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ABSTRACT

The practical and theoretical effects of using non-point support data for estimating
variograms oron the kriging equations when estimating spatial averages, i.e., block kriging,
are well-known. Under an assumption of lognormality the proportional effect is also well-
known. While other transformations are commonly used in statistics only the log and
indicator transforms are widely used in geostatistics, the latter has the advantage of generally
not requiring an inverse transform.. Additional theoretical and empirical results are presented
on the interrelationship between non-point support data, non-linear transformations and
variogram estimation, modeling. The non-point support data may incorporate spatial
averages or compositing of point support data.

INTRODUCTION

Let Z(x) be a regionalized variable defined in 1, 2 or 3 space and H(Z) a real linear
functional, i.e., a mapping of Z into the real numbers. The two most common examples of
H are point evaluation, i.e., H(Z) is simply Z(x,), and spatial averages Z, the average value
of Zoveravolume V. Much of geostatistics has been concerned with one of two problems;
estimation of the linear functional H(Z) or estimation of a probability distribution associated
with H. For example, let x, range over all possible values in a region or let V range over
possible congruent volumes within the region. The resulting probability distributions for the
point valuation functional and the spatial average functional are of interest in many
applications. These problems generalize when transformations are allowed, either on the
domain of Z or on the range of Z.

STRUCTU RE FUNCTIONS
Linear geostatistics is based on the use of a structure function, i.e., the variogram or
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covariance of Z. The relationship between the covariance of the common linear functionals
of Z(x) and the structure function for Z(x) is well known. The relationship between the
probability distributions is generally not known or at least only under strong assumptions,
The relationship between the covariances of non-linear functionals of Z(x) and the structure
function of Z(x) is generally notknown. Since the class of continuous mappings is very large
and contains as a subset the mappings with continuous second derivatives many problems
involving non-linear functionals or non-linear estimators can be resolved by generating those
functionals or estimators using such transformations or mappings. A number of known
results will be described in this general context and then open problems will be presented.

GENERAL ESTIMATION PROBLEMS
Extending the approach in Cressie (1993) define general classes of non-linear functionals

H\(Z)=g(2) (1a), Hi(Z)=g(Zv) (1b), Hy(Z) = (g@)N (Ic)

where g(u) is a real valued function defined on a subset of the reals. If in addition g has an
inverse then the following is of interest.

Hy(Z) = g'((g(2D)v) (1d)

Note that in general Hy(Z)# H,(Z) and H.(Z) # Zy. Inthe case of (1a), (1c) one can simply
transform the data Z(x,),...,Z(X,) into new data g(Z(xy)),....g(Z(x,)) and use alinear estimator
of the form

H*(Z) = X..1.a8(Z(x)) 2
Although g'g(Z) =Z, in general g'(H*(Z)) # X...Z(x)

Examples

Let I(x;z) be the Indicator function associated with Z(x), Journel (1983 ) That is, I(x;z) =
g:(Z(x)) where g{u) = 0if u > z and 1 otherwise. As has been pointed out by Cressie
(1993), there are two equivalent problems. First, the non-linear estimator can be used to
estimate a probability distribution function, or it can be used to estimate values of the non-
linear functional obtained by applying the indicator transform to the point evaluation
functional. That is, for a certain non-linear functional F we have :

F@)= Z..agZx) @) or 8(Z(x0))= L-i.ag(Z(x)) (4

For a volume V centered at the origin, let V, be the volume rigidly translated to the point
X. Zys, as is common in the literature, denotes the spatial average over the translated volume.
Although Z(x,),...,Z(x,) (multivariate) lognormally distributed is equivalent to LnZ(x,),
....LnZ(x,) being multivariate normal, determining the distribution of Ln Zy, is more
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difficult than for (Ln Z)v,. Although the sum of normal random variable is again normal the
same is not true for lognormal random variables although it is often considered to be
approximately true empirically. Journel(1980) makes this assumption in deriving the bias
adjustment for lognormal kriging.

In the case of the indicator transform Cressie (1993) has suggested an alternative. Since it
is straightforward to estimate Zy by a linear combination of the data for Z, why not estimate
g(Zv) as the transformation of a linear combination of the data (not necessarily one of the
usual kriging estimators). More explicitly,

HAZ) = g(Za Z(x)) &)

While in general E{g(Za;Z(x,))} # g(E{Za,Z(x,)}) unbiasedness of H*(Z) could be imposed
as a constraint. Similar conditions on the variances could be imposed and Cressie minimizes
the variance of the error of estimation subject to two constraints and hence uses two
Lagrange multipliers. HA(Z) is essentially the simple block kriging estimator for Zy BUT
an additional constraint has been imposed. The new "kriging" equations require only the
covariance function of Z (as well as the point-to-block and block-to-block variances
computed from that covariance). Interestingly enough, these new kriging equations do not
depend on the transformation g. This is because g has been assumed to have continuous
second derivatives, i.e., a smoothness condition has been imposed on g. The resulting
estimator is viewed as an approximation to E[g(Zv) 1Z(x,),...,Z(X,)]. By analogy with the
usual simple kriging estimator one is inferring the conditional distribution of g(Zv) rather
than the distribution of Zy. Finally it is easy to see from these new kriging equations that the
system may be unstable when the block size is too large, i.e., the block-to-block variance
is too small.

DISTRIBUTIONS AND TRANSFORMATIONS

Let U be arandom variable and g a one-to-one differentiable mapping. Then the probability
distribution of g(U) is completely determined by the probability distribution of U. If
U,,....,U, are jointly distributed random variables and W,(U,,....,U.),...,W(U,,....,U,) are on-
to-one transformations with continuous partial derivatives and whose Jacobian does not
vanish then the joint distribution of W,,...,W, is determined by the joint distribution of the
U.....,.U.. As a special case let W; = g(U). This is essentially the problem considered above.
However in geostatistics the joint distribution function for Z is generally NOT considered
known and hence the general result is not useful. Note that even in the case of "nice"
transformations and "nice" joint distributions it may be difficult to compute the new joint
distribution. The change of variable theorem is not directly applicable for such functions as
g(u) = u? and a multivariate normal distribution. Although the problem of obtaining the
distribution of a function of a random variable is a difficult one, computing the first and
second moments (from the distribution of the original random variable) is straightforward
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and the conditions are less restrictive than the general change of variable theorem. This idea
was exploited by Matheron (1985).

Because the Gaussian is essentially the only multivariate distribution that is characterized
by the bivariate correlations it is the only distribution for Z(x) that allows easy computation
of the variogram of g(Z) in terms of the variogram of Z. Note however that the variogram
of (g(Z)w is easily computable in terms of the variogram of g(Z). That is,

Y(B(Z))V(h) = 0.5 Var{(g(Z))vsss - (8(Z))ws} = (1/V?) Iv.[v'Yg(Z)(x'Y)dXd)’ 6)

Hence if the data is transformed the variogram of g(Z) can be estimated and modeled, from
this the variogram for %;q,v(h) is computable.

ALTERNATIVE APPROACHES

When the transformation is sufficiently smooth, i.e., the second derivative is continuous,
then the "value" at one point can be approximated by the value at a nearby point. Linear
functionals can then be applied to this approximation. Instead of transformations of Z, the
regionalized variable can be considered as a non-linear transformation. Matheron (1985)
utilizes this approach to approximate Zy, by Z(x). The approximation is valid at least for
small V. Consider x to be a (vector) random variable uniformly distributed over the region
of interest. Then Z(x) is obtained as a transformation applied to this (uniform) random
variable. Since the distribution of x is known and the transformation is "known" the
moments of Z(x) are computable in two ways; one in terms of the transformation and the
uniform distribution of x, secondly in terms of the unknown distribution of Z(x). Note that
this relationship extends to composite transformations, g(Z(x)) at least for functions g where
the moments exist. By combining the idea of approximating Z in terms of its first two
derivatives and equivalence of the two methods for computing moments, it is possible to
approximate the distribution of g(Z(x)) and of g(Zy).

REVERSE PROBLEMS

The change of support problem is generally thought of in terms of determining the
characteristics of or estimating Zy given data for Z and some form of structural information
for Z (such as the variogram). However there are many problems where the reverse is
equally important. Block size is important in mining applications because it is related to
selectivity and hence to tonnage. Block size is also important in environmental remediation
because it is related to the scale of remediation. The simplest form of remediation for
contaminated soil consists of removing soil to some fixed depth over a specified area. In a
manner not dis-similar to that of cut-off grades for ore, contaminants usually have toxicity
levels. These may be support dependent however and are exposure related. Although the
average concentration of a contaminant will generally decrease as the block size increases,
exposure potential may not decrease with block size. Although the cost of remediation is
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related to the total amount of soil removed it is also related to the number of blocks of soil
to be removed and there will be a minimum block size related to the equipment to be used.
If the distribution of average concentrations, for blocks of a certain size, is known can we
infer the distribution for smaller blocks. In particular if none of the blocks have an average
contaminant concentration above the toxicity level, is there some assurance that none of the
blocks of a fixed smaller size will have average concentrations in excess of the toxicity
level? Can average concentrations for small blocks be estimated from large block
concentrations. This is a serious problem because in comparison to the assaying of ore
samples the laboratory analysis of environmental samples is usually very costly. The use of
large blocks corresponds to the use of composited samples.

Because toxicity levels are very low for many contaminants it is not uncommon to have
data reported as "non-detects" or "not quantified”. In the latter case the substance was
detected but at such a low concentration that the results are unreliable. Because there are
examples of toxicity levels very close to the detection levels it is not appropriate to consider
non-detects as zeros. Note that compositing may actually make this problem worse. The
question of how to estimate variograms in the presence of such data has received little
attention.

When g is the indicator transform (cut-off value = z) then (g,(Z))v can be interpreted as the
proportion of (points in) V where the value of Z(x) < z. Alternatively this is the probability
that if a point is chosen at random in V then the value will be < z. For a collection of
disjoint, congruent sub-blocks the variogram quantifies the correlations between these
probabilities. Hence if the variogram of (g4Z))vhas a very long range (compared to the size
of the region of interest) and a small sill then the probability distribution is nearly the
distribution of the entire region.

ASPECTS OF COMPOSITING

Let Z7 = [ Z(x,),...,Z(x,)] and A a k x n matrix with non-negative entries satisfying two
additional conditions; (1) for any one column at most one row has a non-zero entry, (2)
AU, = U, where U, , U, are column vectors with all entries 1’s. A has the effect of
compositing the data vector Z. Note that in a multivariate case Z would be an n x p matrix
but the compositing matrix would function in the same way. Let Y =[ Y(x)),...,Y(XJ)]T =
AZ be the composited data vector, Z = [Z(x,),....,Z(X,)]T. Then for any point X, the
composited kriged estimate for Z(x,) be given by

Z*(x0) = ZA=;Y(x) @)
Although the Y’s will not be associated with locations as such the covariance matrix Cy with

_emn'es Ci.v=Cov{ Y,, Y;}, is expressible in terms of the covariance matrix of Z and hence
In terms of the variogram of Z. Let A =[A,,....,A]]J™. Then Cy= AC,AT and the weights in (7)



are found as the solution to
AKAT A + Up = AK,

Ush =1 @®)

where K is the matrix of variogram entries for Z (between sample locations) and K, is the
vector of variograms (between the sample locations and the location to be estimated). Note
that columns in the coefficient matrix will not coincide with the column on the right hand
side even if X, is one of the data locations. Hence the values of the components of
composited samples can be estimated using the composit sample data.
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