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Abstract. The study of communities in social networks has attracted
considerable interest from many disciplines. Most studies have focused on
static networks, and in doing so, have neglected the temporal dynamics
of the networks and communities. This paper considers the problem of
tracking communities over time in dynamic social networks. We propose
a method for community tracking using an adaptive evolutionary clus-
tering framework. We apply the method to reveal the temporal evolution
of communities in two real data sets. In addition, we obtain a statistic
that can be used for identifying change points in the network.
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1 Introduction

Traditionally, social network data have been collected through means such as
surveys or human observation. Such data provide a view of a social network as
a static entity over time. However, most social networks are dynamic structures
that evolve over time. There has been recent interest in analyzing the temporal
dynamics of social networks, enabled by the collection of dynamic social network
data by electronic means such as cell phones, email, blogs, etc. [2, 6, 10].

A fundamental problem in the analysis of social networks is the detection of
communities [7]. A community is often defined as a group of network members
with stronger ties to members within the group than to members outside of
the group. Previous studies on the community structure of social networks have
typically focused on static networks. In doing so, the temporal dynamics of
the networks and communities have been neglected. The natural extension of
community detection to dynamic networks is community tracking, which makes
it possible to observe how communities grow, shrink, merge, or split with time.

In this paper, we propose a method for tracking communities in dynamic
social networks. The proposed method makes use of an evolutionary cluster-
ing framework that detects communities at each time step using an adaptively
weighted combination of current and historical data. The result is a set of com-
munities at each time step, which are then matched with communities at other
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time steps so that communities can be tracked over time. We apply the proposed
method to reveal the temporal evolution of communities in two real data sets.
The detected communities are more accurate and easier to interpret than those
detected by traditional approaches. We also obtain a statistic that appears to
be a good identifier of change points in the network.

2 Methodology

The objective of this study is to track the evolution of communities over time
in dynamic social networks. We represent a social network by an undirected
weighted graph, where the nodes of the graph represent the members of the
network, and the edge weights represent the strengths of social ties between
members. The edge weights could be obtained by observations of direct inter-
action between nodes, such as physical proximity, or inferred by similarities
between behavior patterns of nodes. We represent a dynamic social network by
a sequence of time snapshots, where the snapshot at time step t is represented
by W t =

[
wt

ij

]
, the matrix of edge weights at time t. W t is commonly referred

to as the adjacency matrix of the network snapshot.
The problem of detecting communities in static networks has been studied by

researchers from a wide range of disciplines. Many community detection meth-
ods originated from methods of graph partitioning and data clustering. Popular
community detection methods include modularity maximization [7] and spectral
clustering [12,14]. In this paper, we address the extension of community detection
to dynamic networks, which we call community tracking. We propose to perform
community tracking using an adaptive evolutionary clustering framework, which
we now introduce.

2.1 Adaptive evolutionary clustering

Evolutionary clustering is an emerging research area dealing with clustering
dynamic data. First we note that is possible to cluster dynamic data simply by
performing ordinary clustering at each time step using the most recent data.
However this approach is extremely sensitive to noise and produces clustering
results that are inconsistent with results from adjacent time steps. Evolutionary
clustering combines data from multiple time steps to compute the clustering
result at a single time step, which allows clustering results to vary smoothly over
time. Xu et al. [13] recently proposed an evolutionary clustering framework that
adaptively estimates the optimal weighted combination of current and past data
to minimize a mean-squared error (MSE) criterion. We describe the framework
in the following.

Define a smoothed adjacency matrix at time t by

W̄ t = αtW̄ t−1 +
(
1− αt

)
W t (1)

for t ≥ 1 and by W̄ 0 = W 0. αt can be interpreted as a forgetting factor that
controls the amount of weight given to past data. We treat each network snap-
shot W t as a realization from a nonstationary random process and define the
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expected adjacency matrix Ψ t =
[
ψt
ij

]
= E [W t]. If we had access to the expected

adjacency matrix Ψ t, we would expect to see improved clustering results by clus-
tering on Ψ t rather than the noisy realization W t. However, Ψ t is unknown in
real applications so the goal is to estimate it as accurately as possible. If we take
the estimate to be the convex combination defined in (1), it was shown in [13]
that the optimal choice of αt that minimizes the MSE in terms of the Frobenius
norm E

[
∥W̄ t − Ψ t∥2F

]
is given by

(
αt
)∗

=

n∑
i=1

n∑
j=1

var
(
wt

ij

)
n∑

i=1

n∑
j=1

{(
w̄t−1

ij − ψt
ij

)2
+ var

(
wt

ij

)} , (2)

where n denotes the number of nodes in the network. In a real application,
ψt
ij and var

(
wt

ij

)
are unknown so (αt)

∗
cannot be computed. However, it can be

approximated by replacing the unknown means and variances with sample means
and variances. The communities at time t can then be extracted by performing
ordinary community detection on the smoothed adjacency matrix W̄ t.

Any algorithm for ordinary community detection can be used with the adap-
tive evolutionary clustering framework. In this paper, we use Yu and Shi’s nor-
malized cut spectral clustering algorithm [14]. It finds a near global-optimal sep-
aration of the nodes into k communities, where k is specified by the user. The
algorithm involves computing the eigenvectors corresponding to the k largest
eigenvalues of a normalized version of W̄ t, then discretizing the eigenvectors so
that each node is assigned to a single community. We refer readers to [13] for
additional details on the adaptive evolutionary spectral clustering algorithm.

2.2 Tracking communities over time

There are several additional issues that also need to be addressed in order to track
communities over time. The communities detected at adjacent time steps need to
be matched so that we can observe how any particular community evolves over
time. This can be achieved by finding an optimal permutation of the communities
at time t to maximize agreement with those at time t − 1. If the number of
communities at time t is small, it is possible to exhaustively search through
all such permutations. This is, however, impractical for many applications. We
employ the following heuristic: match the two communities at time t and t −
1 with the largest number of nodes in agreement, remove these communities
from consideration, match the two communities with the second largest number
of nodes in agreement, remove them from consideration, and so on until all
communities have been exhausted.

Another issue is the selection of the number of communities k at each time.
Since the evolutionary clustering framework involves simply taking convex com-
binations of adjacency matrices, any heuristic for choosing the number of com-
munities in ordinary spectral clustering can also be used in evolutionary spectral
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clustering by applying it to W̄ t instead of W t. In this paper we use the eigen-
gap heuristic [12] of selecting the number of communities k such that the gap
between the kth and (k + 1)th largest eigenvalues of the normalized adjacency
matrix is large.

Finally, there is the issue of nodes entering or leaving the network over time.
We deal with these nodes in the following manner. Nodes that leave the network
between times t− 1 and t can simply be removed from W̄ t−1 in (1). Nodes that
enter the network at time t have no corresponding rows and columns in W̄ t−1.
Hence, these new nodes can be naturally handled by adding rows and columns
to W̄ t after performing the smoothing operation in (1). In this way, the new
nodes have no influence on the update of the forgetting factor αt yet contribute
to the community structure through W̄ t.

3 Experiments

3.1 Reality Mining

Data Description The MIT Reality Mining data set [2] was collected as part
of an experiment on inferring social networks by monitoring cell phone usage
rather than by traditional means such as surveys. The data was collected by
recording cell phone activity of 94 students and staff at MIT for over a year.
Each phone recorded the Media Access Control (MAC) addresses of nearby
Bluetooth devices at five-minute intervals. Using this device proximity data, we
construct a sequence of adjacency matrices where the edge weight between two
participants corresponds to the number of intervals where they were in close
physical proximity within a time step. We divide the data into time steps of one
week, resulting in 46 time steps between August 2004 and June 2005.

In this data set, we have partial ground truth to compare against. From
the MIT academic calendar [5], we know the dates of important events such
as the beginning and end of school terms. In addition, we know that 26 of the
participants were incoming students at the university’s business school, while
the rest were colleagues working in the same building. Thus we would expect
the detected communities to match the participant affiliations, at least during
the school terms when students are taking classes.

Observations We make several interesting observations about the community
structure of this data set and its evolution over time. The importance of temporal
smoothing for tracking communities can be seen in Fig. 1. On the left is the heat
map of community membership over time when the proposed method is used.
On the right is the same heat map when ordinary community detection at each
time is used, which is equivalent to setting αt = 0 in (1). Notice that two clear
communities appear in the heat map to the left, where the proposed method is
used. The participants above the black line correspond to the colleagues working
in the same building, while those below the black line correspond to the incoming
business school students. On the heat map to the right, corresponding to ordinary
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Fig. 1. Heat maps of community structure over time for the proposed method (left)
and ordinary community detection (right) in the Reality Mining experiment.
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Fig. 2. Estimated forgetting factor αt by time step in the Reality Mining experiment.

community detection, the community memberships fluctuate highly over time.
Thus we can see that tracking communities by the proposed method results in
more stable and accurately identified communities.

The estimated forgetting factor αt at each time step is plotted in Fig. 2. Six
important dates are labeled on the plot. Notice that the estimated forgetting
factor drops several times, suggesting that the structure of the proximity network
changes, around these dates. This is a reasonable result because the proximity
network should be different when students are not in school compared to when
they are in school. Thus αt also appears to be a good identifier of change points
in the network.

3.2 Project Honey Pot

Data Description Project Honey Pot [8] is an ongoing project targeted at iden-
tifying spammers. It consists of a distributed network of decoy web pages with
trap email addresses, which are collected by automated email address harvesters.
Both the decoy web pages and the email addresses are monitored, providing us
with information about the harvester and email server used for each spam email
received at a trap address. A previous study on the Project Honey Pot data [9]
found that harvesting is typically done in a centralized manner. Thus harvesters
are likely to be associated with spammers, and in this study we assume that the
harvesters monitored by Project Honey Pot are indeed representative of spam-
mers. This allows us to associate each spam email with a spammer so that we
can track communities of spammers.
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Fig. 3. Temporal evolution of the giant community (left), a persistent community (mid-
dle), and a “staircase” community (right) in the Project Honey Pot experiment.

Unlike in the previous experiment, we cannot observe direct interactions
between spammers. The interactions must be inferred through indirect observa-
tions. We take the edge weight between two spammers i and j to be the total
number of emails sent by i and j through shared email servers, normalized by the
product of the number of email addresses collected by i and by j. Since servers
act as resources for spammers to distribute emails, the edge weight is a measure
of the amount of resources shared between two spammers. We divide the data
set into time steps of one month and consider the period from January 2006
to December 2006. The number of trap email addresses monitored by Project
Honey Pot grows over time, so there is a large influx of new spammers being
monitored at each time step. Some spammers also leave the network over time.

Observations In this data set, we do not have ground truth for validation
so the experiment is of an exploratory nature. At each time step, there are
over 100 active communities, so rather than attempting to visualize all of the
communities, as in Fig. 1, we instead try to visualize the evolution of individual
communities over time. We discover several interesting evolution patterns, shown
in Fig. 3. On the left, there is a giant community that continually grows over
time as more and more spammers enter the network. The appearance of this
giant community is quite common in large networks, where a core-periphery
structure is typically observed [4]. In the middle, we illustrate a community that
is persistent over time. Notice that no spammers change community until time
step 12, when they all get absorbed into the giant community.

Perhaps the most interesting type of community we observe is pictured on
the right. We call this a “staircase” community due to the shape of the heat map.
Notice that at each time step, many new spammers join the community while
some of the existing spammers become inactive or leave the community. This
suggests that either the members of the community are continually changing
or that members assume multiple identities and are using different identities at
different times. Since spamming is an illegal activity in many countries, the latter
explanation is perhaps more likely because it makes spammers more difficult to
track due to the multiple identities. Using the proposed method, it appears that
we can indeed track these types of spammers despite their attempts to hide their
identities.
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4 Related work

There have been several other recent works on the problem of tracking communi-
ties in dynamic social networks. [11] proposed to identify communities by graph
coloring; however, their framework assumes that the observed network at each
time step is a disjoint union of cliques, whereas we target the more general case
where the observed network can be an arbitrary graph. [3] proposed a method
for tracking the evolution of communities that applies to the general case of
arbitrary graphs. The method involves first performing ordinary community de-
tection on time snapshots of the network by maximizing modularity. A graph of
communities detected at each time step is then created, and meta-communities
of communities are detected in this graph to match communities over time. The
main drawback of this approach is that no temporal smoothing is incorporated,
so the detected communities are likely to be unstable.

Other algorithms for evolutionary clustering have also been proposed. Rele-
vant algorithms for community tracking include [6] and [1], which extend mod-
ularity maximization and spectral clustering, respectively, to dynamic data. [10]
proposed an evolutionary spectral clustering algorithm for dynamic multi-mode
networks, which have different classes of nodes and interactions. Such an algo-
rithm is particularly interesting for data where both direct and indirect inter-
ations can be observed. However, one shortcoming in these algorithms is that
they require the user to determine to choose the values for parameters that con-
trol how smoothly the communities evolve over time. There are generally no
guidelines on how these parameters can be chosen in an optimal manner.

5 Conclusion

In this paper, we introduced a method for tracking communities in dynamic
social networks by adaptive evolutionary clustering. The method incorporated
temporal smoothing to stabilize the variation of communities over time. We
applied the method to two real data sets and found good agreement between
our results and ground truth, when it was available. We also obtained a statistic
that can be used for identifying change points. Finally, we were able to track
communities where the members were continually changing or perhaps assuming
multiple identities, which suggests that the proposed method may be a valuable
tool for tracking communities in networks of illegal activity.

The experiments highlighted several challenges that temporal tracking of
communities presents in addition to the challenges present in static community
detection. One major challenge is in the validation of communities, both with
and without ground truth information. Another major challenge is the selection
of the number of communities at each time step. A poor choice for the number
of communities may create the appearance of communities merging or splitting
when there is no actual change occurring. This remains an open problem even
in the case of static networks. The availability of multiple network snapshots
may actually simplify this problem since one would expect that the number of
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communities, much like the community memberships, should evolve smoothly
over time. Hence, the development of methods for selecting the number of com-
munities in dynamic networks is an interesting area of future research.
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