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1.  Introduction 
 
Modern digital technology has made it possible to manipulate multi-dimensional 
signals with systems that range from simple digital circuits to advanced parallel 
computers. The goal of this manipulation can be divided into three categories: 
 
 • Image Processing  image in → image out 
 • Image Analysis   image in → measurements out 
 • Image Understanding  image in → high-level description out 
 
We will focus on the fundamental concepts of image processing. Space does not 
permit us to make more than a few introductory remarks about image analysis. 
Image understanding requires an approach that differs fundamentally from the 
theme of this book. Further, we will restrict ourselves to two–dimensional (2D) 
image processing although most of the concepts and techniques that are to be 
described can be extended easily to three or more dimensions. Readers interested 
in either greater detail than presented here or in other aspects of image processing 
are referred to [1-10] 
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We begin with certain basic definitions. An image defined in the “real world” is 
considered to be a function of two real variables, for example, a(x,y) with a as the 
amplitude (e.g. brightness) of the image at the real coordinate position (x,y). An 
image may be considered to contain sub-images sometimes referred to as regions–
of–interest, ROIs, or simply regions. This concept reflects the fact that images 
frequently contain collections of objects each of which can be the basis for a 
region. In a sophisticated image processing system it should be possible to apply 
specific image processing operations to selected regions. Thus one part of an 
image (region) might be processed to suppress motion blur while another part 
might be processed to improve color rendition. 
 
The amplitudes of a given image will almost always be either real numbers or 
integer numbers. The latter is usually a result of a quantization process that 
converts a continuous range (say, between 0 and 100%) to a discrete number of 
levels. In certain image-forming processes, however, the signal may involve 
photon counting which implies that the amplitude would be inherently quantized. 
In other image forming procedures, such as magnetic resonance imaging, the 
direct physical measurement yields a complex number in the form of a real 
magnitude and a real phase. For the remainder of this book we will consider 
amplitudes as reals or integers unless otherwise indicated. 

2.  Digital Image Definitions 
 
A digital image a[m,n] described in a 2D discrete space is derived from an analog 
image a(x,y) in a 2D continuous space through a sampling process that is 
frequently referred to as digitization. The mathematics of that sampling process 
will be described in Section 5. For now we will look at some basic definitions 
associated with the digital image. The effect of digitization is shown in Figure 1. 
 
The 2D continuous image a(x,y) is divided into N rows and M columns. The 
intersection of a row and a column is termed a pixel. The value assigned to the 
integer coordinates [m,n] with {m=0,1,2,…,M–1} and {n=0,1,2,…,N–1} is 
a[m,n]. In fact, in most cases a(x,y) – which we might consider to be the physical 
signal that impinges on the face of a 2D sensor – is actually a function of many 
variables including depth (z), color (λ), and time (t). Unless otherwise stated, we 
will consider the case of 2D, monochromatic, static images in this chapter. 
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Value = a(x, y, z, λ, t)

 
Figure 1: Digitization of a continuous image. The pixel at coordinates 
[m=10, n=3] has the integer brightness value 110. 

 
The image shown in Figure 1 has been divided into N = 16 rows and M = 16 
columns. The value assigned to every pixel is the average brightness in the pixel 
rounded to the nearest integer value. The process of representing the amplitude of 
the 2D signal at a given coordinate as an integer value with L different gray levels 
is usually referred to as amplitude quantization or simply quantization. 

2.1 COMMON VALUES 
There are standard values for the various parameters encountered in digital image 
processing. These values can be caused by video standards, by algorithmic 
requirements, or by the desire to keep digital circuitry simple. Table 1 gives some 
commonly encountered values. 
 

Parameter Symbol Typical values 
Rows N 256,512,525,625,1024,1080 
Columns M 256,512,768,1024,1920 
Gray Levels L 2,64,256,1024,4096,16384 

 Table 1: Common values of digital image parameters 
 
Quite frequently we see cases of M=N=2K where {K = 8,9,10,11,12}. This can be 
motivated by digital circuitry or by the use of certain algorithms such as the (fast) 
Fourier transform (see Section 3.3). 
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The number of distinct gray levels is usually a power of 2, that is, L=2B where B 
is the number of bits in the binary representation of the brightness levels. When 
B>1 we speak of a gray-level image; when B=1 we speak of a binary image. In a 
binary image there are just two gray levels which can be referred to, for example, 
as “black” and “white” or “0” and “1”.  

2.2 CHARACTERISTICS OF IMAGE OPERATIONS 
There is a variety of ways to classify and characterize image operations. The 
reason for doing so is to understand what type of results we might expect to 
achieve with a given type of operation or what might be the computational burden 
associated with a given operation. 

2.2.1 Types of operations 
The types of operations that can be applied to digital images to transform an input 
image a[m,n] into an output image b[m,n] (or another representation) can be 
classified into three categories as shown in Table 2. 
 
Operation Characterization Generic 

Complexity/Pixel 

• Point – the output value at a specific coordinate is dependent only 
on the input value at that same coordinate. 

constant 

• Local – the output value at a specific coordinate is dependent on the 
input values in the neighborhood of that same coordinate. 

P2 

• Global – the output value at a specific coordinate is dependent on all 
the values in the input image. 

N2 

Table 2: Types of image operations. Image size = N × N; neighborhood size 
= P × P. Note that the complexity is specified in operations per pixel. 

 
This is shown graphically in Figure 2. 
 

a b

Point

a b

Local
a bGlobal

= [m=mo, n=no]

 
Figure 2: Illustration of various types of image operations 
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2.2.2 Types of neighborhoods 
Neighborhood operations play a key role in modern digital image processing. It is 
therefore important to understand how images can be sampled and how that 
relates to the various neighborhoods that can be used to process an image. 
 
• Rectangular sampling – In most cases, images are sampled by laying a 
rectangular grid over an image as illustrated in Figure 1. This results in the type of 
sampling shown in Figure 3ab. 
 
• Hexagonal sampling – An alternative sampling scheme is shown in Figure 3c 
and is termed hexagonal sampling. 
 
Both sampling schemes have been studied extensively [1] and both represent a 
possible periodic tiling of the continuous image space. We will restrict our 
attention, however, to only rectangular sampling as it remains, due to hardware 
and software considerations, the method of choice. 
 
Local operations produce an output pixel value b[m=mo,n=no] based upon the 
pixel values in the neighborhood of a[m=mo,n=no]. Some of the most common 
neighborhoods are the 4-connected neighborhood and the 8-connected 
neighborhood in the case of rectangular sampling and the 6-connected 
neighborhood in the case of hexagonal sampling illustrated in Figure 3. 
 

 
 Figure 3a Figure 3b Figure 3c 
 Rectangular sampling Rectangular sampling Hexagonal sampling 
 4-connected 8-connected 6-connected 

2.3 VIDEO PARAMETERS 
We do not propose to describe the processing of dynamically changing images in 
this introduction. It is appropriate—given that many static images are derived 
from video cameras and frame grabbers— to mention the standards that are 
associated with the three standard video schemes that are currently in worldwide 
use – NTSC, PAL, and SECAM. This information is summarized in Table 3. 
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Standard NTSC PAL SECAM 

Property    
images / second 29.97 25 25 
ms / image 33.37 40.0 40.0 
lines / image 525 625 625 
(horiz./vert.) = aspect ratio 4:3 4:3 4:3 
interlace 2:1 2:1 2:1 
µs / line 63.56 64.00 64.00 

Table 3: Standard video parameters 
 
In an interlaced image the odd numbered lines (1,3,5,…) are scanned in half of the 
allotted time (e.g. 20 ms in PAL) and the even numbered lines (2,4,6,…) are 
scanned in the remaining half. The image display must be coordinated with this 
scanning format. (See Section 8.2.) The reason for interlacing the scan lines of a 
video image is to reduce the perception of flicker in a displayed image. If one is 
planning to use images that have been scanned from an interlaced video source, it 
is important to know if the two half-images have been appropriately “shuffled” by 
the digitization hardware or if that should be implemented in software. Further, 
the analysis of moving objects requires special care with interlaced video to avoid 
“zigzag” edges. 
 
The number of rows (N) from a video source generally corresponds one–to–one 
with lines in the video image. The number of columns, however, depends on the 
nature of the electronics that is used to digitize the image. Different frame 
grabbers for the same video camera might produce M = 384, 512, or 768 columns 
(pixels) per line. 

3.  Tools 
 
Certain tools are central to the processing of digital images. These include 
mathematical tools such as convolution, Fourier analysis, and statistical 
descriptions, and manipulative tools such as chain codes and run codes. We will 
present these tools without any specific motivation. The motivation will follow in 
later sections. 

3.1 CONVOLUTION 
There are several possible notations to indicate the convolution of two (multi-
dimensional) signals to produce an output signal. The most common are:  
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  c a b a b= ⊗ = ∗  (1) 
 
We shall use the first form, c a b= ⊗ , with the following formal definitions. 
 
In 2D continuous space: 
 

  ( , ) ( , ) ( , ) ( , ) ( , )c x y a x y b x y a b x y d dχ ζ χ ζ χ ζ
+∞ +∞

−∞ −∞

= ⊗ = − −∫ ∫  (2) 

 
In 2D discrete space: 
 

  [ , ] [ , ] [ , ] [ , ] [ , ]
j k

c m n a m n b m n a j k b m j n k
+∞ +∞

=−∞ =−∞
= ⊗ = − −∑ ∑  (3) 

3.2 PROPERTIES OF CONVOLUTION 
There are a number of important mathematical properties associated with 
convolution. 
 
• Convolution is commutative. 
 
  c a b b a= ⊗ = ⊗  (4) 
 
• Convolution is associative. 
 
  ( ) ( )c a b d a b d a b d= ⊗ ⊗ = ⊗ ⊗ = ⊗ ⊗  (5) 
 
• Convolution is distributive. 
 
  ( ) ( ) ( )c a b d a b a d= ⊗ + = ⊗ + ⊗  (6) 
 
where a, b, c, and d are all images, either continuous or discrete. 

3.3 FOURIER TRANSFORMS 
The Fourier transform produces another representation of a signal, specifically a 
representation as a weighted sum of complex exponentials. Because of Euler’s 
formula: 
  cos( ) sin( )jqe q j q= +  (7) 
 
where 2 1j = − , we can say that the Fourier transform produces a representation of 
a (2D) signal as a weighted sum of sines and cosines. The defining formulas for 
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the forward Fourier and the inverse Fourier transforms are as follows. Given an 
image a and its Fourier transform A, then the forward transform goes from the 
spatial domain (either continuous or discrete) to the frequency domain which is 
always continuous. 
 
 Forward – { }A a=F  (8) 

 
The inverse Fourier transform goes from the frequency domain back to the spatial 
domain. 
 
 Inverse – { }1a A−=F  (9) 

 
The Fourier transform is a unique and invertible operation so that: 
 
  { }{ } { }{ }1 1a a and A A− −= =F F F F  (10) 

 
The specific formulas for transforming back and forth between the spatial domain 
and the frequency domain are given below. 
 
In 2D continuous space: 
 

 Forward – ( )( , ) ( , ) j ux vyA u v a x y e dxdy
+∞ +∞

− +

−∞ −∞

= ∫ ∫  (11) 

 

 Inverse – ( )
2

1( , ) ( , )
4

j ux vya x y A u v e dudv
π

+∞ +∞
+ +

−∞ −∞

= ∫ ∫  (12) 

 
In 2D discrete space: 
 

 Forward – ( )( , ) [ , ] j m n

m n
A a m n e

+∞ +∞
− Ω +Ψ

=−∞ =−∞

Ω Ψ = ∑ ∑  (13) 

 

 Inverse – ( )
2

1[ , ] ( , )
4

j m na m n A e d d
π π

π

+ +
+ Ω +Ψ

−π −π

= Ω Ψ Ω Ψ∫ ∫  (14) 

3.4 PROPERTIES OF FOURIER TRANSFORMS 
There are a variety of properties associated with the Fourier transform and the 
inverse Fourier transform. The following are some of the most relevant for digital 
image processing. 
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• The Fourier transform is, in general, a complex function of the real frequency 
variables. As such the transform can be written in terms of its magnitude and 
phase. 
 
  ( , ) ( , )( , ) ( , ) ( , ) ( , )j u v jA u v A u v e A A eϕ ϕ Ω Ψ= Ω Ψ = Ω Ψ  (15) 

 
• A 2D signal can also be complex and thus written in terms of its magnitude and 
phase. 
 
  ( , ) [ , ]( , ) ( , ) [ , ] [ , ]j x y j m na x y a x y e a m n a m n eϑ ϑ= =  (16) 

 
• If a 2D signal is real, then the Fourier transform has certain symmetries. 
 
  * *( , ) ( , ) ( , ) ( , )A u v A u v A A= − − Ω Ψ = −Ω −Ψ  (17) 
 
The symbol (*) indicates complex conjugation. For real signals eq. (17) leads 
directly to: 
 

  
( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

A u v A u v u v u v

A A

ϕ ϕ

ϕ ϕ

= − − = − − −

Ω Ψ = −Ω −Ψ Ω Ψ = − −Ω −Ψ
 (18) 

 
• If a 2D signal is real and even, then the Fourier transform is real and even. 
 
  ( , ) ( , ) ( , ) ( , )A u v A u v A A= − − Ω Ψ = −Ω −Ψ  (19) 
 
• The Fourier and the inverse Fourier transforms are linear operations. 
 

  
{ } { } { }

{ } { } { }
1 2 1 2 1 2

1 1 1
1 2 1 2 1 2

w a w b w a w b w A w B

w A w B w A w B w a w b− − −

+ = + = +

+ = + = +

F F F
F F F

 (20) 

 
where a and b are 2D signals (images) and w1 and w2 are arbitrary, complex 
constants. 
 
• The Fourier transform in discrete space, A(Ω,Ψ), is periodic in both Ω and Ψ. 
Both periods are 2π. 
 
  ( 2 , 2 ) ( , ) ,  integersA j k A j kπ πΩ + Ψ + = Ω Ψ  (21) 
 
• The energy, E, in a signal can be measured either in the spatial domain or the 
frequency domain. For a signal with finite energy: 
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Parseval’s theorem (2D continuous space): 
 

  2 2
2

1( , ) ( , )
4

E a x y dxdy A u v dudv
π

+∞ +∞ +∞ +∞

−∞ −∞ −∞ −∞

= =∫ ∫ ∫ ∫  (22) 

 
Parseval’s theorem (2D discrete space): 
 

  2 2
2

1[ , ] ( , )
4m n

E a m n A d d
π π

π ππ

+ ++∞ +∞

=−∞ =−∞ − −

= = Ω Ψ Ω Ψ∑ ∑ ∫ ∫  (23) 

 
This “signal energy” is not to be confused with the physical energy in the 
phenomenon that produced the signal. If, for example, the value a[m,n] represents 
a photon count, then the physical energy is proportional to the amplitude, a, and 
not the square of the amplitude. This is generally the case in video imaging. 
 
• Given three, multi-dimensional signals a, b, and c and their Fourier transforms 
A, B, and C: 

2

•
and

1•
4

c a b C A B

c a b C A B
π

= ⊗ ↔ =

= ↔ = ⊗

F

F
 (24) 

 
In words, convolution in the spatial domain is equivalent to multiplication in the 
Fourier (frequency) domain and vice-versa. This is a central result which provides 
not only a methodology for the implementation of a convolution but also insight 
into how two signals interact with each other—under convolution—to produce a 
third signal. We shall make extensive use of this result later. 
 
• If a two-dimensional signal a(x,y) is scaled in its spatial coordinates then: 
 

  
( )( , ) • , •

( , ) , •

x y

x y
x y

If a x y a M x M y

u vThen A u v A M MM M

→

⎛ ⎞→ ⎜ ⎟
⎝ ⎠

 (25) 
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• If a two-dimensional signal a(x,y) has Fourier spectrum A(u,v) then: 
 

  

2

( 0, 0) ( , )

1( 0, 0) ( , )
4

A u v a x y dxdy

a x y A u v dxdy
π

+∞ +∞

−∞ −∞
+∞ +∞

−∞ −∞

= = =

= = =

∫ ∫

∫ ∫
 (26) 

 
• If a two-dimensional signal a(x,y) has Fourier spectrum A(u,v) then: 
 

  
2 2

2 2
2 2

( , ) ( , )  ( , )   ( , )

( , ) ( , )  ( , )   ( , )

a x y a x yjuA u v jvA u v
x y

a x y a x yu A u v v A u v
x y

∂ ∂
∂ ∂

∂ ∂
∂ ∂

↔ ↔

↔ − ↔ −

F F

F F
 (27) 

3.4.1 Importance of phase and magnitude 
Equation (15) indicates that the Fourier transform of an image can be complex. 
This is illustrated below in Figures 4a-c. Figure 4a shows the original image 
a[m,n], Figure 4b the magnitude in a scaled form as log(|A(Ω,Ψ)|), and Figure 4c 
the phase ϕ(Ω,Ψ). 
 

   
 Figure 4a Figure 4b Figure 4c 

 Original log(|A(Ω,Ψ)|) ϕ(Ω,Ψ) 
 
Both the magnitude and the phase functions are necessary for the complete 
reconstruction of an image from its Fourier transform. Figure 5a shows what 
happens when Figure 4a is restored solely on the basis of the magnitude 
information and Figure 5b shows what happens when Figure 4a is restored solely 
on the basis of the phase information. 
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 Figure 5a Figure 5b 

 ϕ(Ω,Ψ) = 0 |A(Ω,Ψ)| = constant 
 
Neither the magnitude information nor the phase information is sufficient to 
restore the image. The magnitude–only image (Figure 5a) is unrecognizable and 
has severe dynamic range problems. The phase-only image (Figure 5b) is barely 
recognizable, that is, severely degraded in quality. 

3.4.2 Circularly symmetric signals 
An arbitrary 2D signal a(x,y) can always be written in a polar coordinate system 
as a(r,θ). When the 2D signal exhibits a circular symmetry this means that: 
 
  ( , ) ( , ) ( )a x y a r a rθ= =  (28) 
 
where r2 = x2 + y2 and tanθ = y/x. As a number of physical systems such as lenses 
exhibit circular symmetry, it is useful to be able to compute an appropriate 
Fourier representation. 
 
The Fourier transform A(u,v) can be written in polar coordinates A(q,ξ) and then, 
for a circularly symmetric signal, rewritten as a Hankel transform: 
 

  { } ( )
0

( , ) ( , ) 2 ( ) ( )oA u v a x y a r J r q r dr A qπ
∞

= = =∫F  (29) 

 
where 2 2 2 and tanq u v v uξ= + =  and Jo(•) is a Bessel function of the first kind 
of order zero. 
 
The inverse Hankel transform is given by: 
 

  ( )
0

1( ) ( )
2 oa r A q J rq q dq
π

∞

= ∫  (30) 
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The Fourier transform of a circularly symmetric 2D signal is a function of only 
the radial frequency, q. The dependence on the angular frequency, ξ, has 
vanished. Further, if a(x,y) = a(r) is real, then it is automatically even due to the 
circular symmetry. According to equation (19), A(q) will then be real and even. 

3.4.3 Examples of 2D signals and transforms 
Table 4 shows some basic and useful signals and their 2D Fourier transforms. In 
using the table entries in the remainder of this chapter we will refer to a spatial 
domain term as the point spread function (PSF) or the 2D impulse response and 
its Fourier transforms as the optical transfer function (OTF) or simply transfer 
function. Two standard signals used in this table are u(•), the unit step function, 
and J1(•), the Bessel function of the first kind. Circularly symmetric signals are 
treated as functions of r as in eq. (28). 

3.5 STATISTICS 
In image processing it is quite common to use simple statistical descriptions of 
images and sub–images. The notion of a statistic is intimately connected to the 
concept of a probability distribution, generally the distribution of signal 
amplitudes. For a given region—which could conceivably be an entire image—we 
can define the probability distribution function of the brightnesses in that region 
and the probability density function of the brightnesses in that region. We will 
assume in the discussion that follows that we are dealing with a digitized image 
a[m,n]. 

3.5.1 Probability distribution function of the brightnesses 
The probability distribution function, P(a), is the probability that a brightness 
chosen from the region is less than or equal to a given brightness value a. As a 
increases from –∞ to +∞, P(a) increases from 0 to 1. P(a) is monotonic, non-
decreasing in a and thus dP/da ≥ 0. 

3.5.2 Probability density function of the brightnesses 
The probability that a brightness in a region falls between a and a+Δa, given the 
probability distribution function P(a), can be expressed as p(a)Δa where p(a) is 
the probability density function: 
 

  ( )( ) dP ap a a a
da

⎛ ⎞Δ = Δ⎜ ⎟
⎝ ⎠

 (31) 
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T.1  Rectangle 

,

2 2 2 2

( , )

1 ( ) ( )
4

a bR x y

u a x u b y
ab

=

− −

 

↔
F

 
sin( ) sin( )au bv

au bv
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

  

 
T.2  Pyramid 

, ,( , ) ( , )a b a bR x y R x y⊗  
↔
F

 
2sin( ) sin( )au bv

au bv
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

  

 
T.3  Pill Box 2 2

2
( )( )a

u a rP r
aπ
−

=  ↔
F

 
12 ( )J aq
aq

 

  

 
T.4  Cone ( ) ( )a aP r P r⊗  

↔
F

 
2

12 ( )J aq
aq

⎛ ⎞
⎜ ⎟
⎝ ⎠
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T.5  Airy PSF 21

1 2( )1( ) cJ q r
PSF r

rπ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 ↔
F

 ( )
2

1 2 22 cos 1

with 2

c
c c c

c

q q q u q q
q q q

q NA

π

π λ

−
⎛ ⎞⎛ ⎞⎜ ⎟− − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

=

 
  

 
T.6  Gaussian 

( )
2

2 2 2
1, exp

2 2D
rg r σ

πσ σ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
↔
F

 
( ) ( )2 2

2 , exp 2DG q qσ σ= −  

  

 
T.7  Peak 1

r
 ↔

F
 

2
q
π  

  

 
T.8  Exponential 

Decay 
are−  

↔
F

 ( )3/ 22 2

2 a

q a

π

+
 

  

 

Table 4: 2D Images and their Fourier Transforms 
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 Because of the monotonic, non-decreasing character of P(a) we have that: 
 

  
–

( ) 0 and ( ) 1p a p a da
+∞

∞

≥ =∫  (32) 

 
For an image with quantized (integer) brightness amplitudes, the interpretation of 
Δa is the width of a brightness interval. We assume constant width intervals. The 
brightness probability density function is frequently estimated by counting the 
number of times that each brightness occurs in the region to generate a histogram, 
h[a]. The histogram can then be normalized so that the total area under the 
histogram is 1 (eq. (32)). Said another way, the p[a] for a region is the normalized 
count of the number of pixels, Λ, in a region that have quantized brightness a: 
 

  1[ ] [ ] with [ ]
a

p a h a h a= Λ =
Λ ∑  (33) 

 
The brightness probability distribution function for the image shown in Figure 4a 
is shown in Figure 6a. The (unnormalized) brightness histogram of Figure 4a 
which is proportional to the estimated brightness probability density function is 
shown in Figure 6b. The height in this histogram corresponds to the number of 
pixels with a given brightness. 
 

0.00

0.25

0.50

0.75

1.00

0 32 64 96 128 160 192 224 256

Brightness 

mimimum

median

maximum

 

0

400

800

1200

1600

0 32 64 96 128 160 192 224 256

Brightness 
 

 (a) (b) 

Figure 6: (a) Brightness distribution function of Figure 4a with minimum, median, and 
maximum indicated. See text for explanation. (b) Brightness histogram of Figure 4a. 

 
Both the distribution function and the histogram as measured from a region are a 
statistical description of that region. It must be emphasized that both P[a] and p[a] 
should be viewed as estimates of true distributions when they are computed from 
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a specific region. That is, we view an image and a specific region as one 
realization of the various random processes involved in the formation of that 
image and that region. In the same context, the statistics defined below must be 
viewed as estimates of the underlying parameters. 

3.5.3 Average 
The average brightness of a region is defined as the sample mean of the pixel 
brightnesses within that region. The average, ma, of the brightnesses over the Λ 
pixels within a region (ℜ) is given by: 
 

  
( , )

1 [ , ]a
m n

m a m n
∈ℜ

=
Λ ∑  (34) 

 
Alternatively, we can use a formulation based upon the (unnormalized) brightness 
histogram, h(a) = Λ•p(a), with discrete brightness values a. This gives: 
 

  1 • [ ]a
a

m a h a=
Λ ∑  (35) 

 
The average brightness, ma, is an estimate of the mean brightness, μa, of the 
underlying brightness probability distribution. 

3.5.4 Standard deviation 
The unbiased estimate of the standard deviation, sa, of the brightnesses within a 
region (ℜ) with Λ pixels is called the sample standard deviation and is given by: 
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 (36) 

 
Using the histogram formulation gives: 
 

  

2 2• [ ] •

1

a
a

a

a h a m
s

⎛ ⎞
− Λ⎜ ⎟

⎝ ⎠=
Λ −

∑
 (37) 

 
The standard deviation, sa, is an estimate of σa of the underlying brightness 
probability distribution. 
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3.5.5 Coefficient-of-variation  
The dimensionless coefficient–of–variation, CV, is defined as: 
 

  100%a

a

sCV
m

= ×  (38) 

3.5.6 Percentiles 
The percentile, p%, of an unquantized brightness distribution is defined as that 
value of the brightness a such that: 
 

P(a) = p% 
or equivalently 

  
–

( ) %
a

p d pα α
∞

=∫  (39) 

 
Three special cases are frequently used in digital image processing. 
 
 • 0%   the minimum value in the region 
 • 50%  the median value in the region 
 • 100%  the maximum value in the region 
 
All three of these values can be determined from Figure 6a. 

3.5.7 Mode 
The mode of the distribution is the most frequent brightness value. There is no 
guarantee that a mode exists or that it is unique. 

3.5.8 Signal–to–Noise ratio 
The signal–to–noise ratio, SNR, can have several definitions. The noise is 
characterized by its standard deviation, sn. The characterization of the signal can 
differ. If the signal is known to lie between two boundaries, amin ≤ a ≤ amax, then 
the SNR is defined as: 
 

 Bounded signal – max min
1020log  

n

a aSNR dB
s

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
 (40) 

 
If the signal is not bounded but has a statistical distribution then two other 
definitions are known: 
 
 Stochastic signal – 

 S & N inter-dependent 1020 log  a

n

mSNR dB
s

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (41) 
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 S & N independent 1020 log  a

n

sSNR dB
s

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (42) 

 
where ma and sa are defined above. 
 
The various statistics are given in Table 5 for the image and the region shown in 
Figure 7. 
 

  

Statistic Image ROI
Average 137.7 219.3
Standard Deviation 49.5 4.0
Minimum 56 202
Median 141 220
Maximum 241 226
Mode 62 220
SNR (db) NA 33.3

 
 Figure 7 Table 5 
 Region is the interior of the circle. Statistics from Figure 7 

 
A SNR calculation for the entire image based on eq. (40) is not directly available. 
The variations in the image brightnesses that lead to the large value of s (=49.5) 
are not, in general, due to noise but to the variation in local information. With the 
help of the region there is a way to estimate the SNR. We can use the sℜ (=4.0) 
and the dynamic range, amax – amin, for the image (=241–56) to calculate a global 
SNR (=33.3 dB). The underlying assumptions are that 1) the signal is 
approximately constant in that region and the variation in the region is therefore 
due to noise, and, 2) that the noise is the same over the entire image with a 
standard deviation given by sn = sℜ. 

3.6 CONTOUR REPRESENTATIONS 
When dealing with a region or object, several compact representations are 
available that can facilitate manipulation of and measurements on the object. In 
each case we assume that we begin with an image representation of the object as 
shown in Figure 8a,b. Several techniques exist to represent the region or object by 
describing its contour. 

3.6.1 Chain code 
This representation is based upon the work of Freeman [11]. We follow the 
contour in a clockwise manner and keep track of the directions as we go from one 
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contour pixel to the next. For the standard implementation of the chain code we 
consider a contour pixel to be an object pixel that has a background (non-object) 
pixel as one or more of its 4-connected neighbors. See Figures 3a and 8c. 
 
The codes associated with eight possible directions are the chain codes and, with x 
as the current contour pixel position, the codes are generally defined as: 
 

  
3 2 1
4 0
5 6 7

Chain codes x=  (43) 

 

Digitization

Run LengthsContour
(a) (b)

(c) (d)

 
Figure 8: Region (shaded) as it is transformed from (a) continuous to (b) 
discrete form and then considered as a (c) contour or (d) run lengths 
illustrated in alternating colors. 

3.6.2 Chain code properties 
• Even codes {0,2,4,6} correspond to horizontal and vertical directions; odd codes 
{1,3,5,7} correspond to the diagonal directions. 
 
• Each code can be considered as the angular direction, in multiples of 45°, that 
we must move to go from one contour pixel to the next. 
 
• The absolute coordinates [m,n] of the first contour pixel (e.g. top, leftmost) 
together with the chain code of the contour represent a complete description of the 
discrete region contour. 
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• When there is a change between two consecutive chain codes, then the contour 
has changed direction. This point is defined as a corner. 

3.6.3  “Crack” code 
An alternative to the chain code for contour encoding is to use neither the contour 
pixels associated with the object nor the contour pixels associated with 
background but rather the line, the “crack”, in between. This is illustrated with an 
enlargement of a portion of Figure 8 in Figure 9.  
 
The “crack” code can be viewed as a chain code with four possible directions 
instead of eight. 

  
1

2 0
3

Crack codes x=  (44) 

 

Close up

 
 (a) (b) 

Figure 9: (a) Object including part to be studied. (b) Conto ur 
pixels as used in the chain code are diagonally shaded. The 
“crack” is shown with the thick black line. 

 
The chain code for the enlarged section of Figure 9b, from top to bottom, is 
{5,6,7,7,0}. The crack code is {3,2,3,3,0,3,0,0}. 

3.6.4 Run codes 
A third representation is based on coding the consecutive pixels along a row—a 
run—that belong to an object by giving the starting position of the run and the 
ending position of the run. Such runs are illustrated in Figure 8d. There are a 
number of alternatives for the precise definition of the positions. Which 
alternative should be used depends upon the application and thus will not be 
discussed here. 
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4.  Perception 
 
Many image processing applications are intended to produce images that are to be 
viewed by human observers (as opposed to, say, automated industrial inspection.) 
It is therefore important to understand the characteristics and limitations of the 
human visual system—to understand the “receiver” of the 2D signals. At the 
outset it is important to realize that 1) the human visual system is not well 
understood, 2) no objective measure exists for judging the quality of an image that 
corresponds to human assessment of image quality, and, 3) the “typical” human 
observer does not exist. Nevertheless, research in perceptual psychology has 
provided some important insights into the visual system. See, for example, 
Stockham [12]. 

4.1 BRIGHTNESS SENSITIVITY 
There are several ways to describe the sensitivity of the human visual system. To 
begin, let us assume that a homogeneous region in an image has an intensity as a 
function of wavelength (color) given by I(λ). Further let us assume that I(λ) = Io, 
a constant. 

4.1.1 Wavelength sensitivity 
The perceived intensity as a function of λ, the spectral sensitivity, for the “typical 
observer” is shown in Figure 10 [13]. 
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Figure 10: Spectral Sensitivity of the “typical” human observer 

4.1.2 Stimulus sensitivity 
If the constant intensity (brightness) Io is allowed to vary then, to a good 
approximation, the visual response, R, is proportional to the logarithm of the 
intensity. This is known as the Weber–Fechner law: 
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  ( )log oR I=  (45) 

 
The implications of this are easy to illustrate. Equal perceived steps in brightness, 
ΔR = k, require that the physical brightness (the stimulus) increases exponentially. 
This is illustrated in Figure 11ab. 
 
A horizontal line through the top portion of Figure 11a shows a linear increase in 
objective brightness (Figure 11b) but a logarithmic increase in subjective 
brightness. A horizontal line through the bottom portion of Figure 11a shows an 
exponential increase in objective brightness (Figure 11b) but a linear increase in 
subjective brightness. 
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 Figure 11a Figure 11b 

 (top) Brightness step ΔI = k Actual brightnesses plus interpolated values 

 (bottom) Brightness step ΔI = k•I  
 
The Mach band effect is visible in Figure 11a. Although the physical brightness is 
constant across each vertical stripe, the human observer perceives an 
“undershoot” and “overshoot” in brightness at what is physically a step edge. 
Thus, just before the step, we see a slight decrease in brightness compared to the 
true physical value. After the step we see a slight overshoot in brightness 
compared to the true physical value. The total effect is one of increased, local, 
perceived contrast at a step edge in brightness. 

4.2 SPATIAL FREQUENCY SENSITIVITY 
If the constant intensity (brightness) Io is replaced by a sinusoidal grating with 
increasing spatial frequency (Figure 12a), it is possible to determine the spatial 
frequency sensitivity. The result is shown in Figure 12b [14, 15]. 
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 Figure 12a Figure 12b 

 Sinusoidal test grating Spatial frequency sensitivity 
 
To translate these data into common terms, consider an “ideal” computer monitor 
at a viewing distance of 50 cm. The spatial frequency that will give maximum 
response is at 10 cycles per degree. (See Figure 12b.) The one degree at 50 cm 
translates to 50 tan(1°) = 0.87 cm on the computer screen. Thus the spatial 
frequency of maximum response fmax = 10 cycles/0.87 cm = 11.46 cycles/cm at 
this viewing distance. Translating this into a general formula gives: 
 

  max
10 572.9 /

• tan(1 )
f cycles cm

d d
= =

°
 (46) 

 
where d = viewing distance measured in cm. 

4.3 COLOR SENSITIVITY 
Human color perception is an exceedingly complex topic. As such we can only 
present a brief introduction here. The physical perception of color is based upon 
three color pigments in the retina. 

4.3.1 Standard observer 
Based upon psychophysical measurements, standard curves have been adopted by 
the CIE (Commission Internationale de l’Eclairage) as the sensitivity curves for 
the “typical” observer for the three “pigments” ( ), ( ), and ( )x y zλ λ λ . These are 
shown in Figure 13. These are not the actual pigment absorption characteristics 
found in the “standard” human retina but rather sensitivity curves derived from 
actual data [10]. 
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Figure 13: Standard observer spectral sensitivity curves. 

 
For an arbitrary homogeneous region in an image that has an intensity as a 
function of wavelength (color) given by I(λ), the three responses are called the 
tristimulus values: 
 

  
0 0 0

( ) ( ) ( ) ( ) ( ) ( )X I x d Y I y d Z I z dλ λ λ λ λ λ λ λ λ
∞ ∞ ∞

= = =∫ ∫ ∫  (47) 

4.3.2 CIE chromaticity coordinates 
The chromaticity coordinates which describe the perceived color information are 
defined as: 
 

  1 ( )X Yx y z x y
X Y Z X Y Z

= = = − +
+ + + +

 (48) 

 
The red chromaticity coordinate is given by x and the green chromaticity 
coordinate by y. The tristimulus values are linear in I(λ) and thus the absolute 
intensity information has been lost in the calculation of the chromaticity 
coordinates {x,y}. All color distributions, I(λ), that appear to an observer as 
having the same color will have the same chromaticity coordinates. 
 
If we use a tunable source of pure color (such as a dye laser), then the intensity 
can be modeled as I(λ) = δ(λ – λo) with δ(•) as the impulse function. The 
collection of chromaticity coordinates {x,y} that will be generated by varying λo 
gives the CIE chromaticity triangle as shown in Figure 14. 
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Figure 14: Chromaticity diagram containing the CIE chromaticity 
triangle associated with pure spectral colors and the triangle 
associated with CRT phosphors. 

 
Pure spectral colors are along the boundary of the chromaticity triangle. All other 
colors are inside the triangle. The chromaticity coordinates for some standard 
sources are given in Table 6. 
 

Source x y 
Fluorescent lamp @ 4800 °K 0.35 0.37 
Sun @ 6000 °K 0.32 0.33 
Red Phosphor (europium yttrium vanadate) 0.68 0.32 
Green Phosphor (zinc cadmium sulfide) 0.28 0.60 
Blue Phosphor (zinc sulfide) 0.15 0.07 

 Table 6: Chromaticity coordinates for standard sources. 
 
The description of color on the basis of chromaticity coordinates not only permits 
an analysis of color but provides a synthesis technique as well. Using a mixture of 
two color sources, it is possible to generate any of the colors along the line 
connecting their respective chromaticity coordinates. Since we cannot have a 
negative number of photons, this means the mixing coefficients must be positive. 
Using three color sources such as the red, green, and blue phosphors on CRT 
monitors leads to the set of colors defined by the interior of the “phosphor 
triangle” shown in Figure 14. 
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The formulas for converting from the tristimulus values (X,Y,Z) to the well-known 
CRT colors (R,G,B) and back are given by: 
 

  
1.9107 0.5326 0.2883
0.9843 1.9984 0.0283 •

0.0583 0.1185 0.8986

R X
G Y
B Z

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (49) 

and 

  
0.6067 0.1736 0.2001
0.2988 0.5868 0.1143 •
0.0000 0.0661 1.1149

X R
Y G
Z B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (50) 

 
As long as the position of a desired color (X,Y,Z) is inside the phosphor triangle in 
Figure 14, the values of R, G, and B as computed by eq. (49) will be positive and 
can therefore be used to drive a CRT monitor. 
 
It is incorrect to assume that a small displacement anywhere in the chromaticity 
diagram (Figure 14) will produce a proportionally small change in the perceived 
color. An empirically-derived chromaticity space where this property is 
approximated is the (u’,v’) space: 
 

  

4 9' '
2 12 3 2 12 3

and
9 ' 4 '

6 ' 16 ' 12 6 ' 16 ' 12

x yu v
x y x y

u vx y
u v u v

= =
− + + − + +

= =
− + − +

 (51) 

 
Small changes almost anywhere in the (u’,v’) chromaticity space produce equally 
small changes in the perceived colors. 

4.4 OPTICAL ILLUSIONS 
The description of the human visual system presented above is couched in 
standard engineering terms. This could lead one to conclude that there is 
sufficient knowledge of the human visual system to permit modeling the visual 
system with standard system analysis techniques. Two simple examples of optical 
illusions, shown in Figure 15, illustrate that this system approach would be a 
gross oversimplification. Such models should only be used with extreme care. 
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Figure 15: Optical Illusions 

 
The left illusion induces the illusion of gray values in the eye that the brain 
“knows” does not exist. Further, there is a sense of dynamic change in the image 
due, in part, to the saccadic movements of the eye. The right illusion, Kanizsa’s 
triangle, shows enhanced contrast and false contours [14] neither of which can be 
explained by the system-oriented aspects of visual perception described above. 

5.  Image Sampling 
 
Converting from a continuous image a(x,y) to its digital representation b[m,n] 
requires the process of sampling. In the ideal sampling system a(x,y) is multiplied 
by an ideal 2D impulse train: 
 

  
[ . ] ( , ) • ( , )

( , ) ( , )

ideal o o
m n

o o o o
m n

b m n a x y x mX y nY

a mX nY x mX y nY

δ

δ

+∞ +∞

=−∞ =−∞
+∞ +∞

=−∞ =−∞

= − −

= − −

∑ ∑

∑ ∑
 (52) 

 
where Xo and Yo are the sampling distances or intervals and δ(•,•) is the ideal 
impulse function. (At some point, of course, the impulse function δ(x,y) is 
converted to the discrete impulse function δ[m,n].) Square sampling implies that 
Xo =Yo. Sampling with an impulse function corresponds to sampling with an 
infinitesimally small point. This, however, does not correspond to the usual 
situation as illustrated in Figure 1. To take the effects of a finite sampling aperture 
p(x,y) into account, we can modify the sampling model as follows: 
 

  ( )[ . ] ( , ) ( , ) • ( , )o o
m n

b m n a x y p x y x mX y nYδ
+∞ +∞

=−∞ =−∞

= ⊗ − −∑ ∑  (53) 
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The combined effect of the aperture and sampling are best understood by 
examining the Fourier domain representation. 
 

 2
1( , ) ( , ) • ( , )

4 s s s s
m n

B A m n P m n
π

+∞ +∞

=−∞ =−∞

Ω Ψ = Ω − Ω Ψ − Ψ Ω − Ω Ψ − Ψ∑ ∑  (54) 

 
where Ωs = 2π/Xo is the sampling frequency in the x direction and Ψs = 2π/Yo is 
the sampling frequency in the y direction. The aperture p(x,y) is frequently square, 
circular, or Gaussian with the associated P(Ω,Ψ). (See Table 4.) The periodic 
nature of the spectrum, described in eq. (21) is clear from eq. (54). 

5.1 SAMPLING DENSITY FOR IMAGE PROCESSING 
To prevent the possible aliasing (overlapping) of spectral terms that is inherent in 
eq. (54) two conditions must hold: 
 
 • Bandlimited A(u,v) – 
 
  ( , ) 0 for andc cA u v u u v v≡ > >  (55) 

 
 • Nyquist sampling frequency – 
 
  2 • and 2•s c s cu vΩ > Ψ >  (56) 
 
where uc and vc are the cutoff frequencies in the x and y direction, respectively. 
Images that are acquired through lenses that are circularly-symmetric, aberration-
free, and diffraction-limited will, in general, be bandlimited. The lens acts as a 
lowpass filter with a cutoff frequency in the frequency domain (eq. (11)) given 
by: 
 

  2
c c

NAu v
λ

= =  (57) 

 
where NA is the numerical aperture of the lens and λ is the shortest wavelength of 
light used with the lens [16]. If the lens does not meet one or more of these 
assumptions then it will still be bandlimited but at lower cutoff frequencies than 
those given in eq. (57). When working with the F-number (F) of the optics instead 
of the NA and in air (with index of refraction = 1.0), eq. (57) becomes: 
 

  
2

2 1

4 1
c cu v

Fλ
⎛ ⎞

= = ⎜ ⎟⎜ ⎟+⎝ ⎠
 (58) 
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5.1.1 Sampling aperture 
The aperture p(x,y) described above will have only a marginal effect on the final 
signal if the two conditions eqs. (56) and (57) are satisfied. Given, for example, 
the distance between samples Xo equals Yo and a sampling aperture that is not 
wider than Xo, the effect on the overall spectrum—due to the A(u,v)P(u,v) 
behavior implied by eq.(53)—is illustrated in Figure 16 for square and Gaussian 
apertures. 
 
The spectra are evaluated along one axis of the 2D Fourier transform. The 
Gaussian aperture in Figure 16 has a width such that the sampling interval Xo 
contains ±3σ (99.7%) of the Gaussian. The rectangular apertures have a width 
such that one occupies 95% of the sampling interval and the other occupies 50% 
of the sampling interval. The 95% width translates to a fill factor of 90% and the 
50% width to a fill factor of 25%. The fill factor is discussed in Section 7.5.2. 
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Figure 16: Aperture spectra P(u,v=0) for frequencies up to half the Nyquist 
frequency. For explanation of “fill” see text. 

5.2 SAMPLING DENSITY FOR IMAGE ANALYSIS 
The “rules” for choosing the sampling density when the goal is image analysis—
as opposed to image processing—are different. The fundamental difference is that 
the digitization of objects in an image into a collection of pixels introduces a form 
of spatial quantization noise that is not bandlimited. This leads to the following 
results for the choice of sampling density when one is interested in the 
measurement of area and (perimeter) length. 
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5.2.1 Sampling for area measurements 
Assuming square sampling, Xo = Yo and the unbiased algorithm for estimating 
area which involves simple pixel counting, the CV (see eq. (38)) of the area 
measurement is related to the sampling density by [17]: 
 
  3 2 2

2 32 : lim ( ) 3 : lim ( )
S S

D CV S k S D CV S k S− −

→∞ →∞
= =  (59) 

 
and in D dimensions: 
 
  ( 1) 2lim ( ) D

DS
CV S k S − +

→∞
=  (60) 

 
where S is the number of samples per object diameter. In 2D the measurement is 
area, in 3D volume, and in D-dimensions hypervolume. 

5.2.2 Sampling for length measurements 
Again assuming square sampling and algorithms for estimating length based upon 
the Freeman chain-code representation (see Section 3.6.1), the CV of the length 
measurement is related to the sampling density per unit length as shown in Figure 
17 (see [18, 19].) 
 

 

0.1%

1.0%

10.0%

100.0%

1 10 100 1000

Sampling Density / Unit Length

Pixel Count
Freeman

Kulpa

Corner Count

 
Figure 17: CV of length measurement for various algorithms. 

 
The curves in Figure 17 were developed in the context of straight lines but similar 
results have been found for curves and closed contours. The specific formulas for 
length estimation use a chain code representation of a line and are based upon a 
linear combination of three numbers: 
 
  • • •e o cL N N Nα β γ= + +  (61) 
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where Ne is the number of even chain codes, No the number of odd chain codes, 
and Nc the number of corners. The specific formulas are given in Table 7. 
 
Coefficients α β γ  

Formula    Reference 

Pixel count 1 1 0 [18] 
Freeman 1 2  0 [11] 
Kulpa 0.9481 0.9481 • 2  0 [20] 
Corner count 0.980 1.406 –0.091 [21] 

Table 7: Length estimation formulas based on chain code counts (Ne, No, Nc) 

5.2.3 Conclusions on sampling 
If one is interested in image processing, one should choose a sampling density 
based upon classical signal theory, that is, the Nyquist sampling theory. If one is 
interested in image analysis, one should choose a sampling density based upon the 
desired measurement accuracy (bias) and precision (CV). In a case of uncertainty, 
one should choose the higher of the two sampling densities (frequencies). 

6.  Noise 
 
Images acquired through modern sensors may be contaminated by a variety of 
noise sources. By noise we refer to stochastic variations as opposed to 
deterministic distortions such as shading or lack of focus. We will assume for this 
section that we are dealing with images formed from light using modern electro-
optics. In particular we will assume the use of modern, charge-coupled device 
(CCD) cameras where photons produce electrons that are commonly referred to as 
photoelectrons. Nevertheless, most of the observations we shall make about noise 
and its various sources hold equally well for other imaging modalities. 
 
While modern technology has made it possible to reduce the noise levels 
associated with various electro-optical devices to almost negligible levels, one 
noise source can never be eliminated and thus forms the limiting case when all 
other noise sources are “eliminated”. 

6.1 PHOTON NOISE 
When the physical signal that we observe is based upon light, then the quantum 
nature of light plays a significant role. A single photon at λ = 500 nm carries an 
energy of E = hν = hc/λ = 3.97 × 10–19 Joules. Modern CCD cameras are 
sensitive enough to be able to count individual photons. (Camera sensitivity will 
be discussed in Section 7.2.) The noise problem arises from the fundamentally 
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statistical nature of photon production. We cannot assume that, in a given pixel 
for two consecutive but independent observation intervals of length T, the same 
number of photons will be counted. Photon production is governed by the laws of 
quantum physics which restrict us to talking about an average number of photons 
within a given observation window. The probability distribution for p photons in 
an observation window of length T seconds is known to be Poisson: 
 

  ( )( | , )
!

p TT e
P p T

p

ρρ
ρ

−

=  (62) 

 
where ρ is the rate or intensity parameter measured in photons per second. It is 
critical to understand that even if there were no other noise sources in the imaging 
chain, the statistical fluctuations associated with photon counting over a finite 
time interval T would still lead to a finite signal-to-noise ratio (SNR). If we use the 
appropriate formula for the SNR (eq. (41)), then due to the fact that the average 
value and the standard deviation are given by: 
 

 Poisson process – 
average T

T

ρ

σ ρ

=

=
 (63) 

 
we have for the SNR: 
 
 Photon noise – 1010log ( )  SNR T dBρ=  (64) 
 
The three traditional assumptions about the relationship between signal and noise 
do not hold for photon noise: 
 
  • photon noise is not independent of the signal; 
  • photon noise is not Gaussian, and; 
  • photon noise is not additive. 
 
For very bright signals, where ρT exceeds 105, the noise fluctuations due to 
photon statistics can be ignored if the sensor has a sufficiently high saturation 
level. This will be discussed further in Section 7.3 and, in particular, eq. (73). 

6.2 THERMAL NOISE 
An additional, stochastic source of electrons in a CCD well is thermal energy. 
Electrons can be freed from the CCD material itself through thermal vibration and 
then, trapped in the CCD well, be indistinguishable from “true” photoelectrons. 
By cooling the CCD chip it is possible to reduce significantly the number of 
“thermal electrons” that give rise to thermal noise or dark current. As the 
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integration time T increases, the number of thermal electrons increases. The 
probability distribution of thermal electrons is also a Poisson process where the 
rate parameter is an increasing function of temperature. There are alternative 
techniques (to cooling) for suppressing dark current and these usually involve 
estimating the average dark current for the given integration time and then 
subtracting this value from the CCD pixel values before the A/D converter. While 
this does reduce the dark current average, it does not reduce the dark current 
standard deviation and it also reduces the possible dynamic range of the signal. 

6.3 ON-CHIP ELECTRONIC NOISE 
This noise originates in the process of reading the signal from the sensor, in this 
case through the field effect transistor (FET) of a CCD chip. The general form of 
the power spectral density of readout noise is: 
 

 Readout noise – 
min

min max

max

0
( )

0
nnS k

β

α

ω ω ω β
ω ω ω ω
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⎪ > >⎩

 (65) 

 
where α and β are constants and ω is the (radial) frequency at which the signal is 
transferred from the CCD chip to the “outside world.” At very low readout rates 
(ω < ωmin) the noise has a 1/ƒ character. Readout noise can be reduced to 
manageable levels by appropriate readout rates and proper electronics. At very 
low signal levels (see eq. (64)), however, readout noise can still become a 
significant component in the overall SNR [22]. 

6.4 KTC NOISE 
Noise associated with the gate capacitor of an FET is termed KTC noise and can 
be non-negligible. The output RMS value of this noise voltage is given by: 
 

 KTC noise (voltage) – KTC
kT
C

σ =  (66) 

 
where C is the FET gate switch capacitance, k is Boltzmann’s constant, and T is 
the absolute temperature of the CCD chip measured in K. Using the relationships 

• •eQ C V N e−
−= = , the output RMS value of the KTC noise expressed in terms 

of the number of photoelectrons ( eN − ) is given by: 
 

 KTC noise (electrons) – 
eN

kTC
e

σ −=  (67) 
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where e– is the electron charge. For C = 0.5 pF and T = 233 K this gives 
252 electronseN − = . This value is a “one time” noise per pixel that occurs during 

signal readout and is thus independent of the integration time (see Sections 6.1 
and 7.7). Proper electronic design that makes use, for example, of correlated 
double sampling and dual-slope integration can almost completely eliminate KTC 
noise [22]. 

6.5 AMPLIFIER NOISE 
The standard model for this type of noise is additive, Gaussian, and independent 
of the signal. In modern well-designed electronics, amplifier noise is generally 
negligible. The most common exception to this is in color cameras where more 
amplification is used in the blue color channel than in the green channel or red 
channel leading to more noise in the blue channel. (See also Section 7.6.) 

6.6 QUANTIZATION NOISE 
Quantization noise is inherent in the amplitude quantization process and occurs in 
the analog-to-digital converter, ADC. The noise is additive and independent of the 
signal when the number of levels L ≥ 16. This is equivalent to B ≥ 4 bits. (See 
Section 2.1.) For a signal that has been converted to electrical form and thus has a 
minimum and maximum electrical value, eq. (40) is the appropriate formula for 
determining the SNR. If the ADC is adjusted so that 0 corresponds to the 
minimum electrical value and 2B-1 corresponds to the maximum electrical value 
then: 
 
 Quantization noise – 6 11  SNR B dB= +  (68) 
 
For B ≥ 8 bits, this means a SNR ≥ 59 dB. Quantization noise can usually be 
ignored as the total SNR of a complete system is typically dominated by the 
smallest SNR. In CCD cameras this is photon noise. 

7.  Cameras 
 
The cameras and recording media available for modern digital image processing 
applications are changing at a significant pace. To dwell too long in this section 
on one major type of camera, such as the CCD camera, and to ignore 
developments in areas such as charge injection device (CID) cameras and CMOS 
cameras is to run the risk of obsolescence. Nevertheless, the techniques that are 
used to characterize the CCD camera remain “universal” and the presentation that 
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follows is given in the context of modern CCD technology for purposes of 
illustration. 

7.1 LINEARITY 
It is generally desirable that the relationship between the input physical signal 
(e.g. photons) and the output signal (e.g. voltage) be linear. Formally this means 
(as in eq. (20)) that if we have two images, a and b, and two arbitrary complex 
constants, w1 and w2 and a linear camera response, then: 
 
  { } { } { }1 2 1 2c w a w b w a w b= + = +R R R  (69) 

 
where R{•} is the camera response and c is the camera output. In practice the 
relationship between input a and output c is frequently given by: 
 
  •c gain a offsetγ= +  (70) 
 
where γ is the gamma of the recording medium. For a truly linear recording 
system we must have γ = 1 and offset = 0. Unfortunately, the offset is almost 
never zero and thus we must compensate for this if the intention is to extract 
intensity measurements. Compensation techniques are discussed in Section 10.1. 
 
Typical values of γ that may be encountered are listed in Table 8. Modern 
cameras often have the ability to switch electronically between various values of 
γ. 
 

Sensor Surface γ Possible advantages 

CCD chip Silicon 1.0 Linear 
Vidicon Tube Sb2S3 0.6 Compresses dynamic range → high contrast scenes 
Film Silver halide < 1.0 Compresses dynamic range → high contrast scenes 
Film Silver halide > 1.0 Expands dynamic range → low contrast scenes 

Table 8: Comparison of γ of various sensors 

7.2 SENSITIVITY 
There are two ways to describe the sensitivity of a camera. First, we can 
determine the minimum number of detectable photoelectrons. This can be termed 
the absolute sensitivity. Second, we can describe the number of photoelectrons 
necessary to change from one digital brightness level to the next, that is, to change 
one analog-to-digital unit (ADU). This can be termed the relative sensitivity. 
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7.2.1 Absolute sensitivity 
To determine the absolute sensitivity we need a characterization of the camera in 
terms of its noise. If the total noise has a σ of, say, 100 photoelectrons, then to 
ensure detectability of a signal we could then say that, at the 3σ level, the 
minimum detectable signal (or absolute sensitivity) would be 300 photoelectrons. 
If all the noise sources listed in Section 6, with the exception of photon noise, can 
be reduced to negligible levels, this means that an absolute sensitivity of less than 
10 photoelectrons is achievable with modern technology 

7.2.2 Relative sensitivity 
The definition of relative sensitivity, S, given above when coupled to the linear 
case, eq. (70) with γ = 1, leads immediately to the result: 
 
  11S gaingain

−= =  (71) 

 
The measurement of the sensitivity or gain can be performed in two distinct ways.  
 
• If, following eq. (70), the input signal a can be precisely controlled by either 
“shutter” time or intensity (through neutral density filters), then the gain can be 
estimated by estimating the slope of the resulting straight-line curve. To translate 
this into the desired units, however, a standard source must be used that emits a 
known number of photons onto the camera sensor and the quantum efficiency (η) 
of the sensor must be known. The quantum efficiency refers to how many 
photoelectrons are produced—on the average—per photon at a given wavelength. 
In general 0 ≤ η(λ) ≤ 1. 
 
• If, however, the limiting effect of the camera is only the photon (Poisson) noise 
(see Section 6.1), then an easy-to-implement, alternative technique is available to 
determine the sensitivity. Using equations (63), (70), and (71) and after 
compensating for the offset (see Section 10.1), the sensitivity measured from an 
image c is given by: 
 

  2
{ }
{ }

c

c

mE cS
Var c s

= =  (72) 

 
where mc and sc are defined in equations (34) and (36). 
 
Measured data for five modern (1995) CCD camera configurations are given in 
Table 9. 
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Camera Pixels Pixel size Temp. S Bits
Label µm x µm K e – / ADU

C–1 1320 x 1035 6.8 x 6.8 231 7.9 12
C–2 578 x 385 22.0 x 22.0 227 9.7 16
C–3 1320 x 1035 6.8 x 6.8 293 48.1 10
C–4 576 x 384 23.0 x 23.0 238 90.9 12
C–5 756 x 581 11.0 x 5.5 300 109.2 8  

Table 9: Sensitivity measurements. Note that a more 
sensitive camera has a lower value of S. 

 
The extraordinary sensitivity of modern CCD cameras is clear from these data. In 
a scientific-grade CCD camera (C–1), only 8 photoelectrons (approximately 16 
photons) separate two gray levels in the digital representation of the image. For a 
considerably less expensive video camera (C–5), only about 110 photoelectrons 
(approximately 220 photons) separate two gray levels. 

7.3 SNR 
As described in Section 6, in modern camera systems the noise is frequently 
limited by:  

• amplifier noise in the case of color cameras;  
• thermal noise which, itself, is limited by the chip temperature K and the 

exposure time T, and/or;  
• photon noise which is limited by the photon production rate ρ and the 

exposure time T. 

7.3.1 Thermal noise (Dark current) 
Using cooling techniques based upon Peltier cooling elements it is straightforward 
to achieve chip temperatures of 230 to 250 K. This leads to low thermal electron 
production rates. As a measure of the thermal noise, we can look at the number of 
seconds necessary to produce a sufficient number of thermal electrons to go from 
one brightness level to the next, an ADU, in the absence of photoelectrons. This 
last condition—the absence of photoelectrons—is the reason for the name dark 
current. Measured data for the five cameras described above are given in Table 
10. 
 

 

Camera Temp. Dark Current
Label K Seconds / ADU

C–1 231 526.3
C–2 227 0.2
C–3 293 8.3
C–4 238 2.4
C–5 300 23.3  

Table 10: Thermal noise characteristics 
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The video camera (C–5) has on-chip dark current suppression. (See Section 6.2.) 
Operating at room temperature this camera requires more than 20 seconds to 
produce one ADU change due to thermal noise. This means at the conventional 
video frame and integration rates of 25 to 30 images per second (see Table 3), the 
thermal noise is negligible. 

7.3.2 Photon noise 
From eq. (64) we see that it should be possible to increase the SNR by increasing 
the integration time of our image and thus “capturing” more photons. The pixels 
in CCD cameras have, however, a finite well capacity. This finite capacity, C, 
means that the maximum SNR for a CCD camera per pixel is given by: 
 
 Capacity-limited photon noise – 1010log ( )  SNR C dB=  (73) 
 
Theoretical as well as measured data for the five cameras described above are 
given in Table 11. 
 

 

Camera C Theor. SNR Meas. SNR Pixel size Well Depth
Label # e– dB dB µm x µm # e–  / µm2

C–1 32,000 45 45 6.8 x 6.8 692
C–2 340,000 55 55 22.0 x 22.0 702
C–3 32,000 45 43 6.8 x 6.8 692
C–4 400,000 56 52 23.0 x 23.0 756
C–5 40,000 46 43 11.0 x 5.5 661  

Table 11: Photon noise characteristics 
 
Note that for certain cameras, the measured SNR achieves the theoretical, 
maximum indicating that the SNR is, indeed, photon and well capacity limited. 
Further, the curves of SNR versus T (integration time) are consistent with 
equations (64) and (73). (Data not shown.) It can also be seen that, as a 
consequence of CCD technology, the “depth” of a CCD pixel well is constant at 
about 0.7 ke– / µm2. 

7.4 SHADING 
Virtually all imaging systems produce shading. By this we mean that if the 
physical input image a(x,y) = constant, then the digital version of the image will 
not be constant. The source of the shading might be outside the camera such as in 
the scene illumination or the result of the camera itself where a gain and offset 
might vary from pixel to pixel. The model for shading is given by: 
 
  [ , ] [ , ]• [ , ] [ , ]c m n gain m n a m n offset m n= +  (74) 
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where a[m,n] is the digital image that would have been recorded if there were no 
shading in the image, that is, a[m,n] = constant. Techniques for reducing or 
removing the effects of shading are discussed in Section 10.1. 

7.5 PIXEL FORM 
While the pixels shown in Figure 1 appear to be square and to “cover” the 
continuous image, it is important to know the geometry for a given 
camera/digitizer system. In Figure 18 we define possible parameters associated 
with a camera and digitizer and the effect they have upon the pixel. 
 

= photosensitive region

= nonsensitive region

Xo

Yo

Xa

Ya

 
Figure 18: Pixel form parameters 

 
The parameters Xo and Yo are the spacing between the pixel centers and represent 
the sampling distances from equation (52). The parameters Xa and Ya are the 
dimensions of that portion of the camera’s surface that is sensitive to light. As 
mentioned in Section 2.3, different video digitizers (frame grabbers) can have 
different values for Xo while they have a common value for Yo. 

7.5.1 Square pixels 
As mentioned in Section 5, square sampling implies that Xo = Yo or alternatively 
Xo / Yo = 1. It is not uncommon, however, to find frame grabbers where Xo / Yo = 
1.1 or Xo / Yo = 4/3. (This latter format matches the format of commercial 
television. See Table 3) The risk associated with non-square pixels is that 
isotropic objects scanned with non-square pixels might appear isotropic on a 
camera-compatible monitor but analysis of the objects (such as length-to-width 
ratio) will yield non-isotropic results. This is illustrated in Figure 19. 
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Figure 19: Effect of non-square pixels 
 
The ratio Xo / Yo can be determined for any specific camera/digitizer system by 
using a calibration test chart with known distances in the horizontal and vertical 
direction. These are straightforward to make with modern laser printers. The test 
chart can then be scanned and the sampling distances Xo and Yo determined. 

7.5.2 Fill factor 
In modern CCD cameras it is possible that a portion of the camera surface is not 
sensitive to light and is instead used for the CCD electronics or to prevent 
blooming. Blooming occurs when a CCD well is filled (see Table 11) and 
additional photoelectrons spill over into adjacent CCD wells. Anti-blooming 
regions between the active CCD sites can be used to prevent this. This means, of 
course, that a fraction of the incoming photons are lost as they strike the non-
sensitive portion of the CCD chip. The fraction of the surface that is sensitive to 
light is termed the fill factor and is given by: 
 

  • 100%
•

a a

o o

X Yfill factor
X Y

= ×  (75) 

 
The larger the fill factor the more light will be captured by the chip up to the 
maximum of 100%. This helps improve the SNR. As a tradeoff, however, larger 
values of the fill factor mean more spatial smoothing due to the aperture effect 
described in Section 5.1.1. This is illustrated in Figure 16. 

7.6 SPECTRAL SENSITIVITY 
Sensors, such as those found in cameras and film, are not equally sensitive to all 
wavelengths of light. The spectral sensitivity for the CCD sensor is given in 
Figure 20. 
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Figure 20: Spectral characteristics of silicon, the sun, and the human visual 
system. UV = ultraviolet and IR = infra-red. 
 
The high sensitivity of silicon in the infra-red means that, for applications where a 
CCD (or other silicon-based) camera is to be used as a source of images for 
digital image processing and analysis, consideration should be given to using an 
IR blocking filter. This filter blocks wavelengths above 750 nm. and thus prevents 
“fogging” of the image from the longer wavelengths found in sunlight. 
Alternatively, a CCD-based camera can make an excellent sensor for the near 
infrared wavelength range of 750 nm to 1000 nm. 

7.7 SHUTTER SPEEDS (INTEGRATION TIME) 
The length of time that an image is exposed—that photons are collected—may be 
varied in some cameras or may vary on the basis of video formats (see Table 3). 
For reasons that have to do with the parameters of photography, this exposure 
time is usually termed shutter speed although integration time would be a more 
appropriate description. 

7.7.1 Video cameras 
Values of the shutter speed as low as 500 ns are available with commercially 
available CCD video cameras although the more conventional speeds for video 
are 33.37 ms (NTSC) and 40.0 ms (PAL, SECAM). Values as high as 30 s may 
also be achieved with certain video cameras although this means sacrificing a 
continuous stream of video images that contain signal in favor of a single 
integrated image amongst a stream of otherwise empty images. Subsequent 
digitizing hardware must be capable of handling this situation. 
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7.7.2 Scientific cameras 
Again values as low as 500 ns are possible and, with cooling techniques based on 
Peltier-cooling or liquid nitrogen cooling, integration times in excess of one hour 
are readily achieved.  

7.8 READOUT RATE 
The rate at which data is read from the sensor chip is termed the readout rate. The 
readout rate for standard video cameras depends on the parameters of the frame 
grabber as well as the camera. For standard video, see Section 2.3, the readout 
rate is given by: 

  • •
sec

images lines pixelsR
image line

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 (76) 

 
While the appropriate unit for describing the readout rate should be pixels / 
second, the term Hz is frequently found in the literature and in camera 
specifications; we shall therefore use the latter unit. For a video camera with 
square pixels (see Section 7.5), this means: 
 

Format lines / sec pixels / line R (MHz.) 
NTSC 15,750 (4/3)*525 ≈11.0 
PAL / SECAM 15,625 (4/3)*625 ≈13.0 

Table 12: Video camera readout rates 
 
Note that the values in Table 12 are approximate. Exact values for square-pixel 
systems require exact knowledge of the way the video digitizer (frame grabber) 
samples each video line. 
 
The readout rates used in video cameras frequently means that the electronic noise 
described in Section 6.3 occurs in the region of the noise spectrum (eq. (65)) 
described by ω > ωmax where the noise power increases with increasing 
frequency. Readout noise can thus be significant in video cameras. 
 
Scientific cameras frequently use a slower readout rate in order to reduce the 
readout noise. Typical values of readout rate for scientific cameras, such as those 
described in Tables 9, 10, and 11, are 20 kHz, 500 kHz, and 1 MHz to 8 MHz. 
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8.  Displays 
 
The displays used for image processing—particularly the display systems used 
with computers—have a number of characteristics that help determine the quality 
of the final image. 

8.1 REFRESH RATE 
The refresh rate is defined as the number of complete images that are written to 
the screen per second. For standard video the refresh rate is fixed at the values 
given in Table 3, either 29.97 or 25 images/s. For computer displays the refresh 
rate can vary with common values being 67 images/s and 75 images/s. At values 
above 60 images/s visual flicker is negligible at virtually all illumination levels. 

8.2 INTERLACING 
To prevent the appearance of visual flicker at refresh rates below 60 images/s, the 
display can be interlaced as described in Section 2.3. Standard interlace for video 
systems is 2:1. Since interlacing is not necessary at refresh rates above 60 
images/s, an interlace of 1:1 is used with such systems. In other words, lines are 
drawn in an ordinary sequential fashion: 1,2,3,4,…,N. 

8.3 RESOLUTION 
The pixels stored in computer memory, although they are derived from regions of 
finite area in the original scene (see Sections 5.1 and 7.5), may be thought of as 
mathematical points having no physical extent. When displayed, the space 
between the points must be filled in. This generally happens as a result of the 
finite spot size of a cathode-ray tube (CRT). The brightness profile of a CRT spot 
is approximately Gaussian and the number of spots that can be resolved on the 
display depends on the quality of the system. It is relatively straightforward to 
obtain display systems with a resolution of 72 spots per inch (28.3 spots per cm.) 
This number corresponds to standard printing conventions. If printing is not a 
consideration then higher resolutions, in excess of 30 spots per cm, are attainable. 

9.  Algorithms 
 
In this Section we will describe operations that are fundamental to digital image 
processing. These operations can be divided into four categories: operations based 
on the image histogram, on simple mathematics, on convolution, and on 
mathematical morphology. Further, these operations can also be described in 
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terms of their implementation as a point operation, a local operation, or a global 
operation as described in Section 2.2.1. 

9.1 HISTOGRAM-BASED OPERATIONS 
An important class of point operations is based upon the manipulation of an image 
histogram or a region histogram. The most important examples are described 
below. 

9.1.1 Contrast stretching 
Frequently, an image is scanned in such a way that the resulting brightness values 
do not make full use of the available dynamic range. This can be easily observed 
in the histogram of the brightness values shown in Figure 6. By stretching the 
histogram over the available dynamic range we attempt to correct this situation. If 
the image is intended to go from brightness 0 to brightness 2B–1 (see Section 2.1), 
then one generally maps the 0% value (or minimum as defined in Section 3.5.2) to 
the value 0 and the 100% value (or maximum) to the value 2B–1. The appropriate 
transformation is given by: 
 

  ( ) [ , ] minimum[ , ] 2 1 •
maximum minimum

B a m nb m n −
= −

−
 (77) 

 
This formula, however, can be somewhat sensitive to outliers and a less sensitive 
and more general version is given by: 
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 (78) 

 
In this second version one might choose the 1% and 99% values for plow% and 
phigh%, respectively, instead of the 0% and 100% values represented by eq. (77). 
It is also possible to apply the contrast-stretching operation on a regional basis 
using the histogram from a region to determine the appropriate limits for the 
algorithm. Note that in eqs. (77) and (78) it is possible to suppress the term 2B–1 
and simply normalize the brightness range to 0 ≤ b[m,n] ≤ 1. This means 
representing the final pixel brightnesses as reals instead of integers but modern 
computer speeds and RAM capacities make this quite feasible. 
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9.1.2 Equalization 
When one wishes to compare two or more images on a specific basis, such as 
texture, it is common to first normalize their histograms to a “standard” 
histogram. This can be especially useful when the images have been acquired 
under different circumstances. The most common histogram normalization 
technique is histogram equalization where one attempts to change the histogram 
through the use of a function b = ƒ(a) into a histogram that is constant for all 
brightness values. This would correspond to a brightness distribution where all 
values are equally probable. Unfortunately, for an arbitrary image, one can only 
approximate this result. 
 
For a “suitable” function ƒ(•) the relation between the input probability density 
function, the output probability density function, and the function ƒ(•) is given by: 
 

  ( )( ) ( )
( )

a
b a

b

p a dap b db p a da d
p b

= ⇒ ƒ =  (79) 

 
From eq. (79) we see that “suitable” means that ƒ(•) is differentiable and that 
dƒ/da ≥ 0. For histogram equalization we desire that pb(b) = constant and this 
means that: 
  ( )( ) 2 1 • ( )Bf a P a= −  (80) 

 
where P(a) is the probability distribution function defined in Section 3.5.1 and 
illustrated in Figure 6a. In other words, the quantized probability distribution 
function normalized from 0 to 2B–1 is the look-up table required for histogram 
equalization. Figures 21a-c illustrate the effect of contrast stretching and 
histogram equalization on a standard image. The histogram equalization 
procedure can also be applied on a regional basis. 
 

   
 Figure 21a Figure 21b Figure 21c 

 Original Contrast Stretched Histogram Equalized 
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9.1.3 Other histogram-based operations 
The histogram derived from a local region can also be used to drive local filters 
that are to be applied to that region. Examples include minimum filtering, median 
filtering, and maximum filtering [23]. The concepts minimum, median, and 
maximum were introduced in Figure 6. The filters based on these concepts will be 
presented formally in Sections 9.4.2 and 9.6.10. 

9.2 MATHEMATICS-BASED OPERATIONS 
We distinguish in this section between binary arithmetic and ordinary arithmetic. 
In the binary case there are two brightness values “0” and “1”. In the ordinary 
case we begin with 2B brightness values or levels but the processing of the image 
can easily generate many more levels. For this reason many software systems 
provide 16 or 32 bit representations for pixel brightnesses in order to avoid 
problems with arithmetic overflow. 

9.2.1 Binary operations 
Operations based on binary (Boolean) arithmetic form the basis for a powerful set 
of tools that will be described here and extended in Section 9.6, mathematical 
morphology. The operations described below are point operations and thus admit 
a variety of efficient implementations including simple look-up tables. The 
standard notation for the basic set of binary operations is: 
 

  •
• •

\ •

NOT c a
OR c a b
AND c a b
XOR c a b a b a b
SUB c a b a b a b

=
= +
=

= ⊕ = +

= = − =

 (81) 

 
The implication is that each operation is applied on a pixel-by-pixel basis. For 
example, [ , ] [ , ]• [ , ] ,c m n a m n b m n m n= ∀ . The definition of each operation is: 
 

  

NOT OR b AND b
a a 0 1 a 0 1
0 1 0 0 1 0 0 0
1 0 1 1 1 1 0 1
↑ ↑

input output
XOR b SUB b

a 0 1 a 0 1
0 0 1 0 0 0
1 1 0 1 1 0  

(82)
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These operations are illustrated in Figure 22 where the binary value “1” is shown 
in black and the value “0” in white. 

   
 a) Image a b) Image b 

   
 c) NOT(b) = b  d) OR(a,b) = a + b e) AND(a,b) = a • b 

   
 f) XOR(a,b) = a ⊕ b g) SUB(a,b) = a \ b 

Figure 22: Examples of the various binary point operations. 
 
The SUB(•) operation can be particularly useful when the image a represents a 
region-of-interest that we want to analyze systematically and the image b 
represents objects that, having been analyzed, can now be discarded, that is 
subtracted, from the region. 
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9.2.2 Arithmetic-based operations 
The gray-value point operations that form the basis for image processing are 
based on ordinary mathematics and include: 
 

Operation Definition preferred data type  
ADD c = a + b integer  
SUB c = a – b integer  
MUL c = a • b integer or floating point  
DIV c = a / b floating point  
LOG c = log(a) floating point (83)
EXP c = exp(a) floating point  
SQRT c = sqrt(a) floating point  
TRIG. c = sin/cos/tan(a) floating point  
INVERT c = (2B – 1) – a integer  

9.3 CONVOLUTION-BASED OPERATIONS 
Convolution, the mathematical, local operation defined in Section 3.1 is central to 
modern image processing. The basic idea is that a window of some finite size and 
shape—the support—is scanned across the image. The output pixel value is the 
weighted sum of the input pixels within the window where the weights are the 
values of the filter assigned to every pixel of the window itself. The window with 
its weights is called the convolution kernel. This leads directly to the following 
variation on eq. (3). If the filter h[j,k] is zero outside the (odd sized rectangular) 
window of size J×K centered around the origin {j=–J0,–J0+1,…,–1,0,1,…,J0–
1,J0; k=–K0,–K0+1,…,–1,0,1,…,K0–1,K0}, then, using eq. (4), the convolution can 
be written as the following finite sum: 
 

  
0 0

0 0

[ , ] [ , ] [ , ] [ , ] [ , ]
J K

j J k K
c m n a m n h m n h j k a m j n k

=− =−

= ⊗ = − −∑ ∑  (84) 

 
This equation can be viewed as more than just a pragmatic mechanism for 
smoothing or sharpening an image. Further, while eq. (84) illustrates the local 
character of this operation, eqs. (10) and (24) suggest that the operation can be 
implemented through the use of the Fourier domain which requires a global 
operation, the Fourier transform. Both of these aspects will be discussed below. 

9.3.1 Background 
In a variety of image-forming systems an appropriate model for the 
transformation of the physical signal a(x,y) into an electronic signal c(x,y) is the 
convolution of the input signal with the impulse response of the sensor system. 
This system might consist of both an optical as well as an electrical sub-system. If 
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each of these systems can be treated as a linear, shift-invariant (LSI) system then 
the convolution model is appropriate. The definitions of these two, possible, 
system properties are given below: 
 

 Linearity – 1 1 2 2

1 1 2 2 1 1 2 2• • • •
If a c and a c
Then w a w a w c w c

→ →
+ → +

 (85) 

 

 Shift-Invariance – 
( ) ( )
( ) ( )

, ,

, ,o o o o

If a x y c x y

Then a x x y y c x x y y

→

− − → − −
 (86) 

 
where w1 and w2 are arbitrary complex constants and xo and yo are coordinates 
corresponding to arbitrary spatial translations. 
 
Two remarks are appropriate at this point. First, linearity implies (by choosing w1 
= w2 = 0) that “zero in” gives “zero out”. The offset described in eq. (70) means 
that such camera signals are not the output of a linear system and thus (strictly 
speaking) the convolution result is not applicable. Fortunately, it is 
straightforward to correct for this non-linear effect. (See Section 10.1.) 
 
Second, optical lenses with a magnification, M, other than 1× are not shift 
invariant; a translation of 1 unit in the input image a(x,y) produces a translation of 
M units in the output image c(x,y). Due to the Fourier property described in eq. 
(25) this case can still be handled by linear system theory. 
 
If an impulse point of light δ(x,y) is imaged through an LSI system then the 
impulse response of that system is called the point spread function (PSF). The 
output image then becomes the convolution of the input image with the PSF. The 
Fourier transform of the PSF is called the optical transfer function (OTF). For 
optical systems that are circularly-symmetric, aberration-free, and diffraction-
limited the PSF is given by the Airy disk shown in Table 4–T.5. The OTF of the 
Airy disk is also presented in Table 4–T.5. 
 
If the convolution window is not the diffraction-limited PSF of the lens but rather 
the effect of defocusing a lens then an appropriate model for h(x,y) is a pill box of 
radius a as described in Table 4–T.3. The effect on a test pattern is illustrated in 
Figure 23. 
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 a) Test pattern b) Defocused image 

Figure 23: Convolution of test pattern with a pill box of radius a=4.5 pixels. 
 
The effect of the defocusing is more than just simple blurring or smoothing. The 
almost periodic negative lobes in the transfer function in Table 4–T.3 produce a 
180° phase shift in which black turns to white and vice-versa. The phase shift is 
clearly visible in Figure 23b. 

9.3.2 Convolution in the spatial domain 
In describing filters based on convolution we will use the following convention. 
Given a filter h[j,k] of dimensions J×K = 2J0+1 × 2K0+1, we will consider the 
coordinate [j=0,k=0] to be in the center of the filter matrix, h. This is illustrated in 
Figure 24. The “center” is well-defined when the filter sizes are odd. 
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Figure 24: Coordinate system for describing h[j,k] 
 
When we examine the convolution sum (eq. (84)) closely, several issues become 
evident. 
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• Evaluation of formula (84) for m=n=0 while rewriting the limits of the 
convolution sum based on the “centering” of h[j,k] shows that values of a[j,k] can 
be required that are outside the image boundaries: 
 

  
0 0

0 0

[0,0] [ , ] [ , ]
J K

j J k K
c h j k a j k

+ +

=− =−

= − −∑ ∑  (87) 

 
The question arises – what values should we assign to the image a[m,n] for m<0, 
m≥M, n<0, and n≥N? There is no “answer” to this question. There are only 
alternatives among which we are free to choose assuming we understand the 
possible consequences of our choice. The standard alternatives are a) extend the 
images with a constant (possibly zero) brightness value, b) extend the image 
periodically, c) extend the image by mirroring it at its boundaries, or d) extend the 
values at the boundaries indefinitely. These alternatives are illustrated in Figure 
25. 

 

 

 

 

 

 (a) (b) (c) (d) 

Figure 25: Examples of various alternatives to extend an image outside its 
formal boundaries. See text for explanation. 

 
• When the convolution sum is written in the standard form (eq. (3)) for an image 
a[m,n] of size M × N: 
 

  
1 1

0 0
[ , ] [ , ] [ , ]

M N

j k
c m n a j k h m j n k

− −

= =
= − −∑ ∑  (88) 

 
we see that the convolution kernel h[j,k] is mirrored around j=k=0 to produce 
h[–j,–k] before it is translated by [m,n] as indicated in eq. (88). While some 
convolution kernels in common use are symmetric in this respect, h[j,k]= h[–j,–k], 
many are not. (See Section 9.5.) Care must therefore be taken in the 
implementation of filters with respect to the mirroring requirements. 
 
• The computational complexity for a J×K convolution kernel implemented in the 
spatial domain on an image of N × N is O(J⋅K) where the complexity is measured 
per pixel on the basis of the number of multiplies-and-adds (MADDs). 
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• The value computed by a convolution that begins with integer brightnesses for 
a[m,n] may produce a rational number or a floating point number in the result 
c[m,n]. Working exclusively with integer brightness values will, therefore, cause 
roundoff errors. 
 
• Inspection of eq. (84) reveals another possibility for efficient implementation of 
convolution. If the convolution kernel h[j,k] is separable, that is, if the kernel can 
be written as: 
 
  [ , ] [ ]• [ ]row colh j k h k h j=  (89) 
 
then the filtering can be performed as follows: 
 

  
0 0

0 0

[ , ] [ ] [ , ] [ ]
J K

row col
j J k K

c m n h k a m j n k h j
=− =−

⎧ ⎫⎪ ⎪= − −⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑  (90) 

 
This means that instead of applying one, two-dimensional filter it is possible to 
apply two, one-dimensional filters, the first one in the k direction and the second 
one in the j direction. For an N × N image this, in general, reduces the 
computational complexity per pixel from O(J⋅K) to O(J+K). 
 
An alternative way of writing separability is to note that the convolution kernel 
(Figure 24) is a matrix h and, if separable, h can be written as: 
 

  [ ] [ ]
( ) ( 1) • (1 )

•
J K J K

t

× = × ×

= col row[h] h h  (91) 

 
where “t” denotes the matrix transpose operation. In other words, h can be 
expressed as the outer product of a column vector [hcol] and a row vector [hrow]. 
 
• For certain filters it is possible to find an incremental implementation for a 
convolution. As the convolution window moves over the image (see eq. (88)), the 
leftmost column of image data under the window is shifted out as a new column 
of image data is shifted in from the right. Efficient algorithms can take advantage 
of this [24] and, when combined with separable filters as described above, this can 
lead to algorithms where the computational complexity per pixel is O(constant). 

9.3.3 Convolution in the frequency domain 
In Section 3.4 we indicated that there was an alternative method to implement the 
filtering of images through convolution. Based on eq. (24) it appears possible to 
achieve the same result as in eq. (84) by the following sequence of operations: 
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 i) Compute A(Ω,Ψ) = F{a[m,n]} 
 ii) Multiply A(Ω,Ψ) by the precomputed H(Ω,Ψ) = F{h[m,n]} (92) 
 iii) Compute the result c[m,n] = F–1{A(Ω,Ψ)•H(Ω,Ψ)} 
 
• While it might seem that the “recipe” given above in eq. (92) circumvents the 
problems associated with direct convolution in the spatial domain—specifically, 
determining values for the image outside the boundaries of the image—the 
Fourier domain approach, in fact, simply “assumes” that the image is repeated 
periodically outside its boundaries as illustrated in Figure 25b. This phenomenon 
is referred to as circular convolution. 
 
If circular convolution is not acceptable then the other possibilities illustrated in 
Figure 25 can be realized by embedding the image a[m,n] and the filter H(Ω,Ψ) in 
larger matrices with the desired image extension mechanism for a[m,n] being 
explicitly implemented. 
 
• The computational complexity per pixel of the Fourier approach for an image of 
N × N and for a convolution kernel of K × K is O(2logN) complex MADDs 
independent of K. Here we assume that N > K and that N is a highly composite 
number such as a power of two. (See also 2.1.) This latter assumption permits use 
of the computationally-efficient Fast Fourier Transform (FFT) algorithm. 
Surprisingly then, the indirect route described by eq. (92) can be faster than the 
direct route given in eq. (84). This requires, in general, that K2 >> 2logN. The 
range of K and N for which this holds depends on the specifics of the 
implementation. For the machine on which this manuscript is being written and 
the specific image processing package that is being used, for an image of N = 256 
the Fourier approach is faster than the convolution approach when K ≥ 15. (It 
should be noted that in this comparison the direct convolution involves only 
integer arithmetic while the Fourier domain approach requires complex floating 
point arithmetic.) 

9.4 SMOOTHING OPERATIONS 
These algorithms are applied in order to reduce noise and/or to prepare images for 
further processing such as segmentation. We distinguish between linear and non- 
linear algorithms where the former are amenable to analysis in the Fourier domain 
and the latter are not. We also distinguish between implementations based on a 
rectangular support for the filter and implementations based on a circular support 
for the filter. 
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9.4.1 Linear Filters 
Several filtering algorithms will be presented together with the most useful 
supports. 
 
• Uniform filter – The output image is based on a local averaging of the input 
filter where all of the values within the filter support have the same weight. In the 
continuous spatial domain (x,y) the PSF and transfer function are given in Table 
4–T.1 for the rectangular case and in Table 4–T.3 for the circular (pill box) case. 
For the discrete spatial domain [m,n] the filter values are the samples of the 
continuous domain case. Examples for the rectangular case (J=K=5) and the 
circular case (R=2.5) are shown in Figure 26. 
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 (a) Rectangular filter (J=K=5) (b) Circular filter (R=2.5) 

Figure 26: Uniform filters for image smoothing 
 
Note that in both cases the filter is normalized so that Σ h[j,k] = 1. This is done so 
that if the input a[m,n] is a constant then the output image c[m,n] is the same 
constant. The justification can be found in the Fourier transform property 
described in eq. (26). As can be seen from Table 4, both of these filters have 
transfer functions that have negative lobes and can, therefore, lead to phase 
reversal as seen in Figure 23. The square implementation of the filter is separable 
and incremental; the circular implementation is incremental [24, 25]. 
 
• Triangular filter – The output image is based on a local averaging of the input 
filter where the values within the filter support have differing weights. In general, 
the filter can be seen as the convolution of two (identical) uniform filters either 
rectangular or circular and this has direct consequences for the computational 
complexity [24, 25]. (See Table 13.) In the continuous spatial domain the PSF and 
transfer function are given in Table 4–T.2 for the rectangular support case and in 
Table 4–T.4 for the circular (pill box) support case. As seen in Table 4 the 
transfer functions of these filters do not have negative lobes and thus do not 
exhibit phase reversal. 
 
Examples for the rectangular support case (J=K=5) and the circular support case 
(R=2.5) are shown in Figure 27. The filter is again normalized so that Σ h[j,k]=1. 
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 (a) Pyramidal filter (J=K=5) (b) Cone filter (R=2.5) 

Figure 27: Triangular filters for image smoothing 
 
• Gaussian filter – The use of the Gaussian kernel for smoothing has become 
extremely popular. This has to do with certain properties of the Gaussian (e.g. the 
central limit theorem, minimum space-bandwidth product) as well as several 
application areas such as edge finding and scale space analysis. The PSF and 
transfer function for the continuous space Gaussian are given in Table 4–T6. The 
Gaussian filter is separable: 
 

  
( ) 22

22 22
2

1 1

1 1( , ) ( , ) •
2 2

( ) • ( )

yx

D

D D

h x y g x y e e

g x g y

σσ

πσ πσ

⎛ ⎞
−− ⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞ ⎜ ⎟= = ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
=

 (93) 

 
There are four distinct ways to implement the Gaussian: 
 
– Convolution using a finite number of samples (No) of the Gaussian as the 
convolution kernel. It is common to choose No = ⎡3σ⎤ or ⎡5σ⎤. 
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 (94) 

 
– Repetitive convolution using a uniform filter as the convolution kernel. 
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The actual implementation (in each dimension) is usually of the form: 
 
  [ ] (( [ ] [ ]) [ ]) [ ]c n a n u n u n u n= ⊗ ⊗ ⊗  (96) 
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This implementation makes use of the approximation afforded by the central limit 
theorem. For a desired σ with eq. (96), we use No = ⎡σ⎤ although this severely 
restricts our choice of σ’s to integer values. 
 
– Multiplication in the frequency domain. As the Fourier transform of a Gaussian 
is a Gaussian (see Table –T.6), this means that it is straightforward to prepare a 
filter H(Ω,Ψ) = G2D(Ω,Ψ) for use with eq. (92). To avoid truncation effects in the 
frequency domain due to the infinite extent of the Gaussian it is important to 
choose a σ that is sufficiently large. Choosing σ > k/π where k = 3 or 4 will 
usually be sufficient. 
 
– Use of a recursive filter implementation. A recursive filter has an infinite 
impulse response and thus an infinite support. The separable Gaussian filter can 
be implemented [26] by applying the following recipe in each dimension when σ 
≥ 0.5. 
 
 i) Choose the σ based on the desired goal of the filtering; 
 ii) Determine the parameter q based on eq. (98); 
 iii) Use eq. (99) to determine the filter coefficients {b0,b1,b2,b3,B}; (97) 
 iv) Apply the forward difference equation, eq. (100); 
 v) Apply the backward difference equation, eq. (101); 
 
The relation between the desired σ and q is given by: 
 

  
.98711 0.96330 2.5

3.97156 4.14554 1 .26891 0.5 2.5
q

σ σ

σ σ
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 (98) 

 
The filter coefficients {b0,b1,b2,b3,B} are defined by: 
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 (99) 

 
The one-dimensional forward difference equation takes an input row (or column) 
a[n] and produces an intermediate output result w[n] given by: 
 
  ( )1 2 3 0[ ] [ ] [ 1] [ 2] [ 3] /w n Ba n b w n b w n b w n b= + − + − + −  (100) 

 



…Image Processing Fundamentals 

 
  58 

The one-dimensional backward difference equation takes the intermediate result 
w[n] and produces the output c[n] given by: 
 
  ( )1 2 3 0[ ] [ ] [ 1] [ 2] [ 3] /c n Bw n b c n b c n b c n b= + + + + + +  (101) 

 
The forward equation is applied from n = 0 up to n = N – 1 while the backward 
equation is applied from n = N – 1 down to n = 0. 
 
The relative performance of these various implementation of the Gaussian filter 
can be described as follows. Using the root-square error 

2[ | ] [ ]n g n h nσ+∞
=−∞

−∑  between a true, infinite-extent Gaussian, g[n|σ], and an 
approximated Gaussian, h[n], as a measure of accuracy, the various algorithms 
described above give the results shown in Figure. 28a. The relative speed of the 
various algorithms in shown in Figure 28b. 
 
The root-square error measure is extremely conservative and thus all filters, with 
the exception of “Uniform 3×” for large σ, are sufficiently accurate. The recursive 
implementation is the fastest independent of σ; the other implementations can be 
significantly slower. The FFT implementation, for example, is 3.1 times slower 
for N=256 . Further, the FFT requires that N be a highly composite number. 
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Figure 28: Comparison of various Gaussian algorithms with N=256. 
The legend is spread across both graphs 

 
• Other – The Fourier domain approach offers the opportunity to implement a 
variety of smoothing algorithms. The smoothing filters will then be lowpass 
filters. In general it is desirable to use a lowpass filter that has zero phase so as 
not to produce phase distortion when filtering the image. The importance of phase 
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was illustrated in Figures 5 and 23. When the frequency domain characteristics 
can be represented in an analytic form, then this can lead to relatively 
straightforward implementations of H(Ω,Ψ). Possible candidates include the 
lowpass filters “Airy” and “Exponential Decay” found in Table 4–T.5 and Table 
4–T.8, respectively. 

9.4.2 Non-Linear Filters 
A variety of smoothing filters have been developed that are not linear. While they 
cannot, in general, be submitted to Fourier analysis, their properties and domains 
of application have been studied extensively. 
 
• Median filter – The median statistic was described in Section 3.5.2. A median 
filter is based upon moving a window over an image (as in a convolution) and 
computing the output pixel as the median value of the brightnesses within the 
input window. If the window is J × K in size we can order the J•K pixels in 
brightness value from smallest to largest. If J•K is odd then the median will be the 
(J•K+1)/2 entry in the list of ordered brightnesses. Note that the value selected 
will be exactly equal to one of the existing brightnesses so that no roundoff error 
will be involved if we want to work exclusively with integer brightness values. 
The algorithm as it is described above has a generic complexity per pixel of 
O(J•K•log(J•K)). Fortunately, a fast algorithm (due to Huang et al. [23]) exists 
that reduces the complexity to O(K) assuming J ≥ K. 
 
A useful variation on the theme of the median filter is the percentile filter. Here 
the center pixel in the window is replaced not by the 50% (median) brightness 
value but rather by the p% brightness value where p% ranges from 0% (the 
minimum filter) to 100% (the maximum filter). Values other then (p=50)% do not, 
in general, correspond to smoothing filters. 
 
• Kuwahara filter – Edges play an important role in our perception of images (see 
Figure 15) as well as in the analysis of images. As such it is important to be able 
to smooth images without disturbing the sharpness and, if possible, the position of 
edges. A filter that accomplishes this goal is termed an edge-preserving filter and 
one particular example is the Kuwahara filter [27]. Although this filter can be 
implemented for a variety of different window shapes, the algorithm will be 
described for a square window of size J = K = 4L + 1 where L is an integer. The 
window is partitioned into four regions as shown in Figure 29. 
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Region 2}
Region 1

Region 3}
Region 4

Center Pixel

 
Figure 29: Four, square regions defined for the Kuwahara filter. In 
this example L=1 and thus J=K=5. Each region is [(J+1)/2] × 
[(K+1)/2]. 

 
In each of the four regions (i=1,2,3,4), the mean brightness, mi in eq. (34), and the 
variancei, si2 in eq. (36), are measured. The output value of the center pixel in the 
window is the mean value of that region that has the smallest variance. 

9.4.3 Summary of Smoothing Algorithms 
The following table summarizes the various properties of the smoothing 
algorithms presented above. The filter size is assumed to be bounded by a 
rectangle of J × K where, without loss of generality, J ≥ K. The image size is 
N × N. 
 

Algorithm Domain Type Support Separable / Incremental Complexity/pixel 

Uniform Space Linear Square Y / Y O(constant) 
Uniform Space Linear Circular N / Y O(K) 
Triangle Space Linear Square Y / N O(constant) ª 
Triangle Space Linear Circular N / N O(K) ª 
Gaussian Space Linear ∞ ª Y / N O(constant) ª 
Median Space Non-Linear Square N / Y O(K) ª 
Kuwahara Space Non-Linear Square ª N / N O(J• K) 
Other Frequency Linear — — / — O(logN) 

Table 13: Characteristics of smoothing filters. ªSee text for additional explanation. 
 
Examples of the effect of various smoothing algorithms are shown in Figure 30. 
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 a) Original b) Uniform 5 × 5 c) Gaussian (σ = 2.5) 

   
 d) Median 5 × 5 e) Kuwahara 5 × 5 

Figure 30: Illustration of various linear and non-linear smoothing filters 

9.5 DERIVATIVE-BASED OPERATIONS 
Just as smoothing is a fundamental operation in image processing so is the ability 
to take one or more spatial derivatives of the image. The fundamental problem is 
that, according to the mathematical definition of a derivative, this cannot be done. 
A digitized image is not a continuous function a(x,y) of the spatial variables but 
rather a discrete function a[m,n] of the integer spatial coordinates. As a result the 
algorithms we will present can only be seen as approximations to the true spatial 
derivatives of the original spatially-continuous image. 
 
Further, as we can see from the Fourier property in eq. (27), taking a derivative 
multiplies the signal spectrum by either u or v. This means that high frequency 
noise will be emphasized in the resulting image. The general solution to this 
problem is to combine the derivative operation with one that suppresses high 
frequency noise, in short, smoothing in combination with the desired derivative 
operation. 

9.5.1 First Derivatives 
As an image is a function of two (or more) variables it is necessary to define the 
direction in which the derivative is taken. For the two-dimensional case we have 
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the horizontal direction, the vertical direction, or an arbitrary direction which can 
be considered as a combination of the two. If we use hx to denote a horizontal 
derivative filter (matrix), hy to denote a vertical derivative filter (matrix), and hθ 
to denote the arbitrary angle derivative filter (matrix), then: 
 
  [ ] [ ]cos • sin • yθ θ θ ⎡ ⎤= + ⎣ ⎦xh h h  (102) 

 
• Gradient filters – It is also possible to generate a vector derivative description as 
the gradient, ∇a[m,n], of an image: 
 

  ( ) ( )x y x x y y
a aa i i h a i h a i
x y

∂ ∂
∂ ∂

∇ = + = ⊗ + ⊗
G G G G

 (103) 

 
where  and x yi i

G G
 are unit vectors in the horizontal and vertical direction, 

respectively. This leads to two descriptions: 
 

 Gradient magnitude –  ( ) ( )22
x ya h a h a∇ = ⊗ + ⊗  (104) 

 
and 
 

 Gradient direction – ( ) ( )
( )arctan y

x

h a
a h aψ

⎧ ⎫⊗⎪ ⎪∇ = ⎨ ⎬⊗⎪ ⎪⎩ ⎭
 (105) 

 
The gradient magnitude is sometimes approximated by: 
 
 Approx. Gradient magnitude –  x ya h a h a∇ ≅ ⊗ + ⊗  (106) 

 
The final results of these calculations depend strongly on the choices of hx and 
hy. A number of possible choices for (hx, hy) will now be described. 
 
• Basic derivative filters – These filters are specified by: 
 

  
[ ] [ ]

[ ] [ ]

) 1 1

) 1 0 1

t
y

t
y

i

ii

⎡ ⎤= = −⎣ ⎦

⎡ ⎤= = −⎣ ⎦

x

x

h h

h h
 (107) 

 
where “t” denotes matrix transpose. These two filters differ significantly in their 
Fourier magnitude and Fourier phase characteristics. For the frequency range 0 ≤ 
Ω ≤ π, these are given by: 
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[ ] [ ] ( ) ( )

[ ] [ ]

) 1 1 ( ) 2 sin 2 ; ( ) 2

) 1 0 1 ( ) 2 sin ; ( ) / 2

i H

ii H

ϕ π

ϕ π

= − ↔ Ω = Ω Ω = − Ω

= − ↔ Ω = Ω Ω =

h

h

F

F
 (108) 

 
The second form (ii) gives suppression of high frequency terms (Ω ≈ π) while the 
first form (i) does not. The first form leads to a phase shift; the second form does 
not. 
 
• Prewitt gradient filters – These filters are specified by: 
 

  

[ ] [ ]

[ ]

1 0 1 1
1 11 0 1 1 • 1 0 1
3 3

1 0 1 1

1 1 1 1
1 10 0 0 0 • 1 1 1
3 3

1 1 1 1

x

y

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ = =⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

h

h

 (109) 

 
Both hx and hy are separable. Beyond the computational implications are the 
implications for the analysis of the filter. Each filter takes the derivative in one 
direction using eq. (107)ii and smoothes in the orthogonal direction using a one-
dimensional version of a uniform filter as described in Section 9.4.1. 
 
• Sobel gradient filters – These filters are specified by: 
 

  

[ ] [ ]

[ ]

1 0 1 1
1 12 0 2 2 • 1 0 1
4 4

1 0 1 1

1 2 1 1
1 10 0 0 0 • 1 2 1
4 4

1 2 1 1

x

y

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤ = =⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

h

h

 (110) 

 
Again, hx and hy are separable. Each filter takes the derivative in one direction 
using eq. (107)ii and smoothes in the orthogonal direction using a one-
dimensional version of a triangular filter as described in Section 9.4.1. 
 
• Alternative gradient filters – The variety of techniques available from one-
dimensional signal processing for the design of digital filters offers us powerful 
tools for designing one-dimensional versions of hx and hy. Using the Parks-
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McClellan filter design algorithm, for example, we can choose the frequency 
bands where we want the derivative to be taken and the frequency bands where 
we want the noise to be suppressed. The algorithm will then produce a real, odd 
filter with a minimum length that meets the specifications. 
 
As an example, if we want a filter that has derivative characteristics in a passband 
(with weight 1.0) in the frequency range 0.0 ≤ Ω ≤ 0.3π and a stopband (with 
weight 3.0) in the range 0.32π ≤ Ω ≤ π, then the algorithm produces the following 
optimized seven sample filter: 
 

 [ ] [ ]1
3571 8212 15580 0 15580 8212 3571

16348x y
t

= = − − −⎡ ⎤⎣ ⎦h h  (111) 

 
The gradient can then be calculated as in eq. (103). 
 
• Gaussian gradient filters – In modern digital image processing one of the most 
common techniques is to use a Gaussian filter (see Section 9.4.1) to accomplish 
the required smoothing and one of the derivatives listed in eq. (107). Thus, we 
might first apply the recursive Gaussian in eq. (97) followed by eq. (107)ii to 
achieve the desired, smoothed derivative filters hx and hy. Further, for 
computational efficiency, we can combine these two steps as: 
 

( ) ( )

( )

1 2 3 0

1 2 3 0

[ ] [ 1] [ 1] [ 1] [ 2] [ 3] /
2

[ ] [ ] [ 1] [ 2] [ 3] /

Bw n a n a n b w n b w n b w n b

c n Bw n b c n b c n b c n b

⎛ ⎞= + − − + − + − + −⎜ ⎟
⎝ ⎠

= + + + + + +
 (112) 

 
where the various coefficients are defined in eq. (99). The first (forward) equation 
is applied from n = 0 up to n = N – 1 while the second (backward) equation is 
applied from n = N – 1 down to n = 0. 
 
• Summary – Examples of the effect of various derivative algorithms on a noisy 
version of Figure 30a (SNR = 29 dB) are shown in Figure 31a-c. The effect of 
various magnitude gradient algorithms on Figure 30a are shown in Figure 32a-c. 
After processing, all images are contrast stretched as in eq. (77) for display 
purposes. 
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 (a) (b) (c) 
Simple Derivative – eq. (107)ii Sobel – eq. (110) Gaussian (σ=1.5) & eq. (107)ii 

Figure 31: Application of various algorithms for hx – the horizontal derivative. 

   
 (a) (b) (c) 

Simple Derivative – eq. (107)ii Sobel – eq. (110) Gaussian (σ=1.5) & eq. (107)ii 

Figure 32: Various algorithms for the magnitude gradient, |∇a|. 
 
The magnitude gradient takes on large values where there are strong edges in the 
image. Appropriate choice of σ in the Gaussian-based derivative (Figure 31c) or 
gradient (Figure 32c) permits computation of virtually any of the other forms – 
simple, Prewitt, Sobel, etc. In that sense, the Gaussian derivative represents a 
superset of derivative filters. 

9.5.2 Second Derivatives 
It is, of course, possible to compute higher-order derivatives of functions of two 
variables. In image processing, as we shall see in Sections 10.2.1 and 10.3.2, the 
second derivatives or Laplacian play an important role. The Laplacian is defined 
as: 

  ( ) ( )
2 2

2
2 22 2 x y

a aa h a h a
x y

∂ ∂
∂ ∂

∇ = + = ⊗ + ⊗  (113) 

 
where h2x and h2y are second derivative filters. In the frequency domain we have 
for the Laplacian filter (from eq. (27)): 
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  ( )2 2 2 ( , )a u v A u v∇ ↔ − +
F

 (114) 

 
The transfer function of a Laplacian corresponds to a parabola H(u,v) = –(u2 + 
v2). 
 
• Basic second derivative filter – This filter is specified by: 
 

  [ ] [ ]2 2 1 2 1
t

x y⎡ ⎤= = −⎣ ⎦h h  (115) 

 
and the frequency spectrum of this filter, in each direction, is given by: 
 
  { } ( )( ) 1 2 1 2 1 cosFH Ω = − = − − Ω  (116) 

 
over the frequency range –π ≤ Ω ≤ π. The two, one-dimensional filters can be 
used in the manner suggested by eq. (113) or combined into one, two-dimensional 
filter as: 

  [ ]
0 1 0
1 4 1
0 1 0

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

h  (117) 

and used as in eq. (84). 
 
• Frequency domain Laplacian – This filter is the implementation of the general 
recipe given in eq. (92) and for the Laplacian filter takes the form: 
 
  ( ) ( ){ }1 2 2[ , ] ,c m n A−= − Ω + Ψ Ω ΨF  (118) 

 
• Gaussian second derivative filter – This is the straightforward extension of the 
Gaussian first derivative filter described above and can be applied independently 
in each dimension. We first apply Gaussian smoothing with a σ chosen on the 
basis of the problem specification. We then apply the desired second derivative 
filter eq. (115) or eq. (118). Again there is the choice among the various Gaussian 
smoothing algorithms. 
 
For efficiency, we can use the recursive implementation and combine the two 
steps—smoothing and derivative operation—as follows: 
 

 
( ) ( )
( ) ( )

1 2 3 0

1 2 3 0

[ ] [ ] [ 1] [ 1] [ 2] [ 3] /

[ ] [ 1] [ ] [ 1] [ 2] [ 3] /

w n B a n a n b w n b w n b w n b

c n B w n w n b c n b c n b c n b

= − − + − + − + −

= + − + + + + + +
 (119) 
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where the various coefficients are defined in eq. (99). Again, the first (forward) 
equation is applied from n = 0 up to n = N – 1 while the second (backward) 
equation is applied from n = N – 1 down to n = 0. 
 
• Alternative Laplacian filters – Again one-dimensional digital filter design 
techniques offer us powerful methods to create filters that are optimized for a 
specific problem. Using the Parks-McClellan design algorithm, we can choose the 
frequency bands where we want the second derivative to be taken and the 
frequency bands where we want the noise to be suppressed. The algorithm will 
then produce a real, even filter with a minimum length that meets the 
specifications. 
 
As an example, if we want a filter that has second derivative characteristics in a 
passband (with weight 1.0) in the frequency range 0.0 ≤ Ω ≤ 0.3π and a stopband 
(with weight 3.0) in the range 0.32π ≤ Ω ≤ π, then the algorithm produces the 
following optimized seven sample filter: 
 

 [ ] [ ]1
3448 10145 1495 16383 1495 10145 3448

11043x y
t

= = − − −⎡ ⎤⎣ ⎦h h  (120) 

 
The Laplacian can then be calculated as in eq. (113). 
 
• SDGD filter – A filter that is especially useful in edge finding and object 
measurement is the Second-Derivative-in-the-Gradient-Direction (SDGD) filter. 
This filter uses five partial derivatives: 
 

  

2 2

2

2 2

2

xx xy x

yx yy y

a a aA A A
x y xx

a a aA A A
x y yy

∂ ∂ ∂
∂ ∂ ∂∂

∂ ∂ ∂
∂ ∂ ∂∂

= = =

= = =

 (121) 

 
Note that Axy = Ayx which accounts for the five derivatives. 
 
This SDGD combines the different partial derivatives as follows: 
 

  
2 2

2 2

2
( ) xx x xy x y yy y

x y

A A A A A A A
SDGD a

A A
+ +

=
+

 (122) 

 
As one might expect, the large number of derivatives involved in this filter 
implies that noise suppression is important and that Gaussian derivative filters—
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both first and second order—are highly recommended if not required [28]. It is 
also necessary that the first and second derivative filters have essentially the same 
passbands and stopbands. This means that if the first derivative filter h1x is given 
by [1 0 -1] (eq. (107)ii) then the second derivative filter should be given by h1x ⊗ 
h1x = h2x = [1 0 –2 0 1]. 
 
• Summary – The effects of the various second derivative filters are illustrated in 
Figure 33a-e. All images were contrast stretched for display purposes using eq. 
(78) and the parameters 1% and 99%. 
 

   
 (a) (b) (c) 

 Laplacian – eq. (117) Fourier parabola – eq. (118) Gaussian (σ=1.0) & eq. (117) 

   
 (d) (e) 

 “Designer” – eq. (120) SDGD (σ=1.0) – eq. (122) 

Figure 33: Various algorithms for the Laplacian and Laplacian-related filters. 

9.5.3 Other Filters 
An infinite number of filters, both linear and non-linear, are possible for image 
processing. It is therefore impossible to describe more than the basic types in this 
section. The description of others can be found be in the reference literature (see 
Section 11) as well as in the applications literature. It is important to use a small 
consistent set of test images that are relevant to the application area to understand 
the effect of a given filter or class of filters. The effect of filters on images can be 
frequently understood by the use of images that have pronounced regions of 
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varying sizes to visualize the effect on edges or by the use of test patterns such as 
sinusoidal sweeps to visualize the effects in the frequency domain. The former 
have been used above (Figures 21, 23, and 30–33) and the latter are demonstrated 
below in Figure 34. 
 

   
 (a) Lowpass filter (b) Bandpass filter (c) Highpass filter 

Figure 34: Various convolution algorithms applied to sinusoidal test image. 

9.6 MORPHOLOGY-BASED OPERATIONS 
In Section 1 we defined an image as an (amplitude) function of two, real 
(coordinate) variables a(x,y) or two, discrete variables a[m,n]. An alternative 
definition of an image can be based on the notion that an image consists of a set 
(or collection) of either continuous or discrete coordinates. In a sense the set 
corresponds to the points or pixels that belong to the objects in the image. This is 
illustrated in Figure 35 which contains two objects or sets A and B. Note that the 
coordinate system is required. For the moment we will consider the pixel values 
to be binary as discussed in Section 2.1 and 9.2.1. Further we shall restrict our 
discussion to discrete space (Z2). More general discussions can be found in [6, 7, 
29]. 
 

n

m

A

B
 

Figure 35: A binary image containing two object sets A and B. 
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The object A consists of those pixels α that share some common property: 
 
 Object – { }( ) TRUEpropertyα α= ==A  (123) 

 
As an example, object B in Figure 35 consists of {[0,0], [1,0], [0,1]}. 
 
The background of A is given by Ac (the complement of A) which is defined as 
those elements that are not in A: 
 
 Background – { }c α α= ∉A A  (124) 

 
In Figure 3 we introduced the concept of neighborhood connectivity. We now 
observe that if an object A is defined on the basis of C–connectivity (C=4, 6, or 8) 
then the background Ac has a connectivity given by 12 – C. The necessity for this 
is illustrated for the Cartesian grid in Figure 36. 

background object

 
Figure 36: A binary image requiring careful definition of object and 
background connectivity. 

9.6.1 Fundamental definitions 
The fundamental operations associated with an object are the standard set 
operations union, intersection, and complement {∪, ∩, c} plus translation: 
 
• Translation – Given a vector x and a set A, the translation, A + x, is defined as: 
 
  { }α α+ = + ∈x xA A  (125) 

 
Note that, since we are dealing with a digital image composed of pixels at integer 
coordinate positions (Z2), this implies restrictions on the allowable translation 
vectors x. 
 
The basic Minkowski set operations—addition and subtraction—can now be 
defined. First we note that the individual elements that comprise B are not only 
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pixels but also vectors as they have a clear coordinate position with respect to 
[0,0]. Given two sets A and B: 
 
 Minkowski addition – ( )

β
β

∈

= +∪⊕
B

A B A  (126) 

 
 Minkowski subtraction – ( )

β
β

∈

= +∩
B

A B A  (127) 

9.6.2 Dilation and Erosion 
From these two Minkowski operations we define the fundamental mathematical 
morphology operations dilation and erosion: 
 
 Dilation – ( )( , )D

β
β

∈

= = +∪⊕
B

A B A B A  (128) 

 
 Erosion – ( , ) ( )E

β
β

∈

= = −� ∩
B

A B A B A  (129) 

 
where { }β β= − ∈�B B . These two operations are illustrated in Figure 37 for the 

objects defined in Figure 35. 
 

 (a) Dilation D(A,B) (b) Erosion E(A,B) 

Figure 37: A binary image containing two object sets A and B. The three pixels 
in B are “color-coded” as is their effect in the result. 
 
While either set A or B can be thought of as an “image”, A is usually considered 
as the image and B is called a structuring element. The structuring element is to 
mathematical morphology what the convolution kernel is to linear filter theory. 
 
Dilation, in general, causes objects to dilate or grow in size; erosion causes 
objects to shrink. The amount and the way that they grow or shrink depend upon 
the choice of the structuring element. Dilating or eroding without specifying the 

B

E(A,B)

~B

D(A,B)
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structural element makes no more sense than trying to lowpass filter an image 
without specifying the filter. The two most common structuring elements (given a 
Cartesian grid) are the 4-connected and 8-connected sets, N4 and N8. They are 
illustrated in Figure 38. 
 

 

n

m

 

n

m

 
 (a) N4 (b) N8 

Figure 38: The standard structuring elements N4 and N8. 
 
Dilation and erosion have the following properties: 
 
 Commutative – ( , ) ( , )D D= = =⊕ ⊕A B A B B A B A  (130) 
 
 Non-Commutative – ( , ) ( , )E E≠A B B A  (131) 
 
 Associative – ( ) ( )=⊕ ⊕ ⊕ ⊕A B C A B C  (132) 

 
 Translation Invariance – ( ) ( )+ = +x x⊕ ⊕A B A B  (133) 

 

 Duality – 
( , ) ( , )

( , ) ( , )

c c

c c

D E

E D

=

=

�

�
A B A B

A B A B
 (134) 

 
With A as an object and Ac as the background, eq. (134) says that the dilation of 
an object is equivalent to the erosion of the background. Likewise, the erosion of 
the object is equivalent to the dilation of the background. 
 
Except for special cases: 
 
 Non-Inverses – ( ( , ), ) ( ( , ), )D E E D≠ ≠A B B A A B B  (135) 
 
Erosion has the following translation property: 
 
 Translation Invariance – ( ) ( ) ( )+ = + = +x x xA B A B A B  (136) 
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Dilation and erosion have the following important properties. For any arbitrary 
structuring element B and two image objects A1 and A2 such that A1 ⊂ A2 (A1 is a 
proper subset of A2): 
 

 Increasing in A – 1 2

1 2

( , ) ( , )
( , ) ( , )

D D
E E

⊂
⊂

A B A B
A B A B

 (137) 

 
For two structuring elements B1 and B2 such that B1 ⊂ B2: 
 
 Decreasing in B – 1 2( , ) ( , )E E⊃A B A B  (138) 
 
The decomposition theorems below make it possible to find efficient 
implementations for morphological filters.  
 
 Dilation – ( ) ( ) ( ) ( )∪ = ∪ = ∪⊕ ⊕ ⊕ ⊕A B C A B A C B C A  (139) 

 
 Erosion – ( ) ( ) ( )∪ = ∩A B C A B A C  (140) 
 
 Erosion – ( ) ( )= ⊕A B C A B C  (141) 
 
 Multiple Dilations – ( )

 timesn

n = "�����	����
⊕ ⊕ ⊕ ⊕B B B B B  (142) 

 
An important decomposition theorem is due to Vincent [30]. First, we require 
some definitions. A convex set (in R2) is one for which the straight line joining 
any two points in the set consists of points that are also in the set. Care must 
obviously be taken when applying this definition to discrete pixels as the concept 
of a “straight line” must be interpreted appropriately in Z2. A set is bounded if 
each of its elements has a finite magnitude, in this case distance to the origin of 
the coordinate system. A set is symmetric if B= �B . The sets N4 and N8 in Figure 
38 are examples of convex, bounded, symmetric sets. 
 
Vincent’s theorem, when applied to an image consisting of discrete pixels, states 
that for a bounded, symmetric structuring element B that contains no holes and 
contains its own center, [0,0]∈ B : 
 
  ( )( , )D ∂= = ∪⊕ ⊕A B A B A A B  (143) 

 
where ∂A is the contour of the object. That is, ∂A is the set of pixels that have a 
background pixel as a neighbor. The implication of this theorem is that it is not 
necessary to process all the pixels in an object in order to compute a dilation or 
(using eq. (134)) an erosion. We only have to process the boundary pixels. This 
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also holds for all operations that can be derived from dilations and erosions. The 
processing of boundary pixels instead of object pixels means that, except for 
pathological images, computational complexity can be reduced from O(N2) to 
O(N) for an N × N image. A number of “fast” algorithms can be found in the 
literature that are based on this result [30-32]. The simplest dilation and erosion 
algorithms are frequently described as follows.  
 
• Dilation – Take each binary object pixel (with value “1”) and set all background 
pixels (with value “0”) that are C-connected to that object pixel to the value “1”. 
 
• Erosion – Take each binary object pixel (with value “1”) that is C-connected to 
a background pixel and set the object pixel value to “0”. 
 
Comparison of these two procedures to eq. (143) where B = NC=4 or NC=8 shows 
that they are equivalent to the formal definitions for dilation and erosion. The 
procedure is illustrated for dilation in Figure 39. 
 

   
 (a) B = N4 (b) B= N8 

Figure 39: Illustration of dilation. Original object pixels are in gray; 
pixels added through dilation are in black. 

9.6.3 Boolean Convolution 
An arbitrary binary image object (or structuring element) A can be represented as: 
 

  [ , ] • [ , ]
k j

a j k m j n kδ
+∞ +∞

=−∞ =−∞
↔ − −∑ ∑A  (144) 

 
where Σ and • are the Boolean operations OR and AND as defined in eqs. (81) and 
(82), a[j,k] is a characteristic function that takes on the Boolean values “1” and 
“0” as follows: 

  
1

[ , ]
0

a
a j k

a
∈⎧

= ⎨ ∉⎩

A
A

 (145) 
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and δ[m,n] is a Boolean version of the Dirac delta function that takes on the 
Boolean values “1” and “0” as follows: 
 

  
1 0

[ , ]
0

j k
j k

otherwise
δ

= =⎧
= ⎨

⎩
 (146) 

 
Dilation for binary images can therefore be written as: 
 

  ( , ) [ , ] • [ , ]
k j

D a j k b m j n k
+∞ +∞

=−∞ =−∞
= − − = ⊗∑ ∑A B a b  (147) 

  
which, because Boolean OR and AND are commutative, can also be written as  
 

  ( , ) [ , ] • [ , ] ( , )
k j

D a m j n k b j k D
+∞ +∞

=−∞ =−∞
= − − = ⊗ =∑ ∑A B b a B A  (148) 

  
Using De Morgan’s theorem: 
 
  ( ) ( )• and •a b a b a b a b+ = = +  (149) 

  
on eq. (148) together with eq. (134), erosion can be written as: 
 

  ( )( , ) [ , ] [ , ]
k j

E a m j n k b j k
+∞ +∞

=−∞ =−∞

= − − + − −∏ ∏A B  (150) 

 
Thus, dilation and erosion on binary images can be viewed as a form of 
convolution over a Boolean algebra. 
 
In Section 9.3.2 we saw that, when convolution is employed, an appropriate 
choice of the boundary conditions for an image is essential. Dilation and 
erosion—being a Boolean convolution—are no exception. The two most common 
choices are that either everything outside the binary image is “0” or everything 
outside the binary image is “1”. 

9.6.4 Opening and Closing 
We can combine dilation and erosion to build two important higher order 
operations: 
 
 Opening – ( , ) ( ( , ), )O D E= =DA B A B A B B  (151) 
 
 Closing – ( , ) ( ( , ), )C E D= =• � �A B A B A B B  (152) 



…Image Processing Fundamentals 

 
  76 

 
The opening and closing have the following properties: 
 

 Duality – 
( , ) ( , )

( , ) ( , )

c c

c c

C O

O C

=

=

A B A B

A B A B
 (153) 

 

 Translation – 
( , ) ( , )
( , ) ( , )

O O
C C

+ = +
+ = +

x x
x x

A B A B
A B A B

 (154) 

 
For the opening with structuring element B and images A, A1, and A2, where A1 is 
a subimage of A2 (A1 ⊆ A2): 
 
 Antiextensivity – ( , )O ⊆A B A  (155) 
 
 Increasing monotonicity – 1 2( , ) ( , )O O⊆A B A B  (156) 
 
 Idempotence – ( ( , ), ) ( , )O O O=A B B A B  (157) 
 
For the closing with structuring element B and images A, A1, and A2, where A1 is 
a subimage of A2 (A1 ⊆ A2): 
 
 Extensivity – ( , )C⊆A A B  (158) 
 
 Increasing monotonicity – 1 2( , ) ( , )C C⊆A B A B  (159) 
 
 Idempotence – ( ( , ), ) ( , )C C C=A B B A B  (160) 
 
The two properties given by eqs. (155) and (84) are so important to mathematical 
morphology that they can be considered as the reason for defining erosion with 
�B  instead of B in eq. (129). 

9.6.5 Hit–and–Miss operation 
The hit-or-miss operator was defined by Serra but we shall refer to it as the hit-
and-miss operator and define it as follows. Given an image A and two structuring 
elements B1 and B2, the set definition and Boolean definition are: 
 

 Hit-and-Miss – 

( ) ( )

( ) ( )

1 2

1 2

1 2

, ,

( , , )

, • ,

cE E

HitMiss

E E

⎧ ∩
⎪⎪= ⎨
⎪
⎪⎩

A B A B

A B B

A B A B

 (161) 
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where B1 and B2 are bounded, disjoint structuring elements. (Note the use of the 
notation from eq. (81).) Two sets are disjoint if B1 ∩ B2 = ∅, the empty set. In an 
important sense the hit-and-miss operator is the morphological equivalent of 
template matching, a well-known technique for matching patterns based upon 
cross-correlation. Here, we have a template B1 for the object and a template B2 
for the background. 

9.6.6 Summary of the basic operations 
The results of the application of these basic operations on a test image are 
illustrated below. In Figure 40 the various structuring elements used in the 
processing are defined. The value “–” indicates a “don’t care”. All three 
structuring elements are symmetric. 

 8

1 1 1
1 1 1
1 1 1

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

B N  1

– – –
– 1 –
– – –

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

B  2

1
1 1

1

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

B  

 (a) (b) (c) 

Figure 40: Structuring elements B, B1, and B2 that are 3 × 3 and symmetric. 
 
The results of processing are shown in Figure 41 where the binary value “1” is 
shown in black and the value “0” in white. 
 

   

 a) Image A b) Dilation with 2B c) Erosion with 2B 
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 d) Opening with 2B e) Closing with 2B f) 8-c contour: A–E(A,N8) 

Figure 41: Examples of various mathematical morphology operations. 
 
The opening operation can separate objects that are connected in a binary image. 
The closing operation can fill in small holes. Both operations generate a certain 
amount of smoothing on an object contour given a “smooth” structuring element. 
The opening smoothes from the inside of the object contour and the closing 
smoothes from the outside of the object contour. The hit-and-miss example has 
found the 4-connected contour pixels. An alternative method to find the contour is 
simply to use the relation: 
 
 4-connected contour – ( ),E∂ = − 8A A A N  (162) 

or 
 8-connected contour – ( ),E∂ = − 4A A A N  (163) 

9.6.7 Skeleton 
The informal definition of a skeleton is a line representation of an object that is: 
 
 i) one-pixel thick, 
 ii) through the “middle” of the object, and, (164) 
 iii) preserves the topology of the object. 
 
These are not always realizable. Figure 42 shows why this is the case. 

   
 (a) (b) 

Figure 42: Counterexamples to the three requirements. 
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In the first example, Figure 42a, it is not possible to generate a line that is one 
pixel thick and in the center of an object while generating a path that reflects the 
simplicity of the object. In Figure 42b it is not possible to remove a pixel from the 
8-connected object and simultaneously preserve the topology—the notion of 
connectedness—of the object. Nevertheless, there are a variety of techniques that 
attempt to achieve this goal and to produce a skeleton. 
 
A basic formulation is based on the work of Lantuéjoul [33]. The skeleton subset 
Sk(A) is defined as: 
 
 Skeleton subsets – ( ) [ ]( , ) ( , ) 0,1,k E k E k k K= − = …DS A A B A B B  (165) 

 
where K is the largest value of k before the set Sk(A) becomes empty. (From eq. 
(156), ( , ) ( , )E k E k⊆DA B B A B ). The structuring element B is chosen (in Z2) to 
approximate a circular disc, that is, convex, bounded and symmetric. The skeleton 
is then the union of the skeleton subsets: 
 

 Skeleton – ( ) ( )
0

K

k
k=

= ∪S A S A  (166) 

 
An elegant side effect of this formulation is that the original object can be 
reconstructed given knowledge of the skeleton subsets Sk(A), the structuring 
element B, and K: 
 

 Reconstruction – ( )( )
0

K

k
k

S k
=

= ∪ ⊕A A B  (167) 

 
This formulation for the skeleton, however, does not preserve the topology, a 
requirement described in eq. (164). 
 
An alternative point-of-view is to implement a thinning, an erosion that reduces 
the thickness of an object without permitting it to vanish. A general thinning 
algorithm is based on the hit-and-miss operation: 
 
 Thinning – ( )1 2 1 2( , , ) , ,Thin HitMiss= −A B B A A B B  (168) 

 
Depending on the choice of B1 and B2, a large variety of thinning algorithms—
and through repeated application skeletonizing algorithms—can be implemented.  
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A quite practical implementation can be described in another way. If we restrict 
ourselves to a 3 × 3 neighborhood, similar to the structuring element B = N8 in 
Figure 40a, then we can view the thinning operation as a window that repeatedly 
scans over the (binary) image and sets the center pixel to “0” under certain 
conditions. The center pixel is not changed to “0” if and only if: 
 
 i) an isolated pixel is found (e.g. Figure 43a), 
 ii) removing a pixel would change the connectivity (e.g. Figure 43b), (169) 
 iii) removing a pixel would shorten a line (e.g. Figure 43c). 
 
As pixels are (potentially) removed in each iteration, the process is called a 
conditional erosion. Three test cases of eq. (169) are illustrated in Figure 43. In 
general all possible rotations and variations have to be checked. As there are only 
512 possible combinations for a 3 × 3 window on a binary image, this can be done 
easily with the use of a lookup table. 
 

    
 (a) Isolated pixel (b) Connectivity pixel (c) End pixel 

Figure 43: Test conditions for conditional erosion of the center pixel. 
 
If only condition (i) is used then each object will be reduced to a single pixel. This 
is useful if we wish to count the number of objects in an image. If only condition 
(ii) is used then holes in the objects will be found. If conditions (i + ii) are used 
each object will be reduced to either a single pixel if it does not contain a hole or 
to closed rings if it does contain holes. If conditions (i + ii + iii) are used then the 
“complete skeleton” will be generated as an approximation to eq. (56). 
Illustrations of these various possibilities are given in Figure 44a,b.  

9.6.8 Propagation 
It is convenient to be able to reconstruct an image that has “survived” several 
erosions or to fill an object that is defined, for example, by a boundary. The 
formal mechanism for this has several names including region-filling, 
reconstruction, and propagation. The formal definition is given by the following 
algorithm. We start with a seed image S(0), a mask image A, and a structuring 
element B. We then use dilations of S with structuring element B and masked by 
A in an iterative procedure as follows: 
 
 Iteration k – ( ) ( 1) ( ) ( 1)untilk k k k− −⎡ ⎤= ∩ =⎣ ⎦⊕S S B A S S  (170) 
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With each iteration the seed image grows (through dilation) but within the set 
(object) defined by A; S propagates to fill A. The most common choices for B are 
N4 or N8. Several remarks are central to the use of propagation. First, in a 
straightforward implementation, as suggested by eq. (170), the computational 
costs are extremely high. Each iteration requires O(N2) operations for an N × N 
image and with the required number of iterations this can lead to a complexity of 
O(N3). Fortunately, a recursive implementation of the algorithm exists in which 
one or two passes through the image are usually sufficient, meaning a complexity 
of O(N2). Second, although we have not paid much attention to the issue of 
object/background connectivity until now (see Figure 36), it is essential that the 
connectivity implied by B be matched to the connectivity associated with the 
boundary definition of A (see eqs. (162) and (163)). Finally, as mentioned earlier, 
it is important to make the correct choice (“0” or “1”) for the boundary condition 
of the image. The choice depends upon the application. 

9.6.9 Summary of skeleton and propagation 
The application of these two operations on a test image is illustrated in Figure 44. 
In Figure 44a,b the skeleton operation is shown with the endpixel condition (eq. 
(169)i+ii+iii) and without the end pixel condition (eq. (169) i+ii). The 
propagation operation is illustrated in Figure 44c. The original image, shown in 
light gray, was eroded by E(A,6N8) to produce the seed image shown in black. 
The original was then used as the mask image to produce the final result. The 
border value in both images was “0”. 
 
Several techniques based upon the use of skeleton and propagation operations in 
combination with other mathematical morphology operations will be given in 
Section 10.3.3. 
 

   
  Original = light gray   Mask = light 
gray 

 ↓ Skeleton = black ↓ ↓ Seed = black 
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a) Skeleton with end pixels b) Skeleton without end pixels c) Propagation with N8 
Condition eq. (169) i+ii+iii Condition eq. (169) i+ii 

Figure 44: Examples of skeleton and propagation. 

9.6.10 Gray-value morphological processing 
The techniques of morphological filtering can be extended to gray-level images. 
To simplify matters we will restrict our presentation to structuring elements, B, 
that comprise a finite number of pixels and are convex and bounded. Now, 
however, the structuring element has gray values associated with every coordinate 
position as does the image A. 
 
• Gray-level dilation, DG(•), is given by: 
 
 Dilation – 

[ ]
{ }

,
( , ) max [ , ] [ , ]G j k

D a m j n k b j k
∈

= − − +
B

A B  (171) 

 
For a given output coordinate [m,n], the structuring element is summed with a 
shifted version of the image and the maximum encountered over all shifts within 
the J × K domain of B is used as the result. Should the shifting require values of 
the image A that are outside the M x N domain of A, then a decision must be made 
as to which model for image extension, as described in Section 9.3.2, should be 
used. 
 
• Gray-level erosion, EG(•), is given by: 
 
 Erosion – 

[ ]
{ }

,
( , ) min [ , ] [ , ]G j k

E a m j n k b j k
∈

= + + −
B

A B  (172) 

 
The duality between gray-level erosion and gray-level dilation—the gray-level 
counterpart of eq. (134) is: 
 

 Duality – 
( , ) ( , )

( , ) ( , )
G G

G G

E D

D E

= − −

= − −

�

�
A B A B

A B A B
 (173) 
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where “ �A ” means that a[j,k] → a[–j,–k] and “ −A” means that a[j,k] → –a[j,k]. 
 
The definitions of higher order operations such as gray-level opening and gray-
level closing are: 
 
 Opening – ( , ) ( ( , ), )G G GO D E=A B A B B  (174) 
 
 Closing – ( )( )( , ) , ,G G GC E D= � �A B A B B  (175) 

 
The duality between gray-level opening and gray-level closing is: 
 

 Duality – 
( , ) ( , )
( , ) ( , )

G G

G G

O C
C O

= − −

= − −

A B A B
A B A B

 (176) 

 
The important properties that were discussed earlier such as idempotence, 
translation invariance, increasing in A, and so forth are also applicable to gray 
level morphological processing. The details can be found in Giardina and 
Dougherty [6]. 
 
In many situations the seeming complexity of gray level morphological 
processing is significantly reduced through the use of symmetric structuring 
elements where b[j,k] = b[–j,–k]. The most common of these is based on the use of 
B = constant = 0. For this important case and using again the domain [j,k] ∈ B, 
the definitions above reduce to: 
 
 Dilation – 

[ ]
{ } ( )

,
( , ) max [ , ] maxG j k

D a m j n k
∈

= − − =
B B

A B A  (177) 

 
 Erosion – 

[ ]
{ } ( )

,
( , ) min [ , ] minG j k

E a m j n k
∈

= + + =
B B

A B A  (178) 

 
 Opening – ( , ) max(min( ))GO =

BB
A B A  (179) 

 
 Closing – ( , ) min(max( ))GC =

B B
A B A  (180) 

 
The remarkable conclusion is that the maximum filter and the minimum filter, 
introduced in Section 9.4.2, are gray-level dilation and gray-level erosion for the 
specific structuring element given by the shape of the filter window with the gray 
value “0” inside the window. Examples of these operations on a simple one-
dimensional signal are shown in Figure 45. 
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 a) Effect of 15 × 1 dilation and erosion b) Effect of 15 × 1 opening and closing 

Figure 45: Morphological filtering of gray-level data. 
 
For a rectangular window, J × K, the two-dimensional maximum or minimum 
filter is separable into two, one-dimensional windows. Further, a one-dimensional 
maximum or minimum filter can be written in incremental form. (See Section 
9.3.2.) This means that gray-level dilations and erosions have a computational 
complexity per pixel that is O(constant), that is, independent of J and K. (See also 
Table 13.) 
 
The operations defined above can be used to produce morphological algorithms 
for smoothing, gradient determination and a version of the Laplacian. All are 
constructed from the primitives for gray-level dilation and gray-level erosion and 
in all cases the maximum and minimum filters are taken over the domain 
[ , ]j k ∈ B . 

9.6.11 Morphological smoothing 
This algorithm is based on the observation that a gray-level opening smoothes a 
gray-value image from above the brightness surface given by the function a[m,n] 
and the gray-level closing smoothes from below. We use a structuring element B 
based on eqs. (84) and (178). 
 

  
( , ) ( ( , ), )

min(max(max(min( ))))
G GMorphSmooth C O=

=

A B A B B
A

 (181) 

 
Note that we have suppressed the notation for the structuring element B under the 
max and min operations to keep the notation simple. Its use, however, is 
understood. 
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9.6.12 Morphological gradient 
For linear filters the gradient filter yields a vector representation (eq. (103)) with a 
magnitude (eq. (104)) and direction (eq. (105)). The version presented here 
generates a morphological estimate of the gradient magnitude: 
 

  
( )

( )

1( , ) ( , ) ( , )
2
1 max( ) min( )
2

G GGradient D E= −

= −

A B A B A B

A A
 (182) 

9.6.13 Morphological Laplacian 
The morphologically-based Laplacian filter is defined by: 
 

  

( ) ( )( )

( )

( )

1( , ) ( , ) ( , )
2
1 ( , ) ( , ) 2
2
1 max( ) min( ) 2
2

G G

G G

Laplacian D E

D E

= − − −

= + −

= + −

A B A B A A A B

A B A B A

A A A

 (183) 

9.6.14 Summary of morphological filters 
The effect of these filters is illustrated in Figure 46. All images were processed 
with a 3 × 3 structuring element as described in eqs. (177) through (183). Figure 
46e was contrast stretched for display purposes using eq. (78) and the parameters 
1% and 99%. Figures 46c,d,e should be compared to Figures 30, 32, and 33. 
 

   

 a) Dilation b) Erosion c) Smoothing 
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 d) Gradient e) Laplacian 

Figure 46: Examples of gray-level morphological filters. 

10. Techniques 
 
The algorithms presented in Section 9 can be used to build techniques to solve 
specific image processing problems. Without presuming to present the solution to 
all processing problems, the following examples are of general interest and can be 
used as models for solving related problems. 

10.1 SHADING CORRECTION 
The method by which images are produced—the interaction between objects in 
real space, the illumination, and the camera—frequently leads to situations where 
the image exhibits significant shading across the field-of-view. In some cases the 
image might be bright in the center and decrease in brightness as one goes to the 
edge of the field-of-view. In other cases the image might be darker on the left side 
and lighter on the right side. The shading might be caused by non-uniform 
illumination, non-uniform camera sensitivity, or even dirt and dust on glass (lens) 
surfaces. In general this shading effect is undesirable. Eliminating it is frequently 
necessary for subsequent processing and especially when image analysis or image 
understanding is the final goal. 

10.1.1 Model of shading 
In general we begin with a model for the shading effect. The illumination Iill(x,y) 
usually interacts in a multiplicative with the object a(x,y) to produce the image 
b(x,y): 
  ( , ) ( , ) • ( , )illb x y I x y a x y=  (184) 
 
with the object representing various imaging modalities such as: 
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  ( , )

( , ) reflectance model

( , ) 10 absorption model

( , ) fluorescence model

OD x y

r x y

a x y

c x y

−

⎧
⎪
⎪⎪= ⎨
⎪
⎪
⎪⎩

 (185) 

 
where at position (x,y), r(x,y) is the reflectance, OD(x,y) is the optical density, and 
c(x,y) is the concentration of fluorescent material. Parenthetically, we note that the 
fluorescence model only holds for low concentrations. The camera may then 
contribute gain and offset terms, as in eq. (74), so that: 
 

 Total shading – 
[ , ] [ , ]• [ , ] [ , ]

[ , ]• [ , ]• [ , ] [ , ]ill

c m n gain m n b m n offset m n
gain m n I m n a m n offset m n

= +
= +

 (186) 

 
In general we assume that Iill[m,n] is slowly varying compared to a[m,n]. 

10.1.2 Estimate of shading 
We distinguish between two cases for the determination of a[m,n] starting from 
c[m,n]. In both cases we intend to estimate the shading terms {gain[m,n]•Iill[m,n]} 
and {offset[m,n]}. While in the first case we assume that we have only the 
recorded image c[m,n] with which to work, in the second case we assume that we 
can record two, additional, calibration images. 
 
• A posteriori estimate – In this case we attempt to extract the shading estimate 
from c[m,n]. The most common possibilities are the following. 
 
Lowpass filtering – We compute a smoothed version of c[m,n] where the 
smoothing is large compared to the size of the objects in the image. This 
smoothed version is intended to be an estimate of the background of the image. 
We then subtract the smoothed version from c[m,n] and then restore the desired 
DC value. In formula: 
 
 Lowpass – { }ˆ[ , ] [ , ] [ , ]a m n c m n LowPass c m n constant= − +  (187) 

 
where ˆ[ , ]a m n  is the estimate of a[m,n]. Choosing the appropriate lowpass filter 
means knowing the appropriate spatial frequencies in the Fourier domain where 
the shading terms dominate. 
 
Homomorphic filtering – We note that, if the offset[m,n] = 0, then c[m,n] consists 
solely of multiplicative terms. Further, the term {gain[m,n]•Iill[m,n]} is slowly 
varying while a[m,n] presumably is not. We therefore take the logarithm of c[m,n] 
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to produce two terms one of which is low frequency and one of which is high 
frequency. We suppress the shading by high pass filtering the logarithm of c[m,n] 
and then take the exponent (inverse logarithm) to restore the image. This 
procedure is based on homomorphic filtering as developed by Oppenheim, 
Schafer and Stockham [34]. In formula: 
 

 
{ }

{ }{ } { }
{ }{ }{ }

) [ , ] [ , ]• [ , ]• [ , ]

) ln [ , ] ln [ , ]• [ , ] ln [ , ]

) ln [ , ] ln [ , ]

ˆ) [ , ] exp ln [ , ]

ill

ill
rapidly varyingslowly varying

i c m n gain m n I m n a m n

ii c m n gain m n I m n a m n

iii HighPass c m n a m n

iv a m n HighPass c m n

=

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭⎩ ⎭

≈

=

�	
����	���
  (188) 

 
Morphological filtering – We again compute a smoothed version of c[m,n] where 
the smoothing is large compared to the size of the objects in the image but this 
time using morphological smoothing as in eq. (181). This smoothed version is the 
estimate of the background of the image. We then subtract the smoothed version 
from c[m,n] and then restore the desired DC value. In formula: 
 
  { }ˆ[ , ] [ , ] [ , ]a m n c m n MorphSmooth c m n constant= − +  (189) 

 
Choosing the appropriate morphological filter window means knowing (or 
estimating) the size of the largest objects of interest. 
 
• A priori estimate – If it is possible to record test (calibration) images through the 
cameras system, then the most appropriate technique for the removal of shading 
effects is to record two images – BLACK[m,n] and WHITE[m,n]. The BLACK image is 
generated by covering the lens leading to b[m,n] = 0 which in turn leads to 
BLACK[m,n] = offset[m,n]. The WHITE image is generated by using a[m,n] = 1 
which gives WHITE[m,n] = gain[m,n]•Iill[m,n] + offset[m,n]. The correction then 
becomes: 
 

  [ , ] [ , ]ˆ[ , ] •
[ , ] [ , ]

BLACK

WHITE BLACK

c m n m na m n constant
m n m n

−
=

−
 (190) 

 
The constant term is chosen to produce the desired dynamic range. 
 
The effects of these various techniques on the data from Figure 45 are shown in 
Figure 47. The shading is a simple, linear ramp increasing from left to right; the 
objects consist of Gaussian peaks of varying widths. 
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Figure 47: Comparison of various shading correction algorithms. The final result 
(e) is identical to the original (not shown). 
 
In summary, if it is possible to obtain BLACK and WHITE calibration images, then 
eq. (190) is to be preferred. If this is not possible, then one of the other algorithms 
will be necessary. 

10.2 BASIC ENHANCEMENT AND RESTORATION TECHNIQUES 
The process of image acquisition frequently leads (inadvertently) to image 
degradation. Due to mechanical problems, out-of-focus blur, motion, 
inappropriate illumination, and noise the quality of the digitized image can be 
inferior to the original. The goal of enhancement is— starting from a recorded 
image c[m,n]—to produce the most visually pleasing image â[m,n]. The goal of 
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restoration is—starting from a recorded image c[m,n]—to produce the best 
possible estimate â[m,n] of the original image a[m,n]. The goal of enhancement is 
beauty; the goal of restoration is truth. 
 
The measure of success in restoration is usually an error measure between the 
original a[m,n] and the estimate â[m,n]: E{â[m,n], a[m,n]}. No mathematical 
error function is known that corresponds to human perceptual assessment of 
error. The mean-square error function is commonly used because: 
 
 1. It is easy to compute; 
 2. It is differentiable implying that a minimum can be sought; 
 3. It corresponds to “signal energy” in the total error, and; 
 4. It has nice properties vis à vis Parseval’s theorem, eqs. (22) and (23). 
 
The mean-square error is defined by: 
 

  { }
1 1

2

0 0

1ˆ ˆ, [ , ] [ , ]
M N

m n
a a a m n a m n

MN

− −

= =

= −∑ ∑E  (191) 

 
In some techniques an error measure will not be necessary; in others it will be 
essential for evaluation and comparative purposes. 

10.2.1 Unsharp masking 
A well-known technique from photography to improve the visual quality of an 
image is to enhance the edges of the image. The technique is called unsharp 
masking. Edge enhancement means first isolating the edges in an image, 
amplifying them, and then adding them back into the image. Examination of 
Figure 33 shows that the Laplacian is a mechanism for isolating the gray level 
edges. This leads immediately to the technique: 
 
  ( )2ˆ[ , ] [ , ] • [ , ]a m n a m n k a m n= − ∇  (192) 

 
The term k is the amplifying term and k > 0. The effect of this technique is shown 
in Figure 48. 
 
The Laplacian used to produce Figure 48 is given by eq. (120) and the 
amplification term k = 1. 
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 Original ↑ ↑ Laplacian-enhanced 

Figure 48: Edge enhanced compared to original 

10.2.2 Noise suppression 
The techniques available to suppress noise can be divided into those techniques 
that are based on temporal information and those that are based on spatial 
information. By temporal information we mean that a sequence of images 
{ap[m,n] | p=1,2,…,P} are available that contain exactly the same objects and that 
differ only in the sense of independent noise realizations. If this is the case and if 
the noise is additive, then simple averaging of the sequence: 
 

 Temporal averaging – 
1

1ˆ[ , ] [ , ]
P

p
p

a m n a m n
P =

= ∑  (193) 

 
will produce a result where the mean value of each pixel will be unchanged. For 
each pixel, however, the standard deviation will decrease from σ to Pσ . 
 
If temporal averaging is not possible, then spatial averaging can be used to 
decrease the noise. This generally occurs, however, at a cost to image sharpness. 
Four obvious choices for spatial averaging are the smoothing algorithms that have 
been described in Section 9.4 – Gaussian filtering (eq. (93)), median filtering, 
Kuwahara filtering, and morphological smoothing (eq. (181)). 
 
Within the class of linear filters, the optimal filter for restoration in the presence 
of noise is given by the Wiener filter [2]. The word “optimal” is used here in the 
sense of minimum mean-square error (mse). Because the square root operation is 
monotonic increasing, the optimal filter also minimizes the root mean-square error 
(rms). The Wiener filter is characterized in the Fourier domain and for additive 
noise that is independent of the signal it is given by: 
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  ( , )( , )
( , ) ( , )

aa
W

aa nn

S u vH u v
S u v S u v

=
+

 (194) 

 
where Saa(u,v) is the power spectral density of an ensemble of random images 
{a[m,n]} and Snn(u,v) is the power spectral density of the random noise. If we 
have a single image then Saa(u,v) = |A(u,v)|2. In practice it is unlikely that the 
power spectral density of the uncontaminated image will be available. Because 
many images have a similar power spectral density that can be modeled by Table 
4–T.8, that model can be used as an estimate of Saa(u,v). 
 
A comparison of the five different techniques described above is shown in Figure 
49. The Wiener filter was constructed directly from eq. (113) because the image 
spectrum and the noise spectrum were known. The parameters for the other filters 
were determined choosing that value (either σ or window size) that led to the 
minimum rms. 

   
a) Noisy image (SNR=20 dB) b) Wiener filter c) Gauss filter (σ = 1.0) 
 rms = 25.7 rms = 20.2 rms = 21.1 

   
 d) Kuwahara filter (5 × 5) e) Median filter (3 × 3) f) Morph. smoothing (3 × 3) 
 rms = 22.4 rms = 22.6 rms = 26.2 

Figure 49: Noise suppression using various filtering techniques. 
 
The root mean-square errors (rms) associated with the various filters are shown in 
Figure 49. For this specific comparison, the Wiener filter generates a lower error 
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than any of the other procedures that are examined here. The two linear 
procedures, Wiener filtering and Gaussian filtering, performed slightly better than 
the three non-linear alternatives. 

10.2.3 Distortion suppression 
The model presented above—an image distorted solely by noise—is not, in 
general, sophisticated enough to describe the true nature of distortion in a digital 
image. A more realistic model includes not only the noise but also a model for the 
distortion induced by lenses, finite apertures, possible motion of the camera 
and/or an object, and so forth. One frequently used model is of an image a[m,n] 
distorted by a linear, shift-invariant system ho[m,n] (such as a lens) and then 
contaminated by noise κ[m,n]. Various aspects of ho[m,n] and κ[m,n] have been 
discussed in earlier sections. The most common combination of these is the 
additive model: 
 
  ( )[ , ] [ , ] [ , ] [ , ]oc m n a m n h m n m nκ= ⊗ +  (195) 

 
The restoration procedure that is based on linear filtering coupled to a minimum 
mean-square error criterion again produces a Wiener filter [2]: 
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Once again Saa(u,v) is the power spectral density of an image, Snn(u,v) is the 
power spectral density of the noise, and Ho(u,v) = F{ho[m,n]}. Examination of 
this formula for some extreme cases can be useful. For those frequencies where 
Saa(u,v) >> Snn(u,v), where the signal spectrum dominates the noise spectrum, the 
Wiener filter is given by 1/Ho(u,v), the inverse filter solution. For those 
frequencies where Saa(u,v) << Snn(u,v), where the noise spectrum dominates the 
signal spectrum, the Wiener filter is proportional to Ho*(u,v), the matched filter 
solution. For those frequencies where Ho(u,v) = 0, the Wiener filter HW(u,v) = 0 
preventing overflow. 
 
The Wiener filter is a solution to the restoration problem based upon the 
hypothesized use of a linear filter and the minimum mean-square (or rms) error 
criterion. In the example below the image a[m,n] was distorted by a bandpass 
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filter and then white noise was added to achieve an SNR = 30 dB. The results are 
shown in Figure 50. 
 

   
 a) Distorted, noisy image b) Wiener filter c) Median filter (3 × 3) 

  rms = 108.4 rms = 40.9 

Figure 50: Noise and distortion suppression using the Wiener filter, eq. 
(196) and the median filter. 
 
The rms after Wiener filtering but before contrast stretching was 108.4; after 
contrast stretching with eq. (77) the final result as shown in Figure 50b has a 
mean-square error of 27.8. Using a 3 × 3 median filter as shown in Figure 50c 
leads to a rms error of 40.9 before contrast stretching and 35.1 after contrast 
stretching. Although the Wiener filter gives the minimum rms error over the set of 
all linear filters, the non-linear median filter gives a lower rms error. The 
operation contrast stretching is itself a non-linear operation. The “visual quality” 
of the median filtering result is comparable to the Wiener filtering result. This is 
due in part to periodic artifacts introduced by the linear filter which are visible in 
Figure 50b. 

10.3 SEGMENTATION 
In the analysis of the objects in images it is essential that we can distinguish 
between the objects of interest and “the rest.” This latter group is also referred to 
as the background. The techniques that are used to find the objects of interest are 
usually referred to as segmentation techniques – segmenting the foreground from 
background. In this section we will two of the most common techniques—
thresholding and edge finding— and we will present techniques for improving the 
quality of the segmentation result. It is important to understand that: 

• there is no universally applicable segmentation technique that will work for 
all images, and, 

• no segmentation technique is perfect. 
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10.3.1 Thresholding 
This technique is based upon a simple concept. A parameter θ called the 
brightness threshold is chosen and applied to the image a[m,n] as follows: 
 

  
 [ , ] [ , ] 1

[ , ] 0
a m n a m n object

a m n background
θ≥ = =

= =
If
Else

 (197) 

 
This version of the algorithm assumes that we are interested in light objects on a 
dark background. For dark objects on a light background we would use: 
 

  
 [ , ] [ , ] 1

[ , ] 0
a m n a m n object

a m n background
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= =
If
Else

 (198) 

 
The output is the label “object” or “background” which, due to its dichotomous 
nature, can be represented as a Boolean variable “1” or “0”. In principle, the test 
condition could be based upon some other property than simple brightness (for 
example, If (Redness{a[m,n]} ≥ θred), but the concept is clear. 
 
The central question in thresholding then becomes: How do we choose the 
threshold θ? While there is no universal procedure for threshold selection that is 
guaranteed to work on all images, there are a variety of alternatives. 
 
• Fixed threshold – One alternative is to use a threshold that is chosen 
independently of the image data. If it is known that one is dealing with very high-
contrast images where the objects are very dark and the background is 
homogeneous (Section 10.1) and very light, then a constant threshold of 128 on a 
scale of 0 to 255 might be sufficiently accurate. By accuracy we mean that the 
number of falsely-classified pixels should be kept to a minimum. 
 
• Histogram-derived thresholds – In most cases the threshold is chosen from the 
brightness histogram of the region or image that we wish to segment. (See 
Sections 3.5.2 and 9.1.) An image and its associated brightness histogram are 
shown in Figure 51. 
 
A variety of techniques have been devised to automatically choose a threshold 
starting from the gray-value histogram, {h[b] | b = 0, 1, … , 2B–1}. Some of the 
most common ones are presented below. Many of these algorithms can benefit 
from a smoothing of the raw histogram data to remove small fluctuations but the 
smoothing algorithm must not shift the peak positions. This translates into a zero-
phase smoothing algorithm given below where typical values for W are 3 or 5: 
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(a) Image to be thresholded (b) Brightness histogram of the image 

Figure 51: Pixels below the threshold (a[m,n] < θ) will be labeled as object 
pixels; those above the threshold will be labeled as background pixels. 
 
• Isodata algorithm – This iterative technique for choosing a threshold was 
developed by Ridler and Calvard [35]. The histogram is initially segmented into 
two parts using a starting threshold value such as θ0 = 2B–1, half the maximum 
dynamic range. The sample mean (mf,0) of the gray values associated with the 
foreground pixels and the sample mean (mb,0) of the gray values associated with 
the background pixels are computed. A new threshold value θ1 is now computed 
as the average of these two sample means. The process is repeated, based upon 
the new threshold, until the threshold value does not change any more. In 
formula: 
 
  ( ), 1 , 1 1/ 2  k f k b k k km m untilθ θ θ− − −= + =  (200) 

 
• Background-symmetry algorithm – This technique assumes a distinct and 
dominant peak for the background that is symmetric about its maximum. The 
technique can benefit from smoothing as described in eq. (199). The maximum 
peak (maxp) is found by searching for the maximum value in the histogram. The 
algorithm then searches on the non-object pixel side of that maximum to find a 
p% point as in eq. (39). 
 
In Figure 51b, where the object pixels are located to the left of the background 
peak at brightness 183, this means searching to the right of that peak to locate, as 
an example, the 95% value. At this brightness value, 5% of the pixels lie to the 
right (are above) that value. This occurs at brightness 216 in Figure 51b. Because 
of the assumed symmetry, we use as a threshold a displacement to the left of the 
maximum that is equal to the displacement to the right where the p% is found. For 
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Figure 51b this means a threshold value given by 183 – (216 – 183) = 150. In 
formula: 
 
  ( )%maxp p maxpθ = − −  (201) 

 
This technique can be adapted easily to the case where we have light objects on a 
dark, dominant background. Further, it can be used if the object peak dominates 
and we have reason to assume that the brightness distribution around the object 
peak is symmetric. An additional variation on this symmetry theme is to use an 
estimate of the sample standard deviation (s in eq. (37)) based on one side of the 
dominant peak and then use a threshold based on θ = maxp ± 1.96s (at the 5% 
level) or θ = maxp ± 2.57s (at the 1% level). The choice of “+” or “–” depends on 
which direction from maxp is being defined as the object/background threshold. 
Should the distributions be approximately Gaussian around maxp, then the values 
1.96 and 2.57 will, in fact, correspond to the 5% and 1 % level. 
 
• Triangle algorithm – This technique due to Zack [36] is illustrated in Figure 52. 
A line is constructed between the maximum of the histogram at brightness bmax 
and the lowest value bmin = (p=0)% in the image. The distance d between the line 
and the histogram h[b] is computed for all values of b from b = bmin to b = bmax. 
The brightness value bo where the distance between h[bo] and the line is maximal 
is the threshold value, that is, θ = bo. This technique is particularly effective when 
the object pixels produce a weak peak in the histogram. 
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Figure 52: The triangle algorithm is based on finding the value of b 
that gives the maximum distance d. 

 
The three procedures described above give the values θ = 139 for the Isodata 
algorithm, θ = 150 for the background symmetry algorithm at the 5% level, and θ 
= 152 for the triangle algorithm for the image in Figure 51a. 
 
Thresholding does not have to be applied to entire images but can be used on a 
region by region basis. Chow and Kaneko [37] developed a variation in which the 
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M × N image is divided into non-overlapping regions. In each region a threshold 
is calculated and the resulting threshold values are put together (interpolated) to 
form a thresholding surface for the entire image. The regions should be of 
“reasonable” size so that there are a sufficient number of pixels in each region to 
make an estimate of the histogram and the threshold. The utility of this 
procedure—like so many others—depends on the application at hand. 

10.3.2 Edge finding 
Thresholding produces a segmentation that yields all the pixels that, in principle, 
belong to the object or objects of interest in an image. An alternative to this is to 
find those pixels that belong to the borders of the objects. Techniques that are 
directed to this goal are termed edge finding techniques. From our discussion in 
Section 9.6 on mathematical morphology, specifically eqs. (79), (163), and (170), 
we see that there is an intimate relationship between edges and regions. 
 
• Gradient-based procedure – The central challenge to edge finding techniques is 
to find procedures that produce closed contours around the objects of interest. For 
objects of particularly high SNR, this can be achieved by calculating the gradient 
and then using a suitable threshold. This is illustrated in Figure 53. 
 

   
 ↓ ↓ 

   
 (a) SNR = 30 dB (b) SNR = 20 dB 

Figure 53: Edge finding based on the Sobel gradient, eq. (110), 
combined with the Isodata thresholding algorithm eq. (92). 
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While the technique works well for the 30 dB image in Figure 53a, it fails to 
provide an accurate determination of those pixels associated with the object edges 
for the 20 dB image in Figure 53b. A variety of smoothing techniques as 
described in Section 9.4 and in eq. (181) can be used to reduce the noise effects 
before the gradient operator is applied. 
 
• Zero-crossing based procedure – A more modern view to handling the problem 
of edges in noisy images is to use the zero crossings generated in the Laplacian of 
an image (Section 9.5.2). The rationale starts from the model of an ideal edge, a 
step function, that has been blurred by an OTF such as Table 4 T.3 (out-of-focus), 
T.5 (diffraction-limited), or T.6 (general model) to produce the result shown in 
Figure 54. 
 

35 40 45 50 55 60 65

Position

Blurred Edge

Gradient

Laplacian

Ideal Edge Position

 
Figure 54: Edge finding based on the zero crossing as determined by 
the second derivative, the Laplacian. The curves are not to scale. 

 
The edge location is, according to the model, at that place in the image where the 
Laplacian changes sign, the zero crossing. As the Laplacian operation involves a 
second derivative, this means a potential enhancement of noise in the image at 
high spatial frequencies; see eq. (114). To prevent enhanced noise from 
dominating the search for zero crossings, a smoothing is necessary. 
 
The appropriate smoothing filter, from among the many possibilities described in 
Section 9.4, should according to Canny [38] have the following properties: 
 
 • In the frequency domain, (u,v) or (Ω,Ψ), the filter should be as narrow as 
possible to provide suppression of high frequency noise, and; 
 
 • In the spatial domain, (x,y) or [m,n], the filter should be as narrow as 
possible to provide good localization of the edge. A too wide filter generates 
uncertainty as to precisely where, within the filter width, the edge is located. 
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The smoothing filter that simultaneously satisfies both these properties—
minimum bandwidth and minimum spatial width—is the Gaussian filter described 
in Section 9.4. This means that the image should be smoothed with a Gaussian of 
an appropriate σ followed by application of the Laplacian. In formula: 
 
  { }{ }2

2{ ( , )} ( , ) | ( , ) ( , ) 0DZeroCrossing a x y x y g x y a x y= ∇ ⊗ =  (202) 

 
where g2D(x,y) is defined in eq. (93). The derivative operation is linear and shift-
invariant as defined in eqs. (85) and (86). This means that the order of the 
operators can be exchanged (eq. (4)) or combined into one single filter (eq. (5)). 
This second approach leads to the Marr-Hildreth formulation of the “Laplacian-
of-Gaussians” (LoG) filter [39]: 
 
  { } { }( , ) ( , ) | ( , ) ( , ) 0ZeroCrossing a x y x y LoG x y a x y= ⊗ =  (203) 

where 
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Given the circular symmetry this can also be written as: 
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 (205) 

 
This two-dimensional convolution kernel, which is sometimes referred to as a 
“Mexican hat filter”, is illustrated in Figure 55. 
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Figure 55: LoG filter with σ = 1.0. 
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•PLUS-based procedure – Among the zero crossing procedures for edge 
detection, perhaps the most accurate is the PLUS filter as developed by Verbeek 
and Van Vliet [40]. The filter is defined, using eqs. (121) and (122), as: 
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x y
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 (206) 

 
Neither the derivation of the PLUS’s properties nor an evaluation of its accuracy 
are within the scope of this section. Suffice it to say that, for positively curved 
edges in gray value images, the Laplacian-based zero crossing procedure 
overestimates the position of the edge and the SDGD-based procedure 
underestimates the position. This is true in both two-dimensional and three-
dimensional images with an error on the order of (σ/R)2 where R is the radius of 
curvature of the edge. The PLUS operator has an error on the order of (σ/R)4 if 
the image is sampled at, at least, 3× the usual Nyquist sampling frequency as in 
eq. (56) or if we choose σ ≥ 2.7 and sample at the usual Nyquist frequency. 
 
All of the methods based on zero crossings in the Laplacian must be able to 
distinguish between zero crossings and zero values. While the former represent 
edge positions, the latter can be generated by regions that are no more complex 
than bilinear surfaces, that is, a(x,y) = a0 + a1•x + a2•y + a3•x•y. To distinguish 
between these two situations, we first find the zero crossing positions and label 
them as “1” and all other pixels as “0”. We then multiply the resulting image by a 
measure of the edge strength at each pixel. There are various measures for the 
edge strength that are all based on the gradient as described in Section 9.5.1 and 
eq. (182). This last possibility, use of a morphological gradient as an edge 
strength measure, was first described by Lee, Haralick, and Shapiro [41] and is 
particularly effective. After multiplication the image is then thresholded (as 
above) to produce the final result. The procedure is thus as follows [42]: 

a[m,n] edges[m,n]×Zero Crossing  
Detector

Zero Crossing 
Filter 

 
         • LoG 
         • PLUS 
         • other

Thresholding

Edge Strength Filter 
           (Gradient)

 
Figure 56: General strategy for edges based on zero crossings. 
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The results of these two edge finding techniques based on zero crossings, LoG 
filtering and PLUS filtering, are shown in Figure 57 for images with a 20 dB SNR. 
 

   
 a) Image SNR = 20 dB ↑↓ b) LoG filter ↑↓ c) PLUS filter ↑↓ 

   

Figure 57: Edge finding using zero crossing algorithms LoG and PLUS. In 
both algorithms σ = 1.5. 
 
Edge finding techniques provide, as the name suggests, an image that contains a 
collection of edge pixels. Should the edge pixels correspond to objects, as 
opposed to say simple lines in the image, then a region-filling technique such as 
eq. (170) may be required to provide the complete objects. 

10.3.3 Binary mathematical morphology 
The various algorithms that we have described for mathematical morphology in 
Section 9.6 can be put together to form powerful techniques for the processing of 
binary images and gray level images. As binary images frequently result from 
segmentation processes on gray level images, the morphological processing of the 
binary result permits the improvement of the segmentation result. 
 
• Salt-or-pepper filtering – Segmentation procedures frequently result in isolated 
“1” pixels in a “0” neighborhood (salt) or isolated “0” pixels in a “1” 
neighborhood (pepper). The appropriate neighborhood definition must be chosen 
as in Figure 3. Using the lookup table formulation for Boolean operations in a 3 × 
3 neighborhood that was described in association with Figure 43, salt filtering and 
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pepper filtering are straightforward to implement. We weight the different 
positions in the 3 × 3 neighborhood as follows: 
 

  
4 3 2
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16 8 4
32 1 2
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w w w
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w w w
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 (207) 

 
For a 3 × 3 window in a[m,n] with values “0” or “1” we then compute: 
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 (208) 

 
The result, sum, is a number bounded by 0 ≤ sum ≤ 511. 
 
• Salt Filter – The 4-connected and 8-connected versions of this filter are the 
same and are given by the following procedure: 
 
 i) Compute sum  (209) 
 ii) If ( (sum == 1) c[m,n] = 0 
  Else   c[m,n] = a[m,n] 
 
• Pepper Filter – The 4-connected and 8-connected versions of this filter are the 
following procedures: 
 
  4-connected  8-connected 
 i) Compute sum i)  Compute sum (210) 
 ii) If ( (sum == 170) ii)  If ( (sum == 510) 
   c[m,n] = 1   c[m,n] = 1 
  Else    Else 
   c[m,n] = a[m,n]    c[m,n] = a[m,n] 
 
• Isolate objects with holes – To find objects with holes we can use the following 
procedure which is illustrated in Figure 58. 
 
 i) Segment image to produce binary mask representation (211) 
 ii) Compute skeleton without end pixels – eq. (169) 
 iii) Use salt filter to remove single skeleton pixels 
 iv) Propagate remaining skeleton pixels into original binary mask – eq. (170) 
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 a) Binary image b) Skeleton after salt filter c) Objects with holes 

Figure 58: Isolation of objects with holes using morphological operations. 
 
The binary objects are shown in gray and the skeletons, after application of the 
salt filter, are shown as a black overlay on the binary objects. Note that this 
procedure uses no parameters other then the fundamental choice of connectivity; 
it is free from “magic numbers.” In the example shown in Figure 58, the 8-
connected definition was used as well as the structuring element B = N8. 
 
• Filling holes in objects – To fill holes in objects we use the following procedure 
which is illustrated in Figure 59. 
 
 i) Segment image to produce binary representation of objects (212) 
 ii) Compute complement of binary image as a mask image 
 iii) Generate a seed image as the border of the image 
 iv) Propagate the seed into the mask – eq. (97) 
 v) Complement result of propagation to produce final result 
 

   
 a) Mask and Seed images b) Objects with holes filled 

Figure 59: Filling holes in objects. 
 
The mask image is illustrated in gray in Figure 59a and the seed image is shown 
in black in that same illustration. When the object pixels are specified with a 
connectivity of C = 8, then the propagation into the mask (background) image 
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should be performed with a connectivity of C = 4, that is, dilations with the 
structuring element B = N4. This procedure is also free of “magic numbers.” 
 
• Removing border-touching objects – Objects that are connected to the image 
border are not suitable for analysis. To eliminate them we can use a series of 
morphological operations that are illustrated in Figure 60. 
 
 i) Segment image to produce binary mask image of objects (213) 
 ii) Generate a seed image as the border of the image 
 iv) Propagate the seed into the mask – eq. (97) 
 v) Compute XOR of the propagation result and the mask image as final result 
 

   
 a) Mask and Seed images b) Remaining objects 

Figure 60: Removing objects touching borders. 
 
The mask image is illustrated in gray in Figure 60a and the seed image is shown 
in black in that same illustration. If the structuring element used in the 
propagation is B = N4, then objects are removed that are 4-connected with the 
image boundary. If B = N8 is used then objects that 8-connected with the 
boundary are removed. 
 
 • Exo-skeleton – The exo-skeleton of a set of objects is the skeleton of the 
background that contains the objects. The exo-skeleton produces a partition of the 
image into regions each of which contains one object. The actual skeletonization 
(eq. (169)) is performed without the preservation of end pixels and with the 
border set to “0.” The procedure is described below and the result is illustrated in 
Figure 61. 
 
 i) Segment image to produce binary image   (214) 
 ii) Compute complement of binary image 
 iii) Compute skeleton using eq. (169)i+ii with border set to “0” 
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Figure 61: Exo-skeleton. 

 
• Touching objects – Segmentation procedures frequently have difficulty 
separating slightly touching, yet distinct, objects. The following procedure 
provides a mechanism to separate these objects and makes minimal use of “magic 
numbers.” The exo-skeleton produces a partition of the image into regions each of 
which contains one object. The actual skeletonization is performed without the 
preservation of end pixels and with the border set to “0.” The procedure is 
illustrated in Figure 62. 
 
 i) Segment image to produce binary image    
(215) 
 ii) Compute a “small number” of erosions with B = N4 
 iii) Compute exo-skeleton of eroded result 
 iv) Complement exo-skeleton result 
 v) Compute AND of original binary image and the complemented exo-skeleton 
 

   
 a) Eroded and exo-skeleton images b) Objects separated (detail) 

Figure 62: Separation of touching objects. 
 
The eroded binary image is illustrated in gray in Figure 62a and the exo-skeleton 
image is shown in black in that same illustration. An enlarged section of the final 
result is shown in Figure 62b and the separation is easily seen. This procedure 
involves choosing a small, minimum number of erosions but the number is not 
critical as long as it initiates a coarse separation of the desired objects. The actual 
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separation is performed by the exo-skeleton which, itself, is free of “magic 
numbers.” If the exo-skeleton is 8-connected than the background separating the 
objects will be 8-connected. The objects, themselves, will be disconnected 
according to the 4-connected criterion. (See Section 9.6 and Figure 36.) 

10.3.4 Gray-value mathematical morphology 
As we have seen in Section 10.1.2, gray-value morphological processing 
techniques can be used for practical problems such as shading correction. In this 
section several other techniques will be presented. 
 
• Top-hat transform – The isolation of gray-value objects that are convex can be 
accomplished with the top-hat transform as developed by Meyer [43, 44]. 
Depending upon whether we are dealing with light objects on a dark background 
or dark objects on a light background, the transform is defined as: 
 

 Light objects –  ( )( )( , ) ( ) max minTopHat = − = −D
BB

A B A A B A A  (216) 

 

 Dark objects –  ( )( )( , ) ( ) min maxTopHat = − = −•
B B

A B A B A A A  (217) 

 
where the structuring element B is chosen to be bigger than the objects in question 
and, if possible, to have a convex shape. Because of the properties given in eqs. 
(155) and (158), TopHat(A,B) ≥ 0. An example of this technique is shown in 
Figure 63. 
 
The original image including shading is processed by a 15 × 1 structuring element 
as described in eqs. (216) and (217) to produce the desired result. Note that the 
transform for dark objects has been defined in such a way as to yield “positive” 
objects as opposed to “negative” objects. Other definitions are, of course, 
possible. 
 
• Thresholding – A simple estimate of a locally-varying threshold surface can be 
derived from morphological processing as follows: 
 

 Threshold surface –  ( )1[ , ] max( ) min( )
2

m nθ = +A A  (218) 

 
Once again, we suppress the notation for the structuring element B under the max 
and min operations to keep the notation simple. Its use, however, is understood. 
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Figure 63: Top-hat transforms. 
 
• Local contrast stretching – Using morphological operations we can implement a 
technique for local contrast stretching. That is, the amount of stretching that will 
be applied in a neighborhood will be controlled by the original contrast in that 
neighborhood. The morphological gradient defined in eq. (182) may also be seen 
as related to a measure of the local contrast in the window defined by the 
structuring element B: 
 
  ( , ) max( ) min( )LocalContrast = −A B A A  (219) 
 
The procedure for local contrast stretching is given by: 
 

  min( )[ , ] •
max( ) min( )

c m n scale −
=

−
A A

A A
 (220) 

 
The max and min operations are taken over the structuring element B. The effect 
of this procedure is illustrated in Figure 64. It is clear that this local operation is 
an extended version of the point operation for contrast stretching presented in eq. 
(77). 
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 ↑  before after  ↑ ↑  before after  ↑ ↑  before after  ↑ 

Figure 64: Local contrast stretching. 
 
Using standard test images (as we have seen in so many examples) illustrates the 
power of this local morphological filtering approach. 
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