International Journal of Inventive Engineering and Sciences (IJIES)

ISSN: 2319-9598, Volume-3 Issue-9, August 2015

Survey of Imperative and Object Oriented Quantum
Computer Programming Languages

Vivek Kumar, Anuranjan Misra

Abstract - In the academic world a variety of langyes are
studied and used. But with the exception of a few agations,
most languages utilized for commercial applicatioase written
in imperative and object oriented languages. A pattilist of
these languages includes many that would be familiar any
commercial developer: Visual Basic, C#, Java, Pythémrtran,
Cobol, and so on. For the power of a quantum computerbe
utilized economically in commercial applications, he
programming must be easy for existing commerciavd®pers to
learn and utilize. This is best done by piggy baukioff of the
languages and techniques they are already familiaith- this
means that successful quantum languages for exigtin
commercial developers will likely be related to on& more of
these languages, or quantum frameworks (librarie)r fthese
languages. It should be pointed out that the poputa of
languages changes with time, so as new languages camm
popularity their potential for quantum computing ab needs to
be kept in mind. Many of today’'s popular languagegere not
designed to easily take advantages of multiple eorer
processors. Consequently it is quite feasible thtiten languages
that take advantage of these parallel processingatailities will
rise in popularity in the near future and be excefit candidates
extending to carry out quantum computing.

Keywords:- C#, Java, Python, Fortran, Cobol, Visughsic,
libraries

. INTRODUCTION

Quantum computers have the potential for solvingage

types of problems much faster than classical coemput
Speed and efficiency are gained because quantscéit
be placed in superposition’s of one and zero, goegd to
classical bits, which are either one or zero. Meeepthe

logic behind the coherent nature of quantum infdiona
processing often deviates from intuitive reasoniegding

to some surprising effects.

II. Different Approach (s)

The structure of quantum programming languagesermdiff
from existing classical languages in that the ktiitn must
be enforced. Depending on the proposed approaéiande
of these limitations may be caught at compile tonet run
time. The quantum languages typically include stetets

(a) Knill Approach

Knill has introduced pseudo code conventions. Hisuplo
code is based on imperative program techniquesijt as
utilizes variables and flow control statements Hase that
methodology. Within his paper he also provides save
elementary examples of the use of his proposeddpseu
code. As mentioned previously, the importance ofllisn
paper lies not necessarily in the proposed pseudtte c
conventions, but in the use of his quantum randooess
machine model (QRAM). While Knill's work is an
important step forward, pseudo code it has littte dor
writing actual applications. Even though, it istapsin the
right direction.

a + MEASUREDFOURIER(g, d)

Input: A quantum register g with d qubits. The most significant qubit

has index d - 1.

Qutput: The amplitudes of a are Fourier transformed over Zyq, and then
measured. The most significant bit in the output has index 0, that is the
ordering is reversed. The input quantum register is returned to a classical
state in the process.

w & el
g0
fori=d-1toi=0
Rola)
Ho)
0 &0
d (¢ +am)/2
C: The expression on the right of this assignment state-
ment requires a; to be in a classical state as it involves
operations not allowed for quantum registers.
Figurel. Measured Fourier transform utilizing Knill ’s
pseudo code
(b) Sanders and Zuliani Approach

Sanders and Zuliani developed the programming lagegu

for initializing the quantum state of the systemgGCL as a means to express quantum algorithms. The

manipulating it through (unary) operations, andalfiyn

measurement. When Knil's QRAM approach is utilize

these are frequently additions to some existingsital
programming techniques.

Revised Version Manuscript Received on August 20025.

Mr. Vivek Kumar, M.Tech Student, Department of Electronics andThus qGCL

Communication, Noida International University, Dieldational Capital
Region Noida, India.

Dr. Anuranjan Misra, Professor & Head, Department of Computer

Science and Engineering, Noida International Ursiter Delhi National
Capital Region Noida, India.

32

£rimary purpose of the language is for programwaion,

orrectness of proof, and teaching. As the autponst out,
gGCL does not aim to do numerical simulations cirqum
algorithms like Omer's QCL, which will be covereatdr.
Within the paper they first describe a probabtigtktension
to Dijsktra’s guarded command language (GCL), whigy
appropriately call pGCL. They then extend pGCLreoke
quantum procedures and call the resulting langugsEL.
is like many other proposed quantum
programming techniques where the computation is
controlled by a classical computer utilizing a cuam sub
system. The three quantum procedures they outlm: a
place emphasis on are fundamental to any systernjirogr

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Survey of Imperative and Object Oriented Quantum Caenputer Programming Languages

out quantum computation: initialization, evolutiomand
finalization (or observation). They also
implementations of several quantum algorithms, udicig
Shor’s and Grover’s. Since GCL was proposed irb18and
gGCL is an augmentation to it, gGCL may be too tiahi
and dated to construct commercial applicationse IKkill's

language. It is important to note that some langaaguch

provideas Python, are evolving iteratively through opemrse

methods as opposed to large standards developedaove
period of years as is the case with C and C++. Gas
developed in 1984, but the standard was not apdrawngl
1998 enough time for processors to double in spesen

pseudo code, qGCL also suffers from a very mathealat times in accordance with Moore’s law. Additionalthere

syntax- something that is harder for

commerciahave been over 8,500 programming languages dewklope

programmers to understand and even type. As theomut yet only a select few of these are actually usethdiistry-

point out though, this simplicity makes it an effee tool
for teaching the basics of quantum programming.

var t: B, 0,d,p:0..(n+1) e
bi=(9

do <t —
0:€2..n3
d:= ged(a,n) §
fd#l — t:=1
1 d=1 = Qo3
ifpodd — t:=1
| peven —
d:= ged (P -1, n) U ged (a?*+1,m) §
bi=(d#1)
fi
fi
od
Figure 2. Shor’s algorithm in Sanders and Zuliani’'sq
GCL [51]

(c) Bettelli Approach

Bettelli has developed a preliminary extension @+, in
the form of a library, for quantum computer prognaimg.
This library exposes several classes that can ibeedt for

further strengthening the argument for creatingesions of
existing languages instead of new languages. Battabrk

is the most useful to existing programmers bec&iseis a
widely used language and only the library needsbéo
learned, not an entire new language. As new laregiage
developed and speed and efficiency of a languag@atras
important due to increased computing power, C+mse®
be declining in popularity.

Gbitset run_Grover(bool(xf)(int), int n) {
int repetitions = sqrt(pow(2.0,n));
Qop phase_oracle(f,n);
Qop invert_zero(f_0,n);
Qop mixer = (Hadamard(n);
Qop invert_mean = mixer & invert_zero & mixer;
Qop grover_step = phase_oracle & invert_nean;
Qreg input(n);
nixer (input) ;
for (int 1=0; i<repetitions; ++1) grover_step(input);
return input.neasure();

Figure 1. Grover’s algorithm in Bettelli's C++ extension

(32]
Over a period of six years, 1998 — 2004, Omer has
developed what is arguably the most complete quantu

quantum computation. The use of classes provides tRrogramming language to date: Quantum Computation

important benefit of encapsulating the workings thé
library and hiding them from users. Furthermoreliken

Language, or QCL. QCL is a language that has atsimel
similar to C, making it easy to learn for many pagmers

some procedural implementations, rules can be retteecause C and its decedents such as C++, C#, sacda

enforced and valid states maintained through the afs
classes. Bettelli's implementation also generateantum
operations, and these byte codes could be pipad axrtual
guantum sub system or a simulator. While the ljorarin a
preliminary form, Bettelli's paper also containslist of

popular languages. However this strength of ba€i@d. on
C is also part of its downfall. C is still used flow level
applications such as drivers, but not for cuttindge
commercial software. As a result, QCL does not haaay
of the features available in modern languages. 8nda

features desirable for a scalable quantum progragmipProprietary language QCL would be difficult to atapthe

language. One of the most important of these pdsnisat a
guantum programming language should be an extengian
classical language. Extensions can take a variefgrms:

class libraries, dynamically linked libraries, aaskemblies
to name a few. Not only does extending a classicejuage
make it easier for existing programmers to utilig@ntum
features, but it also helps to keep the libraryfulsas the
language surrounding it evolves to tackle clasgicablems.
Thus the author of the quantum extention can foous
tackling only those issues that apply to quantumpmating

instead of all issues as must be done with a petasi

33

real world for many programmers writing applicagogince
it does not have the power and libraries availablsodern
languages. Omer has also created a complete sonditat
QCL programs, including an interpreter. Having an
interpreter for QCL allows for students of the laage to
create and see how code behaves in real timebémefit to
all studying quantum computing, Omer has also ntade
source code of the interpreter available. Whileittodusion
of the interpreter and source code makes QCL ustfal
fact that it is a new language does present aracdlesto
those wishing to learn quantum computer programnisg

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

International Journal of Inventive Engineering and Sciences (IJIES)

with all new languages, it also makes it hardemtegrate
guantum algorithms into existing code bases.

/% Define Oracle */

const coini=(randon()>=0.5); // Define two random boolean

const coin2=(random()>=0.5); /| constants

boolean g(boolean x) { // Oracle function g

if coint { /] coinl=true -> g is constant
return coin?;
}else { // coinl=false -> g is balanced
return X xor coinl;
1
}

qufunct G(queonst x,quvoid y) { // Construct oracle op. G from g
if g(false) xor g(true) { CNot(y,x); }
if gfalse) { Not(y); }

}

/* Deutsch’s Algorithn */

operator Uqureg x,qureg y) { // Bundle all unitary operations

H(x); {{ of the algorithn into one
G(x,y); {{ operator U
Hx & y);
}
procedure deutsch() { /{ (lassical control structure
qureg x[1]; /[allocate 2 qubits
qureg y([1];
int n;
{ // evaluation loop
reset; /! initialize machine state
U(x,y); /[do witary computation
measure y,m; /] measure Ind register
b until me=t; {/ value in ist register valid?
1easure X,I; /{ neasure 1st register which
print "g(0) xor g(1) =",m; /I contains g(0) xor g(1)
reset; // clean up
%:igure4. Deutsch’s algorithm expressed in Omer’s QC
[58]

(d) Blaha Approach

Blaha has introduced a quantum assembly languade 3fultiple processes within Python

ISSN: 2319-9598, Volume-3 Issue-9, August 2015

there isn't much of an explanation of how it worbdher
than defining the algebraic representation of tléntpr
operations. It is also interesting to note thathBlavas able
to obtain trademarks for what would seem to be gene
terms in the field of quantum computing, including
“Probabilistic Grammar”, “Quantum Grammar”, and
“Quantum Assembly Language”. Like Bettelli's work,
Blaha's use of C makes the approach very viablavdver,
without further details it is hard to gauge howyedss to
actually use.

(e) Markus Approach

Markus has devised a method to simulate quantum
computing using Fortran. While not a true languamge
framework in itself, it is worth noting becauseis an
example of how such a library would work. Currerdlyy
quantum computing language or library must simutate
quantum system since quantum computers are curentl
unavailable for use in programming. Many languages
derived from Fortran, so Markus's paper gives adjoo
insight on how to actually accomplish that for aiety of
languages. Included in the paper is the full sowode
listing for the simulation, along with debuggingteiments.

It is also notable that Fortran has been used parallel
programming language in the Fortran-K implementatio
which is a subset of Fortran-90. Nonetheless, muodern
languages such as Fotress could also be used tdagm
quantum computing and be more accessible. Provitfiag
source code is invaluable for others developingntua
libraries as it provides a source of solutions fooblems
that may arise during implementation, and thislieaefit of
the work Markus has done.

(f) Carini Approach

Carini has developed a method to simulate qubitsyuhe
programming language Ruby. Like Markus's Fortran
simulation, even though it is not a language om&work it

is noteworthy due to the implementation techniques.
Carini’'s implementation involves simulating thetstaof a
qubit on separate threads, although she admittediyinto
some scheduling issues. This is another importesig it for
the simulator of any proposed language or framewtr&
simulation should take advantage of today’s muliggssor
systems. Doing so increases efficiency of the satrau, but
presents challenges of its own through the need to
implement parallel processing techniques. In paldicthis
presents a problem for any framework or languagit bu
upon the Python programming language due to thbaglo
interpreter lock. While Python is a concise andyets
program in language, only one thread within a psecean
access Python objects at a time . This means tieatwith a
multiprocessor system, multithreaded Python program
cannot take full advantage of it as they effectivete one
processsor. The work around for this is to implemen
instead of mudtipl

quantum C language. In his two language propos®s tihreads. Even with this difficulty Python is stll good

languages themselves are algebraic in nature, which

argues allows for better understanding of the lagguand
proof of correctness if necessary. Within Blaha'srkv
however, less than one page is dedicated to histgomC

language, and most of that involves an explanatién

pointers in C. So while he proposes a quantum Guage,

34

candidate for building a quantum computing frameam.
Python is platform independent, like Java, so imigates
the need to port to different systems. Unlike Jéneaugh, it

is an interpreted language, which allows for one to
dynamically interact with the system like Omer’s IQC

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Survey of Imperative and Object Oriented Quantum Caenputer Programming Languages

(g) Svore Approach oriented approach, none of them is equivalent tatitizes
the more wide spread modern programming languaggs s
as C#, Visual Basic, Java, or Python. The lack gfi@ntum
computing framework for any of these languages mmake
tquantum computer programming less accessible to the
average commercial developer. Just as importaability
has also been neglected. So while the languages and
gbraries presented could be used, the fact they Hre not
similar to or use modern languages representsrafisant
hurdle to their use by practicing commercial depels. The
{gct that modern languages are not utilized forntua
computer programming and usability has been largely
ignored represents an excellent candidate for viorkhe
field of quantum computer programming.

Svore and colleagues have developed a suite af foouse
in quantum computation . These tools include a uage,
compiler, optimizer, simulator, and layout tools. key
feature to the language, as others have pointedasu
necessary, is that it is machine independent. Factigal
purposes quantum computers are not yet a reabtygny
proposal for programming them must be independédnt
whatever solution is used to realize them. Withigirt paper
they also propose translating their high level lsagg into a
guantum intermediate language (QIR) which then ge
translated into a quantum assembly language (QASNt,
finally a physical language (QCPOL). This is apmtoas
the similar to many modern day classical languageswith
many other quantum programming proposals, this alse
makes use of Knil's QRAM model. Another key toeth REFERENCES

proposal is that quantum error correction be imgleted on 1. T. J. Bergin, "A History of the History of Prograrmg Languages,”

i : : Communications. ACM, vol. 50, p. 5, May 2007 2007.
a lower level and not within the higher level laage itself. 2. E. Knill, "Conventions for Quantum Pseudocode.” Lagmos

This higher level abstraction is akin to how modelay National Laboratory LAUR-96-2724, 1996.
programmers are not concerned with error correatithin 3. D. Deutsch, "Quantum theory, the Church-Turing ggle and the
RAM or through a network connection. While the mse universal quantum computer,” Proceedings of theaR8pciety of

. .. London, vol. A, pp. 97-117, 1985.
of the various languages and transitions betweemtlre 4 G, Fairbanks, D. Garlan, and W. Scherlis, "Desigrgrents make

described, the work does not actually include djpations using frameworks easier," in Proceedings of thet Zbsual ACM
for the Ianguages themselves. As such, the Ianguage SIGPLAN conference on Object-oriented programmingtesns,

. . . languages, and applications Portland, Oregon, W&, 2006.
themselves remain an open prOblem asis pomtedltcmhte 5. W. E. Halal, "Technology’s Promise: Expert Knowledgn the

end of the paper as an important challenge. Transformation of Business and Society," 2007.
h . h 6. P. Strathern, The Big Idea: Turing and the Computeed. New
() Tucci Approac York, NY: Doubleday, 1997.

. . : Turing, "On Computable Numbers, with an ApplicattorEntscheid-
Tucci has developed quantum compiler that compsteps ungsproblem.” Proc. London Math Society, vol. 4@, 30-265,

of an algorithm into a sequence of elementary daTs . 1936.
The implementation of his compiler pr0p05a| is @all Burda, Introduction to Quantum Computation, 1 edc&Raton, FL:

“ P : ; Universal Publishers, 2005.
QUblter ! _fOI’ WhICh_ he has made _the source CO‘?'@” . M. Hivensalo, Quantum Computing, 2 ed. Berlin: 8gdr, 2004.
freely available. While still in a basic state @&dumits and 10. E. w. Dijkstra, "Guarded commands, nondeterminacg &rmal

lacking a GUI it is still a valuable learning tdmkcause the derivation of programs,” Commun. ACM, vol. 18, @53-457, 1975.
source code is available. Notable about his cenpsl that 11- B: Cannon, "Guido, Some Guys, and a Mailing ListvHPython is
. . Lo L Developed." vol. 2007: Python.org, 2007.

It W_'” also per_for_m _0pt|m|zat|0n3- These insight®e 15 R w. Sebesta, Concepts of Programming Languages, Boston,
provides on optimization would be useful for anyheot MA: Addison-Wesley, 2002.

uantum rogrammin system in order to increask: NCITS, "International Standard 14882 - Programmirnguage
q prog 9 y C++." vol. 2007: International Committe for Infortman Technology

©

efficiency. Tucci also received a patent for theais that Standards, 1998.
ubiter represent In . 14. B. Omer, "A Procedural Formalism for Quantum Conmmt in
Qubi in 2002
Theoretical Physics. vol. Masters Vienna: Technigdaiversity of
Viena, 1998, p. 93.
ROTY 3 4 5 . 'D 'D D 'C' D '::| '::| 15. B. Omer, "Procedural Quantum Programming,” AIP @osrice
Proceedings, vol. 627, pp. 276-285, 2001.
RDTY 2 4 5 . {:I {:I D' 'C' D' '::' '::' 16. B. Omer, "Structured Quantum Programming,” in Infation
RDTY l 4 5 O O I:]I O I:]I {:I {:I Systems. vol. Ph.D. Vienna: Technical Universitywadnna, 2003, p.
. 130.
17. B. Omer, "Classical Concepts in Quantum Programrhiimgernation
CPHA 1T 1E80.000000 Journal of Theoretical Physics, vol. 44, pp. 948;Gly 2005 2004.
18. B. Omer, "QCL - A Programming Language for Quantdamputers:
C PH.,_."'_"EL 2 T l 8 {:] {:| .::| |::| .::| |::| .::l Source and Binaries,” 0.6.3 ed. vol. 2007: OmernBard, 2006, p.
* Source and binary downloads of the QCL interpreter.
19. S. Blaha, "Quantum Computers and Quantum Compwegulages:
C PHA 3 T l 8 {:I " {:I l::l D l::l D l::l Quantum Assembly Language and Quantum C Languag€dsmos
RDTY ':' 4 5 ':l ':] D' ":' D' ':' ':' and Consciousness, 1 ed: Janus Associates In@, R0R92.

CPHA O T 180.000000

Figure 2. Output of Tucci’'s Qubitter for the input 4 bit
Hadamard matrix, which is also known as Hardamard-
Walsh transform.

IlIl. Conclusion

While there has been a small variety of quantumpgdimng
programming proposals utilizing the imperative djeat

é"”kﬁm Cog
&
Published By: iQLJIES
35 Blue Eyes Intelligence Engineering ’@%

& Sciences Publication Pvt. Ltd.

