
Microbase2.0: A Generic Framework for Computationally 
Intensive Bioinformatics Workflows in the Cloud 

Keith Flanagan1, Sirintra Nakjang1,2, Jennifer Hallinan1, Colin Harwood2, Robert P. Hirt2, 
Matthew R. Pocock1, Anil Wipat1,*

1School of Computing Science, and 2Institute for Cell and Molecular Biosciences, Newcastle 
University, Newcastle upon Tyne, NE7 4RU, UK 

 

Summary 

As bioinformatics datasets grow ever larger, and analyses become increasingly complex, 
there is a need for data handling infrastructures to keep pace with developing technology. 
One solution is to apply Grid and Cloud technologies to address the computational 
requirements of analysing high throughput datasets. We present an approach for writing 
new, or wrapping existing applications, and a reference implementation of a framework, 
Microbase2.0, for executing those applications using Grid and Cloud technologies. We 
used Microbase2.0 to develop an automated Cloud-based bioinformatics workflow 
executing simultaneously on two different Amazon EC2 data centres and the Newcastle 
University Condor Grid. Several CPU years’ worth of computational work was 
performed by this system in less than two months. The workflow produced a detailed 
dataset characterising the cellular localisation of 3,021,490 proteins from 867 taxa, 
including bacteria, archaea and unicellular eukaryotes. Microbase2.0 is freely available 
from http://www.microbase.org.uk/.  

1 Introduction  

The number of active genome sequencing projects has been increasing exponentially since 
1995 [1]. Improvements in technology, coupled with large-scale deployment of sequencing 
hardware, have dramatically reduced the cost of producing genome sequences. Sequencing 
entire bacterial genomes and environment-specific metagenomes is now routine. As a result, 
publicly available sequence databases (such as GenBank) currently double in size 
approximately every two years [2]. Acquiring raw sequence data is just the beginning; a wide 
range of computational tools are required in order to derive new knowledge from the data.  

A variety of bioinformatics tools has been developed to help derive knowledge from 
biological sequence data. For a given biological question, several of these tools may be run in 
order to generate results from which biologically relevant conclusions may be drawn. Many 
of these tools run in polynomial time, scaling with both the number of input sequences and 
their lengths. The sheer amount of data that must be manipulated leads to scalability and 
storage challenges as well as increasing workflow complexity. Many solutions have been 
proposed to address computational scalability problems in bioinformatics. These approaches 
range from the use of algorithm-specific dedicated hardware such as field-programmable gate 
arrays, to GPU implementations [3], to the use of massively parallel generic computing 
hardware [4]. Distributed computing approaches include Grid and Cloud computing. Grid 
technologies typically involve large numbers of distributed heterogeneous resources that may 
be spread across several geographical locations and administrative domains. Computational 
Grids are a means for researchers to obtain and share computational power and data storage 
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either within their own institutions, or across institutional and geographical boundaries. Grids 
are extensively used in bioinformatics data processing [5, 6]. In contrast, Cloud computing 
typically involves the sale of computational resources by providers with large amounts of 
computational capacity. Cloud computing is considered by some to be an evolution of Grid 
computing [7], offering the ability to dynamically expand an organisation's computational 
power [8]. Users are often allowed complete control over their own secured virtual 
environments.

1.1 Challenges in bioinformatics 

A number of individual bioinformatics applications have been successfully executed in Grid 
or Cloud environments [9, 10]. Many of these approaches use Grid or Cloud middleware 
infrastructures, such as Globus [11] or Hadoop1

Other challenges facing workflow developers include the extraction of information from 
application output files and the organisation and storage of large amounts of results. Many 
bioinformatics applications were written for manual operation in small-scale analyses, and 
produce human-readable output files that are difficult for machines to parse. Such software is 
often designed to execute on a single machine and is not necessarily written with parallel or 
distributed computing environments in mind. Since primary bioinformatics data sources are 
continually being updated, it is necessary to keep secondary datasets up-to-date by acquiring 
new data and performing new computational analyses. Re-computing entire secondary 
datasets each time new primary data are released is quickly becoming infeasible, even when 
large compute clusters are available [16]. It is therefore desirable for a workflow enactment 
environment to support incremental additions to existing datasets with minimal additional 
computational work.  

. These frameworks abstract away from the 
specific heterogeneous hardware configurations participating in a computation, and also 
provide job management functions such as the re-execution of failed jobs. However, the 
logistics of assembling multiple computationally-intensive analysis tools to run as a workflow 
are challenging. As the number of tools that are required increases, co-ordination of structured 
data flows between processes becomes essential. One program is often required to consume 
the output of another [12]. Therefore, in addition to providing scalable execution and data 
management, software platforms must be flexible enough to support and maintain sets of 
bioinformatics tools organised into workflows [13]. Automation toolkits such as Taverna [14] 
and Kepler [13] enable the construction of complex workflows that utilise and co-ordinate 
multiple remotely hosted services to achieve a particular goal. Workflow enactment permits 
data to flow from one service to another in an automated fashion. Upon completion of a 
workflow results are returned to the user. Workflow automation has been shown to save a 
large amount of time by removing the manual ‘copy and paste’ operations that would 
otherwise be required to move data between analysis tools [15]. 

1.2 Exploring the microbial extracytoplasmic proteome 

The proteome can be conceptually divided into a core set of proteins, performing essential 
housekeeping tasks, common to a broad range of bacteria, and a peripheral proteome, 
equipping the organism for life in a particular environment [17]. The extracytoplasmic 
proteome is particularly likely to be important to the specific phenotype of a given organism 
as it mediates many primary aspects of its interaction with the environment (e.g. [18]). We 
developed an analysis workflow using Microbase2.0, incorporating multiple targeting-signal 
prediction tools to identify extracellular proteins and domains. The workflow supports the 
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incremental addition of new data items, and is extensible in terms of new software 
applications. We apply this workflow to the identification of extracytoplasmic proteins—
defined as the combination of membrane, intermembrane space and secreted proteins—in all 
organisms for which a complete genome sequence was available in RefSeq [19] as of June, 
2010. 

2 An architecture for large-scale analysis workflows in the 
Cloud  

We have previously developed Microbase a Grid-based framework for bioinformatics [20-
22]. In this paper we describe Microbase2.0. Micobase2.0, whilst based on the principles 
introduced with Microbase1.0, provides a completely re-engineered and re-architectured 
system that has been devised to meet the challenges presented by more recent developments 
in Grid and Cloud computing. The Microbase2.0 system is a distributed computing 
bioinformatics framework, consisting of a set of separate, loosely coupled services that co-
operate to provide the infrastructure required by Grid- or Cloud-based analysis workflows 
(Figure 1). These components are: 

• A notification system: facilitates de-coupled communication between workflow 
components; 

• The filesystem: a scalable, distributed file store specification and reference 
implementation; 

• A distributed process manager: provides job scheduling and failure management for 
heterogeneous groups of worker nodes; 

• Domain-specific application components (termed responders): user-written 
components that either perform an analysis, or delegate a task to an existing analysis 
program. 

The Microbase2.0 architecture facilitates scalability and reliability by replicating 
infrastructure components over a number of servers. These components cooperate to ensure 
that each instance works on a different task; no computational work is unnecessarily 
duplicated. In a deployment of a Microbase2.0 system, the various system services may either 
be located on a single physical server or spread across several, potentially geographically 
distant machines. Therefore, a small-scale test or development system can be gradually scaled 
up as the requirements of a project evolve.  

Responders are modular components that are written by the user. Each Microbase2.0 
responder typically maps to a single bioinformatics software tool. A group of responders can 
be configured to form a workflow. Each responder type may be deployed to one or more 
servers for scalability, as required.  

Command line bioinformatics applications are typically designed to run independently on a 
single machine, usually consuming a set of input files and producing a set of output files. 
These applications are typically unaware of distributed computing concepts such as obtaining 
data from a remote machine. However, the user of a large-scale bioinformatics analysis 
workflow may require result data to be stored and indexed in a database for later querying. A 
responder must therefore encapsulate the entire functionality of a specific bioinformatics tool 
by meeting the needs of the command line application (e.g., access to local data files), and the 
typical requirements of a large-scale analysis workflow (e.g., database storage of results). 
Responders typically need to provide: a means to acquire data files from the Microbase2.0 
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filesystem; a file parser to interpret the result files produced by the analysis tool; and a 
database insertion tool to permanently archive results. 

 

 
Figure 1: A summary of the Microbase2.0 client architecture and its operation. Microbase2.0 
provides APIs for a number of core services that facilitate workflow orchestration: the event 
notification system (blue), file storage and distribution system (yellow), and various distributed 
data structures that provide task scheduling and monitoring operations (purple). The 
Microbase2.0 client is installed on available computers (green). Every compute node is 
symmetric – there are no special nodes such as a ‘master node’. In addition to the Microbase2.0 
client, compute nodes may have one or more user-written components, termed ‘responders’, 
installed. A responder may register its interest in a particular message topic, and is activated by 
the system when a suitable message arrives in the notification system. A workflow is formed 
when messages generated by one responder are passed as input to another responder (bottom 
right). 

 

High-level inter-process communication between responders is carried out using a publish-
subscribe notification-based approach. The Microbase2.0 notification system permits 
responders to register an interest in particular types of message, and thus receive past and 
present announcements from other workflow components. Typically, notification messages 
convey information about the completion of an analysis task, or the availability of a new data 
item. Message subscriptions therefore dictate the order in which responders execute; a ‘new 
data available’ message from one responder may result in a cascade of events as other 
responders react to the new data, and produce their own results, causing further messages to 
be published. The notification system database records every message that is sent by system 
or workflow responders. Communication via the notification system is performed in a 
loosely-coupled fashion; the publisher of a message does not have knowledge of the potential 
receivers, or even whether there are any receiving responders. This property is essential for 
supporting dynamic workflows to which new applications may be added in future. A new 
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component added to a workflow receives the relevant message history, depending on its topic 
subscriptions. 

The Microbase2.0 file system is responsible for storing and distributing input and output data 
files for each responder. In a distributed environment a large number of worker nodes may 
need access to data resources simultaneously. Raw output files produced by analysis 
applications are permanently archived in the Microbase2.0 file system. Currently, 
Microbase2.0 provides a reference file system implementation that provides scalable transfers 
via the peer-to-peer protocol, BitTorrent. An implementation of the file system, that uses 
Amazon S32

Computational work is managed in Microbase2.0 through a set of memory-resident 
distributed data structures. Each message published to the notification system represents a unit 
of work to be processed. In addition to message content, the notification system also stores 
message state information for each responder that subscribes to a particular topic. Responder 
processes, and the distributed data structures on which they rely, are entirely de-centralised 
and are therefore tolerant of failures. Microbase2.0 makes use of the open source data grid 
library, Hazelcast

 as its data store, is under development, and other implementations for different 
file transfer protocols may be provided in future. 

3

3 An analysis workflow for the study of extracytoplasmic 
proteins 

 to implement the necessary coordination of multiple distributed processes. 
The Microbase2.0 compute client maintains a distributed process list of the messages being 
processed by the system at every point in time. This data is accessible to responders via the 
client API, and is useful for dynamically adjusting the number of processes of a given type 
executing simultaneously. For example, if a particular type of responder depends on a single 
shared resource, such as a relational database, it may be useful to limit the number of active 
instances in order to improve the overall throughput of the system. The compute client may 
run on top of existing distributed platforms such as Condor [23], may be embedded within an 
Amazon EC2 virtual machine image, or may simply be started on local machines via a remote 
shell such as SSH. In any deployment environment, minimal configuration is required for 
Microbase2.0 compute client instances to find each other in order to participate in processing 
the same workflow. 

The Microbase2.0 framework has been used by a number of researchers to construct several 
bioinformatics analysis workflows. In this paper we describe a workflow for the identification 
of putative secreted and surface associated proteins using Grid and Cloud computing 
technologies, the Extracytoplasmic Protein Prediction Pipeline (EPPP) (Figure 2). The EPPP 
workflow employs several sequence analysis tools in order to identify putative 
extracytoplasmic proteins. A set of Microbase2.0 responders was developed to encapsulate 
bioinformatics tools for the identification of putative targeting signals (SignalP, LipoP, 
TMHMM), cell surface anchoring regions (InterProScan) and the identification of homology 
(BLAST-P). The workflow performs the following functions: automatic retrieval of sequence 
data from a public genome resource (NCBI) and the generation of appropriately formatted 
input data for the downstream analysis processes; processing of the input sequence through 
various bioinformatics tools; and extraction of a list of candidate extracytoplasmic protein 
based on the prediction results. 

 
                                                 
2 http://aws.amazon.com/s3/ 
3 http://www.hazelcast.com/ 
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Figure 2: The EPPP workflow consists of multiple Microbase2.0 responders. The workflow starts 
with events generated by the FileScanner responder, which is configured to periodically scan an 
FTP server for new files. The GenomeParser responder reacts to the presence of new genome 
files by parsing and storing them in a structured database, the GenomePool. Once a new genome 
has been stored notification messages are sent to analysis responders, resulting in a large amount 
of computational work being scheduled. Each responder has its own independent database. 
Finally, the results from each analysis tool are extracted and integrated into a relational 
database. 

 

The EPPP workflow is triggered when new GenBank-formatted genome data files become 
available. The Microbase2.0 FileScanner responder is responsible for detecting the arrival of a 
new file on an FTP site and for saving the file into the Microbase2.0 filesystem. The 
successful completion of this process triggers the next responder, GenomeParser. The 
GenomeParser responder receives messages published by the FileScanner responder. The 
GenomeParser is responsible for extracting genome information from the plain text GenBank 
files and storing it within an indexed, structured database (the GenomePool) for convenient 
access by other responders or users. The completion of this process results in the 
GenomeParser publishing messages which activate a series of downstream responders, each 
encapsulating a different bioinformatics tool. The output from each application is parsed and 
stored in independent structured databases. Finally, sequence analysis results are post-
processed by the final responder, which performs a custom filtering process for the 
identification of putative extracytoplasmic proteins. 

4 Application of the extracytoplasmic protein prediction 
workflow 

4.1 Workflow performance 

The input dataset for the workflow was created by downloading all available complete 
genome sequences from the RefSeq database [19]. The resulting database contained data for 
3,021,490 proteins from 867 taxa (Table 1). 
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The EPPP workflow was utilised to identify putative extracytoplasmic proteins from the 
dataset. The protein sequences to be analysed were split into manageable blocks of between 
100 and 1,000 sequences by the responders. This analysis involved 3,021,490 protein 
sequences and resulted in 101,943 computing jobs being produced by the five sequence 
analysis responders. The analysis jobs were assigned to the Condor Grid at Newcastle 
University (a minimum of 27 and a maximum of 74 worker nodes, depending upon 
availability, and fluctuating during the course of the workflow execution as users logged on 
and off desktop machines), and the Amazon Cloud computing resource.  
 

Table 1. Composition of the workflow input dataset 

Group Number of Taxa 

Gram positive bacteria 231 

Gram negative bacteria 549 

Archaea 55 

Unicellular eukaryotes 32 

Total 867 

 

By exploiting this high-throughput computing approach, all of the jobs were successfully 
completed within two months. This two-month time frame includes not only compute time, 
but also other Microbase2.0-specific overheads, such as file management, and re-computation 
of failed jobs (Table 2). Overall, InterProScan processes benefit the most from the use of the 
distributed computing system; the four years of CPU time required to process three million 
sequences was reduced to 16 days of wall clock time. Likewise, for BLAST-P, the amount of 
active time for processing approximately 26,000 BLAST-P-pairwise and BLAST-P-refseq 
jobs was reduced significantly. The other, less CPU-intensive programs, LipoP, TMHMM and 
SignalP required four hours, 11 hours and 31 hours respectively. 

4.2 Results of large-scale extracytoplasmic protein prediction 

Of the 3,021,490 protein sequences present in the GenomePool, 981,769 protein sequences 
were predicted to be extracytoplasmic proteins (Table 3).  

Based on the proteomes included in this study, the fractions of putative extracytoplasmic 
proteins across the four groups of microorganisms were estimated to be 24.6%, 25.9%, 31%, 
and 34.6% for microbial eukaryotes, archaea, Gram-positive bacteria and Gram-negative 
bacteria, respectively.  

Protein sequences were considered to be putative extracytoplasmic proteins if they were 
predicted to have at least one of these features: 1) transmembrane region(s) predicted by 
TMHMM; 2) a signal peptide cleavage site predicted by SignalP; 3) a predicted signal 
peptidase II cleavage site assigned by LipoP; 4) or at least one well-defined functional domain 
indicative of a protein associated with an extracellular space. The results from the workflow 
were compared with a set of sequences whose subcellular location had already been 
determined experimentally. The experimentally verified data set was obtained from the 
ePSORTdb [45]. The experimental dataset was used to assess the results obtained for 
archaeal, Gram-positive (Gm+) and Gram-negative (Gm-) bacterial proteins - a total of 9,265 
prokaryotic protein sequences. The positive predictive value and sensitivity of the workflow 
were computed for the bacterial and archaeal groups (Table 4). 
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Table 2: Execution times of the Microbase2.0 responders used in the EPPP workflow. ‘Total 
CPU usage time’ or total computing time shows an estimated time for a desktop with an Intel 
core 2 (6300) duo 1.86 GHz CPU, and 2GB memory to complete all the tasks for the specified 
type. ‘Total active time’ is the amount of time spent on both the computation time of the 
responders and Microbase2.0 overheads such as file. For the FileScanner, GenomeParser and 
TMHMM responders, one job represents one genome file. For other responders, the number of 
jobs varies depending on the number of protein sequences allowed per job. ‘-’ indicates that all 
the protein sequences annotated in a genome file are considered as one compute job. It is notable 
that the total number of jobs processed by the TMHMM responder is less than the number of 
genome files passed into the workflow. This discrepancy is due to some genome files having no 
gene product annotations. 
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FileScanner 3,153 - 0.01 27.99 mins 26 hrs 19 

GenomeParser 3,153 - 0.32 16.67 hrs 26 hrs 40 

TMHMM 2,892 - 1.88 3.78 days 11 hrs 74 

SignalP 41,091 150 0.08 2.27 days 1 day 7 hrs 37 

LipoP 2,941 1,500 0.04 1.93 hrs 4 hrs 27 

InterProScan 31,924 100 68.12 1,510.15 days 16 days 15 hrs 60 

BLAST-P-refseq 2,942 200 81.38 166.26 days 7 days 11 hrs 40 

 
Table 3: Summary of protein sequences assigned to different classes by the extracytoplasmic 
classification workflow. The workflow was applied to all protein sequences deposited in the 
GenomePool database. Results are shown in relation to organism groups depending on the major 
cell surface structures. The Gram-positive group includes members of bacterial phyla 
Actinobacteria, Firmicutes and Tenericutes. Other bacterial phyla are considered to belong to 
the Gram-negative group. 

Organism group Total number of 
proteins 

Total number of predicted 
extracytoplasmic proteins 

Gram positive 693,402 214,955 

Gram negative 1,922,673 665,194 

Microbial eukaryote 272,389 67,121 

Archaea 133,026 34,499 

Total 3,021,490 981,769 

 

 
  

Journal of Integrative Bioinformatics, 9(2):212, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-212 8

C
op

yr
ig

ht
 2

01
2 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).



Table 4: Performance of the EPPP workflow. True positive (TP) and False negative (FN) denote 
the number of experimentally verified extracytoplasmic protein sequences that were predicted 
by the EPPP workflow as extracytoplasmic and intracytoplasmic, respectively. True negative 
(TN) and False positive (FP) represent the number of experimentally verified cytoplasmic 
proteins that were predicted by the EPPP workflow as intracytoplasmic and extracytoplasmic, 
respectively.  

Organism 
group 

TP FP TN FN Positive 
predictive 
value (%) 

Sensitivity 
(%) 

 

Archaea 68 0 0 7 100.00 90.67 

Gm- 1,779 89 4,853 226 95.24 88.73  

Gm+ 367 37 1,621 57 90.84 86.56  

 

4.3 Discussion 

In the post-genomic world of modern biology, very large amounts of data are routinely 
generated on a day-to-day basis.  As technologies for the generation and storage of biological 
data become faster, cheaper and more capable, the bottleneck in the generation of new 
knowledge is increasingly becoming the crucial annotation and analysis process. A wide 
range of bioinformatics tools is available to perform different types of analysis of many 
different types of data. Many of these tools were originally written for small scale use on a 
single CPU, with the output targeted at human users. In order to cope with the volume of data 
now available these tools can either be rewritten – a time-consuming and potentially error-
prone process – or adapted to use in high-throughput, massively parallel computational 
environments. 

Most bioinformatics analyses require the use of more than one tool, either in parallel or in 
sequence. The outputs of one tool frequently become or inform the inputs of another. In order 
to avoid the necessity for manual cutting and pasting of data between tools, some form of 
automated orchestration is required, usually in the form of workflows. As datasets become 
larger and more complex, more compute cycles are needed for their analysis. Parallel 
processing can bring computation time within practical limits, by distributing tasks amongst 
CPUs on multiple machines, either locally or on the Cloud. We have developed Microbase2.0, 
a computational platform which facilitates the building of bioinformatics solutions in a Cloud 
environment, and which can handle very large data sets. 

Microbase2.0 is a distributed systems architecture that permits multiple bioinformatics tools 
to be incorporated into long-running workflows. Where possible, Microbase2.0 components 
make extensive use of existing open source software. Two notable examples are Hazelcast for 
the provision of various distributed data structures and Azureus4

                                                 
4 http://azureus.sourceforge.net/ 

 for providing BitTorrent file 
transfers. In addition to providing a wrapper for executing existing applications in a 
distributed environment, the system provides data management functionality, execution 
provenance and job failure detection. Furthermore, processing workflows composed of 
responders are extensible both in terms of the handling of new data, and also the addition of 
new applications. When new data are added to a workflow, it is possible to incrementally 
update existing datasets without re-analysing existing data. Likewise, adding a new responder 
to an existing workflow only requires the new responder to catch up with the current system 
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state by processing existing relevant notification messages. The inherent modularity of 
responders enables them to be reused in different workflows with very minor changes. 

The advantage of Microbase2.0 over other highly distributed, Cloud-based bioinformatics 
solutions, such as Hadoop, is that Microbase2.0 supports agile workflow development. There 
is no need for a rigid workflow definition, for example, in the form of a file. The design for a 
workflow in Microbase2.0 is never truly complete. New responders can be registered at any 
time to any message topic, and all previous messages will be delivered as if these responders 
had always been present. In this sense, a Microbase2.0 workflow is an emergent phenomenon 
of a particular set of responders, and the messages to which they are subscribed. The ability to 
dynamically deploy workflow components facilitates the execution of partial workflows. This 
ability is useful in Cloud computing environments where the price of compute resources 
fluctuates over time according to user demand, which in turn varies with the local time of day. 
A particular subset of responders can be prioritised and installed on a small number of 
machines. The rest of the workflow can then be executed later when the price of Cloud 
processing nodes is reduced. The second set of responders can then catch up to the progress 
made by the first set of responders, achieving the same result as if the entire workflow had run 
continuously. Another advantage of Microbase2.0 workflows, stemming from the loosely-
coupled nature of responders, is the ability to dynamically extend a workflow, even while it is 
actively executing. Adding new functionality to an existing workflow avoids a complete re-
execution of the workflow by re-using all existing results, permitting new tools to be added 
incrementally over time and as requirements or available tools change. 

Microbase workflows are particularly efficient because not only is the computational work 
distributed, but Microbase2.0 can orchestrate the simultaneous parallel execution of multiple 
instances of multiple bioinformatics tools. The tools incorporated into the workflow 
responders have been used extensively by the bioinformatics community, and hence are well-
accepted and well-understood. The only novel responders are those performing problem-
specific tasks: the retrieval and parsing of genome files (a task which is the first step in many 
bioinformatics workflows), and the final classification and filtering of extracytoplasmic 
proteins. These responders, once developed, can be re-used in any workflow in which they are 
applicable. 

The Microbase2.0 system has significant advantages over existing approaches for executing 
large-scale bioinformatics workflows consisting of many tools. Tools with large input files 
and long run times, such as InterProScan and BLAST, perform under Microbase2.0 with very 
high efficiency. Even when using tools with short job lengths or a requirement for many small 
input files, the use of Microbase2.0 is advantageous because of the systematic nature of its 
processing, the ability to incrementally add new data and analyses, and its ability to track 
workflow execution provenance information. Microbase2.0 is an open source project, and is 
freely available from http://www.microbase.org.uk/. 
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