ring resonators.

3.2. Input/output coupling waveguides

Given a ring resonator with appropriate modes as described above, we must then design the
coupling to adjacent waveguides so that they have the desired coupling lifetimesQw,1 andQw,2

at ω1 and ω2. In order to obtain small radiation losses, these coupling lifetimes should be
much smaller than the radiative lifetimesQrad,1 and Qrad,2 (approximately 105 and 107 for
the isolated ring), the so-called “overcoupled” regime. For this reason, and also to obtain a
reasonable bandwidth of conversion, and to limit computation times, we chose to work with
Qw ∼ 104. Furthermore, we don’t want to have to bring the waveguide too close to the ring,
which would require a high computational resolution and might also induce additional radiative
scattering.

In order to obtainQw values that are not too large for moderate ring–waveguide separations,
we phase-match the waveguide mode to the ring-resonator mode. Conceptually one designs the
waveguide to have a phase velocity equal tom/rω, the phase velocity of the ring mode, but this
condition is ambiguous because the “phase velocity” of the ring mode varies with radiusr. For a
largeR, the difference betweenRandR+a is negligible and so one can simply use a waveguide
of the same width as the ring [57]. In our case, however,R/a is too small for this to be a good
approximation and an identical waveguide is not optimal. Instead, we varied the waveguide
width to minimizeQw for a given ring–waveguide separationd. Furthermore, this allowed us
to have good coupling between the double-ring structure and a simple dielectric waveguide
with no air groove, as well as with the cutoff waveguide described below. For example, for the
ω1 mode we found that this procedure corresponded to an optimal phase velocitym/rω with
r = R+1.3a.

Fixing the waveguide width and varying the ring–waveguide gapd, we obtain the plot of
theQw,1 andQrad,1 in Fig. 3(a), which illustrates two effects. First, the couplingQw decreases
exponentially withd, thanks to the exponentially increasing overlap of the evanescent tails of
the waveguide and cavity modes. Second, although for larged the lossesQrad asymptotes to a
constant given by the radiation loss of the isolated ring, for sufficiently smalld the radiation
losses increase due to scattering of the cavity mode from the waveguide. As explained in Sec. 2,
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Fig. 3. (a) Semilog plot of the radiative (Qrad), waveguide-coupling (Qw), and total (Qtot)
lifetimes of theω1 mode of Fig. 5, as a function of the ring-waveguide separationd1. (b)
Corresponding transmission spectrum at various separations.

we obtainQrad andQw from a combination of mode decay and transmission simulations, and
several of these transmission spectra are shown in Fig. 3(b). WhenQrad ≫ Qw, the linear ring–
waveguide system approaches an all-pass filter with 100% transmission (but a resonant delay),
while asQw approachesQrad for larged the radiation loss increases and one observes a resonant
dip in the transmission.

In principle, we could use a single waveguide to coupleω1 into the ring resonator andω2

out after SHG. However, for the same ring–waveguide separationd theω2 mode will normally
haveQw,2 ≫ Qw,1 because the evanescent tails of a waveguide mode decay more rapidly at
higher frequencies. (Furthermore, if the waveguide is optimized to coupleω1, the coupling will
not be optimized atω2.) For example, if we designed the ring to couple to a single dielectric
waveguide atω1 with a gapd1 = 0.5a, we would obtainQw,1 = 191 andQ2,w = 155,000,
and the difference increases for largerd1. Instead, therefore, we coupleω2 out with asecond
waveguide that is optimized to couple at that frequency, on the other side of the ring. This
introduces a new problem, however: we must prevent the second waveguide from coupling
ω1, since CMT predicts that the introduction of multipleω1 channels will lower the attainable
conversion efficiency significantly. We solve this problem by designing the second waveguide
to have alow-frequency cutoff> ω1, so thatω1 cannot couple out via that channel. In 3d
below, a low-frequency cutoff is introduced simply by the waveguide substrate [58–60]. In our
2d model system here we obtain a cutoff by the simple expedient of placing theω2 waveguide
next to a perfect electric conductor (PEC). [A low-index dielectric “substrate” (wall) could have
been used in 2d to introduce a cutoff similar to 3d, but PEC is computationally convenient and
yields qualitatively the same results—the only purpose of the 2d simulations is to qualitatively
explore the design space and validate the theory in preparation for the more realistic 3d design
of Sec. 4.]

By this procedure, we obtain an input waveguide of width 0.5a and an output waveguide of
width 0.35a (adjacent to PEC), with dispersion relations shown in Fig. 4. Note the cutoff in
theω2 mode, as desired. In Fig. 5, we show the field distribution of the two modes in the ring
resonator coupled with these two waveguides. Note that theω2 mode has negligible leakage
into the upper waveguide because the couplingQ in that direction is so much larger. Also, note
that each ring mode (propagating counter-clockwise) couples primarily to waveguide modes
traveling in the same direction. This is critical in order to mimic the theoretically optimal situ-
ation as described in Ref. [1]:ω1 must enter the resonator from a single channel and exit in a
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of two different LiNbO3 waveguides of thicknessw1 = 0.5aandw2 = 0.35a, respectively.
Here,a denotes the thickness of the double-ring resonator of Fig. 2. The bottom and upper
insets show theEz field profile (blue/white/red denote positive/zero/negative amplitude) of
two different modes, with frequenciesω1 = 0.277(2πc/a)andω2 = 2ω1, and correspond-
ing wave-vectorsk1 = 0.39(2π/a) andk2 = 2k1, respectively.
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Fig. 5. Ez field snapshot of two double-ring (Fig. 2 inset) resonator modes propagating
counter-clockwise, with frequenciesω1 = 0.277(2πc/a) (left) andω2 = 2ω1 (right) and
azimuthal momentumm1 = 15 andm2 = 30 (effectivek1 = 0.39(2π/a) andk2 = 2k1).
The ring resonator is side-coupled to two adjacent waveguides, separated by a distance
d1 = d2 = 0.5a, supporting phase-matched propagating modes atω1 (top waveguide) and
ω2 (bottom waveguide).

single channel forω1 and in a single channel forω2. For the nonlinear simulations below, we
use larger values ofd1 andd2 in order to obtain a lower critical power. In particular, we use
d1 = 1.05aandd2 = 0.7a, obtainingQw,1 = 2000 andQw,2 = 8992.

3.3. Nonlinear characterization and SHG efficiency

Given these parameters of the linear resonator system, CMT can predict the behavior of the
nonlinear system when aχ(2) is introduced. In particular, it predicts that 82% SHG efficiency
should be obtained at a certain critical power (<100% because of radiations from the finite
Qrad/Qw). However, as noted in Sec. 2, CMT makes many approximations with respect to the
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Fig. 6. (a) Plot of SHG efficiencyη = PSH/Pin versusPin, for the double-ring resonator
system of Fig. 5 with waveguide-separationsd1 = 1.05aandd2 = 0.7a, obtained both via
FDTD simulations (red circles) and CMT (blue line). The gray region denotes the presence
of instabilities that lead to limit-cycle behavior. (b) An example of a limit cycle at point
A. (c) Ez temporal snapshot of the nonlinear conversion process at point B (the efficiency
peak).

full Maxwell equations, and while each of these approximations seems justified in the present
case, it is desirable to validate the CMT predictions against a full nonlinear simulation as de-
scribed in Sec. 2.

In Fig. 6(a), we plot the SHG conversion efficiency (output to the lower waveguide) versus
the input power atω1, incident from the upper-left port, as computed by both CMT and by
nonlinear FDTD (run long enough to reach steady state from zero initial fields). The nonlinear
FDTD results agree well with the CMT: the FDTD efficiency peaks at the predicted critical
power with a maximum efficiency of 78%, which is reasonable agreement especially consider-
ing that it is difficult to determine the resonatorQ value from the transmission fits with more
than a few percent accuracy. A snapshot of the nonlinear FDTD simulation is shown in Fig. 6(c),
in which both theω1 input and theω2 output are visible (with a complicated superposition of
the two modes in the cavity). Most of the 22% of unconverted power is lost to radiation (visible
in the plot) due to the finiteQrad/Qw, but the imperfections represented by these losses also
give rise to a few percent of theω1 power escaping into the upper-right port and≈ 2% of the
ω2 power escaping to the lower-right port.

Another intriguing prediction of CMT for intra-cavity SHG is that, once the input power
is significantly larger than the critical power, the steady-state solution is replaced by a “self-
pulsing” solution in which a constant input power atω1 produces an oscillating output power
atω2 [61]. These “limit cycles” occur in the shaded region of Fig. 6(a), and because the system
never reaches a steady state simply taking the efficiency at the end of the simulation gives a
somewhat noisy value as seen in this plot from the CMT data. A plot of efficiency vs. time,
from the CMT forPin = 2Pc, is shown in Fig. 6(b), and the limit cycles are clearly visible (after
an initial transient). Note that similar limit cycle (self-pulsing) behaviors in doubly-resonant
systems have been theoretically predicted, see e.g. [2, 34, 61, 62]; such limit cycles form a
kind of optical oscillator (clock) with a period in the hundreds of GHz or THz (possibly lower
depending on the cavity parameters). We have also examined the FDTD behavior in this regime
and verified that the FDTD simulations also exhibit limit cycles of the expected period and
amplitude.
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Fig. 7. Maximum efficiency vs. separation distance between input waveguide and ring res-
onator. (inset: Conversion efficiency from CMT and FDTD in the cased1 = 0.9a)

ω1ω2

Fig. 8. Schematic diagram of 3d ring-resonator waveguide-cavity system.

When it comes to realistic numbers, we are most interested in the 3d results of the next
section, but it is still interesting to estimate the critical power for the 2d system in experimental
units, assuming a vacuum wavelengthλ1 = 1.55µm for ω1 (and hencea = 0.277× 1.55 =
0.43µm). To obtain a power in W from a 2d calculation, we must assume a certain finite
thickness in thez direction, and in this case we assume 200 nm (good vertical confinement),
and obtain a critical input power of 800 mW for LiNbO3 at theseQ values.

The< 100% efficiency was due to the finiteQrad/Qw and in particular the limiting factor is
the loss atω1 (Qrad,1/Qw,1 = 9847/1998≈ 4.9), so we can obtain higher efficiency by making
Qw,1 smaller. This is accomplished by bringing the input waveguide closer to the ring resonator.
Substituting theQ values from Fig. 3 into CMT, we predict an increase in efficiency with
decreasingd1 as shown by the black curve in Fig. 7. The inset of Fig. 7 shows the results in
both CMT and FDTD for a separationd1 = 0.9a, for whichQrad/Qw = 9616/1043≈ 9.2, and
obtain 90% and 85% efficiency from CMT and FDTD, respectively.

4. 3D Design

We now apply the same basic principles that we validated in the 2d example to a more realistic
3d design. In 3d, we will consider SHG fromλ1 = 1.55µm in a AlGaAs film (aluminum
compositionx = 70%) bonded to an SiO2 substrate. Note that there are many other possible
material choices, e.g. GaAs, GaP and ZnSe. The main criterion for choosing a material is not
the usual phase-matching requirement that has driven previous theoretical and experimental
works to consider AlGaAs [32], but rather the requirement that the material exhibit relatively
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small absorption at these wavelengths. Note also that the choice of 70% Aluminum content is
not special; for example,x = 30% also exhibits relatively low absorption, i.e.Qabs≫ 104, and
yields even larger index contrasts, making the design problem even easier.) As in 2d, we will
design a ring resonator to have resonances atω1 andω2 = 2ω1, which is side-coupled to two
waveguides for input and output, as shown schematically in Fig. 8. Also as in 2d, we will design
the output waveguide to have a low-frequency cutoff> ω1 so that we can independently control
the couplingQw for the two frequencies via the respective ring–waveguide gaps. However, there
are also several key differences from 2d. First, we include realistic material dispersion of the
AlGaAs: its index is 3.023 forω1 and 3.178 forω2 [63], and these large indices relative to our
2d structure allow a smaller-radius ring for the sameQ. AlGaAs has a largeoff-diagonalχ(2)

coefficient≈ 100 pm/V [5,6,41,64].

For purely off-diagonal componentsχ(2)
xyz, the expression forβ1 in Eq. (2) is slightly more

complicated than those involving diagonalχ(2) components (coupling modes with the same
polarization). In this off-diagonal case, it is instructive to explicitly write down the coupling
coefficients. Moreover, since our geometry has cylindrical symmetry, it is useful to write down
Eq. (2) in cylindrical coordinates. Specifically, if we write the overlap integral in the numerator
∼ 4(E1xE1yE2z+E1xE1zE2y+E1yE1zE2x) in polar coordinates, using the coordinate transforma-
tionsEx = Er cos(θ)−Eθ sin(θ) andEy = Er sin(θ)+Eθ cos(θ) we find coupling terms of the
form:

E1xE1y = (E2
1r −E2

1θ )sin(2θ)/2+E1rE1θ cos(2θ) (4)

E1xE2y +E2xE1y = 2(E1rE2r −E1θ E2θ )sin(θ)cos(θ)

+(E1rE2θ +E2rE1θ )[cos2(θ)−sin2(θ)]. (5)

If we also assume that the fields that are rotationally symmetric functions multiplied byeim1,2θ

(from the rotational symmetry of the ring), and we write cos(θ) = (eiθ +e−iθ )/2 and sin(θ) =
(eiθ −e−iθ )/2i, we obtain an overlap function whose integral inθ is zero unlessm2 = 2m1±2;
this modification to the previous selection rule for a diagonalχ(2) tensor in section 3, also
derived in Ref. [6,31], results from the additionale±i2θ terms in the integral. Having integrated
overθ , we find the following simplified cylindrical overlap integral:

β1 =
1
2

∫

rdrdzε0χ(2)
xyz

[

E1rE1θ E2z+(E1rE2θ +E2rE1θ )E1z
]

(
∫

d3xε|E1|2)(
∫

d3xε|E2|2)
1/2

±
i
4

∫

rdrdzε0χ(2)
xyz

[

2(E1rE2r −E1θ E2θ )E1z+(E2
1r −E2

1θ )E2z
]

(d3xε|E1|2)(
∫

d3xε|E2|2)
1/2

, (6)

While the modes in 3d are not purely polarized, because of the near mirror symmetries (both
laterally and vertically) for strongly confined modes, in the center of the waveguide they are
mostly TE-like (Ein-plane) or TM-like (Eout-of-plane), and therefore it can be convenient to
describe the modes as TE-like or TM-like. (Even for purely symmetric waveguides the modes
are only purely polarized in the mid-planes, outside of which they have other components [46]).
On the other hand, this terminology can be misleading, because, for example, TM-like modes
often have significant in-plane components and hence there can be significant coupling be-
tween two TM-like modes. More explicitly, the overlap integral in the numerator of Eq. (6)
has nonzero∼ E2

1θ E2z terms that couple two TM-like modes (the symmetry allows for a large
overlap ifE2z is even becauseE1θ is squared). (As mentioned in the concluding remarks, pre-
liminary work suggests that the overlap can be significantly improved by optimizing over a
wider parameter space to consider additional modes, and at the same time one should obtain
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Fig. 9. Field distribution (left) and corresponding lateral cross-section (right) for the (a)ω1
(Er component) and (b)ω2 (Ez component) modes.

modes with higher radiativeQrad to reduce losses.) The ability to couple modes having the
same polarization is a dramatic departure from 2d and belies some of the conventional wisdom
on this subject.

As a consequence of all of these changes, it turns out that a single ring (no air groove) is
sufficient to obtain the desired two modes with both matched frequencies and excellent mode
overlap (largeβ1). Here, we chose a conventional TE-like to TM-like design that we found by
searching through a small space of parameters. We chose a squarea×1.35across-section of the
ring waveguide, with an inner radiusR and thicknessh. The key factor in the ring design is the
modified selection rule from the overlap integral of Eq. (6). For several choices ofm1, we varied
the ring radiusRand looked forω2 = 2ω1 pairs of modes at each of the two possiblem2 values.
We found a suitable pair of modes forR= 4.6a,m1 = 16, andm2 = 34, for whichω1 = 0.244·
2πc/a, corresponding toa= 0.244×1.55µm= 378 nm. The resulting field patterns are shown
in Fig. 9. As mentioned above, in 3d we use the substrate itself to induce the required low-
frequency cutoff, rather than an unphysical perfect metal. We now describe these differences
and the resulting 3d design in more detail.

The fields in Fig. 9 are especially attractive because they satisfy a second,approximate,
selection rule. Because the waveguide width is small compared to the ring radius, the modes
closely resemble those of a straight waveguide with the same cross-section, and this cross-
section has a mirror symmetry plane bisecting the waveguide perpendicular to the substrate. In
a straight waveguide, therefore, all modes would have fields patterns that are either symmetric
or anti-symmetric (even or odd) with respect to this mirror. In a ring, the curvature breaks
the symmetry but the modes are stillnearlyeven or odd with respect to this midplane. In the
coupling integral, even or oddω1 modes are squared to become even, and hence can only couple
to even-symmetryω2 modes. Therefore, we should consider onlyω2 modes that have nearly
even symmetry such as the one in Fig. 9, as nearly oddω2 modes would have nearly zeroβ1.
As a figure of merit, we can compare the overlap integralβ1 to a “perfect” overlap integral
β0 in which we assume that the fields= 1 inside the ring and= 0 outside, and we find that
|β1/β0| ≈ 0.09 for our modes, indicating reasonably good overlap. (Better overlaps should be
easily achieved.)

For input coupling, we use ana×1.35a waveguide identical to the ring cross-section. For
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Fig. 10. Band diagram of the 3d waveguides. The bottom and upper insets show theEr and
Ez field profile (blue/white/red denote positive/zero/negative amplitude) of two different
modes, with frequenciesω1 = 0.24(2πc/a)andω2 = 2ω1, respectively.

output coupling, we reduce the width to 0.14a= 53 nm so that the waveguide has a low-
frequency cutoff> ω1. The corresponding dispersion relations are shown in Fig. 10. (Note that
the substrate causes a cutoff in both waveguides, but the cutoff is< ω1 for the input waveg-
uide [58–60].)

Since we use separate input/output waveguides, it should be possible to independently control
their couplingQ’s by varying the waveguide–ring separations. The radiationQ values for the
isolated ring areQrad,1 ≈ 1.7×104 andQrad,2 ≈ 107. So, if we chooseQw,1 = 1000 andQw,2 =
2000, CMT predicts a peak of 94% efficiency at a critical power of≈ 30 mW. As mentioned
above, significantly lower critical powers can be easily achieved with further optimization of
the structure (larger overlap integrals), and indeed preliminary work suggests the possibility of
almost an order of magnitude improvement. Note that as in the 2d example above, and unlike
previous work on SHG in GaAs resonator geometries [5, 6] where down-conversion effects
were negligible, one can readily observe limit cycle behavior at larger input powers.

5. Concluding remarks

This work demonstrates that a simple two-port, two-mode CMT can accurately capture the
complexities involved in a full nonlinear Maxwell system involving rings, losses, and multiple
output ports. We have also presented proof-of-concept designs for ring-resonator intra-cavity
SHG at high efficiencies and low powers, illustrating the care that is required to obtain appro-
priate modes and symmetries and in the design of the input/output coupling. However, these
designs could be altered in many ways depending upon the needs of a particular experiment.
For example, lower powers could be achieved by going to largerQw values, at the expense of
bandwidth and sensitivity, while increasing the ring radiusR in order to prevent radiation loss
from increasing. Conversion from 10.6 µm to 5.3µm is especially attractive, both because of
the paucity of sources at 5µm and also because a 10×increase in lengthscales should simplify
fabrication. As can be seen from the comparison of the 2d and 3d designs, the specific parame-
ters of the ring design depend very strongly on the materials (refractive indices and dispersion),
the form of theχ(2) susceptibility, and on the details of the vertical confinement. So, the spe-
cific parameter choices here are far from universal, but the basic design principles, especially
the selection rules, the role of the differentQ values, and the advantage of cutoffs for separate
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input/output coupling, will remain.
A key practical concern in any intra-cavity frequency-conversion design such as this one

is the sensitivity to fabrication imperfections, which will slightly shift bothω1 andω2. Any
overall shift in the frequencies can be compensated by a tunable laser source for the input, in
order to matchω1. However, another tuning parameter is required if imperfections spoil the
ω2 = 2ω1 condition. Fortunately, we found in our designs that varying a single parameter, in
our case the radiusR, was sufficient to bring the frequencies into alignment. AlthoughRcannot
easily be changed post-fabrication, other dynamically tunable parameters should play a similar
role. For example, strain-induced deformation of the cavity [65] or strain-induced birefringence
should affect theω1 andω2 modes differently and hence be capable of correcting small errors in
ω2−2ω1. Alternatively, postfabrication wet etching [66] or ion-beam milling [67] can gradually
change the geometry for the same purpose. Laser-induced thermal gradients have also been used
for postfabrication frequency alignment of cavity frequencies [68].
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