
Alpha-investing: A procedure for sequential control of

expected false discoveries

Dean P. Foster and Robert A. Stine∗

Department of Statistics

The Wharton School of the University of Pennsylvania

Philadelphia, PA 19104-6340

July 24, 2007

Abstract

Alpha-investing is an adaptive, sequential methodology that encompasses a large

family of procedures for testing multiple hypotheses. All control mFDR, which is the

ratio of the expected number of false rejections to the expected number of rejections.

mFDR is a weaker criterion than FDR, which is the expected value of the ratio. We

compensate for this weakness by showing that alpha-investing controls mFDR at every

rejected hypothesis. Alpha-investing resembles alpha-spending used in sequential trials,

but possesses a key difference. When a test rejects a null hypothesis, alpha-investing

earns additional probability toward subsequent tests. Alpha-investing hence allows one

to incorporate domain knowledge into the testing procedure and improve the power

of the tests. In this way, alpha-investing enables the statistician to design a testing

procedure for a specific problem while guaranteeing control of mFDR.
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1 Introduction

We propose an adaptive, sequential methodology for testing multiple hypotheses. Our

approach, called alpha-investing, works in the usual setting in which one has a batch

of several hypotheses as well as in cases in which hypotheses arrive sequentially in a

stream. Streams of hypotheses arise naturally in contemporary modeling applications

such as genomics and variable selection for large models. In contrast to the compara-

tively small problems that spawned multiple comparison procedures, modern applica-

tions can involve thousands of tests. For example, micro-arrays lead one to compare

a control group to a treatment group using measured differences on over 6,000 genes

(Dudoit, Shaffer and Boldrick, 2003). If one considers the possibility for interactions,

then the number of tests is virtually infinite. In contrast, the example used by Tukey

to motivate multiple comparisons compares the means of only 6 groups (Tukey, 1953,

available in Braun (1994)). Because alpha-investing tests hypotheses sequentially, the

choice of future hypotheses can depend upon the results of previous tests. Thus, hav-

ing discovered differences in certain genes, an investigator could, for example, direct

attention toward genes that share common transcription factor binding sites (Gupta

and Ibrahim, 2005). Genovese, Roeder and Wasserman (2006) describes other testing

situations that offer domain knowledge.

Before we describe alpha-investing, we introduce a variation on the marginal false

discovery rate (mFDR), an existing criterion for multiple testing. Let the observable

random variable R denote the total number of hypotheses rejected by a testing proce-

dure, and let V denote the unobserved number of falsely rejected hypotheses. A testing

procedure controls mFDR at level α if

mFDR1 ≡
E(V )

E(R) + 1
≤ α. (1)

mFDR traditionally does not add 1 to the denominator; following our notation, we

denote the traditional version mFDR0. The addition of a positive constant to the

denominator avoids statistical problems under the complete null hypothesis. Under

the complete null hypothesis, all hypotheses are false, implying, V ≡ R and mFDR0

= 1.
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An alpha-investing rule is an adaptive testing procedure that resembles an alpha-

spending rule. An alpha-spending rule begins with an allowance for Type I error,

what we call the initial alpha-wealth of the procedure. Each test at level αi reduces

the alpha-wealth by αi. Once the alpha-wealth of the spending rule reaches zero, no

further tests are allowed. Because the total chance for a Type I error is bounded by

the initial alpha-wealth, alpha-spending naturally implements a Bonferroni rule. For

multiple testing, however, Bonferroni rules are too conservative. An alpha-investing

rule overcomes this conservatism by earning a contribution to its alpha-wealth for each

rejected null hypothesis. Thus rejections beget more rejections. Alpha-investing rules

further allow one to test an infinite stream of hypotheses, accommodate dependent

tests, and incorporate domain knowledge, all the while controlling mFDR.

The sequential nature of alpha-investing allows us to enhance the type of control

obtained through mFDR. By placing mFDR in a sequential setting, we can require

that a testing procedure does well if stopped early. Suppose rather than testing all

m hypotheses, the statistician stops after rejecting 10. We would like to be able to

assure her that no more than, say, 2 of these were false rejections, on average. This

further protection distinguishes what we call uniform control of mFDR. We show that

alpha-investing uniformly controls mFDR.

In general, suppose we test hypotheses until the number of rejections R reaches

some target r. Let Tr identify the index of this test. Define V (Tr) to be the number

of nulls that have been incorrectly rejected at this point. A test procedure uniformly

controls mFDR1 if this stopped process controls mFDR1 in the sense of (1). In words,

equation (1) implies that the expected value of V given that R = r is less than or equal

to α(r + 1). This conditional expectation requires that we introduce a stopping time.

We defer these details to Section 5. As a preview, we offer

Theorem 1 An alpha-investing rule with control parameters set to α has the property

that E V (Tr) ≤ α(r + 1) where Tr is the stopping time defined by occurrence of the rth

rejection and V (m) is the number of false rejections among tests of m hypotheses.

The rest of this paper develops as follows. We first review several ideas from the

literature on multiple comparisons, particularly those related to the family-wise error
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rate and false discovery rate (FDR). Next we discuss alpha-investing rules in Section

3. In Sections 4 and 5 we discuss uniform control of mFDR. We describe the design

and performance of alpha-investing rules in Section 6. We close in Section 7 with a

brief discussion.

2 Criteria and Procedures

Suppose that we have m null hypotheses H(m) = {H1, H2, . . . ,Hm} that specify values

for parameters θ = {θ1, θ2, . . . , θm}. Each parameter θj can be scalar or vector-valued,

and Θ denotes the space of parameter values. In the most familiar case, each null

hypothesis specifies that a scalar parameter is zero, Hj : θj = 0.

We follow the standard notation for labeling correct and incorrect rejections (Ben-

jamini and Hochberg, 1995). Assume that m0 of the null hypotheses in H(m) are true.

The observable statistic R(m) counts how many of these m hypotheses are rejected. A

superscript θ distinguishes unobservable random variables from statistics such as R(m).

The random variable V θ(m) denotes the number of false positives among the m tests,

counting cases in which the testing procedure incorrectly rejects a true null hypothe-

sis. Sθ(m) = R(m)− V θ(m) counts the number of correctly rejected null hypotheses.

Under the complete null hypothesis, m0 = m, V θ(m) ≡ R(m), and Sθ(m) ≡ 0.

The original intent of multiple testing was to control the chance for any false re-

jection. The family-wise error rate (FWER) is the probability of falsely rejecting any

null hypothesis from H(m),

FWER(m) ≡ sup
θ∈Θ

Pθ(V θ(m) ≥ 1) . (2)

An important special case is control of FWER under the complete null hypothesis:

P0(V θ(m) ≥ 1) ≤ α, where P0 denotes the probability measure under the complete

null hypothesis. We refer to controlling FWER under the complete null hypothesis as

controlling FWER in the weak sense.

Bonferroni procedures control FWER. Let p1, . . . , pm denote the p-values of tests of

H1, . . . ,Hm. Given a chosen level 0 < α < 1, the simplest Bonferroni procedure rejects
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those Hj for which pj ≤ α/m. Let the indicators V θ
j ∈ {0, 1} track incorrect rejections;

V θ
j = 1 if Hj is incorrectly rejected and is zero otherwise. Then V θ(m) =

∑
V θ

j and

the inequality

Pθ(V θ(m) ≥ 1) ≤
m∑

j=1

Pθ(V θ
j = 1) ≤ α (3)

shows that this procedure controls FWER(m) ≤ α. One need not distribute α equally

over H(m); the inequality (3) requires only that the sum of the α-levels not exceed

α. This observation suggests an alpha-spending characterization of the Bonferroni

procedure. As an alpha-spending rule, the Bonferroni procedure allocates α over a

collection of hypotheses, devoting a larger share to hypotheses of greater interest. In

effect, the procedure has a budget of α to spend. It can spend αj ≥ 0 on testing

each hypothesis Hj so long as
∑

j αj ≤ α. Although such alpha-spending rules control

FWER, they are often criticized for having little power. Clearly, the power of the

traditional Bonferroni procedure decreases as m increases because the threshold α/m

for detecting a significant effect decreases. The testing procedure introduced in Holm

(1979) offers more power while controlling FWER, but the improvements are small.

To obtain substantially more power, Benjamini and Hochberg (1995) (BH) intro-

duces a different criterion, the false discovery rate (FDR). FDR is the expected pro-

portion of false positives among rejected hypotheses,

FDR(m) = Eθ

(
V θ(m)
R(m)

| R(m) > 0
)

P(R(m) > 0) . (4)

For the complete null hypothesis, FDR(m) = P0(R(m) > 0), which is FWER(m).

Thus, test procedures that control FDR(m) ≤ α also control FWER(m) in the weak

sense at level α. If the complete null hypothesis is rejected, FDR introduces a different

type of control. Under the alternative, FDR(m) decreases as the number of false null

hypotheses m−m0 increases (Dudoit et al., 2003). As a result, FDR(m) becomes more

easy to control in the presence of non-zero effects, allowing more powerful procedures.

Variations on FDR include pFDR (which drops the term P(R > 0); see Storey, 2002,

2003) and the local false discovery rate fdr(z) (which estimates the false discovery rate

as a function of the size of the test statistic; see Efron, 2005, 2007). Closer to our

work, Meinshausen and Bühlmann (2004) and Meinshausen and Rice (2006) estimate
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m0, the total number of false hull hypotheses in H(m), and Genovese et al. (2006)

weight p-values based on prior knowledge that identifies hypotheses that are likely to

be false. Benjamini and Hochberg (1995) also considers mFDR0 and mFDR1, which

they considered artificial. mFDR does not control a property of the realized sequence

of tests; instead it controls a ratio of expectations.

Benjamini and Hochberg (1995) also introduces a step-down testing procedure that

controls FDR. Order the collection of m hypotheses so that the p-values of the associ-

ated tests are sorted from smallest to largest (putting the most significant first),

p(1) ≤ p(2) ≤ · · · ≤ p(m) . (5)

The test of H(1) has p-value p(1), the test of H(2) has p-value p(2), and so forth. If p(1) >

α/m, the BH procedure stops and does not reject any hypothesis. This step controls

FWER in the weak sense at level α. If p(1) ≤ α/m, the procedure rejects H(1) and moves

on to H(2). Rather than compare p(2) to α/m, however, the BH procedure compares

p(2) to 2α/m. In general, the BH step-down procedure rejects H(1), . . . , H(jd−1) for

jd = min{j : p(j) > jα/m}. Clearly this sequence of increasing thresholds obtains more

power than a Bonferroni procedure. If the p-values are independent, the inequality of

Simes (1986) implies that this step-down procedure satisfies FDR. This sequence of

thresholds, however, does not control FWER(m) in general. This is the price we pay

for the improvement in power. Subsequent papers (such as Benjamini and Yekutieli,

2001; Sarkar, 1998; Troendle, 1996) consider situations in which the BH procedure

controls FDR under certain types of dependence.

3 Alpha-Investing Rules

Alpha-investing resembles alpha-spending used in sequential clinical trials. In a se-

quential trial, investigators perform a sequence of tests of one (or perhaps a few) null

hypotheses as the data accumulate. An alpha-spending (or error-spending) rule con-

trols the level of such tests. Given an overall Type I error rate, say α = 0.05, an

alpha-spending rule allocates, or spends, α over a sequence of tests. As Tukey (1991)

writes, “Once we have spent this error rate, it is gone.”
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While similar in that they allocate Type I error over multiple tests, an alpha-

investing rule earns additional probability toward subsequent Type I errors with each

rejected hypothesis. Rather than treat each test as an expense that consumes its Type

I error rate, an alpha-investing rule treats tests as investments, motivating our choice

of name. An alpha-investing rule earns an increment in its alpha-wealth each time that

it rejects a null hypothesis. For alpha-investing, Tukey’s remark becomes “Rules that

invest the error rate wisely earn more for further tests.” The more hypotheses that are

rejected, the more alpha-wealth it earns. If the test of Hj is not significant, however,

an alpha-investing rule loses the invested α-level.

More specifically, an alpha-investing rule I is a function that determines the α-level

for testing the next hypothesis in a sequence of tests. We assume an exogenous system

external to the investing rule chooses which hypothesis to test next. (Though not part

of the investing rule itself, this exogenous system can use the sequence of rejections

to pick the next hypothesis.) Let W (k) ≥ 0 denote the alpha-wealth accumulated

by an investing rule after k tests; W (0) is the initial alpha-wealth. Conventionally,

W (0) = 0.05 or 0.10. At step j, an alpha-investing rule sets the level αj for testing

Hj from 0 up to the maximum alpha-level it can afford. The rule must ensure that its

wealth never goes negative. Let Rj ∈ {0, 1} denote the outcome of testing Hj :

Rj =

 1, if Hj is rejected (pj ≤ αj), and

0, otherwise.
(6)

Using this notation, the investing rule I is a function of W (0) and the prior outcomes,

αj = IW (0)({R1, R2, . . . , Rj−1}). (7)

The outcome of testing H1, H2, . . . , Hj determines the alpha-wealth W (j) available

for testing Hj+1. If pj ≤ αj , the test rejects Hj and the investing rule earns a contri-

bution to its alpha-wealth, called the pay-out and denoted by ω < 1. We typically set

α = ω = W (0). If pj > αj , its alpha-wealth decreases by αj/(1− αj), which is slightly

more than the cost extracted in alpha-spending. The change in the alpha-wealth is

thus

W (j)−W (j − 1) =

 ω if pj ≤ αj ,

−αj/(1− αj) if pj > αj .
(8)
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If the p-value is uniformly distributed on [0,1], then the expected change in the alpha-

wealth is −(1 − ω)αj < 0. This suggests alpha-wealth decreases when testing a true

null hypothesis. Other payment systems are possible; see the discussion in Section 7.

The notion of compensation for rejecting a hypothesis allows one to build context-

dependent information into the testing procedure. Suppose that substantive insights

suggest that the first few hypotheses are likely to be rejected and that subsequent false

hypotheses come in clusters. In this instance, one might consider an alpha-investing

rule that invests heavily at the start and after each rejection, as illustrated by the

following rule. Assume that the most recently rejected hypothesis is Hk∗ . (Set k∗ = 0

when testing H1.) If false hypotheses are clustered, an alpha-investing rule should

invest heavily in the test of Hk∗+1. One rule that does this is, for j > k∗,

IW (0)({R1, R2, . . . , Rj−1}) =
W (j − 1)
1 + j − k∗

. (9)

This rule invests 1/2 of its current wealth in testing H1 or Hk∗+1. The α-level falls off

quadratically if subsequent hypotheses are tested and not rejected. If the substantive

insight is correct and the false hypotheses are clustered, then tests of H1 or Hk∗+1

represent “good investments.” An example in Section 6 illustrates these ideas.

While it is relatively straightforward to devise investing rules, it may be difficult

a priori to order the hypotheses in such a way that those most likely to be rejected

come first. Such an ordering relies on the specific situation. Another complication is

the construction of tests for which one can obtain the needed p-values. To show that

a testing procedure controls mFDR, we require that conditionally on the prior j − 1

outcomes, the level of the test of Hj must not exceed αj :

∀θ ∈ Θ, Eθ(V θ
j | Rj−1, Rj−2, . . . , R1) ≤ αj . (10)

An equivalent statement is that for all θ ∈ Hj , Pθ(Rj = 1 | Rj−1, Rj−2, . . . , R1) ≤ αj .

The tests need not be independent. Note that the test of Hj is not conditioned on

the test statistic (such as a z-score) or parameter estimate. Adaptive testing in a

group sequential trial (e.g. Lehmacher and Wassmer, 1999) uses the information on

the observed z-statistic at the first look. Tsiatis and Mehta (2003) show that using
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this information leads to a less powerful test than procedures that use only acceptance

at the first look.

4 mFDR

The following definition generalizes the definition of mFDR given in (1).

Definition 1 Consider a procedure that tests hypotheses H1, H2, . . . ,Hm. Then we

define

mFDRη(m) = sup
θ∈Θ

Eθ

(
V θ(m)

)
Eθ (R(m)) + η

. (11)

A multiple testing procedure controls mFDRη(m) at level α if mFDRη(m) ≤ α. We

typically set η = 1 − α. Values of η near zero produce a less satisfactory criterion.

Under the complete null hypothesis, no procedure can reduce mFDR0 below 1 since

V θ(m) ≡ R(m). Control of mFDRη provides control of FWER in the weak sense.

Under the complete null hypothesis, mFDRη(m) ≤ α implies that

Eθ(V θ(m)) ≤ α η

1− α
.

If η = 1− α, then Eθ(V θ(m)) ≤ α. Hence, control of mFDR1−α implies weak control

of FWER at level α.

The following simulation illustrates the similarity of mFDRη and FDR. The tested

hypotheses Hj : µj = 0 specify means of m = 200 populations. We set µj by sampling

a spike-and-slab mixture. The mixture puts 100(1− π1)% of its probability in a spike

at zero; π1 = 0 identifies the complete null hypothesis. The slab of this mixture is a

normal distribution, so that

µj ∼

 0 w.p. 1− π1

N(0, σ2) w.p. π1

. (12)

In the simulation, π1 ranges from 0 (the complete null hypothesis) to 1 (in which

case V θ(m) ≡ 0). We set σ2 = 2 log m so that the standard deviation of the non-

zero µj matches the bound commonly used in hard thresholding. The test statistics
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Figure 1: FDR and mFDRη provide similar control. The graph shows the simulated FDR

(solid) and mFDR0.95 (dashed) for the BH step-down procedure (•), oracle-based wBH (?),

Bonferroni (◦), and a procedure that tests each hypothesis at level α = 0.05 (+).
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are independent, normally distributed random variables Zj
iid∼ N(µj , 1) for which the

two-sided p-values are pj = 2Φ(−|Zj |).

Given these p-values, we computed FDR and mFDR0.95 with 10,000 trials of four

test procedures. Two procedures fix the level: one rejects Hj if pj ≤ α = 0.05 and

the second rejects if pj ≤ α/200 = 0.00025 (Bonferroni). The other two are step-down

tests: the BH and wBH procedures. For our implementation of the wBH procedure,

we group the hypotheses into those that are false (µj 6= 0) and those that are true.

The hypotheses are weighted so that only false nulls are tested. Each false null receives

weight Wj = 1/Sθ(m), and the true nulls get weight zero (see section 3 of Genovese

et al., 2006). In effect, it is as though an oracle has revealed which hypotheses are false

and the statistician applies the BH procedure to these rather than all m hypotheses.
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Figure 1 confirms the similarity of control implied by FDR and mFDR. Both criteria

identify the failure of naive testing; FDR and mFDR approach 1 unless π1 approaches

1. The criteria also provide similar assessments of the other two procedures; Bonferroni

and step-down testing control FDR and mFDR for all levels of signal. As π1 increases

and more hypotheses are rejected, both FDR and mFDR of all procedures fall toward

zero. The FDR of the wBH procedure is identically zero because it only tests false null

hypotheses and cannot incorrectly reject a hypothesis.

5 Uniform control of mFDR

Because alpha-investing proceeds sequentially, the testing can halt after some number

of rejected hypotheses. To control such sequential testing, we extend the definition of

mFDRη(m) to random stopping times. Recall the definition of a stopping time: T is

a stopping time if the event T ≤ j can be determined by information known when the

jth test is completed.

Definition 2 If T denotes a finite stopping time of a procedure for testing a stream

of hypotheses H1, H2, . . . then

mFDRη(T ) = sup
θ∈Θ

Eθ

(
V θ(T )

)
Eθ (R(T )) + η

.

The supremum over stopping times of mFDR determines the uniform mFDR:

Definition 3 A testing procedure provides uniform control of mFDRη at level α if

∀(T ∈ T ) mFDRη(T ) ≤ α (13)

where T is the set of finite stopping times.

Before proving that alpha-investing provides uniform control of mFDR, we prove

half of theorem 1. We first define the relevant stopping time.

Definition 4 The stopping time TR=r ≡ inft{t|R(t) = r} where we take TR=r to be

∞ if the set is empty.
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Lemma 1 For any testing procedure that uniformly controls mFDRα at level α,

Eθ V θ(TR=r) ≤ α(r + 1− α) .

Proof. Let τ ≥ 1 denote an arbitrary, but finite, number of tests. We can stop the

process at T ≡ TR=r ∧ τ to make it a finite stopping time. Thus Eθ(R(T )) ≤ r. We

know by our hypothesis Eθ(V θ(T )) ≤ α (Eθ(R(T )) + 1− α) = α(r + 1−α). Since this

holds for all τ and V θ(t) is bounded by r, we can take the limit as r increases.

mFDR and a variety of modifications of FDR become equivalent when stopped at

a fixed number of rejections. A bit of algebra shows that

−γ2
R ≤ mFDR0 − FDR− γR

ρσV

µR
≤ 0 , (14)

where µV and σV are the mean and standard deviation, respectively, of V θ(j), the

coefficient of variation γR = σR/µR, and ρ is the correlation between V θ(j) and R(j).

When γR is small, FDR and mFDR0 are close. If TR=r is finite almost surely, then

the standard deviation of R is identically zero, and hence γR = 0. So, mFDR0 and

FDR are identical. The following theorem is similar in spirit to Tsai, Hsueh and Chen

(2003) who work in a Bayesian setting.

Theorem 2 Suppose TR=r < ∞ almost surely. Then a testing procedure that stops

when r rejections have occurred has the following properties:

1. γR = 0.

2. FDR = mFDR0 = cFDR = eFDR = pFDR = E (V θ(r))/r.

3. FDR ≤ α r+2
r+1 if the procedure has uniform control of mFDR0 at level α.

Further, for alpha-investing rules with α = ω = W (0), then

4. Var(V θ(r)) ≤ α r.

5. P (V θ(r) ≥ 1 + α r + k
√

r) ≤ e−k2/2.

The proofs of all five results are straightforward and hence omitted. Property 5 has a

relationship to Genovese and Wasserman (2002, 2004). In Genovese and Wasserman
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(2004) a stochastic process of hypothesis tests is considered. Their approach contrasts

with ours in that they use a stochastic process indexed by p-values, whereas we use

a process indexed by the a priori order in which hypotheses are considered. In both

cases, an appropriate martingale converts expectations into tail probabilities.

The following theorem shows that an alpha-investing rule IW (0) with wealth de-

termined by (8) controls mFDR1−W (0) so long as the pay-out ω is not too large. The

theorem follows by showing that a stochastic process related to the alpha-wealth se-

quence W (0),W (1), . . . is a sub-martingale. Because the proof of this result relies only

on the optional stopping theorem for martingales, we do not require independent tests,

though this is the the easiest context in which to show that the p-values are honest in

the sense required for (10) to hold.

Theorem 3 An alpha-investing rule IW (0) governed by (8) with initial alpha-wealth

W (0) ≤ α η and pay-out ω ≤ α controls mFDRη at level α.

Theorem 3 also applies to the stopped version of mFDR and hence shows uniform

control. A proof of this theorem is in the appendix.

Remark. It may not be obvious that the condition of a finite stopping time TR=r <

∞ can in fact be met. Given an infinite sequence of hypotheses, define Sθ(∞) =

limm→∞ Sθ(m). If Sθ(∞) = ∞ then TR=r < ∞ for all r because R(m) ≥ Sθ(m). A

parameter θ that has the property (for all m and all W (m) > 0) that the chance that

the alpha-investing procedure I will reject at least one more hypothesis after m is at

least 0.5 is said to provide continuous funding for I. Clearly for such a θ we have that

Sθ(∞) = ∞.

We say that an alpha-investing procedure is thrifty if it never commits all of its

current alpha-wealth to the current hypothesis. An alpha-investing procedure is hopeful

if it always spends some wealth on the next hypothesis. A hopeful, thrifty procedure

consumes some of its alpha-wealth to test every hypothesis in an infinite sequence.

With these preliminaries, it can be shown that for any hopeful, thrifty alpha-investing

procedure there exists a distribution Pθ that provides continuous funding so that TR=r

is finite almost surely.
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6 Examples

This section discusses practical issues of using alpha-investing. We start by offering

general guidelines, or policies, on how to construct alpha-investing rules. An example

constructs an alpha-investing rule that mimics step-down testing. We conclude with

simulations that show the advantages of a good policy and compare alpha-investing to

BH procedures.

Alpha-investing allows the statistician to incorporate prior beliefs into the design of

the testing procedure while avoiding the quagmire of uncorrected multiplicities. This

flexibility opens the question of how such choices should be made. We can recommend

a few policies.

Best-foot-forward policy. Ideally, the initial hypotheses include those believed

most likely to be rejected. For example, in a testing drugs, it is common to test

the primary endpoint before others. Alpha-investing rewards this approach: the

rejection of the leading hypotheses earns additional alpha-wealth toward tests of

secondary endpoints.

Spending-rate policies. Compared to ordering the hypotheses, deciding how much

alpha-wealth to spend on each is less important. That said, spending too slowly is

inefficient. There is no reward for conserving alpha-wealth unused; the procedure

could have used more powerful tests. Alternatively, spending too quickly may

exhaust the alpha-wealth before testing every hypothesis. It seems reasonable to

use a thrifty procedure that reserves some alpha-wealth for future tests.

Dynamic-ordering policies. Suppose you are lucky enough to have a drug that

might cure cancer and heart disease. Clearly, these two hypotheses should be

tested first. But what should come next if the procedure rejects one but not the

other? The entire collection of subsequent tests depends on which of the initial

hypotheses has been rejected. The nature of such dynamic-ordering policies is

clearly domain-specific.

Revisiting policies. Our theorems make no assumptions on how the various hy-

pothesis are related. This flexibility makes it possible to test hypotheses that
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closely resemble others. In fact, our theorems hold if the same hypothesis is

tested more than once, so long as subsequent tests condition on prior outcomes.

For example, it might be sensible to test Hj initially at a small level αj = 0.001

(so as not to risk much alpha-wealth) and then test other hypotheses. If the test

does not reject Hj the first time, it might make sense to test this hypothesis again

at a higher level, say, 0.01. In this way, the procedure distributes its alpha-wealth

among a variety of hypotheses – spending a little here and then a little there.

The following testing procedure illustrates how alpha-investing benefits when the

investigator has accurate knowledge of the underlying science. If the investigator can

order hypotheses a priori so that the procedure first tests those most likely to be

rejected (best-foot-forward policy), then alpha-investing rejects more hypotheses than

the step-down test of BH. The full benefit is only realized, however, when combined

with a spending-rate policy. Suppose that the test procedure has rejected Hk∗ and is

about to test Hk∗+1. Rather than spread its current alpha-wealth W (k∗) evenly over

the remaining hypotheses, allocate W (k∗) using a discrete probability mass function

such as the following version of (9). This version consumes all remaining alpha-wealth

by the last hypothesis by setting

αj = W (j − 1)
(

1
1 + j − k∗

∨ 1
1 + m− j

)
(15)

If a subsequent test rejects a hypothesis, the procedure reallocates its wealth so that

all is spent by the time the procedure tests Hm. Mimicking the language of financial

investing, we describe this type of alpha-investing rule as aggressive.

In the absence of domain knowledge, a revisiting policy produces an alpha-investing

rule that imitates the step-down BH procedure. Begin by investing small amounts of

alpha-wealth in the initial test of every hypothesis. This conservative policy means

that the procedure runs out of hypotheses well before it runs out of alpha-wealth.

To improve its power, the rule uses its remaining alpha-wealth to take a second pass

through the hypotheses that were not rejected in the first pass. Although we do

not advocate this as a general procedure, it is allowed by our theorems. Gradually

“nibbling” away at the hypotheses in this fashion results in a procedure that resembles
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step-down testing. In fact, as the size of these nibbles goes to zero, the order that

hypotheses are rejected is precisely that from step-down testing. The point where each

testing procedure stops is slightly different. Sometimes step-down testing stops first

and sometimes alpha-spending stops first.

A few calculations clarify the connection to the BH procedure. To avoid taking

many passes through the hypotheses without generating any rejects, increase the size

of the nibbles so as to take as large a bite each time as possible. Set α = ω = W (0).

The procedure begins by testing each hypothesis in H(m) at level β1 = α/(α + m) ≈

α/m, approximating the Bonferroni level. This level assures us that the procedure

exhausts its alpha-wealth if no hypothesis is rejected. If, however, some hypothesis

is rejected, the procedure uses the earned alpha-wealth to revisit the hypotheses that

were not rejected in the first pass. At the start of each pass, the algorithm divides its

alpha-wealth equally among all remaining unrejected hypotheses and tests each at this

common level. These steps continue until a pass does not reject a hypothesis and the

alpha-wealth reaches zero.

On successive passes through the hypotheses, the fact that a hypothesis was previ-

ously tested must be used in computing the rejection region. Suppose that exactly one

hypothesis is rejected at each pass. In the first pass, the p-value of one hypothesis is

smaller than the initial level β1. Following (8), the rule pays β1/(1− β1) for each test

that it does not reject and earns α for rejecting H(1). Hence, after the initial test of

each hypothesis at level β1, the alpha-wealth grows slightly to

W (m) = W (0) + ω − (m− 1)β1/(1− β1)

= α + α/m (16)

For large m, its alpha-wealth is virtually unchanged from W (0).

For the second pass, the procedure again distributes its alpha-wealth equally over

the remaining hypotheses. The level invested in each test at this second pass is

β2 =
W (m)

W (m) + m− 1
>

α

m
.

To determine which tests are rejected during the second pass, assume that the remain-

ing p-values are uniformly distributed. Conditioning on pj > β1, this pass rejects any
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hypothesis for which pj ≤ p∗ with the threshold p∗ determined by

P0 (pj ≤ p∗ | pj > β1) =
p∗ − β1

1− β1
= β2 .

This implies that p∗ = β1 + β2 − β1β2 ≈ 2α/m. Thus, the second pass approximately

rejects any hypotheses with p-value is smaller than 2α/m, the second threshold of

the step-down test. In this way, the investing rule gradually raises the threshold for

rejecting hypotheses as in step-down testing. If any hypothesis is rejected during a pass

over the remaining hypotheses, then alpha-wealth remains and the testing procedure

continues recursively. Instead of spending equally on each hypothesis one could weight

these hypotheses differently. This idea of using prior information is implicit in alpha-

spending rules. The use of prior information also appears in the wBH procedure

proposed in Genovese et al. (2006). Following the ideas of this section, we can show

that the wBH procedure controls mFDR.

Simulations. Our first simulation compares three alpha-investing rules to step-down

versions of the BH and wBH procedures. As in Section 3 for the wBH procedure, an

oracle assigns weights

Wj =

 0 if Hj is true

1/Sθ(m) otherwise,

to each hypothesis so that wBH only tests false hypotheses. For the sake of comparison,

each replication of the simulation tests a fixed batch of m = 200 hypotheses. The

200 hypotheses are defined as in the simulation in Section 3 (see equation 12); this

simulation also uses 10,000 samples. Of the alpha-investing rules, one implements the

revisiting policy that mimics the BH procedure. The other two alpha-investing rules

implement aggressive alpha-investing. To illustrate the impact of domain knowledge,

we simulated the performance of alpha-investing using (15) in a best-case and a worst-

case scenario. For the best case, the investigator tests the hypotheses in the order

implied by |µj |, testing the hypothesis with the largest |µj | first. The tests are ordered

by the underlying means rather than the observed p-values. In the worst case, the

hypotheses are tested in random order, indicating poor domain knowledge. We set the
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Figure 2: Comparison of the FDR and power of aggressive alpha-investing rules with accurate

(O) and inaccurate (M) domain knowledge to BH (•), oracle-based wBH (?), and a revisiting

alpha-investing rule (◦). (a) All five procedures control FDR. (b) Better domain knowledge

improves the power of alpha-investing relative to step-down testing. The vertical axis shows

the ratio of the number of correctly rejected null hypotheses relative to BH.
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level for all procedures to α = 0.05; for alpha-investing, the initial wealth W (0) = α = ω

and η = 1− α.

Figure 2(a) shows the FDR of each procedure. As in the prior simulation summa-

rized in Figure 1, FDR and mFDR are quite similar in this simulation and so we have

only shown FDR. All five procedures control FDR (and mFDR), as they should. As

in Figure 1, the FDR of the wBH procedure is identically zero because it tests only

false null hypotheses. For the other procedures that do not benefit from this oracle,

it becomes easier to control FDR in the presence of more false null hypotheses (larger

π1). Accurate domain knowledge reduces the FDR of the aggressive procedure. When

tested in random order (poor domain knowledge), the FDR of aggressive testing is

similar to that of the BH step-down procedure.

Alpha-investing guarantees protection from too many false rejections, but how well
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does it find signal? For each alpha-investing rule, Figure 2(b) shows the ratio of

the number of correctly rejected hypotheses relative to the number rejected by BH,

estimating

Eθ

(
Sθ(200, test procedure)

Sθ(200,BH)

)
from the simulation. With accurate domain knowledge, aggressive alpha-investing

rejects in excess of 50% more hypotheses than the step-down BH procedure. Unless

the problem offers few false null hypotheses (π1 < 0.02, an average of 1 or 2 false

null hypotheses), aggressive alpha-investing with good domain knowledge obtains the

greatest power. Alpha-investing gains more from testing the hypotheses in the right

order than BH gains from knowing which hypotheses to test. If the domain knowledge

is poor, aggressive alpha-investing rejects no less than 70% of the number rejected by

step-down testing. As expected from its design, alpha-investing using the revisiting

policy performs similarly to step-down testing.

We also performed a simulation to investigate the performance of alpha-investing

when applied to an infinite stream of hypotheses. Each null hypothesis specifies a mean

(Ht : µt = 0, t = 1, 2, . . .), and the test statistic for each hypothesis is Zt ∼ N(µt, 1),

independently. The simulation computes the FDR and power of aggressive alpha-

investing using the rule (9) and a two-sided test of Ht. Two levels of signal are present

in the simulation. Under one scenario, 10% of the null hypotheses are false; in the

second, 20% are false. For each scenario, false null hypotheses cluster in bursts of

varying size. We generated the sequence of means µt from a two-state Markov chain

{Yt}. In state 0, the null hypothesis holds, µt = 0. In state 1, µt = 3. The transition

probabilities for the Markov chain are pij = P (Yt+1 = j | Yt = i). The probability

of leaving state 0 varies over p01 = (0.0025, 0.005, 0.010, 0.025, 0.05). To obtain a

fixed percentage of false null hypotheses, we set p10 = k p01 with k = 4 (20% false

null hypotheses) and k = 9 (10%). Given k, increases in the transition probability

p01 produce a more choppy sequence of hypotheses. We simulated 1,000 streams of

hypotheses for each combination of k and p01, beginning each with Y1 = 1 (a false

null). As in previous simulations, we set W (0) = α = ω = 0.05 and η = 1− α.

Figure 3 presents a snapshot of the results after testing 4,000 hypotheses. Although
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aggressive alpha-investing is thrifty and hopeful in the sense of Section 5, it can be

shown that the sequence of means {µt} generated by the Markov chain do not provide

continuous funding. Each sequence of tests eventually stops after a finite number of

tests when the alpha-wealth runs out. Even so, at the point of the snapshot in Figure 3,

each simulated realization of alpha-investing has enough alpha-wealth to reject further

hypotheses. For example, the retained alpha-wealth W (4000) averaged 0.003 with

k = 9 and p01 = 0.05 (fewest, most choppy false hypotheses) up to 0.63 with k = 4

and p01 = 0.0025. In every case, Figure 3(a) shows that the FDR lies well below 0.05.

Figure 3(b) shows that aggressive alpha-investing has higher power when applied

to sequences with a higher proportion of false null hypotheses that arrive in longer

clusters. This situation affords the best opportunity to accumulate alpha-wealth that

can be spent quickly to reject clustered false hypotheses. The power rises rapidly once

a cluster of false null hypotheses is discovered. For example, the overall power is 0.51

with k = 4 and p01 = 0.025 (20% false nulls with mean cluster size 10). For finding the

first null hypothesis of each cluster, however, the power falls to 0.20. This observation

suggests that a revisiting policy that returns to hypotheses immediately preceding a

rejected hypothesis would have higher power. In general, the power shown in Figure

3(b) rises roughly linearly in the log of the mean cluster size 1/p10. Aggressive alpha-

investing also finds a higher percentage of the false null hypotheses when more are

present. The power is consistently higher when 20% of the hypotheses are false (k

= 4) than when 10% are false (k = 9). The gap between these scenarios diminishes

slightly as the mean cluster size increases. As in the prior simulation, the higher power

obtained for longer clusters is accompanied by smaller rates of false discoveries.

7 Discussion

The best-foot-forward policy raises a concern relevant to any multiple testing procedure

that controls an FDR-like criterion. Suppose that H(m) is contaminated with trivially-

false hypotheses that artificially produce alpha-wealth. Then all subsequent tests are

tainted. As an extreme example, suppose the first hypothesis claims “gravity does not
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Figure 3: The power of aggressive alpha-investing increases with a higher proportion of false

null hypotheses that arrive in longer clusters. The frames show (a) FDR after completing

4,000 tests and (b) power (◦ denotes 10% false nulls (k = 9) and ×, 20% false nulls (k = 4)).
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exist.” After rejecting this hypothesis, the testing procedure has more alpha-wealth

to use in subsequent tests than allocated by W (0). Most readers would, however, be

uncomfortable using this additional alpha-wealth to test the primary endpoint of a

drug. Step-down tests share this problem. By rejecting the trivially false H1, the level

of the test of the first “real hypothesis” is 2α/m rather than α/m. In this sense, it is

important to allow an observer to ignore the list of tested hypotheses from some point

onward. The design of the sequential test procedure should put the most interesting

hypotheses first to insure that that when the reader stops, they have seen the most

important results. By providing uniform control of mFDR, alpha-investing controls

this criterion wherever the observer stops.

One can regulate alpha-investing using other methods of compensating, or charging,

for each test. The increment in the alpha-wealth defined in (8) is natural, with a

fixed reward and penalty determined by whether the test rejects a hypothesis, say

Hj . Because neither the payout ω nor the cost α/(1 − α) reveals pj (other than to
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indicate if pj ≤ αj), subsequent tests need only condition on the sequence of rejections,

R1, . . . , Rj . The following alternative method for regulating alpha-investing has the

same expected pay-out, but varies the winnings when the test rejects Hj :

W (j)−W (j − 1) =

 ω + log(1− pj) if pj ≤ αj ,

log(1− αj) if pj > αj .
(17)

Alpha-investing governed by this “regulator” also satisfies the theorems shown previ-

ously. Because the reward reveals pj when Hj is rejected, however, the investing rule

must condition on pj for any rejected prior hypotheses. This would seem to complicate

the design of tests in applications in which the p-values are not independent. Other

methods for regulating the alpha-wealth could be desirable in other situations. We

hope to pursue these ideas in future work.

We speculate that the greatest reward from developing a specialized testing strategy

will come from developing methods that select the next hypothesis rather than specific

functions to determine how α is spent. The rule (15) invests half of the current wealth

in testing hypotheses following a rejection. One can devise other choices. Results in

information theory (Rissanen, 1983; Foster, Stine and Wyner, 2002), however, suggest

that one can find universal alpha-investing rules. A universal alpha-investing rule would

reject on average as many hypotheses as the best rule within some class. We would

expect such a rule to spend its alpha-wealth more slowly than the simple rule (15), but

retain this general form.

Appendix

Proof of Theorem 3

We begin by defining a stochastic process indexed by j, the number of hypotheses that

have been tested:

A(j) ≡ αR(j)− V θ(j) + η α−W (j) .
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Our main lemma shows that A(j) is a sub-martingale for alpha-investing rules with

pay-out ω ≤ α. In other words we will show that A(j) is “increasing” in the sense that

Eθ (A(j) | A(j − 1), A(j − 2), . . . , A(1)) ≥ A(j − 1) .

Theorem 3 uses the weaker fact that EθA(j) ≥ A(0). By definition V θ(0) = R(0) = 0 so

that A(0) = η α−W (0) ≥ 0 if W (0) ≤ η α. When A(j) is a sub-martingale, the optional

stopping theorem implies that for all finite stopping times M that EθA(M) ≥ 0. Thus,

Eθ

(
α(R(M) + η)− V θ(M)

)
= Eθ (W (M) + A(M))

≥ Eθ A(M)

≥ A(0) ≥ 0 .

The first inequality follows because the alpha-wealth W (j) ≥ 0 [a.s.], and the second

inequality follows from the sub-martingale property. Thus, once we have shown that

A(j) is a sub-martingale, it follows that Eθ V θ(M) ≤ α(Eθ R(M) + η) and

mFDRη(M) =
Eθ V θ(M)

Eθ R(M) + η
≤ α.

Thus to show Theorem 3 we need to prove the following lemma:

Lemma 2 Let V θ(m) and R(m) denote the cumulative number of false rejections and

the cumulative number of all rejections, respectively, when testing a sequence of null

hypotheses {H1, H2, . . .} using an alpha-investing rule IW (0) with pay-out ω ≤ α and

alpha-wealth W (m). Then the process

A(j) ≡ αR(j)− V θ(j) + η α−W (j)

is a sub-martingale,

Eθ (A(m) | A(m− 1), . . . , A(1)) ≥ A(m− 1) . (18)

Proof. Write the cumulative counts V θ(m) and R(m) as sums of indicators V θ
j , Rj ∈

{0, 1},

V θ(m) =
m∑

j=1

V θ
j , R(m) =

m∑
j=1

Rj .
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Similarly write the accumulated alpha-wealth W (m) and A(m) as sums of increments,

W (m) =
∑m

j=0 Wj and A(m) =
∑m

j=0 Aj . Let αj denote the alpha level of the test of

Hj that satisfies the condition (10). The change in the alpha-wealth from testing Hj

can be written as:

Wj = Rjω − (1−Rj)αj/(1− αj) ,

Substituting this expression for Wj into the definition of Aj we get

Aj = (α− ω)Rj − V θ
j + (1−Rj)αj/(1− αj) .

Since Rj ≥ 0 and α− ω ≥ 0 by the conditions of the lemma, it follows that

Aj ≥ (1−Rj)αj/(1− αj)− V θ
j . (19)

If θj 6∈ Hj , then V θ
j = 0 and Aj ≥ 0 almost surely. So we only need to consider the case

in which the null hypothesis Hj is true. When Hj is true, Rj ≡ V θ
j and (19) becomes

Aj ≥ (1−Rj)αj/(1− αj)−Rj = (αj −Rj)/(1− αj) . (20)

Abbreviate the conditional expectation

Ej−1
θ (X) = Eθ (X | A(1), A(2), . . . , A(j − 1)) .

Under the null, Ej−1
θ Rj ≤ αj by the definition of this being an αj level test. Taking

conditional expectations in (20) gives Ej−1
θ Aj ≥ 0.
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