
  

  

Abstract— We present a methodology for the representation 

of dynamic spatial relations (DSRs) with global properties as 

part of an approach for enabling robots to follow natural 

language commands from non-expert users, with particular 

focus on the development of spatial language primitives. Our 

approach to modeling DSRs is based on related research in the 

fields of linguistics, cognitive science, and neuroscience, and 

contributes novel extensions to the semantic field model of 

spatial prepositions. We describe novel representations of the 

DSRs for “to”, “through”, and “around”, discuss their 

applicability in path classification scenarios, and provide 

implementation details of path generation routines instantiating 

these DSRs for use in robot task planning. The paper concludes 

with an evaluation of our robot architecture implemented on a 

simulated mobile robot in a 2D home environment.  

I. INTRODUCTION 

For autonomous service robots to become ubiquitous in 
household environments, they will need to be capable of 
interacting with and learning from non-expert users in a 
manner that is both natural and practical for the users.  In 
particular, these robots will need to be capable of 
understanding natural language instructions in order to learn 
new tasks and receive guidance and feedback on task 
execution.  This necessity is especially evident in assistive 
contexts, where the robots are interacting with people with 
disabilities, age-related (e.g., reduced mobility, limited 
eyesight) or otherwise (e.g., individuals post-stroke), as the 
users may not be able to teach the robot new tasks and/or 
provide feedback by demonstration.  

Spatial language plays an important role in instruction-
based natural language communication [18]. Spatial 
relations, both dynamic and static, expressed in language are 
often expressed by prepositions [1].  Therefore, the ability 
for robots to understand and differentiate between spatial 
prepositions in spoken language is crucial for their 
interaction with the user to be successful. Prepositions in 
English, as well as in many other languages, are identified as 
a closed class: there are only 80-100 prepositions 
(approximate count, as many are polysemous) and new 
words are not being added. The relatively small number of 
prepositions, combined with their extensive use in spatially 
oriented natural language communication across domains, 
makes the construction of spatial primitives a priori based on 
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prepositions for autonomous service robots not only feasible, 
but also intuitive and beneficial. 

Our previous work presented a framework for modeling 
DSRs with local properties (e.g., along), and demonstrated 
its applicability in robot execution of single commands with 
and without user-provided constraints [5, 6].  

In this paper, we extend upon our previous work and 
present a general methodology for the representation of 
dynamic spatial relations (DSRs) with global properties, 
based on the semantic field model of prepositions [3], for use 
as spatial primitives in a robot architecture that enables 
autonomous service robots to follow natural language 
commands from non-expert users. We present novel 
representations of the DSRs for “to”, “through”, and 
“around”, discuss their applicability in path classification 
scenarios, and provide implementation details of path 
generation routines instantiating these DSRs for use in robot 
task planning. Furthermore, we describe extensions to the 
planning process that allows for seamless execution of multi-
step command sequences. We conclude the paper with an 
evaluation of our robot architecture implemented on a 
simulated mobile robot in a 2D home environment. 

II. RELATED WORK 

Previous work that has investigated the use of spatial 
prepositions, and spatial language in general, includes the 
work of Skubic et al. [10], who demonstrated a robot capable 
of understanding static spatial relations in natural language 
instruction.  Sandamirskaya et al. [9] investigated the use of 
Dynamic Neural Fields theory in a static spatial language 
architecture for use in human-robot cooperation tasks on a 
tabletop workspace. Similarly, the use of computational 
fields for static relations was implemented in a visually 
situated dialogue system by Kelleher and Costello [15]. 
These works all implemented pre-defined notions of spatial 
relations, however, researchers have also investigated 
learning these types of static spatial relations automatically 
from training data both on- and offline (e.g., [11, 12, 16, 
17]).  Our work aims to extend upon this related work by 
encoding not only static spatial relations for natural language 
instruction understanding, but also DSRs involving paths, as 
discussed in the next section. 

 In the context of natural language robot instruction, 
however, the use of DSRs has in fact been explored by 
recent work. Tellex et al. [7] developed a probabilistic 
graphical model to infer task/actions for execution by a 
forklift robot from natural language commands.  Kollar et al. 
[8] developed a Bayesian framework for interpreting route 
directions on a mobile robot. In both of these works there 
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was no explicit definition of the spatial relations used, static 
or otherwise, and instead they were learned from labeled 
training data.  However, these approaches typically require 
the programmer to provide an extensive training data set of 
natural language input for each new application context, 
without taking advantage of the domain-independent nature 
of spatial prepositions.  Our proposed approach develops 
novel, pre-defined templates for dynamic spatial relations, 
that facilitate use and understanding across domains, and 
whose computational representations enable guided agent 
execution planning. 

 Researchers have also explored mapping natural 
language instructions into a formal agent control language 
using a variety of types of parsers, including those that were 
constructed manually [13, 14], learned from training data 
[19, 26], and learned iteratively through interaction [20]. Of 
these, the work of Rybski et al. [13], Matuszek et al. [19], 
and Atrash et al. [26] rely on pre-defined agent behaviors as 
primitives, as opposed to spatial relations, which hinders, if 
not prohibits, the ability for a user to provide feedback 
modifications and/or constraints regarding agent execution 
of a specific primitive behavior.  The work of Kress-Gazit et 
al. [14] and Cantrell et al. [20] leave the specification of 
primitives, from which new behaviors are learned, largely as 
an open research problem. However, the parsers used in their 
systems map words to meanings based on dictionary-based 
rules. Our methodology employs domain-generalizable 
spatial relations as primitives, and probabilistic reasoning for 
the grounding and semantic interpretation of phrases, thereby 
allowing for context-based instruction understanding and 
user-feedback modifiable agent execution paths. 

III. MODELING DYNAMIC SPATIAL RELATIONS 

Our methodology for representing DSRs for use in 
natural language human-robot communication domains 
focuses specifically on the modeling of path prepositions, as 
spatial relations characterized in language are often 
expressed by prepositions [1]. Furthermore, spatial verbs that 
incorporate spatial relations can generally be substituted by a 
simpler verb and a preposition (e.g. “Leave” → “Go out of ”) 
[2]. Path prepositions include, among others: to, from, along, 
across, through, toward, around, into, onto, out of, and via. 
The discussion in this section focuses on the representation 
of the paths for “to”, “through”, and “around”; nevertheless, 
the methodology discussed is general and can readily be 
applied to represent additional DSRs. 

Fundamentally, our approach encodes spatial language 
within the robot a priori as primitives. Static spatial relation 
primitives are represented using the semantic field model 
proposed by O’Keefe [3], where the semantic fields of static 
prepositions, parameterized by figure and reference objects, 
assign weight values to points in the environment depending 
on how accurately they capture the meaning of the 
preposition (e.g., for the static spatial preposition ‘near’, 
points closer to an object have higher weight). Our prior 
work has shown that this semantic field model can be 
extended to represent simple DSRs that encode optimal path 
direction at a local level (e.g., along, toward) [5, 6]. 
However, DSRs with meanings that enforce path 

characteristics at a global level require a more complex 
semantic representation [1, 21].  

In the following subsections we will discuss: (1) a 
general framework for representing DSR primitives that 
encode global properties, and (2) example representations 
for the DSRs of “to”, “through”, and “around” to illustrate 
our approach. 

A.  General Representation for DSRs with Global Properties 

To represent DSRs with global constraints, our approach 
identifies four classical AI conditions that each DSR may 
subscribe to, they are: 1) pre-condition, 2) post-condition, 3) 
continuing-condition, and 4) intermediate-condition. This 
type of condition-based approach to modeling path 
prepositions is based on findings in linguistics and cognitive 
science research on the constraint-based meanings of path 
prepositions [1, 21]. The methodology is akin to methods 
developed in the learning by imitation community for task 
and verb modeling (e.g., [23, 24, 25]). A unique 
characteristic of our approach, however, is that each 
condition is represented (typically) by either a semantic field, 
or by another DSR (which is in turn represented by semantic 
fields). In the representation, each DSR may have none, one, 
or multiple of each of the four conditions.  

The four conditions enumerated were developed to 
operate over paths. Formally, a path is defined as an ordered 
set of points (i.e. path P = {p0, p1, p2…, pn}), connected by 
(implicit) direction vectors (from pi to pi+1). Pre- and post-
conditions must be satisfied for the start (p0) and end (pn) of 
the path, respectively. Intermediate-conditions must be 
satisfied for at least one point in the path, and continuing-
conditions must be satisfied for all points in the path. 
Following this methodology, our condition-based DSR 
representation may be used both for path classification (e.g., 
during task learning by demonstration), discussed below, and 
for path generation (e.g., during robot task execution 
planning), discussed in Section V. 

B. “To” Representation 

To illustrate our approach for modeling DSRs, consider 
the path preposition “to”. From linguistics literature, we 
understand that the path specified by “to” terminates at the 
reference region [1]. As a result, the DSR representation for 
“to” in our approach has a single post-condition containing 
the semantic field for the static spatial relation at: 

Note that because at is represented by a semantic field, it 
does not return a truth value. Instead, at(x) is a function from 

points to weight values (ℝ[0,1]). Following is an example 
semantic field equation for at:  

at(x)(p) = exp[−(dist(x,p)
2
)/2σ

2
]     (2) 

Where dist(x,p) returns the minimum distance between 
the reference object x and point p; σ is the width of the field 

 

to(x) =  

 

pre-condition:  

cont-condition: 

int-condition: 

post-condition: 

- 

- 

- 

at(x) 

 

(1) 



  

(dropoff parameter) which is context-dependent. By 
representing conditions as semantic fields, our approach 
facilitates probabilistic reasoning over paths; an essential 
quality for path classification, grounding, and generation. As 
an example, Fig. 1 shows two sample paths with 
classification results for the phrase “to the kitchen”, while 
also displaying the field for at(the kitchen). The path values 
reported correspond to the at semantic field values for the 
path end points (i.e. the post-condition for to). As is evident 
by the results, one path is more acceptable than the other in 
capturing the meaning of the stated prepositional phrase. 

DSRs closely related to that of “to” also have similar 
representations. For example, the representation for “from” 
is the reverse of that for “to”, with the at field instead being 
set as a pre-condition. Additionally, the DSR representations 
for “into”, “onto”, and “out of” are all special cases of to, 
with the at field post-condition being replaced by the 
semantic fields for in, on, and out, respectively.  

It is important to note that the DSR representation for 
“to” is versatile: although at is listed as the default post-
condition, this determination may change based on context. 
As an example, consider the phrase “Stand beside the bed”. 
Here, the (implicit) path relation is to and the static relation 
is beside. Hence, the post-condition for to would instead be 
set to the semantic field for beside. This substitution is 
appropriately handled in our methodology by the semantic 
interpretation module (discussed in Section IV), which infers 
path and static relations probabilistically given the natural 
language input. 

C. “Through” Representation 

The path preposition “through” has a few different 
semantic interpretations according to the linguistics 
literature. Therefore, in our approach we developed separate 
DSR representations for each of them. The most general 
interpretation asserts that “through” specifies a path with at 
least one point in the reference object [1]. This definition for 
“through” can most aptly be characterized by a global DSR 
representation with a single intermediate-condition 
containing the semantic field for in (see through1 in Table I). 

The remaining two interpretations considered by our 
methodology are both special cases of the first, more general, 
definition. The second interpretation depends on the 
topology of the reference object in that it requires that the 
start and end points, respectively, be coincident with 
boundaries at separate ends of the reference object [4]. This 

definition imposes a path traversing the inside of the 
reference object, end-to-end. Example uses include “Go 
through the doorway” and “Walk through the tunnel”. To 
correctly model this interpretation, the topology (i.e. 
boundary connectivity) of the reference object must first be 
determined. While the implementation may vary according 
to the domain, determining the discrete entrance boundaries 
for a particular reference object is fairly straightforward in 
2D/3D by evaluating edge connectivity. As an example, Fig. 
2 shows the extracted topology of a hallway reference object 
in a simulated 2D home environment, displaying three 
separate entrance boundaries. Using the extracted topology, 
this second definition for “through” can be represented by a 
DSR with pre- and post-conditions each specifying points at 
different entrance boundaries, and with a single continuing-
condition set to the semantic field for in. Table I presents 
this representation as through2, with Bi(x) representing the 
set of all points at entrance boundary i of reference object x. 

The third semantic interpretation for “through” is similar 
to the second except that the path traverses an unbounded 
segment of the reference object (i.e. does not terminate at 
object boundaries) [4]. Thus, this definition simply imposes 
a path along the inside of the reference object. The DSR 
representation for this third definition of “through” contains 
two continuing-conditions with the semantic fields for in and 
along, respectively (see through3 in Table I). The along 
semantic field is used in this representation to promote paths 
that travel parallel to the major axis of the reference object 
[5] such as to avoid boundedness. Paths that instead travel 
parallel to the minor axis would be more appropriate for the 
DSR for “across” [1, 4], whose representation in our 
approach is very similar to that for “through” albeit with the 
aforementioned distinction.  

D. “Around” Representation 

The path preposition “around”, much like “through”, is 
polysemous. According to Talmy, “around” denotes a 
circumcentric path (i.e. curved about a center) that can be 
either revolutional or rotational [4]. Both path types are 

 
(a) 

 
(b) 

Figure 1.  Two example paths for “to the kitchen”. (a) Path value = 

1.8×10-10; (b) Path value = 1.0. Note: σ = robot width × 2.5 

TABLE I.  DSR REPRESENTATIONS FOR “THROUGH” 

Conditions through1(x) through2(x) through3(x) 

Pre- - at(Bi(x)) - 

Continuing- - in(x) in(x), along(x) 

Intermediate- in(x) - - 

Post- - at(Bj≠i(x)) - 

 

 

Figure 2.  Topology of hallway in 2D home environment 

showing three (configuration space) entrance boundaries. 

1 

2 

3 



  

similar, except that revolutional paths refer to curved figure 
paths about a central reference object (e.g., “The boat sailed 
around the island”), whereas rotational paths denote a 
change in orientation of the figure itself (e.g., “John spun 
around”) [1]. In the latter case, the figure can also be thought 
of as the movement path of a point (or points) within the 
reference object itself during its rotation, thereby illustrating 
the similarity between the two path types. 

In order to represent the DSR for “around”, our approach 
makes use of a novel semantic field that was developed to 
quantify the circumcentric nature of a given path. 
Specifically, the circumcentric semantic field maps paths to 
weight values; where weights are assigned according to the 
degree to which the orientation of the path changes relative 
to the center of the specified reference object, from start 
point to end point. The computation of this field is outlined 
in Algorithm I, and Fig. 3 shows an example path with its 
corresponding circumcentric field value for illustration. 

In representing the two types of circumcentric paths for 
“around”, it is important to consider that there are also two 
termination conditions per path type that are commonly 
expressed in language: half circle (180°), and full circle 
(360°). Examples include, as noted by Landau and 
Jackendoff: “Go all the way around …” (360°) vs. “Detour 
around…” (180°) [1].  

Under these specifications, there are a total of four DSR 
representations for “around”: two revolutional (half/full 
circle), and two rotational (half/full circle). Table II presents 
all four representations, sequentially labeled as around1-4. 
The continuing-condition for each representation utilizes the 
semantic field for in to express whether or not the figure path 
is within (i.e. part of) the reference object. Additionally, the 
post-condition for each representation contains the 
circumcentric semantic field, whose arguments depend on 
whether the ideal path is a half or full circle. 

IV. ROBOT ARCHITECTURE AND SYSTEM MODULES 

We have developed a robot software architecture that 
incorporates our methodology for representing spatial 
language, and DSRs in particular, to enable natural 
language-based human-robot interaction with non-expert 
users. The architecture contains five system modules that 
enable the interpretation of natural language instructions, 
from speech or text-based input, and translation into robot 
action execution. They are: the syntactic parser, noun phrase 
(NP) grounding, semantic interpretation, planning, and 
action modules. In this section we will provide a brief 
overview of the system design and module functionality. For 
a complete description of the architecture and system 
modules, we refer the reader to [5]. 

The syntactic parser represents the entry point of our 
robot architecture, as it responsible for parsing the user-
given natural language instruction into a format that the 
remaining modules can interpret. The instructions are 
provided as text strings, either by a speech recognizer (e.g., 
[22]) or keyboard-based input. Our system does not attempt 
to provide a solution for natural language processing in the 
general case, but instead focuses on well-formed English 

directives involving spatial language, for which we utilize a 
specialized grammar. After the syntax of the instruction has 
been determined, the parse tree is passed on to the grounding 
module which attempts to associate parsed NPs with known 
objects in the world. If it is successful, all observations are 
then passed on to the semantic interpreter for final 
instruction meaning association. 

The semantic interpretation module utilizes a Bayesian 
approach and infers the semantics of the given instruction 
probabilistically using a database of learned mappings from 
input observations to instruction meanings. The four 
observation inputs to the module, and the output instruction 
semantics, are as follows: 

The input includes: the verb and preposition used in the 
instruction sentence, and the associated groundings for the 
specified figure and reference objects as determined by the 
NP grounding module. The resulting semantic output of the 
module includes: the command type, the DSR type, and the 

semanticInterpreter(verb, preposition , figure, ref. object) 

  (command, DSR, static)  

TABLE II.  DSR REPRESENTATIONS FOR “AROUND” 

Conditions around1,2(x) around3,4(x) 

Pre- - - 

Continuing- ¬in(x) in(x) 

Intermediate- - - 

Post- circumcentric(x, P, [180°1,3 | 360°2,4]) 

 

ALGORITHM I. CIRCUMCENTRIC SEMANTIC FIELD COMPUTATION 

circumcentric(x, P, diffideal) 

1: 

2: 

3: 

4: 

5: 

 

diff  ← 0 

for each i � {1,..,n} 

   diffnew ← θrel(x,pi) − θrel(x,pi-1) 

   diff  ← diff + diffnew 

return ( | diff | / diffideal ) 

 

Note. x is the reference object, P the path, pi � P, θrel(x,p) the orientation of point p relative to x, 

and diffideal the ideal path orientation change relative to x from the start of the path to the end. 

 

 

Figure 3.   Path traveling around a dining table reference object, 

showing start and end orientations, with resulting circumcentric 

semantic field value = |223°|/360° = 0.61944. 

162° 

-61° 

(diff = 223°) 

0° 

90° 

-90° 

±180° 



  

static spatial relation (if available). The command type is 
domain-specific, and may include commands such as: robot 
movement, speech output, learned tasks, etc. While the 
output specification was designed to represent the instruction 
of spatial tasks, the inference procedure utilized is general 
and can easily be modified or expanded to accommodate the 
requirements of the specific application domain, including 
the inference of non-spatial tasks.  

 Once the semantic interpreter has inferred the instruction 
semantics, the planning module attempts to find a solution 
for the robot given these command specifications, after 
which the solution is passed on to the action module for 
robot task execution. 

V. GENERATING PATHS FOR DYNAMIC SPATIAL RELATIONS 

In searching for robot action solutions for the interpreted 
command semantics, the planning module must consider not 
only the inferred command type and spatial relations, but 
also the pragmatics of the natural language instruction. 
These consist in the unvoiced constraints/specifications that 
accompany the spoken instructions and further specify the 
meaning that the speaker intends to convey; which can come 
from context, prior knowledge, norms, and other factors. 
Incorporation of specific pragmatic constraints during the 
planning process is a design decision that depends largely on 
the domain requirements. 

In this section we present the implementations details of 
the DSR path generation procedures for to, through, and 
around used in our robot architecture for natural language 
instruction following. The procedures presented focus on 
robot movement commands, and illustrate how the 
representations of DSRs with global properties may be used 
(combined with the pragmatics of the specific instruction) for 
the purposes of path generation in robot task planning.  

The A* search algorithm is the primary method used for 
both path planning and topology determination (discussed 
below) in the planning module; hence, the planner described 
operates over a discretized representation of the world space.  

A. “To” Path Generation 

The DSR representation for “to”, as described in Section 
III, contains a single post-condition with the semantic field 
for at. Therefore, according to this representation, paths that 
satisfy the relation to(x) are those whose endpoints satisfy 
the static spatial relation at(x) (defined in (2)). 

In the context of our robot architecture, x is the reference 
object identified during the grounding procedure for the 
given instruction. In our path generation procedure for to, the 
planner searches for the point p in the free space that 
maximizes the weight value at(x)(p), which is a real-valued 
number in the range [0,1], and returns the shortest path to 
that location from the robot’s current position as a solution. 

The pragmatics in our procedure for to dictate that if 
there are multiple points in the free space with maximal 
weight values (i.e. equal to 1) that are inside the reference 
object (e.g. in a room), the planner should elect the point 
furthest from the object edges (i.e. most centrally located) as 

the end point of the solution path. Fig. 1(b) shows an 
example path for to generated under these conditions. 

Finally, if the instruction given is part of a command 
sequence, the pragmatics indicate that expediency in the 
command solution is favored over optimality. Here, the 
procedure instead runs A* from the robot’s current location 
to find the nearest point whose weight value exceeds a 
certain threshold (e.g., 80% of the maximum weight value in 
the free space), or whose distance within the reference object 
exceeds a minimum entry distance (e.g., 1 robot width). 

B. “Through” Path Generation 

Paths that satisfy the definition of through1 (see Section 
III) are those with at least one point in the reference object x. 
To generate these types of paths, the planner simply 
generates paths into(x) using the procedure described above 
for to(x) and setting the post-condition to in(x). However, 
use of the path preposition “through” in directives generally 
implies the DSR for through2 or through3. 

The DSR representation through2 has pre- and post-
conditions that require points at separate entrance boundaries 
of x. In planning a solution for through2, the planner first 
generates a path into(x) to accomplish the pre-condition, and 
then generates a path outof(x) with the added A* goal 
constraint that the exit boundary be different than the 
entrance boundary (determined using the extracted topology 
of x) to accomplish the post-condition. If at the start of 
planning the robot is already in(x), the pre-condition is 
assumed to have been satisfied previously, and the planner 
subsequently generates a path outof(x) without exit 
constraints. If there is only one entry boundary for x, the 
pragmatics dictate the path generation procedure change to 
that of through3 before accomplishing the post-condition. In 
addition, if the instruction is part of a command sequence, 
once a path is generated to within some minimum distance 
inside x, the pragmatics change the path requirements to 
through1 and planning for the next command is commenced. 

The DSR representation through3 specifies a path in(x) 
and along(x). To achieve such a path, the planner first 
generates a path into(x) if the robot is not already in(x), and 
then runs A* to find the furthest point away from the robot’s 
location, that is still in(x). The planner then generates a path 
to this point (staying in(x)) to accomplish the along(x) 
continuing-condition (by default). Alternatively, a path 
along(x) could be generated using the Voronoi graph of x. 

C. “Around” Path Generation 

Considering only the more complex revolutional cases of 
“around”, the specific DSR implied depends largely on 
context, including for example, the topology of the region of 
space surrounding the reference object. For instance, a lack 
of 360° connectivity in the region could result in favoring a 
half circle (180°) interpretation for the DSR. In addition, 
determination of this topology is required in order to 
generate appropriate paths for the DSRs of “around”. 

To determine if the region of space surrounding reference 
object x contains 360° connectivity, the planner executes a 
breadth-first search starting at the robot’s location. As the 



  

TABLE III.  INSTRUCTION SEQUENCE GIVEN IN TEST RUNS 

Type Natural Language Instruction 

Instruction[1]: 

Constraint: 

Instruction[2]: 

Instruction[3]: 

Constraint: 

Instruction[4]: 

Constraint: 

Instruction[5]: 

Constraint: 

Go around the bed 

     Stay close to the bed 

Travel through the hallway 

Go around the dinner table 

     Keep away from the kitchen 

Stand between the tv and the bookcase 

     Travel between the couch and the coffee table 

Walk through the kitchen 

     Walk along the wall 

 

TABLE IV.  RESULTS OF SEMANTIC INFERENCE AND PRAGMATICS 

FOR TEST RUN INSTRUCTIONS 

# Semantics Pragmatics 

1 (RM, around, -) around1 

2 (RM, through, -) through2 → through1 

3 (RM, around, -) around2 

4 (RM, to, between) to 

5 (RM, through, -) through2 → through3 → through2 

Note. RM = robot movement command 

 

search progresses, the circumcentric semantic field value of 
each point in the free space is recorded (modified slightly 
from Algorithm I with the absolute value of diff removed to 
preserve signed path direction). If meet points are detected 
from the expanding wavefront of two paths from opposite 
directions with a combined path orientation difference of 
360°, then the topology possesses 360° connectivity.  

In the case of around2 (full circle), once connectivity is 
determined the planner first generates a path to the nearest 
meet point. After which, the planner runs the breath-first 
search once again to find and plan a path to the nearest meet 
point on the opposite side of x, thus completing the 360° 
loop. If 360° connectivity is not available, the planner 
instead generates a path to the point with the maximum 
circumcentric field value (to maximize the post-condition 
weight). Similarly, in the case of around1 (half circle), a path 
is generated to the point of maximum circumcentric field 
value (stopping at 180°). 

Regarding the pragmatics of around, consider the 
instruction “Go around the bed” given by the user to a 
service robot co-located within the same room. Here, a likely 
unvoiced constraint is “Stay inside the room”. To 
incorporate this constraint our planner enforces a global 
visibility constraint on the free space surrounding the 
reference object during search. Fig. 4 highlights the 
difference between paths generated with and without the 
visibility constraint, and illustrates its usefulness in practice 
with end-users. The path values reported correspond to the 
circumcentric semantic field values computed for the paths, 
with diffideal = 180° (i.e. the post-condition for around1). 

VI. EVALUATION 

To evaluate the ability of our robot architecture to follow 
natural language directives, we conducted two separate test 
runs of the system testing the robot’s ability to respond to 
multiple movement commands involving DSRs, provided as 
a sequence of instructions, both with and without user-
specified constraints. The test runs served to evaluate the 
effectiveness of the semantic interpretation module in 
inferring the correct command specifications (command, 
DSR, static relation) given the natural language input, and to 
demonstrate the DSR path generation capabilities of the 
system. Our testing domain consisted of a simulated mobile 
robot operating within a 2D map of a home environment. 

A dataset of 128 labeled training examples (each 
containing a list of observations with correct command 
specifications), was utilized for the probabilistic inference 
procedure of the semantic interpretation module. This dataset 
included the use of 8 different DSRs, 10 separate static 
spatial relations, 2 commands, and 22 different verbs, each 
appearing multiple times (and in novel combinations) among 
the examples. 

The instruction sequence provided to the robot in both 
test runs, including the natural language constraints that were 
specified for the individual instructions, is listed in Table III. 
The sequence of instructions was identical for both runs, 
with the exception that the constraints listed were specified 
to the robot for Test Run #2 only. Hence, in Test Run #1 the 
robot did not operate under any user-specified constraints for 
the individual instructions. Constraints were provided to the 
robot in Test Run #2 to illustrate the flexibility of the path 
generation procedure to operate under user-specified 
constraints while also accomplishing the goals of the DSR 
path specification. The planning module accounts for user-
specified constraints by introducing modifications to the A* 
cost function (using the semantic fields of the inferred static 
relations) during task planning, as detailed in [5]. 

Results of the inference procedure of the semantic 
interpretation module, with accompanied pragmatics, for the 
five instructions given in the instruction sequence for both 
test runs are provided in Table IV. As evidenced by the 
results, our robot architecture was able to successfully 
interpret the semantics of the natural language instructions 
provided by the user during both test runs of the system. 

The DSR path generation results for the entire instruction 
sequence of Test Runs #1 and #2 are provided in Fig. 5 (a) 
and (b), respectively.  The differences between the paths 

 
(a) 

 
(b) 

Figure 4. Two paths for “Go around the bed” with/without enforcing 

visibility region. (a) Path value = 0.857; (b) Path value = 0.895.  



  

generated in both test runs highlight the impact of user-
specified constraints on the resulting robot execution path. 
For example, in Test Run #1 the robot satisfies the DSR of 
the first instruction (around) by generating and executing the 
shortest path to the point within the visible region that 
possesses the maximum circumcentric field value among all 
points considered. In Test Run #2, the robot also generates a 
path to this point, but due to the user-specified constraint 
“Stay close to the bed”, the execution path runs along the 
border of the bed, resulting in a slightly longer path by 
comparison. This difference in path generation results is also 
observed for the last instruction in the sequence (“Go 
through the kitchen”), where in Test Run #2, the robot 
generates a comparably longer path to the inside of the 
kitchen by staying close to the edge of the rooms in 
consideration of the specified constraint “Walk along the 
wall”. 

To illustrate the usefulness of the semantic field model 
towards representing static and dynamic spatial relation 
primitives for use in DSR path generation and classification, 
Fig. 6 shows the progression of the circumcentric and at 
field values along the execution paths generated for 
instructions 1 and 5, respectively. As demonstrated by the 
results, the values returned by the semantic fields are highly 
correlated with the progress made during path execution 
towards accomplishing the goals of the DSR inferred from 
the specified natural language instructions. 

As evidenced by the semantic inference results shown in 
Table IV, and all robot execution paths for the DSRs of the 
instruction sequence displayed in Fig. 5, the robot 
architecture was able to demonstrate its potential by 
successfully following the natural language directives, with 
and without constraints, during each of the test runs 
performed for the purposes of system evaluation. In addition, 
the differences observed in the generated DSR paths for both 
test runs illustrate the capability of our approach to modeling 
DSRs with global properties in accomplishing natural 
language instructions in human-robot interaction scenarios 
under both user-specified constraints as well as unvoiced 
pragmatic constraints. 

VII. CONCLUSION 

We have described the need for enabling autonomous 

service robots with spatial language understanding to 

facilitate natural communication with non-expert users for 

task instruction, and have presented a general methodology 

we have developed towards addressing this research 

 
(a) 

 

 
(b) 

 

Figure 5.  DSR path generation results for entire instruction sequence 

with and without user-specified constraints. (a) Test Run #1 (no 

constraints); (b) Test Run #2 (constraints). Note: path endpoints for 

each instruction are labeled with the instruction number. 
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(b) 

Figure 6.  Semantic field values along execution paths in Test Run #1. 

(a) circumcentric field value along solution path for instruction 1; 

(b) at field value along solution path for instruction 5. 
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challenge. The contributions of this paper include the 

presentation of: a novel representation for DSRs with global 

properties that facilitates probabilistic reasoning over paths 

that can be applied for both path classification and path 

generation scenarios; example representations for the DSRs 

of “to”, “through”, and “around”; implementation details of 

the path generation procedures utilized by our system for 

these three DSRs; and discussion of relevant pragmatic 

constraints along with planning methods developed to 

address these constraints in multi-step robot execution 

planning of instruction sequences.  

The results obtained from our evaluation testing 

demonstrate the potential of our methodology for 

representing dynamic spatial relations, interpreting the 

semantics of natural language instructions probabilistically, 

and generating appropriate agent execution plans under user-

specified natural language constraints as well as unvoiced 

pragmatic constraints. 

Our ongoing work will focus on the evaluation of our 

methodology implemented on real robots and interacting 

with end-users, thus addressing the limitations of our current 

evaluation obtained from 2D simulation with text-based 

input. Specifically, we plan to test our approach under 

environmental uncertainty (i.e., sensor noise), and with 

spoken natural language commands from target users (e.g., 

older adults). Towards this end, a corpus of spoken 

command utterances from target users will be collected prior 

to testing as additional data for our semantic interpreter and 

to further inform our grammar. In expanding the evaluation 

procedure, performance measures will also be captured from 

user ratings of robot task completion relative to the spoken 

commands. Lastly, our approach will be tested under more 

general path generation scenarios, including object 

manipulation/movement tasks (e.g., put the cup on the table 

in the dining room). 
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