
Performance and Energy Impact of
Instruction-Level Value Predictor Filtering

Ravi Bhargava and Lizy K. John
Laboratory for Computer Architecture

Electrical and Computer Engineering Department
The University of Texas at Austin
{ravib,ljohn}@ece.utexas.edu

Abstract

This work evaluates value predictor access filtering and
its effects on performance and dynamic energy consump-
tion in a wide-issue, high-frequency processor. New and
previously proposed filtering strategies are analyzed with
realistic predictor constraints, such as port restrictions
and table access latency. Filters restrict access to the
value predictor for instructions with unconsumed predic-
tions, poorly predicted instructions, and quickly executing
instructions. Read access filtering improves speedup due
to value prediction from 16.1% to 23.6%, while reducing
dynamic value predictor reads by 31.3%. Adding write fil-
tering decreases update activity by 78.6%, while still pro-
viding 14.8% speedup. The overall reduction in activity
leads to a value predictor energy consummption decrease
of 52.6%.

1 Introduction

Value prediction has the potential to be a high perfor-
mance mechanism in future high-frequency, wide-issue
environments [2, 11]. With a high instruction fetch band-
width, data consumers arrive very quickly, usually within
one cycle. This scenario gives value prediction ample op-
portunity to break important data dependencies.

This same push toward high frequencies and wider is-
sue widths creates a wire-delay constrained processor,
causing a nontrivial latency for large centralized struc-
tures [1, 4]. An excessive value prediction latency is a
detriment to overall instruction throughput, reducing the
effectiveness of successful predictions by prolonging the
resolution of data dependencies. In the presence of a
lengthy latency for computing a predicted value, an in-
struction can produce its actual result before the predicted
result is available.

Restricting Access Ports One way to maintain a rea-
sonable value predictor latency is to restrict the number

of access ports. Limiting ports greatly reduces the size of
the value prediction tables and therefore the delay due to
data traveling on wires. However, by limiting ports, it is
possible that not all eligible instructions receive a value
prediction.

In a wide-issue environment, simultaneously fetched
instructions compete for value prediction resources. In the
SPEC CPU2000 integer benchmarks, 61% to 78% of all
instructions are eligible for value prediction. When limit-
ing the number of ports, the instructions which access the
value predictor must be chosen carefully to achieve high
performance.

Filtering Value predictor read access filtering is the pro-
cess of determining whether an instruction should request
a prediction. One goal of filtering is to limit access based
on which instructions benefit the most (or least) from
value prediction. This enables the read access ports to
be utilized in a more judicious manner. The filtering de-
cisions are made on an per-instruction basis. They can
be based on static information such as instruction type, or
dynamic information such as past prediction history.

Filtering is not limited to just read accesses. Write up-
dates can also be filtered. Updates are performed at retire-
time and generally update bandwidth is not as critical as
read bandwidth [14]. However, if done well, the filtering
of instructions at update can lead to more efficient use of
table entries by reducing the number of updates and sub-
sequent replacements.

Energy Considerations Another design issue in a high-
performance processor is energy consumption. More tran-
sistors, higher clock rates, incorrect speculations, and
wider microarchitectures all contribute to this growing
problem. Previous work shows that a traditional at-fetch
hybrid value predictor can consume 10 times as much en-
ergy as all of the on-chip caches combined because of high
predictor activity and high performance table design [2].

Access filtering has an obvious energy benefit. By



reducing the number of instructions that read and write
the predictor, the dynamic activity and, therefore, the
dynamic energy consumption decrease. The key is to
achieve this energy reduction without losing the desired
level of performance.

Previous Filtering Work Calder et al. present tech-
niques for choosing which instructions to value predict,
performing replacement in the tables, and filtering value
predictor updates [7]. They concentrate on improving
table efficiency and predictor accuracy to minimize the
misprediction recovery time. The strategies presented in-
clude entirely eliminating non-load instructions and fil-
tering updates from instructions with unconsumed predic-
tions. They also investigate altering value prediction con-
fidence thresholds based on the length of an instruction’s
current path.

Tune et al. continue this work with Critical Path Predic-
tions which they apply to value prediction [22]. Their ar-
chitecture allows only one value prediction per cycle (one
read port). Critical Path Prediction is used to determine
which instructions will use this resource. Fields et al. also
propose a mechanism to isolate critical instructions, but
they apply it only to value prediction update [9].

Rychlik et al. discuss the “usefulness” of value pre-
dictions [19]. For SPEC CPU95, they observe that 31%
(integer programs) and 62% (floating point programs) of
predicted values are never read before they are overwrit-
ten by the final result. The authors introduce a mecha-
nism which only updates the value predictor on useful pre-
dictions. However, this mechanism did not improve pre-
diction rates, while instruction throughput increased very
slightly.

Using a software approach, Burtscher et al. demon-
strate that a compiler can be an effective tool for
determining which load instructions are most suitable
for value prediction [6]. The static filtering approach
eliminates the need for some dynamic hardware.

The rest of this paper is organized as follows. In Section
2, the evaluated value predictors are presented along with
background information. Section 3 describes the value
predictor filtering strategies and an implementation. Next,
a performance analysis for the different strategies and the
impact on energy consumption are presented in Section 4.
Finally, Section 5 summarizes this work.

2 Value Predictor Design

This section discusses the design of the evaluated value
predictors. There are many proposed strategies for value
prediction. The primary ones include last value predic-
tion [15, 16], stride prediction [10, 12], context predic-

tion [20, 23], and hybrid prediction [18, 23]. More re-
cently, hybrid predictors with the ability to dynamically
classify instructions have been evaluated [14, 19]. In this
work, we look primarily at a hybrid predictor with a last
value predictor, stride predictor and a context predictor,
similar to predictors used previously [14, 19], but without
the dynamic classification schemes.

2.1 At-Fetch Prediction

In this work, value prediction is performed at instruc-
tion fetch, which is a commonly assumed implementa-
tion [7, 11, 15, 18]. In a typical processor, an instruction
address can be sent to the fetch logic each cycle. This
same fetch address is used to access the value predictor.
Based on the fetch address, the value predictor generates
predictions for all of the instructions being fetched in that
cycle.

At-fetch prediction hides value predictor latency. There
is no need for a predicted value until the instruction has
been decoded and renamed. Therefore, some or all of the
value predictor’s table access latency is hidden by the in-
struction fetch latency and decode stages. This is an ad-
vantage over post-decode prediction [2], which waits until
more instruction information is available before accessing
the value predictor.

At-fetch prediction has some restrictions as well. In a
trace cache processor that fetches past branches in a sin-
gle cycle, such as the one presented in this work, the in-
struction address can be non-contiguous. Determining the
address for each fetched instruction requires more infor-
mation than is typically available at fetch. The second
problem is the lack of instruction type information. Dur-
ing fetch, the instructions are indistinguishable, so value
prediction resources are being consumed by instructions
that are not eligible for predictions (e.g. branches, stores).
These conditions are costly for a port-constrained predic-
tor, and are modeled in our baseline at-fetch predictor.

2.2 Evaluated Predictors

Three basic value predictors are studied. The primary
predictor is accessed at fetch time with realistic port, in-
struction type, and latency constraints (At-Fetch). For
comparison, another at-fetch predictor is presented with
unlimited ports, all instruction type information, and no
access latency (Optimistic). Finally, a post-decode pre-
dictor is also presented for comparison (Post-Decode).

All three are hybrid value predictors that use a last value
sub-predictor, a stride sub-predictor, and a context sub-
predictor. The two-level context value sub-predictor is
similar to the one discussed by Wang and Franklin [23].
The studied stride sub-predictor uses matched (two-delta)
stride prediction [8].



The predictor table configurations are chosen based on
a performance and energy analysis that incorporated table
access latency [2]. The last value sub-predictor and stride
sub-predictor both use a four-ported, 8192-entry, direct-
mapped table. Both levels of the context sub-predictor
use a four-ported, 1024-entry, direct-mapped table. This
particular size is chosen such that the total access latency
of the two context tables matches that of the stride and last
value sub-predictor tables.

The value predictor read access latency is derived from
Cacti, an analytical cache modeling tool [17]. Targeting
a 3.5 GHz processor at 1.1 Volts in a 100nm technol-
ogy [21], the reported latency to access the value predic-
tor is eight cycles. For at-fetch prediction, four of those
cycles are hidden by early stages of the pipeline. How-
ever, for post-decode prediction, value predicted instruc-
tions are exposed to the entire value predictor latency.

For the baseline predictors, each table is tagged and
updated by every result-producing instruction. When a
value mis-speculation is encountered, the microarchitec-
ture reissues all instructions younger than the mispre-
dicted instruction. All value predictors are assumed to be
fully pipelined and capable of serving new requests every
cycle.

3 Access Filtering

This section discusses the applied filtering techniques.
There are four read access filtering techniques and one
write access filtering technique. In addition to describ-
ing the techniques, an implementation for collecting the
filtering information and accessing the value predictor is
discussed.

3.1 Filters

The instruction type filter allows instructions to ac-
cess an at-fetch predictor with information that is nor-
mally not available until after instruction decode. For in-
stance, knowledge of instruction types and instruction ad-
dresses beyond the first branch are not typically known
(although this knowledge is typically assumed). This fil-
ter is essentially detecting instructions that do not produce
results and allowing only result-producing instructions to
access the value predictor.

Thequick execution filter identifies quickly executing
instructions, defined as instructions that execute before a
prediction becomes available, and does not allow them
to read the value predictor. This is unique to processors
which incur a high value prediction latency. A two-bit
saturating counter is initialized to zero, increments when a
quick instruction is detected, decremented otherwise, and

filters occur when the counter value is above or equal to
two.

Theuseless prediction filteris based on the observa-
tion of uselesspredictions [7, 18]. It prevents instructions
whose predictions are not consumed during the life of
the instruction from doing any more predictions. Once
again, a two-bit saturating counter is used. It is initialized
to zero, incremented on a useless detection, decremented
otherwise, and filters accesses when the counter value is
above or equal to two.

The mispredict filter identifies instructions that com-
monly mispredict in the value predictor. These instruc-
tions are then forbidden from reading the value predic-
tor. This filter uses a three-bit counter, initialized to zero,
incremented on mispredicts, and decremented otherwise.
It only restricts read access when it is fully saturated at
seven. This is different from previous confidence schemes
because once an instruction is designated as mispredict-
ing, it cannot read the value predictor again until the
counter is reset (discussed in Section 3.2).

The write filter is the only presented strategy for fil-
tering predictor updates. It prevents instructions that did
not access the predictor at fetch-time from updating the
predictor. Therefore, it is really based on the read access
filters. This strategy is not always beneficial. If one par-
ticular instance of an instruction does not read the pre-
dictor, it does not mean that future dynamic instances of
the same instruction won’t be able to read the predictor.
However, for energy consumption, table efficiency, and
port contention purposes, it may be beneficial to reduce
the update traffic by filtering.

3.2 Collecting Filter History

The value predictor filters all require per-instruction ex-
ecution history. To help achieve this, filter information is
stored in the trace cache. The trace cache framework pro-
vides a unique instruction feedback loop. Instructions are
fetched from the trace cache, executed, and then compiled
into new traces. By adding a few small fields for each in-
struction slot in the trace cache, a low-latency, low-energy,
per-instruction profiling mechanism is established.

Dynamically updated information, such as counters and
state information, are stored in the trace cache between
dynamic invocations of an instruction. This profiled data
is fetched along with the instructions and remains associ-
ated with the instruction as it travels through the pipeline.
This trace cache based method of instruction history col-
lection and distribution has been leveraged successfully in
other recent work [2, 3, 14].

Filtering data is now subject to history loss on trace
cache line replacements. When a trace cache line is
evicted from the trace cache, all of the corresponding filter
data for each instruction in the trace is lost. The overall



Value Predictor

Trace Cache
Filter Cache

ISSUE/EXECUTE/RETIRE
in

de
x1

in
de

x2

in
de

x3

in
de

x4

value predictions

fetch addr.

traceinstruction
(w/filter data)

retired instructions
(w/filter data)

tr
ac

e 
up

da
te

fi
lte

r 
up

da
te

Fill Unit
. .

Figure 1: Value Prediction With A Filter Cache

performance impact is not great (except perhaps under ex-
treme thrashing circumstances). However, the re-entry of
instructions into the trace cache serves as a method for
resetting filter counters that have become “stuck” at the
threshold levels. This provides another opportunity for
instructions with varying behaviors to avoid filtering.

3.3 Filter Hardware Design

The per-instruction filter data needs to be transformed
into value predictor table indexes. At retire-time, the fill
unit analyzes the available profile information in the trace
that it is currently constructing. Based on the dynamically
collected filter information and instruction types, up to
four instructions are chosen for value prediction. If more
than four instructions are eligible and unfiltered, then the
first (or oldest) instructions are chosen.

The indexes must be stored and then read prior to ac-
cessing the value predictor tables. The addresses of the
instructions selected for prediction are condensed into a
small trace of value predictor indexes, and stored in a sep-
arate cache. This cache, referred to as thefilter cache, is
accessed by the same address that indexes the trace cache.

Figure 1 illustrates the basic organization of a value
predictor with a filter cache. The filter cache is designed
with the same configuration as the trace cache and there-
fore can be indexed with the same fetch addresses. The fil-
ter cache provides indexes that are consumed by the value
predictor, which in turn provides value predictions. The
fill unit updates the filter cache with traces of indexes that
correspond to a instruction trace in the trace cache.

There are several ways to implement the filter cache.
A straightforward implementation is to obtain indexes for
the instructions being fetched. However, in this case, the
filter cache access would be serial to the value predictor
access, compounding the latency. This option is investi-
gated in the analysis.

Another option is to have a lookahead filter cache. In
this case, the current trace cache fetch address is still used
to index the filter cache. However, the trace of indexes in
the entry would be for a trace cache access in the future.
This allows the filter cache access latency to be tolerated
without adding to the overall value prediction latency.

There are variations on how a lookahead predictor can
be implemented to reduce the likelihood of a lookahead
miss, including storing multiple traces of indexes and
choosing among them as more fetch information becomes
available. Further discussion of this style of design is be-
yond the scope of this paper. However, an ideal lookahead
filter cache is also studied.

4 Results and Analysis

4.1 Simulation Methodology

Six of the integer benchmarks from the SPEC
CPU2000 suite are presented. Programs that improve the
most from value prediction are chosen. The benchmark
executables are the precompiled Alpha binaries available
with the SimpleScalar 3.0 simulator [5]. The MinneSPEC
reduced input set [13] is used when applicable. Other-
wise, the SPECtest input is used. The benchmarks and
their respective inputs are presented in Table 1. All bench-
marks are run for 100 million instructions after skipping
the first 100 million instructions.

Table 1: SPEC CINT2000 Benchmarks

Benchmark Input Source Inputs
crafty SPEC test crafty.in
gap SPEC test -q -m 64M test.in
mcf MinneSPEC lgred.in
perlbmk MinneSPEC mdred.makerand.pl
twolf MinneSPEC mdred
vortex MinneSPEC mdred.raw



To perform the simulations, a detailed, cycle-accurate
microprocessor simulator is interfaced to the functional
simulator from the SimpleScalar 3.0 simulator suite (sim-
fast) [5]. The basic pipeline consists of eight stages: three
stages of fetch plus decode/merge, rename, issue, exe-
cute, and writeback. Memory operations require addi-
tional pipeline stages, including TLB access and cache
access. The parameters for the simulated base microar-
chitecture are in Table 2.

Table 2: Baseline Microarchitecture Configuration
Data memory

· L1 Data Cache: 4-way, 32KB, 2-cycle access
· L2 Unified cache: 4-way, 1MB, 10 cycle
· Non-blocking 12 MSHRs and 2 ports
· D-TLB 512-entry, 4-way

1-cycle hit, 30-cycle miss
· Store buffer: 32-entry w/load forwarding
· Load queue: 32-entry, no spec. disambiguation
· Main Memory Infinite, 75 cycle

Fetch Engine
· Trace cache: 4-way, 1K entry, 3-cycle access

16 instr./entry, max. 3 blocks
partial matching, no path assoc.

· L1 Instr cache: 4-way, 4KB, 1-cycle access
one basic block per access

· Branch Predictor: 16k entry gshare/bimodal predictor
· BTB 512 entries, 4-way

Execution Core
· Functional unit # Exec. lat. Issue lat.
Load/store 6 1 cycle 1 cycle
Simple Integer 8 1 1
Int. Mul/Div 2 3/20 1/19
Simple FP 4 3 1
FP Mul/Div/Sqrt 1 3/12/24 1/12/24
Branch 4 1 1

· Data Forwarding Latency: 1 cycle
· Register File Latency: 2 cycle

· 128-entry ROB
· 8 reservation station entries per func. unit
· Fetch width: 16
· Decode width: 16
· Issue width: 16
· Execute width: 16
· Retire width: 16

4.2 Performance Analysis

In addition to the baseline at-fetch, post-decode, and
optimistic value predictors, the performance impact of
two variations of a filtered at-fetch predictor is studied.
These results are shown in Figure 2. On average, at-fetch
value prediction outperforms post-decode value predic-
tion. The additional information available after decode
does not help performance enough to overcome the extra
cycles of unhidden value predictor latency. Therefore, we
concentrate on the at-fetch value predictor for the filtering
analysis.

The first filtered value prediction scheme (AF w/read
filt. & serial FC) represents a filter cache and value pre-
dictor that are accessed serially. In this case, the value
prediction incurs three extra cycles of latency to account
for the filter cache. By making better use of the limited
read ports, this value prediction scheme leads to a signifi-
cant improvement in speedup (22.2%) when compared the
unfiltered at-fetch value predictor (16.1%).

The second filtered scheme (AF w/read filt. & LA FC)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

crf gap mcf prl twf vor HarMean

S
pe

ed
up

O
ve

r
B

as
e

w
/N

o
V

P

Post-Decode At-Fetch AF w/rd filt + serial FC AF w/rd filt + LA FC Optimistic

Figure 2: Value Predictor Speedup Comparison

assumes a perfect lookahead filter cache. Therefore, the
value predictor latency consists just of the value predic-
tor table access latency. In this scheme, the value pre-
dictor benefits from a reduced latency and improved read
access efficiency. These advantages are reflected by the
further improved speedup (23.6%). However, the filter-
ing of the lookahead filter cache is not enough to improve
performance to the level of the optimistic value predictor
(33.5%).

The speedup provided using the filters is due to im-
proved efficiency and accuracy. Table 3a presents the port
utilization during value predictor read. This value is the
average number of reads during cycles with read activity.
It includes reads from wrong path instructions and instruc-
tions not eligible for prediction (in the case ofAt-Fetch).

In the optimistic scenario, around six ports are desired
on average for value predictor reads. However,At-Fetch
andPost-Decodeonly average around half of this because
of their restricted ports. This illustrates the need for a
filtering mechanism. When the read filters are applied to
an at-fetch predictor, the read port usage is reduced to 2.89
reads per active cycle.

Not every eligible instruction receives a prediction due
to port restrictions, confidence mechanisms, and read fil-
ters. The percentage of eligible retired instructions that
receive a prediction are shown in Table 3b.Post-Decode
predicts for a higher percentage of instructions thanAt-
Fetch because it does not waste ports on ineligible in-
structions. AF rd filt does not have this problem due to
the instruction type filter but still predicts fewer instruc-
tions thanPost-Decodebecause of the other filters.Op-
timistic performs almost two times the number of predic-
tions asAt-Fetch, which is one reason for its superior per-
formance.

Value prediction accuracies are presented in Table 3c.
The accuracy of value prediction is not significantly af-
fected by the stage in which it is accessed or the presence
of filters. However, overall, the filtered at-fetch predic-
tor has the best prediction accuracy, better than even the



Table 3: Value Prediction Run-Time Characteristics

a. Value Predictor Port Utilization at Read
AF PD AF rd filt Opt.

crafty 3.39 3.34 3.04 6.94
gap 3.29 3.22 2.96 6.35
mcf 3.16 3.11 2.84 5.95
perlbmk 3.26 3.31 3.14 6.84
twolf 3.03 2.97 2.84 6.19
vortex 3.23 2.92 2.53 4.91
average 3.23 3.14 2.89 6.20

b. Predicted Eligible Instruction Percentage
AF PD AF rd filt Opt.

crafty 29.76% 34.13% 32.03% 62.07%
gap 25.99% 29.51% 29.04% 50.52%
mcf 24.12% 28.32% 27.06% 42.01%
perlbmk 36.96% 45.21% 41.15% 78.95%
twolf 15.15% 17.03% 17.64% 31.33%
vortex 26.30% 34.23% 29.59% 58.17%
average 26.38% 31.41% 29.42% 53.84%

c. Value Predictor Accuracy
AF PD AF rd filt Opt.

crafty 94.51% 94.47% 95.21% 94.14%
gap 94.37% 93.77% 96.76% 95.87%
mcf 97.51% 97.64% 97.64% 97.19%
perlbmk 99.95% 99.91% 99.94% 99.96%
twolf 85.84% 86.56% 92.57% 91.44%
vortex 96.12% 96.26% 97.72% 97.29%
average 94.72% 94.70% 96.60% 95.98%

AF: Baseline at-fetch predictor.PD: Baseline post-decode predictor.AF rd filt:
At-fetch predictor with read filtering.Opt.: Optimistic predictor.

optimistic predictor.
Figure 3 separates the contributions from the different

filters. All of the filters reduce the number of instruc-
tion eligible to read from the value predictor. However,
as this figure illustrates, that is not always enough to im-
prove performance significantly. No single filter improve
performance significantly, and theuselessfilter actually
leads to lower average performance in isolation (also seen
by Rychlik et al. [19]).

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

crf gap mcf prl twf vor HarMean

S
pe

ed
up

O
ve

r
B

as
e

w
/N

o
V

P

At-Fetch w/useless w/quick w/I-type w/mispred w/all

Figure 3: Individual Read Filter Isolated Contributions

The only filter that provides an improvement for every
benchmark is the instruction type filter (i-type). While
other filters may remove potentially useful instructions,
the i-type filter only isolates instructions that are not eli-

gible for value prediction. Overall, the best isolated filter
scheme is themispredfilter, which prevents commonly
mispredicted instructions from proving the value predic-
tor for a prediction. Finally, the figure also shows that
combining all of the filters provides a synergistic speedup
improvement.

Table 4 presents the percentage of all prediction-
eligible instructions that are filtered at read due to the use-
less, mispredict,and quick filters (% filtered). This value
ranges widely from about one-third of the eligible instruc-
tions in perlbmkto more than two-thirds intwolf. The
remaining rows breakdown these filtered instructions into
groups based on which read filter (not including the in-
struction type filter) is responsible for restricting instruc-
tion port access at read. By far, the mispredict filter is the
best filter at identifying instructions that other filters do
not (% mispred filt). The quick filter is also very adept at
finding unique instructions to filter in most benchmarks.
However, the useless filter does not find many unique in-
structions to filter. Around one-fourth of the instructions
are filtered by more than one filter (% two filtsand% three
filts).

Table 4: Breakdown of Dynamic Value Predictor Filtering
crf gap mcf prl twf vor

% filtered 44.67 54.79 63.46 37.19 67.93 55.43

% useless filt 0.59 0.75 0.44 2.79 0.25 0.82
% mispred filt 57.27 65.45 58.63 46.25 80.40 45.84
% quick filt 28.31 18.34 15.81 44.65 8.50 27.81
% two filts 12.78 13.19 23.92 6.21 9.86 23.13
% three filts 1.05 2.27 1.20 0.10 0.99 2.40

% filteredis the percentage of value prediction eligible instructions that are filtered
at read (including wrong-path instructions). The remaining rows are a percentage
of all filtered instructions.

4.3 Energy Analysis

This section evaluates the dynamic energy consumption
for the presented value predictors. The read and write fil-
ters reduce the amount of port activity, which is directly
related to value predictor energy consumption.

The read and write activity of two value predictors are
presented in Figure 4. The at-fetch value predictors per-
forms both read and write filtering. A load-only post-
decode value predictor is also analyzed. Load instructions
provide a large percentage of value prediction speedup
and a natural means of filtering. Therefore, a load-only
predictor is believed to be an energy-efficient value pre-
dictor, and is presented for comparison purposes. The
load-only value predictor is configured like the baseline
post-decode value predictor.

The read port activity decreases by an average of 31.3%
when filters are applied to the baseline at-fetch predictor.
The decrease is due to the filtering of instructions, but
each filtered instruction does not necessarily lead to one
less access. Sometimes when an instruction is filtered,



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

crf gap mcf prl twf vor all

N
or

m
al

iz
ed

P
or

tA
ct

iv
ity

AF w/filt Read Ld-only Read AF w/filt Write Ld-only Write

Figure 4: Normalized Port Activity
The activity is normalized to that of the baseline at-fetch predictor.

another instruction that did not previously get read access,
takes its place.

The write port activity decreases by an average of
78.6% for the baseline at-fetch predictor. The program
twolf has the largest decrease in write activity. This is
attributed to the fact that it has the largest percentage of
eligible instructions that are not predicted as well as the
highest mispredction rate. Recall that the write filter pre-
vents instructions that did not read the value predictor
from writing the value predictor. Therefore, an instruc-
tion can be denied access to the value predictor because
of its instruction type, dynamic prediction characteristic
(e.g. mispredictions), or port utilization.

The load-only value predictor has a small decrease in
read activity. In one case, the activity actually increases
versus the baseline at-fetch predictor. This value is de-
pendent upon the percentage of load instructions in the
programs. However, the load-only predictor reduces write
activity significantly since only one instruction type is up-
dating.

To model value predictor energy consumption, an ana-
lytical cache modeling tool [17] provides the energy con-
sumed per read access (writes are assumed to consume as
much energy as reads). The energy comparisons are then
based on combining these energy per access values with
the table activity. Relevant data structures, their config-
uration, and the energy per port access are presented in
Table 5. One important thing to note is the energy effi-
ciency of the filter cache and trace cache compared to the
hybrid value predictor tables.

The energy consumed by the hybrid value predictor ta-
bles is simply the product of the read and write activity
and the energy per access. The filter cache is read each
time the value predictor is read, and written only on trace
cache writes.

Without embedded filtering data, the trace cache is only
written when a unique instruction trace is constructed.
With filter data, the trace cache entries are larger and the

Table 5: Energy Per Port Access
Structure Entries Ports Assoc Data Energy
LastVP/StrideVP 8192 4 1 8 B 5.80 nJ
Context VP 1024 4 1 8 B 2.26 nJ
Filter Cache 1024 1 2 8 B 0.69 nJ
Basic TC 1024 1 2 64 B 1.00 nJ
TC Filt. Data 1024 1 2 16 B 0.09 nJ

The energy per port access (Energy) is obtained using Cacti 2.0 [17]. Cacti
allows two read/write ports to be modeled. We model the first two ports this
way, and the other ports as one read port and one write port.Data is the
number of bytes of data per entry. The energy per access forTC Filt. Data is
the additional energy per trace cache access due to the filter data stored in the
trace cache.

trace cache is written on on each trace construction. This
extra energy is included in the analysis.

The results of the energy evaluation are shown in Fig-
ure 5. The reduction in energy consumption due to just
the read filters (AF rd filt) is 13.7% on average. When the
write filtering technique is applied, then the energy con-
sumption is reduced by 52.6%. This more impressive re-
duction occurs because the value predictor updates are not
filtered by port restrictions, like predictor reads. There-
fore, every instruction that is identified for write filtering
contributes to a reduction in energy. The load-only value
predictor falls in between with a 29.4% energy reduction.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

crf gap mcf prl twf vor all

N
or

m
al

iz
ed

E
ne

rg
y

C
on

su
m

pt
io

n

AF rd filt AF rd+wr filt Ld-only

Figure 5: Normalized Value Predictor Energy Consump-
tion

The energy is normalized to that of the baseline at-fetch predictor.

The final piece to this analysis is the performance im-
pact of write filtering (shown in Figure 6). On average,
write filtering reduces performance by eliminating pos-
sibly useful predictor updates. In this case, the speedup
due to read-filtered at-fetch prediction drops from 23.6%
to 14.8%. However, this is still superior to the 13.1%
speedup from load-only value prediction.

5 Summary

In this work, the impact of value predictor filtering is
examined. Value prediction is studied in a high-frequency,
wide-issue environment where a high-performance at-



1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

crf gap mcf prl twf vor HarMean

S
pe

ed
up

O
ve

r
B

as
e

w
/N

o
V

P

AF rd filt AF rd+wr filt Load-only

Figure 6: Performance Impact of Write Filtering
The At-Fetch predictor uses the ideal lookahead filter cache.

fetch value predictor is modeled with an extended access
latency as well as other realistic design constraints. Vari-
ous filtering techniques are applied to increase the effec-
tiveness and performance of the value predictor while re-
ducing both the dynamic read and write activity.

Value predictor reads are filtered based on identifying
instructions that are eligible for value prediction, execute
quickly, do not produce a consumed value, and mispredict
frequently. Incorporating the read filters into an at-fetch
value predictor improves execution speedup from 16.1%
to 23.6%. At the same time, read activity is reduced by
31.3%. When value predictor writes are filtered based on
their read status, the write activity is reduced by 78.6% on
average. This large decrease in activity leads to a 52.6%
reduction in overall dynamic energy consumed by a value
predictor, but is accompanied by a degradation in perfor-
mance.

These results encourage the notion that high-
performance and energy-conscious at-fetch value
prediction is possible in a high-frequency, wide-issue
environment.

Acknowledgments Thanks to the reviewers for their in-
sight and helpful suggestions. This research is partially
supported by the National Science Foundation under grant
number 0113105, and by AMD, Intel, IBM, Tivoli and
Microsoft Corporations.

References
[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock

rate versus IPC: The end of the road for conventional microarchi-
tectures. In27th International Symposium on Computer Architec-
ture, pages 248–259, Jun 2000.

[2] R. Bhargava and L. K. John. Latency and energy aware value pre-
diction for high-frequency processors. In16th International Con-
ference on Supercomputing, pages 45–56, June 2002.

[3] R. Bhargava and L. K. John. Improving dynamic cluster assign-
ment for clustered trace cache processors. In30th International
Symposium on Computer Architecture, June 2003.

[4] M. Bohr. Silicon trends and limits for advanced microprocessors.
Communications of the ACM, 41(3):80–87, March 1998.

[5] D. Burger, T. Austin, and S. Bennett. Evaluating future micropro-
cessors: The simplescalar tool set. Technical report, University of
Wisconsin, Madison, WI, 1997.

[6] M. Burtscher, A. Diwan, and M. Hauswirth. Static load classifi-
cation for improving the value predictability of data cache misses.
In Conference on Programming Language Design and Implemen-
tation, pages 222–233, June 2002.

[7] B. Calder, G. Reinman, and D. M. Tullsen. Selective value predic-
tion. In 25th International Symposium on Computer Architecture,
pages 64–74, May 1999.

[8] R. J. Eickemeyer and S. Vassiliadis. A load-instruction unit for
pipelined processors.IBM Journal of Researh and Development,
1993.

[9] B. Fields, S. Rubin, and R. Bodik. Focusing processor policies
via critical-path prediction. In28th International Symposium on
Computer Architecture, pages 74–85, Jul 2001.

[10] F. Gabbay and A. Mendelson. Speculative execution based on
value prediction. Technical Report 1080, Technion - Israel Institute
of Technology, Nov 1996.

[11] F. Gabbay and A. Mendelson. The effect of instruction fetch band-
width on value prediction. In25th International Symposium on
Computer Architecture, pages 272–281, June 1998.

[12] J. Gonzalez and A. Gonzalez. The potential of data value specula-
tion to boost ILP. InInternational Conference on Supercomputing,
pages 21–28, Jul 1998.

[13] A. KleinOsowski and D. Lilja. MinneSPEC: A new SPEC bench-
mark workload for simulation-based computer architecture re-
search.Computer Architecture Letters, 1, June 2002.

[14] S. Lee, Y. Wang, and P. Yew. Decoupled value prediction on trace
processors. In6th International Symposium on High Performance
Computer Architecture, pages 231–240, Jan 2000.

[15] M. H. Lipasti and J. P. Shen. Exceeding the dataflow limit via
value prediction. In29th International Symposium on Microarchi-
tectures, pages 226–237, Dec 1996.

[16] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality
and load value prediction. In7th International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems, pages 138–147, Oct 1996.

[17] G. Reinman and N. Jouppi. An integrated cache timing and power
model, 1999. COMPAQ Western Research Lab.

[18] B. Rychlik, J. Faistl, B. Krug, and J. P.Shen. Efficacy and per-
formance impact of value prediction. InInternational Conference
on Parallel Architectures and Compilation Techniques, pages 148–
154, Oct 1998.

[19] B. Rychlik, J. W. Faistl, B. P. Krug, A. Y. Kurland, J. J. Sung,
M. N. Velev, and J. P. Shen. Efficient and accurate value prediction
using dynamic classification. Technical report, Carnegie Mellon
University, 1998.

[20] Y. Sazeides and J. E. Smith. The predictability of data values. In
30th International Symposium on Microarchitecture, pages 248–
258, Dec 1997.

[21] Semiconductor Industry Association. The national technology
roadmap for semiconductors, 1999.

[22] E. Tune, D. Liang, D. M. Tullsen, and B. Calder. Dynamic predic-
tion of critical path instructions. In7th International Symposium
on High Performance Computer Architecture, Jan 2001.

[23] K. Wang and M. Franklin. Highly accurate data value prediction
using hybrid predictors. In30th International Symposium on Mi-
croarchitecture, pages 281–290, Dec 1997.


