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ABSTRACT

Lattice segmentation procedures are used to spot possiagmi-
tion errors in first-pass recognition hypotheses produgeallarge
vocabulary continuous speech recognition system. Thisoagh
is analyzed in terms of its ability to reliably identify, apdovide
good alternatives for, incorrectly hypothesized words. rAcg-
dure is described to train and apply Support Vector Machtoes

strengthen the first pass system where it was found to be weak,

resulting in small but statistically significant recogaitiimprove-
ments on a large test set of conversational speech.

1. INTRODUCTION

Acoustic Code-breaking is a divide-and-conquer approadhut
tomatic Speech Recognition (ASR). The process starts lyzana
ing word lattices generated by a good ASR system to pick out
‘regions of uncertainty’. These are portions of the latt{sab-
lattices) where the first-pass ASR system is less than neataiut

the words in its primary hypothesis (also referred to as thePM
lattice path). Moreover, these sublattices contain wondigdarases
which can be considered as likely alternatives to the prmhgr
pothesis. The original acoustic model (or language modetgiak

without having to distinguish between ‘A’ and ‘8’. Withoute re-
finement of the first-pass hypotheses, such a simple choiatwo
never occur in large vocabulary continuous speech redognit

Specialized HMMs can be trained to solve the problems iden-
tified by code-breaking [4], however the approach can algid@m
novel classifiers, such as Support Vector Machines (SVMs},[5
7, 8], to resolve acoustic confusion identified by the firasgpde-
coder.

SVMs are essentially binary pattern classifiers, and tohesat
in this context, we restrict the regions of confusion to bedvo
pairs, calledconfusion pairs. This approach of using SVMs has
been demonstrated and validated on small vocabulary,ramnis
speech recognition tasks [9, 10]. In this paper we demdestine
code-breaking is a general approach through which powbrful
simple classifiers can be incorporated into large vocapsipeech
recognition systems.

All the steps in code-breaking become more challenging in a
large vocabulary recognition task. If we select a confugiain to
be ‘fixed’, we need to be fairly confident that (a) the MAP hypot
esis is actually wrong in that pair, and that (b) the otherdtlypsis
is actually the truth. While we have found that both thesedssre
manageable in small vocabulary tasks, in large vocabubskst
we face sparsity issues due to the diversity of word confissio

over these regions in that the system was unable to pick a clea that arise; it may be difficult to ensure the presence of thentr

winner from among the competing hypotheses; these stibdatt
essentially define sub-problems that remain after the fsbg-
nition pass. The idea behind acoustic code-breaking istazlat
these problems using special-purpose models trainedfispdgi
to find the truth in these sets of competing hypotheses.

This approach is motivated by several considerations. Even

powerful discriminative training procedures such as MMl
address all errors uniformly well. It is possible, for exdeagor
MMI to improve the overall word error rate even while perfor-
mance over some individual error-types actually degrade?][
Code-breaking is a way to avoid that problem (see also [3]).
Another consideration is that different word recognitionkp
lems require different types of decisions. The first-passisiic
model has littlea priori knowledge about the speech to be recog-
nized, and so it must be capable of choosing between (sagh®\
‘8" and also ‘A’ and 'J'. Code-breaking makes it possible &ela
specialized decoder capable of distinguishing betweear® ‘J’
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in a confusion pair. We will study the degree to which we can
ensure (a) and (b). To demonstrate that the overall appiedeh-
sible, we will show that we can employ SVMs to reduce erragsat
within the confusion pairs so as to produce statisticatiyicant
improvements relative to the baseline MMI ASR system.

2. UNSUPERVISED IDENTIFICATION OF ASR
SUBPROBLEMSVIA LATTICE PINCHING

Lattice segmentation converts a first-pass lattice intocmesece
of smaller sub-lattices through a Levenshtein alignmenhefiat-
tice to a reference path [11]. Here, test set lattices (Fig) hre
aligned to the primary hypothesis so that word sequencestiie
lattice are aligned with words in the primary hypothesig(Hi b).
In Period-1 lattice cutting [11], all competing paths ardlajsed
with respect to a single word in the reference path. This yced
segment sets, which are groups of substrings from the lattice iden-
tified as alternatives to words in the primary hypothesig.(Ej c).
Note that no lattice paths are discarded yet. In fact, neticéat
paths are usually introduced; the oracle Lattice Error RaER)
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Fig. 1. Lattice Segmentatiora: First-pass lattice with MAP path

in bold; b: Alignment of the lattice to the MAP path under the
Levenshtein distance; the link labels give the word hypsitheeg-
ment index, edit operation, and its alignment cost)Collapsed
segment setg]: Refined Search Space consisting of binary seg-
ment sets. Word hypotheses are tagged so specialized nuagtels
be used in lattice rescoring: The truth.

of the lattice in Fig. 1, c is typically much lower than thattbg
original lattice in Fig. 1, a.

Pruning Avg. # Hyps. / Segment Sets

Threshold| LER | Segment Set| Types | Tokens
0.00 27.3 11.65 94029 | 1393099
0.05 35.3 2.82 49837 | 212852
0.10 37.9 2.35 35278 | 134252
0.20 41.1 2.06 17132 | 63267
0.30 43.2 2.00 7288 26913
0.40 447 2.00 2249 7930
0.50 45.6 - 0 0

Table 1. Lattice Pinching and LER. The average number of hy-
potheses per segment set, number of distinct segment sdtg)-a
tal number of segment sets after posterior-based prunihgesh-
old 0.0 corresponds to Fig. 1 ¢ with NULL hypotheses discdrde

ized into 39-dimensional, MFCC coefficients, with delta awd
celeration coefficients. The AT&T Large Vocabulary Decodes
used to generate lattices over the training and test sefisantii-
gram language model based on a 83000 word vocabulary. éattic
based MMI [13, 1] was then performed. The test set consisted o
approx. 8400 utterances spoken by ten held-out speakeystap
25 hours of speech). Unsupervised MLLR transforms for edch o
the test-set speakers were estimated on a 1000 utterarsxt sfib
the test set. The baseline system produced a test setdattitie
WER of 45.6% and 22.3% LER.

We first analyze the change in oracle Lattice Error Rate that
results from pinching the test set lattices. Table 1 showatdrs-
carding the NULL hypotheses from the segmented latticeth-wi
out any pruning, increases the LER to 27.3%. If we were to pro-
cess these lattices with special-purpose classifierss tassifiers
would need to be able to distinguish between 11.65 hyposhese
on average, and if these classifiers were to perform peyfehty

Some of the segment sets can contain NULL links. These areWould lower the WER from 45.6% to 27.3%. Since we wish to ap-

contributed by lattice paths that are shorter than theeafss. The
presence of a NULL requires answering the question “Shddd t
word in the primary hypothesis be deleted?”. Since the MAP hy
pothesis could easily contain a wrongly inserted word oapér
this is clearly a problem of interest and specialized detsatould

be built to attack it. But in this paper we ignore this probléie
simply discard the NULL links knowing an increase in the LER
will result.

ply binary classifiers, the analysis at the 0.3 pruning thok of
0.3 is relevant, since ‘on average’ pinching produces pican-
fusion pairs. While the best performance that can be oldaime
a WER of 43.2%, we stress that this is improvement over a well-
trained large vocabulary ASR system on a very difficult test s

We consider only those confusion pairs that occur in the test
data at least 100 times. This is not a necessary restrictidrita
does further limit our potential improvement, but it sinfiglé our

While the segment sets are defined by alignment under theanalysis in that there are enough instances of each pailiablse

Levenshtein distance, the joint acoustic and language hsodees
in the initial lattice are also preserved so that posteligtrihutions

measure recognition performance over each of them. Rederri
to Figure 1 d, only these frequently occurring confusiorrgare

can be defined over the segment sets. This allows us to prene th 'étained, and all others are pruned back to the primary hgsis.

segment sets to finally obtain confusion pairs (Fig. 1, d).

This process of alignment, segmentation, and pruning define
the sub-problems that will be attacked in code-breaking. r&ve
fer to the overall process aattice pinching and we now analyze
how well it performs in (a) identifying weaknesses in thenpary
hypothesis and (b) providing useful alternatives. We bégile-
scribing our large vocabulary ASR task.

3. EFFECTIVENSSOF LATTICE PINCHING

To further analyze the confusion pairs, we Levenshteigrali
the pinched lattices (Fig 1 d) to the truth (Fig 1 e). We firairao
the number of Confusion Pair Errors (CPERR), which are confu
sion pairs that don’t contain the truth. For example, in Bigl,
(A:17, J:17) is classified as CPERR since it does not conten t
true word ‘K’; the other sets are classified as Confusion ®eaicle
Correct (CPOC). While it is desirable to produce as few CPERR
sets as possible, those CPERR instances that do occur cgn be i
nored. These are ‘lost causes’, where lattice pinchingdaib pro-
vide a good alternative and further processing can pickamanrhyl

We evaluate our approach in the MALACH spontaneous Czech from the confusion pair without any meaningful effect on éver-

conversational domain [12]. The system consists of spaaker
pendent continuous mixture density, tied state, crosstvgender-
independent, triphone HMMs trained with HTK using 40 houfrs o
transcribed speech (24065 utterances). The speech wasgiara

all WER. Of course, if a set can be guessed to be CPERR, there is

the opportunity to add hypotheses, perhaps to fix OOV problem
The CPOC segments are those which we are interested in.

Within the CPOC segments we can distinguish those in whieh th



Pruning | #CPOC/ | #MAPERR/| Segment Sets
Threshold | #CPERR | #MAPCOR | Types | Tokens
0.00 14.30 0.24 22 7324
0.05 4.7 0.64 26 8022
0.10 3.3 0.92 26 6860
0.20 3.2 1.17 17 3831
0.30 4.2 1.15 6 1405
0.40 11.0 1.04 2 337
0.50 - - 0 0
Table 2. Ratio of #CPOC/#CPERR segments and

#MAPERR/#MAPCOR segments for the confusion pairs ob-
served at least 100 times in the 25 hour test set.

MAP path agrees with the oracle path (MAPCOR) and those in
which the MAP path is in error (MAPERR). In Fig. 1, d the pair
(V:5, B:5) is classified as MAPERR, and the pairs (OH:23, %:23
and (A:7, 8:7) are MAPCOR;both these sets are CPOC.

We further process the pinched lattices constructed fram th
frequently occurring confusion pairs. We renormalize ¢hks-
tices to define the posterior distribution over these bircmyfu-
sion pairs, and again apply a posterior-based pruning sethe
stances of the confusion pairs. The results are as reportéa-i
ble 2. At a pruning threshold of 0.4, the surviving confuspairs
are high quality: the CPERR pairs occur far less frequetitint
CPOC pairs; and within these the the MAPERR count is about

equal to the MAPCOR count, so about half the MAP hypotheses

are incorrect. Unfortunately, there are only two distimmfusion
pairs and pruning eliminates all but 337 instances of themthé
subsequent experiments, we prune at a threshold of 0.1. i\t th

is considered in the decoding process. We have developgdesim
voting procedures for this [9, 10], to be described in Sek. 4.

4. CODE-BREAKING

4.1. Acoustic HMMsfor Confusion Pairs

We begin by training special purpose HMMs for the words in the
confusion pairs. A set of multiple Gaussian mixture monagho
HMMs are trained over the acoustic training set, and thesg-mo
els are also used to align the training set. Whole-word amus
models for the words in confusion pairs are initialized whbse
monophone models and they are then then reestimated usimg Ba
Welch over word segments extracted from the aligned trgisét.
We next clone these whole-word models for the confusion
pairs, e.g. the model for the word ‘A’ is replicated so thalA:
and A:7 are two different whole-word HMMs. To train the mod-
els for the confusion pair (A:7, 8:7), an acoustic trainingpset
is created by extracting all the acoustic segments for ‘Al &1
from the training data. MMI is then used to further train thedn
els A:7 and 8:7 over this training subset. This process isatgul
for all of the confusion pairs, and in this way, the modelsspe-
cialized to discriminate between the words in the confugiains.
Throughout all this we keep track of pronunciation variatiéor
example, the word ‘TAK’ has pronunciatiois A KandT A G
and the word ‘PAK’ has only the pronunciatidh A K. Models
are trained for all three instances, ahdA Kvs. P A KandT A
Gvs. P A Kwould be considered as two distinct confusion pairs.

4.2. Acoustic SVMsfor Confusion Pairs

We now have all that is needed to train acoustic SVMs for the bi

level, we still have three times as many CPOC pairs as CPOERR,hary confusion pairs. We use the score-space approactogede!

the system is still making errors roughly half the time (MAFE

by Smith and Gales [14, 9, 10]. Statistics derived from tke-li

~ MAPCOR), and we have a diverse test set of 6860 observationslinood of speech segments under the HMMs are used to convert

of 26 distinct confusion pairs. While the 0.1 threshold eate-
ported here was chosen in a supervised fashion, we subgbquen
verified that 0.1 is also the optimal threshold found by splitthe

a variable-length sequence into a static fixed-dimensiogle-
sentation which can be used in SVM training and classifioatio
the dimension is derived from the number of parameters ih eac

test set by speakers and using one half as a held-out set and thHMM. We do not review this approach, other than to stressttieat

other half as the test set. We conclude that this threshaldea
determined robustly as part of the modeling process.

Lattice pinching can also be used to identify weaknessdein t
underlying language model. For example if a confusion paiir-c
tains homonyms, acoustic-phonetic information cannoilyebe
used to distinguish them. This homonym problem is very sever
in Czech due to the mixing of standard and colloquial Czech in
conversational speech [12], as with the Czech words ‘BYbhd a
‘BYLY’, both pronouncedB | L 1. Itis possible to train spe-
cialized language models for such homonym confusion phirs,
we focus here on acoustic code-breaking experiments. iBestr
ing ourselves to non-homonym confusion pairs further redube
number of confusion pairs to 21 with 2991 total observations

use of whole-word models allows us to fix the score space for ev
ery instance of each confusion pair. If we were to derive tees
space from triphones, say, the score space would then depend
context within which the word pair occurs. This may in fact be
desirable, but it would greatly complicate the modelingrapph.
SVMs were trained using th€iniSVM toolkit [15] for 21
non-homonym confusion pairs. The MMI trained word HMMs
were used to generate mean and likelihood-ratio score S\As
were trained in 20% of the most informative dimensions (ehos
by a Fisher-like criterion [14]). We noticed that perforraaxf the
SVMs was similar for a range of dimensionalities of the seore
space used (15% to 25%). We used a tanh kernel and a global
SVM trade-off parameter of 1.0. More details of the SVM tman

To recap the selection of test set confusion pairs, we prune Procedure can be found in Venkatarametral. [9].

from the collapsed segment sets any path whose posteribr pro
ability is less than 0.10. After pruning, we keep only coidas
pairs: any confusion set with more than two hypotheses isqatu
back to the primary hypothesis. We then restrict the coofusi
pairs to those that occur atleast 100 times. Finally, homoogn-
fusion pairs are also pruned back to the primary hypothesis.

4.3. SVM-MAP Hypothesis Combination

For each of the 21 confusion pairs, Figure 2 reports perfoo@a
of the baseline HMM system, the SVM decoders, and a hybrid
decoder combining the two. The baseline performance owdr ea
confusion pair is the left-most of each of the three bars. ddwe

The relative increase in the number of MAPERRS as the thresh-cision is made simply by picking the most likely alternativeder

old increases strongly suggests that code-breaking sheutibne
so that the baseline posterior distribution over the caafupairs

the lattice posterior; this likelihood is based on the tapé HMM
acoustic score, with MLLR, and the bigram language model. An



T
VAP
SVM

[ MAP+SVM

Error Counts

60

I ﬂmﬂ

Fig. 2. Error counts over individual confusion pairs.

L

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
I ndex of Confusion Pair

error occurs when picking the wrong word relative to the lreve
shtein alignment of the pinched lattice to the truth; e.d=ion 1 d,
picking V:5 would count as an error.

For each confusion pair instance, the appropriate disoami
tively trained whole-word was used to create score-spaaeiies
for use in classification by the SVM trained for that pair. Tee-
formance over each of the 21 confusion pairs is given in tihéece
bars of the plots in Fig. 2. Performance relative to the MABeba
line is mixed; there are not consistent improvements.

To combine the SVM and MAP decisions, a posterior distri-
bution over the SVM decisions was estimated by logisticesgr
sion [10]. This associates a confidence (estimated liketihof
being correct) with each SVM choice. For a particular instaof
a confusion pair with wordéw, w2), letp, (w) be the MAP pos-
terior over the pinched lattices, apd(w) be the SVM confidence
in each decision. A simple linear interpolation

pa(wi) = Apr(wi) + (1 — XN)ps(w;) for0 <A <1
gives a combined likelihood over the word pair. With= 0.5,
the performance over the 21 pairs by this SVM-MAP combina-
tion system is given in the third of the bars in Fig. 2. Undés th
combination, the error count decreases in 18 of the 21 pairs.

The influence of these reductions on the overall WER over
the complete 25 test set is necessarily limited, for theamsas

already discussed. The main reason is that the 2991 words in

the code-breaking test set are only a small portion of the-com
plete 25 hour test set. Under the MAP-SVM combination sys-
tem, the baseline MAP WER is reduced from 45.6% to 45.5%.
However small, these gains are statistically significart stable
with respect to\: we obtained this performance improvement for
A = 0.4,0.5,0.6, and, 0.7, and in all instances the significance
test p-values [16] were less than 0.001.

5. CONCLUSIONS

We have presented a general modeling approach for incdipgra
special purpose classifiers into a large vocabulary retiogrys-
tem. Possible errors in the first-pass recognition hypethese
identified by lattice pinching, and specialized decodegstained
and applied to fix these errors. We have shown that SVM binary
classifiers can in this way be gainfully added to a large volzalp
ASR system. We constructed our experiments so that the poten
tial gains are modest, but this does not reflect any insurtadls

limitation in the approach. Expanding the code-breakirgg $et,
perhaps by more permissive pruning or acoustic clusterficgm-
fusion sets, will provide opportunity for greater improvemts.
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