
IO-Lite: A Unified I/O Buffering and
Caching System

VIVEK S. PAI, PETER DRUSCHEL, and WILLY ZWAENEPOEL
Rice University

This article presents the design, implementation, and evaluation of IO-Lite, a unified I/O
buffering and caching system for general-purpose operating systems. IO-Lite unifies all
buffering and caching in the system, to the extent permitted by the hardware. In particular, it
allows applications, the interprocess communication system, the file system, the file cache,
and the network subsystem to safely and concurrently share a single physical copy of the data.
Protection and security are maintained through a combination of access control and read-only
sharing. IO-Lite eliminates all copying and multiple buffering of I/O data, and enables various
cross-subsystem optimizations. Experiments with a Web server show performance improve-
ments between 40 and 80% on real workloads as a result of IO-Lite.

Categories and Subject Descriptors: D.4.4 [Operating Systems]: Communications Manage-
ment; D.4.8 [Operating Systems]: Performance

General Terms: Management, Performance

Additional Key Words and Phrases: zero-copy, networking, caching, I/O buffering

1. INTRODUCTION
For many users, the perceived speed of computing is increasingly depen-
dent on the performance of networked server systems, underscoring the
need for high-performance servers. Unfortunately, general-purpose operat-
ing systems provide inadequate support for server applications, leading to
poor server performance and increased hardware cost of server systems.

One source of the problem is lack of integration among the various
input-output (I/O) subsystems and applications in general-purpose operat-
ing systems. Each I/O subsystem uses its own buffering or caching mecha-
nism, and applications generally maintain their own private I/O buffers.
This approach leads to repeated data copying, multiple buffering of I/O
data, and other performance-degrading anomalies.

This work was supported in part by NSF Grants CCR-9803673, CCR-9503098, MIP-9521386,
by Texas TATP Grant 003604, and by an IBM Partnership Award. A shorter version of this
article first appeared at OSDI.
Authors’ address: Computer Science Dept., Rice University, 6100 Main, Houston, TX 77005.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 0734-2071/00/0200–0037 $5.00

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000, Pages 37–66.

Repeated data copying causes high CPU overhead and limits the
throughput of a server. Multiple buffering of data wastes memory, reducing
the space available for the file system cache. A reduced cache size causes
higher cache miss rates, increasing the number of disk accesses and
reducing throughput. Finally, lack of support for application-specific cache
replacement policies [Cao et al. 1994] and optimizations like TCP checksum
caching [Kaashoek et al. 1997] further reduce server performance.

We present the design, the implementation, and the performance of
IO-Lite, a unified I/O buffering and caching system for general-purpose
operating systems. IO-Lite unifies all buffering and caching in the system
to the extent permitted by the hardware. In particular, it allows applica-
tions, interprocess communication, the file cache, the network subsystem,
and other I/O subsystems to safely and concurrently share a single physical
copy of the data. IO-Lite achieves this goal by storing buffered I/O data in
immutable buffers, whose locations in physical memory never change. The
various subsystems use mutable buffer aggregates to access the data
according to their needs.

The primary goal of IO-Lite is to improve the performance of server
applications such as those running on networked (e.g., Web) servers and
other I/O-intensive applications. IO-Lite avoids redundant data copying
(decreasing I/O overhead), avoids multiple buffering (increasing effective
file cache size), and permits performance optimizations across subsystems
(e.g., application-specific file cache replacement and cached Internet check-
sums).

We introduce a new IO-Lite application programming interface (API)
designed to facilitate general-purpose I/O without copying. Applications
wanting to gain the maximum benefit from IO-Lite use the interface
directly. Other applications can benefit by linking with modified I/O
libraries (e.g., stdio) that use the IO-Lite API internally. Existing applica-
tions can work unmodified, since the existing I/O interfaces continue to
work.

A prototype of IO-Lite was implemented in FreeBSD. In keeping with the
goal of improving performance of networked servers, our central perfor-
mance results involve a Web server, in addition to other benchmark
applications. Results show that IO-Lite yields a performance advantage of
40 to 80% on real workloads. IO-Lite also allows efficient support for
dynamic content using third-party CGI programs without loss of fault
isolation and protection.

The outline of the rest of the article is as follows: Section 2 discusses the
design of the buffering and caching systems in UNIX and their deficiencies.
Section 3 presents the design of IO-Lite and discusses its operation in a
Web server application. Section 4 describes our prototype IO-Lite imple-
mentation in FreeBSD. A quantitative evaluation of IO-Lite is presented in
Section 5, including performance results with a Web server on real work-
loads. In Section 6, we present a qualitative discussion of IO-Lite in the
context of related work, and we conclude in Section 7.

38 • V. S. Pai et al.

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

2. BACKGROUND

In state-of-the-art, general-purpose operating systems, each major I/O
subsystem employs its own buffering and caching mechanism. In UNIX, for
instance, the network subsystem operates on data stored in BSD mbufs or
the equivalent System V streambufs, allocated from a private kernel
memory pool. The mbuf (or streambuf) abstraction is designed to efficiently
support common network protocol operations such as packet fragmenta-
tion/reassembly and header manipulation.

The UNIX file system employs a separate mechanism designed to allow
the buffering and caching of logical disk blocks (and more generally, data
from block-oriented devices). Buffers in this buffer cache are allocated from
a separate pool of kernel memory.

In older UNIX systems, the buffer cache is used to store all disk data. In
modern UNIX systems, only file system metadata are stored in the buffer
cache; file data are cached in VM pages, allowing the file cache to compete
with other virtual memory segments for the entire pool of physical main
memory.

No support is provided in UNIX systems for buffering and caching at the
user level. Applications are expected to provide their own buffering and/or
caching mechanisms, and I/O data are generally copied between OS and
application buffers during I/O read and write operations.1 The presence of
separate buffering/caching mechanisms in the application and in the major
I/O subsystems poses a number of problems for I/O performance:

(1) Redundant data copying: Data copying may occur multiple times along
the I/O data path. We call such copying redundant, because it is not
necessary to satisfy some hardware constraint. Instead, it is imposed by
the system’s software structure and its interfaces. Data copying is an
expensive operation, because it generally proceeds at memory rather
than CPU speed and it tends to pollute the data cache.

(2) Multiple buffering: The lack of integration in the buffering/caching
mechanisms may require that multiple copies of a data object be stored
in main memory. In a Web server, for example, a data file may be
stored in the file system cache, in the Web server’s buffers, and in the
send buffers of one or more connections in the network subsystem. This
duplication reduces the effective size of main memory, and thus the size
and hit rate of the server’s file cache.

(3) Lack of cross-subsystem optimization: Separate buffering mechanisms
make it difficult for individual subsystems to recognize opportunities
for optimizations. For example, the network subsystem of a server is
forced to recompute the Internet checksum each time a file is being
served from the server’s cache, because it cannot determine that the
same data are being transmitted repeatedly.

1Some systems transparently avoid this data copying under certain conditions using page
remapping and copy-on-write.

IO-Lite: A Unified I/O Buffering and Caching System • 39

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

3. IO-LITE DESIGN

3.1 Principles: Immutable Buffers and Buffer Aggregates

In IO-Lite, all I/O data buffers are immutable. Immutable buffers are
allocated with an initial data content that may not be subsequently
modified. This access model implies that all sharing of buffers is read-only,
which eliminates problems of synchronization, protection, consistency, and
fault isolation among OS subsystems and applications. Data privacy is
ensured through conventional page-based access control.

Moreover, read-only sharing enables very efficient mechanisms for the
transfer of I/O data across protection domain boundaries, as discussed in
Section 3.2. For example, the file system cache, applications that access a
given file, and the network subsystem can all safely refer to a single
physical copy of the data.

The price for using immutable buffers is that I/O data cannot generally
be modified in place.2 To alleviate the impact of this restriction, IO-Lite
encapsulates I/O data buffers inside the buffer aggregate abstraction.
Buffer aggregates are instances of an abstract data type (ADT) that
represents I/O data. All OS subsystems access I/O data through this unified
abstraction. Applications that wish to obtain the best possible performance
can also choose to access I/O data in this way.

The data contained in a buffer aggregate do not generally reside in
contiguous storage. Instead, a buffer aggregate is represented internally as
an ordered list of ^pointer, length& pairs, where each pair refers to a
contiguous section of an immutable I/O buffer. Buffer aggregates support
operations for truncating, prepending, appending, concatenating, and split-
ting data contained in I/O buffers.

While the underlying I/O buffers are immutable, buffer aggregates are
mutable. To mutate a buffer aggregate, modified values are stored in a
newly allocated buffer, and the modified sections are then logically joined
with the unmodified portions through pointer manipulations in the obvious
way. The impact of the absence of in-place modifications will be discussed
in Section 3.8.

In IO-Lite, all I/O data are encapsulated in buffer aggregates. Aggregates
are passed among OS subsystems and applications by value, but the
associated IO-Lite buffers are passed by reference. This approach allows a
single physical copy of I/O data to be shared throughout the system. When
a buffer aggregate is passed across a protection domain boundary, the VM
pages occupied by all of the aggregate’s buffers are made readable in the
receiving domain.

Conventional access control ensures that a process can only access I/O
buffers associated with buffer aggregates that were explicitly passed to
that process. The read-only sharing of immutable buffers ensures fault
isolation, protection, and consistency despite the concurrent sharing of I/O

2As an optimization, I/O data can be modified in place if they are not currently shared.

40 • V. S. Pai et al.

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

data among multiple OS subsystems and applications. A systemwide refer-
ence-counting mechanism for I/O buffers allows safe reclamation of unused
buffers.

3.2 Interprocess Communication

In order to support caching as part of a unified buffer system, an interpro-
cess communication mechanism must allow safe concurrent sharing of
buffers. In other words, different protection domains must be allowed
protected, concurrent access to the same buffer. For instance, a caching
Web server must retain access to a cached document after it passes the
document to the network subsystem or to a local client.

IO-Lite uses an IPC mechanism similar to fbufs [Druschel and Peterson
1993] to support safe concurrent sharing. Copy-free I/O facilities that only
allow sequential sharing [Brustoloni and Steenkiste 1996; Pasquale et al.
1994] are not suitable for use in caching I/O systems, since only one
protection domain has access to a given buffer at any time, whfile reads are
destructive.

IO-Lite extends fbufs in two significant directions. First, it extends the
fbuf approach from the network subsystem to the file system, including the
file data cache, thus unifying the buffering of I/O data throughout the
system. Second, it adapts the fbuf approach, originally designed for the
x-kernel [Hutchinson and Peterson 1991], to a general-purpose operating
system.

IO-Lite’s IPC, like fbufs, combines page remapping and shared memory.
Initially, when an (immutable) buffer is transferred, VM mappings are
updated to grant the receiving process read access to the buffer’s pages.
Once the buffer is deallocated, these mappings persist, and the buffer is
added to a cached pool of free buffers associated with the I/O stream on
which it was first used, forming a lazily established pool of read-only
shared-memory pages.

When the buffer is reused, no further VM map changes are required,
except that temporary write permissions must be granted to the producer
of the data, to allow it to fill the buffer. This toggling of write permissions
can be avoided whenever the producer is a trusted entity, such as the OS
kernel. Here, write permissions can be granted permanently, since a
trusted entity is expected to honor the buffer’s immutability.

IO-Lite’s worst-case cross-domain transfer overhead is that of page
remapping; it occurs when the producer allocates the last buffer in a
particular buffer pool before the first buffer is deallocated by the receiv-
er(s). Otherwise, buffers can be recycled, and the transfer performance
approaches that of shared memory.

3.3 Access Control and Allocation

IO-Lite ensures access control and protection at the granularity of pro-
cesses. No loss of security or safety is associated with the use of IO-Lite.
IO-Lite maintains cached pools of buffers with a common access control list

IO-Lite: A Unified I/O Buffering and Caching System • 41

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

(ACL), i.e., a set of processes with access to all IO-Lite buffers in the pool.
The choice of a pool from which a new IO-Lite buffer is allocated deter-
mines the ACL of the data stored in the buffer.

IO-Lite’s access control model requires programs to determine the ACL of
an I/O data object prior to storing it in main memory, in order to avoid
copying or page remapping. Determining the ACL is trivial in most cases,
except when an incoming packet arrives at a network interface, as dis-
cussed in Section 3.6.

Figure 1 depicts the relationship between VM pages, buffers, and buffer
aggregates. IO-Lite buffers are allocated in a region of the virtual address
space called the IO-Lite window. The IO-Lite window appears in the virtual
address spaces of all protection domains, including the kernel. The figure
shows a section of the IO-Lite window populated by three buffers. An
IO-Lite buffer always consists of an integral number of (virtually) contigu-
ous VM pages. The pages of an IO-Lite buffer share identical access control
attributes: in a given protection domain, either all or none of a buffer’s
pages are accessible.

Also shown are two buffer aggregates. An aggregate contains an ordered
list of tuples of the form ^address, length&. Each tuple refers to a subrange
of memory called a slice. A slice is always contained in one IO-Lite buffer,
but slices in the same IO-Lite buffer may overlap. The contents of a buffer
aggregate can be enumerated by reading the contents of each of its
constituent slices in order.

Data objects with the same ACL can be allocated in the same IO-Lite
buffer and on the same page. As a result, IO-Lite does not waste memory
when allocating objects that are smaller than the VM page size.

Buffer Aggregate 1 Buffer Aggregate 2

Buffer 1 Buffer 2 Buffer 3

Fig. 1. Aggregate buffers and slices. IO-Lite allocates contiguous buffers in virtual memory.
Applications access these buffers through data structures called buffer aggregates, which
contain ordered tuples of the form ^address, length&. Each tuple refers to a subrange of
memory called a slice.

42 • V. S. Pai et al.

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

3.4 IO-Lite and Applications

To take full advantage of IO-Lite, application programs use an extended
I/O application programming interface (API) that is based on buffer aggre-
gates. This section briefly describes this API. A complete discussion of the
API can be found in our technical report [Pai 1999].

IOL_read and IOL_write form the core of the interface (see Figure 2).
These operations supersede the standard UNIX read and write opera-
tions. (The latter operations are maintained for backward compatibility.)
Like their predecessors, the new operations can act on any UNIX file
descriptor. All other file-descriptor-related UNIX systems calls remain
unchanged.

The new IOL_read operation returns a buffer aggregate (IOL_Agg)
containing at most the amount of data specified as an argument. Unlike the
POSIX read, IOL_read may always return less data than requested. The
IOL_write operation replaces the data in an external data object with the
contents of the buffer aggregate passed as an argument.

The effects of IOL_read and IOL_write operations are atomic with
respect to other IOL_write operations concurrently invoked on the same
descriptor. That is, an IOL_read operation yields data that either reflect all
or none of the changes resulting from a concurrent IOL_write operation on
the same file descriptor. The data returned by an IOL_read are effectively a
“snapshot” of the data contained in the object associated with the file
descriptor.

Additional IO-Lite system calls allow the creation and deletion of IO-Lite
allocation pools. A version of IOL_read allows applications to specify an
allocation pool, such that the system places the requested data into IO-Lite
buffers from that pool. Applications that manage multiple I/O streams with
different access control lists use this operation. The IOL_Agg abstract data
type supports a number of operations for creation, destruction, duplication,
concatenation, and truncation, as well as data access.

Language-specific runtime I/O libraries, like the ANSI C stdio library,
can be converted to use the new API internally. Doing so reduces data
copying without changing the library’s API. As a result, applications that
perform I/O using these standard libraries can enjoy some performance
benefits merely by relinking them with the new library.

3.5 IO-Lite and the File System

With IO-Lite, buffer aggregates form the basis of the file system cache. The
file system itself remains unchanged.

File data that originate from a local disk are generally page-aligned and
page-sized. However, file data received from the network may not be

Fig. 2. IO-Lite I/O API. The IOL_read and IOL_write system calls form the core of the
IO-Lite API and are used by applications to take full advantage of IO-Lite.

IO-Lite: A Unified I/O Buffering and Caching System • 43

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

page-aligned or page-sized, but can nevertheless be kept in the file cache
without copying. Conventional UNIX file cache implementations are not
suitable for IO-Lite, since they place restrictions on the layout of cached file
data. As a result, current UNIX implementations perform a copy when file
data arrives from the network.

The IO-Lite file cache has no statically allocated storage. The data
resides in IO-Lite buffers, which occupy ordinary pageable virtual memory.
Conceptually, the IO-Lite file cache is very simple. It consists of a data
structure that maps triples of the form ^file-id, offset, length& to buffer
aggregates that contain the corresponding extent of file data.

Since IO-Lite buffers are immutable, a write operation to a cached file
results in the replacement of the corresponding buffers in the cache with
the buffers supplied in the write operation. The replaced buffers no longer
appear in the file cache. They persist, however, as long as other references
to them exist.

For example, assume that an IOL_read operation of a cached file is
followed by an IOL_write operation to the same portion of the file. The
buffers that were returned in the IOL_read are replaced in the cache as a
result of the IOL_write. However, the buffers persist until the process that
called IOL_read deallocates them and no other references to the buffers
remain. In this way, the snapshot semantics of the IOL_read operation are
preserved.

3.6 IO-Lite and the Network

With IO-Lite, the network subsystem uses IO-Lite buffer aggregates to
store and manipulate network packets.

Some modifications are required to network device drivers. As explained
in Section 3.3, programs using IO-Lite must determine the ACL of a data
object prior to storing the object in memory. Thus, network interface
drivers must determine the I/O stream associated with an incoming packet,
since this stream implies the ACL for the data contained in the packet.

To avoid copying, drivers must determine this information from the
headers of incoming packets using a packet filter [McCanne and Jacobson
1993], an operation known as early demultiplexing. Incidentally, early
demultiplexing has been identified by many researchers as a necessary
feature for efficiency and quality of service in high-performance networks
[Tennenhouse 1989]. With IO-Lite, as with fbufs [Druschel and Peterson
1993], early demultiplexing is necessary for best performance.

3.7 Cache Replacement and Paging

We now discuss the mechanisms and policies for managing the IO-Lite file
cache and the physical memory used to support IO-Lite buffers. There are
two related issues, namely (1) replacement of file cache entries and (2)
paging of virtual memory pages that contain IO-Lite buffers. Since cached
file data reside in IO-Lite buffers, the two issues are closely related.

44 • V. S. Pai et al.

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

Cache replacement in a unified caching/buffering system is different from
that of a conventional file cache. Cached data are potentially concurrently
accessed by applications. Therefore, replacement decisions should take into
account both references to a cache entry (i.e., IOL_read and IOL_write
operations), as well as virtual memory accesses to the buffers associated
with the entry.3

Moreover, the data in an IO-Lite buffer can be shared in complex ways.
For instance, assume that an application reads a data record from file A,
appends that record to the same file A, then writes the record to a second
file B, and finally transmits the record via a network connection. After this
sequence of operations, the buffer containing the record will appear in two
different cache entries associated with file A (corresponding to the offset
from where the record was read, and the offset at which it was appended),
in a cache entry associated with file B, in the network subsystem transmis-
sion buffers, and in the user address space of the application. In general,
the data in an IO-Lite buffer may at the same time be part of an application
data structure, represent buffered data in various OS subsystems, and
represent cached portions of several files or different portions of the same
file.

Due to the complex sharing relationships, a large design space exists for
cache replacement and paging of unified I/O buffers. While we expect that
further research is necessary to determine the best policies, our current
system employs the following simple strategy. Cache entries are main-
tained in a list ordered first by current use (i.e., are the data currently
referenced by anything other than the cache?), then by time of last access,
taking into account read and write operations but not VM accesses for
efficiency. When a cache entry needs to be evicted, the least recently used
among currently unreferenced cache entries is chosen, else the least
recently used among the currently referenced entries.

Cache entry eviction is triggered by a simple rule that is evaluated each
time a VM page containing cached I/O data is selected for replacement by
the VM pageout daemon. If, during the period since the last cache entry
eviction, more then half of VM pages selected for replacement were pages
containing cached I/O data, then it is assumed that the current file cache is
too large, and we evict one cache entry. Because the cache is enlarged (i.e.,
a new entry is added) on every miss in the file cache, this policy tends to
keep the file cache at a size such that about half of all VM page replace-
ments affect file cache pages.

Since all IO-Lite buffers reside in pageable virtual memory, the cache
replacement policy only controls how much data the file cache attempts to
hold. Actual assignment of physical memory is ultimately controlled by the
VM system. When the VM pageout daemon selects a IO-Lite buffer page for
replacement, IO-Lite writes the page’s contents to the appropriate backing
store and frees the page.

3Similar issues arise in file caches that are based on memory-mapped files.

IO-Lite: A Unified I/O Buffering and Caching System • 45

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

Due to the complex sharing relationships possible in a unified buffering/
caching system, the contents of a page associated with a IO-Lite buffer may
have to be written to multiple backing stores. Such backing stores include
ordinary paging space, plus one or more files for which the evicted page is
holding cached data.

Finally, IO-Lite includes support for application-specific file cache re-
placement policies. Interested applications can customize the policy using
an approach similar to that proposed by Cao et al. [1994].

3.8 Impact of Immutable I/O Buffers

Consider the impact of IO-Lite’s immutable I/O buffers on program opera-
tion. If a program wishes to modify a data object stored in a buffer
aggregate, it must store the new values in a newly allocated buffer. There
are three cases to consider.

First, if every word in the data object is modified, then the only addi-
tional cost (over in-place modification) is a buffer allocation. This case
arises frequently in programs that perform operations such as compression
and encryption. The absence of support for in-place modifications should
not significantly affect the performance of such programs.

Second, if only a subset of the words in the object changes value, then the
naive approach of copying the entire object would result in partially
redundant copying. This copying can be avoided by storing modified values
into a new buffer, and logically combining (chaining) the unmodified and
modified portions of the data object through the operations provided by the
buffer aggregate.

The additional costs in this case (over in-place modification) are due to
buffer allocations and chaining (during the modification of the aggregate),
and subsequent increased indexing costs (during access of the aggregate)
incurred by the noncontiguous storage layout. This case arises in network
protocols (fragmentation/reassembly, header addition/removal), and many
other programs that reformat/reblock I/O data units. The performance
impact on these programs due to the lack of in-place modification is small
as long as changes to data objects are reasonably localized.

The third case arises when the modifications of the data object are so
widely scattered (leading to a highly fragmented buffer aggregate) that the
costs of chaining and indexing exceed the cost of a redundant copy of the
entire object into a new, contiguous buffer. This case arises in many
scientific applications that read large matrices from input devices and
access/modify the data in complex ways. For such applications, contiguous
storage and in-place modification are a must. For this purpose, IO-Lite
incorporates the mmap interface found in all modern UNIX systems. The
mmap interface creates a contiguous memory mapping of an I/O object that
can be modified in-place.

The use of mmap may require copying in the kernel. First, if the data
object is not contiguous and not properly aligned (e.g., incoming network
data) a copy operation is necessary due to hardware constraints. In

46 • V. S. Pai et al.

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

practice, the copy operation is done lazily on a per-page basis. When the
first access occurs to a page of a memory-mapped file, and its data are not
properly aligned, that page is copied.

Second, a copy is needed in the event of a store operation to a memory-
mapped file, when the affected page is also referenced through an immuta-
ble IO-Lite buffer. (This case arises, for instance, when the file was
previously read by some user process using an IOL_read operation.) The
modified page must be copied in order to maintain the snapshot semantics
of the IOL_read operation. The copy is performed lazily, upon the first
write access to a page.

3.9 Cross-Subsystem Optimizations

A unified buffering/caching system enables certain optimizations across
applications and OS subsystems not possible in conventional I/O systems.
These optimizations leverage the ability to uniquely identify a particular
I/O data object throughout the system.

For example, with IO-Lite, the Internet checksum module used by the
TCP and UDP protocols is equipped with an optimization that allows it to
cache the Internet checksum computed for each slice of a buffer aggregate.
Should the same slice be transmitted again, the cached checksum can be
reused, avoiding the expense of a repeated checksum calculation. This
optimization works extremely well for network servers that serve docu-
ments stored on disk with a high degree of locality. Whenever a file is
requested that is still in the IO-Lite file cache, TCP can reuse a precom-
puted checksum, thereby eliminating the only remaining data-touching
operation on the critical I/O path.

To support such optimizations, IO-Lite provides with each buffer a
generation number. The generation number is incremented every time a
buffer is reallocated. Since IO-Lite buffers are immutable, this generation
number, combined with the buffer’s address, provides a systemwide unique
identifier for the contents of the buffer. That is, when a subsystem is
presented repeatedly with an IO-Lite buffer with identical address and
generation number, it can be sure that the buffer contains the same data
values, thus enabling optimizations like Internet checksum caching.

3.10 Operation in a Web Server

We start with an overview of the basic operation of a Web server on a
conventional UNIX system. A Web server repeatedly accepts TCP connec-
tions from clients, reads the client’s HTTP request, and transmits the
requested content data with an HTTP response header. If the requested
content is static, the corresponding document is read from the file system.
If the document is not found in the file system’s cache, a disk read is
necessary.

In a traditional UNIX system, copying occurs when data are read from
the file system and when the data are written to the socket attached to the
client’s TCP connection. High-performance Web servers avoid the first copy

IO-Lite: A Unified I/O Buffering and Caching System • 47

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

by using the UNIX mmap interface to read files, but the second copy
remains. Multiple buffering occurs because a given document may simulta-
neously be stored in the file cache and in the TCP retransmission buffers of
potentially multiple client connections.

With IO-Lite, all data copying and multiple buffering is eliminated. Once
a document is in main memory, it can be served repeatedly by passing
buffer aggregates between the file cache, the server application, and the
network subsystem. The server obtains a buffer aggregate using the
IOL_read operation on the appropriate file descriptor, concatenates a
response header, and transmits the resulting aggregate using IOL_write on
the TCP socket. If a document is served repeatedly from the file cache, the
TCP checksum need not be recalculated except for the buffer containing the
response header.

Dynamic content is typically generated by an auxiliary third-party CGI
program that runs as a separate process. The data are sent from the CGI
process to the server process via a UNIX pipe. In conventional systems,
sending data across the pipe involves at least one data copy. In addition,
many CGI programs read primary files that they use to synthesize dynamic
content from the file system, causing more data copying when those data
are read. Caching of dynamic content in a CGI program can aggravate the
multiple buffering problem: primary files used to synthesize dynamic
content may now be stored in the file cache, in the CGI program’s cache as
part of a dynamic page, in the Web server’s holding buffers, and in the TCP
retransmission buffers.

With IO-Lite, sending data over a pipe involves no copying. CGI pro-
grams can synthesize dynamic content by manipulating buffer aggregates
containing newly generated data and data from primary files. Again,
IO-Lite eliminates all copying and multiple buffering, even in the presence
of caching CGI programs. TCP checksums need not be recomputed for
portions of dynamically generated content that are repeatedly transmitted.

IO-Lite’s ability to eliminate data copying and multiple buffering can
dramatically reduce the cost of serving static and dynamic content. The
impact is particularly strong in the case when a cached copy (static or
dynamic) of the requested content exists, since copying costs can dominate
the service time in this case. Moreover, the elimination of multiple buffer-
ing frees up valuable memory resources, permitting a larger file cache size
and hit rate, thus further increasing server performance.

Web servers use IO-Lite’s access control model in a straightforward
manner. The various access permissions in a Web server stem from the
sources of the data: the file system for static files, the CGI applications for
dynamic data, and the server process itself for internally generated data
(response headers, redirect responses, etc.). Mapping these permissions to
the IO-Lite model is trivial: the server process and every CGI application
instance have separate buffer pools with different ACLs. When the server
process reads a buffer aggregate, either from the file system or a CGI
process, IO-Lite makes the underlying buffers readable in the server

48 • V. S. Pai et al.

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

process. When these data are sent by the server to the client, the network
subsystem has access to the pages by virtue of being part of the kernel.

Finally, a Web server can use the IO-Lite facilities to customize the
replacement policy used in the file cache to derive further performance
benefits. To use IO-Lite, an existing Web server need only be modified to
use the IO-Lite API. CGI programs must likewise use buffer aggregates to
synthesize dynamic content.

4. IMPLEMENTATION

IO-Lite is implemented as a loadable kernel module that can be dynami-
cally linked to a slightly modified FreeBSD 2.2.6 kernel. A runtime library
must be linked with applications wishing to use the IO-Lite API. This
library provides the buffer aggregate manipulation routines and stubs for
the IO-Lite system calls.

4.1 Network Subsystem

The BSD network subsystem was adapted by encapsulating IO-Lite buffers
inside the BSD-native buffer abstraction, mbufs. This approach avoids
intrusive and widespread source code modifications.

The encapsulation was accomplished by using the mbuf out-of-line
pointer to refer to an IO-Lite buffer, thus maintaining compatibility with
the BSD network subsystem in a very simple, efficient manner. Small data
items such as network packet headers are still stored inline in mbufs, but
the performance-critical bulk data reside in IO-Lite buffers. Since the mbuf
data structure remains essentially unmodified, the bulk of the network
subsystem (including all network protocols) works unmodified with mbuf-
encapsulated IO-Lite buffers.

4.2 File System

The IO-Lite file cache module replaces the unified buffer cache module
found in 4.4BSD derived systems [McKusick et al. 1996]. The bulk of the
file system code (below the block-oriented file read/write interface) remains
unmodified. As in the original BSD kernel, the file system continues to use
the “old” buffer cache to hold file system metadata.

The original UNIX read and write system calls for files are implemented
by IO-Lite for backward compatibility; a data copy operation is used to
move data between application buffers and IO-Lite buffers.

4.3 VM System

Adding IO-Lite does not require any significant changes to the BSD VM
system [McKusick et al. 1996]. IO-Lite uses standard interfaces exported
by the VM system to create a VM object that represents the IO-Lite
window, map that object into kernel and user process address spaces, and
to provide page-in and page-out handlers for the IO-Lite buffers.

The page-in and page-out handlers use information maintained by the
IO-Lite file cache module to determine the disk locations that provide

IO-Lite: A Unified I/O Buffering and Caching System • 49

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

backing store for a given IO-Lite buffer page. The replacement policy for
IO-Lite buffers and the IO-Lite file cache is implemented by the page-out
handler, in cooperation with the IO-Lite file cache module.

4.4 IPC System

The IO-Lite system adds a modified implementation of the BSD IPC
facilities. This implementation is used whenever a process uses the IO-Lite
read/write operations on a BSD pipe or UNIX domain socket. If the
processes on both ends of a pipe or UNIX domain socket-pair use the
IO-Lite API, then the data transfer proceeds copy-free by passing the
associated IO-Lite buffers by reference. The IO-Lite system ensures that all
pages occupied by these IO-Lite buffers are readable in the receiving
domain, using standard VM operations.

4.5 Access Control

To reduce the number of operations and the amount of bookkeeping needed
by the VM system, IO-Lite performs all access control over groups of pages
called chunks. Chunks are fixed-sized regions of virtual memory (currently
set to 64KB) that share the same access permissions. When a process
requests a new IO-Lite buffer, it is allocated from a chunk with the
appropriate ACL. If no available chunk exists, a new chunk is allocated and
made writeable in the process’ address space. When a process sends a
buffer aggregate to another process, IO-Lite makes all of the underlying
chunks readable in the receiver’s address space.

5. PERFORMANCE

For our experiments, we use a server system with a 333MHz Pentium II
PC, 128MB of main memory, and five network adaptors connected to a
switched 100Mbps Fast Ethernet.

To fully expose the performance bottlenecks in the operating system, we
use a high-performance in-house Web server called Flash [Pai et al. 1999a].
Flash is an event-driven HTTP server with support for CGI. To the best of
our knowledge, Flash is among the fastest HTTP servers currently avail-
able. Flash-Lite is a slightly modified version of Flash that uses the IO-Lite
API. Flash is an aggressively optimized, experimental Web server; it
reflects the best in Web server performance that can be achieved using the
standard facilities available in a modern operating system. Flash-Lite’s
performance reflects the additional benefits that result from IO-Lite.

While Flash uses memory-mapped files to read disk data, Flash-Lite uses
the IO-Lite read/write interface to access disk files. In addition, Flash-Lite
uses the IO-Lite support for customization of the file-caching policy to
implement Greedy Dual Size (GDS), a policy that performs well on Web
workloads [Cao and Irani 1997]. The modifications necessary for Flash to
use IO-Lite were straightforward and simple. Calls to mmapto map data
files were replaced with calls to IOL_read . Allocating memory for response
headers, done using malloc in Flash, is handled with memory allocation

50 • V. S. Pai et al.

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

from IO-Lite space. Finally, the gathering/sending of data to the client (via
writev in Flash) is accomplished with IOL_write .

For comparison, we also present performance results with Apache ver-
sion 1.3.1, a widely used Web server.4 This version uses mmap to read files
and performs substantially better than earlier versions. Apache’s perfor-
mance reflects what can be expected of a widely used Web server today.

All Web servers were configured to use a TCP socket send buffer size of
64KB. Access logging was disabled to ensure fairness to all servers.
Logging accesses drops Apache’s performance by 13–16% on these tests, but
only drops Flash/Flash-Lite’s performance by 3–5%.

5.1 Nonpersistent Connections

In the first experiment, 40 HTTP clients running on five machines repeat-
edly request the same document of a given size from the server. A client
issues a new request as soon as a response is received for the previous
request [Banga and Druschel 1999]. The file size requested varies from 500
bytes to 200KB (the data points below 20KB are 500 bytes, 1KB, 2KB, 3KB,
5KB, 7KB, 10KB, and 15KB). In all cases, the files are cached in the
server’s file cache after the first request, so no physical disk I/O occurs in
the common case.

Figure 3 shows the output bandwidth of the various Web servers as a
function of request file size. Results are shown for Flash-Lite, Flash, and
Apache. Flash performs consistently better than Apache, with bandwidth
improvements up to 71% at a file size of 20KB. This result confirms that
our aggressive Flash server outperforms the already fast Apache server.

For files 50KB and larger, Flash using IO-Lite (Flash-Lite) delivers a
bandwidth increase of 38–43% over Flash and 73–94% over Apache. For

4http://www.apache.org/

0 50 100 150 200
0

100

200

300

400

FlashLite
Flash
Apache

B
an

dw
id

th
 (

M
b/

s)

Document Size (kBytes)

Fig. 3. HTTP single-file test. All clients request the same file from the server, and we observe
the aggregate bandwidth generated. This test provides the best-case performance of the
servers using nonpersistent connections.

IO-Lite: A Unified I/O Buffering and Caching System • 51

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

file sizes of 5KB or less, Flash and Flash-Lite perform equally well. The
reason is that at these small sizes, control overheads, rather than data-
dependent costs, dominate the cost of serving a request.

The throughput advantage obtained with IO-Lite in this experiment
reflects only the savings due to copy-avoidance and checksum caching.
Potential benefits resulting from the elimination of multiple buffering and
the customized file cache replacement are not realized, because this exper-
iment does not stress the file cache (i.e., a single document is repeatedly
requested).

5.2 Persistent Connections

The previous experiments are based on HTTP 1.0, where a TCP connection
is established by clients for each individual request. The HTTP 1.1 specifi-
cation adds support for persistent (keep-alive) connections that can be used
by clients to issue multiple requests in sequence. We modified both versions
of Flash to support persistent connections and repeated the previous
experiment. The results are shown in Figure 4.

With persistent connections, the request rate for small files (less than
50KB) increases significantly with Flash and Flash-Lite, due to the reduced
overhead associated with TCP connection establishment and termination.
The overheads of the process-per-connection model in Apache appear to
prevent that server from fully taking advantage of this effect.

Persistent connections allow Flash-Lite to realize its full performance
advantage over Flash at smaller file sizes. For files of 20KB and above,
Flash-Lite outperforms Flash by up to 43%. Moreover, Flash-Lite comes
within 10% of saturating the network at a file size of only 17KB, and it
saturates the network for file sizes of 30KB and above.

0 50 100 150 200
0

100

200

300

400

FlashLite
Flash
Apache

B
an

dw
id

th
 (

M
b/

s)

Document Size (kBytes)

Fig. 4. Persistent HTTP single-file test. Rather than creating a new TCP connection for each
transfer, each client requests multiple transfers on an existing connection. Removing the TCP
setup/teardown overhead allows even small transfers to achieve significant benefit.

52 • V. S. Pai et al.

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

5.3 CGI Programs

An area where IO-Lite promises particularly substantial benefits is CGI
programs. When compared to the original CGI 1.1 standard5 the newer
FastCGI interface6 amortizes the cost of forking and starting a CGI process
by allowing such processes to persist across requests. However, there are
still substantial overheads associated with IPC across pipes and multiple
buffering, as explained in Section 3.10.

We performed an experiment to evaluate how IO-Lite affects the perfor-
mance of dynamic content generation using FastCGI programs. A test CGI
program, when receiving a request, sends a “dynamic” document of a given
size from its memory to the Web server process via a UNIX pipe; the server
transmits the data on the client’s connection. The results of these experi-
ments are shown in Figure 5.

The bandwidth of the Flash and Apache servers is roughly half their
corresponding bandwidth on static documents. This result shows the strong
impact of the copy-based pipe IPC in regular UNIX on CGI performance.
With Flash-Lite, the performance is significantly better, approaching 87%
of the speed on static content. Also interesting is that CGI programs with
Flash-Lite achieve performance better than static files with Flash.

Figure 6 shows results of the same experiment using persistent HTTP-
1.1 connections. Unlike Flash-Lite, Flash and Apache cannot take advan-
tage of the efficiency of persistent connections here, since their perfor-
mance is limited by the pipe IPC.

The results of these experiments show that IO-Lite allows a server to
efficiently support dynamic content using CGI programs, without giving up
fault isolation and protection from such third-party programs. This result

5The common gateway interface; see http://hoohoo.ncsa.uiuc.edu/cgi/.
6http://www.fastcgi.com/

0 50 100 150 200
0

100

200

300

400
FlashLite
Flash
Apache

B
an

dw
id

th
 (

M
b/

s)

Document Size (kBytes)

Fig. 5. HTTP/FastCGI. Each client requests data from a persistent CGI application spawned
by the server. In standard UNIX, the extra copying between the server and the CGI
application becomes a significant performance bottleneck.

IO-Lite: A Unified I/O Buffering and Caching System • 53

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

suggests that with IO-Lite, there may be less reason to resort to library-
based interfaces for dynamic content generation. Such interfaces were
defined by Netscape7 and by Microsoft8 to avoid the overhead of CGI. Since
they require third-party programs to be linked with the server, they give up
fault isolation and protection.

5.4 Trace-Based Evaluation

To measure the overall impact of IO-Lite on the performance of a Web
server under more realistic workload conditions, we performed experiments
where our experimental server is driven by workloads derived from server
logs of actual Web servers. We use logs from various Web servers from Rice
University, and extract only the requests for static documents.

For these tests, we use access logs from the Electrical and Computer
Engineering department, the Computer Science department, and a com-
bined log from seven Web servers located across the University. We will
refer to these traces as ECE, CS, and MERGED, respectively. The
MERGED access log represents the access patterns for a hypothetical
single Web server hosting all content for the Rice University campus. The
average request size in these traces is 23KB for ECE, 20KB for CS, and
17KB for MERGED. The other characteristics of these access logs are
shown in Figure 7.

Our first test is designed to measure the overall behavior of the servers
on various workloads. In this experiment, 64 clients replay requests from
the access logs against the server machine. The clients share the access log,
and as each request finishes, the client issues the next unsent request from

7Netscape Server API. http://www.netscape.com/newsref/std/server api.html.
8Microsoft Corporation ISAPI Overview. http://www.microsoft.com/msdn/sdk/platforms/doc/
sdk/internet/src/isapimrg.htm.

0 50 100 150 200
0

100

200

300

400
FlashLite
Flash
Apache

B
an

dw
id

th
 (

M
b/

s)

Document Size (kBytes)

Fig. 6. Persistent-HTTP/FastCGI. Each client reuses the TCP connection for multiple CGI
requests. Flash and Apache do not receive significant benefits because their performance is
limited by the copying between the server and CGI application.

54 • V. S. Pai et al.

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

the log. Since we are interested in testing the maximum performance of the
server, the clients issue requests immediately after earlier requests com-
plete.

Figure 8 shows the overall performance of the various servers on our
traces. The performance differences between these tests and the single-file
test in Section 5.1 stem from the nature of the workloads presented to the
servers. In the single-file tests, no cache misses or disk activity occur once
the file has been brought into memory. In contrast, these traces involve a
large number of files, cover large data set sizes, and generate significant
disk activity. The combination of these factors reduces the performance of
all of the servers. Server performance on these tests is influenced by a
variety of factors, including average request size, total data set size, and
request locality. Flash-Lite significantly outperforms Flash and Apache on
the ECE and CS traces. However, the MERGED trace has a large working
set and poor locality, so all of the servers remain disk-bound.

0 5000 10000
0

0.2

0.4

0.6

0.8

1

783529 requests
10195 files
523 MB total

requests

data size

C
um

ul
. r

eq
s,

 d
at

a
si

ze
 (

no
rm

.)

File # (sorted by # requests)

ECE Department Access Log

 0 10000 20000
0

0.2

0.4

0.6

0.8

1

3746842 requests
26948 files
933 MB total

requests

data size

C
um

ul
. r

eq
s,

 d
at

a
si

ze
 (

no
rm

.)

File # (sorted by # requests)

CS Department Access Log

 0 10000 20000 30000
0

0.2

0.4

0.6

0.8

1

2290909 requests
37703 files
1418 MB total

requests

data size

C
um

ul
. r

eq
s,

 d
at

a
si

ze
 (

no
rm

.)

File # (sorted by # requests)

MERGED Access Log

Fig. 7. Trace characteristics. These graphs show the cumulative distribution functions for
the data size and request frequencies of the three traces used in our experiments. For
example, the 5000 most heavily requested files in the ECE access constituted 39% of the total
static data size (523MB) and 95% of all requests.

B
an

dw
id

th
 (

M
b/

s)

0

Flash-
Lite

Flash

Apache

10

20

30

40

50

60

ECE CS MERGED

70

Fig. 8. Overall trace performance. In each test, 64 clients were used to replay the entries of
the trace. New requests were started immediately after previous requests completed.

IO-Lite: A Unified I/O Buffering and Caching System • 55

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

5.5 Subtrace Experiments

Replaying full traces provides useful performance data about the relative
behavior of the three servers on workloads derived from real servers’ access
logs. To obtain more detailed information about server behavior over a
wider range of workloads, we experiment with varying the request stream
sent to servers. We use a portion of the MERGED access log that corre-
sponds to a 150MB data set size, and then use prefixes of it to generate
input streams with smaller data set sizes. The characteristics of the 150MB
subtrace are shown in Figure 9.

By using the subtraces as our request workload, our experiment evalu-
ates server performance over a range of data set sizes (and therefore
working set sizes). Employing methodology similar to the SpecWeb96
benchmark,9 the clients randomly pick entries from the subtraces to
generate requests. Four client machines with 16 clients each are used to
generate the workload. Each client issues one request at a time and
immediately issues a new request when the previous request finishes. Each
data point represents the average aggregate bandwidth generated during a
one-hour run.

Figure 10 shows the performance in Mb/s of Flash-Lite, Flash, and
Apache on the MERGED subtrace with various data set sizes. For this
trace, Flash exceeds the throughput of Apache by 65–88% on in-memory
workloads and by 71–110% on disk-bound workloads. Compared to Flash,
Flash-Lite’s copy avoidance gains an additional 34–50% for in-memory
workloads, while its cache replacement policies generate a 44–67% gain on
disk-bound workloads.

9http://www.spec.org/osg/web96/

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

28403 requests
5459 files
150 MB total

requests

data size

C
um

ul
. r

eq
s,

 d
at

a
si

ze
 (

no
rm

.)

File # (sorted by # requests)

Fig. 9. 150MB subtrace characteristics. This graph presents the cumulative distribution
functions for the data size and request frequencies of the subtrace we used. For example, we
see that the 1000 most frequently requested files were responsible for 20% of the total static
data size but 74% of all requests.

56 • V. S. Pai et al.

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

5.6 Optimization Contributions

Flash-Lite’s performance gains over Flash stem from a combination of four
factors: copy elimination, double-buffering elimination, checksum caching,
and a customized cache replacement policy. To quantify the effects of each
of these contributions, we performed a set of tests with different versions of
Flash-Lite and IO-Lite. Flash-Lite was run both with its standard cache
replacement policy (GDS), and with a more traditional least-recently used
(LRU) cache replacement. Likewise, IO-Lite was run with and without the
checksum cache enabled. These additional tests were run in the configura-
tion described in Section 5.4.

The results of these additional tests are shown in Figure 11, with the
results for Flash-Lite and Flash included for comparison. The benefit from
copy elimination alone ranges from 21–33% and can be determined by
comparing the in-memory performance of Flash with Flash-Lite running on
a version of IO-Lite without checksum caching. Checksum caching yields
an additional 10–15% benefit for these cases. Using the GDS cache
replacement policy provides a 17–28% benefit over LRU on disk-heavy
workloads, as indicated by comparing Flash-Lite to Flash-Lite-LRU.

One of the other benefits of IO-Lite is the extra memory saved by
eliminating double-buffering. However, in this experiment, the fast LAN
and the relatively small client population results in less than two mega-
bytes of memory being devoted to network buffers. As such, the fact that
IO-Lite eliminates double-buffering is not evident in this test. With more
clients in a wide-area network, the effects of multiple buffering become
much more significant, as shown in the next section.

5.7 WAN Effects

Our experimental testbed uses a local-area network to connect a relatively
small number of clients to the experimental server. This setup leaves a

0 50 100 150
0

50

100

150

200

250

Data Set Size (MBytes)

B
an

dw
id

th
 (

M
b/

s)

FlashLite
Flash
Apache

Fig. 10. MERGED subtrace performance. This graph shows the aggregate bandwidth gener-
ated by 64 clients as a function of data set size. Flash outperforms Apache due to aggressive
caching, while Flash-Lite outperforms Flash due to a combination of copy avoidance, check-
sum caching, and customized file cache replacement.

IO-Lite: A Unified I/O Buffering and Caching System • 57

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

significant aspect of real Web server performance unevaluated, namely the
impact of wide-area network delays and large numbers of clients [Banga
and Druschel 1999]. In particular, we are interested here in the TCP
retransmission buffers needed to support efficient communication on con-
nections with substantial bandwidth-delay products.

Since both Apache and Flash use mmap to read files, the remaining
primary source of double-buffering is TCP’s transmission buffers. The
amount of memory consumed by these buffers is related to the number of
concurrent connections handled by the server, times the socket send buffer
size Tss used by the server. For good network performance, Tss must be
large enough to accommodate a connection’s bandwidth-delay product. A
typical setting for Tss in a server today is 64KB.

Busy servers may handle several hundred concurrent connections, result-
ing in significant memory requirements even in the current Internet. With
future increases in Internet bandwidth, the necessary Tss settings needed
for good network performance are likely to increase, making double-
buffering elimination increasingly important.

With IO-Lite, however, socket send buffers do not require separate
memory, since they refer to data stored in IO-Lite buffers.10 Double-
buffering is eliminated, and the amount of memory available for the file
cache remains independent of the number of concurrent clients contacting
the server and the setting of Tss. To quantify the impact of the memory
consumed by the transmission buffers, we configure our test environment
to resemble a wide-area network. We interpose a “delay router” between
each client machine and the server. Using these delay routers, we can
configure the network delay for all data exchanged between the clients and
the server. In wide-area networks, the extra networking delay increases

10A small amount of memory is required to hold mbuf structures.

0 50 100 150
0

50

100

150

200

250

Data Set Size (MBytes)

B
an

dw
id

th
 (

M
b/

s)
FlashLite
FlashLite LRU
FlashLite no cksm cache
FlashLite LRU no cksm cache
Flash

Fig. 11. Optimization contributions. To quantify the effects of the various optimizations
present in Flash-Lite and IO-Lite, two file cache replacement policies are tested in Flash-Lite,
while IO-Lite is run with and without checksum caching.

58 • V. S. Pai et al.

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

the time necessary to transmit documents. As a result, the number of
simultaneous connections seen by a server increases with the network
delay. To keep the server saturated, we linearly scale the number of clients
with the network delay, from 64 clients in the LAN (no delay) case to a
maximum of 900 clients for the 150ms delay test. We run the tests with a
data set size of 120MB, which is neither entirely disk-bound or CPU-
limited.

Figure 12 shows the performance of Flash-Lite, Flash, and Apache as a
function of network delay. The performance of Flash and Apache drops as
the network delay increases. They are affected by the network subsystem
dynamically allocating more space as the network delay increases. When
this occurs, the memory available to the file system cache decreases, and
the cache miss rate increases. The 50% drop in Apache is higher than the
33% drop for Flash because Apache also loses extra memory by using a
separate server process per simultaneous connection. In contrast, Flash-
Lite’s performance actually increases slightly in these tests. It does not
suffer the effects of multiple buffering, so only a small amount of additional
control overhead is added as the network delay increases. However, the
larger client population increases the available parallelism, slightly in-
creasing Flash-Lite’s performance.

5.8 Other Applications

To demonstrate the impact of IO-Lite on the performance of a wider range
of applications, and to gain experience with the use of the IO-Lite API, a
number of existing UNIX programs were converted to use IO-Lite. We

B
an

dw
id

th
 (

M
b/

s)

RoundTrip WAN Delay (ms)

0

20

40

60

80

100

120

LAN 5 50 100 150

Flash-
Lite

Flash

Apache

Fig. 12. Throughput versus network delay. In a conventional UNIX system, as the network
delay increases, more network buffer space is allocated, reducing the memory available to the
file system cache. The throughput of Flash and Apache drops due to this effect. IO-Lite avoids
multiple buffering, so Flash-Lite is not affected.

IO-Lite: A Unified I/O Buffering and Caching System • 59

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

modified GNU grep, wc, cat, and the GNU gcc compiler chain (compiler
driver, C preprocessor, C compiler, and assembler).11

For these programs, the modifications necessary to use IO-Lite were
minimal. The cat program was the simplest, since it does not process the
data it handles. Its modifications consisted of replacing the UNIX read/
write calls with their IO-Lite equivalents. The wc program makes a single
pass over the data, examining one character at a time. Converting it
involved replacing UNIX read with IOL_read and iterating through the
slices returned in the buffer aggregate. Modifying grep was slightly more
involved, since it operates in a line-oriented manner. Again, the UNIX read
call was replaced with IOL_read. However, since grep expects all data in a
line to be contiguous in memory, lines that were split across IO-Lite buffers
were copied into dynamically allocated contiguous memory.

For gcc, rather than modify the entire program, we simply replaced the C
stdio library with a version that uses IO-Lite for communication over pipes.
The C preprocessor’s output, the compiler’s input and output, and the
assembler’s input all use the C stdio library and were converted merely by
relinking them with an IO-Lite version of the stdio library.

Figure 13 depicts the results obtained with wc, permute, grep, and gcc.
The “wc” bar refers to a run of the word-count program on a 1.75MB file.
The file is in the file cache, so no physical I/O occurs. “Permute” generates
all possible permutations of four-character words in a 40-character string.
Its output (10!*40 5 145,152,000 bytes) is piped into the wc program.
The “grep” bar refers to a run of the GNU grep program on the same file

11Our application performance results in this article differ from our earlier results [Pai et al.
1999b]. Those results were from a prototype of IO-Lite running on Digital UNIX 3.2C on a
233MHz Alphastation 200. The performance differences stem from a combination of more
advanced hardware and a different operating system.

wc permute grep

.2

.4

.6

.8

1

0

N
or

m
al

iz
ed

 r
un

 ti
m

e

28 ms

54 ms37.5 ms 4.22 s 6.83 s

6.90 s

gcc

2.83 s 23.7ms

Fig. 13. Various application runtimes. The time above each bar indicates the runtime of the
unmodified application, while the time at the top of the bar is for the application using
IO-Lite.

60 • V. S. Pai et al.

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

used for the wc program, but the file is piped into grep from cat instead of
being read directly from disk. The “gcc” bar refers to compilation of a set of
27 files (167KB total).

Using IO-Lite in the wc example reduces execution time by 37%, since it
reads cached files. All data copies between the file system cache and the
application are eliminated. The remaining overhead in the IO-Lite case is
due to page mapping. Each page of the cached file must be mapped into the
application’s address space when a file is read from the IO-Lite file cache.

The permute program involves producer/consumer communication over a
pipe. When this occurs, IO-Lite can recycle the buffers used for interprocess
communication. Not only does IO-Lite eliminate data copying between the
processes, but it also avoids the VM map operations affecting the wc
example. Using IO-Lite in this example reduces execution time by 33%,
comparable to that of the wc test. The permute program is more computa-
tionally intensive than wc, so the largest source of remaining overhead in
this test is the computation itself.

The most significant gain in these tests is for the grep case. Here, IO-Lite
is able to eliminate three copies—two due to cat, and one due to grep. As a
result, the performance of this test improves by 48%. This gain is larger
than the gain in the wc and permute tests, since more data copies are
eliminated.

The gcc compiler chain was converted to determine if there were benefits
from IO-Lite for more compute-bound applications and to stress the IO-Lite
implementation. We observe no performance benefit in this test for two
reasons: (1) the computation time dominates the cost of communication and
(2) only the interprocess data copying has been eliminated, but data
copying between the applications and the stdio library still exists.

6. RELATED WORK

To provide a basis for comparison with related work, we examine how
existing and proposed I/O systems affect the design and performance of a
Web server. We begin with the standard UNIX (POSIX) I/O interface, and
go on to more aggressively optimized I/O systems proposed in the litera-
ture.

6.1 POSIX I/O

The UNIX/POSIX read/readv operations allow an application to request the
placement of input data at an arbitrary (set of) location(s) in its private
address space. Furthermore, both the read/readv and write/writev opera-
tions have copy semantics, implying that applications can modify data that
was read/written from/to an external data object without affecting that
data object.

To avoid the copying associated with reading a file repeatedly from the
file system, a Web server using this interface would have to maintain a
user-level cache of Web documents, leading to double-buffering in the disk
cache and the server. When serving a request, data are copied into socket

IO-Lite: A Unified I/O Buffering and Caching System • 61

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

buffers, creating a third copy. CGI programs cause data to be additionally
copied from the CGI program into the server’s buffers via a pipe, possibly
involving kernel buffers.

6.2 Memory-Mapped Files

The semantics of mmap facilitate a copy-free implementation, but the
contiguous mapping requirement may still demand copying in the OS for
data that arrive from the network. Like IO-Lite, mmap avoids multiple
buffering of file data in the file cache and the application(s). Unlike
IO-Lite, mmap does not generalize to network I/O, so double-buffering (and
copying) still occurs in the network subsystem.

Moreover, memory-mapped files do not provide a convenient method for
implementing CGI support, since they lack support for producer/consumer
synchronization between the CGI program and the server. Having the
server and the CGI program share memory-mapped files for IPC requires
ad hoc synchronization and adds complexity.

6.3 Transparent Copy Avoidance

In principle, copy avoidance and single buffering could be accomplished
transparently using existing POSIX APIs, through the use of page remap-
ping and copy-on-write. Well-known difficulties with this approach are VM
page alignment problems, and potential writes to buffers by applications,
which may defeat copy avoidance by causing copy-on-write faults.

The Genie system [Brustoloni 1999; Brustoloni and Steenkiste 1996;
1998] addresses the alignment problem and allows transparent copy-free
network access under certain conditions. It also introduces an asymmetric
interface for copy-free IPC between a client and a server process. Under
appropriate conditions, Genie provides copy-free data transfer between
network sockets and memory-mapped files.

The benefit of Genie’s approach is that some applications potentially gain
performance without any source-level changes. However, it is not clear how
many applications will actually meet the conditions necessary for transpar-
ent copy avoidance. Applications requiring copy avoidance and consistent
performance must ensure proper alignment of incoming network data, use
buffers carefully to avoid copy-on-write faults, and use special system calls
to move data into memory-mapped files.

For instance, Web server applications must be modified in order to obtain
Genie’s full benefits. The server application must use memory-mapped
files, satisfy other conditions necessary to avoid copying, and use new
interfaces for all interaction with CGI applications. The CGI applications
have three options: remain unmodified and trust the server process not to
view private data, page-align and pad all data to be sent to the server to
ensure that private data are not viewable, or resort to copying interfaces.

6.4 Copy Avoidance with Handoff Semantics

The Container Shipping (CS) I/O system [Pasquale et al. 1994], Thadani
and Khalidi’s [1995] work, and the UVM Virtual Memory System [Cranor

62 • V. S. Pai et al.

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

and Parulkar 1999] use I/O read and write operations with handoff (move)
semantics. Like IO-Lite, these systems require applications to process I/O
data at a given location. Unlike IO-Lite, they allow applications to modify
I/O buffers in-place. This is safe because the handoff semantics permits
only sequential sharing of I/O data buffers—i.e., only one protection do-
main has access to a given buffer at any time.

Sacrificing concurrent sharing comes at a cost: since applications lose
access to buffers used in write operations, explicit physical copies are
necessary if the applications need access to the data after the write.
Moreover, when an application reads from a file while a second application
is holding cached buffers for the same file, a second copy of the data must
be read from the input device. The lack of support for concurrent sharing
prevents effectively integrating a copy-free I/O buffering scheme with the
file cache.

In a Web server, lack of concurrent sharing requires copying of “hot”
pages, making the common case more expensive. CGI programs that
produce entirely new data for every request (as opposed to returning part of
a file or a set of files) are not affected, but CGI programs that try to
intelligently cache data suffer copying costs.

6.5 Fbufs

Fbufs is a copy-free cross-domain transfer and buffering mechanism for I/O
data, based on immutable buffers that can be concurrently shared. The
fbufs system was designed primarily for handling network streams, was
implemented in a non-UNIX environment, and does not support file system
access or a file cache. IO-Lite’s cross-domain transfer mechanism was
inspired by fbufs. When trying to use fbufs in a Web server, the lack of
integration with the file system would result in double-buffering. Its use as
an interprocess communication facility would benefit CGI programs, but
with the same restrictions on file system access.

6.6 Extensible Kernels

Recent work has proposed the use of of extensible kernels [Bershad et al.
1995; Engler et al. 1995; Kaashoek et al. 1997; Seltzer et al. 1996] to
address a variety of problems associated with existing operating systems.
Extensible kernels can potentially address many different OS performance
problems, not just the I/O bottleneck that is the focus of our work.

The flexibility of extensible kernels allows them to address issues outside
of the scope of copy-free systems, such as the setup costs associated with
data transfer. For example, the Cheetah Web server [Kaashoek et al. 1997]
in the Exokernel project optimizes connection state maintenance, providing
significant benefits for small transfers on a LAN. Performance on large
files should be similar for Flash-Lite and Cheetah, since IO-Lite provides
the same copy avoidance and checksum caching optimizations.

The drawbacks of extensible kernels stem from the integration between
operating system and application functions. In order to gain benefits,

IO-Lite: A Unified I/O Buffering and Caching System • 63

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

server/application writers must implement OS-specific kernel extensions or
depend on a third party to provide an OS library for this purpose. These
approaches are not directly applicable to existing general-purpose operat-
ing systems, and they do not provide an application-independent scheme
for addressing the I/O bottleneck. Moreover, these approaches require new
safety provisions, adding complexity and overhead.

In particular, CGI programs may pose problems for extensible kernel-
based Web servers, since some protection mechanism must be used to
insulate the server from poorly behaved programs. Conventional Web
servers and Flash-Lite rely on the operating system to provide protection
between the CGI process and the server, and the server does not extend
any trust to the CGI process. As a result, the malicious or inadvertent
failure of a CGI program will not affect the server.

6.7 Monolithic System Calls

Due to the popularity of static content in Web traffic, a number of systems
(including Windows NT, AIX, Linux, and later versions of FreeBSD) have
included a new system call to optimize the process of handling static
documents. The system calls (generally called sendfile or transmitfile) take
as parameters the network socket to the client, the file to be sent, and a
response header to prepend to the file. These techniques are similar to
earlier work done on splicing data streams [Fall and Pasquale 1993].

The benefit of this approach is that it provides a very simple interface to
the programmer. The drawback is the lack of extensibility, especially with
respect to dynamic documents. Additionally, some internal mechanism
(copy-on-write, exclusive locks) must still be used to ensure applications
cannot modify file data that are in transit.

To summarize, IO-Lite differs from existing work in its generality, its
integration of the file cache, its support for cross-subsystem optimizations,
and its direct applicability to general-purpose operating systems. IO-Lite is
a general I/O buffering and caching system that avoids all redundant
copying and multiple buffering of I/O data, even on complex data paths that
involve the file cache, interprocess communication facilities, network sub-
system, and multiple application processes.

7. CONCLUSION

This article presents the design, implementation, and evaluation of IO-Lite,
a unified buffering and caching system for general-purpose operating
systems. IO-Lite improves the performance of servers and other I/O-
intensive applications by eliminating all redundant copying and multiple
buffering of I/O data, and by enabling optimizations across subsystems.

Experimental results from a prototype implementation in FreeBSD show
performance improvements between 40 and 80% over an already aggres-
sively optimized Web server without IO-Lite, both on synthetic workloads
and on real workloads derived from Web server logs. IO-Lite also allows the
efficient support of CGI programs without loss of fault isolation and

64 • V. S. Pai et al.

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

protection. Further results show that IO-Lite reduces memory require-
ments associated with the support of large numbers of client connections
and large bandwidth-delay products in Web servers by eliminating multiple
buffering, leading to increased throughput.

ACKNOWLEDGMENTS

We are grateful to our OSDI shepherd Greg Minshall and the anonymous
OSDI and TOCS reviewers, whose comments have helped to improve this
article. Thanks to Michael Svendsen for his help with the testbed configu-
ration.

REFERENCES

BANGA, G. AND DRUSCHEL, P. 1997. Measuring the capacity of a Web server under realistic
loads. World Wide Web J. 2, 1, 69–83.

BERSHAD, B., SAVAGE, S., PARDYAK, P., SIRER, E., FIUCZYNSKI, M., BECKER, D., CHAMBERS, C.,
AND EGGERS, S. 1995. Extensibility, safety, and performance in the SPIN operating
system. In Proceedings of the 15th ACM Symposium on Operating Systems Principles
(Copper Mountain Resort, CO, Dec.), ACM Press, New York, NY, 267–284.

BRUSTOLONI, J. C. 1999. Interoperation of copy avoidance in network and file I/O. In
Proceedings of the IEEE Conference on Computer Communications (Infocom ’99, Apr.),
IEEE Press, Piscataway, NJ, 534–542.

BRUSTOLONI, J. C. AND STEENKISTE, P. 1996. Effects of buffering semantics on I/O
performance. In Proceedings of the 2nd USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’96, Seattle, WA, Oct. 28–31), K. Petersen and W. Zwaenepoel,
Eds. ACM Press, New York, NY, 277–291.

BRUSTOLONI, J. C. AND STEENKISTE, P. 1998. User-level protocol servers with kernel-level
performance. In Proceedings of the IEEE Conference on Computer Communications (INFO-
COM ’98, San Francisco, CA, Mar. 29–Apr. 2), IEEE Press, Piscataway, NJ, 463–471.

CAO, P. AND IRANI, S. 1997. Cost-aware WWW proxy caching algorithms. In Proceedings of
the USENIX Symposium on Internet Technologies and Systems, USENIX Assoc., Berkeley,
CA, 193–206.

CAO, P., FELTEN, E., AND KAI, L. 1994. Implementation and performance of application-
controlled file caching. In Proceedings of the 1st USENIX Symposium on Operating Systems
Design and Implementation (Monterey, CA, May), USENIX Assoc., Berkeley, CA, 165–178.

CRANOR, C. D. AND PARULKAR, G. M. 1999. The UVM virtual memory system. In Proceedings
of the Usenix 1999 Annual Technical Conference (Monterey, CA, June), 117–130.

DRUSCHEL, P. AND PETERSON, L. L. 1993. Fbufs: A high-bandwidth cross-doman transfer
facility. In Proceedings of the 14th ACM Symposium on Operating System Principles
(Asheville, NC, Dec.), 189–202.

ENGLER, D., KAASHOEK, M., AND O’TOOLE, J. 1995. Exokernel: An operating system architec-
ture for application-level resource management. In Proceedings of the 15th ACM Sympo-
sium on Operating Systems Principles (SIGOPS ’95, Copper Mountain Resort, CO, Dec. 3–6),
M. B. Jones, Ed. ACM Press, New York, NY, 251–266.

FALL, K. AND PASQUALE, J. 1993. Exploiting in-kernel data paths to improve I/O throughput
and CPU availability. In Proceedings of the 1993 Winter Usenix Conference, USENIX
Assoc., Berkeley, CA, 327–333.

HUTCHINSON, N. C. AND PETERSON, L. L. 1991. The x-kernel: An architecture for implementing
network protocols. IEEE Trans. Softw. Eng. 17, 1 (Jan. 1991), 64–76.

KAASHOEK, M. F., ENGLER, D. R., GANGER, G. R., BRICENO, H. M., HUNT, R., MAZIÈRES, D.,
PINCKNEY, T., GRIMM, R., JANNOTTI, J., AND MACKENZIE, K. 1997. Application performance
and flexibility on exokernel systems. In Proceedings of the 16th ACM Symposium on

IO-Lite: A Unified I/O Buffering and Caching System • 65

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

Operating Systems Principles (SIGOPS ’97, Saint-Malo, France, Oct. 5–8, 1997), M.
Banâtre, H. Levy, and W. M. Waite, Eds. ACM Press, New York, NY, 52–65.

MCCANNE, S. AND JACOBSON, V. 1993. The BSD packet filter: A new architecture for user-level
packet capture. In Proceedings of the 1993 Winter Usenix Conference, USENIX Assoc.,
Berkeley, CA, 259–269.

MCKUSICK, M. K., BOSTIC, K., KARELS, M. J., AND QUARTERMAN, J. S. 1996. The Design and
Implementation of the 4.4BSD Operating System. Addison-Wesley UNIX and open systems
series. Addison-Wesley Publishing Co., Inc., Redwood City, CA.

PAI, V. S. 1999. Buffer and cache management in scalable network servers. Tech. Rep.
99-349. Department of Computer Science, Rice University, Houston, TX.

PAI, V. S., DRUSCHEL, P., AND ZWAENEPOEL, W. 1999a. Flash: An efficient and portable Web
server. In Proceedings of the Usenix 1999 Annual Technical Conference (Monterey, CA,
June), 199–212.

PAI, V. S., DRUSCHEL, P., AND ZWAENEPOEL, W. 1999b. I/O-Lite: A unified I/O buffering and
caching system. In Proceedings of the 3rd USENIX Symposium on Operating Systems
Design and Implementation (OSDI 99, New Orleans, LA., Feb.), USENIX Assoc., Berkeley,
CA, 15–28.

PASQUALE, J., ANDERSON, E., AND MULLER, P. K. 1994. Container shipping: operating system
support for I/O-intensive applications. IEEE Computer 27, 3 (Mar. 1994), 84–93.

SELTZER, M. I., ENDO, Y., SMALL, C., AND SMITH, K. A. 1996. Dealing with disaster: Surviving
misbehaved kernel extensions. In Proceedings of the 2nd USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’96, Seattle, WA, Oct. 28–31), K. Petersen and
W. Zwaenepoel, Eds. ACM Press, New York, NY, 213–227.

TENNENHOUSE, D. L. 1989. Layered multiplexing considered harmful. In Protocols for
High-Speed Networks, H. Rudin and R. Williamson, Eds. North-Holland Publishing Co.,
Amsterdam, The Netherlands, 143–148.

THADANI, M. N. AND KHALIDI, Y. A. 1995. An efficient zero-copy I/O framework for
UNIX. Tech. Rep. SMLI TR-95-39. Sun Microsystems Laboratories.

Received: October 1998; accepted: April 1999

66 • V. S. Pai et al.

ACM Transactions on Computer Systems, Vol. 18, No. 1, February 2000.

