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Our interest in variational inequalities grew from studies of non-convex optimization theory
and pseudomonotone operators as a basis for both the qualitative and numerical analysis of
non-linear problems in continuum mechanics. The theory of variational inequalities is rich and
exciting; within it, one can find a wealth of powerful ideas which not only reveal fundamental
facts on the qualitative behavior of solutions to important classes of non-linear boundary-value
problems, but which also provide a natural framework for a host of relatively new numerical
methods. Equally important, the theory also enables one to construct a rather elaborate
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1174 J. T. ODEN and N. KIKUCHI

approximation theory which brings to light useful information on the behavior of numerical
solutions—error estimates, convergence criteria, etc. Finally, at the heart of variational in-
equalities is their intrinsic inclusion of free boundaries; thus, they provide a natural and elegant
framework for the study of the classical problem of flow through porous media. All of the
applications of variational inequalities considered here are focused on problems of this
type—the so-called seepage problems of slow irrotational flow of an incompressible fluid
through a porous media characterized by Darcy’s law.

Our aim in this monograph is to present a rather detailed survey of the theory of variational
inequalities, their approximation and numerical analysis, and to demonstrate applications of
these theories to the analysis of difficult free boundary problems encountered in the study of
flow through porous media. Much of what we discuss here we owe to the principal developers
of the subject: Stampacchia, Lions, Biaocchi, Mosco ef al, but several of the results we
describe, particularly on the computational side, are new. Our account is by no means
complete; among other things, we do not treat variational inequalities for evolution problems
and we identify several open questions concerning quasi-variational inequalities. We hope that
the introduction to these subjects presented here will provide a basis for those who wish to
pursue these subjects in more detail.

We gratefully acknowledge that the work reported here was completed by the authors
during the course of a research project supported by the U.S. National Science Foundation. We
also express our thanks to Mrs. Dorothy Baker who skillfully typed the entire manuscript.

Austin J. T. Open
Summer N. KIkucHi
1979

INTRODUCTION

Introductory comments

It is a well-known result in convex analysis that the minimization of a functional F defined
on a closed convex set K leads to an inequality involving the derivative DF of F rather than
the classical equality DF(x)=0 which is valid when F is defined, for example, on a linear
space. This fact has been exploited in the study of convex optimization problems for many
years. What was not widely appreciated, however, until a decade ago, was that these ideas had
far-reaching implications in many areas of non-linear mechanics; that, in particular, many
free-boundary problems could be elegantly formulated using extensions of these ideas, and that,
concomitantly, a variety of mathematical methods, both analytical and computational, could be
used to study free-boundary problems which were formulated this way.

Modern work on the theory of variational inequalities began with the pioneering papers of
Fichera[l], Stampacchia[2], Lions and Stampacchia[3] and Brezis[4], and was further
developed by the French and Italian school of applied mathematicians during the last decade
(e.g. Mosco[5], Glowinski, Lions and Trémoliéres[6], Fichera[7], Duvaut and Lions[8]).
Excellent surveys of these ideas have been contributed by Mosco(5,9), Stampachia[10] and
Lions[11]; applications to a wide variety of free-boundary problems are discussed in the book
of Duvaut and Lions[8]. Numerical methods based on variational inequalities are discussed in
the two-volume text of Glowinski, Lions and Trémoliéres[6] and in the monograph of
Glowinski[12]. The application of variational inequalities to free-boundary problems arising in
the flow of fluids through porous media was studied by Baiocchi[13] and Baiocchi ef al.[14],
and a numerical analysis of such problems was investigated by Baiocchi et al.[15]. Theorems on
the convergence of finite element approximation of certain classes of variational inequalities
were developed by Falk[16], Brezzi, Hager and Raviart[17] et al. Additional references to
literature on variational inequalities and their applications can be found in the works cited
above. We will also cite other references relevant to our study later in this work.

Our objective here is five-fold:

1. To give a summary account of the general mathematical theory of variational inequalities
set in the framework of non-linear operators defined on convex sets in real Banach spaces. We
focus our attention on existence and uniqueness theorems for such abstract problems for, as
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will be shown, these form the basis for the construction and analysis of numerical methods for
such problems.

2. To study the approximation of variational inequalities by finite element methods, and to
study various numerical schemes that can be used to solve discrete models of variational
inequalities.

3. To describe the formulation of the seepage flow problem by variational inequalities using
variants of the Baiocchi transformation, and to study the existence and regularity of solutions
to such problems.

4. To develop finite element methods for the approximate solution of seepage flow prob-
lems. Here we are also concerned with the existence of solutions to the approximate problems,
the convergence of finite element approximations, and the development of a priori error
estimates.

5. To solve numerically several representative seepage flow problems and to discuss and
compare various numerical schemes.

The theoretical foundations of variational inequalities are taken up in Chap. 1 following this
introduction. There we give a rather complete account of the theory as it applies to monotone
and pseudomonotone operators on reflexive Banach spaces. We also discuss the theory of
quasi-variational inequalities, which we later show to be very important in the study of certain
seepage problems.

Finite element approximations and various numerical methods are discussed in Chap. 2. We
review the theory of Falk[16] for error estimation of certain classes of variational inequalities,
and we describe algorithms for the solution of systems of inequalities; in particular, we examine
fixed-point (contraction mapping) methods, S.O.R.-projection methods, Lagrange multiplier
methods, and penalty methods. Some numerical experiments designed to test the validity of the
theoretical estimates and to compare methods are also presented in this section.

For completeness, we give proofs to all of the major theorems discussed in Chaps. 1 and 2.

The formulation of seepage flow problems is discussed in Chap. 3. Here a rather general
formulation is developed, using the notion of quasi-variational inequalities. We then consider a
number of special cases, describe some numerical experiments, and compare results with those
obtained by other methods.

Chapter 4 is devoted to the analysis of seepage in non-homogeneous dams in
which the permeability k at a point (x, y) is given as either a function of only x or only y.
Numerical examples are described and the results are compared with those obtained by other
numerical techniques.

Selected special problems are treated in Chap. 5, including the effects of impermeable sheets
as boundaries, and channel problems.

Conclusions reached during our study and comments on possible directions for future
research are collected in Chap. 6.

Notation and conventions

Notations and terms common in literature on functional analysis, partial differential equa-
tions, and the mathematical theory of finite elements are used throughout this study. Intro-
ductory accounts of analysis sufficient to provide a background for this work can be found in
the text of Oden[18)]. For an introduction to the mathematical theory of finite elements, see, for
example, the books of Oden and Reddy[19], Ciarlet[20], or Vol. 4 of the series by Becker,
Carey and Oden[21]. The definitions of most symbols are given where they first appear in the
text. The following conventions and definitions are used frequently in our study

U, ¥ = real Banach spaces with norms |- ||, and || |3, respectively.

9’ = the (strong) topological dual of .

(*y): U' X U >R = canonical duality pairing from %' x % into R; thus, if f is a continuous
linear functional on %, we write

flu)=<f, u)

A: K C Y% - U = an operator defined on a set K in % with its range in the dual of %; A is
monotone if

{(Aw)— AW),u—-v)=0 Yu,ved
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A is hemicontinuous at u if ¢:[0,1]>R is continuous for all v, w € U, where ¢(t)=
{A(u+tv), w); A is coercive on K if, for u € K, there is a v, € K such that

ﬁ(“"tﬁ‘fm;‘_”ﬁ)_) +oo as flufy >

{u..} € K = a sequence drawn from a set K C %U; a sequence converges strongly to u € U
whenever

lim ity ~ ufla, =0
and {u,,} converges weakly to u € U whenever
lim{f,uy={,uy VYfEU

K =a subset of U; K is convex if, Yu, v € K, the line segment
gu+(l—6y Vée[0, 1]
belongs to K. K is bounded if a constant M < exists such that [lully <M for all u in K. K is
weakly sequentially closed if every weakly convergent sequence in K has its weak limit in K:
K is closed if the limit of every strongly convergent sequence drawn from K is in K.
F: K C % - R = a real functional defined on a subset K of the Banach space U.

DF: K- %' =the Giteaux derivative of F; i.e.. DF(u) is the linear functional in %’
satisfying, ¥Yv € %,

lim 2 F(u + tv) = (DF (), v)
-0+ Ot

F: KC%-Ris convex if
Fou+(1-0v)<0Fu)+{1-)F()
for all u,v € K and 6 €[0, 1]; F is concave if — F is convex.

F: K C%-R is weakly lower semicontinuous if, for every sequence {u,} € K converging
weakly to u € K, we have

lim inf F(u,,) = F(u)

If the reversed inequality holds (<), for lim sup F(u,), F is weakly upper semicontinuous.

W™ ({}) = the Sobolev space of order (m, p) for a bounded domain QCR", m=0, I=p =
o, equipped with the norm

letllmp.0 = U; iaém |D*uf dx}”p l<p<w

ilna=sup 3 DuGx)

where standard multi-index notations are used (see, e.g. Oden and Reddy[19]). When, from the
context, the domain ) is understood, we write || |}, rather than ||:{ln,.0.
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Wr(Q) = the closure of the space C5(Q) of infinitely differentiable functions with compact
support in ( with respect to the Sobolev norm |- ||m.0-
W-mP(Q)) = (WF*(Q)), the topological dual of W§*(Q); here

H™(Q) = the Hilbert spaces W™ (Q); ||uflm=|ullm-
T(Q) = WEHQ).
H™(Q)=(HF().
We will also frequently make use of the fact that every bounded sequence {u,,} in a reflexive
Banach space has a weakly convergent subsequence. The spaces W™?(QQ) and W{'*(()) are
reflexive whenever 1 < p <; hence H™(Q}) and H{ (1) are reflexive.

1. VARIATIONAL INEQUALITIES
1.1 Introduction
The modern theory of variational inequalities has its roots in the classical problem of

minimizing a convex differentiable function on a convex set. Consider, for example, the
elementary problem of determining the real number x, at which the quadratic function

F(x)=%bx2—ax+c,b>0, xER (1.1

attains its minimum value. The minimizer is, of course, characterized by the condition
F'(xg)=bxg—a=0 (1.2)

so that F attains its minimum at xo = a/b. The situation is, however, quite different if we add to
the minimization problem a constraint on x, e.g.

eEK={xeR0=x=<1} (1.3)

Then (1.2) may not properly characterize the solution. A minimizer x, of F in K satisfies, by
definition, the inequality

Fx))<F(x) x€K
Since K is convex, xo+ 8(x — xo) = Ox +(1 - 0)x, € K, 0 €0, 1]. Hence, for every x€ K
F(xo+ 6(x — x0)) = F(xo)

and
}erl % [E(xo+ 8(x — x0)) — F(x0)] = F'(xo)(x — x0) = 0

In other words, a minimizer x, of F is now characterized by the inequality
F'(xg)(x—x0)=0 Vx€K. (1.4)

Examples are shown in Fig. 1.1. Notice that all of the minimizers indicated in Figs. 1.1(a—)
satisfy (1.4); only the case in 1.1(c) in which the minimizer x, falls on the interior of K is such
that F'(xo) = 0. But this also covered by (1.4) because if x, € int K, an € >0 can be found such
that x = xy = ey and = eF'(x,)y = 0 for any y € K, which is possible only if F'(x) = 0. Hence (1.4)
includes the characterization (1.2) as a special case.
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Fig. 1.1. Minimization of a convex function on a convex set.

Another important and interesting aspect of variational inequalities is, that in many cases,
they can be shown to characterize so-called free boundary-value problems. This feature was
exploited by Lions[22] in 1974 and has contributed to its popularity in studying a variety of
physical problems. To illustrate this property, consider the following example:

Example 1-1.1. Consider the variational inequality: ¥ € K

J:{u’(v—u)’+(v—u)}dx20, VveK

where K ={v € H'0, 1): v(0)=1/4, v(1)=0and » =0 in (0, 1)}, and u' = du/dx.
Suppose that u € K is a solution of the variational inequality. Taking v = u + ¢, ¢ € C3(0, 1)
with ¢ =0 1n (0, 1) yields

1
f (u'o'+¢)dx=0.
0
Since ¢ is an arbitrary positive function, the inequality implies that
-u'+1=0

in the sense of distributions. Further, suppose that the solution # is smooth enough, e.g.
u € H¥0,1). Then —u"+1=0 is satisfied, a.e. in (0,1).



Theory of variational inequalities, flow through porous media 1179

By Sobolev’s imbedding theorems, H'(0,1)C C[0, 1]. Then there exists an interval (0, 8),
8 <1, such that

u(x)=ein x €(0,8)

for an arbitrary given number € > 0. For any function ¢ € C5(0, 8), there eXists a constant é
such that

(uxép)x)=0in (0, ).

Extending ¢ to (0, 1) by zero outside of (0, §), and substitution of u * ép into the variational
inequality leads to the conclusion that

5
I (Weo'+¢)dx=0
0

-u"+1=01in (0, §)

in the sense of distributions. Let ¢s be a C-function in (0, 8) such that ¢5(0) = 1/4, ¢5(6) =0
and u(x) = @s(x) = 0. Taking v = 5 in (0, §) and v =0 in (5, 1) implies

1
u'uls +f (u'u'+u)dx <0.
8
Taking v =2u — ¢5 in (0, 8) and v = 2u in (6, 1) shows that
1
u'uls +f (Wu' +u)dx=0.
8
Thus, we have

1
u'uls +f (Ww+u)dx=0
8

(—u"+Du=0 in (51).

Combining all results obtained above, the solution of the variational inequality satisfies
the system

u=0
(—u"+Du=0
-u"+1=0

u(0)=1/4 and u(])=0J

in (0,1)

provided that u is smooth enough; e.g. u € HX0, 1).
We next make an important observation: the above system defines a natural partition of the
domain [0, 1] into the subsets

Q' ={x€[0,1: u(x)>0} and Q°={x€][0, 1: u(x)=0}.
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The point P of intersection, P = (" N, defines a free boundary in the domain of the solution
u and

~w'+1=0 in [0,P)=n+}
¥=0 in [P1]=0"

In this case P = 1/V2. We can easily prove that there is only one free boundary P in (0, I).
Suppose that p; and p, are free boundaries in (0, 1) such that

-u"+1=0 in (Pl,Pz)}
u(p)) = u(py) =0.

Then u(x)=(1/2)(x —p)(x —ps) in (p;, p2). This clearly satisfies the condition u(x)<0 in
(p1, p2), i.e. u K. Therefore, such p, and p, do not exist because of the constraint #(x)=0 in
0, 1). It is also worthwhile to note that if another boundary condition is imposed, the free
boundary P may not occur. For example, if K'={v € H'(0,1): v(0)=1, v(1)=0, v(x)=0 in
(0, 1)}, then the solution is

1 3 1 .
u(x)—§<x—§) -g i ©, 1). O
The importance of the elementary ideas just described is that they can be easily extended to
very abstract situations involving operators defined on closed convex subsets of linear topolo-
gical spaces. Indeed, if A: K- 9’ is an operator defined on a non-empty closed convex set in a
real linear topological space 4, the abstract problem of finding u € K such that, for given

few,
{(Aw)y—f,o-u)=0 VYvekK (1.5)

is called a variational inequality for the operator A (here (-,-) denotes duality pairing on
' x ). The operator A need not be linear or even monotone and it need not be derivable from
a potential functional F: K >R.

Although inequalities of the type (1.5) arise naturally in problems of minimization of convex
differentiable functionals on convex sets, we will show that similar inequalities characterize
minima of non-differentiable functionals as well. Thus, the theory of variational inequalities
combines many of the elements of monotone operator theory and convex analysis in a way that
generalizes both and has many significant applications in theoretical mechanics.

Our aim in this chapter is to give a brief account of the general theory of variational
inequalities. Following this introduction, we describe a number of properties of variational
inequalities on Hilbert and finite dimensional spaces. We then prove a general existence
theorem for variational inequalities involving pseudomonotone operators defined on subsets of
reflexive Banach spaces.

1.2 Some preliminary results

We will establish some very general results on abstract variational inequalities in the next
section. However, in order to reinforce some of the geometrical concepts associated with
certain types of variational inequalities and to record some preliminary results which are useful
in studies of more general theorems, we will consider here several aspects of the theory which
are clearer in a more restricted setting.

Let us first point out that the elementary example of minimizing a real-valued function of a
real variable subject to a convex constraint which we sketched briefly in Section 1.1 is
immediately extendable to a rather broad class of variational problems involving functionals on
convex sets in normed linear spaces.

Theorem 1-2.1. Let K be a non-empty, closed, convex subset of a normed linear space %
and F: K - R a real Giteaux-differentiable functional defined on K. Then any ¥ € K which is a
minimizer of F is characterized as a solution of the variational inequality

(DF(u),v—u)=0 VYveEK. 2.1
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If, in addition, F is convex, then any solution of (2.1) is also a minimizer of F, i.e.
F(u)<F(v) YveEK 2.2

Proof. Since K is convex, u+68(v—u)€ K for any &[0, 1) and u, vEK If u is a
minimizer of K, F(u+ 6(v — u))= F(u). Hence Yv € K

lim 1 (Flu+6(v—u))— F(u)l =(DF(u),v —u)y=0.
a0+ 0

If F is Gateaux differentiable and convex
Fv+(1 - uy<8F(0)+(1 - O F(u)= Flu)+ 6(F(v)— F(u))

so that
F(v)- F(u)= é [Fu + 8(v — )~ F(u)).

Taking the limit as 8 -0" gives
F(v)— F(u)=(DF(u), v — u).

Thus, if u satisfies 2.1), F(u)< F(v}foranyv€ K. O

The question of existence of solutions to (2.1) is more difficult. Since (2.1) and (2.2) are
“equivalent” for convex F, we can, in this special case, write down sufficient conditions for
existence by simply calling on the existence theorems for minimizers of differential functionals.

First let us record the generalized Weierstrass minimization theorem:

Theorem 1-2.2. Let U be a reflexive Banach space and K a non-empty closed convex subset
of 4. Let F:K—R be a functional defined on K which is weakly lower semicontinuous, i.e.

If {u,} € K converges weakly to u € K| then

lim inf F(u,,) = F(u):

Then F is bounded below on K and attains its minimum value on K whenever either of the
following conditions hold:

(i) K is bounded, or

(i) F is coercive, i.e.

F(v)>+» as o]y >

Proof. First suppose that K is bounded but, contrary to the assertion, F is not bounded
below on K. Then we can choose {u,,} € K so that u,— u weakly, but lim inf F(u,)= F(u), a

contradiction. Hence, F is bounded below. Let uo = inf {F(v): v € K} and let {4} be such that
o= iim F(u,). Since K is bounded, {u,} contains a subsequence {u,} which converges weakly

to an element u in K. Hence o< F(u) and lim inf F(u) = pe = F(u), from which we conclude
that uo = F(u). Ko

Next, suppose that K is unbounded but that F is coercive. Then for r a sufficiently large
positive number, F(v)> F(v)), v,€EK, for [v]y >r. The ball B,={vEK:|v],=<r} is
closed, bounded, and convex. Hence F attains its minimum on K N B,. However, inf {F(v):
v € KN B,}=inf {F(v): v € K}, so that theorem is proved. [

We remark that the conclusions of this theorem also hold if K is only weakly sequentially
closed (i.e. any weakly convergent sequence in K has as its limit an element of K), but every
closed convex set in a reflexive Banach space is necessarily weakly sequentially closed.
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Thus, for coercive F, we need only establish sufficient conditions for F to be weakly lower
semicontinuous in order to guarantee the existence of minimizers on closed convex sets. There
are several conditions we could impose which are sufficient to guarantee weak lower semicon-
tinuity (see, e.g. Ekeland and Teman[23] or Vainberg{24]), but that which is used most
frequently in convex analysis for differentiable F is that F be convex. To see this, we make use
of the easily verified fact that the following are equivalent

(i) F is convex on K.
(i) F(v)—~ F(u)={(DF(u),v—u) Vu,v€K.
(i) DF is monotone, i.e.

{DF(u) - DF(v),u—-v)=0 Vu,veK 2.3

where K is a non-empty, closed convex subset of a reflexive Banach space. Thus, if {u,} is a
sequence drawn from K which converges weakly to w, liminf(F(u,)— F(u))=
lim inf (DF(u), u,, — u)=0. Hence lim inf F(u,,) = F(u). e

Combining the above observations with Theorem 1-2.2, we have:

Theorem 1-2.3. Let F be a Giteaux-differentiable, convex, coercive functional defined on a
non-empty, closed, convex set K in a reflexive Banach space. Then there exists at least one
minimizer u of F on K. Moreover, u is characterized as a solution of the variational inequality
ea.h O

Remark 1-2.1. If F is Géateaux differentiable and strictly convex on K (i.e. F(6u+
(1-8))<8Fu)+(1 - 9)F(v), Vu,v €K, u# v, 8 €(0, 1)) then the minimizer of F is unique.
Also DF is strictly monotone.  []

Remark 1-2.1, If F is not convex but is Giteaux differentiable, weaker conditions can be
imposed in order to guarantee weak lower semicontinuity. For example, it is shown in Oden and
Kikuchi25] that F is weakly lower semicontinuous if

(DF(u)~ DF(v), u - v)=— H{u, Ju - vll)

where H is a non-negative continuous function, ||u)ly, < u, ||v]la < i, ¥ is a space on which % is
compactly embedded, and lim (1/8)H(x, 8y)=0, x, yER".
60"

Remark 1-2.3. Our results apply to functionals with values in R. However, extensions of
most of these results to functionals taking values in the extended real line RU{+=} or
RU{—o}U{+} are straightforward. Then we speak of proper functionals whenever
F(u)# + o for all u and the effective domain of F, eff. dom F ={u € K: F(u) <+ «}. a

Since DF is, in general, a nonlinear operator, {2.1) represents a non-linear inequality in u.
However, if F is convex and DF is hemicontinuous, a simple alternate formulation, equivalent
to {2.1), that involves a linear inequality in u can be derived. Indeed, if F is convex and
Gateaux differentiable, DF is necessarily monotone, so that

{DF(u)— DF(v),u —v)=0.
But this implies that
{(DF(v),v—u)=(DF(u),v—u)=0 VYveK
whenever u satisfies (2.1). Conversely, suppose
(DF(w),w—u)=0 Ywek. .4

Set w=u+ (v —u), §€(0,1), divide by ¢ and take the limit as 8 - 0. This vields (2.1). Hence,
we have proved:

Theorem 1-2.4. Let (2.3) hold and DF be hemicontinuous. Then problems (2.3) and (2.4) are

equivalent. [
Let us interpret Theorems 1-2.1 and 1-2.4 geometrically in the case that % is a finite
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dimensional Euclidean space R™. In this case, DF(u) is the gradient of F at the point
u=(u,...,Uu,) and

(DF(u), w) = DF(4) - w = 2 o,
k -
is the derivative of F at u in the direction of w =(w,, ..., w,). The vector DF(u) is oriented

toward the direction of maximum increase of F at u and is normal to the surfaces F = constant.
Since F is convex, its level sets

L, ={v€EK:F(r)<A}, A€ER
are convex. Then, all vectors w such that
(DF(u),w—u)=0
define directions of increasing (or non-decreasing) F from the point u. This means that
F(w) = F(u).
Thus, if (2.1) holds, (2.2) must be valid.
Conversely, let M(v) denote the set of all w € K from which » € % is seen in a direction of
increasing F, i.e.

M@)={w € K:(DF(w), v —w)=0}.

If u € K is a minimizer of F on K
ue N M(v),
veEK

1.e.
(DF(u),v—u)=0, VveK.

Thus, we have interpreted Theorem 1-2.1.
Similarly, let N(v) denote the set of all w € K from which v € ¥ is seen in a direction of
decreasing F, i.e.

N@)={w€e K:(DF(w),v —w) =<0},

If u € K is a minimizer of F on K, N(u) is identified with the set K, i.e.

(DF(w),u—w)=<0, VweK.

Conversely, if (2.4) holds, ¥ € K is seen in a direction of decreasing F from every point v € K.
This means that u is a minimizer of F on K.

1.3 Projections in Hilbert spaces

Another geometrical interpretation of some importance arises in the case in which % is a
real Hilbert space % with an inner product (-, ). Suppose that we wish to find the minimum
distance between a given f € ¥ and a closed convex set K C %, i.e. we wish to find u € K such
that the (squared) distance function

F)=[f -, [ol= (v, v)
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is a minimum. Clearly, F is a lower semicontinuous functional defined on a closed convex set in
a reflexive Banach space (any Hilbert space is reflexive). Hence, it attains its minimum on K.
We define such a minimizer, denoted by Pkf, as the projection of f into K. Moreover, F is
strictly convex on K so that the minimizer is unique and is characterized by

0<(DF(u),v—u); (DF(u),v—-uwy=2u—f,v—u)
L.e.
(u-fv-u)=0 VYveK 3.1

Geometrically, (3.1) indicates that the angle between the vector f — & and any vector v —u in K
is obtuse, as illustrated in Fig. 1.2.

The unique vector u satisfying (3.1) is thus the projection of f into K.

Clearly, if f € K, then Pxf=f. Moreover, if K is a linear subspace of %, then Py is
still surjective and

(f—Pxf,v)=0 VveK

i.e. the error f — Pxf is, in this case, orthogonal to K. Note that if K is only a convex subset of
¥, Py need not be linear. However, it is continuous. Indeed, if f,, — f strongly in %, then

"PKfm_PK.ﬂP:(PKfm_PKf’PKfm_PKf)
=(f_PKf’PKfm"Pl(f)—(PKfm_fM9PKf—PKfm)
+(fn — f, Pfn — Pxf).

In view of (3.1), the first two terms on the right-hand side of this last equality are seen to be
non-positive. Thus, use of Schwartz’s inequality reveals that

IPxfm = Pifll =Ifmn = £I. (32)

Hence Py is continuous.
Example 1-3.1. Let % =R", and let the inner product (-, -) be defined by

(u, vy =uv;+ - -+ + Up,,.

Fig. 1.2. Minimization of the distance from an arbitrary point f to a convex set K.
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Suppose that
K={veR™: v;=0,i=1,...,m}.
Then the projection Px can be explicitly represented by
(Pxf)i = max (f;, 0).
To show this, let us consider the (variational) inequality
ueEK:(u—f,v—uy=0, Yyvek.
Taking v = (uy, ..., Uiy, Ui, Uisy,y . .., Uy), 1; =0, in (3.4) yields

=0 (u - f)vi—u)=0, Yy =0

1185

(33)

(3.4)

(3.5)

It is easy to show that u; = max (f;, 0) satisfies the inequality (3.5). Indeed, if f; <0, u; =

max (f;, 0) = 0. Then
(u; = fi)vi —uw) = (- f)vi =0, 1;=20.
If f;=0, u; =max (f,0) = f.. Then

(u; = fi)(vi—u;)=0, VYu;=0.

Thus u; = max (f;, 0) is a solution of the inequality (3.5). Suppose that (3.5) has two solutions,

say & and & i.e.
&=0: (4 - filvi—#)=0, Vu; =0
@ =0: (& — f)(vi— 4;)=0, Vo;=0.

Substituting v; = 4; in the first inequality, v; = & in the second inequality, and adding two

inequalities, we have
(& — a;)(a; ~ d4;) <0.
This implies & = d;, i.e. the uniqueness of the solution of (3.5). Therefore
u; = (Pxf); = max (f;, 0).
Applying the same arguments for
M={veER™: =0, i=1,...,m}
we have
(Ppf)i = min (£, 0).
Combining (3.3) and (3.7), for

N={veER™ g =v,=<bh, i=1,...,m}
we have

(Pnf); = min(max (a;, f), b). O

(3.6)

37

(3.8

39
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The properties of the projection Py suggest an alternative to the formulation that is of some
importance in the approximation and numerical analysis of variational inequalities as well as in
proving the existence of solutions in certain special cases. Suppose that u € K is the minimizer
of a convex Géiteaux-differentiable functional F: K —» R on a non-empty closed convex set K of
a real Hilbert space #. Then, by Theorem 1-2.1, u satisfies

(DF(u),v—u)=0 VveK

where (-,) is the duality pairing on #' X %. By Riesz representation theorem, every continuous
linear functional on # can be identified with the element of %, i.e.

fooy=(af,v), VfEHX and vEX
where 7 is the Riesz map form #' into . Consequently
(w#DF(u),v—u)=0
and, for any p >0
(u—u+prDF(u),v—u)=0, VYoeK
Therefore, u € K satisfies the equation
u = Px(u — prDF (u))

where Py is the projection map of % onto K. This means that a minimizer ¥ € K of Fon K is a
fixed point of the operator T defined by

T(:)= Px(I - pmDF)() (3.10)

As an application of these ideas, consider an operator A: K C ¥ — ¥, # being a real Hilbert
space with an inner product (-, ), which satisfies the conditions

(A(u) = A(v), u — v) = mfju—off
(A(u)— A(v), w) < Mllu — off||w] 3.1)
Yu, o, we K

where m and M are positive constants and || - | =(-,-). We define a new map T: ¥ K by

T(w) = Px(I — pA)(w), p>0. (3.12)
Then, from (3.1)

(T(w)—(I - pA)Yw),v—T(w))=0 VvEK.
Furthermore, if T has a fixed point u, then this inequality reduces to
(A(u),v-u)=0 Yvek (3.13)
i.e. a fixed point of T, if it exists, is a solution of the variational inequality (3.13).
We will show that if the number p in (3.12) is chosen properly that T is, in fact, a

contraction mapping, i.e. that there exists a k, 0 <k <1, such that

IT() = Tw)|| < kllu — o] (3.14)
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Indeed, using (3.11) and (3.12)

IT ()~ T(o)F < (I - pA)u) = (I - pA)©)|?
= (4~ pA(u) — v + pA(v), U ~ pA() — v + pA))
= [lu = v|P - 2p(A(u) = A(v), u — v)+ p?|A(u) = A(V)|
<(1-2pm + p*M?)||u — v

Thus k in (3.14) satisfies 0 < k <1 whenever

K= 1-2pm+p*M? and o<p<2X4’%. (3.15)

Since we can always choose p so as to satisfy (3.15), T of (3.12) can always be constructed so
as to satisfy (3.14); hence, there exists a unique solution to the variational inequality (3.13).
Moreover, the solution to (3.13) can be obtained as the strong limit of the sequence generated
by the classical iterative process

u™' = T(u") = Pe(u” — pA(u™)) (3.16)

whenever p satisfies (3.15).

In summary, we have:

Theorem 1-3.1. Let ¥ be a real Hilbert space, K a non-empty closed convex subset of %,
and A: K - ¥ an operator satisfying (3.11). Then there exists a unique solution # € K of the
variational inequality (3.13). 0

1.4 The Hartman-Stampacchia theorem
In the previous section, we have proved constructively that the map T defined by (3.12)

T(w) = Px(I - pA)w), p>0 4.1

has a unique fixed point for suitable p >0 when the condition (3.15) holds. Here we will show
that the map T has a fixed point for every p >0 under the continuity condition of A, if the
space 4 is finite dimensional.

Let % be a finite dimensional space, and let K be a non-empty compact convex subset of 4.
We first recall the modified Brouwer fixed-point theorem:

Proposition 1-4.1. Let K be a non-empty compact convex subset of a finite dimensional
space 4. Suppose that a map T: K —» K is continuous. Then there exists at least one fixed point
u € K such that

u=Tw). O
Because of the projection Pk, the map T defined by (4.1) satisfies the condition that
T: K -» K. Furthermore, continuity of A and Px implies the continuity of T. Therefore, by the
Brouwer fixed-point theorem, there exists at least one fixed point 4 € K such that
u=T(u)= Px(u—-pAu)), p>0. 4.2)

By the characterization of the projection Py, (4.2) is equivalent to the inequality

(u—(u—pA(u),v—u)=0, YveK

(Alw),v—u)=0, YveK.
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Therefore, we can conclude that:

Theorem 1-4.1. Let K be a non-empty compact convex subset of a finite dimensional space
9. Suppose that A is a continuous map of 4 into itself. Then there exists at least one solution
u € K to the variational inequality

ucK:(Alw),v—u)=0, vywwvek 4.3)

where (-, ) is the inner product of 4. [0

The above theorem is due to Hartman and Stampacchia[26].

Remark 1-4.1. We note that the Brouwer fixed-point theorem can be obtained from the
Hartman-Stampacchia theorem. Let K be a non-empty compact convex subset of a finite
dimensional space %, and let T be a continuous map of K into itself. Then A=1-T is
continuous on %. By the Hartman-Stampacchia theorem, there exists at least one u € K such
that

A),v-u)=0, YveKk.
Since T(u) € K, we have
(u—T(u), T(u)y—u)=0.

This means that u = T(u).
Thus, the Brouwer theorem precipitates as a corollary to the Hartman-Stampacchia
theorem. 0O

1.5 Variational inequalities of the second kind

The variational inequalities described up to this point involve the search for elements u in a
closed convex set K C % such that (A(u), v —u) =0 for all v € K, A being an operator from K
into %’'. We will call such problems variational inequalities of the first kind. Here we take
F: % >R =RU{+%}. (Recall Remark 1-1.3.).

It is possible to reformulate such inequalities so that they are defined on the totality of the
space % rather than K by introducing an indicator functional i defined by

s Uk, ={77 e 6.

where K is a non-empty closed convex subset of U. If A: % — ', it is clear that if u satisfies
ueK:(Aw),v—u)=0, ¥Yvek 5.2

then u also is a solution of
(A(u), v — uy+ Y (v) — Y () =0, YvEU 5.3

Conversely, any solution # € K of (5.3) is also a solution of (5.2).

The variational problem (5.3) is an example of a variational inequality of the second kind.
Note that the indicator function ¢ is convex but not differentiable. We will now show that we
can enlarge on the class of variational problems of this type by considering minimization
problems involving general convex non-differentiable functionals. The typical setting for the
class of variational inequalities of the second kind which we consider here is as follows:

F: 4% >R is a proper Giteaux-differentiable convex functional.

% is a reflexive Banach space.
(5.4
@: U - (— o, 0] (¢# +») a convex functional not necessarily differentiable.

We wish to find minima of the functional
G=F+¢ 5.5
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i.e. we wish to find ¥ € % such that
Guy=Gv) Veedl (5.6)

The characterization of such minima as solutions of a variational inequality is laid down in
the following theorem:

Theorem 1-5.1. Let (5.4) hold. Then any minimizer u# € % of the functional G of (5.5)
satisfies

(DF(u), v ~u)+ d(v)—~dp(u)=0 VYoeU (5.7

Conversely, if u € U satisfies (5.7), then it minimizes G. 0
Proof. Suppose u is a minimizer of G and 8 €(0, 1). Since F and ¢ are convex

Flu)+ d(u) < F(u+ v —u)) + ¢(u + 68(v — u))
sFu+6(v—u)+0d(v)+(1-0)p(u) YveEU

Hence

S UF(+ 60— 1) = F) > () - $(0)

so that (5.7) is obtained in the limit as § >0,
Next, suppose that u satisfies (5.7). Since F is convex

(DF(u),v—u)= F(v)—- Fu) YoeX

Thus, for every v € U, F(v)— Fu)+ ¢(v)~dp(u) =0, 0or G)=Gv), YveWU. [0

Inequality (5.7) is an example of a variational inequality of the second kind. Such in-
equalities need not involve gradients of differentiable functions, We will study variational
inequalities of this type in more detail later.

1.6 A general theorem on variational inequalities
We will now consider a general existence theory for solutions of abstract variational
inequalities on Banach spaces.t Let

9 be a separablet reflexive real Banach space.

K C U a non-empty closed convex subset of .

A: K- %' an operator defined from K into the (strong)
topological dual ¥’ of 9.

6.1

We will establish conditions under which solutions exist to the variational inequality: find ¥ € K
such that

{(Alu),v~uy=0, vek 6.2)

Theorem 1-6.1. Let conditions (6.1) hold and let the operator A: K — %’ be
(1) Bounded.

(ii) Pseudomonotone: if {u,} is a sequence from K converging weakly to u € K and if
lim sup (A(u,,), U, — u) <0, then

Iim inf (A(u,), b — v} ={AU), u—v) VYovEK

tThese resuits can be further generalized to inequalities on linear topological spaces. See Brezis[4].
1The assumption of separability is not essential and is introduced only for simplicity in certain arguments to follow.

1JES Vol. 18, No. 16--B
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Moreover, suppose that
(iii) X is bounded.

Then there exists at least one solution of the variational inequality (6.2).

Proof. The proof follows standard compactness arguments common in pseudomonotone
operator theory, except that now we must resolve the finite dimensional problem using the
Hartman-Stampacchia Theorem 1-4.2.

Suppose that [w,, w,, .. .] is a countable everywhere dense set in % and [w(, w, ..., Wnlisa
basis for a finite dimensional subspace %,, of %. The family of such subspaces obtained as m
takes on all positive integers is such that Ul U,, is everywhere dense in 9. Without loss of

mz=

generality, suppose 0 € K and consider the family of sets

K,=U.NK m=1
(6.3)

Each set K,, is a non-empty bounded closed convex subset of %. Moreover, A: Kp, & U is
continuous since A is pseudomonotone and bounded. Thus, by Theorem 1-4.1, there exists a
solution u,, € K., of the finite dimensional variational inequality

(A(um)’ Um — um> =0 Vv, €K, 6.4)

Now we recall that any closed, bounded, convex set K in a reflexive Banach space is
weakly sequentially compact. Hence, if {u,,} is a sequence of solutions of the finite dimensional
problems (6.4) obtained as m -, there exists a subsequence {«,, } which converges weakly to
an element u € K. In view of (6.4), lim inf (A(u,,), v — u,)=0, Vv € K, so that, putting u = v
reveals that e

lim sup (A(tp,), Um, — u)=<0. (6.5)

my—s

Hence, by (6.5) and the pseudomonotonicity of A, we have for any v € K

0= lim inf (A(up,), Uy, —v) = (A(u), u — v)

my—»x
which implies that (A(u), v —u)=0, Vv € K. O
The more interesting cases involve sets K which are unbounded. The theory of pseudo-
monotone operator equations suggests that what is needed to complete an existence theorem
for (6.2) for unbounded K is that A be coercive. This, in fact, is quite true, but the structure of
a variational inequality, as opposed to an equality, provides for some alternative weaker forms
of coerciveness. We first establish a useful lemma:

Lemma 1-6.1. Let (6.1) hold. Then a necessary and sufficient condition for a solution to
exist to the variational inequality

ueK:(A(u),v—u)=0 Yvek (6.6)
is that there exist a real number r >0 such that at least one solution of the inequality

u, €K,: (A(u,),v—u,)=0 VveK, 6.7)
satisfies
flaplos < r (6.8)

where K, = K N B,(0) and B,(0) is the closed ball of radius r centered at the origin (B,(0) =
{veU: ol <rD.
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Proof. If there exists a solution u of (6.6), we need only choose r so that [ully <r for u to
satisfy (6.7). Conversely, if u, satisfies (6.7) and (6.8) for some r >0, then there is a v € K, such
that v—u,=e(w-u,) for we€K and e sufficiently small. Then (A(),v—u,)=
e(A(u,),w—u,)=0,Vw € K, ie. u, satisfies (6.6). g

Now a careful examination of the above lemma and a comparison with Theorem 1-6.1
reveals that solutions u, always exist to (6.7), whenever conditions (i) and (ii) of Theorem 1-6.1
are satisfied, because K, is convex, closed, and bounded. Thus, we need to furnish an additional
condition on A that will guarantee that (6.8) holds. One such condition is

There exists a vo € K and an r > 0 with
lvolle < r such that for all v € K with
vl = r we have 6.9)

{A(v), v — vg) > 0.

For suppose (6.9) holds and &, is a solution of (6.7). Then if ||u,]ls, = r and (6.9) holds, we have
(A(u,), u, — v) >0, which contradicts (6.7). Hence, ||u,]la, <r when (6.9) holds.

Note that condition (6.9) is satisfied whenever the following coerciveness condition of A
holds

There exists a v, € K such that

(A(v), v — o)
llv]]

for v € K.

—>+© 3as ”vl|—>+00 (6.10)

It is important to realize the difference between surjectivity theorems for pseudomonotone
operator equations and existence theorems for pseudomonotone variational inequalities. If f is
arbitrary data given in %' and we wish to solve the problem of finding u € K such that

(Aw)~f,v—u)y=0 VYvekK 6.11)

then condition (6.9) is not sufficient to conclude the existence of solutions to (6.11), assuming
conditions (i) and (ii) of Theorem 1-6.1 hold. If only (i), (ii) and (6.9) hold, we will generally need
to impose additional conditions on f in order to guarantee solutions to (6.11). This also means
that if (6.9) holds and A is not coercive in the sense of (6.10), the existence of a solution to (6.11)
may still be established provided we add a suitable condition on the choice of the data f € %'.
Note, however, that the stronger coercivity conditions (6.10), together with (i) and (ii) of
Theorem 1-6.1 are sufficient for the solvability of (6.11) for unbounded K.

We now summarize these results:

Theorem 1-6.2. Let conditions (6.1) hold with K unbounded. Let A: K- %’ satisfy the
following conditions:

(i) A is bounded.

(ii) A is pseudomonotone.

(iii) A satisfies the weak coercivity condition (6.9) or the coercivity conditions (6.10).
Then there exists at least one solution u € K of the variational inequality (6.2).

Moreover, if conditions (6.1) and conditions (i) and (ii) above hold and if A is coercive in the
sense of (6.10), then a solution exists to (6.11) for any f € %' O

Many useful corollaries of Theorem 1-6.2 can be obtained by replacing condition (ii) by
conditions which imply the pseudomonotonicity of A. For example:

Corollary 1-6.2. Let (6.1) hold, K being unbounded, and let A: K - %' be bounded and
coercive in the sense of (6.10). Then there exists at least one solution u € K of (6.11) if any one
of the following conditions hold:

(i) A: K- %' is monotone and hemicontinuous.

(i1) A: K-> U’ satisfies.

(A(w) - A(v), u — v)=— H(u, |u - vy) Vu,0€B,O0)NK (6.12)
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where ¥ is a Banach space in which % is compactly embedded and H:[0,%) x [0,®)->R is a
non-negative valued continuous function satisfying

lim %H(x, y)=0, x,y€l0,x) 6.13)
40"
(i) A: K- U’ satisfies
(A(u)— A(v),u —v)=—(B(u)— B(v),u—v) Yu,veK 6.14)

where B: K — ' is a completely continuous operator.
(iv) A: K-> %' is expressible in the form A(u)= A(u, u), where (u, v)—> A(u, v) is a map
from K x K into %’ satisfying
(iv.1) Yu € K, v > A(4, v) is bounded and hemicontinuous
(iv.2) Yu,v € B,(0)N K,

(A(u, u)— A(u, v), u = v)=—H(p, Ju - vf|¥) (6.15)

where H is a function of the type described in (ii) above.
(iv.3) If {u,,} is a sequence converging weakly to u € K, then

lim inf (A(v, u,,) — Ao, u), ty, —u)=0 VvEK
and (6.16)
lim inf (Ao, u,,) — A(v, ), w)=0 Vo,weK.

Several other conditions could, of course, also be listed.

1.7 Pseudomonotone variational inequalities of the second kind

We recall from Theorem 1-5.1 that so-called variational inequalities of the second kind arise
in minimization problems involving non-differentiable functionals. We will now describe some
results for general inequalities of this type for pseudomonotone operators. The major theorem

is as follows:
Theorem 1-1.1. Let U be a reflexive Banach space and A: % - %' a bounded, pseudomono-

tone operator. Let ¢: U — (— o, =] (¢# + =) be a convex lower semicontinuous functional on 4.
In addition, let the following condition hold

There exists a vy € U and a real number
r> 0 with [Jvgla <r such that

7.1
(A(v), 0 ~ o) + () - B(s0) >0 .1

for all » € U such that [[v|lq =r.

Then there exists at least one solution 4 € @, = {v € U: ¢(v) <+ »} to the variational inequality
(A(u), v —u)+ ¢(v) —p(u)=0 Vveq. 1.2)
Proof. Let B: (U XR)— (% x R)' be an operator defined on the product space % xR by
B(v,a)=(A(v),1); v€U, a€ER

The operator B is easily seen to be pseudomonotone on % X R because A is pseudomonotone:
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Indeed, if (U, am)—> (4, a) and lim sup (B(iy, @), (Um, @) — (U, a))yxg <0, then

m—x

lim inf (B(tp, @), (Um, @) = (0, B))axr

n—x

= lim inf [(A(y,), U, —0)+ 1 - (an — B)]

=(A), u—v)+ l(a - B)
=(B(u,a),(u,a)— (v, B))axzx Y(v,B)EUXR.

Since ¢ is proper and lower semicontinuous, the set
K={(v,B)EUXR: B=¢(v)}

is a non-empty closed convex subset of % X R. Moreover, condition (7.1) for A implies that B
satisfies condition (6.8) on % X R; in fact

(A(v), v — v) + B — Bo=((A(v), 1), (v — 1o, B — Bo))axr
=(B(v, B),(v, B) — (vo, Bo))uxr >0

for |(vo, Bo)|uxe <r and |(v, B)|lu = r. Thus, from Theorem 1-6.2, there exists at least one
solution (4, a) € K of the variational inequality

(B(u9 C(),(U, B)—(u’ a))me20 V(U’ B)EK (73)
or
(A),v—u)+B-a=0.
If v& P, (7.2) is obviously satisfied. Take v € 2, and B = ¢(v). Next, note that from the
definition of K, ¢(u)=<a. However, upon setting v =u in (7.3) with 8= ¢(v) we obtain
¢(u) = a. Hence a = ¢(u). Thus (7.2) is obtained from (7.3). O

As in the case of Theorem 1-6.2, condition (7.1) can be replaced by the stronger coercivity
conditions

There exists a vy € U such that

(A@), v =)+ $(0) -~ Blve) | (7.4

ol

for [[vfla, > ».

We also remark that if the functional ¢ in Theorem 1-7.1 is Gateaux differentiable on 3,
then (7.2) reduces to the variational equation

u€ Py (Au), w)+ (Dgp(u), wy=0 VYwe . (7.5)

This is obtained from (7.2) by replacing v by u + 8w, 8 >0, dividing by 6, and taking the limit as
6—0. This results in an inequality ( = 0) instead of (7.5). The converse (< 0) is concluded using
the convexity of ¢ (i.e. $(v)— d(u) —(Dd(u), v — u) =0).

We emphasize that (7.2) holds for non-differential ¢. However, a useful technique for
solving inequalities of the type (7.2) consists of approximating ¢ by a sequence {¢,} of
differentiable functionals such that ¢,(v)— ¢(v), Yo €U and lim inf &n(v,) = $(v) for any
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sequence {v,} € % which converges weakly to v. By Theorem 1-7.1, a bounded sequence
{um} € D,,, of solutions exists, for any m, to the system

{(A(lty), v = Up) + G (V) — G} =0 Vv E U

Thus, there exists a subsequence, also denoted {u,,}, which converges weakly to a point u € 9.
Then ’l"iglm inf (A(u,,), v— “m)Z,lni{Pw inf (P (Uy) — dm(v)) =0; ie. ']nl_r!l sup {A(uy), Uy —u)=<0.

Hence, from the assumed pseudomonotonicity of A,

{A(u), u — v)— ¢(v) + ¢(u) < lim inf (A(u,), u — v)

m—o

+ lim inf ¢, (4,) — lim ¢ (v) <0,

1.e. u satisfies (7.2).

1.8 Quasi-variational inequalities

In several important classes of physical problems, we encounter cases in which the
admissible set K depends upon the solution of the problem which is, of course, not known in
advance. Variational inequalities associated with problems of this type are called quasi-
variational inequalities.

In our present study of quasi-variational inequalities, we are only interested in cases in
which existence theorems are derived from so-called comparison theorems and maximum
principles of variational inequalities. To this end, the concept of ordering relations associated
with positive cones in linear topological spaces is necessary.

We will first establish some preliminary concepts. A subset C of a linear space % is called a
pointed cone with vertex 0 if tCC C for every t >0, tER and 0€ C. A partial ordering
relation, denoted by =, can be defined on a pointed cone C by setting

p=q ifandonlyif g-peC 8.1
It is clear that
psp VpeX
o (8.2)
p=q and g=<r implies p=<r Vp,qred

These relations imply that the partial ordering is compatible with the structure of a linear space
in the sense that

O0<p implies 0=<tp, Vi>0, tER
g<p implies g+r=<p+r Vr. ] ®
Conversely, for any partial ordering =<, the set
C={p€U:p=0} 8.4)
is the positive cone with respect to the ordering relation. Its negative cone is given by
-C={peU:p=0}. 8.5)

If CN (- C)=1{0}, the relation < is an ordering relation.
Let %* be the algebraic dual space of 4. The polar cone C* of a cone C is then defined by

C*={p*eu*: (p*,p)=0 Vpe(} 8.6)
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Since C* is a pointed cone with vertex 0 in %*, it defines a partial ordering relation <; i.e.
p*=gqg* ifandonlyif q*-p*€C* 8.7

If %* is a (topological) dual space of a linear topological space %, and if C is a pointed
closed convex cone with vertex 0, then we have the properties

pEC ifandonlyif O0<p and 39)

0O<pifand only if 0=(p*,p) ¥p*eC*. '
Since C* =(C**=C

peEC ifandonlyif p€&C** and 89)

pEC* if andonly if 0=(p,p*) Vp*€C*. '

If the set {p, g} of elements of a partially ordered set L have a least upper bound and a
greatest lower bound, they are called the join, denoted by p v g, and the meet, denoted p A g, of
{p, q, respectively. If, for every two elements in L, both of the join and the meet belong to L,
the partially ordered set L is said to be a lattice ordered set. If we define

p =pv0 and p =(-p)vo, (8.10)
any element p € L can be decomposed according to

p=p*-p-. (8.11)
We note that, for every p, g€ L,
sup (p,q)=pvqg=p+(q-p) =q+(p-q)° (8.12)
inf (p,q)=prg=p-(p-q)*=q-(q-p).

A typical example is the Sobolev space W™*((), m =0, s > 1, defined on a bounded open
domain in R* whose boundary is smooth enough. Under the “natural” ordering

u=v ifandonlyif w(x)so(x), ae x€ld)
the space W™*({)) is a lattice ordered linear space, and the positive cone W*(Q)), defined by
W Q) ={v € W™ (Q):0<v}

is closed; see Littman, Stampacchia and Weinberger[27].
Let % be a lattice ordered real reflexive Banach space. An operator A from % into its dual
' is said to be T-monotone if

(A(w)~ A(v), (u—v)"H=0 (8.13)

for every u, v € U such that (u — v)* € U If the equality is satisfied by the only (¥ —v)* =0, A
is strictly T-monotone.

Lemma 1.8.1 (Comparison Theorem 1). Let K be a non-empty closed convex set in a lattice
ordered real reflexive Banach space % and let A be a strictly T-monotone operator on %.
Suppose that u; € K and u, € K are solutions to problems

W EK: (A, v—uy={f,v—uy) VYveEK
WEK: (A, v—uy={fr,v—u,) VoK
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for given data f, and f, in %'. In addition, suppose that u, — (4, — u2)* € K and u + (u; — uz)* €
K. Then

Uy =

whenever f, < f.
Proof. Substituting u, — (4; — u3)* and uy+ (4y — u,)* for v,

(AQw), — (i — ") = {f5, — (1 — ) ")
(A, () — u)") = (fo, (w0, — ur)").
Adding these two inequalities gives
(A(uy) ~ Alwp), (i — )y =y = fo (1 — u)") = 0.
Since A is strictly T-monotone in ¥/, this implies that
Uy = Uy, D
Lemma 1.8.2 (Comparison Theorem 2). Let K, and K, be non-empty, closed convex
subsets of a lattice ordered real reflexive Banach space % and let A be a strictly T-monotone

on %. Suppose that u, and u, are solutions such that
w € K (A, v—-uy={f,v-u) Yv€K,
6HE Ky (Aw), v-udz{f,v—u) YEK,
for some fE€ V. If u;—(u;— uy)* € K, and uy + (4, — ux)* € K, then
U=y
Proof. Substituting u; — (i, — #;)" and uy+ (u, — u,)* for v, gives
(A(uy), = (1 — w)") = (f, — (uy — ux)™)
(A(ur), (uy— w)"y = (f, () — up)").
Adding these two inegualities gives
(A= Alwp), (1)~ w2)") =0,
Since A is strictly T-monotone, this result implies
(“1 - u2)+ ={, 1e. Uy = U 0

Lemma 1.8.3 (Maximum Principle). Let K be a non-empty closed convex subset of a lattice
ordered real reflexive Banach space 4. Let A be a strictly T-monotone operator form % into its
dual %'. Let u € K be a solution of the variational inequality

uEK: (A(w), v—u)y=0 Vevek. (8.14)
Suppose that there exists functions k and k such that

—(AK), (v -k)")<0 VveEK
(Ak), (k— 1)) =0 YveK (8.15)
inf(u, )€K and sup(u k)€K

and
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Then
k<u<k (8.16)
Proof. Taking v = inf (4, k) = u — (u — k)",
(Aw),—(u—-k)")=0, ie. (A(w)—AK), -k =(Ak),(u-ky*)=0.
Since A is strictly T-monotone
(u-k*=0, ie. u<k

Similarly, by taking v = sup (4, k),

1=~
IA
=

can be obtained. O
Example 1-8.1. Let A be strictly T-monotone operator. Let % be a linear space, the
elements of which are measurable functions defined on some domain QCR" Let K C % be
defined by
K={v€EU:v=¢, ae.in O}

where  is a given function such that ¢ =0, a.e. in {}. Let f be given data such that f =0, a.e. in
). Let u € K be a solution of the variational inequality

(A(u),v—~uy=(f,v—u) VYoeEK
Suppose that
Ak)=ak?, a=0 and p=0

for every constant function k. Then

Indeed
(AO-f,0-w")y=-{, (—uw))=<0. 0O

Theorem 1-8.1. Let % be a lattice ordered real reflexive Banach space and A be an operator
from % into its dual %’ such that

(A(u)+ B(u)— A(v) - B(v), u — v) = m(u - vf))

(8.16)
(Alu) = A(v), w) < N(ju — v|w].
Here B is a completely continuous operator from % into %' (i.e. B(u") converges strongly to
B(u) for every weakly convergent sequence u" whose limit is u), the function m: [0, ©)—>R is
strictly increasing, continuous, and is such that m{0) =0, and the function N:[0,%)-R is
continuous. Also let

Bu)=B(u) in U if wuy<u,.

Let M be a function defined on % such that
(l) M([h) —<—M(u2) in % if Uy < U,.
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(i) M(v)=0in % if v =0.

(ili) For any monotonically decreasing sequence u" in % satisfying M(u""') = u", its weak

limit u satisfies
M{uy=zu.
Further, suppose that
{A(0)+ B(0), (0~ v)")=<0.
Then, there exists at least one solution of the quasi-variational inequality.
u<M@u):{(A),v—u)y=0, VYv=Mu) 8.17)
Proof. Let u® be a solution of the problem

(A%, v)=0 VoeEX

such that u®>0. We denote that the existence of such a solution is assured by (8.16).
Let us define u”, n = 1, as a solution of the variational inequality

u" € K" "y {A™)+ Bu"), v —u™) = (Bu"™", v —u")

for every
vEK@u" ™"
where
Kuy={peU: v=Mu""}
We shall show that
W=--zpglzytz=- - 20
lu”l| = C.

We first prove that #°=>u' and #' = 0. In fact

{A@®)+ B®, v — u® = (Bu®,v—u® VveEU
(A" )Y+ B, v—u")Y=(Bu%,v—u") VveK®u.

Since A + B is strictly T-monotone, and since K(#")C U
W=u
as shown in Lemma 1.8.2. Since 4°= 0, M (1% =0. By the maximum principle. Lemma 1.8.3,

u'=0.

For u™! and u"

Tt - utY = M) = M(uY)

un __(un - uu—l)+ .‘SM(H"-‘).
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That is, "'+ (" —u" )Y € K(u" ™ and u" - (u" —u"""y € K(u"").
Moreover, since u" 2= u"""

B(u" %= B(u" ).

By Lemmas 1.8.1 and 1.8.2,

Since u" =0, i.e. B(u"" =0,

On the other hand, putting v = 0=< M(u""") gives
(A@™), u")y+(B(u"), u"y<(B(u"™"), u") <(B("), u").
This implies
"l = C.

Since any monotonically decreasing bounded sequence converges weakly to a unique limit, the
sequence #" converges weakly to u in 4.
By the hypothesis (iii)

u<Mu).
Foreveryv<Mu)=-- - =MW )=Mu" Y=< .-,
(A(u™)+ B@™),v—u")y=(B" "), v—u").
By the hypothesis on B, A+ B is pseudomonotone. Since B is completely continuous
{(A),v—u)=0 Vv=Mu).

Therefore, u is a solution of the quasi-variational inequality (8.17). O

Note that the above sequence {u"} converges to a unique limit &, but this does not imply the
uniqueness of the solution to the quasi-variational inequality, since the initial element #° can be
chosen arbitrarily.

Existence of solutions of the quasi-variational inequality of the second kind, e.g.

we U AW, v—u)+j(u; v)—j(u; u)=0 forevery veEXY (8.18)

follows from similar arguments with Theorem 1-8.1. To this end, we recall the comparison
theorem for variational inequalities of the second kind of Duvaut and Lions[8].

Lemma 1-8.4 (Comparison Theorem 3). Let % be a lattice ordered real reflexive Banach
space, and let A be a strictly T-monotone operator on ¥ into its dual '. Suppose that u; and
u, in 9 are solutions to problems

u € U: (Auy), v —u) + ji(v)— jl(u)) =0, YoeU
U €U (A(ir), v — ) + jv) — o) 20, YoEU
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for given proper convex semicontinuous functionals j, and j, defined on %. Then
U<l
whenever
Jilinf (03, v1)) + Ja(sup (va, v1)) < ji(v) + jolv2) (8.19

for every v;, v, E Y.
Proof. We introduce

w2 = sup (U, 1) = Uy + (U — )"

wy = inf (up, uy) = uy — (U — )",
Substituting of w; and w, into v of the first and second inequalities, respectively, we have

(A(u1), ~ (uy — up)") + ji(Gnf (uz, uy)) — ji(u)) =0
(A(ur), () — u)") + jo(sup (uz, uy)) — j{uz) = 0.

Adding above two inequalities, and applying the assumption (8.19), we obtain
—(A() — A(uy), (uy;— uz)") = 0.
Since A is assumed to be strictly T-monotone,
(U —uy))" =0, ie. w=<u,. O

Theorem 1-8.2. Let U be a lattice ordered, real, refiexive Banach space, and let A be a
hemicontinuous, strictly 7-monotone, and coercive operator of % into its dual %’. Suppose that
ifa<bin ¥

j(a;inf (v, w)) + j(b; sup (v, w)) < j(a; w) +j(b; v) (8.20)

where (v, w)— j(v; w) is proper convex lower semicontinuous from % into R, and that there
exists a non-negative solution #p € % of the non-linear equation

(A(up), v)=0, YveEU
Then there exists at least one solution to the quasi-variational inequality of the second kind
wWeE U (A, v—u)+jlu; v)—ju; u)=0 (8.21)
for every v € 4.

Proof. We define the iterative solutions {#"} by the variational inequalities of the second
kind

u"E U (A@™), v —u"y+jw o) —jw ' u") =0 8.22)

for every v € A
We will show that if u" ™' < u""2, then u" < u""'. By the definition of {u"}

(A", v —u" Y+ j" % v) - jw 3 u"") =0

(A", v —u")+ju""; v)~j(u" ' u") = 0.
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Taking v =sup (e" ', u")=u""'+w" —u"™")* and v =inf (u"", u")=u" —(u" —u""")" in the
above first and second inequalities, respectively, we obtain that

(A", (" —um)*)+ ju" % sup @ wm) = " ") =0

(A("™), — (u" — u" Y+ ju" ' inf (@', wm) - j(u" " u") = 0.

Adding the above two inequalities, and applying the assumption (8.20), we have
—(A@W") - A" "), (u" —u""y) =0.

Since A is strictly T-monotone
" ~u""""=0, ie u'<u"

Thus, we can conclude that

Furthermore, since A is coercive, the sequence {u,} is uniformly bounded in %. Therefore, the
sequence {u"} converges weakly to u in 9. Since (v, w)—j(v;w) is convex and lower
semicontinuous on %, we can pass to the limit n -+« in (8.22), i.e.

(A(w), v—u)+ j(u; v)~jlu, u)=0

forevery ve¥. O

Remark 1-8.1. The ordering # <v in Sobolev spaces deserves some additional comments.
Suppose u € W™?({). Then u is an equivalence class of functions with generalized derivatives
in L?(Q). The notation 4 <0 (for example) means that we can find a representative # of u in
this class with the following property: there is a sequence ¢ € C*()) such that ¢, converges
strongly to 4 in W™({}) and ¢, <0, Yk = 1. Similar arguments and orderings apply to traces of
W™ -functions on the boundary. For instance, if y;: W™ (Q) > W™ -"Pp(5Q), 0<j<m -1,
are the trace operators, the notation “d'v/dn’ <0, a.e. on 3Q” is used to signify that y;(v) <0
where (<) is interpreted in the sense just described.

Throughout the remainder of this study (particularly in Chaps. 3-5) orderings on Sobolev
spaces and on boundary traces will be interpreted in the sense described here. Thus, for
example, “v <0, a.e. on I'C 30" will be understood to apply to partial orderings of traces of,
e.g. H'(Q2) on 4Q restricted to H"*T). For additional details on this subject, see Oden and
Kikuchi[25] and Littman, Stampacchia and Weinberger[27]. O

1.9 Comments

The theories discussed in this chapter summarize many of the fundamental results on
variational inequalities developed over roughly the last decade. Our development follows
principally the works of Mosco[5,9], Lions[11, 28], Brezis[4,29] and Stampacchia[10]. More
details of the theory of variational inequalities can be also found in Oden[30] and Kikuchi[31]
together with various examples from solid mechanics.

The introductory explanation of the concept of variational inequalities in Section 1.1 follows
from Stampacchia[10]. Example 1-1.1 is used in Kikuchi[32] in order to show a relationship of
variational inequalities to free boundary problems.

Theorem 1-2.1 is found in, for example, Mosco[5]. Theorem 1-2.2, i.e. the existence theorem
of minimizers of functionals, follows from Vainberg[24]. Theorem 1-2.3 is an obvious result of
Theorems 1-2.1 and 1-2.3, and equivalent properties of monotonicity of the gradient operator
DF of a convex functional F, (2.3). Geometrical interpretations of a minimizer of a convex
functional on R™ can be found in Mosco[5).

The inequality representation of the projection of a Hilbert space into a closed convex
subset follows from Lions and Stampacchia[3], Stampacchia[10] and also Brezis[4].
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Construction of the contraction T for a strongly monotone Lipschitzian operator A was first
introduced by Lions and Stampacchia[3].

The Hartman-Stampacchia theorem, Theorem 1-4.1, was proved by Hartman and
Stampacchia[26] in 1965. This is the first existence theorem on solutions to variational
inequalities involving non-linear operators, and it had a significant impact on the development
of the non-linear theory of monotone operators on subsets of reflexive Banach spaces.

Variational inequalities of the second kind were introduced by Browder[33] in applying the
notion of an indicator functional for closed convex subsets of Banach spaces. Further results
along these lines were contributed by Brezis[4].

Pseudo monotone theories of variational inequalities of the first and second kind, Sections
1.6 and 1.7, are found in Brezis[4], Lions[11] and Stampacchia[10].

The theory of quasi-variational inequalities discussed in Section 1.8 was studied by
Mosco[9] and Lions[28]. Comparison theorems and a maximum principle follow from the
works of Brezis[29] and Mosco[9]. Theorems 1-8.1 and 1-8.2 can be found in Lions[28] together
with several examples. O

2. APPROXIMATION AND NUMERICAL ANALYSIS
OF VARIATIONAL INEQUALITIES

2.1 Convergence of approximations

In this chapter, we discuss theories of approximation of variational inequalities with special
emphasis on those theories applicable to finite element methods. We will be primarily con-
cerned with the general variational inequality: find u € K such that

(A(u),v—uy=0 Yvek (L.1)

An approximation of (1.1) generally involves seeking a function u, in a set K, which is a
subset of a finite dimensional subspace %, of 4, h being an appropriate index. The ap-
proximation of (1.1) will then involve seeking u;, € K, such that

(A(uh), Uy — Ilh) =0 VD;, S K;,. (12)

In general, %, is a member of a family of closed subspaces {%y}o<p<1 Of %, each containing
a set K, so that {Kjlocn<: is a family of subsets of % approximating in some sense the
constraint set K. We are interested in determining sequences of solutions {u} to (1.2),
u, € K, C U, and in investigating the behavior of the approximations as & — 0. In particular, we
wish to determine conditions under which {u,} converges in some sense to a solution to (1.1)
and in estimating the error u — u;.

The first question that arises is what is meant by a consistent approximation of the set K,?
For our purposes, the following general condition is sufficient:

Let K be a subset of a normed linear space %. A sequence of subsets

{K,} in % is said to converge to a set K if

(i) for every v € K, there exists a sequence v, € K, which converges
strongly to v, and

(ii) for every weakly convergent sequence {u,}, u, € K,,, its weak limit u
belongs to K.

(1.3)

Our first result is a general existence and approximation theorem for problems of the type
(1.1) in which the operator A is of the Garding type (i.e. it satisfies a generalized Gérding
inequality in the sense of Oden[34]), and is coercive. Operators of this type can be shown to be
pseudomonotone (see Oden{34] for a proof of this fact). The following approximation theorem
and a priori estimates are discussed in Kikuchi[31].

Theorem 2-1.1. Let K be a non-empty closed convex subset of a reflexive Banach space %L
Let {K,} be a sequence of closed convex sets in % convergent to the set K in the sense of (1.3).
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Let K be a subset of % such that, for every 0<h <1, K and K, belongs to Klet A: K->
be an operator on K satisfying the conditions,
(i) A is coercive.

(i)

(A(u)~ A(v), u — v} = allu - v|§ — BM)u—oll§, >0 (14)
for every u, v € K with ||ulla, [[v]a =M, p > 1, ¢ > 1, where ¥ is a normed linear space in which
9 is compactly imbedded and (-, -} is the duality pairing on %’ X 9.

(iii) A is bounded in the sense that |A(v)]a <+ for [|v]ly <+ .

Then there exists at least one solution 1 € K of (1.1). Moreover, let {u,} be a sequence of
solutions to (1.2) obtained as h->0. Then there exists a subsequence {u,} of {u,} which
converges strongly to a solution u € K of (1.1).

Proof. The existence of solutions # € K of (1.1) and u, € K, of (1.2) follow from results
established in the previous chapter (see Theorem 1.6.1). Owing to the coerciveness of A on K,
any solutions of (1.2) are bounded in 2. Since % is reflexive, there exists a subsequence {u}} of

the sequence of solutions {u}, u, € K, which converges weakly to i € 9.
Using the first condition (i) of convergent sets K}, in (1.3)

(Auy), v — up) = (Ay), vn — Up)+ (A(n), v — v4) = — | A(u)laflv — valla

for every v € K with v, — v strongly in 4. Then
im{A(u,), u,—v)=0 VveK. (1.5)
h-0

By condit_ion (i) in (1.3), the weak limit of u} belongs to K, i.e. i1 € K. Since A is pseudomono-
tone on K, it can be easily shown that & is also a solution of (1.1). Indeed

0=lim inf (A(u}), uy— v) = (A@), i —v).
That is
{(A(@),v—ii)<0 VveK.

We shall show that a subsequence {u}} of {u;} converges strongly to ii € K. By the Garding
inequality, we have

(Auy), up — )= (AG), u, — i)+ aljuy — ill5 = Blluy — @ll3
where f§ = max {B(|unllu), B(lla)}. Then, by (1.5) and since & € K
0=1im (A(uy), up, — )
h—0
= lim (allu} ~ allg — Bllus— al$)
R0
= o lim [}, ~ il (1.6)

Here we have used the fact that % is compactly embedded in ¥ and, therefore, any
subsequence {u}} of {u;} converging weakly in % must converge strongly in ¥. This completes
the proof. O

We observe that if B(M) =<0, then A is strongly monotone on K. In this case, the solutions
of (1.1) and (1.2) are unique and {u,} converges strongly to the solution of (1.1).
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We remark that the conclusions of Theorem 2-1.1 can easily be extended to cases of
variational inequalities in the second kind which involve the sum of the gradient DF of a
weakly lower semicontinuous functional F and a coercive, convex, non-differentiable func-
tional ¢: K—>R. Indeed, let A=DF, F: K—R, and let ¢ be continuous and coercive on K.
Then (1.2) becomes

uy € K: (A(uy), vy — tp) + d(vn) — d(up) 20 Vo, € K.

By the convergence condition (i) of (1.3), for every v € K,

(Aun), v — up)+ $(v) — d(up) = — | A(up)|acllv — valla + S(¥) — S(o4).

Then
iiino {(A(up), v — ) + $(v) — $(un)} =20 VoeEK.

By the Gérding-type inequality
(A(un), un — u) = (Aw), uy — u)+ allu, — ully — Bllux — ull3-

Then
0=lim {A(u), s — 1)+ $(uy) ~ S(w)}
= lim {(A), uy ~ )+ $() ~ $(u) + allu, — ullh, — Blluy — ull$).
Since ¢ is convex and continuous on K, ¢ is weakly lower semicontinuous on K. Then
0= a lim [u~ ul4,

which means that the results stated in Theorem 2-1.1 can be extended to variational inequalities
of the second kind.

Another interesting result is the following estimate which is useful for obtaining an a priori
error estimate of approximations. Let K and K}, be closed convex subsets of a reflexive Banach
space. Let u and uy, be solutions of the respective variational inequalities

uEK:A{AW),v—u)=0 YvekK (1.7

u, € Khl (A(u,,), Uy — llh> =0 VU;, c K;,. (18)
Then, for every v €K and v, € K,,,

(A(u)s u- uh) = (A(u)9 v— uh)

={(Au), u —v,)+{Au), v —u, + vy, — u
—(A(up), u — uy) < (A(wy), vy~ u)

Adding these two inequalities gives

(A(u)— A(up), u — up) < (A(u) ~ A(uy), u — vy)
+{A(u), v, — u)+{A(u), v — u). (1.9)
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If K, C K for every h >0, we can take v = u,,. Thus
(A(u)— Aup), u — up) <(A(u) — Aluy), u — v,) + (A), v, — u). (1.10)

Theorem 2-1.2. Let K and K, be closed convex subsets of a reflexive Banach space 4. Let
u € K and u, € K, be the solutions of variational inequalities (1.7) and (1.8). Then, for every
vEK and v, €K,

(A(u)— Aup), u — up) < (A(u) — A(uy), u — v) + (A(U), vy — U+ 0 — Uy).
If K.CK
(Au) — Alup), u — up) <(A(u) — A(uy), u — v,) +{A), vy —u). 0O

Estimates (1.9) or (1.10) and the Gérding type inequality are useful in obtaining a priori
estimates for # and u,.
For variational inequalities of the second kind, (1.7) and (1.8) become

UEK: (Au),v—u)+ d(v)-d(u)=0 VveK (1.11)
u, € Kh: (A(u;,), vy — u,,) + ¢(Uh) - (b(uh) =0 VYve K},. (112)
Then, for v € K and v, € K},

(A(u), u —up) = (Au), u — va) +(AU), v — uy + vy, — u) + (v) - d(u)
—(Aup), u — up) < (A(uy), vy ~ u)+ d(vy) — d(up).

Adding these two inequalities gives
(Au)— A(un), u — up) = (A(u) — A(up), u — vy) +(AU), vy — u)
+{(AW), v — up) + ($(vw) — $(u)) + ($(v) ~ d(uy)). (1.13)
If K, C K for every h >0, then
(A(u) — A(up), u — up) < (A(u) — A(up), u — vy) +(Au), v, — u)
+ o(vy) — P(u). (1.14)

Theorem 2-1.3. Let K and K, be closed convex subsets of a reflexive Banach space . Let
u€K and u, € K, be the solutions of variational inequalities (1.11) and (1.12), respectively.
Then, for every v € K and v, € K,,,

(A(u) — A(up), u — up) < (A(u) — A(y), u — )
+(AW), vy — u+ v~ up) + d(vy) — S() + $(v) — d(uy).

If K, C K is assumed for every h >0,

(A(u)— A(up), u — up) < (A(u) — A(up), u — vy)
+{AW), vy —u)y+ $(vp) - d(u). O

2.2 Error estimates for finite element approximations of variational inequalities

We will now consider cases in which the subspace %, and the subsets K, have a structure
typical of that found in finite element approximations. The parameter h can be regarded as the
mesh parameter, which is typically the largest diameter of a finite element in a given mesh. The
families {Uy}o<n<1 and {Kj}o<s<: are generated by appropriate refinements of the finite element

LJES Vol. I8, No. 10C



1206 J. T. ODEN and N. KIKUCH!

mesh. In all applications of our results, the space U is generally a Sobolev space W™P({)) or
H™(Q), Q being a bounded open domain in R”, and m =0, 1 <p <,

For simplicity, we will restrict our attention to variational inequalities involving linear
operators defined on a non-empty closed convex set K of a real Hilbert space H.

Let a(-, ) be a continuous coercive bilinear form defined on H such that

a(u, v) =< Mluly|vlly
Yu,vE€EH 2.0
a(u, u)= m|ulz.

Our first major result is an important theorem due to Falk[16):
Theorem 2-2.1. Let (2.1) hold and let u € K and u, € K, be respective solutions of

variational inequalities

ueK:alu,v—u)=f(v-u) YweKk 22
uy, EK;,Z a(u,,, Uy —u,,)zf(vh —u,,) VU;, EK}, '

where K and K, are non-empty closed convex sets in a Hilbert space H and a finite
dimensional subspace H, of H, respectively. Let A: H— H’ be an operator defined by

(A(u), v)=a(u, v) - f(v)

where (-, -) denotes duality pairing on H' X H and f € H'. Then the following inequality holds
for every v € K and for every v, € K,

2
it = n;,_% = v,,ug,+% (AW, vy — 1+ v~ 11,), 23)

Proof. From the estimate (1.9)
(A(u)— Aup), u — up) <(A(u)— A(up), u — v,) + (A(U), vy — U + v — ).
That is
a(u—up, u—up)<a(u—up, u—v,)+{AW), vy, —u+v—up).
Then, from (2.1)
mlu — unlfr= Mlu — unleslu = onllr +(AG@), o4 —u+ 0 — ). 2.4

Using Young’s inequality

abs§a2+§1;b2 Ve>0; a,bER

we have

M? ‘
Milu — uplxflu — vl SL"Z_ llu — uy ||121+§',; llu = vy |3

Substituting this into (2.4) yields (2.3). O

The next corollary follows immediately from Theorem 2-2.1.

Corollary 2-2.1.1. Let the conditions of Theorem 2-2.1 hold and in addition let H be
continuously embedded in a Banach space % Suppose that K, C K (so that one can take v = u,
in (2.3)) and A(u) € ¢, the dual of ¥ Then

M? ‘ 2
[l = w|fr= w2 llu— vall + ™ Ao/l — valls. (2.5)
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Moreover, if K =H and K, = H, so that A(¥)=0in H', then
‘ M
flu = uples = lu—valle. O (2.6)

We recognize the estimate (2.6) as that of the usual finite element estimates for linear elliptic
problems; see, for example, Oden-Reddy[19].

In general, solutions of elliptic variational inequalities are not expected to be smoother than
to belong to W2?(Q}). However, as shown by Baiocchi[13] there are cases in which
the solution of the variational inequality belongs to W2 ¢%((}), € being a sufficiently small
positive number. In such cases, we may obtain higher-order rates of convergence than h, h
being the mesh-size parameter, by using finite elements of higher order than linear elements.
The following example problem follows Brezzi and Sacchi[35] and Kikuchi[36].

Example 2-2.1. Let ) be a bounded open convex domain in R? and let its boundary I be
smooth enough; for example, I' can be piecewise C2. According to Baiocchi[13], the solution u
of the variational inequality

ueK:fVu-V(v—u)dx+f(v—u)dx20 YVveK .7
O Q

K={veH'(Q):v=g ae.on I, v=0, ae.in ()} 2.8
can be characterized by

V- Vu+Du=0, -V-Vu+1=0, u=0, in O

(2.9
ulr=g and u€ H> ()
if the data g are smooth enough; for example, if g belongs to C*(T'). Then
-V -Vu+1€ H% () C L Q). (2.10)

Let € be exactly triangulated by a finite element mesh and let 2 and 3 denote the sets of all
nodal points in {} and on the boundary T, respectively. We consider the following cases:

(a) Linear case. We first consider the case in which linear polynomial approximations are
used over each finite element. Suppose that the admissible set K defined by (2.8) is ap-
proximated by

K, ={vy € Sp: vEr) = g(3p), v(Z)=0}. (2.11)
Then

K, CK.
For this case, we take H to be the linear manifold

H={veEH():v=g, ae.on T}
and set
$=9=LYQ).
Then

loleg =lv) = Cloly YoeH
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so that Corollary 2-2.1.1 yields

2
= i = Ju = o+ 2 |-V Y+ Yo —valo Vo, €K, @.12)
m m

Here ||| and ||, are the Sobolev norm and semi-norm on H'((}), respectively, and |-||o is the
L*Q) norm. It is well known that for regular refinements of piecewise linear finite elements, the
following interpolation estimates hold (see Ciarlet{20] or Oden and Reddy[19] and Falk[16])

inf |v—wvy)i =< Cihfo),
v €Ky

(2.13)
inf ”U — Uy |L) = Czhzlvlz.
v €K}
Introducing these estimates into (2.12), we obtain for the final error estimate
lu— uyl|ly < Ch (2.14)

where C is independent of h.

(b) Quadratic case. Next, suppose that quadratic polynomial approximations are used over
each finite element and let K, be defined by (2.11). Then it is clear that K, K. This implies
that the term

(AW, vp,—u+v—u,), vekK, v,€K, (2.15)

in (2.3) has to be estimated in order to obtain the rate of convergence of the method. Toward
this end, let us consider the integral

I=f (=V-Vu+1)(u, - v)dx (2.16)
)

from which the term (2.15) is derived. If

v=sup (i, 0)EK .17
then u;, — v vanishes in {) except in finite elements where the value of u;, is zero on at least one
but not all of the nodal points. By examining the structure of the matrix induced by the bilinear

form a(u,, vy), we observe that the number of such finite elements in the model is at most Ch~!,
where C is some constant which depends only upon the boundary data g. Then

I<Ch'| (-V-Vu+1)u,-v)dx
Q.

where (), is a representative finite element of the type described above. By the regularity of the
solution described in (2.10),

I< Ch_l"— V-Vu+ 1”0@,0,"“’1 - v”o,me

where |- Jlos0, is the LP-norm on (.. Since u, —v =0 on the boundary of (1., the following
estimate is known to hold for v € H'((2), QCR"

[o]lo.p.0 = C(mes QY+VP-adpfl g (2.18)
l<p=ow, 1=<qg=o Then

fleaw — U"o,l,n, < Ch*|uy - ””l.w,ﬂe
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Thus
I1=Cl-V-Vu+ oo fun = vlls g b

Since |-V Vu+ o, <] = V- Vu +1]jy.0, and since |u; — v[l; »q, is bounded, we obtain the
estimate

I=sCh

where C is a constant independent of A. Thus
f (= Vu+ Dy - 0) dx < OB 2.19)
Next, we will use essentially the same procedure used to obtain (2.19) to estimate the term
L(—V <Vu+ D(u—v,)dx
We observe that the integral
J=L(—V-Vu+1)(u—v;,)dx

where v;, is the interpolant of u, vanishes in {} except on finite elements in which the value of u
is zero on at least one but not all of the nodal points. Then

]sCh“f -V -Vu+1)u-v,)dx
Q.

< Ch7=V - Vu+1ozn,lu = val..0,-
Applying (2.18)

J=<Ch'| =V Vu+1owngh®*'""Pu - valli2.0,
= Ch*| -V - Vu+1owa,ll — valls 20-

By the interpolation property (Oden and Reddy [20])

inf [lu— vals =< Ch**<|uls-. (2.20)

vRES

we obtain
J = Ch* “ullps-e. (221

Finally, collecting the estimates (2.19) and (2.21) and introducing them into (2.3), we have

M? ‘
== C (M K ulos-o + (CH™ s+ C))

< Ch**
Thus, the final error estimate is

lu— wh <0(h*2). O (2.22)
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Example 2-2.2. We describe briefly some numerical results obtained by solving a 1I-
dimensional version of problems (2.7) and (2.8) studied in Example 2-2.1. We are particularly
interested in verifying the rates of convergence of the finite element approximations derived in
Example 1-1.1. In this simple case, {1 = (0, 1) and we take g(0) = 0.25 and g(1) = 0. The problem
was solved for several uniform meshes using both linear and quadratic finite elements. The
results are shown in Fig. 2.1. The computed rates of convergence are seen to be 0(h'~¢) for
quadratic finite elements in the H'-norm, in perfect agreement with the theoretical estimates
214 and (2.22). O

2.3 Solutions methods

The approximation of variational inequalities by finite element methods leads to finite
systems of inequalities in the nodal values of the approximate solution. For example, consider
again the problem

u, € K;,Z (A(u,,), Uy — ll;,)ZO Yy, € K;, (31)
where K, is a subset of the finite-dimensional space %, spanned by the collection of basis
functions {¢;})\; generated using finite elements for a fixed partition of a bounded domain Q. A
is, for example, a strongly monotone operator from K C % into '. If {x;}}\.; are nodal points in
)4, the approximation of (), then the functions {¢;} are designed so as to have the property

¢i(x;)=8; 1=<i,j=N.
Then u, and v;, are of the form

N N
Uy (x) = Z} Ugi(x), vu(x) = §=:| vpi(x), XEQ,

where 3.2)
u; = up(x;) and v = va(x;)

1073

Norm of Error

1074

10 1072

Fig. 2.1. Rates of convergence of a quadratic finite element approximation of Example 1-1.1.
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Substitution of (3.2) into (3.1) yields the system of N inequalities in the N unknowns
Uy, Uyy oo, UN.

N N
Uy EK;,<A<Z ll,'(O,‘), v,,—E uk¢k>20, DhEKh, IS]SN (33)
i=1 k=1

To proceed further, we must solve numerically the system (3.3) in such a way that the constraint
u, € K, is fulfilled.

The purpose of this section is to outline and discuss several numerical techniques for
solving systems of inequalities of the type (3.3). Since variational inequalities are closely related
to constrained minimization problems, several standard algorithms in use in the theory of
constrained optimization problems are directly applicable to our study.

Here we discuss four major methods of this type: fixed point methods (i.e. successive
approximation), pointwise relaxation methods, penalty methods and Lagrange multiplier
methods. We follow the works of Cryer[37], Cea-Glowinski[38], Levitin-Polyak([39] and
Glowinski-Lions-Tremolieres [6].

We will adopt the following conventions. Let % be an N-dimensional Euclidean inner-
product space with inner product (-, -) given by

N
(u, )=, uw; (3.4
i=1

and the natural norm on % induced by (-, ) is
el = (u, w)" (3.5)

Let K be a non-empty closed convex subset of %, and let a map A be continuous and strongly
monotone from ¥ into ¥’. (Here %' is identified with % itself.) That is, we assume constants m
and M exist such that

(Aw)—-A(w),u—-v)=mlu—vlf, m>0 36

(A() — A(0), w) = Ml ~ o jw| G4
for every u, v, w € U%. We will investigate solution methods for (3.3) for cases in which A
satisfies (3.6).

(i) Fixed-point methods. Our first method involves a simple reiteration of the contraction
mapping ideas developed in Section 1.3. Recall that if Px is a projection of % onto a set K, the
mapping

T(u) = Px(u— pA(u))
is a contraction mapping for operators satisfying (3.6) whenever p satisfies 0 < p <2m/M?. For
this choice of p, T has a unique fixed point in K which can be calculated using the classical
method of successive approximations: u*=T(u*"), t=1,....

We summarize the essential ideas in the following theorem.

Theorem 2-3.1. Let % be an N-dimensional inner product space and let A: % - %' satisfy
(3.6). Then the variational inequality

uEK:(Au),v—u)=0 VYvek 3.7
admits a unique solution which can be calculated as the limit of the sequence {u'} where
u't'= Pe(u' - pAWu')), p>0, u’ek. 3.8
Here Py is the projection map of % onto K, and

0<p<2mM>. O (3.9)
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Use of this iteration scheme to obtain solutions of variational inequalities has been
discussed by Brezis and Sibony[39].

(ii} Pointwise relaxation methods. Suppose that the non-empty closed convex set K is
representable in the form

N
K=[IK, Ki=la,bi] (3.10)
i=t

where a; and b; are some real numbers. We only consider here the case in which the map A is
potential, that is, there exists a potential F: % »R such that its Gateaux derivative DF
coincides with A. Let

t+1

P R t t
‘u '_(ul PR ¥ ’uH-l"-"uN)

(g +1  ft+t t+1 t ¢
v "'(ul s""ui—hviaui-t»h-'-auN)

t=0,1,2,...

where we use the convention

G 8+t

wtl=ut=(ui,.. ., ul).
We note that the variational inequality
uceK:(DF(w),v~-u)=0 Yuek (3.11)
is now equivalent to the minimization problem
ueK: Fiuy<F(v) Yoek 3.12)
The pointwise relaxation scheme is based on the algorithm

ui' €Ki Feu*) < F(v'™) VYo €K: ¢.13)

fori=1,...,Nand t=0,1,.... Here we assume that ¥’ € K.
Theorem 2-3.2. Let F be a continuously differentiable functional on K such that?t

(DF(u)— DF(v), u = v) = ry(ju — vf)
lul <M, [ol<M, VuveK

(3.14)
where - ry(1):[0,2M}—=R" is continuous strictly increasing function such that ry,(0)=0.
Suppose either that K is bounded or that F is coercive on K, i.e.,

F(v)»+x as |jof>+» VveK

Then, the pointwise relaxation procedure (3.13), with K given by (3.10), converges to the
solution u € K of the problem (3.11).
Proof. Setting v; = u} in (3.13) gives

Fu*'YsFM 'u*Y<---<Fu'y<---<Fu°. 3.15
The coerciveness of F or the boundedness of K implies the boundedness of u'; i.e.

le'|=M forany ¢

+Condition (3.14) is guaranteed by the strict convexity of the continuously differentiable functional F on R™. See Cea-
Glowinski[38].
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By integrating the expression
(DF(u + s(v — u))— DF(u), v — u) 2% r(sllo —uf)

from 0 to 1 in s, with

, s d

Pr(s) = f (0=

0 X
we obtain
F(v)— F(u)=(DF(u), v — u) + fy(|v — ul).
Thus
F(i-lut+l)_ F(iut+l) > (u: _ ult_+l)Dl_F(iul+l)+ r‘M(luf _ ulg+ll)
where D.F(v) is the i-directional derivative of F at v. By the definition (3.13) of u!*!,
(vi—u™DF(u'*)=0 Yy, €K, (3.16)
Thus, we have
F(i—lut+1)_ F(iqu) > fM(,uf _ ulg+1')-

Summing from i=1to i = N gives
N
Fu')— Fu'*y = Ay(lut - ut*")).
i=1

By (3.15), F(u')— F(u'*") -0 as t -, which implies |u} — u{*'|>0 as t > for every i, i.e.
wW—ut>0 as t-o>+w,

We now show that u‘ converges to the solution u € K of the problem (3.7). According to
(3.14)

(DF(u"*"y-DF(u), u'*'=u)=ry (Ju**'-ul)).

Let u be the solution of (3.7), i.e. u satisfies (DF(u), v —u) =0, Vv € K. Then

(DF(u™"), u**' = uyzry (|u**'~uf). G.17)

Using (3.16), we have

N
> (- u*YDF(u"*")=0 un€eK, i=1,...,N. (3.18)
i=1

Under the condition (3.10), u; € K; since u € K. Adding (3.17) and (3.18) yields

N
21 (Ui — u)DF Uy~ DF(u'* ") = ry(Ju' ' - ul).
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Since F is continuously differentiable and coercive, and since [Ju'*" - u'*Y| <|ju**' - u'], we can
conclude that

fu*' —ul|-0 as t-x

This completes the proof of the theorem. [

It is important to note that property (3.10) is crucial to the proof of the above theorem. In
many simple cases (e.g. if K={(v;, 1) ER? v;=0, v,=0, v,+v,=1)) this convergence
theorem is not directly applicable.

A final question must be resolved if we are to use this algorithm in actual computations;
namely, how can we compute the intermediate minimizers u!*' in (3.13), i.e. the solution

u!*' € K; of the inequality (3.16)? To answer this we recall Example 1-3.1. Let

1);F(‘u‘“)=25\ By 2 DE;“;
=t

=i+l

Dividing (3.16) by DF;, we have
(o= ugy(ut 2 DRui"'- 3, DFui)=0, Vu€la, b

where
~~
DE‘;‘ = DF.','/ DE;.

Then, applying (1-3.9), we have

-m

uitt= S DEut*' + 2 DF},u> b}

= min {max (a,,
) =i+]

i

forl<i<N.
Remark 2-3.1. As we mentioned, if the constraint set K is given by, e.g.

K= {(U], Uz) € RZ: nto,= 1}

we cannot apply the above convergence theorem. However, in this case, we change the variable
u, by the affine transformation

U =vy+ 03— 1.
Then the constraint becomes simply
= 0.

For example, if the minimization of the functional

F(v, v)) =

Nl_
NI-—-

is considered on K, using the new variables (¢4, i,), we need to minimize

F(o, 1) =3 01 +3 (1= v, + 17

1.
2?

1 1

— 2

= vy + = “ v+ i+
vi— i 2 27U 2 2
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on the set K given by
K= {(v1, w2): u, =0}

Thus, we can apply the algorithm described in Theorem 2-3.2. [0
(iii) Penalty methods. Both of the methods discussed up to this point involve the con-
struction of a projection map Px. In the pointwise relaxation method, Py is constructed only

N
when the non-empty closed convex subset K has the form K = II K;. One alternative approach
i=1

which avoids the construction of a projection Py is provided by the so-called penalty methods.
To describe the general ideas underlying penalty methods, let us consider the case in which
K is of the form

K={veU: M(v)=0; j=1,...,m, m<N} (3.19

Here M;(*) is a continuously differentiable concave function on % for each j, 1 <j < m. Further,
suppose that the operator A (appearing in (3.1) and satisfying (3.6)) is derivable from a convex
potential F: %—R; i.e. A=DF. Then the variational inequality is equivalent to the minimization
problem: find €K such that

Fu)=F(v) VveEK (3.20

In this case, A is continuous, monotone and symmetric on 4.

Penalty methods for this class of problems involve the construction of special auxiliary
functionals which depend on an arbitrary real parameter € and are constructed as the sum of F
and a “penalty term” which depends on € and the constraint K. In the present case, we may
introduce the penalized functional

E(v, e)=F(v)+%M(v)‘ 3.21)
where

M(v) =sup{- M(v), 0}, M(v)—=§1 M)~ 3.2

Then
M(u)y =0 ifandonlyif u€K.
Next, instead of (3.20), we consider, for fixed ¢, the auxiliary minimization problem
u€U: E(u.,e)<E(v,e) YveEU. 3.22)

Since M(v) is concave and continuous on %, the penalized functional E(-, €) is also convex and
continuous. Since M(v) =0, Vv € % and since F(-) is coercive, there exists a solution u, € U of
the penalized minimization problem (3.22) for each € >0. If DF (or A) is strictly monotone, F
is strictly convex. Then the solution is unique for every e>0. Coerciveness of F(-) on %
implies the uniform boundedness of u, in .

The importance of the solutions u, of the penalized problem is made clear in the following
theorem:

Theorem 2-3.3. Let F: 4 —R be coercive, strictly convex, and differentiable on % and let
K C % be given by (3.19). Then

(i) There exists a unique solution u € K of the minimization problem

Fu)=F(v), veK. (323
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(ii) The solution u of (3.23) satisfies the variational inequality
(DF(u),v-u)=0, vEK (3.24)

(iii) For every € >0, there exists a unique solution u, € ¥ of the penalized minimization
problem

E(u,e)<E(v,e) YoEU (325

(iv) The sequence {u,} of solutions to (3.25) obtained as € >0 converges strongly to the
solution u of problems (3.23) or, equivalently, (3.24).
Proof. Since

F(u,)=< E(u,, )< inf E(v, €)= inf F(v)= F(u)
vEK vEK

coerciveness of F(-) on % implies the existence of a convergent subsequence u. of u, whose
limit is w € 9. Since F is convex and differentiable, it is lower semicontinuous and, therefore

F{w) < F(u.)< F(u).
Moreover
E(u,., €)<F(u);, ie. M(u.) <e'(F(u)-F(u,)).

Taking the limit as € >0 yields
M(u) =0,

Since M(w)" =0, M{(w) =0; iL.e. we K. Since F is strictly convex, its minimizer in K is
unique; i.e. 4 = w. This conclusion is reached for every convergent subsequence u.- of u.. Thus,
the original sequence u, converges to w=u€K as ¢—->0. To show strong convergence, note that
under the conditions of the theorem, (3.14), holds. Since u is the solution of (3.24)

0=(DF(u), u—Px(u.))
=(DF(u)-DF(u,), u~u)+(DF(u.), u—u,)
+(DF(u)7 ue_PK(ue))
Since u, is the solution of (3.25), and since the penalty functional M~ is convex, we have
(DF(u.), u—u)=M (u;)—M (u)=0.

Then
GZHI_}; {ru(u—u)+(DF(w), u~Px(u))}

=lim ry(|u—u.]).
e~

This indicates that the sequence {u.} converges strongly to u as e>0. O

In general, penalty methods can be constructed for quite general minimization problems in
which

F: 9 - R is weakly lower semicontinuous and coercive.
P: % -»R is the penalty functional, and P satisfies,

(i) P: U -Ris differentiable (in the sense of Giteaux) and weakly lower semicontinuous,
(ii) P(v)=0 and P=0if and only if v€K; v&K implies P(v)>0.
Then the penalty functional

E(v, €)= F(v) +£ P(v) (3.26)

has a minimizer u, (not necessarily unique) for every € >0, and a subsequence of minimizers {x.}
converges weakly to a solution u of the minimization problem

inf F(v)= F(u).
veEK

We further generalize the penalty method to the variational inequality (3.7). Let A be a
continuous map from a non-empty closed convex subset K of a finite dimensional Euclidean
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space 4 into %’. Let Pk be the projection map from % onto K. Then the map B: %%’ given
by

B(v) = v — Px(v) (3.27)
is monotone and continuous on % and
B(w)=0 ifandonlyif v€EK
Indeed, using (1-3.2)
(B(u) = B(v), u—v) = (u—v, u = v)—(Pg(u) — Px(v), u —v)
2= lu - off = | P(u) = Pr(0)]Ju — o

=0
and

(B(u)— B(v), w) = (u — v, w) — (Pg (1) — Px(v), w) < 2|u — vf | w]

Then, for every e>0, there exists a unique solution u, € % (U, we recall, is now finite
dimensional) to the problem

u € U: (An) +% B(1),v)=0 Voe (3.28)

provided A is assumed to be strictly monotone, and coercive in the sense that
(A(v) = v, V)f[[v] >+ as [o] o, pEK

Furthermore, u, is uniformly bounded in € > 0. Then there exists a convergent subsequence .
which converges to w € %. By the definition of u,

(Bue), v) < e|Aw)[lv] YveU
ie.
Bu)—0 as e—0

Since B is continuous, B(w) =0, i.e. w € K. Moreover, for every v € K

(A, 0= 1)+ 5 (B ~ B0, 0~ 1) =0
ie.

(AG), v 1) = (Bu) ~ B(v), 1, = 1) 20
Taking € -0, we have

(Aw),v-w)=0 VveK

because of continuity of A. Since the solution of the variational inequality

uekK:(A),v—-u)=0 vvek

is unique, w = u, and for every convergent subsequence u.- the conclusions are the same. Thus
the sequence u, converges to the solution u € K of the variational inequality.
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Summarizing, we have:
Theorem 2-3.4. Under the conditions stated above, the sequence u, € U such that

U € U: (A(w,) +% B(u), v)=0 Vo€

converges to the unique solution u € K of the variational inequality
UEK:(Au),v~u)=0 VveK

ase—0. [
More general cases in reflexive Banach spaces are discussed by Lions[11].
If K is defined by an equality constraint such as

M(v)=0, M is continuous

then the penalized functional E(v, €) can be defined, for example, by
E(v, €)= F(1) +3- (M(v), M(v)) (3.29)

(iv) Lagrange multiplier methods. A method closely related to penalty methods is the
classical Lagrange multiplier method. Again the idea is to release constraint conditions defining
a closed convex set K by amending the “‘cost” functional F. If equality constraints are
involved, Lagrange multipliers methods can be applied in the usual way with no restrictions.
However, if the constraint conditions are the inequality type, some restrictions must be also
imposed on the Lagrange multipliers. It is notable that the admissible set K for such restricted
Lagrange multiplier problems can always be represented in the form

N=[IN, Ni=lcd]
i=1

even though the set K which characterizes the original constraint condition cannot be
represented by the form

k=[1 K, K =la,b]
i=l

This means that the pointwise relaxation scheme described earlier is applicable to formulations
based on Lagrange multiplier methods and, as is well known, the optimization problem can be
formulated in such a way that the unknowns are free from any constraint conditions. While
penalty methods often lead to non-linear equations and sometimes even non-differentiable
functionals for linear operator equations, Lagrange multiplier methods need not have such
difficulties. Computationally, however, the Lagrange multiplier methods often lead to iterative
schemes whose rate of convergence is slower than other methods for problems which can be
resolved by all the methods discussed earlier. We shall study this feature in some detail in the

next section.
Let us consider the problem

uceK:(Aw),v—u)=0 vVvekK

(3.27)
K={veU: M(»)<0, j=1,...,m}

where the operator A maps % into itself and is such that (3.6) holds and M: % - ¥, ¥ =R", is
an operator satisfying

IM(w) — M(0)llm < cllu — o (3.28)



Theory of variational inequalities, flow through porous media 1219

where |-, denotes the norm in R™ (m < N)). Introducing the notation

(0, M(u))m = 2 piMi()

we introduce Lagrange multipliers p and replace (3.27) by the equivalent system

(A(u),v—uw)—(p, M(v)-Mu)).=0 YvEU
(g—-p,.M(u)),=0 YgEN

(3.29)

where N is the set
N={geER™ ¢q;<0, i=1,2,...,m}. (3.30)
We now establish the following iterative procedure for the numerical solution of (3.29).
(i) Pick a starting value p°=0.
(ii) Determine the th iterate u'€% as the solution of the unconstrained problem
(A(u'), )= (p', M(v))n =0, VvE X
(iii) Using u’, p"*' is defined by
p'*'=Pn(p' — pM(u"))

where Py: ¥ - N a projection of %" onto N. Then (u’, p’) converges to the solution (u, p) €
Y x N of problem (3.29). In fact, by (ii)

(Au'),v—u')—(p', M)~ Mu')n =0 YveEU,

ie.

(A(u"), u—u') - (p', M(u) — M(u")),, = 0.
Also

(A(u), u' —u)—(p, M(1) — M(u)),, = 0.
Adding these two inequalities gives

(Au')— A(uw), u' —u)—(p* —p, M(u')— M()),, <0.
Putting ¢’ = u' —u and r' = p' — p, we have
mle| = (r', M(u") ~ M(u))m (3.31)

and, according to (ii) and the definition of p

p'*' = Pn(p' - pM(u'))
p =Pn(p —pM(u)).

Then

r'*!= Py(p* — pM(u*)) — Px(p — pM(w)).
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Since Py is non-expansive

Ir 1 < lrt = p(M(u') — M(w)|2
<[z - 2p(r*, M(u*) — M(w)),, + pHIM(u*) — M(u)|J2.

By (3.28) and (3.31)

I lm = lir'l = 2omle’| + p*c?e" .

If p(pc®—2m)<0 (i.e. 0<p<2mj/c?), ||r'||. is decreasing as t—>+c. Thus u’ converges to u as t-,
indeed,

Ir =+ Ble'P<lrl

where B=p(pc?-2m). For additional details, see Glowinski et al.[6].

Summarizing, we have

Theorem 2-3.5. Suppose that A and M satisfy (3.6) and (3.28). Then the sequence (', p*)
defined by the above algorithm converges to the solution (i, p) of (3.29) as t>». [

The obvious computational procedure suggested by (i) and (ii) is generally known as
Uzawa’s method (see Arrow et al. [40)).

We finally show that the solution (u,p)E % X N to the Lagrangian problem (3.29) also
satisfies the variational inequality (3.27).

Since (3.29), is equivalent to the system

(p, M(u))=0, p=<0, and M(u)=0
we have, from (3.29),
(A(u), v—u)=(p, M(v)- M(u))=(p, M(v)) =0, v€K

2.4 Numerical experiments

In this section, we will consider a 1-dimensional version of the problem of seepage flow
through a homogeneous rectangular dam. We will solve this problem numerically using the four
solution methods discussed in the previous section. See Chap. 3.

The example problem involves finding a solution u € K of the variational inequality
considered in Example 1-1.1

flu’(v—u)'dx+f](v—u)dx20 YveK @.1n
0 0

where

K={veH01):v0=1/4 o1)=0, and »(x)=0 in (0,1)} 4.2)
and u’ = dufdx.

Let the domain 2 = (0, 1) be discretized by a uniform mesh containing N-1 finite elements.
Within a finite element, every function v € H'(Q)) is approximated by functions of the form

v =0'@i(&) + v?px(é) (43)

where v’ is the value of v at ith local nodal point, ¢;(£) is the local interpolation function at ith
local nodal point, and £ is a local coordinate in the finite element. For a unit linear element

p)=1-¢ e(H)=¢ (4.4)



Theory of variational inequalities, flow through porous media 1221

Upon assembling the elements, a global model is obtained for which every function v € H'())
is approximated by

v,.(x)=i] b (x) 4.5)

where v; is the value of v, at ith (global) nodal point, and ¢‘(x) is the global basis function
corresponding to the ith (global) nodal point. Introducing the approximation (4.5) into (4.1) and
(4.2), the variational inequality (4.1) on the admissible set (4.2) reduces to an optimization
problem in RV

{u,-} (= Rh: (U,' - u;)(Kiiui - F') =0 V{U,‘} c Rh (46)
where repeated indices are summed and
R, ={{v}ERN:v,=1/4, v5=0, v,=0, i=2,...,N—-1} 4.7

Ki= J; WYY dx, Fi= fo ¢ dx 4.8)

and N is the total number of nodal points in the finite element model.
We now solve (4.6) and (4.7) using the four methods discussed in the previous section.
(i) Fixed point methods. The iterative scheme defined by (3.8) becomes

ui*'=max (0., ui — p(Ku— F), i=1,...,N 4.9

assuming we have constructed some initial approximation #!=0, i=1,..., N. That is, the
operator A(-) is defined by

A()=[K}{-}-{F} (4.10)
and the projection Pk is defined pointwise by

Px({-) = {max (0., -)}. @.11)

In (4.10), [K] is the N X N-matrix defined by (4.8);. We note that the pointwise expression
(4.11) of the projection is implied by the special structure of the admissible set R, defined by
(4.7); that is, R, can be represented by the product of R}

N
Rh=[IlR;‘; (4.12)
Ri={v'ER:v' =0, v'=1/4 if i=1, v'=0 if i=N) (4.13)

The iteration factor p; appearing in (4.9) has to be chosen so that condition (3.9) is satisfied.
In general, it is preferable to use a modification of the iteration scheme (4.9) given by

= N
u!*' = max (0., ui—p; (’El Kiuf*' + 3 K'uj - F‘)). (4.14)
= j=i
t+1 1+1

That is, the terminal values u}*', 1 <j </, are used in calculating the value u!*'. Moreover, if
the iteration factor p; is chosen so that

pi = alK; (4.15)

then (4.14) reduces to the same form as the pointwise projectional S.O.R. method to be
discussed later. For this case, (4.14) becomes

i—1 N
u!* = max (o., (1-a)ul + a(— S Kiut = S Kiut+ F") / K,.,.). (4.16)
=

j=i+l

LJES Vol 18, No. 10—D
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This suggests that as a choice for the value of p, we take
pi=alK* O<a<? CRY)

since the S.0.R. method for positive definite linear systems converges for 0 <a <2.
(ii) Pointwise relaxation methods. Since the matrix (K] defined by (4.8) is symmetric, there
exists a functional F(v) such that

F(v)=3 oK%~ o, and L= o, @.18)
(here repeated indices are summed; I <4, j < N). Then, the discrete variational inequality (4.6)
is equivalent to the constrained minimization problem

{u;}ER,,:F(u)SF(v), V{vi}ER,, (419)
where R, is defined by (4.7). We note that the admissible set R, can be represented by (4.12)

and {4.13) which is consistent with (3.10).
Then, the general relaxation scheme (3.13) becomes

u§+1 = max (0., u:f+(l/2)) 4.20)
where
=l N . i
uiim = (_Z Kuult_ﬂ _ 2 Kiu! +F')/K". 4.21)
=t j=i+1
In general
i1 N
W = (1 -a)u}+a(—2 Kint = 3 Kiyt+ F")/K«‘i 4.22)
j=1 i=i+1

is taken instead of (4.21). The scheme (4.21) is called the Gauss-Seide! algorithm, and the
scheme (4.22) is called the S.O.R. algorithm for a > 1. The pointwise relaxation (4.20) and (4.22)
is called the pointwise projectional S.O.R. method here, after the S.O.R. method for systems
of linear equalities. As mentioned above, the scheme (4.20) with (4.21) coincides with the
special choice of g, (4.15), in (4.14). That is, the fixed-point method is equivalent to the
pointwise relaxation method for the specific example (4.6) if the parameter p; is chosen as in
(4.15).

(i) Penalty methods. Since the admissible set R, can be represented as the product of
componentwise sets in R as shown in (4.12) and (4.13), the penalty functional P can be
constructed by the rule

P(0)=3(0)v7), v7=sup(0,~ ). 42

Indeed, v > P(v} is convex, continuous and differentiable. Its gradient is given by
DP(v) ={-vi}. (4.24)

Moreover, P(v)=0 and P(v)=0 if and only if v7=0 for every i=1,..., N, ie. v,=0 for
everyi=1,...,N.

Since P(-) is convex, the gradient DP(-) is monotone. It is clear that DP(:) is continuous and
DP(v)=0if and only if v7=0,i.e. s, =0foreveryi=1,..., N. Thus the gradient DP(-) can be
used as a penalty operator, i.e.

B(v)=DP(v)={-v3} (4.25)
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It is worth noting that

Pg,(v)={v}, vi=sup(0,v) 4.26)
v = Pg,(v)={v}-vi—-vi}={-v7},
that is
DP(v) = (I — P, )v). (4.27)

Thus, the variational inequality (4.6) can be approximated by the penalized equations
{u?}ERN:K"'uj—é(uf)‘=Fi, i=1,...,N (4.28)

with the boundary condition
ut=1/4 and ug=0. (4.29)

The non-linear non-differentiable system (4.28) can be solved by the modified S.O.R. method.
That is, at tth increment, uf' can be obtained by the algorithm
i—l ae N . .
Ri=-3 Kus'— 3 K'up™'+F

j=1 j=i+1

D=K*+1 if ur'<0

(i: no sum) (4.30)
D =K% if u''=0
uf' =(1-w)ut*"'+ oRi/D.
Here the iteration factor «; is defined, for 0<w<2, by
w;=w if uf"_' 20, w; = 1.0 if uf"-l <q. (431)

(iv) Lagrange multiplier methods. The Lagrange multiplier p’ is introduced to release the
constraint

in the admissible set R, defined by (4.7). The vector {p} is expected to satisfy
piv;=0, p'=0, i=1,...,N. 4.32)

The problem corresponding to (3.29) is

Kiy—p'=F
o ) ) } (4.33)
(@' -pHu; =0 V{g'}eRN with ¢'=0.
The solution ({u}, {p}) to the problem (4.33) is obtained by the iterative scheme
(i) uj=(K")\(F'+pi)
o o 4.34)
(ii) pt+1=max (0., pi— pul).

Here, the initial vector {p,} is given so that pi =0, i=1,..., N. In (4.34), (i) can be solved for
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unknown vector {p} at each iteration step. However, (4.34) is sometimes solved by the full
iterative scheme

i~1 N
w=>1-aut! +a(—21 Kigt— > Kiyt™! +F‘+p§)/K”
i= i=i+1
. ) 4.35
pisi=max (0., p; — puf). @3

While the factor a is in (0,2) as in the usual S.O.R. method, the iteration factor p for the
Lagrange multiplier {p} has to be sufficiently small. One suggestion for the choice of p is

p=0.05x (1 img‘x K" 4.36)
since the dimension of pu! becomes the same as that of {p‘}.

Example 2-4.1. We solve the variational inequality (4.6) for N = 20 using the four methods
described above.

In Fig. 2.2, the exact solution and approximate finite element results on the variational
inequality (4.6) are shown.

In Table 2.1, the convergence of the penalty method with respect to € is also shown. A
rather large € gives a reasonable approximation (e = 1072 to the solution of the variational
inequality (4.6).

In Table 2.2, numerical results obtained by using the schemes (4.14), (4.22), (4.30) and (4.35)
are listed and compared with the exact solution of (4.6). According to these numerical results,
Lagrange multiplier methods give the poorest resuits in accuracy of the solution as well as in
the speed of the convergence. Fixed-point methods and pointwise relaxation methods give
results the same to four significant figures.

Table 2.1. Convergence of penalty method. Over relaxation factor, w = 1.55; Tolerance for convergence,
e=3 |ul~uiflul*=1073
i=1

Computed results

Node e=10E-1 e=10E2 e=10E3 €= 10FE-4 e=10E-5
1 0.250000 0.250000 0.250000 0.250000 0.250000
2 0.215704 0.215861 0.215877 0.215878 0.215878
3 0.183912 0.184226 0.184257 0.184260 0.184260
4 0.154624 0.155095 0.155141 0.155145 0.155146
] 0.127838 (.128467 (.128529 0.128534 0.128534
6 0.103555 0.104342 0.104419 0.104425 0.104426
7 0.081774 0.082720 $.082811 0.082819 0.082820
8 0.062495 0.063600 0.063706 (1.063715 0.063715
9 0.045718 0.046981 0.047102 0.047111 0.047112

10 0.031441 0.032864 0.032998 0.033009 0.033010
11 0.019665 0.021247 0.021397 0.021408 0.021409
12 0.010389 0.012130 0.012293 0.012306 0.012307
13 0.003613 0.005513 0.005689 0.005764 0.005705
14 —0.000664 0.001395 0001586 0.001601 0.001603
15 -0.002774 -0.000223 - 0.000019 - 0.000002 ~(.000000
16 - 0.003770 - 0.000460 - 0.000049 - 0.000005 - 0L.000000
17 —0.004152 —0.000494 ~0.000050 - 0.000005 -0.000000
18 -0.004111 - 0.000498 - 0.000050 ~0.000005 - 0.000000
19 -0.003624 -{.000489 ~0.000050 - 0.000005 - 0.000000
20 —0.002450 - 0.000427 —0.000049 - 3.000005 —0.000000
21 ~0.000000 —0.000000 ~0.000000 - {.0000060 - 0.000000

€  No. of lterations

10! 30
1072 31
103 31
10 31

10°* 31
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Table 2.2. Comparison of numerical methods. Iteration factors: Pointwise relaxation, w = 1.6; Lagrange
multiplier, p = 0.04, w = 1.0; Successive approximation, p = 0.04; Penalty, e = 10*, = 1.55. Tolerance for
convergence, 1.0E-5

Computed results

Fixed
Node S.OR. Lagrange point Penalty Exact
1 0.250000 0.250000 0.250000 0.250000 0.250000
2 0.215895 0.215927 0.215895 0.215878 0.215895
3 0.184291 0.184352 0.184291 0.184260 0.184289
4 0.155187 0.155277 0.155187 0.155146 0.155184
S 0.128581 0.128699 0.128581 0.128534 0.128579
6 0.104475 0.104620 0.104475 0.104426 0.104473
7 0.082867 0.083039 0.082867 0.082820 0.082868
8 0.063758 0.063956 0.063758 0.063715 0.063763
9 0.047148 0.047371 0.047148 0.047112 0.047157
10 0.033040 0.033283 0.033040 0.033010 0.033052
11 0.021431 0.021693 0.021431 0.021409 0.021447
12 0.012324 0.012601 0.012324 0.012307 0.012341
13 0.005716 0.006008 0.005716 0.005705 0.005736
14 0.001608 0.001912 0.001608 0.001603 0.001631
15 0.000000 0.000140 0.000000 - 0.000000 0.000025
16 0.000000 —0.000538 0.000000 —0.000000 0.000000
17 0.000000 —0.000807 0.000000 ~0.000000 0.000000
18 0.000000 ~0.001001 0.000000 - 0.000000 0.000000
19 0.000000 -0.001178 0.000000 —0.000000 0.000000
20 0.000000 -0.001083 0.000000 —0.000000 0.000000
21 —0.000000 0.000000 0.000000 0.000000 0.000000

No. of Iterations

Pointwise relaxation, 17
Lagrange multiplier, 271
Successive approximation, 17
Penalty, 31

— Exact solution

° FEM

u(x)

'.3—1

D D SN SN SR SUUR S Sy SIS S S G GHE G S S S S S S

o 10 X

Fig. 2.2. Numerical results obtained for a one-dimensional variational inequality.

3. APPLICATIONS TO SEEPAGE PROBLEMS FOR HOMOGENEQUS DAMS
3.1 Problem setting and Baiocchi’s transformation
In this section, we consider applications of the theory of variational inequalities and their
approximation, discussed in Chaps. 1 and 2, to the problem of seepage of fluids through a
porous media. For simplicity, we confine ourselves to 2-dimensional problems and we choose
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the classical model for such phenomena in which the flow is governed by Darcy’s law (see, e.g.
Bear[41]).

For this class of problems a rather elegant formulation is possible which fits the analysis
conveniently into the framework of the theory of variational inequalities discussed thus far. We
begin with a study of flow through non-rectangular homogeneous dams; we later extend these
results to rectangular dams with variable permeability.

Derivations of quasi-variational inequalities associated with the seepage flow analysis
mainly follow the work of Baiocchi et al.[14], Baiocchi[42], Baiocchi, Brezzi and
Comincioli[43] and Lions[44].

Consider the case of a homogeneous isotropic dam on a horizontal impervious foundation,
through which water is filtered so as to produce a steady irrotational incompressible 2-
dimensional flow field. For simplicity, we take the specific weight y of the water as unity. Then
the problem is to find the pressure field p = p(x, y) in the domain 2 C R? representing the flow
region such that the following conditions hold

p>0 in Q, p=0 in DQ
-Ap=0 in Q,

(L1

p=H-y on AF, p=h-y on BC, p=0 on CD
P+y).=0 ie. (p+y),=0 on AB (1.2)
p=0, (p+y)»=0 on S=FD
The geometry of our problem, including the definition of terms in (1.1) and (1.2), is defined in

Fig. 3.1. The symbol A denotes the Laplacian operator. The subscripts (-), and (), denote the
normal derivative

()n = ned+/dx+ n,3+/ 3y
and the derivative with respect to y, where n = {n,, n,} is the outward unit vector normal to the
boundary of the domain (). S is the free surface which is unknown a priori, and the dam D is

made up of three parts, D = D, U D, U D,, as shown in Fig. 3.1.
The pressure p can be characterized by the relation

e=ply+y (1.3)

(b,0)

Fig. 3.1. Geometry of flow through an arbitrary porous dam.
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where ¢ is a velocity potential with the property that
d=—kgrad ¢ (1.4
# being the velocity of the water, k the permeability which, for the moment, is assumed to be
constant, and v is the specific weight of the water which is assumed to be unity. Equation (1.4)

is referred to as Darcy’s law for seepage flow.
Theorem 3-1.1. Let yq be the characteristic function for the domain () defined by

1 if (x,y)e)
Xﬂ(x’y)_{o if (x’y)gn (15)

If (1.1) and (1.2) hold, the pressure p satisfies the equation

—A4p = (xa)y (1.6)

in the sense of distributions on the domain D.
Proof. Let ¢ € C5(D). Then, by (1.1),

fVp-V<pdxdy=J’Vp-V<pdxdy=J’Pn<PdS
D 0 M)

By (1.2);
fp,,gods=—f y,,<pds=—f n,<pds=—f o, dx dy
S S S 0
Then
f Vp-Vrpdxdy=—f ¢ydxdy=—-f Xag, dx dy,
D Q D
ie.

- Ap = (Xﬂ)y

in the sense of distributions on D.
Suppose that (1.6) is satisfied in the usual sense. Integrating (1.6) from 0 to y yields

~([ ptx 0dt) = xatx, ) 17
Indeed
fy _Ap(xa t) dt = J-y (XQ)I(xa t) dt
0 0
=([ 20 01dt) + 000,00 = xalx 1) x5 0.
By (12

-A([ px01dt) 1= xatx )~ 1,
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that is, (1.7) is implied. Here we have used the fact that the line AB is always saturated by
water. Thus
Theorem 3-1.2. Let u be defined by

u(x, y) = fo " p(x, 1y dt. (1.8)

If p is a solution of (1.1) and (1.2), then u satisfies
—Au=yo O (1.9)
Equation (1.9) is defined on the whole domain D, while (1.1), is satisfied only on the
unknown domain ). The relation (1.8) is called the Baiocchi transformation. This novel change
of variables makes it possible to reformulate the problem in terms of functions defined on the
entire domain D; see Batocchi[13].
We now introduce the following notations: the free boundary FDC in Fig. 3.1 is represented
by
y=Y(x) on (0,¢) (1.10)
and the surface of the dam AFEDCB is given by
y=Z(x) on (a,b). (1.11)

By (1.1),
Y(x)
u(x, y)=f plx, t)dt forevery ye(Y(x),Z(x) (1.12)
0

that is, u(x, y) is constant with respect to y in the non-flow domain D/). Moreover, (1.1), also
implies that u(x, y) is a strictly increasing function with respect to y in the flow domain ()

u(x, y)<u(x,y) if y <y, in Q (1.13)
Combining (1.12) and (1.13)

O=su(x,y)<u(x, Z(x)) for (x,y)E)

- (1.14)
u(x, y) = u(x, Z(x)) for (x,y)€D/Q.

The fact that u(x, Y(x)) = u(x, y) = u(x, Z(x)) in D/} has been used in (1.14). We note that
(1.11) is given, while the free surface (1.10) is unknown a priori. From the definition of (1.8) of u

p(x, y) = uy(x, y).
This leads to the boundary conditions
u=H-y on AF, u,=h-y on BC, u,=0 on CD. (1.15)
Moreover, by (1.8)

u=0 on AB (1.16)

The conditions (1.2), and (1.2); have already been incorporated into (1.9), etc.
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Summing up, we have proved the following:
Theorem 3-1.3. Let u be defined by (1.8). If p is a solution of (1.1) and (1.2), then u satisfies
—Au=yn in D
0<u(x, y)<uix, Z{x)) for (x,y)EQ
u(x, y)= ulx, Z(x)) for (x,y)€DIQ 1.17)
u=H-y on AF, u,=h-y on BC, u,=0 on CD
u=0 on AB. [

3.2 A variational formulation
In the previous section, the seepage flow problem (1.1) and (1.2) was transformed into the

equivalent problem (1.17) through Baiocchi’s transformation (1.8). Here a variational for-

" .
mulation associated with {1.17) will be discussed. We will show that this formulation leads to a

quasi-variational inequality. _
Lemma 3-2.1. For every Z(x) € C¥a, b), u, v € C*(D) with v =0 on AB, the relation

b
J[ (= Z'up, + Z'up, — Z'upydx dy = - J‘; v ds +Jf V1+(ZYuv dx 2.1
D a

is satisfied, where Z'(x) =dZ(x)/dx and I' = T/AB and T is the boundary of D.
Proof. By integration by parts

L (- Z'uyv. + Z'uv, — Z"uw) dx dy
= J;(- Z'ugn, + Z'ueny)v ds — fD (—~ 2"y — Z'lhyx + Z'thyy + Z"u,)v dx dy
= L (~un, +un)Z'vdx

Let f(x, y) = y — Z(x). Then the outward normal unit vector n= {n,, n,} can be represented by

n = grad fl|grad f|
Thus
{nxy ny} = {* Z,, 1}/ V1+ Z'2
-nZ'=(ZVn, nZ'=-n,
(= tyne + ) Z' = un (Z'V — uny, = — (uyn, + uen,) + (1 +(Z'yu,n,
=—u, +V1+(Z')Vu,
Substituting this result into the above boundary integral gives (2.1). O

Suppose that u# satisfies (1.17). Let » be an arbitrary function in HY(D) such that v =0 on
AB. Then

J’D {Vu V(o -w)~Z'u,(v —u) + Z'u,{v — u), ~ Z"u,(v — w)} dx dy

=[D(—Au)(v~u)dx dy+fb V1+(ZVu,(v - u)dx

and
(—Au)v—w)y=(—u)—(1— xolv—u)=(—u)~ H(u— uz)(v - u).
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Here
uz(x, y) = u(x, Z(x)),
and
HOeD={) 2o
Setting
a(u,v) = fD Yu-Vo-Z'u, + Z'uw, — Z"uyw) dx dy
L(v)=[Dvdxdy+Lo(H-y)va dx+f (h—yWV1+(ZVv dx
yields
a{u,v— u)+fD H{u—uz)}v-u)dxdy = L{v—u).
Indeed,
a(u,v—u)= fD {(v~u)— H(u—uz)(v—u)}dx dy
+L°(H—y)\/TZ’)2(v—u)dx+f(k—y)\/l’?(z"_)z(u—u)dx
since
#,=0 on CD and u,=0 on FED.
Putting
j(u; )= L (v-uz)" dx, ¢ =sup{0., ¢}
we have

i 0)= (0= [ =)o~ ) dx dy.
Indeed, for every g, b ER
at-b*=H(b)a-b)
where

Hb)=0 if b<0, Hp)=1 if b>0
0<HMb)<1 if b=0.
Therefore, the problem (1.17) can be transformed to the variational form

vEK:alu,v—uw)+jlu;v)~jlu;u)=L{v—u) forevery v€YV,

2.2)

23)

(2.4

(2.5)

(2.6)

2.7

(2.8)

2.9



Theory of variational inequalities, flow through porous media 1231

where (recall Remark 1-8.1)

K={vEVyv=vs; uvzxy)=r0(x, Z(x))} (2.10)
Vo={v€H'(D):v=0 ae.on AB}. .11
The reason every element of V; belongs to the Sobolev space H'(D) is that
a(u, v) <(1+[|Zo + [ Z"o Mullllo]) <+, (2.12)
if Ze C*a, b). The virtual work a(u, v) is finite in H'(D) if Z is smooth enough. The

estimate (2.12) further means that the bilinear form a(:, -) is continuous on H(D) X H(D). For
every v €'V,

a(v, v) = fD {Vv Vo —Z”% (vz)y}dx dy
] b
=f Vv-Vvdxdy——f Z"v dx
D 2 a
1 b
= clofio -5 f 7' dx

(by Poincaré’s inequality). If the dam D is assumed to be convex, i.e. Z"(x) <0 on {a, b], the
bilinear form a(-,) is coercive. In this analysis, we will assume the convexity of D for
simplicity so that

a(v, v) = cflo|} p. (2.13)

Theorem 3-2.1. Suppose that the domain D is convex and that there exists a solution u € V,
of the variational inequality

ueVya(uv—w+ju;v)—ju,u)y=Lv—-u) Vv€EV,. (2.19)

Then the solution u € V, satisfies

@) u=0, ae.on D, (2.15)
(ii) —Au€eL”(D), and 0<=-Au<], (2.16)
(iii) u-uz;=<0, ae.on D, and 2.17)
(iV) uy, = 0 on (xs Z(x))a x€ (01 C)’

u,=H-y on (x,Z(x)), x€(a,0), (2.18)

uy=h—-y on (x,Z(x)), x€l(cb).

In other words, the solution u € V,; of the variational inequality (2.14) is also a solution of (1.17).
Proof. (i) u =0: Taking v = u* € V, in (2.9), yields

—a(u-,u’)+ fn {(w*—uz)" —(u—uz)}dxdy = fD u~ dxdy,

since u=u*~u", a(u*,u’)=0, H—y =0, and h -y =0. By the following inequality

W —uz)y = +u—u) =) +u—-u)" =u +u-—uy
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we have
—al{u",u")y=0, 1e. u" =0 sothat u=0

(i) 0=-Au=s1:Taking v=u+ 9 €V, ¢ € C3(D), in (2.9), we obtain
au, ¢) +fD {o+u—uz)—(u—uz)tdxdy= fD ¢ dxdy.
Since (p+q) <p*+q°
a(u, (p)+f qo*dxdyaf ¢ dxdy.
b D

Taking ¢ <0 in D, we obtain

a(u, ¢) Zf ¢ dx dy,
D

that is

—-Au-1s0
in the sense of distributions on D. Taking ¢ =0 in D, we have

a(u, ¢) =0,
that is

~Au=0
in the sense of distributions on D. Thus, we conclude that 0 <—Au = 1. This further implies
that — Au € L™(D).
(iii) # < uz: Since we have already proved that ¥ =0 in D, uz = 0 must hold. Then

(u—uz)*=0 on T

where I' is the boundary of the domain D. Substitution of v =« — (4 — uz)* € Vy into (2.9), and
integrating by parts gives

"] (—Au)(u—uz)* dxdy +f {(u—uz—(u—uz)") —(u—uz)}dxdy = —f (u—uz)* dx dy,
D D D
ie.

fp (—Auw)(u - uz)* dx dy <0.

Since — Au =0, this inequality implies (¥ — uz)* <0, i.e. u—u, <0.
(iv) Boundary conditions: Taking v = u +w, w € V,, in (2.19) and integrating by parts, we
can obtain the following estimate

b P 0
—J’ (—Au—l)wdxdy+fD(— w)" dx dy 2[ \/1+Z’2uywdx-j (H-y)V1+Z"%w dx
D a a

—fb(k—y)\/1+2'wdx2 —j {'-Au—l)wdxdy—f (w)" dx dy.
< D D
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Since
[ cau-nwaxay|splio= wlaray,
fD(— w)* dx dy| ={w|,p,
fD(W)*dxdy =|whp,
we have

b
Ub V1+Z%uw dx—jO(H—y)V1+Z’2w dx—f (h—y)V1+Z%w dx| <2|w|, p.

Since it is possible to take arbitrary values on (x, Z(x)), x €(a, b) while |w|,p<e€ for an
arbitrary given small number € >0, we can conclude that

u,=H-y on (a,0), u,=h-y on (c¢,b), and u,=0 on (0,c). |

We now consider the problem of determining sufficient conditions for the existence of
solutions of the variational inequality (2.14).

Let us investigate properties of the functional j defined by (2.6). To this end, we introduce a
function ¢ defined by

e(u;v)=(v—uz)".
Suppose that a < b. Then we define y by
x = ¢(a, v)+ (b, w) — ¢(a, inf (v, w)) — @(b, sup (v, w))
=(v—az)" +(w—bz)" —(inf (v, w) — az)* — (sup (v, w) — bz)".
fo=w,
x=@-az)' +(w—bz)" —(w—az)" —(v-bz)".
Then

0 (v=w=b=a)
b;-w (v=zbz=w=a)
_|bz—az (v=bza=z=w)
v—-w (bzv=w=a)
v—a; (b=zv=zaz=w)
0 (b=a=v=w),

ie. x=0.Ho<w

x=@—az)"+(w=bz)" —(v—az)* —(w—bz)*=0.

Therefore, we have
Lemma 3-2.2. For p =q,

J(p;v)+j(q; w)—j(p;inf (v, w))— j(q; sup (v, w)) = 0 (2.19)

foreveryv,we V,. O
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As shown above, the bilinear form a(:,-) is continuous and coercive (recall (2.12) and (2.13))
on a closed subspace V, of H'(D), if convexity of the domain is assumed. Moreover, the
non-differentiable convex functional j{u: -), which depends upon the solution itself, satisfies the
“monotonicity” condition (2.19). Thus, we can establish the following existence theorem by a
direct application of the general existence theorem, Theorem 1-8.2, discussed in Section 1.8.

Theorem 3-2.2. Suppose that the domain D is convex so that the bilinear form a(-,-) is
coercive on V;. Then there exists a solution u € V; of the variational inequality (2.14). O

Continuing, we further note that the solution u € V; of the variational inequality (2.14),
referred to as a variational inequality of the second kind in Chap, 1, also satisfies a variational
inequality of the first kind. That is, 4 € V, is a solution of

uE Ky alu,v—u)y=Lv-u), Yoe K (2.20)
where
Kw)={veE Vg v—uz <0 (2.21)

Indeed, as shown in 2.17), u —uz; <=0, ie.
jlu; u)=0.

For every v € K(u), j(u; vy =0, Thus u € V; satisfies (2.20).

Solutions to (2.14) will not, in general, be unique. This fact implies considerable difficulties
in obtaining approximate solutions, as indicated in the following example.

Example 3-2.1. We will consider an example problem of seepage flow through a non-
reactangular quadrilateral isotropic homogeneous dam as shown in Fig. 3.2. The foundation is
horizontal and is assumed to be impermeable. Physical dimensions and a discretization of the
domain D are also shown in Fig. 3.2.

In this case, the variational inequality (2.9) and the admissible sets (2.10) and (2.11) become

uEK:auv—-w+ju;v)-jlusu)=Lv-u) YvEV, (2.22)
K={ve Vyvix,y)<v(x, Z(x)), ae. x€(0,c)} (2.23)
Vo={vEH(D): v(x,00=0, ae. x€(0,b),
o0,y)=5@Hy =), ae. yEO H) @29
where
alu, v)= f (Vu Vv - Z'u, + Z'u,n,) dx dy, 2.25)
D
b
L(v)= f vdxdy +f (h~VI1+{ZVv dx (2.26)
D c
j(u; v)= f (v(x, y) — u(x, Z(x)))* dx dy. (2.27)
D
Y id A E Ax= 025
= ay*0.25
Hs5 D {unknown}
e \/
N - A
™ h=|
S S » HIAAN < ¥ -
AFP be7 ;,Je

Fig. 3.2. Discretization of domain in Example 3-2.1.
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An interesting fact is that if we seek sequential solutions of the variational inequalities
Un1 € Vo: @(ltps1, 0= Uns1) + (5 0) = jQUn; thpst) Z L(0 — Up11), YOEV, (2.28)

only “trivial” solutions would be obtained in the following sense: if the initial function u, is the
solution of the “Neumann” problem

u € Vo: a(uy, v)=L(v), YveEYV, (2.29)

then for all n=2,3,..., the solution u, of the variational inequality (2.28) always coincides
with u;. This fact suggests that the variational inequality (2.14) may not be capable of predicting
physically meaningful solutions to the seepage flow problem (1.1) and (1.2). In turn, this
suggests that some additional conditions are needed in the model in order to preserve physical
consistency which has apparently been lost in the process of deriving the quasi-variational
inequality (2.14). We postpone a fuller exploration of such conditions until the end of this
section. O

Recently, Brezis, Kinderlehrer and Stampacchia[45] introduced a new formulation to the
seepage flow problem (1.1) and (1.2) using an (extended) pressure p(x, y) defined on the whole
domain of dam D described in (1.1). Their weak formulation is based on Theorem 3-1.1 instead
of Theorem 3-1.2. Indeed, if an additional condition

P+y)»=0 on CD (2.30)

is assumed, the solution p(x, y) of (1.1), (1.2) and (2.30) satisfies

pr-V¢>dxdy+j gpydxdy=f P+ y)eds=<0 (2.31)
p a cD

for every ¢ € C(D) with ¢ =0 on AFU BC and ¢ =0 on CD. Using the Heaviside function,
(2.31) can be written by

fn (Vp-Vo+ H(p)e)dxdy <0 (232)

where H(p)=1if p>0, H(p)=0if p <0, and 0<H(p)=<1 if p =0. Then the mathematical
problem is defined as follows:

Find p € H'(D) and g € L*(D) such that p =0, a.e. on D, g(x, y) =1 if
p(x,y)>1,0=g(x,y)<1if p(x,y)=0, p(x,y)=0 on FEDC, p(x, y)=

H -y on AF, p(x,y)=h—y on BC, and [p(Vp - Vo +ge,)dx dy <0, (2.33)
for every ¢ € H'(D) such that ¢ =0 on FEDC, ¢ =0 on AF U BC.

To show existence of solutions to the problem (2.33), Brezis et al.[45] introduce a penalized
problem:

Find p. € HY(D) with p=0on FEDC,p.=H -y on AF,and p,=h—-y
on BC such that [p(Vp.-Vo+ H.(p.)e,)dxdy=0 for every ¢ € (2.34)
H'(D) with ¢ =0 on FEDC U AF U BC where

0 if p=<0
H(p)= -l-p if 0<p=e (2.35)
1 if e<p,
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Then, applying the Schauder fixed-point theorem, it can be easily proved that the problem (2.34)
has a unique solution p, € H'(D) N Wki(D) for every € >0 and s <, and that p, is uniformly
bounded in H'(D). Since H'(D) is reflexive, there exists a sequence {¢,}, €, >0 as n >, such
that

p,,—p weaklyin H'(D)
p,—p strongly in LXD)
H. (p.)—g weaklyin L7(D).

Moreover, since p. =0 in D, we have
(P)n=<0 on CD.

Thus, for ¢ € H'(D) with ¢ =0 on AFU BC U FE and ¢ =0 on EC, we have

[ @b Vo + Hpoe axdv= [ (e ds 0.
D EC

Passing the limit €, —0, (2.33) is obtained. In summary, we have

Theorem 3-2.3. There exists a solution p € H'(D) N WD), s <+, to the problem (2.33).
Furthermore, the solution p is the limit of the sequence {p.} which is a unique solution of the
penalized problem (2.34) for each positive € >0. [

Example 3-2.1. (Continued). Using the discrete model described in Fig. 3.2, we now solve
the penalized problem (2.34) for € =0.1 using the S.O.R. method discussed in Chap. 2. We plot
saturated nodal points, which are identified whenever nodal values of the pressure exceed 1073,
in Fig. 3.3.

The same problem is solved by a conventional adaptive mesh method, details of which will
be discussed in Appendix 1,1 using the discrete model shown in Fig. 3.4. Numerical results are
given in Fig. 3.5, and the convergence characteristics of the adaptive mesh method are
described in Fig. 3.6.

The position of the free surface obtained by the penalized formulation, (2.34), is slightly
higher than the one by the adaptive mesh method.

We note that the penalty parameter € >0 in (2.35) cannot be taken independently of the
parameter of discretization of the model. One suggestion for the choice of the penalty
parameter ¢ is that the order of € should not be smaller than the one of the discretization
parameter h (or Ax, Ay). O

We will call the method in which the penalized formulation (2.34) of the problem (2.35) is
used to obtain the free surface the extended pressure method.

j—e=2-
AV e= 0.1
= b Free Surface
. w=175
*
. iteration 57
H=5 §:
. -3
: * 8, 219
.
T hel
L
L

b=7 _!

Fig.-3.3. Free surface calculated using the extended free pressure formulation,

tEven though we will frequently cite results obtained using the adaptive mesh method for comparison with other
techniques, we delegate a more detailed discussion of this method to an appendix since it is not based on variational
inequality formulations and since an analysis of its convergence properties is not known (and, in fact, may not exist).
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e per————

Fig. 3.4. Initial finite element mesh for adaptive mesh method for Example 3-2.1.
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Fig. 3.6

Fig. 3.5. Free surface calculated by adaptive mesh method.

Fig. 3.6. Convergence characteristics of adaptive mesh method for Example 3-2.1.

3.3 Special cases

Suppose that BDF, in Fig. 3.1, is vertical, i.e. b = ¢ = d. Then the bilinear form a(-, -) and the
linear form L(-), defined by (2.4) and (2.5), respectively, have to be modified since Z’ and Z"
now do not exist on BDE. Toward developing a formulation appropriate for this case, we note
that from the definition (1.8) of u(x, y), on the vertical line BDE, we have

u(b,y)=f:p(b,t)dt=f(h*t)dt=%(2hy—y2) for 0<y<h
3.)
u(b,y)=%h2 for h=<y

where h is the level of the fluid downstream.

Since there is no outflow from the foundation AB and the free surface FDC, the con-
servation law asserts that

Y(x)
q(x)= J; v(x, ) dt = constant 3.2)

IJES Vol. 18, No. 10—E
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for every x € (0, d), where v,(x, y) is the x-component of the velocity vector of flow at the point
(x,y), and q is the net flow from upstream to downstream through the dam. By the definition

(1.8) of u(x,y),

(X, ¥) == (P +¥)e = —Px = — (Uy)x = — (u:)(x, )

in the flow domain (). Since u is an extended function defined on the whole domain D, (3.2) can

be written
Z(x)
—q(x)= f () (x, t) dt = constant
0

for every x €(0, d), i.e.
= q = ux(x, Z(x)) = u.(0, 0).
Since u =0 on AB, we obtain
—q=u(x,Z(x)) in (0,d).
Integrating with respect to x gives
u(x,Z(x))=—gx+c in (0,d)

where c is a proper constant. In (3.3), g and ¢ are unknown.

We record this result as a lemma:

Lemma 3-3.1. In the domain D, i.e. for x € (0, d), the condition

ulx,Zx))=—qx+c

is satisfied. Here q is the net seepage flow and c is a finite constant.  [J
Continuing, we observe that if BDE is vertical, then according to (3.1),

ub, Z(b) = —gb + ¢ = % B, e c= % h2+ gb.
Here we have set d = b. Thus, in (0, d),

u(x, Z(x))=—q(x—b) +% K.

33

(34

(3.35)

This means that the boundary condition on FED (see Fig. 3.1) is represented explicitly by (3.5)

to within an unknown flow g. In this case we introduce the following definitions

a(u,v)= f Vu-Vo-2Z'u, + Z'uv, — Z"u,v)dx dy
D

L(v)=vadxdy+f0(H~y)vl+(Z')2vdx

ip; v)=L<v- (% hz—p(x—b)))+ dx

V.,={ueH'(D):v=o, ae. on AB, v=1(hy-),

ae. on BC, v=%h2, ae.on CD,

(2.4a)

(2.5a)

(2.6a)
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and

v(x, Z(x)) =—q(x—b) +% k%, ae.on FED} (2.11a)
K(q)={v € V,: v(x,y) < v(x, Z(x)), ae.on D} (2.14a)

Thus, problems (2.9) and (2.20) now assume the forms
uEK(p) a(w,v—u)+jp;v)—jlp;u)y=L(v—u), forevery veYV, (2.9a)

and
uc K(p). a(u,v—u)=L(v—u) forevery v&K(p) (2.20a)

respectively.

A question that arises for the variational inequalities (2.9a) and (2.20a) is that of finding an
unknown discharge p which is compatible with the seepage flow problem. Since the pressure at
the point F in Fig. 3.1 is expected to be zero, we may employ the condition

_d _
fp)= 3y uP)lr=0 (3.6)

as the compatibility condition for determining the discharge p of the seepage flow. That is, the
variational problem associated with the seepage flow problem for the vertical wall BDE is the
pair of {(2.9a), (3.6)} or {(2.20a), 3.6)}.

In the discrete system, such as encountered in finite difference or element approximations,
the compatibility condition (3.6) can be approximately written

2 1
f(p)=un,n, — UNy N1~ 2 Ay’ =0 (3.7

using the notation described in Fig. 3.7. Condition (3.7) means that the pressure at F in Fig. 3.7
is assumed to be (1/2)Ay, i.e. that velocity of the flow is assumed to be zero at E.

One way of solving problem {(2.9a), (3.6)} or {(2.20a), (3.6)} is to employ the discharge
descent method described below. First, for properly chosen approximations ¢, and g, of
discharge of the seepage flow, we solve the variational inequality (2.9a) or (2.20a) and obtain

y

u
No' NJ

PII7I777 77

A
X F Ay

u
NysNy =1

YN Ny T UNg Nyt I
A = — Ay
F Ay 2

Fig. 3.7. Discrete compatibility condition.
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solutions u(q;) and u(q,), respectively. Then f(q:) and f(q,) are calculatAed by the discrete
compatibility condition (3.7). Using these values of gy, ¢», f(q;) and f(q,), the third ap-
proximation g of the discharge is obtained by

f(a - fa) = f(q') f“’”(q - )

flg=0

ie.

= ——- 38
B - f(qz)f(q) G5)

Using gs, we solve (2.92) or (2.20a) and get u(q;) and f(gy). If f(q;) is far from zero, we
calculate the fourth approximation g, through an equation similar to (3.8). We repeat these
procedures until convergence is obtained.

If AF and BDF are vertical, i.e. if the cross section of the dam is rectangular, the
quasi-variational inequalities (2.9a) and (2.20a) reduce to variational inequalities. In fact, as in
(3.1), on the line AF

u0,»)=3QHy~y) for 0=y<H

3.9
=%H2 for y=H.
Combining (3.5) and (3.9)
gb+in=1m e g=L-nd, ie
> sH’, e T , ie.
{ 1 (3.10)
- _ 2_ L2 _ B
u(x, Z(x)) % (H*— h9)(x b)+2h .
Then
a(u, v)=f Vu-Vodxdy (2.4a)
Q
L(v)=f vdxdy (2.5a)
D
. 1o, 1m0 *
jv)= v—(—h -—(H*-h )(x—b)) dx dy (2.6b)
a 2 2b
Vo={v €HYD); v=0, ae.on AB, v=%(2hy—y2), a.e.on BC,
v=%h2, a.e.on CD, v=%(2Hy—y2), a.e.on AF,
——2—15(H2—h2)(x—b)+%h2, ae. on FED} @.11b)

K={we Vyo(x,y)<ov(x,Z(x)), ae.in D} (2.14b)
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Problems (2.9a) and (2.15a) now become

veEK: atuv—u)+jv)y-jwy=L{v~u) VveV, (2.9b)
ueEK: auv—u)yzLv—u) YveK (2.20b)
respectively.

Existence of solutions to the problems {(2.9a), (3.6)} and (2.9b) follows from the general
existence Theorem 3-2.2 under the assumption that the dam D is convex. Thus, we need only
show uniqueness of the solutions of {(2.9a), (3.6)} and (2.9b).

Suppose that p is the true discharge of the seepage flow in (2.9a), and suppose that u; and u,
are solutions of (2.9a). Then, since u,, 4, € K(p)

aluy, uy— )+ j(p; u) - jp; w) = Lluy — uy)
aluy, uy— up) + j(p; ) — j(p; u2) = Ly — ).
Adding the above two inequalities, we obtain
a(u; — g, y— u) <0,
Thus, by (2.13), u; = u,.

By the same arguments, we also can establish uniqueness of the solution of (2.9b). Thus, we

have
Theorem 3-3.1. Suppose that the domain of dam D is convex, and that Z € C¥a, b). Then

there exists a unique solution to the variational inequality (2.9a) or (2.20a) for a fixed discharge
p. Furthermore, if the dam D is rectangular, there exists a unique solution to the variational
inequalities (2.9b) or (2.20b). [

Example 3-3.1. This is a continuation of Example 3-2.1. Here we derive an additional
condition which apparently overcomes the inconsistencies in the variational inequality (2.9)
discussed earlier. Let us first suppose that the functions u(x, y), p(x, y) and n=(n,, n,) are
sufficiently smooth. The discharge of seepage flow through the line connecting (x, 0) and (x, y) is

a(x,y)= fo (= 1)) di = fo 1) dt
=-—ux,y).

If discharge through the wall connected with (x, Z(x)) and (e, Z(¢)) on CE is assumed to be
zero, then

- ux(x9 Z(x)) =qg on x& (0, C),

where q is the true discharge of seepage flow. By integration with respect to x, we obtain
u(x, Z(x))=— gqx +-21~H2 on x€(0,c).

We note that the discharge g is certainly unknown a priori. However, an additional equation
can be obtained by imposing the “compatibility” condition

f(@)=p(c, Z(c))
= Hﬁ} {u(c, Z(c)) —u(c — €, Z(c — eDM(Z(c)— Z(c — €))
— 0’

where u(x, y) is the solution for a “given” discharge 4.
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Here we employ the discharge descent method discussed earlier in this section. We start the
process with

q=(H*-h»[2b = 1.7143
¢, = q— € = 1.5143.(say)

The numerical results obtained are shown in Fig. 3.8. O

Example 3-3.2. We consider the problem of flow through a quadrilateral dam as shown in
Fig. 3.9. Let the level of upstream and downstream be H =S and h = 1, respectively. The dam
is isotropic and homogeneous and the horizontal foundation is impermeable. Physical dimen-
sions and a discrete model for the variational inequality (2.9a) are also shown in Fig. 3.9. The
solution method used is the projectional S.O.R. method discussed in Chap. 2. As an initial

discharge g, we take

_l 2_ 5Ly —

Using the compatibility condition (3.6) or (3.7), we correct the discharge through the descent
method (3.8). Convergence and numerical results are shown in Fig. 3.10.

The same problem is also solved by the adaptive mesh method using the discrete model in
Fig. 3.11. Numerical results and convergence of the adaptive mesh method are given in Figs.
3.12 and 3.13, respectively.

Both methods provide almost the same configuration for the free surface. It is noted that if a
uniform element mesh is used in the discretization of the variational inequality (2.9a), the
projectional S.O.R. method can be applied in the same manner as finite difference methods.
This leads to rather short calculation times compared with the adaptive mesh method even
though the number of unknowns is quite large. [

{terations

q f
| 17143 0.68428
2 15143 1.2635
3 1.9505 -0.000003

Projectional S.0.R. Method
w =175, Iterations 28

XA

Fig. 3.8. Numerical results for Example 3-3.1 obtained by discharge descent method.

by

v E hc—— 2 = ax=ay=025
H=5
. ?h5|
7 A K‘L‘II A \o é’ YANNYANY X
L‘—_‘_“—‘-f_—’ﬂ

Fig. 3.9. Discrete model for Example 3-3.2.
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q
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- Free
Surface

6.000
5.900

3.317
3.278

3.269

D DdDOUN

2
L
0.

0.0056
-0.0003

0099
9350
0287

_PROJECTIONAL SOR,

w178

Iterations 40~43 ,|= be7 —
tolerance 1072

Fig. 3.10. Numerical results for Example 3-3.2 obtained by solving finite system of variational inequalities.

TR

= N0 1
1
1
I
5
h=j
/AN IANYANV LNV AN ARV ARY RSV NASTX

b=7 i}

Fig. 3.11. Initial mesh for calculation of Example 3-3.2 by adaptive mesh method.

Free
Surface
H
~ hel
1
TENTK A A SNY AN YOKNYANKYVA REN TYANN Y
- b=7

Fig. 3.12. Free surface in Example 3-3.2 calculated using adaptive mesh method.

Maximum Pressure on the

Free Surface

T L T T T lJ 1 T T T L
i 23 4567891011
Number of |terations

Fig. 3.13. Convergence characteristics of the adaptive mesh method for Example 3-3.2.
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Example 3-3.3. In this example, we consider finite element models of three different
formulations of the problem of determining the free streamline of the flow through an isotropic
homogeneous rectangular dam: a variational inequality obtained using Baiocchi’s trans-
formation, the extended pressure method, and the adaptive mesh method. Physical dimensions
and a discrete model for the method of variational inequalities and the extended pressure

method are given in Fig. 3.14.

N. KIKUCHI

ox= y= 05§
H=l0 o
CT__
h=2
L ANNZSNS7N NN AN ¥, J LN/ X
A B
(\/ (O)L__“s___j
impermeable
foundation

Fig. 3.14. Mesh used in discretization of a rectangular dam—Example 3-3.3.

w=175
e <10%at 26
iterations

@ points in the
flow domain §1

il

! -
= b=5

Fig. 3.15. Results of numerical solution of variational inequalities for Example 3-3.3.



Theory of variational inequalities, flow through porous media 1245

Since the dam is rectangular, we choose to solve the variational inequality (2.9b) or (2.20b),
using the projectional S.O.R. method discussed in Chap. 2. However, in this case the discharge
of seepage is known a priori. This leads to no iterative calculations of the type in Example
3-3.2. Numerical results are shown in Fig. 3.15.

For the extended pressure method, we choose the penalty parameter € = 0.1 for a mesh size
h=Ax=Ay=05. As mentioned earlier, the penalty parameter ¢ depends strongly upon the
mesh size h. To solve the non-linear system obtained by the discretization of the penalized
formulation (2.34), we again apply the S.O.R. algorithm, Numerical results are shown in Fig.
3.16. The position of the free streamline obtained by the extended pressure method coincides
with that obtained by variational inequalities.

Using the discrete model given in Fig. 3.17, we have also solved the same problem by the
S.OR. METHOD

w=1.7
£=75x10"% at 20" tteration

o Pl >0
_PENALTY PARAMETER

£=10"' ¢f. Ax=aAy=05

!
]
o®

00000 00000O0OVOOOOSOYS
2000000060 0OVPOGBOOMNNOGDS
00000 OOOGOIOIOGOOOOISYSY
00000 OCGONOSOGOSNOOIOSOOIOSTOGY
0000 0O0OCOCOIOOIOIOGIOIOS
00000600000 OGPSOO

e e e v s i o o e e e e o]

z{]Ff

- b ]

Fig. 3.16. Flow domain in Example 3-3.3 computed by extended pressure method.

Vi

H=10 ‘T
3

7 TR EANNZZASNN 720N F NN/ AN AN v

L b=5

i

Fig. 3.17. Initial mesh for adaptive mesh calculation of Example 3-3.3.
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At 15th Iteration, the
maximum pressure on the

\/____tres surface Is 1.1x10% ot P
Free Stream
\ / Line

|
)

TANNIAN ASINASNIARN ANNTARKNY

VA

Fig. 3.18. Flow domain in Example 3-3.3 computed by adaptive mesh method.
adaptive mesh method. After 15 iterations the adaptive method converged to the solution
indicated in Fig. 3.18. The results obtained by this method also agree well with those obtained
by the other two methods. [

4, NON-HOMOGENEOQUS DAMS
4.1 Seepage flow problems in non-homogeneous dams
Suppose that the dam is non-homogeneous, isotropic, and that the permeability of the dam is
denoted by k(x,y). If the seepage flow is governed by Darcy’s law, the problem can be
represented as the following boundary-value problem:
Find {p(x, ), Y(x)} such that

pu»>0 in @, pxy)=0 in DI |

(1.
~V-kV(p+y)=0 in Q |
p=H~y on AF, p=h—-y, on BC i
k(p+y).=0 on AB ,
p=0 and kip+y),=0 on FD 1.3)
p=0 and k(p+y),=<0 on CD (1.4)
Q={x, y)ED: y=Y(x)} (1.5)

Here, the same notations as in Chap. 3 are used, see Fig. 3.1. The function Y{-) indicates the
position of the free surface FD.

Suppose that p(x, y) satisfies the above boundary-value problem (1.1)~(1.5). Then, for
every o € CY(D) with ¢=00n AF U BC, and ¢ =0 on CD, we have

kap-chdxdy+kay'V<pdxdy
D o
=[I(V(p+y)-\?godxdy+f kVp -Vedxdy
n D
=fn{*V'kV(p+y)}¢dxdy+Lk(p+y)nwds

=f k(p + )0 ds <0,
fais)
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Here T denotes the boundary of the (unknown) flow domain (). Thus, the results by Brezis,
Kinderleher and Stampacchia[45] given in Section 3.2 can be extended for the case of
non-homogeneous dams. That is, using the extended pressure p(x, y), the following variational
problem is derived from the boundary-value problem (1.1) ~(1.5).

Find {p(x, y), g(x, y)} € H'(D) x L*(D) such that

Ly =1 if = y)>0
g(x, y) if pxy)> } 16

0=glx,y)=1 if px,y)=0,
p=H-y on AF, p=h-y on BC,
p=0 on FED,

(L7

f (kVp - Vo + gke,) dx dy <0 (1.8)
D

for every ¢ € H'(D) with ¢ =0 on CD and ¢ =0 on AF U BC.
The penalized problem corresponding to (1.8) is then defined by:
Find p, € HY(D) with p, = H —y on AF, p,=h—y on BC, p. =0 on FED, and

| &%+ Hipokey dxdy=0 (1.9)
D

for every ¢ € H'(D) with ¢ =0 on AF U BC U CD where

0 i p=0
ple if 0<p=e
1 if p=e

Hp) = (1.10)

Applying the same arguments as Theorem 3-2.3, we can establish the following results:

Theorem 4.1.1. Suppose that k(x, y) is a bounded positive function defined on D. Then there
exists at least one solution {p(x, v}, g(x, y)} to the problem (1.6) ~ (1.8). Moreover, the solution
p(x, y) is the weak limit of the solution {p.(x, y)} of the penalized problem (1.9} as ¢—0,
where p, is the unique solution to (1.9) of each fixed e >0. [

We now recast the seepage flow problem (1.1)~(1.5) using Baiocchi’s transformation.
However, to obtain the formulation by variational inequalities through Baiocchi’s trans-
formation, we cannot consider general cases of non-homogeneity k(x, y) as shown below. We
will study only two cases; k = k(x) and k = k(y).

4.2 The case k =k(x)
We first consider the case in which k = k(x). Again we introduce Baiocchi’s transformation

ux, y) = fo  p(x 1) dt. @1

Let v € C3(D) and w(x, y) = f§ v(x, £)dt, i.e. v = w, and w & C3(D). Suppose that (1.1) holds.
Then

[kVu-Vvdxdy=f kVu - (Vw), dx dy
0 o
=—fﬂ(kVu)y < Vwdx dy+fr(kVu - Vwin, ds
=—fnkVu,, VYwdx dy«l*f‘(kVu‘V’w)ny ds
r

=f kw, dx dy+f(kVu-Vw)ny ds
113 r
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and
kVu -Vodxdy= —f kVu, - Vwdxdy —f (kVu - Vw)n, ds = —f (kVu - Yw)n, ds.
DI Do r r
These imply
f kVu - Vo dx dy =J' ko dx dy +f KV - Yw)ln, ds
D Q S
where [¢} = ¢* — ¢ is the jump in ¢ on S. Since kVu is continuous on D,

I kVu -Vodxdy =j kxqv dx dy. 2.2
D D

Here xq is the characteristic function of the domain (). Continuity of kVu is verified by

kVu = (k fo ” by dt)i+(kp)j

- ( J' ’ ks dt)i+(kp)j.
0
If we define
y
209 [ kwp(x 0 dt @3)
then, instead of (2.2), we obtain
f kV(%) Vo dxdy =f xav dx dy. 2.4)
D D

Summarizing, we have:
Theorem 4-2.1. Let the permeability k depend upon only the x-coordinate. Let the pressure p
satisfy (1.1) ~ (1.4). Then u, defined by (2.1), satisfies

—V - (kVu) = kxa @.5)

in the sense of distributions on D. O
Boundary conditions, described in Fig. 3.1, are written

u,=H-y on AF, u,=h-y on BC,
2.6)
u,=0 on CD.
Impermeability of the bottom implies
k(x)(pn, +pyn, +n,) = 0.
Since k(x)#0
Ugyhy + (uyy + Dny, = 0.

Since the bottom of the dam is assumed to be flat,

Uy +1=0.
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From (2.5),
— ki), =0 ie. ku,=const. QD
By the definition (2.1)
u=0 on AB. 2.8

This means that (2.7) is automatically satisfied.
Let the set K(u) be defined by

Kuw)={veH(D):v=0 ae.on AB, O0=v(x,y)=<u(x, Z(x)), ae.in D). (29

Suppose that k(x) is differentiable. Then
f (~ Z'kuyv, + Z'kuyv, ~ (Z'k) uyv) dx dy
D
b
= f k(- un, +un)Z'v dx
b
= —-j k(uen, + uyn,)v ds +f ku, V1+ Z'"% dx
r a

for every u, v € C™(D) with v = 0 on AB. If, in addition, we require that « be a solution of (2.5),
2.6), (2.8), then

u(x, y)=u(x, Z(x)) V(x,y) €D (2.10)

and if we denote

au,v)= L {k((ue — Z'uy)o, + (uy ~ Z'u)vy) ~ (kZ'Y u,0} dx dy

L(v)= fD ko dx dy + f " k(H - yVTT 2P0 dx + [ " Kh-y)VT+ 2 dx -
then, for every v € K(u),
a(u,v—u)=L(v~ y)+fD =V -kVu)-k)Yv—u)dxdy = L(v—u).
Therefore, the quasi-variational inequality
uEKu):a(u,v—u)=L{v—u) VveEKu) 2.12)

is obtained for the case in which k = k(x).
4.3 Special cases for k = k(x)

By arguments similar to those used in Lemma 3-3.1, we can show that the function
q given by

Y(x) Z(x)
a=["" kpu(xtydt = [ ka1 ae G.1)

is constant, a.e. on (0, d). Since p = u,

q= fo 7 (k0w dt = k(O (6, Z0) ~ k(uy(x, 0.
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Since u(x,0) =0 for all x €[0, d]

=9
ux, Z(x)) = )’
By integration with respect to x, we get
_ * q
u(x, Z(x)) = ¢, +j; ) ds. 3.2)

(i) The case that EDCB is vertical: In this case

u(d,y)=J;yu,dt=J;y(h—t)dt

(3.3)
u(d Z(d))=f"(h-r)dt L1y
3y o - 2 .
Then
u(x, Z(x) = 1 n2— ‘4 x €10, d] (3.4)
' 2 . k(s) ' :

The quasi-variational inequality (2.12) under the “moving” admissible set K{u)
defined by (2.9) becomes

u€K(q): alu,v-u)y=Lv—u) YveK(q) (3.5)

where a(u, v) is same as (2.11);, L(v) is
~ 0 R ———
L(v)= ID kv dx dy +f k(H - y)\V1+(Z') dx, (3.6)

K(@)={v€EH'(D):v=0, ae. AB, v= % y(2h—y),

a.e. on BC, uvi(x,Z(x))=g(q) ae. FDC,
v(x,y)=g(q), ae. (x,y)E Dy} (3.7

Here

d
s@=3 - [ alk(s) ds = utx, 2. 68

We note that there is only one parameter g physically representing the discharge
of the flow through the dam in the admissible set K(gq) of (3.7). That is, for physically
meaningful discharges g the solution u of (3.5) has to satisfy the “‘compatibility”
condition

f(@=p=u,=0 at F 3.9

(ii) The case of a dam with two vertical layers. In this case, the discharge g can be
obiained explicitly. By the definition of u,

u(0, Z(0) = % H2. (3.10)
From (3.4),

d
u(0, Z(0)) = % h? - fo glk(s)ds. G.11)
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Let t, be the thickness of the first layer. Let k, and k, be permeabilities for the first
and second thickness of the rectangular two-layered dam, where k, and k, are constants. Then

=- H?*— h¥)[2(t ik, + (d — t)k
q ki ko )2(t 1k + ( vky) (3.12)

g= % H?+ gx/k(x).

The quasi-variational inequality (3.5) is then reduced to the variational inequality

ueK:auv—uwy=Lv-u) YveK (3.13)
a(u, v) = fD kVu-Vodxdy, L(v)= fD kv dx dy (3.14)
K={veH'(D):v=0, ae.on AB, v= % y(H-y), ae.on AF,

v =%y(h —-y), ae.on BC, v=g, ae.on FDC,

O=v=g, ae.in D} (3.15)

(iii) The case of a dam with three vertical layers. In this case

q = — kikoks(H? — hD)[2(t1koks + (8, — t1)ksky + (d — t)kiky) (3.16)

g =%H2+ aqx/k(x)

where k|, k; and k; are constant permeabilities of three layers, respectively, ¢, and ¢, are thickness
of the first and second layers, respectively. The variational inequality (3.13) now represents the
problem after an adjustment using (3.16).

Example 4-3.1. We solve numerically the variational inequality (3.13) on (3.15) for the case
of a dam with two vertical layers using the methods discussed in Chap. 2. For simplicity, the
dam is assumed to be isotropic and rectangular. Physical dimensions and a discretized model of
the example problem (3.10) are shown in Fig. 4.1. The discretized problem (3.10) is solved by
the projectional S.0.R. method described in Chap. 2. The iteration parameter o is taken as 1.75,
and the convergence of the S.O.R. method is obtained within 35 iterations. The numerical
results are shown in Fig. 4.2.

The same example problem was also solved by the extended pressure method using a similar
discrete model for the method of variational inequalities. The parameter of the penalization is
€=10"" for a mesh size of h=Ax=Ay=0.25. Numerical results are given in Fig. 4.3. The
position of the free streamline obtained by the extended pressure method almost coincides with
that of the variational inequality (3.13).

The discrete model described in Fig. 4.4 was obtained by the adaptive mesh method.
Numerical results are shown in Fig. 4.5. It is noteworthy that the iterative scheme used in the
adaptive mesh method may not converge if the number of mesh divisors of material II in the
vertical direction is the same as that of material I, and if the free streamline turns out to be
coincident with the interface of the two materials. O

4.4 The case k=k(y)
For the case that k = k(y), the Baiocchi’s transformation becomes

u(x, y) = L " k(Op(x, 1) dt. @1
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Fig. 4.1. Discrete model for Example 4-3.1.

Fig. 4.2. Numerical solution of the discrete variational inequality of Example 4-3.1.
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Fig. 4.4. Initial mesh for adaptive mesh calculation of Example 4-3.1.

Fig. 4.5. Numerical results obtained by the adaptive mesh method for Example 4-3.1.

Then, as in the proof of Theorem 4-2.1, for » € C3(D),

1 1
LEVu -V(kv)dxdy=L{u,w,y+(Euy)(kwy)y}dx dy

= —J’ (uy,‘w,r + (-’,lz uy) kw,) dxdy +f (uxw,n,, +% uykwyn,) ds
Q y FD

= —I k(p.w, + p,w,) dx dy +f (u,w, + u,w))n, ds
Q FD

=j kw, dxdy+f (Vu -Vwin, ds
0 FD

f 2V V(o) dx dy = —J’ (Yu - Tw)n, ds.
DiQ FD

Using the continuity of Vu on FD

[ 1vu-vnacdy=[ ravacay, e k9 (2u)=kxa
pk ) k

4.2

in the sense of distributions on D.
Theorem 4-4.1. After the Baiocchi transformation (4.1), the solution u of (4.1) satisfies

~kv- (}9u)=kxa in D 43)
in the sense of distributions. [
Boundary conditions, described in Fig. 3.1, are written
u,=k(H-y) on AF, u,=k(h—y) on BC
4.9

u,=0 on CD.

UES Vol. 18, No. 10—F
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Since the bottom foundation is horizontal
=0 on AB. 4.5
Impermeability of the bottom is given by
pne+(py+ Dny =0, ie. p,+1=0

which implies that

and then

u,=0 on AB (4.6)
This requirement is automatically satisfied by the boundary condition (4.5). That is, the
transformation (4.1) is compatible with the assumed impermeability of the flat bottom.

Let the set K(u) be defined by

Kuw)={v€H'(D):v=0, ae.on AB, u(x,y)=u(x,y), ae on FDC,

@.7
0=ov(x, y)<u(x, Z(x)), ae.in D}
We note that
) = ulx, Z(x)), ae. (x,y)€DQ
u(x, y)=ulx, Z(x)), ae. (x,y)eD @8
—kV-(%Vu)“—-O, ae. (x,y)EDIO

Suppose that u is a solution of (4.3), (4.4), (4.5) and (4.8) and k(y) is differentiable on D. Then,
for every v € K(u),

fD {% (e — Z'uy) kv — ku), + % (u, + Z'u, ) (kv — ku),

—Z"uy (v~ u)—%Z’u,(u - u)} dx dy

=L(kv- (;{—Vu)—k)(w—u)dx dy+ka(v—u)dxdy
+f: u,V1+Z%v - u) dx+fcb u,\V1+ Z%v — u) dx.

By putting

alu, v) = fD {% (e ~ Z'u,)(k)s + % (u, + Z'u)kv), — Z'ugw — "7 z'u,u} dxdy (49
0 b
L(v)= fo kv dxdy +f k(H-yn(1+2Z%vdx +f k(h—y)WVI1+Z% dx (4.10)
we obtain, for arbitrary v in K(u),

alu, v —u)= L(v—u)+fD (kV' (-’];Vu)—k)(ku)dx dy

= I{v—u)



Theory of variational inequalities, flow through porous media 1255

Thus, we arrive at the quasi-variational inequality
ue Ky atu,v—u)y=Lv—u), Yv&€K(u) (4.11)

4.5 Special cases for k =k(y)
By arguments similar to those used in the proof of Lemma 3-3.1, we conclude that the
function

Z(x)
q=- f kp(x, tydt é.n
0
is constant, a.e. on (0, d). Since kp = u,

~a= [ ) dt = w0, 260 - 15 0
Since u(x,0)=0 on (0, d)
—q = ux(x, Z(x)).
Integrating with respect to x yields
u(x, Z(x)) = C,—gx. (5.2)

(i} The case that EDCB is vertical: By the definition of &,

u(d, y)= fo " k(t)(h - 1) dt (5.3)
Then
h
C = f k(t)h—t)dt+ qd.
0
This implies
h
(@)= u(x, 26 = [ kh - de + g(d - ) 5.4
The quasi-variational inequality (4.11) under the admissible set (4.7) is reduced to

uEK(q):aw,v-uwy=Lv-u) YveK(q) (5.5
Kig)= {u EHYD):.v=0, ae.on AB,
y
v= J; k(tXh-t)dt, ae.on BC, v=g(q), ae. on FDC,
O0=v=<g(q), ae.in Dz} (5.6)

Lv)= fD kv dx dy + f ° k(H - y)V1+ Z% dx. ¢
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We note that for a physically meaningful g the compatibility condition
f(@=p=u,=0 at F (5.8)

must be satisfied.

(it) The case of a dam with two horizontal layers: Suppose that the thickness of the lower
layer is given by b > h and that k; and k, are the permeabilities of the upper and lower layers,
respectively. Then (5.3) becomes

%kg(Zhy—yz) for y<h

uld,y)y=gs= 1 5.9
= koh? for y=h
2
and also we have
% k(2Hy — y?) for y<b
u©, y)=8=1, 1 (5.10)
§(k" —k)(2Hb - b +§ k(QHy—-yY) for y=b
and
1 a1 ,
g(x)= 3 (k,— k)QHb — b*) + > kH
—5(1(k —k)2Hb - b))+ k2 - Lk h2) 5.11)
d 2 2 1 2 1 2 2 . .
Let
d(u, v) = f {1 (ko) +1 uy(kv)y}dx dy (5.12)
p Lk k
Lv)= f kv dx dy. (5.13)
D
Then the quasi-variational inequality (5.5) is reduced to the variational inequality
ueEK:duv—-uw=Llv-u), YWweEK (5.14)
K={veH'(D):v=0, ae.on AB, v=g,
ae.on BCand CE, v=g, ae.on AF,
O0<ov(x,y)<g(x), ae. in D} (5.15)

where g4, go and g(x) are defined by (5.9) ~ (5.11).

4.6 Comments

The formulations using extended pressures follow from Brezis, Kinderlehrer and
Stampacchia[45] with slight modifications. The inequality (1.8) simply becomes an equation if
the test function ¢ € H'(D) satisfies ¢ = 0 on the unknown seepage line CD. This also holds for
the penalized problem (1.9) in this case. We emphasize again that the penalty parameter €
cannot be selected arbitrarily for the discrete model of (1.8); it strongly depends upon the
parameter h of the discretization of the domain. Moreover, the flow region { is defined by, e.g.

Q={x,y)ED, plx,y)=aJ}

where « is a proper constant. Discretizations of (1.8) by finite element methods have also been
studied by Le Tallec[46].
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Our derivations of variational inequalities in Sections 4.2 ~4.5 mainly follow the work of
Baiocchi et al.[14] and Kikuchi[36]. A different type of non-homogeneous dam is analyzed by
Benci[47], but his treatment is essentially the same as that given here.

We have not considered issues such as existence, uniqueness and regularity of solutions in
this chapter. However, several results on these questions follow easily from arguments given in
Chap. 3.

5. SEEPAGEFLOWPROBLEMS IN WHICH DISCHARGE ISUNKNOWN

5.1 Dam with an impermeable sheet

We will now consider the case of a rectangular, homogeneous, isotropic dam through which
the flow is restricted by the presence of an impermeable sheet on part of the upstream side of
the dam, as shown in Fig. 5.1. While such a problem can be formulated in terms of the pressure,
as in the previous two chapters, the problem is described here in terms of the extended velocity
potential ¢. This problem is formally stated as follows:

Problem 5-1.1 Find (¢, Y) such that

Ap=0 in Q=(0,a)x(0,Y)

. (LY
=y m ”ﬂa D=(09 a)x((}, yl)
¢=y; on AH, ¢=y, on BC, ¢=y on (D (1.2
e _ 9o _
Fo 0 on GH and 3y " 0 on AB (1.3)
¢=y and §—§=0 on GD 1.4

where

an M ox TGy

n={n,, n,} is the unit vector normal to the boundary 4} of the domain @,

y Dam D
Y Flog / E
G
2. ‘
» L
H =0
o 92,0
‘. fiow domain . . | AN 5]
. . L L =y
" Yo
A VA/\ ‘I‘l\\ W."&\’\\Y‘Q‘YII\‘Y&\V I\-\\f-K\ ./.'\\" FANZEANN 754

X
{0,0)

Fig. 5.1. Geometry of flow through a rectangular dam.
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We note that the velocity potential ¢ appearing in problem (1.1) is the extended potential, in
the sense that

_felxy) if (x,y)EQ
tp(x,y)—{y it (x.y)€ DO (1.5)

where $(x, y) is the usual velocity potential defined on the flow region Q (recall 3-1.3).
Definition 5-1.1 Let us define the new function w by

wie ) = [ et - dt (16
: 0

If we C'(D), then
ow
e(x, )= y"a—y—(x, y). (L.7)

Moreover, since the pressure p(x, y) defined by

plx,y)=plx,y)—y (1.8

is always non-negative on the whole dam D, and is strictly positive on the flow region ), we
must have

wix,y)=0 in D and w(x,y)>0 in Q (1.9
if ¢ is the solution of Problem 5-1.1.

We next establish governing equations for w(x, y) when ¢ is the solution of Problem 5-1.1.
Let u be the function defined in (2.1). Then

u(x, yo=u(x, y)+ wix, y)

Thus, since u satisfied (2.5) for k = constant,

Pulx,
w80

This implies that

~Aw+ya=0 (1.10)

in the sense of distributions on D, where

1 if (x,»€Q

Xﬂ(xs }’) = {0 if (X, _YjEDIQ. (1.11)

In the process of obtaining (1.10), the boundary conditions (1.4) on the unknown free boundary
y = Y{x) have been used.
We shall consider the impervious condition d¢/dy =0 on AB. By (1.7)

do_,_&w_
ay—l P =( on AB.
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In view of (1.10), we shall choose w so that

3w
—6';2—-—0 on AB.

Since the foundation AB is horizontal,

aw
-9 on AB
where ¢ is a constant. Integration with respect to x yields

w(x,0) = - gx+ C,

where C, is again a constant. From (1.12) and (1.6),

_3_ N _ _ ma(P _
] wwn-na=["%wna=—q

1259

(1.12)

(1.13)

(1.19)

This means that g is the discharge of flow from upstream to downstream. It is obvious that g is

unknown in this model problem.
The boundary conditions (1.2) now become

w09 = [ (00,0~ at
e d
- ["e0.0-nar+ [ -nar
d y
=C2+)’l(d")’)_%(d2“)’2) for y€(0,d)

wa,n=[" (6@n-ndr=0 for yeay)
¥

” 1 1
W(a,y)=f (yz~t)dt=§y%-yzy+—y2 for y&€(0, y)).
y

2

By (1.13) and (1.17),
- 1,
W(G,O)—“‘qa“’cl—i)’z-
That is
C =-l—y2+ qa
1 2 2 .

By {1.13) and (1.19),

w(©,0)= C, = Cﬁ-y,d—%d’.

(1.15)

(1.16)

.17

(1.18)
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That is,

Cz=%y§+qa~y;d+%d2. (1.19)
Then the condition (1.15) becomes
1, 1.,
W(O,y)=§yz+qa~y:y+§y

1

=5y =yy+ga+3yi (1.20)

ST

On the impervious sheet GH
Mo n=_¥ = ["% -
= O.N=-5-0.5) ]y “£0,ndr=0 (1.21)

because of (1.3);.

Summarizing these results, we have:

Theorem 5-1.1. Suppose that ¢ is the solution of Problem 5-1.1. Then the new variable w
defined by w(x, y) = [} (¢(x, 1)~ t) dt satisfies

—-Aw+xq=0 in D (1.22)
w>0 in £ and w=0 in D (1.23)
a
wlry =g, and 5% . =0 (1.24)
N

where 'y = FH, I' is the total boundary of the dam D = (0, a) X (0, y,) and

%yz-y,y-%qa +%y§ on HA

_ —q(x'—a)+%y§ on AB
8a= (1.25)

%()’2")’)2 on BC
0 on CE and EF O

It is important to note that since w(x, y) =0 in the whole domain D, the condition

0=<g,
must be imposed. That is

0

A

[ (ST - J R

1
v —yiy+qa +§y§

1 1
(y~y1)2—§y%+qa +§y% O<y=d
and

05~q(x—a)-%y§ O0<sx=a

These are satisfied if

1 1 1
q=- max {y;d-—i(d’% y%),—z y%}. (1.26)
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Moreover, the discharge g for the case with the impervious sheet is less than the one for no
impervious sheet, i.e.

1
a<5 ¥i-y. (1.27)

Thus, the fixed parameter g, which represents the total discharge of seepage, must satisfy the
conditions (1.26) and (1.27).

We next seek a variational formulation in terms of the new variable w, using the results
in Theorem 5-1.1. Let the set V, be defined by

V,={veH'(D):v=g, ae.on T/Ty} (1.28)

Suppose that w satisfies (1.22) ~ (1.24) for fixed g, which is now restricted by (1.26) and (1.27).
Then, for every v € V,,

f Vw-V(v—w)dxdy=—f xolv — w)dx.
D D

Since
xav—-—wy=v " —wr+yg(v-w)—v +w?

=v " —w'—(v* = xav) + w* — xqw

=p —-w'—(0t - yav)<sv*—w*
we obtain

f Vw-V(v—w)dxdy+f (v*-wHdxdy=0 VYveV, (1.29)
D D
where, as usual
¢* = sup(e,0).

Thus, we have

Theorem 5-1.2. Suppose that w satisfies (1.22) ~ (1.25), and that g satisfies the restrictions
(1.26) and (1.27). Then, w satisfies the variational inequality (1.29). a

An alternative principle can also be formulated:

Theorem 5-1.3. If w is a solution of the variational inequality (1.29), then

w=0, ae.in D (1.30)
and w satisfies the inequality
wa-V(v—w)dxdy+f (v—-w)dxdy=0 VYveK, (1.31)
D D
where
K,={v€V,:v=0, ae.in D} (1.32)

Proof. Since the conditions (1.26) and (1.27) are satisfied

g, =0
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is assured. Then v = w*, w* = sup [0, w}, satisfies the boundary condition on I'/T', i.e. w* € V.
Substituting this into (1.29) implies

[ Vw-V(w'—w)dxdy =0,
p

[ Yw™ - Vwdxdy<0.
D

Since w™ =0 on I'/Ty, we can conclude that w™ =0, a.e. in D, i.e. w=0, a.e. in D. This means
that w € K. The inequality (1.31) then follows from we K,. [

The above theorem shows that the variational formulation (1.29) is equivalent to (1.31). Using
this fact, we will show the existence of a unique solution of (1.29) for a fixed value g which
satisfies the conditions (1.26) and (1.27).

Theorem 5-1.4. Suppose that the value g satisfies the conditions (1.26) and (1.27). Then the
set K, is non-empty. Further, this implies the existence of a unique solution of the variational
inequality (1.31) and, therefore, of the variational inequality (1.29).

Proof. As shown above, the condition (1.26) is set so that g, =0 on the boundary I'/Ty.
Moreover, g, € C*([/Ty). Then the extension of g, by zero to the interior of the domain D
certainly belongs to K. Convexity and closedness of K, are clear since the trace from H'(D)
onto H'Y*(I) is continuous.

The bilinear form

al(u, v)=f Vu-Vodxdy
D

is continuous on H'(D) x H'(D); indeed
a(u, v) < lullflo]
where [}, is the Sobolev norm of H'(D). Using Friedrich’s inequality, it can be shown that
a(u—v,u—v)=Clu—vfff

for every u, v € V. This shows the strong ellipticity of the bilinear form.
The linear form

Lv)= fD vdxdy

is continuous on H'(D). Thus a unique solution of the variational inequality (1.31) follows the
general existence theorems on variational inequalities discussed in Chap. 1 (See Theorem
130, O

Up to this point, we have developed a formulation of problem (1.1) in terms of the variable
w. We next discuss some of the properties of the solution of the variational inequality (1.29), or,
equivalently, of the variational inequality (1.31).

Theorem 5-1.5. Suppose that w is a solution of the variational inequality (1.29). Then

-Awe L™(D) (1.33)

0=sAw=1, ae.in D (1.34)

‘;_”;’=0 H "W (1.35)
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In particular, w € C(D), and on setting

Q, ={(x, y) € D: w(x, y)> 0} (1.36)

-Aw+t1=0 (1.37)

in the sense of distributions in Q.
Proof. Settinoe v = w+ o, & (n) and ¢ =0, vields

L IOV, Svelaiig v P, ¥ = LY

J Vw-V<pdxdy+f ¢ dxdy=0.
p D

in the sense of distributions on D.
Puiting v = w — ¢, ¢ € Cs(D) with ¢ =0, implies

—J‘ Vw-V(pdxdy+f {w—@) —w*}dxdy=0
D D
since(WH(—@))' =wr+(—@) =w"
-—I Vw-Vedxdy=0.

D

That is
Aw=0

in the sense of distributions on D. Thus

O=sAw=1.

This also implies that Aw € L™(D).
The natural boundary condition (1.35) then follows in the sense of H™"*T) from the fact
that w € HY(D) and Aw € L*(D)C L*(D): Let

Vo={veH'(D):v=0, ae.on T/Ty}

Putting v = w+ u, u € V,, in (1.29), and integrating by parts, we obtain

f( Aw)udxdy - fu dxdy=< <?: >r
N

—j (—Aw)udxdy+f utdxdy
D D

ie.

ow
<ax,u>r <ZJ lu|dx dy
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where (-, ), denotes duality pairing on H "%I'y)x H"*(I'y). Since we can find functions u
such that u has non-zero values on I'y but vanishes in D, we can conclude (1.35).

For the moment, we set f = Aw € L*(D). Then the solution w of (1.29) is a solution of the
mixed boundary value problem

ow
ax—O on FN.

wEHYD):Aw=f, w=g, on I/Ty,
By standard regularity results for second-order partial differential equations (see, e.g. Lions and
Magenes [48]), it can be shown that

we HCP¢(D), e>0.
By the Sobolev imbedding theorem, we know w € C(D). Thus the definition
0, ={(x, y) € D: w(x, y)>0}

is meaningful.

The differential eqn (1.37) now follows by taking v = w + €p, ¢ € C5(€},) and ¢ =0 in D/Q,,
for sufficiently small e >0. [

In the above discussions, we have assumed that the discharge q is given. However, the
quantity ¢ is, in fact, unknown in this problem. Thus, the question remains as to how we can
determine the true discharge g using the variational solution w for a given value gq. To resolve
this difficulty, suppose that w € C'(D), where w is the solution corresponding to the true
discharge . Since the impervious sheet covers the portion FH, the condition

0
a—;”=0 at 0,y) for d<y<y,

holds, as shown in (1.21). If w is the solution, this condition must be satisfied at the point H, i.e.
(0, d) where the Dirichlet boundary condition is also imposed. That is, the condition

wl . 1, o _
gyzd—lgg})c{w(ad) w(0, d)} =0 (1.38)

must be satisfied. We easily see that this “compatibility” condition may not be satisfied for
an arbitrary assumed discharge q. Thus, we must demand that § be such that w satisfies the
compatibility condition (1.38) in order to obtain the variational solution of problem (1.2). In
Baiocchi et al.[14), the following facts are proved:

if f(q)=§—‘;@ , andif f(¢') and f(q") are finite,
=
then f(q)=0=f(q) and (1.39)

f(@)<f(g") for q@=q"<q

where w(q) is the solution of (1.29) for a fixed ¢, and

1
@ =5-(i-y)
20 (1.40)

1 1
qo = max {0, 2 ()’1d —5(d*+ y%)>}-
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That is, if aw/ax at H = (0, d) is finite, the function f(g)= dw(q)/ax is a strictly decreasing
function of ¢. From this we have the existence of a proper g which satisfies the compatibility
condition (1.38). This, at the same time, guarantees the existence of solutions to problem (5-1.1).
Moreover, the inequalities {1.39) suggest again the discharge descent method for obtaining
approximations of the discharge g which satisfy condition (1.38). Suppose that, for given
numbers g, and ¢p), f(qgq) and f(ge) are known. In general, we may take qu,=¢; and
g = q1— €, € > 0. Then, the third iterate g, is defined so that

flae) - flae) = M(Qs - qw)

dan— 4o
flga) =0
1.e.
90 = 9o - fe) (am — qw). (141

(90— 9e)

If f(qa) is still far from zero, we use (1.41) to construct the fourth approximation g, (by
replacing g with qq), f(go) with f(ga), etc.). This iterative process can yield good ap—
proximations to the variational problem (1.29). [

Example 5-1.1. Here we wish to calculate the free surface of seepage flow through a
homogeneous, isotropic, rectangular dam with an impermeable sheet on a upper part of the
upstream wall, as shown in Fig. 5.2.

Following the arguments of Chap. 2, a discrete model for solving the variational inequality
(1.29) is shown in Fig. 5.2. The method of solution of (1.29) is again the projectional S.O.R.
method with the iteration factor w =1.75. We note that uniformity of the mesh makes it
possible to develop finite difference schemes equivalent to the projectional S.0.R. method.
Numerical results are indicated in Fig. 5.3.

Rapid convergence of the iterative scheme (1.41) for the discharge g is observed. The
projectional S.0.R. method converges within 30 iterates for each iteration on q.

g AX= Ay s 0.25

Y= 7
ID v /I$//\/7\//\f/\/’\//\I/t'/\\//\‘//\\‘/h‘l/\
l = 'r- a=5 ]|
ya;l
AN R S N I TERATIONS
o® q f

Fig. 5.2 | 48 -0.72652
2 46 -0.54319
3 40074 | -0.02072
4 3.9839 | ~-0.00097

Fig. 5.3

Fig. 5.2. Geometry and discrete model of dam in Example 5-1.1.

Fig. 5.3. Numerical results obtained for Example 5-1.1 using projectional S.0.R. method for solving system
of variational inequalities.
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The same example problem is solved by the adaptive mesh method using the discrete model
given in Fig. 5.4. Numerical results are shown in Fig. 5.5 and its convergence is described in
Fig. 5.6. Eleven iterations are necessary to obtain convergence which is indicated by the
absolute value of the pressure on the free streamline. Since the system of linear equations is
solved twice at each step of iteration, 22 systems of equations are solved. However, the total
number of degrees of freedom for this discrete model is very small, whereas many nodal points
are necessary if we chose to solve the system of variational inequalities.

The total discharge of seepage flow calculated is 4.14 as opposed to 3.98 calculated using
variational inequality (1.29). The position of the free boundary obtained by the adaptive mesh
method is slightly higher than that obtained by solving the variational inequality (1.29). [

® Moving Nodal Point
o Fixed Nodal Point total discharge q=4.14

L

2~

NTASNT A7 AN 7TRNNVZRNRY,

6N T
fe——q=5 ——)J

Fig. 5.5

Surface

L 11141

Maximum Pressure on
the Free
-2

i

'

| 23456789101
Number of {terations
Fig. 5.6

Fig. 5.4. Initial mesh geometry for adaptive mesh method for Example 5-1.1.
Fig. 5.5. Computed free surface profile for Example 5-1.1 computed using adaptive mesh method.

Fig. 5.6. Convergence characteristics of adaptive mesh calculations of Example 5-1.1.
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5.2 Free surface from a symmetric channel

We now consider the problem of 2-dimensional seepage flow from a symmetric channel into
a permeable isotropic homogeneous foundation in which a horizontal drain is embedded as
shown in Fig. 5.7. Let ¢ be the velocity potential and let 4 be the stream function defined on
the unknown flow region )= ABEF which is assumed to be contained in the domain
D = ACDEF. The domain D is chosen artificially in order to define the “fixed” region for the
problem. This leads us to:

Problem 5-2.1. Find the triplet (¢, ¢, Q) such that

e~ =0 and ¢, +=0 in O (2.1
¢=y; on EF, ¢=0 on AB 2.2)
§=7 and ¢=0 on AF 2.3)
$=0, é=y, ¢,=0 on EB. O 2.4)

Here ¢, = dglax, ¢, = 3¢y, n = nyp, + nyp,, n={n,, n,} is the unit vector outward normal to
the boundary 4} of the flow region Q.

We next extend the above problem defined only on the unknown flow region {} into the fixed
domain D. Let

_[¢ mn Q ¢ in Q
‘””{y in DI ‘*’"{o in DIQ. 23

The new functions ¢ and ¢ are called the extended velocity potential and extended stream

function, respectively. )
Theorem 5-2.1. Suppose that the pair (&, ¢) satisfies (2.1) and (2.4). Then the equations

(y_¢)x+¢y=0 and (y_'ﬂp)y—‘:bx::/yﬂ

are satisfied in the sense of distributions defined on the fixed domain D. Here xq is the
characteristic function of {}, i.e.

xax, =1 if (LYEQN, xalx,y)=0 if (x,y)Z0 (2.6)
y
\"2 E D
y = Z{x) V :_:::_;;EJ sz
S N &
g=y—7 | FIF ¥ [
ST A\
‘ e y2 _'i',“ p=y
pro~[ @ | || Capo
A !5 X
A B C

Fig. 5.7. Geometry of flow from a symmetric channel in a porous media.
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Proof. Let v € Co(D). Then, by (2.1); and (2.4),

- [ - ot umtardy == [ (5= g+ doaxay
D Q
= [{o-er+doaxdy=[ (o=@ +inox
[} EB
=0.
This means that

(Y=@ktiy=0

in the sense of distributions on D, Similarly
[ o= +antardy=[ -6-er +nddxay
= f {y-¢)y—ttvdxdy+ f {(y—e)n, +yn}v ds
Q EB
=f vdxdy=f xav dx dy.
4] D
This means that

(y_(P)y_'!’x:Xﬂ

in the sense of distributions on D. a

Thus, problem (5-2.1) can be rewritten in terms of the extended velocity potential and
stream function in the fixed domain D as follows:

Problem 5-2.2. Find the triplet (¢, ¢, (1) such that

(y—ox+t=0 and (y—¢)y—¢=xo in D 2.7
¢=y and ¢=0 in D/Q 2.8)
¢=y, on EF, ¢=0 on AB 2.9
" =% and ¢, =0 on AF. [ (2.10)

We note that the conditions on the free boundary EB are now imbedded in eqn (2.7). Let the
scalar-valued function w(x, y) be defined by

Wi, y) = fE 4 drr- ) dy), 2.11)

where the integral is considered as the line integral from the point E to the point P =(x, y) of
D. Since the value w(x, y) does not depend upon the path of integration, and since

y—¢<0 in Q, y-¢=0 in D/Q

it is easily verified that

wix, y)>0 if (x,y)€Q }

w(x,y)=0 if (x,y)€DQ. (2.12)
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Moreover, we have
w,=y—¢ and w,=—¢ 2.13)

Substituting (2.13) into (2.7) shows that the first equation in (2.13) is automatically satisfied by
the new scalar-valued function w, and that the second equation of (2.13) now reduces to

Aw = xq (2.14)

where, as usual, A = 3%/ ax* + 3*/ay%. The condition (2.8) is imbedded into the condition (2.12), in
terms of the variable w(x, y). Boundary conditions (2.9) and (2.10) become

w,=y-y, on EF, w,=0, ie. w,=0 on AC 2.15)
wx=~£2f-, ie. w,,=% on AF. (2.16)

Thus, we can conclude the following:
Theorem 5-2.2. Suppose that the triplet (¢, ¢, () is the solution of problem (5-2.2). Then the
scalar-valued function w defined by (2.11) satisfies
—Aw+ Xa= 0 in D
w>0 in Q and w=0 in DIQ .17

w,=y—y; on EF, w,=0 on AC, w,,=-‘2l. O

We next consider a variational formulation to the problem (2.17). In this case, a major
difference between this problem and those in Chap. 3 is that a proper “Green’s” formula like
(3-2.1) cannot be obtained. The identity (3-2.1) has been used to express the natural boundary
condition wy, = y — y; or w, = y — y, in Chap. 3. The special identity (3-2.1) is, thus, introduced to
equip the associated variational (or weak) formulation with the proper ingredients to cover the
classical formulation.

In the present case, the bilinear form includes a term which consists of the first derivative of
the function w on the part of the boundary I of the domain D. However, the first derivatives of
this function in H'(D) (which is the proper space for this variational setting of the problem)
cannot be defined on the boundary.

Let V; be defined by

Vo={v€H'(D):v=0, ae.on ED and DC}. 2.18)

Suppose that w satisfies (2.17). Then, for Yv € V,

wa-V(v—w)dxdy=f (—Vw)(v—w)dxdy+f wo(v - w)ds
D D T

“xalv-w)z=—(v*-w*) aeinD

f w{v—wids = —%f (v —w)dy +f (wen, +(y — yon, v — w) dy.
r AF FE
Then we have (by purely formal manipulations)
f Vw-V(v—-w)dxdy—-f wxnx(v——w)ds+f (v"—w*)ydx dy
p FE D

= —% L Jo—wydy+ fm (y = yom,(v — w) ds. 219

1IES Vol. 18, No. 10—-G
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If n, =0, i.e. if FE is horizontal, then the variational inequality (2.19) becomes

P ~ ~

J Vw-V(v—w)dxdy+J (v*—w*)dxdy2~g~J (v~w)dy+(y—y1)J (v—w)dx.
D D AF FE
(2.20)

This problem represents the case shown in Fig. 5.8.

As mentioned above, the variational form (2.19) is improper in the space H'(D), since the
second term of (2.19) includes the first derivative of w on the boundary FE. Thus, the
inequation (2.19) is just a formal one. To make the development more precise, we introduce a
selection map S defined by the following way: Let w, be the solution of the variational
inequality :

w, E Vo:f VYw, ~V(v—wu)dxdy+f (v+~w2)dxdy2——qf (v—w,)dy
P b 2ar .21

[t - yom)e-w) dy
FE
forevery vEYV,

for a given data u, which is an element in H(D). The map S: H* D)~ H*(D) is then defined by
Su)=w,. (2.22)

Thus, the solution of (2.19) is the fixed point of the selection map S defined by (2.22).
It is not difficult to show that only a single solution w, € HXD) can exist for each given

u € H¥ D). However, the existence of a fixed point of the selection map is still open.
From the governing eqns (2.17), we can obtain a relationship which may indicate how proper

data ¥ € HYD) in the auxiliary problem (2.21) are selected. Let C be an arbitrary constant
function defined on the domain D. Then

f (—Aw+Xn)Cdxdy=anw-VCdxdy+CmesQ+f w,C ds
D n

A B C

Fig. 5.8. Special geometry of flow from a rectanguiar channel.
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where 4Q is the boundary of the flow region ). Applying the boundary conditions in (2.17)
mes Q—%mes (AF)+f wen, ds +f (y—y)n,ds =0,
FE FE
i.e.

J’ wn, dx = 4 mes (AF) +I (y1—y)n, ds —mes ). (2.23)
FE 2 FE

Therefore, the following procedure may be adopted to obtain the solution of (2.19): for an
arbitrary element u € V,, e.g. u =0, the variational inequality (2.21) is solved. Let this solution
be denoted by w,. Using w,, we next obtain mes )} which depends upon the data u. Then
substitute this into (2.23), and obtain an approximation of [rr wen, ds. Finally, this ap-
proximation is substituted into the fourth term of the ineqn (2.21). Then by solving (2.21), a
second approximation of w, is obtained. This process is repeated until convergence is
(hopefully) obtained.

Remark 5-2.1. Despite the difficulties of the variational formulation (2.19) mentioned above,
Bruch and Sloss[50, 51) have obtained numerical solutions which are in good agreement with
analytical solutions available for special cases. In their work, only a formal variational
framework is presented. Numerical solutions are obtained using a finite-difference discretization
of the system (2.17). The question of conditions for the existence of solutions to problem (2.1),
specifically the variational inequality (2.19), for the case in which the first derivative of the
unknown on the boundary is included, appears to be open. [

Example 5-2.1. Although some open theoretical questions on the variational inequality (2.19)
remain for the case n,# 0 on the bottom of the channel, reasonable numerical solutions can be
obtained without much difficulty. Following Bruch and Sloss[50], the unknown discharge g is
obtained by the compatibility condition

fl@)=tim . (w(@, y) - wia,y,~ ) =0. 229

S.O.R.
y w={75

v w=0

OO IO J [0X6] L&} 101¢16]
[ il X
< 8

ow
2y *0

Fig. 5.9. Geometry and mesh for calculations in Example 5-2.1.
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The condition (2.24) means that the pressure p(x, y) = dw(x, y)/dy is zero at the point E in Fig.
5.8. The same iterative procedure as (1.41), which is called the discharge descent method, is
adopted to obtain the proper discharge q.

Geometry and a discrete model of a model problem with a triangular channel are shown in
Fig. 5.9. Numerical results are indicated in Fig. 5.10. We note that a rather large starting value of

@ saturated
BN
ngaur pumny

. 000000000000

0200000000000
000000000000
0000000000000
0000000000000
0000000000080
6 9000000000060
2000000000000
2000000000000
0000000000000
0000000000000
00......0..0.
iterations

q i

1 16667 |-243.96

2 {16167 |-23574

3 j182.t -1.456

4 17319 |-0.487

5 168.71 ~-0.053

6 168.16 {-0.000

Fig. 5.10. Flow domain in Example 5-2.1 calculated by solving system of variational inequalities by
discharge descent method plus S.O.R.
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Fig. 5.11. Initial mesh for solving Example 5-2.1 by adaptive mesh method.
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the assumed discharge is needed in this problem to bring the descent process within the radius of
attraction of the solution to the discrete problem.

The adaptive mesh method is also applied to solve the same problem. In this case, the
seepage point B is unknown a priori. Thus, a discrete model for initiating the adaptive mesh
method is not easily obtained. Moreover, the method is very sensitive to the position of the
seepage point B. The numerical results obtained by solving the variational inequality (2.19) were
used to define the mesh described in Fig. 5.11. Numerical results and its convergence are shown
in Figs. 5.12 and 5.13. At each iteration, points S), S, and S, (see Fig. 5.11) are defined by
neighboring points Ty, T, and T; so that the x-coordinate of the point S; is same as that of T;,
i=1, 2 and 3. As seen in Fig. 5.13, convergence of this method is, at best, very slow. Some
improvement in the maximum pressure is obtained up to values of order 107!, but the method
appears to diverge if sharper tolerances are imposed. Nevertheless, the calculated free
streamline is in reasonable agreement with that shown in Fig. 5.10. However, in this relatively
simple example it is possible to start the process with a mesh which comes close to fitting the
actual flow domain.

Numerical results such as these indicate that the adaptive mesh technique should be used
with great care—if at all—for problems of this type. [

Free Stream
Line

UUIUU COOULUU VOO0 00000 U Do 00U UoOOU00

- 72

-

Fig. 5.12. Free streamline in Example 5-2.1 calculated after six iterations using adaptive mesh method.

Maximum Pressure on
the Free Surface

1234567891001 12
Number of Iterations

Fig. 5.13. Convergence characteristics of adaptive mesh method for Example 5-2.1.
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5.3 A seepage flow problem with a horizontal drain

Let a rectangular dam D = (0, a) X (0, y,) be homogeneous and isotropic, and let the flow
through the dam D be diverted by a horizontal drain on part of the foundation, as shown in Fig.
5.14. Let ¢ and ¢ denote the velocity potential and the stream functions, respectively, for the
unknown flow region {}. Then the problem can be expressed by

Problem 5-3.1. Find a triplet (4, &, Q) such that

S+ =0, ¢—,=0 in Q G.1)
$=y, on AF, $=0 on BC, §i=q on AB (3.2)
$=0, =y, ¢, =0 on FC (3.3)

where ¢, = n,¢, + n,é,, n={n,, n,} is the outward unit vector normal to the boundary 4 of Q,
¢ =0d¢[ox,etc. O )
As in Section 5.2, ¢ and ¢ onto the whole dam D in the same manner as in (2.5); that is

_f¢ in Q ¢ m Q
“"{y in DO "’“’{o in DI 34

Then, paralleling Theorem 5-2.1., we have
Theorem 5-3.1. Let ¢ and ¢ satisfy (3.1) and (3.3). Then the extended velocity potential ¢
and stream function ¢ satisfy

(y-e¢)y~td=xa and (y—¢)+4¢,=0 in D [ (3.9)

Following the plan of previous sections, we next introduce a new scalar-valued function
w defined by

W)= [ udrro-0d) (9
where P is a point in D[P =(x, y)].
Since
we=—t and w,=y—¢ in D 37
by
? F E
N s 0
RRTATIN
ASTRIES, Sveosim
b,0) j (0,0
g‘;f’o Horizontal Drain
¥=a

Fig. 5.14. Geometry of a rectangular dam with a horizontal drain.
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the governing eqn (3.5) can be reduced to

Aw = xq. (3.8)
Moreover, by the definition of ¢ and ¢,
w=0 in DIQ (3.9)
and
w>0 in Q (3.10)

because y — ¢ <0 in {). The boundary condition (3.2) is changed as follows

wy,=y—y1 on AF @3.11)
Since AF coincides with the y-axis, (3.11) can be integrated to give

w(0, y)=%y2—yny+C
where C is a constant. Since w=0 at F,

W0, y)=-33+C=0, ie. C=3y

yi.

B

Then
1
w =§(y| -yy¥ on AF (3.12)

From uﬁ =q on AB, we have
we=—¢ (3.13)
and since AB coincides with the x-axis, (3.13) can be integrated to give
w(x,0)=—-gx+C, C =constant.

Finally, since w(0,0) = (1/2)y} in accordance with (3.12),
1.,
w=—qx+§y, on AB (3.14)

and since ¢ =0 on BC

w,=0 on BC. 3.15)

Summing up, we have:

Theorem 5-3.2. Suppose that the triplet (¢, ¢, Q) is a solution of Problem 5-3.1. Then the
variable w defined by (3.6) must satisfy

-Aw+xn=0, w=0 in D

w>0 in & and w=0 in DIQ
3.16
w=g, on [Ty (3.16)

Wy=0 on FN
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where I'y = BD, I is the boundary of the dam D, and g, is given by
1 2
3(y=y)" on AF

8= —qx+%y% on AB G.17)

0 on EFUDE.

We now construct a variational formulation of (3.16). Let us define an admissible set V, by
V,={veH'(D):w=g, on F/FN}. (3.18)
Let w satisfy (3.16). Then, for each v €V,
f Vw-V(v—w)dxdy =f {(—Aw)v—w)dx dy+[ wy(v —w)ds
D D 'n
=—f Xg(v——w)dxdy-j wy(v — w)dx
D I'n
z—f (v*—~whydxdy
D

since, a.e. in D,
—yolv—wy=—v"+wt.

Therefore, we obtain the variational inequality
f Vw-V(vww)dxdy+f (w*—-whdxdy=0, YoEV, (3.19)
D D

1t is clear that the discharge g cannot be arbitrary since w =0 has to be imposed on D. From
(3.17), the condition

~qx+%y%20 for Vx€(,b)
should be satisfied, i.e.
g=5y3 (3.20)
=5p 1 .

It is also not so difficult to show that there exists a unique solution w to the variational problem
(3.19) for a given fixed number g > 0 which satisfies the restriction (3.20), since (1) the bilinear
form (w,v)- [pVw-Vvdxdy is continuous, (2) the form v— [pv*dxdy is a convex and
continuous functional on H'(D), and (3) the form (w, v)—> fpVw Vo dxdy + [pv” dxdy is
coercive and strictly monotone on V, x V,. We record this fact in the following theorem:

Theorem 5-3.2. There exists a unique solution to (3.19) for any choice of g, including the
physically possible ¢’s satisfying (3.20). O

The remaining question is how to decide the proper constant ¢ so that the corresponding
solution w of (3.19) is the solution to the problem (3.16), i.e. to Problem 5-3.1. As discussed in
Section 5.1, we may take as a compatibility condition at the point B the condition

lim -é—, {w(b +C,0)~ wib,0)} = —q. 321)
0
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Fig. 5.15. Geometry and mesh for Example 5-3.1.
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Fig. 5.16. Numerical results for Example 5-3.1 obtained by discharge descent iteration together with the
projectional S.0.R. method.

This means that the derivative of w with respect to the x-direction is continuous at the point B,
or equivalently, the stream function df is continuous at B.

Characterizations of the solution of variational inequality (3.18) can be established by
following the same procedures given in Section 5.1.

Example 5-3.1. As a final example, we solve a problem of seepage fiow through a dam with
a horizontal drain which is attached on a part of the foundation. Suppose that the dam is
homogeneous isotropic and rectangular, and that the foundation is horizontal and impervious,
as shown in Fig. 5.15. Physical dimensions of the model and a discrete model for the variational
inequality (3.19) and for the extended pressure method are also given in Fig. 5.15.

The compatibility condition (3.21) is used in order to obtain the proper discharge q. That is

f(g)=lim —IC—,{w(x +C,0—wb,0)+g=0
o0

has to be satisfied by the discharge g. Numerical results are shown in Fig. 5.16. Convergence
for the discharge q is obtained within 4 iterations.

Again the projectional S.0.R. method is used to solve the variational inequality (3.19) for each
given gq.

The same problem is also solved by the extended pressure method using the same discrete
model. The penalty parameter is assumed to be € = 107! for a mesh parameter h = Ax = Ay =
0.25. Numerical results are shown in Fig. 5.17. The flow region Q is here identified with the
portion of D on which the pressure exceeds €/2.
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As mentioned in Example 5-2.1, it is difficult to apply the adaptive mesh method when a
horizontal drain is situated along the foundation. Using the numerical results obtained by
solving the variational inequality (3.19), the initial flow domain shown in Fig. 5.18 is con-
structed. Then the adaptive mesh method is applied together with the strategy used in Example
5-2.1 for positioning points S; and S,, see Fig. 5.19; i.e. the x-coordinate of S, and S, is
assumed to be same as that of T; and T,. Our numerical solution is shown in Fig. 5.19 and
convergence characteristics are indicated in Fig. 5.20. While the rate of convergence indicated
is a remarkable improvement over that experienced in Example 5-2.1, it was necessary to start
the process with a mesh very closely resembling the final flow domain. Once again, this
indicates the delicacy of the adaptive mesh process for problems of this type. (O

S.0.R. Method
@ =1.75, 77 -1terations

Penalty Parameter

€ = 0.
p..> 005
Y
= ewe,_ T ——— '—l
0000
. I
: l
L4
M Free Stream Line |
: |
5 § |
I
I

P BB PSS - e X

30 —4 1.5

Fig. 5.17. Flow domain and free surface profile calculated using the extended pressure formulation with
penalty and projectional S.O.R. iterations.
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Fig. 5.18. Initial mesh for the adaptive mesh method for Example 5-3.1.

N

Free Stream Line

%k

TTETT 7T =7777=7T=77=
S Sa
L— 3 ——‘Lm—-l

Fig. 5.19. Free streamline for Example 5-3.1 calculated using adaptive mesh method.
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Fig. 5.20. Convergence characteristics of adaptive mesh method for Example 5-3.1.

5.4 Comments

The problem discussed in Section 5.1 was first discussed by Baiocchi[42]. Our mathematical
treatment of the problem follows mainly the work of Baiocchi[42] and Baiocchi et al.[15],

The problem in Section 5.2 was first studied numerically by Bruch and Sloss[50]. As
mentioned earlier, several important mathematical questions (e.g. the existence and uniqueness
of solutions) for such problems appear to remain open.

The problem in Section 5.3 is a simplified version of a problem which has been discussed in
Sloss and Bruch[51].

A survey of seepage flow problems by variational inequalities is also given in Bruch[52].

6. CONCLUDING REMARKS

While our principal concern in this study has been the application of variational inequalities
and compatible numerical techniques to problems of flow through porous media, the foundation
we have laid is quite broad. The general theories surveyed in Chaps. 1 and 2 can be used to
formulate variational principles and computational methods for a wide range of free boundary
problems in mechanics. These include problems in elastoplasticity, wherein the elastic—plastic
interface is unknown, optimal control problems in the dynamics of distributed systems, Stefan
problems in heat conduction such as those in which the interface between ice and water in a
melting or freezing medium is unknown, contact problems in elasticity in which the contact
surface is unknown, and many others. It is true that each of these areas of application requires
special consideration of peculiarities of the physical problem at hand and the inequalities that
model it. But many of the concepts and methods we have covered are fundamental to all of
these applications.

Nevertheless, there are several topics that we have not dealt with here that pertain to
variational inequalities for seepage problems. For example, we have not discussed evolution
problems characterized by variational inequalities in which the solution also depends upon time.
Time-dependent seepage flow problems fall into the category of Stefan problems mentioned
above. Much work has been done on the numerical analysis of problems of this type. However,
less is available on finite element methods for variational inequalities of evolution. The
similarity between the classical Stefan problem of freezing and thawing of ice and seepage flow
problems should be mentioned in this regard. The free streamline of seepage flow on which the
pressure p is zero is analogous to the interface of the solid and melted phase of ice on which
the temperature field @ is zero. There exists a discontinuity of the gradient of p and 6 on this
free boundary. If we replace the y-coordinate in our formulations of Chap. 3 with time ¢, our
velocity potential ¢ with the temperature field and the (extended) pressure p by the heat
potential # (which amounts to replacing Baiocchi’s transformation by Duvaut’s transformation),
then the two problems are formally the same. Use of finite elements and variational inequalities
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for studying such time-dependent free boundary problems has been investigated by Ichikawa
and Kikuchi[53} and Kikuchi and Ichikawa [54).

There are many open questions deserving further study in the analysis of seepage problems
by the methods discussed here. In particular, the theory of quasi-variational inequalities does
not appear to be developed to an extent that it provides a complete framework for studying
seepage flow in arbitrary non-homogeneous dams. This, of course, means that a complete
understanding of approximate methods based on such formulations must await further
development of the mathematical theory itself. The fact that our introduction of the discharge
conditions into the formulations discussed in Chap. 3 lead to acceptable numerical schemes
suggests that similar conditions might be necessary in the quasi-variational inequality for-
mulations in order that these problems be welil-posed.

In particular, for homogeneous dams, the quasi-variational inequality formulation may not
provide physically meaningful results without special consideration of certain conservation
properties of the flow. However, the extended pressure method together with penalty
arguments produces an approximation which is applicable to non-homogeneous cases and
which leads to efficient schemes.

More work is also needed on penalty methods for free boundary problems of the type
considered here. Qur numerical results indicate a dependence of the penalty parameter € on the
mesh size h, but precisely how e depends upon h is unknown. The effects of “‘reduced
integration” in such penalty methods is still not well understood and the absence of a priori
error estimates for complicated constrained problems of the type considered here stands in the
way of a complete understanding of the qualitative behavior of finite-element approximations of
these problems.

We also note that all of the numerical techniques we have described herein are merely
examples of methods selected from a long list of optimization techniques that could be applied
to variational inequalities. It is likely that many more efficient techniques are available. We
leave the exploration of these to the interested reader. One interesting observation has resulted
from our sample comparisons, however: the adaptive mesh methods popular in engineering
literature should be used with caution. Our results indicate that they are often divergent (even
though the computed results may look reasonable). Moreover, when they work, one must select
a “starting mesh” very close to that approximating the actual flow domain. Care must also be
taken in the case of inhomogeneous dams which have interfaces of materials with large
differences in permeability. There it often appears to be necessary to use a “boundary layer” of
elements to model the interface in order to avoid oscillations in the approximation of the free
surface (see the Appendix). A complete numerical analysis of such difficulties is not yet
available.
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Notes added in proof—A number of additional important works on variational inequalities and seepage flow problems have
recently come to the author’s attention. We mention, in particular, the work of Comincioli, Torelli, Friedman, Caffrey and
Bruch. A supplemental list of references to this work is given below.
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APPENDIX

THE ADAPTIVE MESH METHOD

A popular method for solving free boundary problems in the study of flow through porous media consists of developing
a trial finite-element model approximating only the flow domain () and then changing the geometry of the mesh through an
iterative process designed to converge to the correct flow domain. Such adaptive mesh methods were deveioped by
Taylor{1], Finn{2], Neuman et al.{3]. )

The underlying philosophy in the adaptive mesh method that we will employ is that the (n + 1)-th approximation Q"*!
of the flow domain  is defined by the nth iterate ¢" of an approximation of the velocity potential. This can be
accomplished by a fixed-point algorithm of the type

Y™ixy= YHx)+ ap™(x, Y"{(x)) (AD

or

X+ (y)= X"(y)- Bd"(X"(y), y). (A2)

Here y = Y{(x) or x= X{(x) represent the position of the free boundary (free streamline), p(x, y) is the pressure field
defined by p= ¢ — v, d{(x, y) is the discharge of the point (x, y) which is obtained by multiplication of the stiffness matrix
and the velocity potential in the finite element approximation, and (a, 8) are proper iterative factors. We now show the
procedure to obtain the free streamline y = Y(x) by the scheme (Al).

(i) We begin by assuming a trial mesh €)' involving an approximation of the flow region, y = Y', and an initial

discharge D' from the seepage point D.
(i) Suppose that y = ¥", ie. Q" and D" are known,
Step 1. (1} Solve the boundary-vaiue problem

-Ap=0 in "
¢=H on AF, ¢=h on BC, ¢=y on CG
e.=D" at D ¢, =00n FDUAB
{2) Obtain the pressure on FDC, and calculate the (n + 1)-th position of the free streamline FD by the eqn (Al).
Step 2. (1) Solve the boundary-value problem
~Ap=0 in Q"
¢=H on AF, ¢=h on BC, o=y on CD
0. =0 on FDUAB

{2) Obtain the discharge D**! at the point D.
Here domains and boundary conditions are described in Fig. Al

When the dam is non-homogeneous, some special modifications are necessary in order to determine the free streamline
along the interface of different material zones. For example, oscillating results such as those shown in Fig. A2 may be
obtained if the ratio k;/k, of permeabilities is very small. Such difficulties can be overcome by taking part of the interface of

Step I

4
{ impermecbie)
{DG ~ Impermeable}

h

=2, - e A T AP AP
A { Impermeable } 8
(DG - Free}

Fig. Al. Domains used in adaptive mesh method.
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Fig. A2. Oscillation of free surface.

wo different materials to be a part of the free streamline. Non-oscillatory results of the type shown in Fig. A3 are obtained
when this assumption is introduced. The idea is similar to “upwinding” methods employed in the calculation of
convection-diffusion problems.

Algorithm (A1) is not, in general, adequate for geometries of the type shown in Fig. A4, since the free streamline is very
steep around the horizontal drain. To overcome this difficulty, we apply (A1) to a portion of the assumed free streamline
and use the algorithm

X" iyy= X"+ w (X" (y), y) {A3)

on the remaining part of the free streamline, Here y is a proper positive constant. A numerical example is shown in Fig,
AS. O

Convergence Obtained at i5-th
Iteration With Maoximum
Pressure ot Free Surface of
87 x10°

W= =7

(=) {kp270)
Fig. A3. Smooth free surface obtained by modelling interface with boundary-layer of elements.
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O Formula (A-7) O Formula { A1)
O Formula (A-3) &S Formula (A-3)

Initial
Assumption
5 5
EDxPTETET ) 2 == 77 =, - oo HENTT= /=77 =757 =77= 3
— 33 ——17— 33 — 12
Fig. A4 Fig. A.S

Fig. A4. Discharge model.

Fig. AS. Final profile of free surface calculated by adaptive mesh method.
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