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Summary 

Rapid technological advances have shown that the ratio of non-protein coding genes rises 
to 98.5% in humans, suggesting that current knowledge on genetic information 
processing might be largely incomplete. It implies that protein-coding sequences only 
represent a small fraction of cellular transcriptional information. Here, we examine the 
community structure of the network defined by functional interactions between non-
coding RNAs (ncRNAs) and proteins related bio-macrolecules (PRMs) using a two-fold 
approach: modularity in bipartite network and k-clique community detection. First, the 
high modularity scores as well as the distribution of community sizes showing a scaling-
law revealed manifestly non-random features. Second, the k-clique sub-graphs and 
overlaps show that the identified communities of the ncRNA molecules of H. sapiens can 
potentially be associated with certain functions. These findings highlight the complex 
modular structure of ncRNA interactions and its possible regulatory roles in the cell.      

1 Introduction 

In the twenty-first century, network analysis has rapidly emerged as a promising set of 
techniques and tools to address the complexity of ubiquitous systems composed by multiple 
interacting units, from individual cells and biological organisms to large-scale human 
societies [1]. Cells contain thousands molecules like proteins, metabolites, genes, mRNAs and 
small RNAs among others that interact with each other by means of pair-wise interactions. As 
a consequence, complex pathways, communities and networks emerge where biological 
information is processed and regulated. Although recent advances have allowed us to decipher 
genome sequences for many organisms, how cells regulate gene expression programs still 
represents a huge scientific challenge [2]. Transcriptional regulation typically involves a 
DNA-binding protein (transcription factor) that binds to specific target genes in the genome. 
A transcriptional regulatory network can be constructed based on these regulatory 
interactions. In this system, we have two kinds of molecular entities, transcriptional factors 
and genes, therefore the resulting network can be approximated as a bipartite graph, where 
transcriptional factors regulate target genes. 

It is well-established that genetic information flows from DNA to proteins by means of 
mRNAs molecules. As a consequence, it is possible to consider a one-to-one correspondence 
between genes and proteins. While this affirmation seems to be accurate for simple 
prokaryotes, recent studies have observed that the proportion of protein-coding genes 
decreases as a function of developmental complexity. In particular, the ratio of non-protein 
coding genes rises to 98.5% in humans. It implies that protein-coding sequences only 
represent a small fraction of cellular transcriptional information. The finding that the 
transcription of non-coding RNA (ncRNA) in higher organism is so abundant raises the 
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question on its cellular functionality and suggests that current knowledge on genetic 
information processing might be largely incomplete [3-5].  If the latter hypothesis was correct, 
it could imply that RNA molecules were able to evolve and to adapt to transcriptional 
programs of higher eukaryotes. NcRNA represents a functional RNA molecule that is not 
translated into a protein. Non-coding RNA comprises introns in protein-coding genes as well 
as other transcripts that do not seem to encode proteins. Some classifications include transfer 
RNA (tRNA) and ribosomal RNA (rRNA), as well as  snoRNAs, microRNAs, siRNAs and 
piRNAs as non-coding RNA genes [6]. 

On the other hand, the discovery of hierarchical signature and modularity in biological 
networks, from metabolic to protein-protein interaction networks, has led to devise novel and 
reliable methods based on graph theory for large-scale community detection.  Most real-world 
networks are very heterogeneous and are made of modules and communities consisting of 
many links within modules and a few links between different modules. First glimpses of 
hierarchical organization were also observed, revealing nested structures consisting of clusters 
and modules within modules [1]. Uncovering modules does not only help to understand the 
structure of the network and dynamic behaviour of the system, but also to uncover functional 
similarity among nodes. In general, several molecules belong to the same module and together 
carry out a specific cellular function. 

Here, we examine the community structure of the biological network defined by functional 
interactions between non-coding RNAs (ncRNAs) and proteins related bio-macrolecules 
(PRMs). Using datasets from NPInter database [6], we collected and retrieved data 
corresponding to six model organisms, such as Escherichia coli, Saccharamyces cerevisiae, 
Caenorhadbitis elegans, Drosophila melanogaster, Mus musculus and Homo sapiens. We 
define these networks as bipartite graphs, where each link represents a functional interaction 
between a ncRNA and a protein-related molecule. We then compute the modularity of these 
bipartite networks using a stochastic optimization algorithm. The computation of the 
modularity is performed in the bipartite graph. Moreover, for the human ncRNA-protein 
interaction networks, a k-clique community analysis is conducted in the corresponding 
projected network, which shows specific ncRNA molecules that overlap among communities 
as well as unique communities with potential common functionality for their memberships. 
Our findings show that ncRNA- protein interactions have a pervasive community structure 
with high modularity, far from the random expectation.  Community organization of 
transcriptional regulatory networks corresponding to E. coli and S. cerevisiae is also 
computed and compared to the ones calculated using ncRNAs. This comparison highlights the 
similar complex community architecture of ncRNA mediated interactions with transcriptional 
networks and that ncRNA interactions display a complex enough organization to address 
functional and regulatory roles. 

2 Methods 

2.1 Datasets 

The transcriptional regulatory interactions defined by transcriptional factors (TFs) that 
regulate target genes for E.coli were collected from RegulonDB database. The dataset 
corresponding to the S. cerevisiae organism was downloaded from the Uri Alon website, 
which was originally available in [7]. The pair-wise interactions for the ncNRA-PRMs 
network were obtained from NPInter database [6]. Datasets from six model organisms, such 
as Escherichia coli, Saccharamyces cerevisiae, Caenorhadbitis elegans, Drosophila 
melanogaster, Mus musculus and Homo sapiens were downloaded and six bipartite graphs 
were constructed. To increase the statistics of the data analysis, we constructed one more 
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network that contained all the available interactions among organisms. Hereafter we refer to 
this network as all ncRNa and protein. A total number of 700 collected interactions were 
constructed between 98 ncRNA molecules and 425 proteins. Although most of PRMs are 
proteins, there are some interactions that involve protein coding related molecules as mRNAs 
and genomic DNAs. On the other hand, the collected dataset for human ncRNA-mediated 
interactions consisted of 34 ncRNAs and 154 protein molecules (see Fig. 1). 

 

 
Figure 1: Identified communities for the human bipartite ncRNA-protein network are indicated 
by color codes.  ncRNA (circles) are connected to protein (squares), where each link represents a 
functional interaction between a ncRNA and a protein according to the NPInter database [6]. 

2.2 Community structure computation in bipartite network 

Each bipartite network composed of two types of nodes can be projected (i.e. transformed) 
onto two networks, called projections of the original bipartite network.  Each projected 
network is then composed of only one type of nodes. A bipartite graph for TFs/ncRNA and 
target genes/proteins can be formally defined as G = (T, P, E), where T is a set of TFs/ncRNA 
molecules, and P a set of target genes/protein and E a set of edges that links two nodes from T 
and P. GT = (T, ET) represents the T-projection of the graph G in which nodes of T are linked 
together if they have at least one neighbour (P) in common in the graph G. The P-projection 
GP is defined dually.  
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Figure 2: Community modularity values MB  for the analyzed bipartite networks computed using 
the objective modularity function shown in Eq. 1. 

The existing algorithms that identify community structure in networks share a common 
strategy that is based on the maximization of a modularity function [8]. An objective function 
that describes modularity is usually based on the concept that the density of edges in the 
network is highly heterogeneous.  Because the projection of bipartite graph significantly 
increases the number of edges and may not lead to accurate results in the boundary nodes, we 
compute the modularity directly in the bipartite network itself. This leads to avoid a loss of 
structural information in the projection process.  As in [9], let us define nodes of type T and 
nodes of type P and consider a modularity functional form as follows: 

  

∑
∑

∑
∑

∑
=

∈≠∈≠





























−

−
=

MN

s

T
T

sPjPi
PjPi

T
TT

sPjPi
PiPj

B

m

tt

mm

c
M

1
2)1(

                                                              ( 1 ) 

 

where tPi indicates the total number of TFs(ncRNAs) molecules a target gene/protein Pi 
interacts with, mT indicates the number of target genes(proteins) linked to T  TFs(ncRNAs), 
and cPiPj indicates the number of TFs(ncRNAs) that are simultaneously interacting with target 
genes(proteins) Pi and Pj. Here NM indicates the total number of modules and s is the module 
index as in shown in equation 1. This function, after the optimization via simulated annealing 
algorithm, gives the final modularity score MB of the bipartite network (see Fig. 2). Note that 
this objective function is applied to the bipartite networks composed of TF-genes and ncRNA-
protein, independently. 

It is known that projections may lead to different results since, as mentioned above, a fraction 
of the information rooted in the bipartite structure may disappear after projection [9]. The 
computation of modularity in the bipartite network is expected to be more accurate than in the 
projections. Furthermore, besides the highest accuracy of this algorithm for networks of a few 
thousands nodes, the method is able to identify not only an optimal partition of the nodes into 
modules, but also the number of modules NM and their sizes [10]. Therefore, this algorithm 
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was selected to investigate the modularity of the transcriptional and ncRNA mediated 
interactions. 

2.3 k-clique community computation 

A complementary community definition is based on the observation that a specific molecule 
in a community can be connected to many other molecules. However, it may not be 
necessarily connected to all other nodes in the community. This is the main difference with 
the community modularity described above, where highly dense communities tend to have 
high modularity. That is, a community can be seen as a composition of smaller complete 
(fully connected) sub-graphs that share nodes.  These complete subgraphs are called k-cliques, 
where k refers to the number of nodes in the subgraph. Therefore, a k-clique-community is 
defined as the composition of all k- cliques that can be reached from each other through a 
series of adjacent k-cliques, where two k-cliques are said to be adjacent if they share k-1 
nodes [11]. 

The method is described in detail in [11], therefore we only summarize the process as follows.  
A symmetric matrix is created where each row (and column) represents a clique and the 
matrix elements are equal to the number of common nodes between the corresponding two 
cliques. The diagonal entries are equal to the size of the clique. Next, the k-clique-
communities for a given value of k are equivalent to such connected clique components in 
which the neighboring cliques are linked to each other by at least k-1 common nodes. These 
components can be obtained by deleting every off-diagonal entry smaller than k -1. In 
addition, every diagonal element smaller than k in the matrix will be erased, replacing the 
remaining elements by one, and then carrying out a component analysis of this matrix. The 
resulting separate components are equivalent to the different k-clique-communities. Next, 
overlaps between communities (nodes and edges that are shared by more than one 
community) are also identified. The algorithm is referred as the clique percolation method. 

3 Results 

3.1 Scaling-law of size of communities 

Our findings show that ncRNA- protein interactions have a pervasive community structure 
with high modularity. Modularity levels of transcriptional regulatory networks corresponding 
to E. coli and S. cerevisiae are also computed and compared to the ones calculated using 
ncRNAs (see Fig. 2). The modularity for the transcriptional factors (target genes) for S. 
cerevisiae and E. Coli are 0.604 (0.777) and 0.362 (0.445), respectively. Modularity detection 
in H. sapiens leads to a modularity score of 0.578 (0.598) for ncRNA (proteins), respectively. 
A computation of the modularity using all the available interactions in all organisms gives a 
value of 0.720 (0.752) for ncRNA (protein) molecules. Good modularity values typically lie 
between 0.3-0.7, while higher values are rare. Very low modularity (<0.3) indicates a lack of 
complex modular structure [9].  

Interestingly, the distribution of module sizes shows a heavy tail highlighting a hierarchical 
organized system formed by interconnected modules of heterogeneous scales (Fig. 3). The 
figure shows that the probability of finding communities of a given size decays slowly as a 
power-law with exponent close to 2, for both transcriptional and ncRNA-interactions. The 
specific degree exponents of each fit are indicated in the caption of Fig. 3. Cumulative 
distributions are computed using the method described in [12, 13] that gives the degree 
exponent as well as the lower bound on power-law behaviour xmin. In particular, we see that 
for protein Fig. 3 (b) and regulated genes Figs. 3 (d, f), the power-law behaviour is clearly 
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observed for several decades. In contrast, this behaviour is less clear in the tail of Figs. 3 (a, e). 
However, both figures (a, e) display a similar pattern, for ncRNA and TFs, highlighting the 
similarities between both systems in modularity structure. These findings, in particular, the 
scaling-law for community sizes, are intriguing and show that ncRNA-mediated interactions 
have a complex organization, which immediately raises the question on ncRNA modules and 
communities functionality. This result supports growing evidences suggesting that ncRNAs 
could be associated with regulatory functions [3-5]. We have also examined the composition 
of each of the modules and assign biological functions based on database annotation.  
 

 
Figure 3: Cumulative degree distributions for the community size x of the analyzed bipartite 
networks. (b) ,459.0917.1 ±=γ  (d) 377.0679.1 ±=γ , (c) 201.0021.1 ±=γ  (f)  

102.0755.1 ±=γ . For (a) ,321.0371.2 ±=γ  and (e) ,291.0212.2 ±=γ the best fit is 
showed although it clearly deviates from tail of observed experimental data. Note, however, the 
similar distribution for both ncRNAs and TFs. xmin is indicated by the starting point of the black 
dashed-line and corresponds to the point from which the fit is performed. 
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The number of identified modules (including single-node module) is 13 (17) for ncRNA 
(proteins) in H. sapiens and 36 (50) when all the available ncRNA-protein interactions are 
considered. As a comparison, 26 (41) modules are identified for the transcriptional factors 
(regulated genes) in yeast organism. Fig.1 shows the bipartite network corresponding to the 
human ncRNA-protein interactions. The ncRNA molecules are indicates by circles and 
proteins by squares. Each colour indicates a detected community. Four and nine communities 
with more than one node are observed for human ncRNA and protein molecules, respectively. 
Of particular interest, is the central community composed of eight ncNRA molecules  U1, U2, 
U4, U5, U6, DD4, U6atac and U4atac. As shown later, some members of this community 
exhibit overlap with other communities suggesting that their biological roles could also be 
more relevant. The total number of ncRNA and protein communities for all available 
interactions, excluding single-node modules, is 8 and 31, respectively. For yeast organism, for 
example, the transcriptional factor and gene communities with more than one node are 9 and 
30, respectively. 

 

 
Figure 4: k-clique communities for k=3 and k=4 for human ncRNA network. Each node 
represents a ncRNA molecule. 

3.2 k-cliques and overlapping in human ncRNA interactions 

Here we present the results corresponding to the k-clique-communities for a given value of k. 
Because the computation of the k-cliques requires unipartite graph, the bipartite network of 
the ncRNA-protein interactions was projected onto a simple network. Therefore, the k-cliques 
identified correspond to sub-graphs composed of only ncRNA molecules. The results show 
that two k-cliques of k=3 and k=4, respectively, are present in the network (see Fig. 4). In 
addition, three k-cliques of k=5 as well as one clique-community for each k=6, 7, 8 and 9, 
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respectively, were identified (see Fig. 5). By using this k-clique information, the computation 
of the overlaps between them was performed (Fig. 6). The communities are color coded, the 
overlapping nodes and are emphasized in black. Large overlaps areas between k-cliques 
communities are shaded in different color code. Fig. 6 (a, b) display the two communities of 
the ncRNA molecule U1, and U2, respectively, with k=5: the blue and the purple ones. Fig. 6 
(c, d) show the two communities of the ncRNA molecule U6 with k=4 (c) and three 
communities of the same molecule with k=5 (d).  
 

 
Figure 5: k-clique communities for k=5, 6, 7, 8 and 9 for human ncRNA network. Each node 
represents a ncRNA molecule. 

In eukaryotes the spliceosome performs the splicing reactions essential for removing intron 
sequences. The ncRNA components of the major spliceosome are U1, U2, U4, U5, and U6. 
Interestingly, the k-clique community of these molecules is clearly identified in Figs. 4-6.  In 
general, the identified communities of the ncRNA molecules in H. sapiens organism could be 
associated with certain functions. 

4 Discussion and Conclusion 

Recent works have explored the network of ncRNA molecules from different angles [14-17]. 
We have examined the community structure of the ncRNA interactions and identified highly 
cohesive modules in the bipartite network as well as k-clique communities in the ncRNA 
network. The modularity scores as well as the number of meaningful modules at different 
scales revealed manifestly non-random features.  The ncRNA network consists of a high 
modularity that is organized following a scaling-law for community sizes, similar to those 
found in other molecular networks. This result supports the idea of a functional system with 
capability for specific roles in a cell [3, 18]. Recent works have reported that ncRNAs 
molecules could be implicated in processes related to regulation, cell differentiation and 
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tumorigenesis. Some analyses have linked ncRNA molecules to other complex diseases like 
coronary disorders and diabetes [4]. In addition, correlations between microRNA repression 
and protein interaction using expression data have also been identified [19]. As illustrated 
above, the k-clique communities can be associated to specific functions, therefore an 
exhaustive mapping of functions available in databases and literature for classified ncRNAs 
onto the identified clique communities could lead to identify certain functions for yet 
unclassified ncRNA molecules. Moreover, a complementary analysis could be done by 
performing a mapping on the presented network using expression data of ncRNA. 

In spite of the fact that current collected ncRNA datasets represent a small fraction of all the 
existing interactions, these findings are promising and encourage the experimental analysis 
and classification of the non-coding mediated interactions. The clinical potential of ncRNA 
molecules has not been fully unveiled yet, and it could be possible that non-coding RNAs can 
play a key role in future personalized therapies [20]. As a future work, we aim to extend the 
mapping of biological functions on the identified modules and communities. Furthermore, it 
could be interesting to extend the biological significance of this study by considering the 
interactions between target genes and those proteins that also interact with ncRNA molecules. 
Finally, we also work on the development of mathematical models, based on bipartite graphs, 
that explain the emergence of the scaling-law for community sizes in both transcriptional 
regulatory networks and ncRNA mediated interactions as well as the k-clique community 
structure. 

 

 
Figure 6: k-clique communities and overlaps for U1, U2, and U6 (black nodes) ncRNA molecules 
in the human ncRNA network. Each node represents a ncRNA molecule. 

 

Journal of Integrative Bioinformatics, 10(2):217, 2013 http://journal.imbio.de

doi:10.2390/biecoll-jib-2013-217 9

C
op

yr
ig

ht
 2

01
3 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).



Acknowledgements 

This work was partially supported by a Grant-in-Aid from MEXT Japan.  

References 

[1] A-L.Barabási, Z.N. Oltvai ZN Network biology: Understanding the cell’s functional 
organization  Nature Review Genetics, 5, 101-113,  2005. 

[2] T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph et al., Transcriptional 
regulatory networks in Saccharomyces cerevisiae, Science 298, 799-804, 2002. 

[3] J. S. Mattick, “RNA regulation: a new genetics”, Nature Review Genetics, 5, 316-323, 
2004. 

[4] P. P.Amaral, M. E. Dinger, T. R. Mercer and J. S. Mattick, The eukaryotic geneome as 
an RNA machine, Science 319, 1787-1789, 2008. 

[5] J. S. Mattick and I. V. Makunin, Small regulatory RNAs in mammals, Human 
Molecular Genetics, 14, pp. R121-R132, 2005. 

[6] T. Wu, J. Wang, C. Liu, Y. Zhang and B. Shi, NPInter: the noncoding RNAs and 
protein related biomacromolecules interaction database, Nucleic Acids Research 34, pp. 
D150-D152, 2006. 

[7] M.C. constanzo et al., YPDTM, PombePDTM and WormPDTM: model organisms 
volumes of BioKnowledgeTM Library, an integrated resource for protein information, 
Nucleic Acids Research 29, 75-79, 2001. 

[8] R. Guimerà., LAN Amaral, Functional cartography of complex metabolic networks. 
Nature, 433, 895-900, 2005. 

[9] R. Guimerà, M. Sales-Pardo and LAN Amaral, Module identification in bipartite and 
directed networks. Physical Review E, 76, 036102 , 2007. 

[10] L. Danon, A. Díaz-Guilera, J. Duch and A. Arenas Comparing community structure 
identification. J Stat Mech, P09008, 2005. 

[11] G. Palla, I. Derényi, I. Farkas and T. Vicsek, Uncovering the overlapping community 
structure of complex networks in nature and society, Nature 435, 814-818, 2005. 

[12] A. Clauset, C.R. Shalizi and M.E.J. Newman Power-law distributions in empirical data 
SIAM Rev. 51 661–703, 2009. 

[13] http://tuvalu.santafe.edu/ aaronc/powerlaws 

[14] U. K. Muppirala,V. G. Honavar and D. Dobbs, Predicting RNA-protein interactions 
using only sequence information, BMC Bioinformatics. 12: 489, 2011.  

[15] L.J. Collins, Advances in Experimental Medicine and Biology: RNA Infrastructure and 
networks, Vol. 722 of Advances in Experimental Medicine and Biology, Springer, 86-
102, 2011. 

[16] V.P. Zhdanov, Non-coding RNAs and complex distributed genetic networks, Central 
European Journal of Physics 9 (4), 909-918, 2011. 

[17] J.C. Nacher and N. Araki Structural characterization and modeling of ncRNA-protein 
interactions. Biosystems 10, 10-9, 2010. 

Journal of Integrative Bioinformatics, 10(2):217, 2013 http://journal.imbio.de

doi:10.2390/biecoll-jib-2013-217 10

C
op

yr
ig

ht
 2

01
3 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).



[18] Y. Shimoni, G. Friedlander, G. Hetzroni, G. Niv et al., Regulation of gene expression 
by small non-coding RNAs: a quantitative view, Molecular Systems Biology, 3, 1-9, 
2007. 

[19] H. Liang and W.-H. Li, MicroRNA regulation of human protein-protein interaction n 
network, RNA 13, 1402-1408 2007. 

[20] M. Galasso, M. Elena Sana and S. Volinia Non-coding RNAs: a key to future 
personalized molecular therapy ?, Genome Medicine 2, 12 2010. 

 

Journal of Integrative Bioinformatics, 10(2):217, 2013 http://journal.imbio.de

doi:10.2390/biecoll-jib-2013-217 11

C
op

yr
ig

ht
 2

01
3 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).


	1 Introduction
	2 Methods
	2.1 Datasets
	2.2 Community structure computation in bipartite network
	2.3 k-clique community computation

	3 Results
	3.1 Scaling-law of size of communities
	3.2 k-cliques and overlapping in human ncRNA interactions

	4 Discussion and Conclusion
	Acknowledgements
	References



