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Global abstraction-safe marshalling with hash types

James J. Leifer† Gilles Peskine† Peter Sewell‡ Keith Wansbrough‡
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{First.Last}@inria.fr {First.Last}@cl.cam.ac.uk

Abstract: Type abstraction is a key feature of ML-like languages for writing large programs. Marshalling is necessary for
writing distributed programs, exchanging values via network byte-streams or persistent stores. In this report we combine
the two, developing compile-time and run-time semantics for marshalling, that guarantee abstraction-safety between
separately-built programs.

We obtain a namespace for abstract types that is global, i.e. meaningful between programs, by hashing module dec-
larations. We examine the scenarios in which values of abstract types are communicated from one program to another,
and ensure, by constructing hashes appropriately, that the dynamic and static notions of type equality mirror each other.
We use singleton kinds to express abstraction in the static semantics; abstraction is tracked in the dynamic semantics by
coloured brackets. These allow us to prove preservation, erasure, and coincidence results. We argue that our proposal
is a good basis for extensions to existing ML-like languages, pragmatically straightforward for language users and for
implementors.

Key-words: programming languages, ML, type theory, abstract types, marshalling, serialisation, modules, singleton
kinds, hashing, distributed programming, lambda calculus
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This technical report is a long version of the paper [LPSW03]: James J. Leifer, Gilles Peskine, Peter Sewell,
Keith Wansbrough. “Global abstraction-safe marshalling with hash types”. Proc. 8th ICFP. 2003. (Available
from http://pauillac.inria.fr/~leifer/research.html.)

1 Introduction

Problem Type abstraction is a basic tool for modular programming, allowing the programmer to separate the interface
and the implementation of an abstract data type, and to limit the scope in which the implementation details are visible.
Work on ML-style module systems, including [Mac84, MTH90, HL94, Ler94], has led to expressive language constructs
for controlling abstraction, with modules (structures) that can export abstract types, and also parameterised modules
(functors); they have rich notions of type equality to deal with generativity and sharing. This work has largely been in
the non-distributed context, concerned only with isolated executions of single programs. There, build-time type checking
suffices to guarantee both type-safety and abstraction-safety — the property that values of an abstract type can only be
inspected or constructed by the code of its definition, and hence that any invariants of this code hold of all values. At
run-time, type information can be erased.

In the distributed setting, abstraction-safety is more subtle. One may need to exchange values between multiple
executions of the same build, between executions of different builds of the same sources, and between executions of builds
of different sources (sharing some modules, perhaps, but not all). This interaction might be by network communication
or via a persistent store; in either case, some run-time check is clearly needed to guarantee safety. For abstraction-safety,
it does not suffice to check only the underlying representation type; intuitively, we need also that the sender and receiver
have compatible invariants. This can be enforced by requiring that they have the same code, but in general, where there is
only partial sharing, we shall see that the design of an appropriate check is delicate.

We focus in particular on language support for marshalling a value to a byte string and unmarshalling such strings
back to values. With these, one can implement a variety of useful mechanisms above the standard (byte-string) primitives
for network communication and persistence. For example: (1) In the existing distributed languages JoCaml [JoC] and
Nomadic Pict [SWP99] a single program can dynamically distribute computations, which can then interact via typed
channels, but unsafe “name servers” are required to bootstrap connections between programs. Type- and abstraction-
safe marshalling would enable such name servers to be expressed in a safe way. (2) More generally, safe marshalling
would enable one to code up a variety of communication abstractions, such as typed channels with differing behaviour
(asynchronous, unicast, multicast,. . . ), within a high-level language; they would then be automatically guaranteed to be
safe.

Contribution We present a type system and semantics (both compile-time and run-time) for marshalling and unmar-
shalling values between separate programs. Our solution:

• covers modules that declare abstract types, and ancillary type-sharing constraints;

• involves a dynamic type-check at unmarshal time that guarantees both type-safety and abstraction-safety;

• ensures the resulting dynamic notion of type equality coincides with the usual static notion, so that distributed pro-
gramming is a smooth extension of local programming;

• “just works” in standard cases for interaction between programs that share some modules, without requiring any shared
data beyond the source code for these modules;

• supports controlled abstraction-breaking, where required; and

• is efficiently implementable.

It is therefore a good basis for extensions to existing ML-like languages, pragmatically straightforward for language users
and for implementors.

Approach The basic idea of our solution is to construct a global namespace for abstract types, meaningful across all
programs, by hashing module declarations. Hash types do not appear in source programs, but are constructed at compile-
time. For example, consider a module called N with the body struct type t=Trep let x=... end and the published
interface sig type t val x:... end. The hash h =

hash(module N=struct type t=Trep let x= ... end

: sig type t val x: ... end, t)
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would be constructed to give a run-time analogue of the compile-time abstract type name N.t. By constructing hashes
carefully, we ensure that a simple run-time syntactic type equality check, at unmarshal-time, corresponds to the compile-
time notion of type equivalence used in type-checking.

The standard operational semantics for existentials forgets abstraction. In contrast, we give a run-time semantics that
records which subterms can see through which abstractions using coloured brackets, adapting a device of [GMZ00]. For
example, within the code of N.x, even after it has been substituted into its usage sites, the type equality h ==Trep can be
used. This enables us to prove type- and abstraction-preservation, progress, and the coincidence result mentioned above.
We prove also that an implementation may safely erase all coloured brackets outside hashes at run-time.

Non-goals Our focus in this report is on what mechanisms are required to guarantee abstraction-safety. We do not
address the full ML language; instead, we focus on a core language based on simply-typed λ-calculus with abstract and
manifest modules, although we argue that our formal system may be cleanly extended. Dynamic rebinding of identifiers
within marshalled values is considered in [BHS+03]. Moreover, we are not here concerned with low-level representations
of marshalled values; we assume some fixed scheme for marshalling simply-typed values. Finally, we protect against
confusion, not malice.

Outline We begin in Section 2 by examining scenarios in which values of abstract types are communicated between
programs, identifying the desired constructs and behaviour from the programmer’s point of view. Section 3 outlines our
solution informally, shows why it provides the desired behaviour, and shows it can be implemented efficiently. In Section 4
we present a formal calculus, λhash, that covers the novel aspects of our solution. It describes networks of interacting
separately-built modular programs. In Section 5 and Section 6 we discuss related and future work and conclude.

2 Abstraction and interaction: the desired behaviour

In this section we discuss the desired behaviour of marshalling in a distributed setting, with a series of informal examples
in an ML-like language. Our solution, in the following section, shows how this ideal can be achieved.

We consider an ML-like language in which a program consists of two parts: first a sequence of module declarations,
each of which can introduce abstract types; then an expression (the main body of the program). We are concerned with
interaction between whole programs, usually built separately. This interaction is via network communication, though
it could equally be via a persistent store; in either case, the underlying mechanism simply transmits byte strings. For
concreteness, most of our examples involve networks consisting of two machines, pauillac and glia, running programs,
say Pa and Pb . These network configurations are written pauillac[Pa ] | glia[Pb ]. It then suffices to consider a single
communication channel (such as a TCP connection between fixed ports); the language has communication primitives

send : string->unit receive : unit->string

We can now explore the desired behaviour of marshal(e :T ) and unmarshal(e :T ), which marshal to and from string.

2.1 Communication

The simplest example is that of sending a value of a non-abstract type between separately-built programs. Consider the
two programs

P1a = send (marshal (5 : int))

P1b = print_int (unmarshal (receive ():int))

If these are built and then executed on the two machines the communication and unmarshal should succeed:

pauillac[P1a ] | glia[P1b ]
√

2.2 Respecting types

On the other hand, if one machine sends a string that the other attempts to unmarshal as an int there should obviously
be a run-time failure.
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P2a = send (marshal ("five":string))

P2b = print_int (unmarshal (receive ():int))

pauillac[P2a ] | glia[P2b ] ×

To ease debugging, it is desirable for that failure to occur as early as possible (at unmarshal-time rather than when the
string is used later) and to be trapped cleanly, raising an exception rather than giving unpredictable behaviour. The
implementation must therefore send some form of type representation. The following examples explore the constraints
on what this must be.

2.3 Respecting abstractions

Now consider an example with an abstract type. Here the EvenCounter module declares a type EvenCounter.t which
has a representation type of int but externally is abstract, as declared in its signature. The operations of EvenCounter
enforce the invariant that values of EvenCounter.t are always represented by even integers. If we allowed an arbitrary
integer to be unmarshalled as an EvenCounter.t then the abstraction, and this invariant, would be broken; the unmarshal
should therefore fail.

P3a = send (marshal(5:int))

P3b = module EvenCounter =

struct sig

type t=int type t

let start=0 : val start:t

let get x = x val get:t->int

let up x = x+2 val up:t->t

end end

print_int (EvenCounter.get

(unmarshal (receive ()):EvenCounter.t))

pauillac[P3a ] | glia[P3b ] ×

Marshalling from a different abstract type — say a TripleCounter.t — to EvenCounter.t should fail similarly.

2.4 Communication between completely-shared sources

For communication between two instances of the same build, which therefore have identical source code, the problem is
relatively simple. Below, P4 declares an abstract type IntSet.t of sets of integers, representing them as binary search
trees. It makes a run-time determination of which machine it is on and then sends or receives an IntSet.t; the unmarshal
should succeed. We will develop this example later — suppose this first implementation orders subtrees by <, and has a
union operation that does not remove duplicate entries.
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P4 =

module IntSet =

struct

type t = int tree

let singleton = singleton-code





IntSetStruct

let mem = mem-code

...

end : sig

type t

val singleton : int -> t

val mem : int -> t -> bool





IntSetSig

val empty : t

val add : int -> t -> t

val union : t -> t -> t

end

if ...on-machine-pauillac... then

send (marshal (IntSet.singleton 17 : IntSet.t))

else

if IntSet.mem 17 (unmarshal(receive():IntSet.t))

then print "y" else print "n"

pauillac[P4 ] | glia[P4 ]
√

By default this should still succeed even if the two machines execute different builds of the same source.

2.5 Communication between partially-shared sources

More generally, one may need communication between programs which share only some modules (perhaps ubiquitous
standard libraries, or application-specific libraries). Here P5a and P5b share the IntSet module from before, but other-
wise have different module declarations and main body expressions; their communication of an IntSet.t should succeed.

P5a =

module IntSet = IntSetStruct :IntSetSig

send (marshal (IntSet.singleton 17 : IntSet.t))

P5b =

module IntSet = IntSetStruct :IntSetSig

module M =

struct let haszero x = IntSet.mem 0 x end

: sig val haszero : IntSet.t -> bool end

if M.haszero (unmarshal (receive () : IntSet.t))

then print "y" else print "n"

pauillac[P5a ] | glia[P5b ]
√

2.6 Guaranteeing compatible invariants

In the previous example the two programs had syntactically identical IntSet implementations. Since IntSet does not
depend on any other modules, this is a sufficient condition to guarantee that the two abstract types have compatible
invariants, i.e. that any value of either will be correctly acted upon by the operations of the other. Moreover, it can be
automatically checked, whereas compatibility of invariants cannot even be stated without specifing the behaviour of the
two modules, and would then require general theorem-proving to verify. Note that it would not be sufficient to require that
the two implementations use the same representation type, or even to require that the implementations are (in the absence
of marshalling) observationally equivalent.

For example, suppose that IntSetStructGt is similar to IntSetStruct but orders subtrees with > rather than <.
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P6a =

module IntSet = IntSetStructGt :IntSetSig

send (marshal (IntSet.add 0 (IntSet.add 1 (IntSet.add 2 IntSet.empty)) : IntSet.t))

When communicating with P5b , which contains the original IntSetStruct , the unmarshal should fail, as otherwise
an erroneous result could be produced.

pauillac[P6a ] | glia[P5b ] ×

Later we shall see that a mechanism for intentionally circumventing this restriction, in a controlled way, is sometimes
desirable.

2.7 Respecting names (when necessary)

In some cases one has modules with identical implementations that nonetheless provide conceptually different abstract
types, for example in the Euro and Pound modules below. Unmarshalling should respect this difference, so the example
should fail (just as, within a single ML program, types Euro.t and Pound.t would be incompatible).

P7a =

module Euro =

struct type t=int let of_int x = x ... end

: sig type t val of_int : int -> t ... end

send (marshal (Euro.of_int 17 : Euro.t))

P7b =

module Pound =

struct type t=int let of_int x = x ... end

: sig type t val of_int : int -> t ... end

unmarshal (receive (): Pound.t)

pauillac[P7a ] | glia[P7b ] ×

This restriction is not always useful (e.g. whether an integer set module is called IntSet or Set Int is likely irrelevant),
so the language should support some syntactic way of indicating whether a module name is significant or not.

2.8 Module dependencies

Consider now modules that depend on abstract types declared by other modules. In P8a below there is a module IntSet,
providing an abstract type IntSet.t, followed by a module SummedIntSet, providing an abstract type of sets of integers
augmented with a running sum. The expression part constructs, marshals and sends a value of the SummedIntSet.t
abstract type. This SummedIntSet depends on IntSet in three ways: (1) IntSet.t occurs in its representation type
IntSet.t ∗ int; (2) IntSet.t occurs in the type of an operation in its signature; and (3) operations from IntSet occur
in the definitions of its operations. Any such dependency means that substantive changes to the definition of IntSet
must propagate through to give distinct SummedIntSet.t types. On the other hand, any module declarations that are not
(transitively) depended upon should have no effect on SummedIntSet.t.

For example, consider also P8b below. It has exactly the same text as SummedIntSet but a different implementation of
IntSet — suppose IntSetStruct’ has a different representation type from IntSetStruct , or the same representation
but incompatible invariants, or different externally-observable behaviour. The P8a and P8b SummedIntSet.t types
should be incompatible, so the unmarshal should fail.
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P8a =

module IntSet = IntSetStruct :IntSetSig

module SummedIntSet =

struct

type t = IntSet.t * int

let empty = (IntSet.empty,0)

let sum (x,y) = y

...

end : sig

type t

val empty : t

val singleton : int -> t

val sum : t -> int

val to_intset : t -> IntSet.t

...

end

send(marshal((SummedIntSet.singleton 2)

: SummedIntSet.t ))

P8b =

module IntSet = IntSetStruct ’:IntSetSig

module SummedIntSet = ...same text as above...

SummedIntSet.sum

(unmarshal (receive () : SummedIntSet.t))

pauillac[P8a ] | glia[P8b ] ×

2.9 Mirroring local type sharing: manifest types, functors

The examples in this and subsequent subsections are not covered by the formal calculus of Section 4. Nonetheless we
argue informally in Section 6.2 how they can be treated by straightforward extensions of our main techniques and earlier
work.

ML module systems include parametric modules, known as functors, for large-scale software structuring and code
reuse. In the single-program world there are a number of subtle type-equality issues, related to how generative functors
are, and how one can express type sharing constraints [MTH90, Ler94, HL94, SH00]. Our marshalling primitives should
correctly reflect these subtleties in inter-program communication.

For example, the module SummedIntSet above, which explicitly references IntSet, might be re-expressed in terms
of a functor F which takes any argument structure U with interface IntSetSig and builds a SummedIntSet:

module IntSet = IntSetStruct :IntSetSig

module F = functor (U:IntSetSig ) ->

struct type t=U.t*int ... end

: sig type t ... end

module SummedIntSet = F(IntSet)

The functor F generates an abstract type, so we must consider when that type should be compatible with others. If two
separate programs contain this preamble, they should be able to exchange values of their respective SummedIntSet.t
types. This mirrors the behaviour of OCaml’s applicative functors [Ler95], in which another instance of the application
F(IntSet) within the same program would have a type compatible with SummedIntSet.t.

Should the functorised and non-functorised (P8a ) SummedIntSet.t be compatible? Again following existing module
systems, we should make them incompatible, as otherwise static type equality would depend on module substitution.

Type sharing allows functors to express type equalities between their argument and result; unmarshalling should
respect these static type equalities. The example F’ below constructs a type t but, in contrast to F, does not make that
type abstract; instead it makes it manifestly equal to the product of its argument type U.t and int.
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module F’ = functor (U:IntSetSig ) ->

struct type t=U.t*int ... end

: sig type t=U.t*int ... end

The application of F’ to a module IntSet creates a static type equality F’(IntSet).t==IntSet.t*int, which
should also be admitted at run-time.

2.10 Breaking abstractions (simple bidirectional case)

In ongoing software evolution, implementations of an abstract type may need to be changed, to fix bugs or add function-
ality, while values of that type exist on other machines or in a persistent store. It is often impractical to simultaneously
upgrade all machines to a new implementation version.

A simple case is that in which the representation of the abstract type is unchanged and where the programmer asserts
that the two versions have compatible invariants, so it is legitimate to exchange values in both directions. This may be the
case even if the two are not identical, e.g. for an efficiency improvement or bug fix. Here there should be some mechanism
for forcing the old and new types to be identical, breaking the Section 2.6 restriction.

For example, consider the improved IntSetStructDeDup implementation below, in which the operations are sim-
ilar to IntSetStruct , the only difference being that union removes duplicates. The compiler cannot verify that
IntSetStructDeDup has all the semantic properties that the programmer requires of IntSetStruct . Hence we provide
a way of explicitly declaring that these modules provide compatible types. In P10a below, IntSet’.t is made equal to
IntSet.t by the strong coercion ...with t =! IntSet.t. The compiler checks only that the old and new types have
compatible representations (here int tree), but should respect further abstractions within those representation types.
This is based on our earlier work of [Sew01].

P10a =

module IntSet = IntSetStruct :IntSetSig

module IntSet’ =

struct

type t = int tree




IntSetStructDeDup

...improved operations...

end

: IntSetSig with t =! IntSet.t

send (marshal (IntSet’.singleton 17 : IntSet’.t))

P10b =

module IntSet = IntSetStruct :IntSetSig

if IntSet.mem 0 (unmarshal(receive():IntSet.t))

then print "y" else print "n"

pauillac[P10a ] | glia[P10b ]
√

2.11 Breaking abstractions (directed case)

In the more complex case where the old and new invariants are not compatible, or where the two representation types
differ, the programmer will have to write an upgrade function. The same strong coercion can be used to make this possible.

For example, suppose we have a program that uses stored values of IntSetStruct and we wish to upgrade both the
implementation and the stored values, changing the representation type from binary search trees to red-black trees. The
new implementation would have a module declaration:
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module IntSet2 =

struct

type t = int rbtree




IntSetStructRBT

...

end

: IntSetSig

A program to upgrade the stored values can be expressed as below, with an Upgrade module that has both types, coerced
respectively to be equal to the old and new abstract types. (We are not proposing machinery to automatically apply the
upgrade function.)

module IntSet = IntSetStruct :IntSetSig

module IntSet2 = IntSetStructRBT : IntSetSig

module Upgrade =

struct

type t1 = int tree

type t2 = int rbtree

let upgrade = ...

end : sig

type t1

type t2

val upgrade : t1 -> t2

end

with t1 =! Intset.t and t2 =! Intset2.t

...map Upgrade.upgrade over the stored values...

Note that the coercion does not require the signature of Upgrade to coincide with those of IntSet and IntSet2. The
compiler only checks that IntSet.t is represented by int tree and IntSet2.t by int rbtree.

2.12 Forcing generativity

Dually, sometimes it is desirable to force a type change between builds even when the code remains identical, to prevent
confusion between old and new communicated values. For example, one may have several distributed deployments of the
same application which should be kept logically isolated.

2.13 Effectful module initialisation

In our previous examples the components of modules are all values. Generalising this to arbitrary expressions (as ML
does), an abstract type definition can be dependent on some computation with side effects.

For example, consider an NCounter module that reads its step value from standard input when initialised; the invariant
of any instance is then that any value of its NCounter.t is a multiple of this step. Two instances of the module can
obviously have different invariants, and so marshalling from one to another should fail. Thus each run of a program
containing NCounter should have an incompatible type NCounter.t.

2.14 Marshalling functions and rebinding

In this report we deal only with marshalling of closed values; the semantics ensures that all module and expression
declarations are substituted in before a marshal operation takes place. Marshalling of functions is therefore semantically
straightforward.

A full language should, however, provide some form of dynamic rebinding of identifiers when they are unmarshalled,
both to achieve the desired semantics where local resources have different behaviour in different contexts, and for per-
formance reasons where much code is shared (and so should not be communicated). The paper [BHS+03] addresses
dynamic rebinding, in the absence of type abstraction.
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3 Solution: hash types as global names

This section introduces our solution informally, from both implementation and semantic viewpoints.
As we have seen, type-safe and abstraction-safe unmarshalling requires some run-time type representation in mar-

shalled values, to permit a dynamic type comparison.
Our solution is based on the observation that hashing module definitions provides a global namespace for abstract

types: if an identical module is hashed during builds of two different programs at different sites, the same hash will be
obtained. Thus the programs share names for any abstract type provided they share the source code of the module that
declares the type (and of its dependencies); no communication (e.g. of GUIDs) is needed at build time.

We regard hashes literally as types — hashes appear as a clause in the type grammar. They do not appear in source
programs, but are inserted during compilation; as we shall see in more detail, the compiler replaces occurrences of an
abstract type such as IntSet.t by the hash of the definition of IntSet that is in scope. Semantically, we work with
ideal hashing, with a formal syntactic construction hash(...). Implementations would realise this with an actual hash
function; we discuss the low-level properties of hashes in Section 3.5.

At run-time, after this compile-time type substitution, the types in marshal(e :T ) and unmarshal(e :T’ ) are
closed, without free module identifiers or type variables. They can therefore be easily represented as byte strings, com-
municated across the network or stored in a persistent store, and can be compared with simple string equality.

We ensure that this dynamic equality precisely mirrors the static notion of provable type equality by carefully tuning
the way in which hashes are generated and used; we show below that our system achieves this. Unmarshalling is therefore
not only type-safe, but also abstraction-safe.

The standard operational semantics for abstract types forgets about abstraction as computation proceeds, substituting
in representation types and operations. Here, in contrast, we need a run-time semantics that maintains abstraction through-
out, both (1) so that our type preservation theorems tell us that abstractions are not broken; and (2) to support the proof
that static and dynamic type equality coincide. After a module is reduced away, module code (which may see through
the abstract type of that module) is intermixed with body code (which must treat the type as abstract). We therefore use
a syntactic construct, coloured brackets, adapted from the work of [GMZ00], to delimit the regions in which different
type equivalences hold. This is not purely a proof technique, however: in some subtle cases the coloured brackets within
hashes are needed in compile-time hash generation to correctly distinguish abstract types that would otherwise be aliased.
We show that implementations can erase coloured brackets outside hashes after compilation.

3.1 Simple examples

We illustrate the use of hashes in a simple case by referring back to the example of Section 2.4, in which a single
program, P4 , was built and run on the two machines. The build process is modelled in our semantics by type-checking,
as usual, followed by reductions that substitute out module definitions, inserting hashes as required. Hash generation is
deterministic, and hence the result of building P4 on the two machines is identical. The program has a single module
definition. It has a compile-time reduction as below, to an ‘executable’ P4’ . (Note that for clarity of exposition, we
omit coloured brackets from all reductions until Section 3.3; the example reductions as stated are not all type-preserving
without them.)

P4 =

module IntSet = IntSetStruct :IntSetSig

if ...on-machine-pauillac... then

send (marshal (IntSet.singleton 17 : IntSet.t))

else

if IntSet.mem 17 (unmarshal(receive():IntSet.t))

then print "y" else print "n"

−→c (compilation)

if ...on-machine-pauillac... then

send (marshal (singleton-code 17 : h ))

else

if mem-code 17 (unmarshal (receive () : h ))

then print "y" else print "n"

= P4’
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where
h = hash(module IntSet=IntSetStruct :IntSetSig,t).

Here the definitions of IntSet.singleton and IntSet.mem have been substituted for their occurrences, and the
global name h has been substituted for type IntSet.t. Notice that h is constructed from the entire definition of IntSet,
including the textual name IntSet, the implementation structure IntSetStruct , the interface IntSetSig , and the type
field name t. In this simple example IntSet has no dependencies, so one can think of hashing its source text; we will
discuss later the more interesting case of modules with dependencies, and also the question of exactly what form the hash
function takes. Our liberal use of substitution is, of course, a semantic device — in practice compilation would use other
representations.

At run-time, the two machines pauillac and glia execute their independently-compiled copies of P4’ . Their shared
knowledge of the hash h acts as a certificate that they may safely share values of their respective abstract types IntSet.t
and IntSet.t.

pauillac[P4’ ] | glia[P4’ ]

−→∗ (local computation on pauillac and glia)

pauillac[send(marshal(singleton-code 17:h ))]

| glia[if mem-code 17 (unmarshal(receive():h ))

then print "y" else print "n"]

−→∗ (local computation on pauillac, to get v )

pauillac[send(marshalled( v :h ))]

| glia[if mem-code 17 (unmarshal(receive():h ))

then print "y" else print "n"]

−→ (communication)

pauillac[ () ]

| glia[if mem-code 17 (unmarshal(marshalled(v :h ):h ))

then print "y" else print "n"]

−→ (on glia: dynamic type check h =h , succeeds)

pauillac[ () ]

| glia[if mem-code 17 v

then print "y" else print "n"]

−→∗ (on glia: computation, prints "y")

pauillac[ () ] | glia[ () ]

Ultimately, only strings may be communicated across a network. The notation marshalled (v :T ) denotes a string
literal containing representations of value v and its type T . This is only meaningful, and only used, where v and T are
both closed.

Notice that the dynamic check is simple: just that the type h sent from pauillac is identical to the type h written into
the unmarshal on glia at compile time. Yet, by virtue of the construction of these hashes, this is sufficient to guarantee
both type-safety and abstraction-safety.

Consider now the programs of Section 2.1–2.7. How do hashes of modules provide the desired behaviour? In the case
of concrete types, the comparison is obvious. For P1 , int=int; for P2 , string 6=int; for P3 , for no hash h do we have
int=h . As we have already seen, in the P4 case the two programs share an identical hash h . For P5 , in P5a and P5b

the computed hash h for IntSet.t is identical (in fact the same h as above). Thus the h substituted for IntSet.t in
P5a ’s call to marshal will be identical to that in P5b ’s call to unmarshal, and the communication will again succeed,
exactly as we desire.

Although P6a (Section 2.6) contains a type IntSet.t, it is clear that the hash h’ of the modified module IntSet

differs from the hash h of the original module, correctly reflecting the difference in the modules’ behaviour. The two
programs will, correctly, be unable to communicate; an exception will be raised at the point of the unmarshal.

The example of Section 2.7 shows why one might wish the textual name (in general, the path) of a module to be
included in its hash, along with the module body. The two modules Euro and Pound are identical in all but name, and so a
hash that did not include the name would treat them as interchangeable, clearly leading to dangerous economic confusion,
and furthermore differing from the usual semantics of ML-like languages. On the other hand, the programmer should also
be able to specify that a name is not to be considered part of the module’s identity. This can be done simply by having an
additional form of module declaration, module* N = ... , for which hashing uses a canonical name *, not admissible
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in source programs, instead of the actual name N. In this simple scheme both sender and receiver must use the *’d form,
of course.

3.2 Module dependencies

The example of Section 2.8 shows that the same module text defines a different abstract type if its dependencies change,
which means that the hash of a module must depend on the hashes of its dependencies. In our substitutive reduction
semantics, type dependencies are handled automatically: we have substituted hashes for any types of earlier modules
before constructing the hash of a module that depends on them. We shall see how term dependencies are also automatically
taken into account. Consider the following (a simplification of P8a ):

module A=struct type t=bool let x=true end

: sig type t val x:t end

module B=struct type t=A.t*int let x=(A.x,3) end

: sig type t val x:t end

send (marshal (B.x : B.t))

−→c (compilation)

module B=struct type t=h *int let x=(true,3) end

: sig type t val x:t end

send (marshal (B.x : B.t))

−→c (compilation)

send (marshal ((true,3) : h’ ))

where

h = hash (

module A=struct type t=bool let x=true end

: sig type t val x:t end,t)

h’ = hash (

module B=struct type t=h *int let x=(true,3) end

: sig type t val x:t end,t)

Here the hash h’ for B is constructed after the hash h for A has been substituted for A.t, and after the term part true has
been substituted for A.x. It is clear that if A changed, h would change, and so h’ would change. This would still be true
in the (unlikely) case that B mentions A.t but not A.x.

We must also ensure h’ depends on h in the (common) case that B mentioned A.x but not A.t, i.e. where A is used in
B only to implement an internal computation. The coloured brackets of the following section will conveniently suffice for
this.

3.3 Abstraction-preserving reduction

Some reductions in Section 3.1, 3.2 require non-standard type equalities to make them type-preserving. For example,
to type the intermediate state in Section 3.2 we must have (true,3) of type h *int, hence we need a type equality
identifying h with its representation type bool.

We could allow this type equality to be used anywhere, but instead prefer to delimit more precisely which
subterms can see through any particular abstraction. We introduce coloured brackets, adapted from the work of
[GMZ00], during module reduction. In the previous example, the first reduction will actually replace (A.x, 3)
by ([true]hh ,3) instead of just (true,3). The brackets serve two purposes. First, the lower annotation (the
colour) is a hash h , indicating that the additional type equivalence h == bool is available when typing the in-
side of the bracketed expression. This equivalence is drawn from the structure of h , viz. h =hash(module A=

struct type t=bool...end:...,t). Thus, inside the brackets we have true:h . Second, the upper h annotation
is the type of the bracketed expression as seen from the outside, thus reduction is type preserving. (One would often have
a more complex type in the upper annotation, not just a hash, e.g. [(true,3)]h *inth .)

The reduction semantics of our formal system moves brackets around as required to ensure that abstraction is preserved
throughout reduction, and so our type preservation result (Theorem 4.1) covers abstraction. If we did not use brackets but
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allowed hash type equalities to be used freely, abstraction would become invisible after reduction. The use of brackets also
simplifies the statement of our result relating static and dynamic type equality (Theorem 4.7). Moreover, when compiling
a module that refers to a term field of a previous one, the presence of brackets ensures that the hash of the later module
does indeed depend on the hash of the earlier module.

3.4 Modest implementation demands

Few changes are required in an ML-like language to support the strategy outlined above.
Theorem 4.5 shows that type checking is decidable and that hashes play no role in compile-time type-checking of

source code. In particular, we can use traditional type checking and inference algorithms essentially unchanged. Compile-
time reduction only builds hashes, without ever looking inside one. Run-time reduction only ever compares hashes by
string equality.

Theorem 4.6 shows that almost all coloured brackets and type information can be erased before run-time, with the
exception of course of marshal and unmarshal type annotations, and brackets within hashes.

ML-like languages usually support separate compilation of modules. Typically, a compilation phase takes a mod-
ule and the signatures of the modules it imports and generates code parameterised by these dependencies. For λhash,
the compilation phase would also generate a hash parameterised by the hashes of the imported modules, in other words
a hash-to-hash function. An appropriate compositional implementation of hashing must be used to make these effi-
ciently representable. Typically, linking instantiates the parameterised code with jumps to the code of previous modules.
For λhash, the linking phase would do two further things. First, it would patch the type annotations for marshal and
unmarshal in the code by replacing references to module types by their hashes. Second, it would calculate the hash of
the module by applying the hash-to-hash function (generated by compilation) to the hashes of previous modules.

3.5 Low-level details of hashes

In our semantics, we work with ideal hashing, taking a free constructor hash(...) which can be applied to elements
of the abstract syntax. We can think of hash as a function whose injectivity guarantees abstraction-safety. To avoid
communicating large quantities of source code, an implementation would reify hash with a fixed-length hash function,
giving a safety guarantee that is only as strong as the probability of the absense of collisions.

This must be chosen so that (1) collisions are rare, and (2) hashes are not too costly to compute.
Both MD5 (RFC1321, 128-bit) and SHA-1 (RFC3174, 160-bit) are sufficiently cheap, and may be considered random

functions for this application [Rob96]. Let us consider the likelihood of collisions. For n abstract types and N possible
hash values, the probability of a collision is approximately n2/2N . Pessimistically assuming 1010 programmers in the
world, writing 300 lines of code per day with one abstract type per 100 loc, the probability of a collision in a century of
abstract types (using MD5) would then be (1015)2/2129 ≈ 10−9. This is much less than the probability of a cosmic-ray-
induced processor error in this period.

It may be desirable to have an absolute guarantee of type-safety, while accepting probabilistic abstraction-safety. To
achieve this, one could pair hashes with the corresponding underlying representation types. At the other extreme, one
could accept a probabilistic guarantee even at simple types, by sending only a hash of the marshalled type. These choices
must depend on a risk assessment.

Note that our proposal is aiming to protect only against accidental errors during programming and software deploy-
ment, not against malicious attack, and so we are not concerned with deliberate searches for collisions. Protecting against
spoofed messages requires largely orthogonal techniques, e.g. message signatures and/or encryption, that are not in the
scope of this report. Moreover, we do not address the problem of communication between untrusting peers, where one
must check not just that the type advertised by the peer is compatible with the local type, but also the validity of the byte
string’s claim to represent a value of the advertised type (see, e.g., [PS00]).

We hash elements of the abstract syntax, not concrete syntax, for two reasons. Firstly, it ensures hashes are not
dependent on, e.g., the choice of newline or newline/CR, or on comments. Secondly, it fits well with the rest of the
semantics — recall we must calculate hashes of modules that are the results of module substitutions. In practice optimised
calculations would be possible, without requiring the explicit construction of canonical representatives of abstract syntax
elements.

Hashing abstract syntax, which we take up to alpha-equivalence, has the (benign) consequence that abstract type
equality is not dependent on the names of function parameters. We have both internal (alpha-convertible) and external
module names in the semantics; external names must be meaningful between programs.
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4 Formal system

Our calculus describes networks of machines. Each machine executes a program; a program consists of a sequence
of module declarations followed by an expression. The expression language consists of a simply-typed call-by-value
λ-calculus with module field references, marshalling, and communication of strings.

Consider a program containing a module declaring an abstract type. There is an abstraction boundary between the
module’s body and the rest of the program. Inside the boundary, the type’s representation is visible; thus the type is
said to be transparent. Outside, the type’s representation is not visible, thus the type is opaque. Our calculus tracks this
abstraction boundary as reduction proceeds. Compilation replaces the abstract type by a hash h and wraps the code e
that comes from inside the module definition with coloured brackets decorated by h , as in [e]Th . The distinction between
opaque and transparent views is therefore witnessed by the brackets: inside the brackets, we view h as transparent; when
outside h is opaque.

In order to express this distinction in our inference rules, we decorate each judgement with a colour hm , as in E `hm

e:T . The colour has one of two forms: it can be a hash h , in which case h is transparent and all other hashes are opaque;
or it can be the empty colour •, in which case all hashes are opaque.

The appendices present a systematic development of the formal definitions and theorems complete with proofs.

4.1 Relation to the informal discussion

For brevity, we take a module language in which structures are type/term pairs, rather than general dependent records
from the earlier informal development. The following table summarises the correspondence between the informal and
formal module syntax.

struct type t = T0 let y = v• end ↔ [T0, v
•]

sig type t val y : T end ↔ [X :Type,T ]
sig type t = T1 val y : T end ↔ [X :Eq(T1),T ]

We split module names into two parts, an external name N and an alpha-convertible name U . We write module declara-
tions as module NU = M :S in m , where U binds in m and N neither binds nor is subject to binding. The user would
write only one identifier, which would be used for both. External names play no role in the static type system; they are
used in hash construction and hence in dynamic type checks.

The formal system omits =! coercions and run-time generativity, which should be straightforward extensions. Func-
tors are also omitted, though we include most of the technical machinery they require, expressing abstract and manifest
types in signatures using singleton kinds. In Section 6.2 we propose extensions for treating these omissions.

4.2 Syntax

We let x , X and U range over expression, type and module variables.

Networks:
n ::= 0 | m | n|n

Machines (whole programs):
m ::= e | module NU = M :S in m (U binds in m)

Modules:
M ::= [T , v •] structure (v • is a value)
S ::= [X :K ,T ] signature (X binds in T )

Types:
T ::= UNIT | INT | STRING base types

| X | T→T | T ∗ ... ∗ T variable, function, product
| U .TYPE type part of a module

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
| h hash

Hashes:
h ::= hash(N ,M :[X :Type,T ]) hash

hm ::= h | • colour (“hash maybe”)
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Kinds:
K ::= Type kind of all types

| Eq(T ) kind of types statically equal to T

Expressions:
e ::= () | n unit, integers
| (e, ..., e) | proji e tuple, projection
| x | λx :T .e | e e lambda calculus (x binds in e)
| U .term value part of a module
|mar (e:T ) marshalling primitive
| unmar e:T unmarshalling primitive
| ! e | ? send and receive

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
|marshalled (e:T ) result of marshalling
| UnmarFailure exception caused by unmar
| [e]Thm coloured bracket

User source programs are closed terms of the m grammar which do not contain any of the constructs below the dotted
lines.

Values vhm are indexed by a colour. They are defined formally below; they include usual λ-calculus values,
marshalled (v •:T ) and “necessary” brackets around values. For closed v •, the value marshalled (v •:T ) is a string,
the sequence of bits that represents the value v • and the type T .

We work up to alpha-conversion. We write substitutions as follows: {x←e}A replaces x by e in A; we also define
substitutions on module components, as in {U .TYPE←T ,U .term←e}A.

4.3 Static and dynamic semantics

The static type system for programs has judgements for subkinding, type equality, and subsignaturing relations. Module
structures M and names U have signatures S , expressions and machines have types T , and types have kinds K . The
system also defines correctness of colours hm , environments E , kinds K , and signatures S .

E `hm K <: K ′ E `hm T == T ′ E `hm S <: S ′

E `hm M :S E `hm U :S E `hm e:T
E `• m:T E `hm T :K ` hm ok
E `hm ok E `hm K ok E `hm S ok

The typing rules are largely standard; the novel rules will be explained below. Recall that judgements are annotated by a
colour hm , i.e. an optional hash — the idea being that derivations of judgements annotated by a hash h can make use of
the equality between the abstract type h and its implementation.

Type environments may contain bindings for module, type and expression variables. Earlier variables bind in later
types, kinds and signatures.

E ::= nil | E , x :T | E ,X :K | E ,U :S

Static typing of networks, ` n ok, simply means that all machines are well-formed.
We define compile-time reductions m −→c m ′ of machines (performed after type checking), and run-time reductions

e −→hm e ′ and n −→ n ′ for expressions and networks.

4.3.1 Singleton kinds

Following [Ler94, HL94, SH00], we use singleton kinds to handle abstract and concrete signatures in a uniform way. We
have two families of kinds: Type is the kind of all types; and, for any type T , Eq(T ) is the singleton kind of all types
that are provably equal to T .

A module consists of a structure [T0, v
•] and a signature [X :K ,T ]. The structure has a representation type T0 and a

value v • — think of a tuple of operations. This v • must have the type {X←T0}T , and the implementation type T0 must
have the kind K . This is made precise by the following rule:

E `hm T0:K E ,X :K `hm T :Type
E `hm v•:T ′ E ,X :Eq(T0) `hm T ′ == T

E `hm [T0, v
•]:[X :K ,T ]

(MS.struct)
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For an abstract module we have K = Type, revealing no information about the representation type, whereas for a
concrete module, commonly K = Eq(T0), revealing it. This is captured with the type equality relation: in the context
of a module declaration module NU = M :[X :K ,T ] in , one can use the path U .TYPE to refer to the type part of the
module. If it is concrete, with K = Eq(T0), one can further use the type equality U .TYPE == T0, whereas if it is
abstract U .TYPE is typically not equal to any other type.

The subkinding relation K <: K ′ places Type above all singleton kinds. This is used to define subsignaturing and
hence, using subsumption, allows a concrete module can be used as if it had an abstract signature.

4.3.2 Hash formation, type equality of hashes

At run-time, we need globally meaningful type names for abstract types, corresponding to the U .TYPE paths used in
compile-time type checking. We construct these global names by hashing (well-typed) closed abstract modules, together
with the associated external name.

`• [T0, v
•]:[X :Type,T ]

` hash(N , [T0, v
•]:[X :Type,T ]) ok

(hmok.hash)

As explained informally earlier, judgements annotated by a hash permit an additional type equality: under the colour
h = hash(N , [T0, v

•]:[X :Type,T ]), h is equal to its implementation T0:

E `h ok

E `h h == T0
(Teq.hash)

These two rules examine the internal structure of hashes, which might be thought to be computationally problematic.
However, while they are semantically necessary, they play no role in user program type-checking (Theorem 4.5) or in
execution.

4.3.3 Compile-time reduction and coloured brackets

Module reduction constructs the type representations that will be used at run-time in marshalling and unmarshalling.
Reducing a concrete module is simple: we replace references to its type component by its manifest type, and references
to its term component by the value inside the module.

module NU = [T0, v
•]:[X :Eq(T1),T ] in m −→c {U .TYPE←T1,U .term←v •}m (mred.Eq)

When it comes to abstract types, things are more interesting. Given an abstract module declaration module NU =
[T0, v

•]:[X :Type,T ], we normally have no way of referring to its type other than by name, i.e. U .TYPE. How-
ever U is not meaningful on other machines, which motivates the introduction of the hash of the module, i.e. h =
hash(N , [T0, v

•]:[X :Type,T ]). Then module reduction replaces references to the type component by h . References to
the term component are replaced by the value suitably protected by h-coloured brackets, which embody the abstraction
boundary around the module’s body as discussed above.

module NU = [T0, v
•]:[X :Type,T ] in m −→c {U .TYPE←h,U .term←[v •]

{X←h}T
h }m (mred.Type)

In general, in a bracket expression [e]Thm , the lower annotation hm is a colour that indicates what type equalities may
be used to type e. If hm = hash(N , [T0, v

•]:[X :Type,T ]), then the equality hm == T0 is available when typing e,
through (Teq.hash) (Section 4.3.2). If hm = •, e is typable without any extra equalities. The upper annotation T is the
externally visible type of e. The following rule (the only typing rule that mentions brackets) shows this colour change
formally.

E `hm′ T :Type E `hm e:T

E `hm′ [e]Thm :T
(eT.col)

4.3.4 Expression reduction

Expression reduction is based on a standard call-by-value λ-calculus semantics. In this subsection, we give the function
application rule and bracket-pushing rules. In later subsections, we show the rules for marshalling and communication.
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As we show in Theorem 4.6, brackets can be erased before run-time reduction. However, the brackets’ presence is
necessary for type preservation (Theorem 4.1). Given their presence, we need reduction rules to “push” them inwards
so that the brackets do not interfere with computationally significant reductions (Theorem 4.3). To describe the bracket
pushing rules, and to achieve type preservation, it is necessary to index the reduction relation, class of values, and reduction
contexts by colours.

We write vhm for a value of colour hm . Brackets may appear in a value when used to build a value of an abstract type
out of a value of the corresponding implementation type, for example [3]hh , where the implementation type of h is INT.

vhm ::= n | () | (vhm , ..., vhm) | λx :T .e

| marshalled (v •:T ) | [vh1 ]h1

h1
where h1 6= hm

The following bookkeeping rules push brackets with manifestly decomposable types inside expressions, and remove them
where not necessary.

[n]INT
hm′ −→hm n (ered.col.int)

[()]UNIT
hm′ −→hm () (ered.col.unit)

[(vhm
1 , ..., vhm

j )]
T1∗...∗Tj
hm′ −→hm ([vhm

1 ]T1

hm′ , ..., [v
hm
j ]

Tj
hm′) (ered.col.tuple)

[λx :T .e]T
′→T ′′

hm′ −→hm λx :T ′.[{x←[x ]T
′

hm}e]T
′′

hm′ (ered.col.fun)

[marshalled (v •:T )]STRING
hm′ −→hm marshalled (v •:T ) (ered.col.marshalled)

[[vh1 ]h1

h1
]h1

h2
−→hm [vh1 ]h1

h1
if h1 6= h2 ∧ h2 6= hm (ered.col.col)

[vhm1 ]h2

hm1
−→hm vhm1 if hm1 = hm ∨ hm1 = • (ered.col.le)

Function application introduces brackets to protect the argument, since the formal parameter may itself be used under a
bracket in the body of the function. This is a variant of [GMZ00], where the formal parameter has to be used at the colour
of the function itself.

(λx :T .e) vhm −→hm {x←[vhm ]Thm}e (ered.ap)

4.3.5 Marshalling

As in [ACPP91], mar (e:T ) “tags” the value of e with a type annotation T , producing a result of type STRING. The dual
construct unmar e:T produces a value of type T , which the type tag in e must (dynamically) match.

E `hm e:T

E `hm mar (e:T ):STRING
(eT.mar)

E `hm T :Type E `hm e:STRING

E `hm (unmar e:T ):T
(eT.unmar)

There is a subtlety here: in the conclusion of (eT.mar), the fact that e has the type T may require the extra type equality
provided by hm . Hence we introduce marshalled (e ′:T ), which requires the argument to be not only closed but typable
in •, i.e. everywhere. Reduction transforms mar (v hm :T ) into marshalled ([vhm ]Thm :T ), where the brackets serve to
ensure that any type equality provided by hm is always available to type v hm (even after sending the marshalled value to
another machine). Note that before reducing mar (v hm :T ), both vhm and T will have been closed by substitution.

mar (vhm :T ) −→hm marshalled ([vhm ]Thm :T ) (ered.mar)

E `hm ok `• e:T

E `hm marshalled (e:T ):STRING
(eT.marshalled)

The unmarshalling of a string first extracts the type tag T from the string and compares it with the tag for the expected
type T ′. Since T is a valid type for v • in •, it is also one in hm . The type tags T and T ′ are compared by syntactic
equality: if the types match, the original value is extracted from the string; otherwise an exception is raised. This dynamic
type equivalence is closely related to static equivalence (Theorem 4.7).

unmar (marshalled (v •:T ):T ′)
−→hm v• if T = T ′

−→hm UnmarFailure otherwise
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4.3.6 Programs and networks

A machine consists of a series of module declarations followed by an expression. Each module declaration may refer to
the previous ones.

E `• T :Type E `• M :S E ,U :S `• m:T

E `• (module NU = M :S in m):T
(mT.let)

A network is a parallel juxtaposition of machines. Note that each machine has its own environment: there is no explicit
scope that encompasses more than one machine.

` n1 ok ` n2 ok

` n1 | n2 ok
(nok.par)

`• m:UNIT

` m ok
(nok.mach)

We assume that there is a single channel, which carries values of type STRING. The expression ! e sends the value of
e over that channel, and ? reads a value from that channel. Communication is straightforward as all the work required to
make values and types intercomprehensible is done by the marshalling apparatus; for suitable evaluation contexts CC •hm1

and CC •hm2
we have just the rule below, writing context application with a dot.

CC •hm1
.! vhm1 | CC •hm2

.? −→ CC •hm1
.() | CC •hm2

.vhm1 (nred.comm)

4.4 Results

First, our calculus enjoys type preservation and progress properties.

Theorem 4.1 (type preservation for compile-time, expression, and network reduction) (See Theorem G.15 (type
preservation for expression reduction), Theorem G.18 (type preservation for machine reduction), Corollary G.17 (type
preservation for network reduction).)

• if m −→c m ′ and `• m:T then `• m ′:T ;
• if e −→hm e ′ and `hm e:T then `hm e ′:T ; and
• if n −→ n ′ and ` n ok then ` n ′ ok.

Theorem 4.2 (progress for compile-time reduction)
(See Theorem H.8 (progress of machines).)
If `• m:UNIT then either
• m is an expression; or
• m reduces, i.e. there exists m ′ such that m −→c m ′.

Moreover, compile-time reduction is terminating.

Theorem 4.3 (progress for expressions)
(See Theorem H.6 (progress of expressions).)
If `hm e:T then one of the following holds:
• e is a value, i.e. there exists v hm such that e = vhm ;
• e reduces, i.e. there exists e ′ such that e −→hm e ′;
• e is blocked waiting for I/O, i.e. there exists CC hm

hm2
and e ′ such that e = CC hm

hm2
.! e ′ or e = CC hm

hm2
.?; or

• e has thrown an exception, i.e. there exists CC hm
hm2

such that e = CC hm
hm2

.UnmarFailure.

In addition, we have proved a normalisation result for expressions, showing that the rules for coloured brackets do not
introduce any divergencies.

Both compile-time machine reduction and run-time expression reduction are deterministic (network reduction is not,
of course):

Theorem 4.4 (determinacy for compile-time and expression reduction)
(See Theorem H.11 (determinism of expression reduction), Discussion H.12 (strength of determinism), Theorem H.9

(determinism of machine reduction).)
If m −→c m ′ and m −→c m ′′ then m ′ = m ′′ and both reductions apply the same rule to the same redex. if

e −→hm e ′ and e −→hm e ′′ then e ′ = e ′′ and both reductions apply the same rule to the same redex.

For static type checking:
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Theorem 4.5 (decidability of type checking)
(See Theorem I.14 (decidability of type checking), Discussion I.16 (decidability of type checking for user programs).)
Type checking is decidable. Furthermore, user source programs can be typed by derivations involving no hashes or

coloured brackets.

At run-time, all type annotations except those on mar , marshalled , and unmar can be erased. Moreover, all
coloured brackets can be erased except for those that occur within a hash within one of those remaining annotations.
More precisely, we define erase(e) to be e with all type annotations and brackets erased except that the type annotations
on mar , marshalled , and unmar are left unchanged. We define −−−→

erase
to be like −→hm by taking the erase-image

of the left- and right-hand sides of each rule (and removing rules that would become e −−−→
erase

e).

Theorem 4.6 (erasure preserves reduction outcomes)
(See Theorem I.30 (type erasure).)
Assume `• e:T . We have that e −→• e ′ implies erase(e) −−−→

erase

61erase(e ′). Conversely, erase(e) −−−→
erase

e0 implies

that there exists e ′ such that erase(e ′) = e0 and e −→>1
• e ′.

Note that brackets are needed in module reduction, to keep track of a module’s ancestors as we build its hash.
Finally we show that, under reasonable conditions, static and dynamic type equality coincide. Let D be a module

declaration context:
module N0 U0

= M0:S0 in ...module Nj Uj
= Mj :Sj in

in the user source language (with no brackets or hashes). Consider a machine D .C .e for some expression context C and
an expression e = (unmar (mar (e0:T0):T1)). One would like this dynamic type check to succeed if and only if T0

and T1 are statically provably equal, i.e. iff U0:S0, ...,Uj :Sj `• T0 == T1.
Write σD for the accumulated substitution defined by the module reduction rules for D (we omit an explicit definition

for lack of space). The dynamic check is then σDT0 = σDT1. We have:

Theorem 4.7 (coincidence between dynamic and static type checking)
(See Corollary J.21 (coincidence between undyn-time and static type checking with non-repeated external names).)
Suppose that D .C .e is well formed (i.e. `• D .C .e:UNIT), that it contains no hashes, and that its external names

N0 , ...,Nj are distinct. Let E = U0:S0, ...,Uj :Sj be the associated environment. Assume that T0 and T1 contain no
hashes and E `• Ti:Type for i = 0, 1. Then E `• T0 == T1 iff σD T0 = σD T1.

The requirement that the external names N0 , ...,Nj be distinct rules out the rather pathological programs in which
there are two module definitions with the same name, one shadowing the other, which have identical structures, signatures,
and dependencies. The exclusion of hashes is automatic for user source programs.

One can imagine stronger theorems, relating type equality between two programs that share a common (DAG-)prefix
of module definitions, but their statements become rather elaborate.

5 Related work

Modules and generativity There is an extensive literature on ML-style modules, including [Mac84, MTH90, HL94,
Ler94, SH00, DCH03], much of it discussing subtle questions of generativity versus applicativity. To our knowledge,
however, none deals with the inter-program case. In [Sew01], fresh type names are generated during call-by-value module
reduction, with ν-binders that can extrude across distributed scope. This allows inter-program sharing, and also a with!
coercion, but at the pragmatically-awkward cost of requiring particular object files to be shared.

Type dynamic Our marshal and unmarshal operations are essentially constructors and destructors for values of
dynamic type; mar is just dynamic, and unmar is a restricted form of typecase. Our dynamic values have
type STRING, emphasising that they may be communicated readily. Type Dynamic was first formalised by Abadi et
al. [ACPP91, ACPR95], who also gives a historical survey. Intensional polymorphism [HM95, Wei00] permits run-time
type analysis of all values.

Marshalling abstract types The problem of marshalling values of abstract (existential [MP88]) type has not been
satisfactorily addressed theoretically before. In several systems, abstract types are run- or build-time generative, so that
two executions or builds of the same source will yield distinct types. While communication within such a program can be
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abstraction-safe, successful communication between builds can only be at the representation type, and hence abstraction-
unsafe. This is true, for instance, of [ACPR95], TMAL [Dug02], Modula-3 [B+94, BNOW95], Alice [Ali03], and the
typed-channel languages listed below.

Weirich [Wei02] exposes an existential’s representation type to type analysis, permitting a type-safe polytypic mar-
shalling function to be written. As future work we hope to expose our global type names at term level (cf. [HWC00]),
permitting an abstraction-safe polytypic marshalling function to be written. Furuse and Weis [FW00] argue for ignoring
abstraction altogether, checking representation types only.

A number of programming languages feature some form of built-in marshalling (pickling, serialisation, etc.): for
example Modula-3, Alice, Java, .NET, and OCaml. Most of these languages serialise the type along with the value in
order to permit a check at unmarshal time, and represent the type by a hash. Languages differ, however, in exactly what
is hashed — i.e., in what is considered when deciding type equality.

In Modula-3, abstract types are made opaque by branding, which may be either by a literal string (analogous to an
external name) or a compiler-generated unique identifier. The latter are unique within a program but not necessarily related
between programs, so explicit brands must be used for inter-program communication; however, they do not guarantee
abstraction-safety for that case. Revelation can be used to make an abstraction transparent.

In Alice, abstract type creation is run-time generative, meaning that abstract types from different executions are always
distinct. This vacuous abstraction-safety forces the use of representation types for pickling between different programs.

In Java serialisation [Sun02], class equivalence is on fully-qualified class name, the representation type of all fields,
and the types of all non-private methods; the implementation is not considered in type equality. A strong coercion
(Section 2.10) is provided (although compatibility of representation types is not checked until unmarshal time).

In .NET serialisation [Mic01], class equivalence is on the textual name along with the implementation of the entire
assembly in which it is defined (a single DLL or EXE, which may comprise many source files). This guarantees data
structure invariants are maintained, as in our approach; however, we work on the much finer scale of individual modules,
and furthermore we require only source code to be shared, not object files.

Java and .NET both support controlled relaxation of type equivalence checking, the use of which clearly voids any
abstraction-safety guarantees made by the type system.

OCaml [OCa] does no typechecking for marshalling at all, and hence is not even type-safe. When unmarshalling a
function, it verifies (by a hash) that the communicating builds are identical, thus allowing the code pointers of all closures
to be communicated literally.

Coloured brackets Coloured brackets were introduced in [ZGM99, GMZ00]; we differ in that we permit a variable
to occur in a colour other than the one where it is defined. Our proofs are harder, our β-rule has to introduce extra
brackets, but our brackets carry only a single optional hash, rather than a list of hashes. Rossberg [Ros02], like us, is
concerned to preserve the opacity of abstract types under reduction due to the presence of typecase. His coercions serve
the same purpose as our brackets, but his use of the closed-scope open construct instead of dot notation [CL90] prevents
any possibility of sharing values of abstract type between instances.

Typed channels Several languages, e.g. JoCaml [JoC], Nomadic Pict [SWP99], Facile [TLK96, Kna95], implement
typed channels. These permit type- and abstraction-safe communication once the channel is established. Establishing
a channel at an abstract type, however, requires the endpoints somehow to share the type already; in the case that the
endpoints reside in different programs or instances, this requires an unsafe cast, usually performed (outside the language)
by a name server.

6 Conclusions and future work

6.1 Summary

We have proposed a novel and expressive design for guaranteeing type- and abstraction-safe marshalling of data sent
between distributed ML programs, that can uniformly treat manifest, abstract, and generative types. The key technical
idea is to use hashes of module declarations as globally-meaningful type names, which are inserted at compile-time
and then compared dynamically when unmarshalling. We add coloured brackets to delimit the “abstraction boundary”
within which hashes are transparent, tracking these brackets through the reductions so as to achieve type and abstraction
preservation. Our proposal is a smooth extension of existing ML-like languages: type checking is unchanged, most type
information can be erased before run-time, and the dynamic type check closely mirrors static ML type equivalence.
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6.2 Future work

In the future, we aim to broaden our solution to be applicable to full-scale languages.
The following extensions will be required to cope with the examples in Section 2.9–2.13. The strong coercion (Sec-

tion 2.10 and 2.11) used for forcing an abstract type to have the same hash as an earlier module, has a simple compile-time
implementation: check the representation types of the two are provably equal, then simply reuse the hash of the earlier
module as the type name for the new. This requires the compiler to keep a mapping from hashes to representation types,
which is straightforward. Programmer-requested generativity (Section 2.12) can be dealt with in an implementation by
generating a fresh global name (say a random bit string of the same length as hashes) at compile time; its semantics
can be modelled by ν-binding. Both this and the strong coercion are very similar to the constructs in our earlier work
[Sew01]. Side-effect-induced generativity (Section 2.13) requires a way to identify simple pure computations in structure
bodies that the programmer can easily understand; abstract types of structures with pure computations should be hashes,
whereas those of structures with effectful computations should have freshly-generated names. Functors (Section 2.9) are
a more substantial extension, but, at least for a restricted but useful class, should be straightforward. Consider first-order
applicative functors [Ler95] and module expressions that are either (i) an explicit structure, possibly multiply-abstracted,
or (ii) pure, i.e. constructed from module identifiers, abstraction and application. These give rise to functions from hashes
to hashes; applying these functions gives run-time representations of the compile-time path-based type names.

Other substantial extensions also need to be considered. Dependent record structures, i.e. module structures with
multiple fields also appear in this report’s informal examples; they should be conceptually straightforward. Parametric
and substructuring polymorphism within the dynamic check would allow receivers to accept a more general type than
that offered by the sender. This is a more substantial extension; it will be a challenge to minimise the transmitted type
information required for these dynamic “subtype” checks. One may want to rebind (Section 2.14) identifiers within a
transmitted value to avoid the overhead of sending code already available at the other end, or to obtain location-specific
behaviour; here we aim to integrate hash types with [BHS+03]. Marshalling reference cells exhibits related problems:
should the reference be rebound, made remote, or duplicated? More generally, one must consider values mentioning other
machine resources: screens, files. . .

We wish to integrate our work with existing systems for distributed programming which have statically typed channels
for normal operation but no safe way of initiating communication, such as JoCaml [JoC] and Nomadic Pict [SWP99]. We
also wish to test the expressiveness of our marshalling primitives by using them to write libraries for safe distributed
communication and persistence.
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A Introduction to the complete definitions and proofs

A.1 Differences between the main body and the appendices

The following appendices present the full formal system with all proofs. There are slight differences between these and
the main body of the report:

Type system Some admissible rules were omitted from the main body. They are (Ssub.refl) and (Ssub.tran) (section
C.11). We now also formalise the /∈dom relation (section C.1), and define a kind equality (section C.5) which
is used in the rules for subkinding. For the sake of completeness, we define a signature equality relation (section
C.10).

Integer constants We now omit the rules for the INT type and integer constants. They (and other base types) can be
trivially added to the system on the model given by UNIT and ().

A.2 Correspondence between the theorems in the main body and in the appendices

Main body Appendices

Theorem 4.1 Theorem G.15 (type preservation for expression reduction),
Theorem G.18 (type preservation for machine reduction),
Corollary G.17 (type preservation for network reduction)

Theorem 4.2 Theorem H.8 (progress of machines)

Theorem 4.3 Theorem H.6 (progress of expressions)

Theorem 4.4 Theorem H.11 (determinism of expression reduction),
Discussion H.12 (strength of determinism),
Theorem H.9 (determinism of machine reduction)

Theorem 4.5 Theorem I.14 (decidability of type checking),
Discussion I.16 (decidability of type checking for user programs)

Theorem 4.6 Theorem I.30 (type erasure)

Theorem 4.7 Corollary J.21 (coincidence between undyn-time and static type checking with non-
repeated external names)

B Syntax

e ::= expression
() unit
(e1, ..., ej) tuple (2 6 j )
proji e projection
x variable
λx :T .e abstraction (x binds in e)
e e application
mar (e:T ) dynamic
marshalled (e:T ) closed, colour-independent dynamic
unmar e:T undynamic
! e send
? receive
U .term term-part of a module

[e]Thm type colouring

UnmarFailureT undyn failure
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vhm0 ::= hm0-value, i.e. value in the colour hm0

() unit

(vhm0
1 , ..., vhm0

j ) tuple (2 6 j )

λx :T .e abstraction (x binds in e)
marshalled (v •:T ) closed dynamic value

[vh1 ]h1

h1
type colouring, where h1 6= hm0

We sometimes omit the colour annotation on values, when it is irrelevant.

C hm1

hm2
::= single-level evaluation context

(vhm1
1 , .., vhm1

i−1 , , ei+1, .., ej) tuple (2 6 j and 1 6 i 6 j ), if hm1 = hm2

proji projection, if hm1 = hm2

e application left, if hm1 = hm2

vhm1 application right, if hm1 = hm2

mar ( :T ) dynamic, if hm1 = hm2

marshalled ( :T ) colour-independent dynamic, if hm2 = 0

unmar :T undynamic, if hm1 = hm2

! send, if hm1 = hm2

[ ]Thm2
coloured bracket

CC hm1

hm2
::= coloured evaluation context

CC hm1

hm′ .C
hm′
hm2

extra level
identity, if hm1 = hm2

T ::= type
UNIT unit
T1 ∗ ... ∗ Tj tuple (2 6 j )
X variable
T→T function
STRING dynamic
U .TYPE type-part of a module
h hash

TC ::= first-level constructed type context
UNIT unit
STRING dynamic

1→ 2 function

1 ∗ ... ∗ j tuple (2 6 j )

hm ::= hash option
• none
h some hash

h ::=hash(N ,M :[X :Type,T ]) hash

N external name
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K ::= kind
Type opaque
Eq(T ) singleton

M ::=[T , v ] module structure (type-part, term-part)

S ::=[X :K ,T ] module signature (X binds in T )

m ::= machine
e expression
module NU = M :S in m module declaration (U binds in m)

n ::= network
0 null
n | n parallel composition
e expression (on one machine)

ζ ::= variable
x expression variable
X type variable
U module variable

χ ::= substitutable entity
X type variable
U .TYPE type-part of a module
x expression variable
U .term term-part of a module
U module variable

...
X ::= type substitutable entity

X type variable
U .TYPE type-part of a module

...
x ::= expression substitutable entity

x expression variable
U .term term-part of a module

E ::= environment
E , x :T expression variable binding
E ,X :K type variable binding
E ,U :S module variable binding
nil empty
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J ::= colourable statement
ok environment correctness
K ok kind correctness
K == K ′ kind equivalence
K <: K ′ subkinding
T :K kind of a type
T == T ′ type equivalence
S ok signature correctness
S == S ′ signature equivalence
S <: S ′ subsignaturing
e:T type of an expression
M :S signature of a module expression
U :S signature of a module variable
m:T type of a machine

CJ ::=E `hm J couloured judgement

MJ ::= monochrome judgement
` hm ok hash correctness
` n ok network correctness

AJ ::= judgement
ζ /∈ dom E non-clash judgement
E `hm J coloured judgement
MJ monochrome judgement

Additionally, we use the following notations:
ζ:τ ::= x :T | X :K | U :S variable has sort
η:τ ::= e:T | T :K | M :S term has sort
τ ok ::= T :Type | K ok | S ok sort is correct

= syntactic equality
σ, µ substitutions
Π derivation (i.e. proof tree)
{χ←η}ℵ substitution: replace χ by η in ℵ
fv free variables (U , X , x )
fse free substitutable entities (U , U .TYPE, U .term, X , x )

(if U .TYPE ∈ fseℵ or U .term ∈ fseℵ then U ∈ fseℵ)
(and more, introduced as they are defined...)

Note that in particular external names (N ) are not variables or substitutable entities, so they are never “free” nor can
substitution touch them: fv N = fse N = ∅ and σN = N .

C Static judgements

C.1 ζ /∈ dom E non-clash

ζ /∈ dom nil
(clash.nil)

ζ /∈ dom E ζ 6= ζ ′

ζ /∈ dom (E , ζ ′:τ)
(clash.cons)

For any two distinct variables ζ and ζ ′, ζ 6= ζ ′ is an axiom.
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C.2 ` hm ok hash correctness

nil `• M :[X :Type,T ]

` hash(N ,M :[X :Type,T ]) ok
(hmok.hash) ` • ok

(hmok.zero)

Note that N may be any external name.
Note that we demand that a module have an opaque type in order to take its hash.

C.3 E `hm ok environment correctness

` hm ok
nil `hm ok

(envok.nil)

E `hm T :Type
x /∈ dom E

E , x :T `hm ok
(envok.x)

E `hm K ok
X /∈ dom E

E ,X :K `hm ok
(envok.X)

E `hm S ok
U /∈ dom E

E ,U :S `hm ok
(envok.U)

An alternate way of stating (envok.?) could be:

E `hm τ ok ζ /∈ dom E

E , ζ:τ `hm ok

C.4 E `hm K ok kind correctness

E `hm ok

E `hm Type ok
(Kok.Type)

E `hm T :Type

E `hm Eq(T ) ok
(Kok.Eq)

C.5 E `hm K == K ′ kind equality

E `hm ok

E `hm Type == Type
(Keq.Type)

E `hm T == T ′

E `hm Eq(T ) == Eq(T ′)
(Keq.Eq)

C.6 E `hm K <: K ′ subkinding

E `hm T :Type

E `hm Eq(T ) <: Type
(Ksub.Eq)

E `hm K == K ′

E `hm K <: K ′
(Ksub.refl)

E `hm K <: K ′

E `hm K ′ <: K ′′

E `hm K <: K ′′
(Ksub.tran)

Note that (Ksub.tran) is currently derivable.

C.7 E `hm T :K kind of a type

E `hm T :K
E `hm K <: K ′

E `hm T :K ′
(TK.sub)

E `hm T == T ′

E `hm T :Eq(T ′)
(TK.Eq)

` h ok
E `hm ok

E `hm h:Type
(TK.hash)

E `hm ok

E `hm UNIT:Type
(TK.unit)

E `hm ok

E `hm STRING:Type
(TK.mar)

E `hm T :Type
E `hm T ′:Type

E `hm T→T ′:Type
(TK.fun)

E `hm Ti:Type ∀i .1 6 i 6 j

E `hm T1 ∗ ... ∗ Tj :Type
(TK.tuple)

E ,X :K ,E ′ `hm ok

E ,X :K ,E ′ `hm X :K
(TK.var)

E `hm U :[X :K ,T ]

E `hm U .TYPE:K
(TK.mod)
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C.8 E `hm T == T ′ type equivalence

E `hm T :Eq(T ′)

E `hm T == T ′
(Teq.Eq)

E `h ok

E `h h == T
where h = hash(N , [T , vhm ]:[X :Type,T ′])

(Teq.hash)

The rule (Teq.hash) is the rule that introduces type equivalences (see Lemma G.11 (type decomposition)). Other rules
serve to propagate equivalences. Of course another way to obtain a type equivalence is to have an explicit Eq(T ) in the
judgement and use (Teq.Eq).

E `hm T :Type

E `hm T == T
(Teq.refl)

E `hm T == T ′

E `hm T ′ == T
(Teq.sym)

E `hm T == T ′

E `hm T ′ == T ′′

E `hm T == T ′′
(Teq.tran)

E `hm T0 == T ′0
E `hm T1 == T ′1

E `hm T0→T1 == T ′0→T ′1
(Teq.cong.fun)

E `hm Ti == T ′i 1 6 i 6 j

E `hm T1 ∗ ... ∗ Tj == T ′1 ∗ ... ∗ T ′j
(Teq.cong.tuple)

C.9 E `hm S ok signature correctness

E ,X :K `hm T :Type

E `hm [X :K ,T ] ok
(Sok)

C.10 E `hm S == S ′ signature equivalence

Note that we never use signature equivalence.

E `hm K == K ′ E ,X :K `hm T == T ′

E `hm [X :K ,T ] == [X :K ′,T ′]
(Seq.struct)

Signature equivalence is an equivalence relation since kind equivalence and type equivalence are.

C.11 E `hm S <: S ′ subsignaturing

E `hm K <: K ′

E ,X :K `hm T == T ′

E `hm [X :K ,T ] <: [X :K ′,T ′]
(Ssub.struct)

E `hm S ok

E `hm S <: S
(Ssub.refl)

E `hm S <: S ′

E `hm S ′ <: S ′′

E `hm S <: S ′′
(Ssub.tran)

Note that (Ssub.refl) and (Ssub.tran) are derivable.

C.12 E `hm e:T type of an expression

E `hm e:T
E `hm T == T ′

E `hm e:T ′
(eT.eq)

E , x :T ,E ′ `hm ok

E , x :T ,E ′ `hm x :T
(eT.var)

E `hm U :[X :K ,T ]
E `hm T :Type

E `hm U .term:T
(eT.mod)

Note that in (eT.mod), the condition E `hm T :Type guarantees that X /∈ fv T .

E `hm e ′:T→T ′

E `hm e:T

E `hm e ′ e:T ′
(eT.ap)

E , x :T `hm e:T ′

E `hm λx :T .e:T→T ′
(eT.fun)
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E `hm ei:Ti ∀i .1 6 i 6 j

E `hm (e1, .., ej):T1 ∗ ... ∗ Tj
(eT.tuple)

E `hm e:T1 ∗ ... ∗ Tj 1 6 i 6 j

E `hm proji e:Ti
(eT.proj)

E `hm ok

E `hm ():UNIT
(eT.unit)

E `hm e:STRING

E `hm ! e:UNIT
(eT.send)

E `hm ok

E `hm ?:STRING
(eT.recv)

E `hm e:T

E `hm mar (e:T ):STRING
(eT.mar)

E `hm ok
nil `• e:T

E `hm marshalled (e:T ):STRING
(eT.marred)

E `hm T :Type
E `hm e:STRING

E `hm (unmar e:T ):T
(eT.unmar)

E `hm T :Type

E `hm UnmarFailureT :T
(eT.Undynfailure)

For (eT.unmar), the condition E `hm T :Type ensures T is well-formed. Of course, nothing forces T to be closed;
as usual reduction will transform it into something closed before (ered.unmar) happens.

E `hm T :Type
E `hm′ e:T

E `hm [e]Thm′ :T
(eT.col)

Note that, when reading the rule backwards, hm ′ replaces hm: the brackets denote a colour change.

C.13 E `hm M :S signature of a module expression

E `hm T :K
E ,X :K `hm T ′:Type
E ,X :Eq(T ) `hm T ′′ == T ′

E `hm vhm :T ′′

E `hm [T , vhm ]:[X :K ,T ′]
(MS.struct)

Remark: in (MS.struct), the type T ′′ and the premise E `hm vhm :T ′′ are there to ensure that X is not free in v hm ,
even though its interesting type T ′ may contain X .

The premise E ,X :K `hm T ′:Type is implied by the premise E ,X :Eq(T ) `hm T ′′ == T ′, since the correctness
of T ′ only requires that the environment provide X , not that it be given any particular kind. (See Lemma F.9 (types are
ok provided their hashes are).)

We might be worried that there should be a (MS.sub), but this would be doing subsignaturing at compile time, and we
have subsignaturing at run time via (US.sub) which seems to subsume it.

We require the expression component of the module to be a value. This is to dispel any concern over the time at which
a module is initialised. Note that if an arbitrary expression e is desired, it can be encoded as λx :UNIT.e, with the type of
the module changed from T ′ to UNIT→T ′, and its uses changed from U .term to U .term ().

C.14 E `hm U :S signature of a module variable

E ,U :S ,E ′ `hm ok

E ,U :S ,E ′ `hm U :S
(US.var)

E `hm U :S
E `hm S <: S ′

E `hm U :S ′
(US.sub)

E `hm U :[X :K ,T ]

E `hm U :[X :Eq(U .TYPE),T ]
(US.self)

The way we prove things about the type of U .term is quite interesting. Here is an example: what are the possible types T such that
E `• U .term:T with E = (U :[X :Type,X ])? Let us look at all the possible derivations (arguing slightly informally, i.e. without
verifying everything, on the “the proof has to be of this form” bit).

α

E `• T :Type

β

E `• U :[X :K4,T3]

E `• U :[X :K3,T3]
(US.self)

γ

E `• K3 <: K2

δ

E ,X :K3 `• T3 == T

E `• [X :K3,T3] <: [X :K2,T ]
(Seq.struct)

E `• U :[X :K2,T ]
(US.sub)

E `• U .term:T
(eT.mod)
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We can check that any proof of E `• U .term:T can be shortened to a proof of this form. The only alternative is not to use
(US.self), but we can verify that this does not lead to any proof of E `• U :[X :K3,T3]. (If the signature of U was [X :Eq(T1),X ],
we could usefully use (US.var) there, and (US.sub) would rewrite the X into T1, so we would get T = T1). At this point, we still get
to choose T , K2, K3, K4 and T3, but the derivations of (α), (β), (γ) and (δ) constrain these choices.

In α we see that fv T ⊆ {U }. In (β), all we have left to do (assuming as stated a minimal proof) is apply (US.var), so K4 = Type
and T3 = X . In (β) we have that K3 is Eq(U .TYPE). In (γ) we have the only constraint on K2, and we might as well take
K2 = Type. In (δ), we need to prove that X == T , and since X does not appear in T , the equivalence must come from the
environment, hence K3 = Eq(T ). Unifying the constraints on K3 yields T = U .TYPE as the one possible type for U .term.

C.15 E `hm m:T type of a machine

E `• e:T

E `• e:T
(mT.expr)

E `• T :Type
E `• M :S
E ,U :S `• m:T

E `• (module NU = M :S in m):T
(mT.let)

In (mT.expr), the premise is a “type of an expression” judgement, while the conclusion is a “type of a machine”
judgement.

Note: in (mT.let), the first premise is saying that U is not free in T .

C.16 ` n ok network correctness

` ni ok i = 1, 2

` n1 | n2 ok
(nok.par) ` 0 ok

(nok.zero)
nil `• e:UNIT

` e ok
(nok.expr)

D Reduction rules and structural congruence

D.1 m −→c m ′ compile-time reduction

module NU = [T , v •]:[X :Type,T ′] in m −→c {U .TYPE←h,U .term←[v •]
{X←h}T ′
h }m (mred.Type)

where h = hash(N , [T , v •]:[X :Type,T ′])

module NU = [T , vhm ]:[X :Eq(T ′′),T ′] in m −→c {U .TYPE←T ′′,U .term←vhm}m (mred.Eq)

D.2 e −→hm e ′ expression reduction

Note that we don’t rewrite types at all (unlike Grossman et al., p13 rule 7).

proji (vhm
1 , .., vhm

j ) −→hm vhm
i if 1 6 i 6 j (ered.proj)

(otherwise stuck)

(λx :T .e) vhm −→hm {x←[vhm ]Thm}e (ered.ap)

(Note that (as Grossman et al.) we introduce a bracket around the argument of the function. This is needed e.g.,
because if h = hash(N , [INT, 3]:[X :Type,X ]) then nil `h (λx :INT.[x ]INT

• )[3]hh :INT is derivable, yet [[3]hh ]INT
• is not

well-typed.)

mar (vhm :T ) −→hm marshalled ([vhm ]Thm :T ) (ered.mar)

unmar (marshalled (v •:T ):T ′) −→hm

{
v• if T = T ′

UnmarFailureT otherwise
(ered.unmar)
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Note that we use syntactic equality (up to alpha-conversion (inside hashes)) to compare the types (which are closed). In
practice, we could use a md5-style checksum of the alpha-normalized type expression.

[()]UNIT
hm′ −→hm () (ered.col.unit)

(and all base types when we have them)

[(vhm′
1 , ..., vhm′

j )]
T1∗...∗Tj
hm′ −→hm ([vhm′

1 ]T1

hm′ , ..., [v
hm′
j ]

Tj
hm′) (ered.col.tuple)

[λx :T .e]T
′→T ′′

hm′ −→hm λx :T ′.[{x←[x ]T
′

hm}e]T
′′

hm′ (ered.col.fun)

[marshalled (v •:T )]STRING
hm′ −→hm marshalled (v •:T ) (ered.col.marred)

[[vh0 ]h0

h0
]h0

h1
−→hm [vh0 ]h0

h0
(ered.col.col)

for h0 6= h1 and h1 6= hm .
We used to have this rule for an arbitrary type T , but in fact it is only ever necessary for T = h0.

[vhm1 ]h2

hm1
−→hm vhm1 (ered.col.le)

for hm1 4 hm . (See Definition E.13 (partial order on colours).)
We used to have this rule with an arbitrary type T rather than h2, but the other (ered.col.*) rules deal with the case when
T is a constructed type.

e −→hm e ′

C hm′
hm .e −→hm′ C hm′

hm .e ′
(ered.cong)

D.3 n ≡ n ′ network structural congruence

0 | n ≡ n
(nsc.id)

n1 | n2 ≡ n2 | n1

(nsc.commut)
n1 | (n2 | n3)≡ (n1 | n2) | n3

(nsc.assoc)

Plus reflexivity, symmetry and transitivity of ≡.

D.4 n −→ n ′ network reduction

e −→• e ′

e −→ e ′
(nred.expr)

n −→ n ′

n | n ′′ −→ n ′ | n ′′ (nred.par)
n ≡ n0 −→ n ′0 ≡ n ′

n −→ n ′
(nred.strcong)

CC •hm .! vhm | CC •hm′ .? −→ CC •hm .() | CC •hm′ .v
hm (nred.comm)

Note that the value that is sent is a value in the domain from which it is sent, but just by looking at this rule, it might
not be a value in the domain where it is received. In fact, typing will ensure that v hm = marshalled (v •:T ) and this is
a value in any domain.

E General definitions and lemmas

E.1 Proofs

We use the words “proof” and “derivation” indifferently, to mean a natural deduction-style tree of inference steps leading
to a judgement.

Definition E.1 (smaller proof) A proof Π is smaller than a proof Π′ iff Π contains at most as many inference steps as
Π′, i.e. the number of nodes in the tree Π is smaller.

A subproof is a particular case of a smaller proof.
Note that any proof is a subproof of itself and is smaller than itself. We will use the wordings “proper subproof” and

“strictly smaller proof” to exclude equality (respectively, equal size).
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E.2 Correctness of parts

Definition E.2 (domain of an environment) The domain of an environment E , written dom E , is a set of variables
defined by induction as follows:

• dom nil = ∅

• dom (E , ζ:τ) = dom E ∪ {ζ}

Lemma E.3 (non-membership in domain is interpreted trivially) The judgement ζ /∈ dom E is provable iff ζ is not
a member of the domain of E .

Proof. Induct on the derivation of ζ /∈ dom E . The rules (clash.nil) and (clash.cons) trivially maintain this property.

We will freely make use of this lemma in the remainder of this section.

Lemma E.4 (colours have to be ok) If E `hm J then ` hm ok by a proper subproof.

Proof. Induct on the derivation of E `hm J . All rules whose conclusion is a coloured judgement have at least one
premise that is a similarly coloured judgement, so induction applies. This leaves only the rule (envok.nil), which has
` hm ok as a premise.

Lemma E.5 (hashes have to be ok) If E `hm J or ` hm ok is derivable by a proof Π and h is a subterm of E `hm J
or ` hm ok then ` h ok by a subproof of Π.

Proof. Induct on the structure of Π. Most metavariables in the conclusion of rules whose conclusion is a coloured judge-
ment also appear in at least one premise that is a coloured judgement. If h is in the instantiation of such a metavariable
then we have the desired result by induction. We list the remaining cases (including “exposed” hashes).

Case subterm of hash(N ,M :S ) in (TK.hash): One premise is ` hash(N ,M :S ) ok. If h = hash(N ,M :S ) we have
the desired result. Otherwise induction gives the desired result.

Case hm in (envok.nil): Trivial by induction.

Case N (in (mT.let)): Trivial (fv N = ∅).

Case (hmok.hash): The conclusion is ` hash(N ,M :S ) ok. If h = hash(N ,M :S ) we have the desired result. Other-
wise induction gives the desired result.

Case (hmok.zero): Trivial.

Lemma E.6 (environments have to be ok) If E `hm J then E `hm ok by a subproof.

Proof. Simultaneously with the following lemma.

Lemma E.7 (prefixes of ok environments are ok) If E , b `hm ok then E `hm ok by a subproof.

Proof. Induct simultaneously on the derivation of E `hm J and E , b `hm ok. Note that E , b `hm ok can only be
derived from a judgement of the form E `hm J , hence the result of the second lemma follows by induction from the first
lemma. We now turn to the first lemma.

Most rules whose conclusion is a coloured judgement have at least one premise that is a coloured judgement with the
same environment, and so we apply the induction hypothesis to that premise. We list the remaining cases.

Cases (envok.nil), (envok.x), (envok.X), (envok.U): Trivial.

Case (eT.fun): There exist x , T , T ′, e such that J = λx :T .e:T→T ′. The premise is E , x :T `hm e:T ′. By induction,
E , x :T `hm ok by a subproof, hence E `hm ok by the second lemma, as desired.

Lemma E.8 (ok environments have no repetition in the domain) If E ,E ′ `hm ok then dom E ∩ dom E ′ = ∅.
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Proof. Induct on the length of E ′. If E ′ = nil, then dom E ′ = ∅, so dom E ∩ dom E ′ = ∅. Otherwise write
E ′ = (E ′′, ζ:τ). Then E ,E ′ `hm ok must have been derived by the appropriate (envok.*) rule, with the premises
E ,E ′′ `hm τ ok and ζ /∈ dom (E ,E ′′). From the first premise, by Lemma E.6 (environments have to be ok), we get
E ,E ′′ `hm ok by a subproof, whence dom E ∩ dom E ′′ = ∅ by induction. Then dom E ∩ dom E ′ = (dom E ∩
dom E ′′) ∪ (dom E ∩ {ζ}) = ∅ ∪∅ = ∅ as desired.

Lemma E.9 (free variables of a judgement come from the environment) If E `hm J then fv (J ) ⊆ dom (E ). For
completeness’s sake: if ` hm ok then fv (hm) ⊆ ∅; if ` n ok then fv (n) ⊆ ∅.

Proof. We freely use Lemma E.3 (non-membership in domain is interpreted trivially).
Induct on the size of the derivation Π of the judgement.
Most rules whose conclusion is a coloured judgement have the following property: every metavariable in the right-

hand side of the conclusion E `hm J is present in the right-hand side, not under a binder, of a premise that is a coloured
judgement with the same environment as the conclusion. Then, by induction on the premise, every free variable in the
subterm matched by that metavariable is present in the domain of the environment.

Most rules whose conclusion is the correctness of a network have the following property: every metavariable in the
conclusion is also present in one of the premises which is a network correctness judgement. Then, by induction, there is
no free variable in the subterm matched by that metavariable.

We list the remaining cases.

Case (TK.hash): The conclusion is E `hm hash(N ,M :S ):Type. One premise is ` hash(N ,M :S ). By induction we
have fv (hash(N ,M :S )) = ∅, so fv (hash(N ,M :S )) ⊆ dom E .

Case (Teq.hash): The conclusion is E `h h == T where h = hash(N , [T , v hm ]:S ). The premise is E `h ok. By
Lemma E.4 (colours have to be ok), ` h by a proper subproof. By induction, we have fv h = ∅ and in particular
fv T = ∅, so fv (h == T ) = ∅ ⊆ dom E .

Case (hmok.hash): The conclusion is ` hash(N ,M :S ) ok and the premise is nil `• M :S . By induction we have
fv (hash(N ,M :S )) = dom nil = ∅ as desired.

Case (hmok.zero): Trivial.

Cases T in (Sok); T and T ′ (Seq.struct) and (Ssub.struct); e in (eT.fun); m in (mT.let): These rules have a
metavariable ℵ in the conclusion that is under a binder for some variable ζ. In each case, there is a premise of the
form E , ζ:τ `hm J ′ with ℵ appearing not under a binder in J ′. By induction, we get that fvℵ ⊆ dom E ∪ {ζ}.
Since ζ is bound in the occurence of ℵ in the conclusion, this is the desired result.

Cases K in (Sok); T in (eT.fun): In each case, there is a premise of the form E , ζ:ℵ `hm J ′ where E and hm are the
environment and the colour of the conclusion and ℵ is the metavariable under consideration. By Lemma E.6 (envi-
ronments have to be ok) and reversing the appropriate (envok.*) rule, we have, by a proper subproof, respectively,
E `hm K ok, E `hm T :Type, E `hm M :S . In each case, by induction, we get fvℵ ⊆ dom E .

Case T ′ in (eT.fun): By induction as in the case of e, we get that fv T ′ ⊆ dom E ∪ {x}. By Lemma E.5 (hashes
have to be ok), for any hash h that is a subterm of T ′, we have ` h ok by a (proper) subproof of Π. Thus, by
induction, fv h = ∅ and in particular x /∈ fv h . Given the syntax of types, the only place where T ′ might have a
free expression variable is inside a hash, so x /∈ fv T ′. Hence fv T ′ ⊆ dom E as desired.

Cases (TK.var), (eT.var), (US.var): The variable (X , x or U respectively) that the similarly written metavariable instan-
tiates to is obviously present in the environment.

Case (eT.col): The conclusion is E `hm [e]Thm′ :T . All that remains to be shown is that fv hm ′ ⊆ dom E . One premise
of the rule is E `hm′ e:T . By Lemma E.4 (colours have to be ok), we have ` hm ′ ok by a proper subproof, so by
induction fv hm ′ = ∅ whence the desired result.

Case N (in (mT.let)): Trivial as fv N = ∅.

Case (nok.expr): The conclusion is ` e ok and the premise is nil `• e:UNIT. By induction we have fv e ⊆ dom nil = ∅
as desired.
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Definition E.10 (correctness judgement) A correctness judgement is a coloured judgement whose right-hand side is of
one of the following forms:

ok, K ok, T :Type, S ok. (1)

Note that a derivation of a correctness judgement may involve other sorts of judgements. For example, in order to
derive U :S `hm U .TYPE:Type, one has to use (TK.mod), with a premise of the form U :S `hm U :S ′.

Definition E.11 (type world judgement) A type world judgement is a coloured judgement whose right-hand side is of
one of the following forms:

ok, K ok, K <: K ′, K == K ′, T == T ′, T :K , S ok, S == S ′, S <: S ′, U :S . (2)

Note that any derivation of a type world judgement contains only type world judgements and non-clash judgement,
except in the proof of correctness of hashes.

E.3 Variables and colours

Definition E.12 (hashes in something) The hashes in a syntactic entity are the subterms that are hash(N ,M :S ) and
that are not themselves subterms of a hash.

Definition E.13 (partial order on colours) We call topped colours the set formed by all colours (i.e. hm) plus a point
> that is distinct from any colour.

We define a partial order on topped colours as follows: hm 4 hm ′ iff hm = hm ′ or hm = • or hm ′ = >.

Note that 4 defines a poset with all greatest lower bounds, with • as the minimum element and > as the maximum
element.

Definition E.14 (pvu) Let Π be a proof of a coloured judgement E `hm J , and let ζ be any variable. The set of colours
at which the variable ζ is used in the proof Π, written pvuζ (Π), is defined as follows.

Consider the last rule used in the proof. The environment of its conclusion is an environment pattern. Take all the
metavariables ℵ in this pattern whose instantiation in the last step of Π contains ζ as a variable bound by the environment.
Then pvuζ (Π) is the union over all ℵ of the following sets:

• If ℵ occurs in the right-hand side of the conclusion of the rule, anywhere but under an explicit bracket, then {hm},
else ∅.

• For every occurence of ℵ in the right-hand side of the conclusion of the rule under an explicit bracket, the colour
that the subscript of the bracket instantiates to.

• For every occurence of ℵ in the environment part of a premise which is a coloured judgement, pvuζ (Π′) where Π′

is the subproof of Π that leads to said premise.

Note that with our current rules:

• Since (as we will prove) ok environments have no repetition in the domain, only one metavariable ℵ is concerned.
It may be either a variable metavariable (ζ̂) or an environment metavariable (Ê ).

• If ζ /∈ dom E then there is no ℵ, thus pvuζ (Π) = ∅.

• The first case only arises if ℵ is a variable metavariable, and the rule is one of (*.var) introducing that variable.

• The second case never arises (the only rule with an explicit bracket is (eT.col), and it has nothing from the environ-
ment inside the bracket).

Definition E.15 (alternate, informal definition of pvu) Consider a proof Π of a coloured judgement of the form
E0, ζ:τ,E `hm J . The set of colours at which the variable ζ is pulled from the environment in Π, written pvuζ (Π), is the
set of colours hm such that the judgement E0, ζ:τ,E ′ `hm ζ:τ appears in the proof as a conclusion of a var-rule ((eT.var),
(TK.var) or (US.var)).

If ζ is not in the domain of the conclusion of Π, then we define pvuζ (Π) to be the empty set.

Lemma E.16 (monotonicity of pvu) If Π′ is a subproof of Π then pvuζ (Π′) ⊆ pvuζ (Π). Hence min
(
pvuζ (Π)

)
4

min
(
pvuζ (Π′)

)
.
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Proof. Trivial from the first definition.

Definition E.17 (substitution) Some potentially interesting cases:

σ(mar (e0:T0)) = mar (σe0:σT0)

σ(marshalled (e0:T0)) = marshalled (σe0:σT0)

σ(unmar e0:T0) = unmarσe0:σT0

σ([e0]Thm0
) = [σe0]σT

σhm0

{U .TYPE←T}U .TYPE = T

{U .term←e}U .term = e

{U←U ′}U .TYPE = U ′.TYPE

{U←U ′}U .term = U ′.term

Note that substitution performs all necessary alpha-conversions. We generally leave alpha-conversion implicit.

Lemma E.18 (stability of values by substitution) Let σ be any substitution, hm be a colour and v hm be any hm-value
with correct hashes. Then σv hm is an hm-value.

Proof. Induct on the structure of v hm . As per the syntax of values, the only places where a value may contain free
variables are inside hashes or under a λ. Since the hashes in v hm are assumed to be correct, they are closed by Lemma
E.9 (free variables of a judgement come from the environment). As for λ’s, they allow an arbitrary expression, hence they
are stable by substitution.

Lemma E.19 (computing the pvu of a type world judgement) Let Π be a proof of a type world judgement
E0, ζ:τ,E `hm J . Then hm 4 min

(
pvuζ (Π)

)
.

Proof. Induct on the structure of Π. We freely use Lemma E.6 (environments have to be ok) and Lemma E.8 (ok
environments have no repetition in the domain).

Consider first the rules whose conclusion is a type world judgement but for which J 6= ok. Each premise has one of
the following properties:

1. The premise is a type world judgement whose colour is the same as in the conclusion and whose environment
contains the conclusion’s.

2. The premise is either not a coloured judgement or a coloured judgement with an empty environment.

Suppose that the conclusion of Π is obtained by such a rule. Then consider any subproof Π′ of Π leading to a premise
of the aforementioned conclusion. One of the alternatives holds:

Case 1: By induction, hm 4 min
(
pvuζ (Π′)

)
.

Case 2: Then pvuζ (Π′) = ∅ whence hm 4 > = min
(
pvuζ (Π′)

)
.

The set pvuζ (Π) is the union over all the premises of the pvuζ (Π′)’s, plus hm if the rule under consideration is (TK.var)

or (US.var) introducing ζ. Hence hm 4 min
(
pvuζ (Π)

)
.

Let us turn to the (envok.*) rules. We distinguish as to whether ζ is the variable being added to the environment.

Case (envok.*) not adding ζ: There exist E ′, ζ ′, and τ ′ such that the conclusion is E0, ζ:τ,E ′, ζ ′:τ ′ `hm ok, and
the premises are ζ ′ /∈ dom (E0, ζ:τ,E ′) and E0, ζ:τ,E ′ `hm τ ok. Let Π′ be the subproof leading to the latter
judgement. Then by induction hm 4 min

(
pvuζ (Π′)

)
, whence the desired result as pvuζ (Π) = pvuζ (Π′).

Case (envok.*) adding ζ: The conclusion is E0, ζ:τ `hm ok. The only premise that is a coloured judgement is E0 `hm

τ ok, which does not contain ζ. So pvuζ (Π) = ∅ whence hm 4 > = min
(
pvuζ (Π)

)
.
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Note that this lemma does not hold for expression typing judgements. We suspect that it would hold for shortest
proofs, for some notion of shortest proof. Here is a counter example, where the problem is the use of X in a “useless”
fashion.

...

X :Eq(UNIT) `hm ok
(envok.X)

X :Eq(UNIT) `hm ():UNIT

...

X :Eq(UNIT) `hm X :Eq(UNIT)
(TK.var)

X :Eq(UNIT) `hm X == UNIT

X :Eq(UNIT) `hm UNIT == X
(Teq.sym)

X :Eq(UNIT) `hm ():X

...

X :Eq(UNIT) `hm X :Eq(UNIT)
(TK.var)

X :Eq(UNIT) `hm X == UNIT

X :Eq(UNIT) `hm ():UNIT

Lemma E.20 (connection between fv and fse) Let ℵ be anything in the syntax. Then fvℵ ⊆ fseℵ. If x ∈ fseℵ then
x ∈ fvℵ. If X ∈ fseℵ then X ∈ fvℵ. If U ∈ fseℵ or U .term ∈ fseℵ or U .TYPE ∈ fseℵ then U ∈ fvℵ.

We may use this lemma implicitly.

Proof. Trivial from the definition of fv and fse .

Lemma E.21 (types do not contain free expression variables) If E `hm T :Type then fse T does not contain any
expression substitutable entity (i.e.

...
x). Also, if E `hm K ok (respectively E `hm S ok) then fse K (respectively fse S )

does not contain any expression substitutable entity.

Note that fseℵ not containing any expression substitutable entity implies that fvℵ does not contain any free expression
variable.

Proof. Let us first prove this lemma for a type T . Induct on the structure of T . Most cases are either obvious (X ,
U .TYPE) or obvious by induction (constructed type). The only non-trivial case is a hash h . By Lemma E.5 (hashes have
to be ok), ` h ok. By Lemma E.9 (free variables of a judgement come from the environment), fv h = ∅, whence by
Lemma E.20 (connection between fv and fse) fse h = ∅.

If E `hm Eq(T ) ok, then by reversing (Kok.Eq) we get E `hm T :Type, whence by the first part of this lemma
fse K = fse T has the desired property. The case E `hm Type ok is trivial (fse Type = ∅).

If E `hm [X :K ,T ] ok, then by reversing (Sok) we get E ,X :K `hm T :Type. By the previous two paragraphs,
neither fse K nor fse T contains any expression substitutable entity, so the same holds for fse S = fse K ∪ (fse T \ X ).

Lemma E.22 (environments do not contain free expression variables) If E0,E1 `hm ok then fse E1 does not contain
any expression substitutable entity.

Note that in particular fv E1 does not contain any expression variable.

Proof. Induct on the length of E1. If E1 = nil the conclusion is obvious. Otherwise there exist E ′1, ζ and τ such that
E1 = E ′1, ζ:τ . By reversing the appropriate (envok.*) rule, we get E0,E

′
1 `hm τ ok. By Lemma E.6 (environments have

to be ok), we have E0,E
′
1 `hm ok. By induction, we have

...
x /∈ fse E ′1. Also, by Lemma E.21 (types do not contain free

expression variables),
...
x /∈ fse τ (whether τ is a type, kind or signature). Hence

...
x /∈ fse E1.

Lemma E.23 (expression substitution in environment) If E0,E1 `hm ok and
...
x is an expression substitutable entity

(i.e. an expression variable or U .term for some U ) then {...x←η}E1 = E1.

Proof. Trivial consequence of Lemma E.22 (environments do not contain free expression variables).

F Type preservation by substitution

Lemma F.1 (“type of a machine” judgements are not used to prove other coloured judgements)

Proof. No rule whose conclusion is a coloured judgement other than “type of a machine” has a premise that is a “type of
a machine” judgement.

Lemma F.2 (colour stripping judgements) If E `hm J and ` hm ′ ok and hm 4 hm ′ then E `hm′ J for all coloured
statements J other than “type of a machine”.
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Proof. Induct on the derivation of E `hm J . In most rules where the conclusion is a coloured judgement, all the premises
either:

• do not involve the colour of the conclusion; or

• are a coloured judgement of the same colour, other than “type of a machine”, so we can use induction to prove
them. Note that by Lemma F.1 (“type of a machine” judgements are not used to prove other coloured judgements),
a premise that is a coloured judgement is never a “type of a machine” judgement.

If every premise of the last rule used in the derivation enjoys one of these properties, and if furthermore the rule applies
to arbitrary colours, (so that replacing hm by hm ′ does yield an instance of the rule again), we have E `hm′ J . We list
the remaining cases.

Case (Teq.hash): Then hm 6= •, so hm ′ = hm .

Case (TK.hash): Trivial (` hm ′ ok is assumed in this lemma).

Case (envok.nil): Trivial (` hm ′ ok is assumed in this lemma).

Case (eT.marred): Trivial.

Case (eT.col): Trivial.

Lemma F.3 (weakening) If E ,E ′,E ′′ `hm ok and E ,E ′′ `hm J then E ,E ′,E ′′ `hm J .
Furthermore, if ζ ∈ dom E ′ and E ,E ′,E ′′ `hm ok is derived by a proof Π such that pvuζ (Π) = ∅, then there is a

proof Π′ of E ,E ′,E ′′ `hm J such that pvuζ (Π′) = ∅.

Proof. We freely use Lemma E.3 (non-membership in domain is interpreted trivially).
Consider the variables that appear in the derivation of E ,E ′′ `hm J but not in the judgement E ,E ′′ `hm J itself. We

can alpha-convert them to variables that are not present in dom (E ,E ′,E ′′).
Induct on the derivation of E ,E ′′ `hm J .
Note that the inductive rules that define derivable coloured judgements are all rewriting rules (in other words, there is

no side condition). Most rules have the following properties:

1. There is a distinguished environment metavariable Ê such that the conclusion is a judgement with this metavariable
at the leftmost position and no other.

2. For each premise, one of the following conditions holds:

(a) The premise is a coloured judgement whose environment is either the same as the conclusion’s or the one in
the conclusion followed by exactly one more binding.

(b) The premise is ζ̂ /∈ dom Ê for some ζ̂ that is in the domain of the conclusion.

(c) The premise does not mention Ê .

Suppose that E ,E ′′ `hm J was derived by an instance α of such a rule. There are two cases, depending on whether
the instantiation of Ê (as per condition 1) includes the whole of E or not.

Case Ê is instantiated by E ,E ′′′: Then there exists E ′′′′ such that E ′′ = E ′′′,E ′′′′.

Since we have a raw term rewriting system, we get an instance ω of the same rule by instantiating Ê by E ,E ′,E ′′′

and other variables as in α.

Let us prove that all the premises of ω hold. Consider a premise in α, depending on which case of condition 2
holds:
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Case 2a: The premise is of the form E ,E ′′,Ei `hmi
Ji, where Ei is of length at most one. By Lemma E.6

(environments have to be ok), E ,E ′′,Ei `hmi
ok by a subproof.

If Ei is empty, then we have E ,E ′,E ′′,Ei `hmi ok. Otherwise there exist ζ and τ such that Ei = ζ:τ .
The judgement E ,E ′′, ζ:τ must have been derived by the appropriate (envok.*) rule from E ,E ′′ `hmi

τ ok
and ζ /∈ dom (E ,E ′′). By induction, we have E ,E ′,E ′′ `hmi

τ ok, whence by the same (envok.*) rule
as previously: E ,E ′,E ′′, ζ:τ `hmi

ok (recalling that we performed alpha-conversion on the proof so that
ζ /∈ dom E ′′ whence ζ /∈ dom (E ,E ′,E ′′)). If furthermore ζ ∈ dom E ′ and pvuζ (Π) = ∅, then the
induction gives a proof Π′′ of E ,E ′,E ′′, x :T `hmi

ok such that pvuζ (Π′′) = ∅.

In any case, E ,E ′,E ′′,Ei `hmi ok, so we can apply induction, getting E ,E ′,E ′′,Ei `hmi Ji as desired.

If ζ ∈ dom E ′ and pvuζ (Π) = ∅, then we have obtained a proof Π′′ of E ,E ′,E ′′,Ei `hmi
ok such that

pvuζ (Π′′) = ∅, and the last induction gives a proof Π′ of E ,E ′,E ′′,Ei `hmi
Ji such that pvuζ (Π′) = ∅.

Case 2b: The premise is ζ ′ /∈ dom (E ,E ′′′) with ζ ′ in dom (E ,E ′′′,E ′′′′). Hence ζ ′ ∈ dom E ′′′′. Since
E ,E ′,E ′′′,E ′′′′ `hm ok, by Lemma E.8 (ok environments have no repetition in the domain), we have
ζ /∈ dom (E ,E ′,E ′′′) as desired.

Case 2c: The premise in α is exactly the premise in ω.

We have a derivation of all the premises in ω, so we get a proof Π′ of its conclusion. Note further that if ζ ∈ dom E ′

and pvuζ (Π) = ∅, we do get that pvuζ (Π′) = ∅. (If ω is an instance of a (*.var) rule, then ζ is not the variable
being introduced by ζ ∈ dom E ′ and Lemma E.8 (ok environments have no repetition in the domain).)

Case Ê is instantiated by a proper prefix E ′′′ of E : Only the following cases are concerned:

Case (envok.*): Trivial (take Π′ = Π).

Case (*.var): Then there exists E ′′′′ such that E = E ′′′, ζ:τ,E ′′′′. By assumption, we have a proof Π of
E ′′′, ζ ′:τ,E ′′′′,E ′,E ′′ `hm ok. By (*.var) we get a proof Π′ of E ′′′, ζ ′:τ,E ′′′′,E ′,E ′′ `hm ζ ′:τ as de-
sired.

If ζ ∈ dom E ′ and pvuζ (Π) = ∅, then pvuζ (Π′) = ∅, because ζ 6= ζ ′ since ζ ∈ dom E ′ and Lemma E.8
(ok environments have no repetition in the domain).

The only rule whose conclusion is a coloured judgement that does not match the conditions above is (envok.nil). If the
last step of the derivation uses this rule, then its conclusion is nil `hm ok, and we desire a proof of E ′ `hm ok, which
holds by assumption: take Π′ = Π.

Lemma F.4 (merging environments) If E ,E ′ `hm ok and E ,E ′′ `hm ok and dom E ′ ∩ dom E ′′ = ∅ then
E ,E ′,E ′′ `hm ok.

Furthermore, if ζ ∈ dom E ′ and E ,E ′ `hm ok is derived by a proof Π such that pvuζ (Π) = ∅, then there is a proof
Π′ of E ,E ′,E ′′ `hm ok such that pvuζ (Π′) = ∅.

Proof. We freely use Lemma E.3 (non-membership in domain is interpreted trivially).
We induct on the length of E ′′. If E ′′ = ∅, the results are trivial. Now let us assume the lemma holds for E ′′, ζ:τ ,

and we have E ,E ′′, ζ:τ `hm ok and dom E ′ ∩ dom (E ′′, ζ:τ) = ∅.
By reversing the appropriate (envok.*) rule, we get E ,E ′′ `hm τ ok. By Lemma E.6 (environments have to be ok),

we have E ,E ′′ `hm ok. By induction, we get E ,E ′,E ′′ `hm ok. By Lemma F.3 (weakening), we have E ,E ′,E ′′ `hm

τ ok. Then by applying the appropriate (envok.*) rule we get E ,E ′,E ′′, ζ:τ `hm ok as desired.
Suppose furthermore that ζ ∈ dom E ′ and pvuζ (Π) = ∅. Then the proof of E ,E ′,E ′′ `hm ok obtained above by

induction and that of E ,E ′,E ′′ `hm τ ok obtained by Lemma F.3 (weakening) have an empty pvu for ζ, so the proof Π′

of E ,E ′,E ′′, ζ:τ that we build satisfies pvuζ (Π′) = ∅.

Lemma F.5 (combined weakening) If E ,E ′ `hm ok and E ,E ′′ `hm J and dom E ′ ∩ dom E ′′ = ∅ then
E ,E ′,E ′′ `hm J .

Furthermore, if ζ ∈ dom E ′ and E ,E ′ `hm ok is derived by a proof Π such that pvuζ (Π) = ∅, then there is a proof
Π′ of E ,E ′,E ′′ `hm J such that pvuζ (Π′) = ∅.

Proof. Trivial combination of Lemma F.4 (merging environments) and Lemma F.3 (weakening).

Lemma F.6 (kinds are smaller than Type) If E `hm K ok then E `hm K <: Type.
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Proof. If K = Type, then we get E `hm Type <: Type by reversing (Kok.Type) and applying (Keq.Type) and
(Ksub.refl). Otherwise there exists T such that K = Eq(T ). Then by reversing (Kok.Eq) and applying (Ksub.Eq) we get
E `hm Eq(T ) <: Type.

Lemma F.7 (relating type-is-kind and subkinding) If E `hm T :K then E `hm Eq(T ) <: K .

Proof. If K = Type, then we get the desired result by (Ksub.Eq). Otherwise there exists T ′ such that K = Eq(T ′).
Then by (Teq.Eq), (Keq.Eq) and (Ksub.refl) we get E `hm Eq(T ) <: Eq(T ′) as desired.

Lemma F.8 (components of modules are ok) If E `hm [T , vhm ]:[X :K ,T ′] then there exists T ′′ such that E `hm T :K
and E ,X :K `hm T ′:Type and E ,X :Eq(T ) `hm T ′′ == T ′ and E `hm vhm :T ′′ and E `hm K ok.

Proof. Reverse (MS.struct) to get the first four judgements. As for the last one, since E ,X :K `hm T ′:Type, by Lemma
E.6 (environments have to be ok) and reversing (envok.X), we get E `hm K ok.

Lemma F.9 (types are ok provided their hashes are) E `hm T :Type iff fv T ⊆ dom E and E `hm ok and all the
hashes in T are ok.

Proof. Suppose that fv T ⊆ E and all the hashes in T are ok. We prove that E `hm T :Type by induction on the syntax
of T .

Case T = UNIT or T = STRING: Trivial by (TK.unit) or (TK.mar).

Case there exist T1, ...,Tj such that T = T1 ∗ ... ∗ Tj: Note that fv Ti ⊆ fv T ⊆ dom E . By induction, E `hm Ti
for 1 6 i 6 j . By (TK.tuple), we have E `hm T1 ∗ ... ∗ Tj :Type.

Case there exist T1,T2 such that T = T1→T2: Note that fv Ti ⊆ fv T ⊆ dom E . By induction, E `hm Ti for
1 6 i 6 2. By (TK.fun), we have E `hm T1→T2:Type.

Case T is a hash h: The hash h is ok by assumption, so we get E `hm h:Type by (TK.hash).

Case T is a type variable X : Since {X } = fv T ⊆ dom E , there exist E1, K and E2 such that E = E1,X :K ,E2. By
(TK.var), we get E `hm X :K . By Lemma E.7 (prefixes of ok environments are ok) and reversing (envok.X), we
have E1 `hm K ok, whence by Lemma F.3 (weakening) E `hm K ok. By Lemma F.6 (kinds are smaller than
Type), we have E `hm K <: Type, whence by (TK.sub) E `hm X :Type as desired.

Case there exists U such that T = U .TYPE: Since {U } = fv T ⊆ dom E , there exist E1, K , T ′ and E2 such that
E = E1,U :[X :K ,T ′],E2. By (US.var) and (TK.mod), we get E `hm U .TYPE:K . By Lemma E.7 (prefixes of ok
environments are ok) and reversing (envok.U), we have E1 `hm [X :K ,T ′] ok, whence by Lemma F.3 (weakening)
E `hm [X :K ,T ′] ok. By reversing (Sok), we have E `hm K ok. By Lemma F.6 (kinds are smaller than Type), we
have E `hm K <: Type, whence by (TK.sub) E `hm U .TYPE:Type as desired.

Now suppose E `hm T :Type. Then fv T ⊆ dom E by Lemma E.9 (free variables of a judgement come from the
environment). Also all the hashes in T are ok by Lemma E.5 (hashes have to be ok).

Lemma F.10 (colour change preserves type okedness) If nil `hm0
T :Type and nil `hm1

ok then nil `hm1

T :Type.

Proof. Trivial application of Lemma F.9 (types are ok provided their hashes are).

Definition F.11 (unresolved free variables of an environment) The unresolved free variables of an environment, written
ufv E , are defined as follows:

ufv nil = ∅
ufv (ζ:τ,E ) = (ufv (E ) \ {ζ}) ∪ fv τ

It is immediate that ufv E ⊆ ufv (E ,E ′).

Lemma F.12 (computing unresolved free variables) ufv (E ,E ′) = ufv E ∪ (ufv E ′ \ dom E )
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Proof. Induct on the length of E . The result is trivial if E is empty. If E = ζ:τ,E ′′, then ufv (E ,E ′) = (ufv (E ′′,E ′) \
{ζ})∪ fv τ . By induction, ufv (E ′′,E ′) = ufv E ′′∪(ufv E ′ \dom E ′′). So ufv (E ,E ′) = (ufv E ′′∪(ufv E ′ \dom E ′′)\
{ζ}) ∪ fv τ = (ufv E ′′ \ {ζ}) ∪ (ufv E ′ \ (dom E ′′ ∪ {ζ})) ∪ fv τ = ufv E ∪ (ufv E ′ \ dom E ) as desired.

Lemma F.13 (ok environments have no unresolved free variables) If E `hm ok then ufv E = ∅.

Proof. We prove by induction on the derivation size that E `hm J implies ufv E = ∅. Most rules whose conclusion
is a coloured judgement E `hm J have at least one premise that is a coloured judgement whose environment is E ,E ′

for some E ′, whence the induction hypothesis gives the desired result. Also, rules that have a conclusion of the form
nil `hm J are trivial.

The remaining rules are (envok.*). If we write the conclusion as E , ζ:τ `hm ok, one premise is E `hm τ ok. We
have ufv E = ∅ by induction. By Lemma E.9 (free variables of a judgement come from the environment), we have
fv τ ⊆ dom E . By Lemma F.12 (computing unresolved free variables), we have ufv (E , ζ:τ) = ufv E ∪ (ufv (ζ:τ) \
dom E ) = ∅ ∪ (fv τ \ dom E ) thus ufv (E , ζ:τ) = ∅ as desired.

Lemma F.14 (type preservation by substitution) If E0, ζ:τ,E `hm J by a proof Π such that hm ′ 4 min
(
pvuζ (Π)

)

and E0 `hm′ η:τ then E0, σE `hm σJ where σ = {ζ←η} and ζ:τ is an expression or type binding.

Proof. Induct on the derivation Π of E0, ζ:τ,E `hm J .
Note that the inductive rules that define derivable coloured judgements are all rewriting rules (in other words, there is

no side condition). Most rules have the following properties:

1. There is a distinguished environment metavariable Ê such that the conclusion is a judgement with this metavariable
at the leftmost position and no other.

2. For each premise, one of the following conditions holds:

(a) The premise is a judgement with Ê in the leftmost position, and in no other place.

(b) The premise is ζ̂ /∈ dom Ê for some ζ̂.

(c) The premise is a judgement with an empty environment and does not mention Ê .

Suppose that E0, ζ:τ,E `hm J was derived by an instance α of such a rule. Without loss of generality, ζ is not
in a binding position (including the domain of an environment) anywhere in E0, ζ:τ,E `hm J except where shown;
furthermore ζ is not in a binding position in any premise either, except in instances of Ê if and where this includes
E0, ζ:τ . By condition 1, there are two possibilities:

General case: The instance α was obtained by instantiating the metavariable Ê with E0, ζ:τ,E ′′, where E ′′ is an envi-
ronment. Hence E is of the form E ′′,E ′, where E ′ is an environment.

Since we have a raw term rewriting system, we also get an instance β of the same rule by instantiating Ê by E0,E
′′

and other metavariables as in α. Note that ζ does not appear in any binding position in β.

Note that the only places in the syntax where an expression (respectively type) variable is required are:

• in binders, which doesn’t matter for σ as it does not affect variables that are bound in β. (†)
• in the left-hand side of a non-clash judgement. These only occur in (envok.*) rules, in the form ζ̂ /∈ dom Ê .

Let us write ζ ′ for the instantiation of ζ̂. Then ζ ′ 6= ζ as ζ ′ /∈ dom (E0, ζ:τ,E ′′) is derivable.

Note furthermore that well-typed values are stable by substitution, as per Lemma E.18 (stability of values by
substitution).1 Hence σ is a well-sorted raw term substitution on β or any subterm thereof, so applying σ to β yields
another instance ω of the rule. Note that the conclusion of ω is σE0, σE ′′ `hm σJ , which is also E0, σE ′′ `hm J
as ζ /∈ fv E0 by Lemma E.6 (environments have to be ok), Lemma E.7 (prefixes of ok environments are ok) and
Lemma F.13 (ok environments have no unresolved free variables).

Consider the premises in α, depending on which case of condition 2 holds:

Case 2a: The premise is of the form E0, ζ:τ,E ′′,E ′i `hmi
Ji. Given Lemma E.16 (monotonicity of pvu), we

can apply induction, getting E0, σE ′′, σE ′i `hmi σJi, which is the corresponding premise in ω (recall that
σE0 = E0).

1This is needed for (MS.struct), which requires a value in one place.
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Case 2b: The premise is of the form ζ ′ /∈ dom (E0, ζ:τ,E ′′), and ζ ′ is not ζ (see (†) above). We need to prove that
ζ ′ /∈ dom (E0, σE ′′). This follows easily, given that dom (E0, σE ′′) = dom (E0,E

′′) ⊆ dom (E0, ζ:τ,E ′′).

Case 2c: The premise is a judgement AJ with an empty environment, so by Lemma E.9 (free variables of a judge-
ment come from the environment) ζ is not free in AJ. Hence σAJ = AJ. Furthermore the premise does not
include any instantation of Ê , so it is in fact exactly the premise needed in ω.

As all the premises of ω are derivable, its conclusion holds. It reads: E0, σE ′′, σE ′ `hm σJ , which is what we set
out to prove.

Special cases: The instance was obtained by instantiating the metavariable Ê to a prefix E1 of E0: so there is E2 such
that E0 = E1,E2. Only the following cases of the following rules are concerned.

Cases (envok.*): Then E = nil and E2 = nil. The proof obligation is E1 `hm ok, i.e. E0 `hm ok, which holds
by Lemma E.7 (prefixes of ok environments are ok).

Cases (eT.var), (TK.var): α is of the form
E0, ζ:τ,E ′ `hm ok

E0, ζ:τ,E ′ `hm ζ:τ

and σ = {ζ←η}, and we have E0 `hm′ η:τ with hm ′ 4 min
(
pvuζ (Π)

)
4 hm . By induction (which we can

apply thanks to Lemma E.16 (monotonicity of pvu)), we have E0, σE ′ `hm ok.

Furthermore, since ` hm ok by Lemma E.4 (colours have to be ok), E0 `hm η:τ by Lemma F.2 (colour
stripping judgements). By Lemma F.3 (weakening) we get E0, σE ′ `hm η:τ as desired.

Every remaining rule is inapplicable because the environment in the conclusion must be empty.

Lemma F.15 (strengthening) If E0, ζ:τ,E `hm J and ζ /∈ fv E ∪ fv J and ζ:τ is a type or expression variable binding
then E0,E `hm J .

Proof. By Lemma E.6 (environments have to be ok) and Lemma E.7 (prefixes of ok environments are ok), we have
E0, ζ:τ `hm ok. Let us then reverse the rule (envok.*) that was applied to obtain this latter judgement:

Case ζ:τ is X :K : Then we have E0 `hm K ok. If K = Type, by (TK.unit), we have E0 `hm UNIT:K ; let η be
UNIT. Otherwise there exists a type η such that K = Eq(η); by reversing (Kok.Eq), we get E0 `hm η:Type. By
Lemma F.10 (colour change preserves type okedness), we have E0 `• η:Type. By (Teq.refl) and (TK.Eq), we get
E0 `hm η:K .

Case ζ:τ is x :T : Then we have E0 `hm T :Type, whence by Lemma F.10 (colour change preserves type okedness):
E0 `• T :Type. Let η be UnmarFailureT . By (eT.Undynfailure), we have E0 `• η:T .

In any case, we have E0 `• η:τ . By Lemma F.14 (type preservation by substitution), we have E0, σE `hm σJ where
σ = {ζ←η}. However, by assummption, ζ /∈ fv E ∪ fv J . Hence σE = E and σJ = J , so we get E0,E `hm J as
desired.

This proof of strengthening calls the main substitution lemma. This has two inconveniences:

• It does not work for module variables. In fact, if we expanded the proof of the substitution lemma, we would see
that the (envok.*) case dealing with ζ is never invoked, so it does not matter than the substitution lemma does not
have such a case for module variables.

• It requires that kinds and types not be empty, which is true for a convoluted reason (all our kinds happen to be
non-empty, and each of our types T contains the exception UnmarFailureT ).

Definition F.16 (visible type-part of a module)

typepart (N , [T , vhm ]:[X :K ,T ′]) =

{
hash(N , [T , vhm ]:[X :K ,T ′]) if K = Type

T0 if K = Eq(T0) for some T0



Global abstraction-safe marshalling with hash types 45

Definition F.17 (visible term-part of a module)

termpart (N , [T , vhm ]:[X :K ,T ′]) =

{
[vhm ]

{X←h}T ′
h if K = Type

vhm if K = Eq(T0) for some T0

where h = hash(N , [T , vhm ]:[X :Type,T ′]).

Definition F.18 (set of equations used to type a module)

equations (N , [T , vhm ]:[X :K ,T ′]) =

{
hash(N , [T , vhm ]:[X :K ,T ′]) if K = Type

• if K = Eq(T0) for some T0

Lemma F.19 (reflexivity of kind equivalence) If E `hm K ok then E `hm K == K .

Proof. If K = Type then this lemma holds by (Keq.Type). Otherwise there exists T such that K = Eq(T ). The
judgement E `hm K ok must have been derived by (Kok.Eq), from E `hm T :Type. Then by (Teq.refl) followed by
(Keq.Eq) we have E `hm Eq(T ) == Eq(T ) as desired.

Lemma F.20 (weakening kind to ok kind in the environment) If E0 `hm K <: K ′ and E0 `hm K ok and
E0,X :K ′,E1 `hm J and J is a type world judgement right-hand side then E0,X :K ,E1 `hm J .

Note that the hypothesis E0 `hm K ok is in fact superfluous (see Lemma (weakening kind in the environment) below).

Proof. Since E0 `hm K ok, by (envok.X), E0,Y :K `hm ok where Y is fresh. By Lemma F.3 (weakening), from
E0,Y :K `hm ok and E0 `hm K ′ ok, we get E0,Y :K `hm K ′ ok. By (envok.X), E0,Y :K ,X :K ′ `hm ok.

By Lemma F.5 (combined weakening), E0,Y :K ,X :K ′,E1 `hm J .
From E0,Y :K `hm ok, by (TK.var), we get E0,Y :K `hm Y :K . By Lemma F.3 (weakening), we also get

E0,Y :K `hm K <: K ′. By (TK.sub), we get E0,Y :K `hm Y :K ′. By Lemma F.14 (type preservation by substi-
tution), using Lemma E.19 (computing the pvu of a type world judgement) E0,Y :K ′, {X←Y }E1 `hm {X←Y }J . By
alpha-conversion, we have E0,X :K ′,E1 `hm J as desired.

Lemma F.21 (things have to be ok) If E `hm T :K then E `hm K ok.
If E `hm T == T ′ then E `hm T :Type and E `hm T ′:Type.
If E `hm K == K ′ or E `hm K <: K ′ then E `hm K ok and E `hm K ′ ok.
If E `hm S == S ′ or E `hm S <: S ′ then E `hm S ok and E `hm S ′ ok.
If E `hm e:T or E `hm m:T then E `hm T :Type.
If E `hm M :S or E `hm U :S then E `hm S ok.

Proof. Induct on the size of the derivation of the hypothesis. Consider the last rule used in said derivation.

Case (TK.sub): The conclusion is E `hm T :K ′ and one of the premises is E `hm K <: K ′. By induction, we get
E `hm K ′ ok.

Case (TK.Eq): The conclusion is E `hm T :Eq(T ′). The premise is E `hm T == T ′. By induction we have
E `hm T ′:Type, hence E `hm Eq(T ′) ok by (Kok.Eq).

Case (TK.mod): The conclusion is E `hm U .TYPE:K . The premise is E `hm U :[X :K ,T ]. By induction we have
E `hm [X :K ,T ] ok. This must have been obtained by applying (Sok), with the premise E ,X :K `hm T :Type.
By Lemma E.6 (environments have to be ok), we have E ,X :K `hm ok that is smaller. Hence, by reversing
(envok.X), we get a proof of E `hm K ok.

Cases (TK.unit), (TK.fun), (TK.mar), (TK.tuple), (TK.hash): The conclusion is of the form E `hm T :Type for some
T . By Lemma E.6 (environments have to be ok), E `hm ok. By (Kok.Type), we have E `hm Type ok.

Case (TK.var): The conclusion is of the form E ,X :K ,E ′ `hm X :K . The premise is E ,X :K ,E ′ `hm ok. By Lemma
E.7 (prefixes of ok environments are ok) and reversing (envok.X), we get E `hm K ok. By Lemma F.3 (weakening),
we get E ,X :K ,E ′ `hm K ok as desired.

Note that the proof may be bigger, since the part that proves K has to be duplicated...
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Case (Teq.Eq): The conclusion is E `hm T == T ′. The premise is E `hm T :Eq(T ′). By induction we have
E `hm Eq(T ′) ok, which must have been derived by (Kok.Eq) from E `hm T ′:Type. Also, from this, we get
E `hm Eq(T ′) <: Type by (Ksub.Eq). We can apply (TK.sub) to get E `hm T :Type.

Note that this may well be the shortest way to obtain E `hm T :Type (take T = U .TYPE).

Case (Teq.hash): The conclusion is E `hm hm == T , and hm = h = hash(N , [T , v hm1 ]:S ). The premise is
E `hm ok. By Lemma E.4 (colours have to be ok), we get ` hash(N , [T , v hm1 ]:S ) ok. By reversing (hmok.hash)

and (MS.struct), we get nil `• T :Type. By Lemma F.3 (weakening), we get E `hm T :Type. We also have
E `h h:Type by (TK.hash).

Case (Teq.refl): Trivial.

Cases (Teq.sym), (Teq.tran): Trivial by induction.

Case (Teq.cong.fun): The conclusion is E `hm T0→T1 == T ′0→T ′1. By induction on the premises, we get
E `hm Tj :Type and E `hm T ′j :Type for j = 0, 1. By (TK.fun), we get E `hm T0→T1:Type and
E `hm T ′0→T ′1:Type.

Case (Teq.cong.tuple): Similar to case (Teq.cong.fun).

Case (Ksub.Eq): The conclusion is E `hm Eq(T ) <: Type. The premise is E `hm T :Type. From this, by (Kok.Eq),
we get E `hm Eq(T ) ok. By Lemma E.6 (environments have to be ok), we have E `hm ok. Thus, by (Kok.Type),
we have E `hm Type ok.

Cases (Ksub.refl), (Ksub.tran): Trivial by induction.

Case (Keq.Type): The premise is E `hm ok. By (Kok.Type), we get E `hm Type ok.

Case (Keq.Eq): The conclusion is E `hm Eq(T ) == Eq(T ′). The premise is E `hm T == T ′. By induction we get
E `hm T :Type and E `hm T ′:Type, whence by (Kok.Eq), E `hm Eq(T ) ok and E `hm Eq(T ′) ok

Case (Ssub.struct): The conclusion is E `hm [X :K ,T ] <: [X :K ′,T ′]. One premise is E ,X :K `hm T == T ′. By
induction, we get E ,X :K `hm T :Type and E `hm T ′:Type, whence the desired results by (Sok).

Case (Seq.struct): Similar to case (Ssub.struct).

Case (Ssub.refl): Trivial.

Case (Ssub.tran): Trivial.

Case (eT.var): Similar to case (TK.var).

Case (eT.eq): The conclusion is E `hm e:T ′. One premise is E `hm T == T ′. By induction we get E `hm

T ′:Type.

Case (eT.mod): The conclusion is E `hm U .term:T . One premise is E `hm T :Type.

Case (eT.ap): The conclusion is E `hm e e ′:T ′. One premise is E `hm e ′:T→T ′. By induction we get E `hm

T→T ′:Type. By Lemma F.9 (types are ok provided their hashes are) applied to E `hm T→T ′ then to E `hm T ′,
we get E `hm T ′:Type as desired.

Case (eT.fun): The conclusion is E `hm λx :T .e:T→T ′. The premise is E , x :T `hm e:T ′. By induction, we get
E , x :T `hm T ′:Type by a proof Π. By Lemma E.21 (types do not contain free expression variables), x /∈ fv T ′.
By Lemma E.6 (environments have to be ok), we have E `hm ok. By Lemma F.9 (types are ok provided their
hashes are) applied once in each direction, we get first that the hashes in T ′ are ok and fv T ′ ⊆ dom E ∪ {fv }
(hence fv T ′ ⊆ dom E ), then that E `hm T ′ ok. Also, by Lemma E.6 (environments have to be ok), we get
E , x :T `hm ok, whence E `hm T :Type by reversing (envok.x). By (TK.fun), we get E `hm T→T ′:Type.

Cases (eT.send), (eT.recv), (eT.mar), (eT.marred), (eT.unit): By Lemma E.6 (environments have to be ok), we have
E `hm ok. Then (TK.unit) or (TK.mar) gives the desired result.

Cases (eT.unmar), (eT.Undynfailure), (eT.col): Trivial (one of the premises is what we need to prove).
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Case (eT.tuple): The conclusion is E `hm (e1, ..., ej):T1 ∗ ... ∗ Tj . The premises are E `hm ei:Ti for 1 6 i 6 j . By
induction, we have E `hm Ti:Type for all i , whence by (TK.tuple): E `hm T1 ∗ ... ∗ Tj :Type.

Case (eT.proj): Similar to (eT.ap).

Case (MS.struct): The conclusion is E `hm M :[X :K ,T ]. One premise is E ,X :K `hm T :Type, whence by (Sok):
E `hm [X :K ,T ] ok.

Case (US.var): Similar to case (TK.var).

Case (US.sub): The conclusion is E `hm U :S ′. One premise is E `hm S <: S ′. By induction, we have E `hm S ′ ok.

Case (US.self): The conclusion is E `hm U :[X :Eq(U .TYPE),T ]. The premise is E `hm U :[X :K ,T ]. By (TK.mod),
we have E `hm U .TYPE:K . And by induction we get E `hm [X :K ,T ] ok, whence by reversing (Sok):
E ,X :K `hm T :Type.

By Lemma E.6 (environments have to be ok) and reversing (envok.X), we have E `hm K ok. By Lemma F.6
(kinds are smaller than Type), we get E `hm K <: Type. By (TK.sub), given that E `hm U .TYPE:K , we have
E `hm U .TYPE:Type, whence by (Kok.Eq): E `hm Eq(U .TYPE) ok.

If K = Type, by Lemma F.6 (kinds are smaller than Type), we get E `hm Eq(U .TYPE) <: Type. Otherwise
there exists T1 such that K = Eq(T1). From E `hm U .TYPE:Eq(T1), by (Teq.Eq), (Keq.Eq) and (Ksub.refl), we
get E `hm Eq(U .TYPE) <: Eq(T1). In either case we have E `hm Eq(U .TYPE) <: K .

By Lemma F.20 (weakening kind to ok kind in the environment), E ,X :Eq(U .TYPE) `hm T :Type. Hence by
(Sok) we have E `hm [X :Eq(U .TYPE),T ] ok.

Cases (mT.expr), (mT.let): Trivial by induction.

Lemma F.22 (weakening kind in the environment) If E0 `hm K <: K ′ and E0,X :K ′,E1 `hm J and J is a type
world judgement right-hand side then E0,X :K ,E1 `hm J .

Proof. By Lemma F.21 (things have to be ok), E0 `hm K ok. By Lemma F.20 (weakening kind to ok kind in the
environment), we get the desired result.

Lemma F.23 (type preservation by guarded expression variable substitution) If E0, x :T ,E `hm J and E0 `hm′ e:T
and E0 `• ok then E0, σE `hm σJ where σ = {x←[e]Thm′}.

Proof. E0 `hm′ T :Type by Lemma F.21 (things have to be ok). By Lemma F.9 (types are ok provided their hashes are)
applied one in each direction, we get E0 `• T :Type. Applying (eT.col) to this and E0 `hm′ e:T yields E0 `• [e]Thm′ :T .
We can now apply Lemma F.14 (type preservation by substitution) to get the desired result.

Lemma F.24 (type equivalence is a congruence) If E `hm T ′ == T ′′ and E ,X :Type `hm T :Type then E `hm

{X←T ′}T == {X←T ′′}T .

Proof. Induct on the structure of T .

Case T = UNIT or T = STRING or T = U .TYPE or T = Y 6= X or T = h1: Then X /∈ fv T (if T = h1, this is be-
cause fv T = ∅ by Lemma E.5 (hashes have to be ok) and Lemma E.9 (free variables of a judgement come
from the environment)). By Lemma F.9 (types are ok provided their hashes are), the hashes of T are ok and
fv T ⊆ dom E ∪ {X }. By Lemma F.9 (types are ok provided their hashes are) in the other direction, since
fv T ⊆ E , we have E `hm T :Type. By (Teq.refl), we get E `hm T == T which is the desired result.

Case T = X : We have E `hm T ′′ == T ′′ as desired.

Case T = T1→T2: By induction, we have E `hm {X←T ′}Ti == {X←T ′′}Ti for i = 1, 2. By (Teq.cong.fun), we
get E `hm {X←T ′}T == {X←T ′′}T as desired.

Case T = T1 ∗ ... ∗ Tj: By induction, we have E `hm {X←T ′}Ti == {X←T ′′}Ti for i = 1, ..., j . By
(Teq.cong.tuple), we get E `hm {X←T ′}T == {X←T ′′}T as desired.
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Lemma F.25 (type substitution in equivalence) If E `hm {X←T0}T == {X←T0}T ′ and E = E0,X :Eq(T0),E1

then E `hm okT == T ′.

Proof. By (TK.var) and (Teq.Eq), we have E `hm X == T0. Let Y be a fresh variable, i.e. Y /∈ dom E . By Lemma
E.6 (environments have to be ok) and (Kok.Type) and (envok.X), we have E ,Y :Type `hm ok. By Lemma F.9 (types
are ok provided their hashes are) applied once in each direction, we get that E ,Y :Type `hm {X←Y }T :Type. Then,
by Lemma F.24 (type equivalence is a congruence), we get E `hm {Y←X }{X←Y }T == {Y←T0}{X←Y }T , i.e.
E `hm T == {X←T0}T .

Similarly, we have E `hm T ′ == {X←T0}T ′. By (Teq.sym), we get E `hm {X←T0}T ′ == T ′.
Finally, by two applications of (Teq.tran), we get E `hm T == T ′ as desired.

Lemma F.26 (reversing subsignaturing judgement) If E `hm [X :K ,T ] <: [X :K ′,T ′] then E `hm K <: K ′ and
E ,X :K `hm T == T ′.

Proof. Induct on the derivation of E `hm [X :K ,T ] <: [X :K ′,T ′].

Case (Ssub.refl): The premise is E `hm [X :K ,T ] ok, which must have been derived by (Sok) from E ,X :K `hm

T :Type. By (Teq.refl), we have E ,X :K `hm T == T . By Lemma E.6 (environments have to be ok), we
have E ,X :K `hm ok. By reversing (envok.X), we get E `hm K ok whence E `hm K <: K by Lemma F.19
(reflexivity of kind equivalence) and (Ksub.refl).

Case (Ssub.tran): The premises are E `hm [X :K ,T ] <: [X :K ′′,T ′′] and E `hm [X :K ′′,T ′′] <: [X :K ′,T ′]. By
induction twice, we have: E `hm K <: K ′′, E ,X :K `hm T == T ′′, E `hm K ′′ <: K ′ and E ,X :K ′′ `hm

T ′′ == T ′. By (Ksub.tran), we have E `hm K <: K ′. By Lemma F.22 (weakening kind in the environment), we
get E ,X :K `hm T == T ′ as desired.

Case (Ssub.struct): The premises are the desired judgements.

Lemma F.27 (reversing module value variable typing judgement) If E `hm U :S then there exist E0, E1, K , T such
that E = E0,U :[X :K ,T ],E1 and E `hm [X :Eq(U .TYPE),T ] <: S .

Proof. Induct on the derivation of E `hm U :S .

Case (US.var): Then there exist E0, E1, K , T such that E = E0,U :[X :K ,T ],E1 and S = [X :K ,T ]. The premise
is E `hm ok. By (US.self) and (TK.mod), we have E `hm U .TYPE:K . By Lemma F.7 (relating type-is-kind
and subkinding), we get E `hm Eq(U .TYPE) <: K . By Lemma F.21 (things have to be ok) and reversing (Sok),
we get E ,X :K `hm T :Type. By Lemma F.9 (types are ok provided their hashes are) applied once in each
direction, given that E ,X :Eq(U .TYPE) `hm ok by Lemma F.21 (things have to be ok) and (envok.X), we get
E ,X :Eq(U .TYPE) `hm T :Type. By (Ssub.struct), we get E `hm [X :Eq(U .TYPE),T ] <: S as desired.

Case (US.sub): There exists S ′ such that the premises are E `hm U :S ′ and E `hm S ′ <: S . By induction,
we have E = E0,U :[X :K ,T ],E1 and E `hm [X :Eq(U .TYPE),T ] <: S ′. By (Ssub.tran) we get E `hm

[X :Eq(U .TYPE),T ] <: S as desired.

Case (US.self): There exist K ′ and T ′ such that S = [Eq(U .TYPE),T ′] and the premise is E `hm U :[X :K ′,T ′].
By induction we have E = E0,U :[X :K ,T ],E1 and E `hm [X :Eq(U .TYPE),T ] <: [X :K ′,T ′]. By Lemma
F.26 (reversing subsignaturing judgement), we have E ,X :Eq(U .TYPE) `hm T == T ′. Given that we also have
E `hm Eq(U .TYPE) <: Eq(U .TYPE) (by Lemma F.21 (things have to be ok), (Teq.refl), (Keq.Eq) and (Ksub.refl)),
by (Ssub.struct), we get E `hm [X :Eq(U .TYPE),T ] <: S as desired.

Lemma F.28 (obtaining module value variable typing judgement) If E0,U :[X :K ,T ],E1 `hm

[X :Eq(U .TYPE),T ] <: S then E0,U :[X :K ,T ],E1 `hm U :S .
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Proof. Write E = E0,U :[X :K ,T ],E1. By Lemma E.6 (environments have to be ok), (US.var) and (US.self), we have
E `hm U :[X :Eq(U .TYPE),T ]. By (US.sub), we get E `hm U :S as desired.

Lemma F.29 (type preservation by module substitution in coloured judgements) Suppose E0,U :[X :K ,T ],E `hm

J and z and Z are fresh and σ = {U .TYPE←Z ,U .term←z}.
If J = U :S ′ for some S ′ then E0,Z :K , z :{X←Z}T , σE `hm [X :Eq(Z ),T ] <: σS ′.
Otherwise E0,Z :K , z :{X←Z}T , σE `hm σJ

Proof. Write S = [X :K ,T ]. Without loss of generality, we assume that X /∈ dom E . We induct on the derivation Π of
E0,U :S ,E `hm J .

Note that the inductive rules that define derivable coloured judgements are all rewriting rules (in other words, there is
no side condition). Most rules have the following properties:

1. There is a distinguished environment metavariable Ê such that the conclusion is a judgement with this metavariable
at the leftmost position and no other.

2. For each premise, one of the following conditions holds:

(a) The premise is a judgement with Ê in the leftmost position, and in no other place. Also the right-hand side of
the premise is not U :S ′ for any S ′.

(b) The premise is ζ̂ /∈ dom Ê for some ζ̂.

(c) The premise is a judgement with an empty environment and does not mention Ê .

Suppose that E0,U :S ,E `hm J was derived by an instance α of such a rule. Without loss of generality, U is not in a
binding position (including the domain of an environment) anywhere in α except as the first binding in an instance of Ê .
We distinguish two possibilities, using 1:

General case: The instance α was obtained by instantiating the metavariable Ê with E0,U :S ,E ′′, where E ′′ is an
environment. Hence E is of the form E ′′,E ′, where E ′ is an environment. Also, in this part of the proof, we assume
that J is not of the form U :S ′, and that the rule is not one of (TK.mod) or (eT.mod) with U in the conclusion.

Since we have a raw term rewriting system, we also get an instance β of the same rule by instantiating Ê by
E0,Z :K , z :{X←Z}T ,E ′′ and other metavariables as in α. Note that U does not appear in any binding position
in β.

Note that σ is a well-sorted raw term substitution on β or any subterm thereof, so applying σ to β yields another
instance ω of the rule. Note that σ(Z :K , z :{X←Z}T ,E ′′) = Z :K , z :{X←Z}T , σE ′′.

Consider the premises in α, depending on which case of condition 2 holds:

Case 2a: The premise is of the form E0,U :S ,E ′′,E ′i `hmi
Ji. Furthermore Ji is not U :S ′ for any S ′, be-

cause we have excluded the rules (TK.mod) and (eT.mod) in the problematic case. By induction, we get
E0,Z :K , z :{X←Z}T , σE ′′, σE ′i `hmi

σJi, which is the corresponding premise in ω.

Case 2b: The premise is of the form ζ ′ /∈ dom (U :S ,E ′′) for some ζ ′. Given that domσE ′′ =
dom E ′′ ⊆ dom (U :S ,E ′′), we have ζ ′ /∈ domσE ′′. Since Z and z are fresh, we have ζ ′ /∈
dom (Z :K , z :{X←Z}T , σE ′′).

Case 2c: The premise is a judgement AJ with an empty environment, so by Lemma E.9 (free variables of a judge-
ment come from the environment) U is not free in AJ. Hence σAJ = AJ. Furthermore the premise does not
include any instantation of Ê , so it is in fact exactly the premise needed in ω.

As all the premises of ω are derivable, its conclusion holds. It reads: E0,Z :K , z :{X←Z}T , σE ′′, σE ′ `hm σJ ,
which is what we set out to prove.

Case Ê is instantiated to a prefix of E0 and J is not U :S ′ for any S ′: Only the following cases of the following rules
are concerned.

Case (envok.U): We have E0,U :S `hm ok, and one of the premises is nil `hm S ok. By reversing (Sok), we
have E0,X :K `hm T :Type. By alpha-conversion, we get E0,Z :K `hm {X←Z}T :Type. By (envok.x),
we have E0,Z :K , z :{X←Z}T `hm ok as desired.
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Case (US.var): Impossible: J would be U :S .

Case (TK.mod) where J = U .TYPE:K ′ for some K ′: Then there exists T ′ such that the premise is E0,U :S ,E `hm

U :[X :K ′,T ′]. By induction, we get E0,Z :K , z :{X←Z}T , σE `hm [X :Eq(Z ),T ] <: σ[X :K ′,T ′]. By
Lemma F.26 (reversing subsignaturing judgement), we get E0,Z :K , z :{X←Z}T , σE `hm Eq(Z ) <: σK ′.
By Lemma E.6 (environments have to be ok), (TK.var) and (TK.sub), we get E0,Z :K , z :{X←Z}T , σE `hm

Z :Type. By (Teq.refl), and (TK.Eq), we get E0,Z :K , z :{X←Z}T , σE `hm Z :Eq(Z ). By (TK.sub), we get
E0,Z :K , z :{X←Z}T , σE `hm Z :σK ′.

Case (eT.mod) where J = U .term:T ′ for some T ′: Then there exists K ′ such that the premises are
E0,U :S ,E `hm U :[X :K ′,T ′] and E0,U :S ,E `hm T ′:Type. By applying induction, we get that
E0,Z :K , z :{X←Z}T , σE `hm [X :Eq(Z ),T ] <: σ[X :K ′,T ′]. By Lemma F.26 (reversing subsignatur-
ing judgement), we have E0,Z :K , z :{X←Z}T , σE ,X :Eq(Z ) `hm T == σT ′.

By Lemma E.6 (environments have to be ok), Lemma E.7 (prefixes of ok environments are ok) and
(TK.var), we have E0,Z :K , z :{X←Z}T , σE `hm Z :K . By Lemma F.21 (things have to be ok), we have
E0,Z :K , z :{X←Z}T , σE `hm K ok. By Lemma F.6 (kinds are smaller than Type) and (TK.sub), we have
E0,Z :K , z :{X←Z}T , σE `hm Z :Type. By (Teq.refl) and (TK.Eq), we have E0,Z :K , z :{X←Z}T , σE `hm

Z :Eq(Z ).

By Lemma F.14 (type preservation by substitution), given Lemma E.19 (computing the pvu of a type world judge-
ment), we get E0,Z :K , z :{X←Z}T , σE `hm {X←Z}T == {X←Z}{U .TYPE←Z ,U .term←z}T ′. Since
E0,U :S ,E `hm T ′:Type, by Lemma E.9 (free variables of a judgement come from the environment), we have
X /∈ fv T ′, so we have E0,Z :K , z :{X←Z}T , σE `hm {X←Z}T == σT ′.

By Lemma E.6 (environments have to be ok) and (eT.var), we have E0,Z :K , z :{X←Z}T , σE `hm z :{X←Z}T .
By (eT.eq), we get E0,Z :K , z :{X←Z}T , σE `hm z :σT ′ as desired.

Case J = U :S ′ for some S ′: We have E0,U :S ,E `hm U :S ′.

Subcase (US.var): We have E0,U :S ,E `hm U :S (thanks to Lemma E.8 (ok environments have no repetition in
the domain)). The premise is E0,U :S ,E `hm ok.

By induction, we have E0,Z :K , z :{X←Z}T , σE `hm ok.

By (TK.var) E0,Z :K , z :{X←Z}T , σE `hm Z :K . By Lemma F.7 (relating type-is-kind and subkinding),
we have E0,Z :K , z :{X←Z}T , σE `hm Eq(Z ) <: K .

By Lemma E.6 (environments have to be ok), Lemma E.7 (prefixes of ok environments are ok), reversing
(envok.U) and Lemma F.21 (things have to be ok), we have nil `hm S ok. By reversing (Sok), we get
X :K `hm T :Type. By Lemma E.6 (environments have to be ok), we have X :K `hm ok. By reversing
(envok.X) and Lemma F.3 (weakening), we have X :K `hm K ok, so by (envok.X), we get E0,Z :K ,X :K `hm

ok. By Lemma F.3 (weakening), we have E0,Z :K ,X :K `hm T :Type.

By Lemma E.7 (prefixes of ok environments are ok), and by (TK.var) and Lemma F.7 (relating type-is-kind
and subkinding) as before, we have E0,Z :K `hm Eq(Z ) <: K . By Lemma F.22 (weakening kind in the
environment), we have E0,Z :K ,X :Eq(Z ) `hm T :Type.

By (TK.var), Lemma F.21 (things have to be ok), Lemma F.6 (kinds are smaller than Type) and
(TK.sub), we have E0,Z :K , z :{X←Z}T , σE `hm Z :Type. Thus, by (Kok.Eq) and (envok.X), we have
E0,Z :K , z :{X←Z}T , σE ,X :Eq(Z ) `hm ok.

By Lemma F.3 (weakening), we have E0,Z :K , z :{X←Z}T , σE ,X :Eq(Z ) `hm T :Type. By (Teq.refl),
we get E0,Z :K , z :{X←Z}T , σE ,X :Eq(Z ) `hm T == T .

By (Ssub.struct), we get E0,Z :K , z :{X←Z}T , σE `hm [X :Eq(Z ),T ] <: [X :K ,T ].

By Lemma E.9 (free variables of a judgement come from the environment), U /∈ fv S . So we have
E0,Z :K , z :{X←Z}T , σE `hm [X :Eq(Z ),T ] <: σS as desired.

Subcase (US.sub): We have E0,U :S ,E `hm U :S ′, and there exists S ′′ such that the premises are
E0,U :S ,E `hm U :S ′′ and E0,U :S ,E `hm S ′′ <: S ′. By induction over each premise, we get
E0,Z :K , z :{X←Z}T , σE `hm [X :Eq(Z ),T ] <: σS ′′ and E0,Z :K , z :{X←Z}T , σE `hm σS ′′ <: σS ′.
By (Ssub.tran), we get E0,Z :K , z :{X←Z}T , σE `hm [X :Eq(Z ),T ] <: σS ′ as desired.
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Subcase (US.self): We have E0,U :S ,E `hm U :[X :Eq(U .TYPE),T ′]. There exists K ′ such that the
premise is E0,U :S ,E `hm U :[X :K ′,T ′]. By induction, we get E0,Z :K , z :{X←Z}T , σE `hm

[X :Eq(Z ),T ] <: σ[X :K ′,T ′]. By Lemma F.26 (reversing subsignaturing judgement), we get
E0,Z :K , z :{X←Z}T , σE ,X :Eq(Z ) `hm T == σT ′.
By Lemma E.6 (environments have to be ok) and (TK.var), we have E0,Z :K , z :{X←Z}T , σE `hm

Z :K . By Lemma F.21 (things have to be ok) and Lemma F.6 (kinds are smaller than Type), we
have E0,Z :K , z :{X←Z}T , σE `hm Z :Type. By (Teq.refl), (Keq.Eq) and (Ksub.refl), we have
E0,Z :K , z :{X←Z}T , σE `hm Eq(Z ) <: Eq(Z ).
By (Ssub.struct), we get E0,Z :K , z :{X←Z}T , σE `hm [X :Eq(Z ),T ] <: [X :Eq(Z ), σT ′] as desired.

Every remaining rule is inapplicable because the environment in the conclusion must be empty.

Lemma F.30 (type world judgements do not contain free expression variables) If E `hm J is a derivable type world
judgement then fse E ∪ fse J does not contain any free expression substitutable entity.

Proof. Given Lemma F.21 (things have to be ok), every free substitutable entity in J is free in a type, kind or signature
that is correct in E under hm . Thus, by Lemma E.21 (types do not contain free expression variables), no free substitutable
entity in J is an expression substitutable entity. Also, by Lemma E.6 (environments have to be ok), E `hm ok, so by
Lemma E.22 (environments do not contain free expression variables), E does not have any free substitutable entity.

Lemma F.31 (type preservation by module substitution in coloured judgements for type world judgements) Sup-
pose E0,U :[X :K ,T ],E `hm J is a derivable type world judgement and J is not of the form U :S ′ for any S ′ and Z is
fresh and σ = {U .TYPE←Z}. Then E0,Z :K , σE `hm σJ .

Proof. By Lemma F.29 (type preservation by module substitution in coloured judgements), for Z and z fresh, we have
E0,Z :K , z :{X←Z}T ,E ′ `hm J ′ where E ′ = {U .TYPE←Z ,U .term←z}E and J ′ = {U .TYPE←Z ,U .term←z}J .
Given the syntax of environments and type world judgements, z may appear free in E ′ or J ′ only inside a hash. Given
Lemma E.5 (hashes have to be ok), any hash in E ′ or J ′ is ok, and by Lemma E.9 (free variables of a judgement come
from the environment), none of these hashes has a free occurence of z . Therefore z /∈ fv E ′ and z /∈ fv J ′. Thus
we can write the judgement in question as E0,Z :K , z :{X←Z}T , {U .TYPE←Z}E `hm {U .TYPE←Z}J . Given that
z /∈ fv {U .TYPE←Z}E ∪ fv {U .TYPE←Z}J , by Lemma F.15 (strengthening), we get E0,Z :K , {U .TYPE←Z}E `hm

{U .TYPE←Z}J .

Lemma F.32 (simplified module and type equality substitution for type world judgements) Suppose
U :[X :Eq(T ),T ′],E `hm J and χ = U .TYPE, or X :Eq(T ),E `hm J and χ = X , where both are type world
judgements and J is not of the form U ′:S ′. Then {χ←T}E `hm {χ←T}J .

Proof. We consider each case.

U :[X :Eq(T ),T ′],E `hm J : By Lemma F.31 (type preservation by module substitution in coloured judgements for type
world judgements), this case reduces to the other case.

X :Eq(T ),E `hm J by some proof Π: By Lemma E.6 (environments have to be ok), X :Eq(T ),E `hm ok. By
Lemma E.7 (prefixes of ok environments are ok), X :Eq(T ) `hm ok. By (TK.var) and (Teq.Eq), nil `hm

T :Eq(T ). By Lemma E.19 (computing the pvu of a type world judgement) applied to Π, we have hm 4
min (pvuX (Π)). By Lemma F.14 (type preservation by substitution), {X←T}E `hm {X←T}J , as desired.

Lemma F.33 (type preservation by fully carried out module substitution)
If U :[X :Type,T1],E `• J and J is not U :S for any S and nil `• [T0, v

•]:[X :Type,T1]
then σE `• σJ , where σ = {U .TYPE←h,U .term←[v •]

{X←h}T1

h }, where h = hash(N , [T0, v
•]:[X :Type,T1]), for

any N .

Proof. From nil `• [T0, v
•]:[X :Type,T1], Lemma F.8 (components of modules are ok), there exists T2 such that

X :Eq(T0) `• T2 == T1 and X :Type `• T1:Type and nil `• T0:Type and nil `• v•:T2. Also, by (hmok.hash),
we get ` h ok.

From nil `• v•:T2, by Lemma F.2 (colour stripping judgements), we get nil `h v•:T2. By Lemma E.6 (environments
have to be ok), X :Eq(T0) `• ok, and note that any proof of this finishes with (envok.X) and therefore has an empty pvu
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for X . By Lemma F.2 (colour stripping judgements), we get X :Eq(T0) `h ok, also by a proof with an empty pvu for X .
From nil `h v•:T2, by Lemma F.3 (weakening), we get X :Eq(T0) `h v•:T2 by a proof Π such that pvuX (Π) = ∅.
From X :Eq(T0) `• T2 == T1, by Lemma F.2 (colour stripping judgements), we get X :Eq(T0) `h T2 == T1. By
Lemma E.19 (computing the pvu of a type world judgement), any proof Π′ of this judgement is such that pvuX (Π′) ⊆
{h}. We can combine Π and Π′ by (eT.eq) to get a proof Π′′ of X :Eq(T0) `h v•:T1, such that h 4 min (pvuX (Π′′)).

By (Teq.hash) and (TK.Eq), we have nil `h h:Eq(T0). By Lemma F.14 (type preservation by substitution), we get
nil `h v•:{X←h}T1.

Now, by applying Lemma F.29 (type preservation by module substitution in coloured judgements) to
U :[X :Type,T1],E `• J and performing alpha-conversion, we have X :Type, x :T1, σUE `• σUJ , where σU =
{U .TYPE←X ,U .term←x}.

From the latter judgement and nil `• h:Type, apply Lemma F.14 (type preservation by substitution). We get
x :{X←h}T1, {X←h}σUE `• {X←h}σUJ .

Finally, we can apply Lemma F.23 (type preservation by guarded expression variable substitution) to the
latter judgement combined with nil `h v•:{X←h}T1. We obtain {x←[v •]

{X←h}T1

h }{X←h}σUE `•
{x←[v•]

{X←h}T1

h }{X←h}σUJ , i.e. σE `• σJ , as desired.

G Type decomposition and type preservation for reduction

Lemma G.1 (shortening typing proof) If E `hm e:T then there exists T ′ such that E `hm e:T ′ by a subproof that
does not have (eT.eq) as the last rule used and E `hm T ′ == T .

Proof. Induct on the structure of the derivation Π of E `hm e:T .
If the proof E `hm e:T does not have an instance of (eT.eq) as the last step, then we have the desired result, given

that E `hm T :Type by Lemma F.21 (things have to be ok), whereupon we can apply (Teq.refl).
Otherwise there is T ′ such that E `hm e:T is derived from E `hm e:T ′ and E `hm T ′ == T . By applying

induction to the (proper) subproof Π′ leading to E `hm e:T ′, we get that there is T ′′ such that E `hm e:T ′′ by
a subproof of Π′ that does not have (eT.eq) as the last step used, and E `hm T ′′ == T ′. By (Teq.tran), we have
E `hm T ′′ == T , which completes our proof obligation.

Lemma G.2 (reversing typing proof through a context) If nil `hm′ CC hm′
hm .e:T ′ then there exists T such that

nil `hm e:T . If furthermore nil `hm e1:T then nil `hm′ CC hm′
hm .e1:T ′.

Proof. Induct on the structure of CC hm′
hm . By Lemma G.1 (shortening typing proof), there exists T0 such that nil `hm′

T0 == T ′, and nil `hm′ CC hm′
hm .e:T0 by a proof Π that does not end with (eT.eq).

Case CC hm′
hm = : Trivial.

Case CC hm′
hm = C hm′

hm1
.CC hm1

hm : Then Π ends with an application of (eT.tuple), (eT.proj), (eT.ap), (eT.mar), (eT.marred),

(eT.unmar), (eT.send) or (eT.col) (depending on C hm′
hm1

). In any case, one premise is nil `hm1
CC hm1

hm .e:T1 for
some T1. By induction we get nil `hm e:T for some T .

If furthermore nil `hm e1:T , then we have nil `hm1 CC hm1

hm .e1:T1 by induction. Each of the (eT.*) rules
considered above is linear with respect to the expression metavariable instantiated by CC hm1

hm .e, with exactly one
occurence above the line and one below. Instantiating this metavariable by CC hm1

hm .e1 yields another instance
of the rule. By replacing in Π the derivation leading to nil `hm1

CC hm1

hm .e:T1 by that leading to nil `hm1

CC hm1

hm .e1:T1, we get a derivation of nil `hm′ CC hm′
hm .e1:T0. By (eT.eq), since nil `hm′ T0 == T ′, we have

nil `hm′ CC hm′
hm .e1:T ′ as desired.

Lemma G.3 (transitivity of kind equivalence) If E `hm K == K ′ and E `hm K ′ == K ′′ then E `hm K == K ′′.

Proof. Both hypotheses have to be derived by the same rule.

Case (Keq.Type): Trivial.

Case (Keq.Eq): Trivial by (Teq.tran) and (Keq.Eq).
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Lemma G.4 (discreteness of subkinding below Type) If E `hm K <: Eq(T ′) then E `hm K == Eq(T ′) by a
subproof.

Proof. Induct on the derivation of E `hm K <: Eq(T ′). If the last rule in the proof is (Ksub.tran), then the result holds
by induction and Lemma G.3 (transitivity of kind equivalence). Otherwise the last rule is (Ksub.refl) and the premise is
the desired result.

Definition G.5 (bare bones environment) A bare bones environment is one that contains only bindings of the form
X :Type.

Definition G.6 (purely abstract environment) A purely abstract environment is one that contains only bindings of the
form U :[X :Type,T ] or X :Type.

Lemma G.7 (signature rewriting in a type world judgement) If E0,U :[X :K ,T ],E1 `hm J is a derivable type world
judgement and J is not of the form U :S ′ for any S ′ and E0 `hm [X :K ,T ′] ok then E0,U :[X :K ,T ′],E1 `hm J .

Proof. By (envok.U), E0,U
′:[X :K ,T ′] `hm ok where U ′ is fresh. By Lemma F.5 (combined weakening),

E0,U
′:[X :K ,T ′],U :[X :K ,T ],E1 `hm J . By Lemma F.31 (type preservation by module substitution in coloured

judgements for type world judgements), for Z fresh, we have E0,U
′:[X :K ,T ′],Z :K , {U .TYPE←Z}E1 `hm

{U .TYPE←Z}J .
By (US.var) and (TK.mod), from E0,U

′:[X :K ,T ′] `hm ok, we get E0,U
′:[X :K ,T ′] `hm U ′.TYPE:K . By

Lemma E.19 (computing the pvu of a type world judgement) and Lemma F.14 (type preservation by substitution), we
get E0,U

′:[X :K ,T ′], {Z←U ′.TYPE}{U .TYPE←Z}E1 `hm {Z←U ′.TYPE}{U .TYPE←Z}J . Since Z is fresh, we
have E0,U

′:[X :K ,T ′], {U .TYPE←U ′.TYPE}E1 `hm {U .TYPE←U ′.TYPE}J .
By Lemma F.30 (type world judgements do not contain free expression variables), U .term /∈ fse E1 ∪ fse J .

Furthermore, J is not of the form U :S ′ for any S ′, so U only appears in J as U .TYPE. Hence we have
E0,U

′:[X :K ,T ′], {U←U ′}E1 `hm {U←U ′}J . By alpha-conversion, we get E0,U :[X :K ,T ′],E1 `hm J as desired.

Lemma G.8 (type substitution in a purely abstract environment) If E0,E1 `hm J is a derivable type world judgement
and J is not of the form U :S for any U ,S and E0,E2 `hm ok and E1 and E2 are purely abstract and E1 and E2 bind the
same variables in the same order then E0,E2 `hm J .

Proof. Induct on the length of E1.

Case E1 = nil: Trivial.

Case E1 = X :Type,E ′1 and E2 = X :Type,E ′2: Trivial by induction (incorporating X :Type at the tail of E0).

Case E1 = U :[X :Type,T1],E ′1 and E2 = U :[X :Type,T2],E ′2: By Lemma E.6 (environments have to be ok) and
Lemma E.7 (prefixes of ok environments are ok) and reversing (envok.U), we get E0 `hm [X :Type,T2] ok. Then,
by Lemma G.7 (signature rewriting in a type world judgement), we have E0,U :[X :Type,T2],E ′1 `hm J . By
induction (incorporating U :[X :Type,T2] at the tail of E0), we get E0,U :[X :Type,T2],E ′2 `hm J as desired.

Lemma G.9 (equality kinding in an uncontributing environment) If E `hm T :Eq(T ′) and E is a bare bones
environment then E `hm T == T ′ by a strictly smaller proof.

Note that if E was allowed to contain module bindings, we might not be able to obtain a strictly smaller proof. For
example, take T = T ′ = U .TYPE, with a proof whose last steps are (US.var), (US.self) and lastly (TK.mod). To prove
that E `hm U .TYPE == U .TYPE, we can’t do any better than starting at E `hm ok and using (US.var), (TK.mod) and
(Teq.refl). This gives an equal size proof, not a strictly smaller proof.

Proof. Induct on the structure of the proof.
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Case (TK.sub): The premises are nil `hm T :K and nil `hm K <: Eq(T ′). By Lemma G.4 (discreteness of sub-
kinding below Type), nil `hm K == Eq(T ′) by a subproof, whence by reversing (Keq.Eq) there exists T ′′ such
that K = Eq(T ′′) and nil `hm T ′′ == T ′, the latter being derived by a proper subproof of the original proof.
By induction on nil `hm T :Eq(T ′′), we get nil `hm T == T ′′ by a smaller proof. By (Teq.tran), we get
nil `hm T == T ′, by a proof that is at least one step smaller than the original proof.

Case (TK.Eq): Trivial.

Case (TK.var): Impossible since E only contains type variable bindings with the kind Type.

Case (TK.mod): Impossible by Lemma E.9 (free variables of a judgement come from the environment), since E contains
no module variable binding.

Lemma G.10 (equivalence of small types in an uncontributing environment) If E `h T0 == T1 and E is a bare
bones environment and h = hash(N , [T , v ]:S ) and T is not a subterm of T0 or T is not a subterm of T1 then T0 = T1.

Proof. Induct on the derivation of E `h T0 == T1.

Case (Teq.Eq): Then by Lemma G.9 (equality kinding in an uncontributing environment), E `h T0 == T1 by a strictly
smaller proof, so we get the desired result by induction.

Case (Teq.hash): We have h = T0 and T = T1. T is a subterm of h , so T is a subterm of both T0 and T1, which is
impossible.

Case (Teq.refl): Trivial.

Case (Teq.sym): Trivial by induction.

Case (Teq.tran): There exists T2 such that the premises are E `h T0 == T2 and E `h T2 == T1. Apply induction to
the premise containing Ti, Ti being the one of T0 and T1 that does not contain T : we get T2 = Ti. Then apply
induction to the other premise: we get T1−i = T2, hence T0 = T1 as desired.

Case (Teq.cong.fun): Then there are T ′0, T ′′0 , T ′1 and T ′′1 such that Ti = T ′i→T ′′i for i = 0, 1. The premises are
E `h T ′0 == T ′1 and E `h T ′′0 == T ′′1 . Suppose that T is not a subterm of Ti (i = 0 or i = 1). Then T is not a
subterm of T ′i nor of T ′′i , so by induction we get that T ′0 = T ′1 and T ′′0 = T ′′1 , hence T0 = T1 as desired.

Case (Teq.cong.tuple): Similar to the (Teq.cong.fun) case.

Lemma G.11 (type decomposition) Let E be a purely abstract environment.

1. If E `hm T0 == TC (T1, ...,Tj) or E `hm TC (T1, ...,Tj) == T0 then there exist T ′1, ...,T
′
j such that

E `hm T ′i == Ti for 1 6 i 6 j and either T0 = TC (T ′1, ...,T
′
j) or there exist v and T ′′ and N such that

T0 = hm = hash(N , [TC (T ′1, ...,T
′
j), v ]:[X :Type,T ′′]).

2. If E `hm T0 == h1 or E `hm h1 == T0 then one of the following cases holds:

(a) There are T ′ and v and N such that hm = h1 = hash(N , [T0, v ]:[X :Type,T ′]).

(b) There are T ′ and v and N such that T0 = hm = hash(N , [h1, v ]:[X :Type,T ′]).

(c) T0 = h1.

Proof. Let us first prove the case when E is a bare bones environment. We induct on the size of the derivation of the
hypothesis. We write the hypothesis as E `hm T0 == T or E `hm T == T0.

Consider the last step of the proof of the hypothesis.

Case (Teq.Eq): By Lemma G.9 (equality kinding in an uncontributing environment), E `hm T0 == T (or the converse)
by a strictly smaller proof, so we can apply induction.
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Case (Teq.hash): One of the following cases holds:

Case E `hm T0 == TC (T1, ...,Tj) and T0 = hm: We almost have the second alternative of the conclusion
of the lemma (with T ′i = Ti); all that remains to be proved is E `hm Ti == Ti. Write hm =
hash(N , [TC (T1, ...,Tj), v ]:S ).

The premise of (Teq.hash) is E `hm ok. By Lemma E.4 (colours have to be ok) and reversing (hmok.hash)

and Lemma F.8 (components of modules are ok), we get E `• TC (T1, ...,Tj):Type. By Lemma F.9 (types
are ok provided their hashes are) applied to TC (T1, ...,Tj) then to each Ti, we get that E `• Ti:Type,
whence E `hm Ti == Ti by Lemma F.2 (colour stripping judgements) and (Teq.refl). This completes the
proof of this subcase.

Case E `hm TC (T1, ...,Tj) == T0 and TC (T1, ...,Tj) = hm: Contradictory.

Case E `hm T0 == h1 and T0 = hm: Also hm = hash(N , [h1, v ]:S ) for some v and S and N . We have case
2b of the conclusion of the lemma.

Case E `hm h1 == T0 and h1 = hm: Also hm = hash(N , [T0, v ]:S ) for some v and S and N . We have case
2a of the conclusion of the lemma.

Case (Teq.refl): Then T = T0. This completes the proof for statements 2 and 1 if j = 0. If j 6= 0, take T ′i = Ti.
By Lemma F.21 (things have to be ok), E `hm T0:Type, i.e. E `hm TC (T ′1, ...,T

′
j):Type. By Lemma F.9

(types are ok provided their hashes are) applied to T0 and then to each T ′i , we get E `hm T ′i :Type, whence
E `hm T ′i == T ′i by (Teq.refl).

Case (Teq.sym): Trivial by induction.

Case (Teq.tran): There exists T ′′ such that the premises are E `hm T0 == T ′′ and E `hm T ′′ == T , or they are
E `hm T ′′ == T0 and E `hm T == T ′′. We call Π′ the subproof leading to the premise referring to T0.

We apply induction to the subproof leading to E `hm T ′′ == T or its converse. One of the following cases holds:

Case same constructor in 1: There exist T ′′1 , ...,T
′′
j such that E `hm T ′′i == Ti (or the converse) for 1 6 i 6 j

and T ′′ = TC (T ′′1 , ...,T
′′
j ). Apply induction to Π′. There exist T ′1, ...,T

′
j such that E `hm T ′′i == T ′i (or

the converse) for 1 6 i 6 j ; by (Teq.tran), we get E `hm T ′i == Ti (or the converse) for 1 6 i 6 j ; and
one of the cases of the lemma holds.

Case use of hash in 1: There exist T ′1, ...,T
′
j , v , T ′′′ and N such that E `hm T ′i == Ti (or the converse) for

1 6 i 6 j and T ′′ = hm = hash(N , [TC (T ′1, ...,T
′
j), v ]:[X :Type,T ′′′]). We have E `hm T0 == hm

(or the converse). By induction, one of the following cases holds:

Case hm = hash(N , [T0, v
′]:[X :Type,T ′′′′]): Then hash(N , [TC (T ′1, ...,T

′
j), v ]:[X :Type,T ′′′]) =

hm = hash(N , [T0, v
′]:[X :Type,T ′′′′]), therefore T0 = TC (T ′1, ...,T

′
j), and we have the desired

result.

Case T0 = hm: Then we have the desired result.

Case use of hash (2a) in 2: Then hm = h1 and they are implemented by T ′′. Write hm = h1 =
hash(N1, [T

′′, v ]:[X :Type,T ′′′]). One of the following cases holds, We do case analysis on the structure
of T ′′.

Case T ′′ = h2 for some h2: Apply induction to Π′. One of the following cases holds:

Case hm = h2 = hash(N2, [T0, v
′]:[X :Type, ]): Since hm = hash(N1, [T

′′, v ]:[X :Type,T ′′′]),
we have T0 = T ′′ = h2 which is impossible.

Case T0 = hm = hash(N2, [h2, v
′]:[X :Type, ]): We have T0 = h1, i.e. we have alternative 2c of the

conclusion of the lemma.

Case T0 = h2: Then T ′′ = T0, and we have alternative 2a of the conclusion of the lemma.

Case T ′′ is of the form TC ′′(T ′′1 , ...,T
′′

j ′′): Apply induction to Π′ (using part 1 of the lemma). There exist
T ′1, ...,T

′
j ′′ such that E `hm T ′i == T ′′i for 1 6 i 6 j ′′ and one of the following cases holds:

Case T0 = TC ′′(T ′1, ...,T
′
j ′′): For any i , T ′′i is a proper subterm of T ′′ which is a subterm of hm ,

therefore hm is not a subterm of T ′′i , hence by Lemma G.10 (equivalence of small types in an
uncontributing environment) T ′i = T ′′i . Thus T0 = T ′′, and we have the first alternative of the
conclusion of the lemma.
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Case use of hash: Then T0 = hm = h1 and we have the second alternative of the conclusion of the
lemma.

Case T ′′ = hm = hash(N , [h1, v ]:S ) (2b) in 2: Apply induction to Π′. One of the following cases holds:

Case hm = hash(N , [T0, v
′]:S ′) (2a): We have T0 = h1, i.e. alternative 2c of the conclusion of the lemma.

Case T0 = hm = hash(N , [hm, v ′]:S ′) (2b): Impossible.

Case T0 = hm (2c): Then T0 = hm = hash(N , [h1, v ]:S ), i.e. we have alternative 2b of the lemma.

Case T ′′ = h1 (2c) in 2: Apply induction to Π′.

Case (Teq.cong.fun): We treat the case E `hm T0 == T , the converse is similar. We must be in part 1 of the lemma,
with TC = 1→ 2, and there exist T ′0 and T ′′0 such that the conclusion of the rule is E `hm T ′1→T ′2 == T1→T2

and the premises are E `hm T ′i == Ti for i = 1, 2. This proves the first alternative of the conclusion of the
lemma.

Case (Teq.cong.tuple): Similar to the (Teq.cong.fun) case.

We now address the possibility of E containing module bindings. We give the proof for the case when E `hm T0 ==
T ; a symmetric proof applies to the symmetric case. We induct on the number of module bindings in E . The base case
(no module binding) has already been proved. Consider now the case E = E0,U :[X :Type,T ′],E1 where E1 contains
only type variable bindings.

Let Z and z be fresh variables. By applying Lemma F.29 (type preservation by module substitution in coloured judge-
ments), given that U is not free in E1, we get E0,Z :Type, z :{X←Z}T ′,E1 `hm {U .TYPE←Z ,U .term←z}T0 ==
{U .TYPE←Z ,U .term←z}T . By Lemma E.21 (types do not contain free expression variables), z /∈ fv T0∪fv T . Hence,
by Lemma F.15 (strengthening), E0,Z :Type,E1 `hm {U .TYPE←Z}T0 == {U .TYPE←Z}T . Apply induction to that
last judgement.

Case proving 1: We get T ′1, ...,T
′
j such that E0,Z :Type,E1 `hm T ′i == {U .TYPE←Z}Ti for all i . By

Lemma E.6 (environments have to be ok) and Lemma E.7 (prefixes of ok environments are ok), we have
E0,U :[X :Type,T ′] `hm ok. By Lemma F.5 (combined weakening), given that U /∈ fv E0 ∪ fv E1 by
Lemma E.8 (ok environments have no repetition in the domain), we have E0,U :[X :Type,T ′],Z :Type,E1 `hm

T ′i == Ti. Let Π be a proof of this last judgement. By Lemma E.19 (computing the pvu of a type world
judgement), we have hm 4 min

(
pvuζ (Π)

)
. Since E0,U :[X :Type,T ′] `hm ok, by (TK.mod), we have

E0,U :[X :Type,T ′] `hm U .TYPE:Type. Then by Lemma F.14 (type preservation by substitution), we have
E `hm {Z←U .TYPE}T ′i == Ti (note that {Z←U .TYPE}{U .TYPE←Z}Ti = Ti since Z /∈ fv Ti).

Furthermore, by the same induction, we get one of the following properties: {Z←U .TYPE}T0 = TC (T ′1, ...,T
′
j)

or {Z←U .TYPE}T0 = hm = hash(N , [TC (T ′1, ...,T
′
j), v ]:[X :Type,T ′′]). Since Z was chosen fresh,

{U .TYPE←Z} is injective. Therefore we have T0 = TC ({Z←U .TYPE}T ′1, ..., {Z←U .TYPE}T ′j) or T0 =
hm = hash(N , [TC (T ′1, ...,T

′
j), v ]:[X :Type,T ′′]) (using Lemma E.4 (colours have to be ok) and Lemma E.9

(free variables of a judgement come from the environment)).

Case proving 2: Here T = h1. One of the following properties holds:
hm = {U .TYPE←Z}h1 = hash(N , [{U .TYPE←Z}T0, v ]:[X :Type,T ′])

or {U .TYPE←Z}T0 = hm = hash(N , [{U .TYPE←Z}h1, v ]:[X :Type,T ′])
or {U .TYPE←Z}T0 = {U .TYPE←Z}h1.
In any case, given Lemma E.5 (hashes have to be ok) and Lemma E.9 (free variables of a judgement come from
the environment), fv h1 = ∅ and fv T0 = ∅ (since fv {U .TYPE←Z}T0 = ∅). So in the properties above,
{U .TYPE←Z} is the identity, and we have the desired disjunction.

Lemma G.12 (decomposition of type equivalence) If nil `hm TC (T1, ...,Tj) == TC (T1, ...,T
′
j) then nil `hm

Ti == T ′i for 1 6 i 6 j .

Proof. Trivial consequence of part 1 of Lemma G.11 (type decomposition).

Lemma G.13 (structural dependence of values on their types) Suppose nil `hm vhm :T0 and nil `hm T0 ==
TC (T1, ...,Tj). Consider the possible forms of TC .
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1. If TC = 1→ 2, i.e. we have nil `hm T0 == T1→T2, then there exists e and T ′1 such that vhm = λx :T ′1.e and
nil `hm T ′1 == T1.

2. If TC = 1 ∗ ... ∗ j , i.e. we have nil `hm T0 == T1 ∗ ... ∗ Tj then there exists vhm
1 , ..., vhm

j such that
vhm = (vhm

1 , ..., vhm
j ).

3. If TC = (), i.e. we have nil `hm T0 == UNIT then vhm = ().

4. If TC = STRING, i.e. we have nil `hm T0 == STRING then there exist v • and T such that nil `• T :Type and
nil `• v•:T and vhm = marshalled (v •:T ).

Proof. Induct on the size of the derivation of nil `hm vhm :T0.
Consider the last step of the derivation of nil `hm vhm :T0. The rules not mentionned here cannot have been used

because vhm is a value.

Case (eT.eq): There is T ′0 such that nil `hm T ′0 == T0, and nil `hm vhm :T ′0 by a smaller proof compared with
nil `hm vhm :T0. Using (Teq.tran), we get nil `hm T ′0 == TC (T1, ...,Tj). By induction we get the desired
result.

Case (eT.fun): There exist e, T ′1 and T ′2 such that vhm = λx :T ′1.e and T0 = T ′1→T ′2. By Lemma G.11 (type decom-
position), we are proving case 1, and we have nil `hm T1 == T ′1.

Case (eT.unit): Then vhm = () and T0 = UNIT. By Lemma G.11 (type decomposition), we are proving case 3.

Case (eT.tuple): There exist T ′1, ...,T
′
j , vhm

1 , ..., vhm
j such that vhm = (vhm

1 , ..., vhm
j ) and T0 = T ′1 ∗ ... ∗ T ′2. By

Lemma G.11 (type decomposition), we are proving case 2.

Case (eT.marred): There exist v • and T such that vhm = (marshalled v •:T ) and T0 = STRING. By Lemma G.11
(type decomposition), we are proving case 4. One premise of (eT.marred) is nil `• v•:T . By Lemma F.21 (things
have to be ok), we have nil `• T :Type.

Case (eT.col): Given that v hm is a value that is a bracket expression, T0 can be but a hash h0. By Lemma G.11 (type
decomposition), this can only happen if there are T ′1, ...,T

′
j and vhm such that hm = h and T0 = h , with h =

hash(N , [TC (T ′1, ...,T
′
j), v

hm ]:[X :Type,X ]). However T0 = hm is impossible as per the definition of values.

Lemma G.14 (triviality of type equivalence in a trivial environment) If nil `• T == T ′ then T = T ′.

Proof. Induct on the structure of T .

Case T is of the form TC (T1, ...,Tj): By Lemma G.11 (type decomposition) and the trivial colour of the hypothesis,
there exist T ′1, ...,T

′
j such that nil `• Ti == T ′i for 1 6 i 6 j and T ′ = TC (T ′1, ...,T

′
j). (We’re possibly making

use of (Teq.sym) here.) By induction on nil `• Ti == T ′i for 1 6 i 6 j we have Ti = T ′i hence T = T ′ as
desired.

Case T is of the form h: By Lemma G.11 (type decomposition) and the trivial colour of the hypothesis, T = T ′.

Case T is of the form U .TYPE or X : Impossible by Lemma E.9 (free variables of a judgement come from the environ-
ment)

Theorem G.15 (type preservation for expression reduction) If nil `hm e:T and e −→hm e ′ then nil `hm e ′:T .

Proof. Note that by Lemma G.1 (shortening typing proof), there exists T ′ such that nil `hm T ′ == T and nil `hm

e:T ′ by a proof that does not end in (eT.eq). In the discussion below, we will often make use of the fact that apart
from (eT.eq), typing of expressions is syntax-directed. Also, note that by Lemma F.21 (things have to be ok), we have
nil `hm T ′:Type, and by Lemma E.6 (environments have to be ok), we have nil `hm ok.

We induct on the derivation of the reduction.
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Case (ered.proj): There exist v hm
1 , ..., vhm

j and i such that e = proji (vhm
1 , ..., vhm

j ). Then nil `hm e:T ′ must have
been derived by (eT.proj), and the i th premise is nil `hm vhm

i :T ′, i.e. nil `hm e ′:T ′.

Case (ered.ap): There exist e1, vhm
2 and T2 such that e = (λx :T2.e1) vhm

2 and e ′ = {x←[vhm
2 ]T2

hm}e1. nil `hm e:T ′

must have been derived by (eT.ap), with the premises nil `hm vhm
2 :T2 and nil `hm (λx :T2.e1):T2→T ′.

By Lemma G.1 (shortening typing proof), there exists T ′′ such that nil `hm (λx :T2.e1):T ′′ by a proof that does
not end in (eT.eq), and nil `hm T ′′ == T2→T ′. By reversing (eT.fun), there exists T1 such that T ′′ = T2→T1

and x :T2 `hm e1:T1. By Lemma G.12 (decomposition of type equivalence), we have nil `hm T1 == T ′.

By Lemma F.23 (type preservation by guarded expression variable substitution), we have nil `hm

{x←[vhm
2 ]T2

hm}e1:T1. By (eT.eq), we get nil `hm e ′:T ′.

Case (ered.mar): There exist v hm
1 and T1 such that e = mar (vhm

1 :T1), and e ′ = marshalled ([vhm
1 ]T1

hm :T1). nil `hm

e:T ′ must have been derived by (eT.mar), with the premise nil `hm vhm
1 :T1; also T ′ = STRING.

By Lemma F.21 (things have to be ok) and Lemma F.10 (colour change preserves type okedness), nil `• T1:Type.
By (eT.col), we get nil `• [vhm

1 ]T1

hm :T1. By Lemma E.6 (environments have to be ok), we have nil `hm ok. By
(eT.marred), we get nil `hm e ′:STRING.

Case (ered.unmar): There exist v hm
1 , T1 and T2 such that e = unmar (marshalled (v hm

1 :T1)):T2. By reversing
(eT.unmar), we get nil `hm T2:Type and nil `hm marshalled (vhm

1 :T1):STRING; also T ′ = T2. There are
two possible outcomes.

Case e ′ is UnmarFailureT ′ : By Lemma F.21 (things have to be ok), nil `hm T ′:Type, hence nil `hm

UnmarFailureT ′ :T ′ by (eT.Undynfailure).

Case e ′ is the value vhm
1 and T1 = T ′: By Lemma G.1 (shortening typing proof) and reversing (eT.marred), we

get nil `• vhm
1 :T1. By Lemma F.2 (colour stripping judgements), this implies that nil `hm vhm

1 :T1, i.e.
nil `hm vhm

1 :T ′.

Cases (ered.col.*): There exist hm ′ and e0 such that e = [e0]T
′

hm′ . By reversing (eT.col), we get nil `hm′ e0:T ′. Note
than ` hm ok and ` hm ′ ok by Lemma E.4 (colours have to be ok).

Case (ered.col.unit): Then T ′ = UNIT and e0 = () and e ′ = (). By (eT.unit), nil `hm e ′:UNIT.

Case (ered.col.tuple): Then there exist T1, ...,Tj , e1, ..., ej such that T ′ = T1 ∗ ... ∗ Tj and e0 = (e1, ..., ej)

and e ′ = ([e1]T1

hm′ , ..., [ej ]
Tj
hm′). Hence T ′ = T . By Lemma G.1 (shortening typing proof) and reversing

(eT.tuple), there exist T ′1, ...,T
′
j such that nil `hm′ T ′1 ∗ ... ∗ T ′j == T ′ and nil `hm′ ei:T

′
i for 1 6 i 6 j .

By Lemma G.12 (decomposition of type equivalence), we have nil `hm′ T ′i == Ti for every i . Hence,
by applying (eT.eq) j times, we get nil `hm′ ei:Ti for every i . By Lemma F.9 (types are ok provided their
hashes are) applied to T ′ then to each Ti, we get nil `hm Ti:Type for every i , whence by (eT.col) and
(eT.tuple): nil `hm e ′:T ′.

Case (ered.col.fun): Then there exist T0, T1, T2 and e1 such that T ′ = T2→T1 and e0 = λx :T0.e1 and e ′ =
λx :T2.[{x←[x ]T2

hm}e1]T1

hm′ . By Lemma G.1 (shortening typing proof) and reversing (eT.fun), there exists
T3 such that x :T0 `hm′ e1:T3 and nil `hm′ T0→T3 == T ′. By Lemma G.12 (decomposition of type
equivalence), we have nil `hm′ T0 == T2 (possibly using (Teq.sym)) and nil `hm′ T3 == T1.
By Lemma F.21 (things have to be ok), nil `hm′ T2:Type. By Lemma F.10 (colour change preserves type
okedness), we also have nil `• T2:Type and nil `hm T2:Type. By (envok.x), we get y :T2 `hm ok and
y :T2 `• ok and y :T2 `hm ok. By (eT.var), we get y :T2 `hm y :T2.
By Lemma F.21 (things have to be ok), we get nil `hm′ T1:Type. By Lemma F.10 (colour change preserves
type okedness), we have nil `hm T1:Type. By Lemma F.3 (weakening), we get y :T2 `hm T1:Type.
We have y :T2 `• ok and y :T2 `hm y :T2 and y :T2, x :T0 `hm′ e1:T3. By Lemma F.23 (type preservation
by guarded expression variable substitution), we get y :T2 `hm′ {x←[y ]T2

hm}e1:T3.

y :T2 `hm T1:Type
y :T2 `hm′ T3 == T1 y :T2 `hm′ {x←[y ]T2

hm}e1:T3

y :T2 `hm′ {x←[y ]T2

hm}e1:T1

(eT.eq)

y :T2 `hm [{x←[y ]T2

hm}e1]T1

hm′ :T1

(eT.col)

nil `hm λy :T2.[{x←[y ]T2

hm}e1]T1

hm′ :T2→T1

(eT.fun)
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By alpha-conversion, we get nil `hm e ′:T2→T1.

Case (ered.col.marred): Then there exist v •1 and T1 such that T ′ = STRING and e0 = marshalled (v •1 :T1) = e ′.
Since nil `hm′ e0:T ′, by Lemma G.1 (shortening typing proof) and reversing (eT.marred), we have nil `•
v•1 :T1. Since nil `hm ok, by (eT.marred), we have nil `hm e ′:STRING.

Case (ered.col.col): Then there exist h0, h1 and e1 such that T ′ = h0 and hm ′ = h1 and e0 = [e1]h0

h0
. By Lemma

G.1 (shortening typing proof) and reversing (eT.col), we get nil `h0
e1:h0. By Lemma E.5 (hashes have to be

ok), we have ` h0 ok, whence nil `hm h0:Type by (TK.hash). Then, by (eT.col), we get nil `hm [e1]h0

h0
:T ′.

Case (ered.col.le): Then hm ′ 4 hm and e ′ = e0. Since nil `hm′ e0:T ′, i.e. nil `hm′ e ′:T ′, by Lemma F.2
(colour stripping judgements), we have nil `hm′ e ′:T .

Case (ered.cong): There exist hm0, C hm
hm0

, e0 and e ′0 such that e = C hm
hm0

.e0 and e ′ = C hm
hm0

.e ′0 and e0 −→hm0
e ′0 by a

proper subproof. Recall that we have nil `hm e:T ′. By the first part of Lemma G.2 (reversing typing proof through
a context), there exists T0 such that nil `hm0 e0:T0. By induction, we get nil `hm0 e ′0:T0. By the second part of
Lemma G.2 (reversing typing proof through a context), we get nil `hm e ′:T ′.

In any case, we have nil `hm e ′:T ′, whence by (eT.eq), nil `hm e ′:T .

Lemma G.16 (type preservation for network structural congruence) If ` n ok and n ≡ n ′ then ` n ′ ok.

Proof. Induct on the derivation of n ≡ n ′.

Case (nsc.id): We have n = 0 | n ′. By reversing (nok.par), we get ` n ′ ok.

Case (nsc.commut): There exist n1 and n2 such that n = n1 | n2 and n ′ = n2 | n1. By reversing (nok.par) and applying
it with the premises swapped, from ` n ok, we get ` n ′ ok.

Case (nsc.assoc): There exist n1, n2, n3 such that n = n1 | (n2 |n3) and n ′ = (n1 |n2) |n3. By reversing (nok.par) twice,
from ` n ok, we get ` ni ok for 1 6 i 6 3, whence by (nok.par) twice ` n ′ ok.

Reflexivity, symmetry, transitivity: Trivial (the latter two, by induction).

Corollary G.17 (type preservation for network reduction) If ` n ok and n −→ n ′ then ` n ′ ok.

Proof. Induct on the derivation of the reduction n −→ n ′.

Case (nred.expr): Trivial by Theorem G.15 (type preservation for expression reduction).

Case (nred.par): There exist n0, n1, n2 such that n = n0 | n2 and n ′ = n1 | n2. The premise is n0 −→ n1. By reversing
(nok.par), we have ` n0 ok and ` n2 ok. By induction we have ` n1 ok. By (nok.par), we have ` n ′ ok.

Case (nred.strcong): There exist n0 and n1 such that n ≡ n0 −→ n1 ≡ n ′. By Lemma G.16 (type preservation for
network structural congruence), we get ` n0 ok. By induction we get ` n1 ok. By Lemma G.16 (type preservation
for network structural congruence), we get ` n ′ ok.

Case (nred.comm): There exist CC •hm , vhm , CC •hm′ such that n = CC •hm .! vhm | CC •hm′ .? and n ′ = CC •hm .() |
CC •hm′ .v

hm . By reversing (nok.par), then (nok.expr) twice, we get nil `• CC •hm .! vhm :UNIT and nil `•
CC •hm′ .?:UNIT.

From nil `• CC •hm .! vhm , by Lemma G.2 (reversing typing proof through a context), we get nil `hm ! vhm :T ′ for
some T ′. By Lemma G.1 (shortening typing proof) and reversing (eT.send), we get nil `hm vhm :mar , and we
see that nil `hm ! vhm :UNIT and nil `hm UNIT == T ′. By Lemma E.6 (environments have to be ok), (eT.unit)

and (eT.eq), we get nil `hm ():T ′, so by the second part of Lemma G.2 (reversing typing proof through a context),
we get nil `• CC •hm .():UNIT.

By Lemma G.13 (structural dependence of values on their types), there exists v • and T0 such that vhm =
marshalled (v •:T0) and nil `• T0:Type and nil `• v•:T0.

From nil `• CC •hm′ .?:UNIT, by Lemma G.2 (reversing typing proof through a context), we get nil `hm′ ?:T ′′ for
some T ′′. By Lemma G.1 (shortening typing proof) and reversing (eT.recv), we get nil `hm′ ok and nil `hm′
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STRING == T ′′. By (eT.marred), we get nil `hm′ marshalled (v •:T0):STRING, so by the second part of Lemma
G.2 (reversing typing proof through a context), we get nil `• CC •hm′ .v

hm :UNIT.

By (mT.expr) twice, then (nok.par), we get ` CC •hm .() | CC •hm′ .v
hm ok as desired.

Theorem G.18 (type preservation for machine reduction) If nil `• m:T and m −→c m ′ then nil `• m ′:T .

Proof. Consider each rule.

Case (mred.Type): We have that m is of the form module NU = [T0, v
•]:[X :Type,T1] in m0 and m ′ is of the

form σm0 where σ = {U .TYPE←h,U .term←[v •]
{X←h}T1

h } and h = hash(N , [T0, v
•]:[X :Type,T1]). The

judgement nil `• m:T can only be derived by (mT.let) with the following premises: nil `• T :Type and nil `•
[T0, v

•]:[X :Type,T1] and U :[X :Type,T1] `• m0:T .

By Lemma F.33 (type preservation by fully carried out module substitution), we have nil `• σ(m0:T ), as desired.

Case (mred.Eq): We have that m is of the form Let U = [T0, v
•]:[X :Eq(T3),T1] in m0 and m ′ is of the form σm0

where σ = {U .TYPE←T3,U .term←v •}. The judgement nil `• m:T can only be derived by (mT.let) with the
following premises: nil `• T :Type and nil `• [T0, v

•]:[X :Eq(T3),T1] and U :[X :Eq(T3),T1] `• m0:T .

From nil `• [T0, v
•]:[X :Eq(T3),T1], by Lemma F.8 (components of modules are ok), there exists T2 such that

X :Eq(T0) `• T2 == T1 and X :Eq(T3) `• T1:Type and nil `• T0:Eq(T3) and nil `• v•:T2.

By Lemma F.29 (type preservation by module substitution in coloured judgements) and alpha-conversion we have
X :Eq(T3), x :T1 `• σU (m0:T ), where σU = {U .TYPE←X ,U .term←x}.
By Lemma E.6 (environments have to be ok), X :Eq(T3) `• ok, whence by reversing (envok.X) nil `• T3:Type,
so nil `• T3:Eq(T3) by (Teq.refl) and (TK.Eq). Therefore, by Lemma F.14 (type preservation by substitution), we
have x :{X←T3}T1 `• {U .TYPE←T3,U .term←x}(m0:T ).

From nil `• v•:T2 (given that X :Eq(T0) `• ok by Lemma E.6 (environments have to be ok)) by Lemma F.3
(weakening), we get X :Eq(T0) `• v•:T2. By (eT.eq), we get X :Eq(T0) `• v•:T1.

From nil `• T0:Eq(T3), by (Teq.Eq), (Teq.sym) and (TK.Eq), we get nil `• T3:Eq(T0). By Lemma F.14 (type
preservation by substitution), we get nil `• v•:{X←T3}T1. By Lemma F.14 (type preservation by substitution),
we get nil `• {U .TYPE←T3,U .term←v •}(m0:T ) as desired.

H Progress

H.1 Classical progress theorems

Definition H.1 (waiting for communication) An expression e is waiting for communication iff one of the following
cases holds:

• e is ready to output, i.e. there exists CC hm′
hm and vhm such that e = CC hm′

hm .! vhm

• e is ready to input, i.e. there exists CC hm′
hm such that e = CC hm′

hm .?

Definition H.2 (dormant) An expression e is dormant iff one of the following cases holds:

• e is waiting for communication

• e is dead, i.e. there exists CC hm′
hm and T such that e = CC hm′

hm .UnmarFailureT .

Lemma H.3 (dormancy in context) If e is dormant and CC hm′
hm is a coloured evaluation context then CC hm′

hm .e is
dormant.

Proof. Composing coloured evaluation contexts yields a coloured evaluation context.
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Lemma H.4 (reduction in context) If e −→hm and CC hm′
hm is an evaluation context then CC hm′

hm .e −→hm′ .

Proof. Apply (ered.cong) as many times as the size of CC hm′
hm requires.

Definition H.5 (legitimately stuck expressions) An expression e is legitimately stuck in hm iff one of the following
cases holds:

• e is a hm-value

• e is dormant.

Theorem H.6 (progress of expressions) If nil `hm e:T then one of the following cases holds:

• e is legitimately stuck in hm .

• e can reduce, i.e. there exists e ′ such that e −→hm e ′.

Proof. Induct on the type derivation. Consider the rule used in the last step of the proof.

Cases (eT.var) and (eT.mod): Impossible by Lemma E.9 (free variables of a judgement come from the environment)
since the environment is empty.

Case (eT.eq): The inductive hypothesis is the desired result.

Case (eT.ap): There exists e0, e1,T1 such that e = e0 e1 and nil `hm e0:T1→T and nil `hm e1:T1. Apply the
inductive hypothesis to e0.

Case e0 can reduce: there exists e ′0 such that e0 −→hm e ′0. By (ered.cong), e −→hm e ′0 e1.

Case e0 is ready to output: there exist CC hm
hm′ and vhm′ such that e0 = CC hm

hm′ .! vhm′ , thus e =
( e1).CC hm

hm′ .! vhm′ is ready to output.

Case e0 is ready to input: similar to the output case.

Case e0 is dead: then e is dead.

Case e0 is a hm-value: Apply the inductive hypothesis to e1. Note that e0 is an evaluation context.

Case e1 can reduce: there exists e ′1 such that e1 −→hm e ′1. By (ered.cong), e −→hm e0 e ′1.
Case e1 is ready to output: there exist CC hm

hm′ and vhm′ such that e1 = CC hm
hm′ .! vhm′ , thus e =

(e0 ).CC hm
hm′ .! vhm′ is ready to output.

Case e1 is ready to input: similar to the output case.
Case e1 is dead: then e is dead.
Case e1 is a hm-value: By Lemma G.13 (structural dependence of values on their types), there exists e2 such

that e0 = λx :T1.e2. Then e = (λx :T1.e2) e1. By (ered.ap), e −→hm {x←[e1]T1

hm}e2.

Case (eT.fun): e is a value.

Case (eT.send): e is ready to output.

Case (eT.recv): e is ready ot input.

Case (eT.mar): There exist an e0 and a T0 such that e = mar (e0:T0), and T = STRING. If e0 is dormant or reduces
then the same holds for e by Lemma H.4 (reduction in context) and Lemma H.3 (dormancy in context). Otherwise,
by the inductive hypothesis on e0, e0 is a hm-value, so by (ered.mar), e −→hm marshalled ([e0]Thm :T ).

Case (eT.marred): There exist an e0 and a T0 such that e = marshalled (e0:T0), and T = STRING. If e0 is dormant
or reduces then the same holds for e by Lemma H.4 (reduction in context) and Lemma H.3 (dormancy in context),
since marshalled ( :T0) is an evaluation context. Otherwise, by the inductive hypothesis on e0, e0 is a hm-value,
so e is an hm-value.

Case (eT.unmar): There is an e0 such that e = (unmar e0:T ). If e0 is dormant or reduces then the same holds for e by
Lemma H.4 (reduction in context) and Lemma H.3 (dormancy in context). Otherwise, by the inductive hypothesis
on e0, e0 is a value. Its type is STRING, so by Lemma G.13 (structural dependence of values on their types), there
is a v• and a T0 such that e0 = marshalled (v •:T0). Then e reduces by (ered.unmar).
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Case (eT.Undynfailure): e is dormant.

Case (eT.unit): e is a value.

Case (eT.tuple): There are e1, ..., ej such that e = (e1, ..., ej). Let i be the smallest index k such that e1 through ek−1

are values. If i = j + 1 then e is a value. Otherwise, apply the inductive hypothesis to ei. Since ei is not a value,
it is dormant or reduces, and in either case, the same holds for e by Lemma H.3 (dormancy in context) and Lemma
H.4 (reduction in context), as (e1, ..., ei−1, , ei+1, ..., ej) is an evaluation context.

Case (eT.proj): There is an e ′ such that e = proji e ′, and there are T1, ...,Tj such that nil `hm e ′:T1 ∗ ... ∗ Tj . If
e ′ is dormant or reduces, then the same holds for e since proji is an evaluation context. Otherwise, apply the
inductive hypothesis to e ′: it is a value. By Lemma G.13 (structural dependence of values on their types), there are
vhm

1 , ..., vhm
j such that e ′ = (vhm

1 , ..., vhm
j ). Then e −→hm vhm

i by (ered.proj).

Case (eT.col): There is an e0 and an hm0 such that e = [e0]Thm0
. Apply the inductive hypothesis to e0; if e0 is a value,

the discussion depends on its form and that of hm0.

By Lemma G.1 (shortening typing proof), there is a type T ′ such that nil `hm0
e0:T ′ by a smaller proof that does

not use (eT.eq) as its last step and nil `hm0 T ′ == T .

Case e0 is dormant: e is dormant.

Case e0 reduces: There is an e ′0 such that e0 −→hm0
e ′0. By (ered.cong), e −→hm [e ′0]Thm0

.

Case e0 is an hm0-value that is not a bracket expression: Then, by reversing the appropriate rule amongst
(eT.unit), (eT.tuple), (eT.fun) or (eT.marred), we have that T ′ is some constructed type TC (T ′1, ...,T

′
j).

Since nil `hm0
T ′ == T , by Lemma G.11 (type decomposition), one of the following cases holds:

Case T is a constructed type: There exist T1, ...,Tj such that nil `hm T ′i == Ti for all i and
T = TC (T1, ...,Tj). Then e reduces by the appropriate rule amongst (ered.col.unit), (ered.col.tuple),
(ered.col.fun) or (ered.col.marred).

Case T = hm0: If hm0 4 hm then e = [e0]hm0

hm0
reduces by (ered.col.le). Otherwise e is a value.

Case e0 = [vh1 ]h1

h1
for some h1 and hm0 = •: We have e = [[vh1 ]h1

h1
]T• . By Lemma G.1 (shortening typing proof)

and reversing (eT.col), we have nil `• h1 == T ′. By (Teq.tran), we have nil `• h1 == T . By Lemma G.14
(triviality of type equivalence in a trivial environment), h1 = T . Then e −→hm e0 by (ered.col.le).

Case e0 = [vh1 ]h1

h1
for some h1 and hm0 6= •: We have nil `hm0

[vh1 ]h1

h1
:T . Then nil `hm0

[vh1 ]h1

h1
:T ′ must

have been obtained by an application of (eT.col), so T ′ = h1. Since nil `hm0
h1 == T , by Lemma G.11

(type decomposition) and some more pattern matching, one of the following cases holds:

Case T = h1 6= hm0 and hm0 6= hm: Then e = [[vh1 ]h1

h1
]h1

hm0
. By (ered.col.col), e −→hm [vh1 ]h1

h1
(recall

that hm0 6= •).
Case T = h1 6= hm0 and hm0 = hm: Then e = [[vh1 ]h1

h1
]h1

hm . By (ered.col.le), e −→hm e0.

Case hm0 = h1: Then e = [[vh1 ]h1

h1
]Th1

. By (ered.col.le), [vh1 ]h1

h1
−→h1

vh1 . Hence, by (ered.cong), e −→hm

[vh1 ]Th1
.

Corollary H.7 (progress of networks) If ` n ok then one of the following cases holds:

• n is stopped, i.e. there exists n() and nfail such that n ≡ n() | nfail.

• n is waiting to input, i.e. there exists n() and nfail and n? such that n ≡ n() | nfail | n?

• n is waiting to output, i.e. there exists n() and nfail and n! such that n ≡ n() | nfail | n!

• n can reduce, i.e. there exists n ′ such that n −→ n ′



Global abstraction-safe marshalling with hash types 63

where

n() ::=0 null
n() | n() parallel composition
() unit

nfail ::=0 null
nfail | nfail parallel composition

CC •hm .UnmarFailureT dead

n? ::=n? | n? parallel composition
CC •hm .? waiting to input

n! ::=n! | n! parallel composition
CC •hm .! v waiting to output

Proof. Induct on the derivation of ` n ok.

Case (nok.zero): Trivial.

Case (nok.par): There exist n0 and n1 such that n = n0 | n1. If either n0 or n1 reduces then n reduces. If n0 is stopped
then n has the same form as n1, and vice versa. If n0 and n1 are both waiting to input (or both to output) then so is
n . Otherwise n0 ≡ n() | nfail | n? and n1 ≡ n() | nfail | n! (or the converse): then n reduces by (nred.comm).

Case (nok.expr): By Theorem H.6 (progress of expressions), one of the following cases holds:

Case n is a •-value: By (nok.expr), the value n has type UNIT. By Lemma G.13 (structural dependence of values
on their types), n is an n().

Case n is dead: n is an nfail.

Case n is waiting for input: n is an n?.

Case n is waiting for output: n is an n! .

Case n reduces: n reduces.

Theorem H.8 (progress of machines) If nil `• m:T then either m is an expression or it reduces under −→c.

Proof. Induct on the type derivation.

Case (mT.expr): Trivial.

Case (mT.let): It is obvious that m reduces, by either (mred.Type) or (mred.Eq).

H.2 Determinism of reduction

Theorem H.9 (determinism of machine reduction) Reduction of machines is deterministic, i.e. if m −→c m1 and
m −→c m2 then m1 = m2 and both reductions use the same rule on the same redex.

Proof. Induct on the structure of m .

Case m is an expression: Impossible (m does not reduce).

Case m = module NU = M :[X :Type,T ] in m ′: The only applicable rule is (mred.Type).
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Case m = module NU = M :[X :Eq(T ′),T ] in m ′: The only applicable rule is (mred.Eq).

Lemma H.10 (values do not reduce) If e −→hm e ′ then e is not an hm-value.

Proof. We prove that if e is an hm-value then e does not reduce in hm . We induct on the structure of values.

Case vhm = (): No reduction rule applies.

Case vhm = (vhm
1 , ..., vhm

j ): The only reduction rule that is not obviously inapplicable is (ered.cong). If that rule applies,
then it is with a context of the form (v hm

1 , ..., vhm
i−1, , v

hm
i+1, ..., v

hm
j ). But then vhm

i −→hm , which is impossible by
induction.

Case vhm = (λx :T .e): No reduction rule applies.

Case vhm = marshalled (v •:T ): The only reduction rule that is not obviously inapplicable is (ered.cong). If that rule
applies, then it is with a context of the form marshalled ( :T ). But then v • −→•, which is impossible by
induction.

Case vhm = [vh1 ]h1

h1
where h1 6= hm: The rule (ered.col.le) requires h1 4 hm , which given the definition of 4 implies

that h1 = hm , a contradiction. The rule (ered.col.col) does not apply as it requires the type and colour annotation
on the bracket to be different. The other (ered.col.*) rules do not apply as they require the type annotation on the
bracket not to be a hash. If (ered.cong) applies, then it is with a context of the form [ ]h1

h1
. But then vh1 −→h1

, which
is impossible by induction.

Theorem H.11 (determinism of expression reduction) Reduction of expressions and machines is deterministic, i.e. if
e −→hm e ′ and e −→hm e ′′ then e ′ = e ′′ and both reductions use the same rule on the same redex.

Proof. Induct on the structure of e.

Cases e = x , e = U .term, e = UnmarFailureT : No reduction is possible.

Cases e = (), e = (vhm
1 , ..., vhm

j ), e = λx :T .e0, e = marshalled (v •:T ): No reduction is possible, by Lemma H.10
(values do not reduce).

Case e = (e1, ..., ej): Let i be the smallest k such that e1 through ek−1 are hm-values. The case i = j + 1 has already
been treated. Given Lemma H.10 (values do not reduce), the only possibility of reduction is (ered.cong) with the
context (e1, ..., ek−1, , ek+1, ..., ej). By induction, only one reduction is possible.

Case e = proji e0: If e0 is a hm-value, given Lemma H.10 (values do not reduce), the only possibility of reduction is
(ered.proj). Otherwise, by induction, only one reduction of e0 is possible, and the only possibility for e to reduce is
using (ered.cong) with the context proji .

Case e = e1 e2: If e1 and e2 are both hm-values, given Lemma H.10 (values do not reduce), the only possibility of
reduction is (ered.ap). If e1 is an hm-value and e2 is not an hm-value, then the only possibility for reduction is to
use (ered.cong) with the context e1 ; by induction, this yields at most one possible reduction. Similarly, if e1 is not
an hm-value, then the only possibility of reduction is (ered.cong) with the context e2.

Case e = mar (e0:T ): If e0 is an hm-value, then e0 does not reduce by Lemma H.10 (values do not reduce), so
(ered.mar) is the only possibility of reduction. Otherwise the only possibility of reduction is (ered.cong) with the
context mar ( :T ), so by induction, only one reduction is possible.

Case e = marshalled (e0:T ): The only possibility of reduction is (ered.cong) with the context marshalled ( :T ), so
by induction, only one reduction is possible.

Case e = unmar e0:T : The only possibility of reduction is (ered.unmar), which has only one possible outcome for any
given e0 and T .

Cases e = ! e0, e = ?: No reduction is possible (communication happens at the network level).



Global abstraction-safe marshalling with hash types 65

Case e = [vhm1 ]Thm1
where T is not a hash: The rules (ered.col.col) and (ered.col.le) do not apply since T is not a hash.

Also (ered.cong) does not apply since v hm1 is a value and we have Lemma H.10 (values do not reduce). The only
rules that may apply are the rules to push brackets in ((ered.col.unit), (ered.col.tuple), (ered.col.fun), (ered.col.marred))
which are mutually exclusive.

Case e = [vhm1 ]h2

hm1
: By Lemma H.10 (values do not reduce), no reduction can be derived from (ered.cong) since v hm1

is a value. The only potentially applicable rules are (ered.col.col) and (ered.col.le). If h2 = hm then (ered.col.col)

does not apply. Otherwise we do not have h2 4 hm so (ered.col.le) does not apply. In both cases, only one reduction
is possible.

Case e = [e1]Thm1
where e1 is not a value: Then the only possibility of reduction is (ered.cong). Note that (ered.col.col)

is out since its side conditions would force e1 to be a value. By induction there is at most one way to reduce e1, so
there is at most one way to reduce e.

Discussion H.12 (strength of determinism) Recall the rule to remove a bracket around another bracket:

[[vh0 ]h0

h0
]h0

h1
−→hm [vh0 ]h0

h0
if h0 6= h1 and h1 6= hm (ered.col.col)

These side conditions do not in fact affect the reductions possible: we have [[v h0 ]h0

h0
]h0

h0
−→hm [vh0 ]h0

h0
by (ered.col.le) and

(ered.cong), and [[vh0 ]h0

h0
]h0

h1
−→h1

[vh0 ]h0

h0
by (ered.col.le). We include the side conditions to make our determinism result,

Theorem H.11 (determinism of expression reduction), stronger. Without these side conditions, we could state determinism
in the following way: if e −→hm e1 and e −→hm e2 then e1 = e2.

Of course, network reduction is not deterministic, as befits a concurrent system.

I Compilation

I.1 Decidability of type checking

Definition I.1 (revelation of the implementation of a hash) Let h = hash(N , [T0, v ]:[X :Type,T1]). The type
revealhT is obtained by replacing any subterm of T that is equal to h and not itself inside a hash by the implementation
type T0. Thus:

• revealh UNIT = UNIT

• revealh(T1 ∗ ... ∗ Tj) = (revealhT1) ∗ ... ∗ (revealhTj)

• revealh(T1→T2) = (revealhT1)→(revealhT2)

• revealhX = X

• revealh STRING = STRING

• revealhU .TYPE = U .TYPE

• revealhh = T0

• revealhh ′ = h ′ if h ′ 6= h

Also let reveal•T = T .

Definition I.2 (partial type substitution associated to an environment)

partenvsubnil = id

partenvsubE ,x :T = partenvsubE

partenvsubE ,X :Type = partenvsubE

partenvsubE ,X :Eq(T) = partenvsubE{X←T}
partenvsubE ,U :[X :Type,T ′] = partenvsubE

partenvsubE ,U :[X :Eq(T),T ′] = partenvsubE{U .TYPE←T}
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Recall Definition G.6 (purely abstract environment).

Lemma I.3 (a purely abstract suffix does not change the substitution) If E1 is a purely abstract environment then
partenvsubE0,E1

= partenvsubE0
.

Proof. Trivial from Definition I.2 (partial type substitution associated to an environment).

Lemma I.4 (stability of types through revelation) If E `hm T :Type then E `hm revealhmT :Type and E `hm

T == revealhmT and E `hm partenvsubE T :Type and E `hm T == partenvsubE T .

A trivial consequence that we also use is that if E `hm T :Type then E `hm revealhmpartenvsubE T :Type and
E `hm T == revealhmpartenvsubE T . Also, we freely use (Teq.sym) on the conclusion of this lemma.

Proof. Let h = hash(N , [T0, v
•]:[X :Type,T1]). The type revealhmT can be seen as T with T0 for hm . By similar

reasoning to the proof of Lemma F.24 (type equivalence is a congruence), starting from E `hm h == T0 obtained
through (Teq.hash), we get E `hm T == revealhmT .

By applying Lemma E.6 (environments have to be ok), Lemma E.7 (prefixes of ok environments are ok) and Lemma
F.24 (type equivalence is a congruence) to each concrete binding in E , and using various rules, we get that E `hm T ==
partenvsubE T . By Lemma F.21 (things have to be ok), we have E `hm partenvsubE T :Type.

Lemma I.5 (distinction of fresh type variables) If E is purely abstract and E `hm X == T or E `hm T == X or
E `hm X :Eq(T ) or E `hm T :Eq(X ) or E `hm [Y :Eq(T ),T ′] <: [Y :Eq(X ),T ′′] or E `hm [Y :Eq(X ),T ′′] <:
[Y :Eq(T ),T ′] then T = X . Also, if E is purely abstract, then E `hm U :[Y :Eq(X ),T ′] cannot be derived.

Proof. Induct on the derivation of the assumed judgement.

Case (TK.sub), E `hm X :Eq(T ): There exists K such that the premises are E `hm X :K and E `hm K <: Eq(T ).
By Lemma G.4 (discreteness of subkinding below Type) and reversing (Keq.Eq), there exists T1 such that K =
Eq(T1) and E `hm T1 == T by a subproof. By induction on the subproof of E `hm X :Eq(T1), we get
T1 = X . Since E `hm X == T by a subproof, by induction, we get T = X .

Case (TK.sub), E `hm T :Eq(X ): There exists K such that the premises are E `hm T :K and E `hm K <: Eq(X ).
By Lemma G.4 (discreteness of subkinding below Type) and reversing (Keq.Eq), there exists T1 such that K =
Eq(T1) and E `hm T1 == X by a subproof. By induction, we get T1 = X . Since E `hm T :Eq(X ) by a
subproof, by induction, we get T = X .

Case (TK.Eq): Trivial by induction.

Case (TK.mod): There exists U and T ′ such that the rule derives E `hm U .TYPE:Eq(X ) from E `hm

U :[Y :Eq(X ),T ′]. By induction this is impossible.

Case (TK.var): Impossible since E is purely abstract.

Case (Teq.Eq): Trivial by induction.

Case (Teq.hash): Impossible by Lemma E.4 (colours have to be ok) and Lemma E.9 (free variables of a judgement come
from the environment) applied to ` hm ok.

Case (Teq.refl): Then T = X as desired.

Case (Teq.sym): Trivial by induction.

Case (Teq.tran): Then by induction the “middle type” is X , whence by induction again T = X .

Case (Ssub.struct): We have either E `hm Eq(T ) <: Eq(X ) or E `hm Eq(X ) <: Eq(T ) by a subproof. By Lemma
G.4 (discreteness of subkinding below Type) and reversing (Keq.Eq), either E `hm T == X or E `hm X == T
by a subproof. By induction we get T = X as desired.

Case (Ssub.refl): Trivial.

Case (Ssub.tran): Similar to (Teq.tran) above.

Case (US.var): Impossible since E is purely abstract.
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Case (US.sub): The conclusion is E `hm U :[Y :Eq(X ),T ′]. The premises are E `hm U :[Y :K ,T ′′] and E `hm

[Y :K ,T ′′] <: [Y :Eq(X ),T ′]. By Lemma F.26 (reversing subsignaturing judgement), E `hm K <: Eq(X ) by
a subproof. By Lemma G.4 (discreteness of subkinding below Type) and reversing (Keq.Eq), there exists T1 such
that K = Eq(T1) and E `hm T1 == X by a subproof. By induction we get T1 = X . The other premise of the
bottommost rule is therefore E `hm U :[Y :Eq(X ),T ′′], which is impossible by induction.

Case (US.self): Impossible.

Lemma I.6 (open interpretation of type equivalence) E `hm T == T ′ iff E `hm T :Type and E `hm T ′:Type
and revealhmpartenvsubE T = revealhmpartenvsubE T ′.

Proof. Assume E `hm T == T ′. By Lemma F.21 (things have to be ok), we have E `hm T :Type and E `hm

T ′:Type. We will now prove the last statement by induction on the lexically ordered pair (m,n) where m is the length
of E and n is the number of module bindings in E . Let E1 be the longest bare bones suffix of E (see Definition G.5 (bare
bones environment)).

Case E = E1: Then partenvsubE = id, so the proof obligation is revealhmT = revealhmT ′. Induct on the structure
of T .

Case T = TC (T1, ...,Tj): By Lemma G.11 (type decomposition), there exist T ′1, ...,T
′
j such that E `hm T ′i ==

Ti for each i . Then, by induction, for each i , we have revealhmT ′i = revealhmTi. Furthermore, one of the
following cases holds:

Case T ′ = TC (T ′1, ...,T
′
j): Then we have revealhmT ′ = revealhmT .

Case T ′ = hm = hash(N , [TC (T ′1, ...,T
′
j), v ]:[X :Type,T ′′]): Then revealhmT ′ = TC (T ′1, ...,T

′
j) =

revealhm(TC (T ′1, ...,T
′
j)) = T (note that for all i , revealhmT ′i = T ′i since hm is not a subterm of T ′i ).

Case T = X : By Lemma I.5 (distinction of fresh type variables), we have T ′ = X = T .

Case T = U .TYPE: Impossible by Lemma E.9 (free variables of a judgement come from the environment).

Case T = h1: By Lemma G.11 (type decomposition), one of the following cases holds:

Case hm = h1 = hash(N , [T ′, v ]:[X :Type,T ′′]): Then revealhmh1 = T ′ = revealhmT ′ (note that hm
is not a subterm of T ′).

Case T ′ = hm = hash(N , [h1, v ]:[X :Type,T ′′]): Then revealhmh1 = h1 = revealhmT ′.
Case T ′ = h1: Trivial.

Case E = E0, x :T1,E1: By Lemma E.6 (environments have to be ok) and Lemma E.22 (environments do not contain
free expression variables), x /∈ fv E1. By Lemma E.21 (types do not contain free expression variables), x /∈ fv T ∪
fv T ′. Then, by Lemma F.15 (strengthening), we get E0,E1 `hm T == T ′. We can apply induction to E0,E1,
getting revealhmpartenvsubE0,E1

T = revealhmpartenvsubE0,E1
T ′. Since partenvsubE0,E1

= partenvsubE ,
this is the desired result.

Case E = E0,X :Eq(T1),E1: By Lemma E.19 (computing the pvu of a type world judgement), hm 4
min (pvuX (E1)). By Lemma E.7 (prefixes of ok environments are ok) and reversing (envok.X), we have
E0 `hm T1:Type, whence by (Teq.refl) and (TK.Eq), E0 `hm T1:Eq(T1). We can use Lemma F.14 (type preser-
vation by substitution) to {X←T1}, getting E ′ `hm {X←T1}T == {X←T1}T ′ where E ′ = E0, {X←T1}E1.

By induction, we get that revealhmpartenvsubE ′{X←T1}T = revealhmpartenvsubE ′{X←T1}T ′.
By Definition I.2 (partial type substitution associated to an environment), partenvsubE0,X :Eq(T1) =
partenvsubE0

{X←T1}. By Lemma I.3 (a purely abstract suffix does not change the substitution), partenvsubE =
partenvsubE0

{X←T1}. So we have revealhmpartenvsubE T = revealhmpartenvsubE T ′, as desired.

Case E = E0,U :[X :K ,T1],E1: Let Z and z be fresh. By Lemma F.29 (type preservation by module sub-
stitution in coloured judgements), we get E0,Z :Eq(T1), z :{X←Z}T2, {U .TYPE←Z ,U .term←z}E1 `hm

{U .TYPE←Z ,U .term←z}T == {U .TYPE←Z ,U .term←z}T ′. Since E1 is purely abstract, we have
{U .TYPE←Z ,U .term←z}E1 = E1. By Lemma E.21 (types do not contain free expression variables), z /∈
fv {U .TYPE←Z}T , whence {U .TYPE←Z ,U .term←z}T = {U .TYPE←Z}T , and the same holds for T ′. By
Lemma F.15 (strengthening), we get E ′ `hm σT == σT ′ where E ′ = E0,Z :K ,E1 and σ = {U .TYPE←Z}.
Now we do case analysis on the structure of K .
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Case K = Type: By induction on the last judgement above, we have revealhmpartenvsubE ′σT =
revealhmpartenvsubE ′σT ′. Now partenvsubE ′σ = partenvsubE , so we have the desired result.

Case K = Eq(T0): Apply the case E = E0,Z :Eq(T0),E1 above to E ′ `hm σT == σT ′. We get
revealhmpartenvsubE ′σT = revealhmpartenvsubE ′σT ′. Now given Definition I.2 (partial type substitu-
tion associated to an environment) and Lemma I.3 (a purely abstract suffix does not change the substitution),
we in fact have partenvsubE = partenvsubEσ. So we have the desired result.

We turn to the other half of the proof. Assume that E `hm T :Type and E `hm T ′:Type and
revealhmpartenvsubE T = revealhmpartenvsubE T ′. We induct on the number of bindings of E that are not of the
form U :[X :Type, ] nor X :Type. We write E1 for the longest purely abstract suffix of E .

Case E is purely abstract: Induct on the structure of T . Note that partenvsubE = id.

Case T = TC (T1, ...,Tj): By definition of revealhm , one of the following cases holds:

Case T ′ = UNIT or T ′ = mar : Then T = T ′, so E `hm T == T ′ by (Teq.refl).

Case T ′ = TC (T ′1, ...,T
′
j) with j 6= 0: Still by the definition of revealhm , we have revealhmTi =

revealhmT ′i for all i . Then by induction we have E `hm Ti == T ′i . By the appropriate rule amongst
(Teq.cong.fun) and (Teq.cong.tuple), we have E `hm T == T ′.

Case T ′ = hm = hash(N , [T , v ]:[X :Type,T ′′]): We have E `hm ok by Lemma E.6 (environments have
to be ok). Then, by (Teq.hash), we get E `hm T ′ == T , whence E `hm T == T ′ by (Teq.sym).

Case T = X or T = U .TYPE: Then revealhmT = T = T ′ = revealhmT ′. By (Teq.refl), we have E `hm

T == T ′.

Case T = hm: By definition of revealhm , one of the following cases holds:

Case T ′ = hm: Then E `hm T == T ′ by (Teq.refl).

Case hm = hash(N , [T ′, v ]:[X :Type,T ′′]): We have E `hm ok by Lemma E.6 (environments have to be
ok). Then, by (Teq.hash), we get E `hm T == T ′.

Case T is a hash but T 6= hm: Then revealhmT = T . By definition of revealhm , one of the following cases
holds:

Case T ′ = hm = hash(N , [T , v ]:[X :Type,T ′′]): We have E `hm ok by Lemma E.6 (environments have
to be ok). Then, by (Teq.hash), we get E `hm T ′ == T , whence E `hm T == T ′ by (Teq.sym).

Case T ′ = T : Then E `hm T == T ′ by (Teq.refl).

Case E = E0, x :T0,E1: By Lemma E.21 (types do not contain free expression variables), Lemma E.22 (environments
do not contain free expression variables) and Lemma F.15 (strengthening), we have E0,E1 `hm T :Type and
E0,E1 `hm T ′:Type. Since furthermore partenvsubE = partenvsubE0,E1

, by induction, we get E0,E1 `hm

T == T ′. By Lemma E.6 (environments have to be ok) and Lemma E.7 (prefixes of ok environments are ok),
we have E0, x :T0 `hm ok, so E `hm T == T ′ by Lemma F.5 (combined weakening) (note that x /∈ fv E1 by
Lemma E.8 (ok environments have no repetition in the domain)).

Case E = E0,X :Eq(T0),E1: Then partenvsubE = partenvsubE0
{X←T0}. By Lemma E.6 (environments have to

be ok), Lemma E.7 (prefixes of ok environments are ok) and reversing (envok.X) and (Kok.Eq), we have E0 `hm

T0:Type. By Lemma E.19 (computing the pvu of a type world judgement), any proof Π of E `hm T :Type
satisfies hm 4 min (pvuX (Π)). By Lemma F.14 (type preservation by substitution), we get E0, {X←T0}E1 `hm

{X←T0}T :Type. Similarily, we have E0, {X←T0}E1 `hm {X←T0}T ′:Type.

By induction, we get E0, {X←T0}E1 `hm {X←T0}T == {X←T0}T ′.
Since E0,X :Eq(T0) `hm ok and X /∈ dom E1 by Lemma E.8 (ok environments have no repetition in the domain),
by Lemma F.5 (combined weakening), we have E0,X :Eq(T0), {X←T0}E1 `hm {X←T0}T == {X←T0}T ′.
By Lemma G.8 (type substitution in a purely abstract environment), given the latest judgement and
E0,X :Eq(T0),E1 `hm ok, we get E0,X :Eq(T0),E1 `hm {X←T0}T == {X←T0}T ′.
By Lemma F.25 (type substitution in equivalence), we get E `hm T == T ′ as desired.
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Case E = E0,U :[X :Eq(T0),T1],E1: Then partenvsubE = partenvsubE0
{U .TYPE←T0}. Let Z be a fresh

variable, and let E ′ = E0,Z :Eq(T0), {U .TYPE←Z}E1. By the definition of partenvsub, we have
partenvsubE ′ = partenvsubE0

{Z←T0}. Since Z is fresh, we have revealhmpartenvsubE ′{U .TYPE←Z}T =
revealhmpartenvsubE ′{U .TYPE←Z}T ′.
By Lemma F.31 (type preservation by module substitution in coloured judgements for type world judgements), since
E `hm T :Type, we get E ′ `hm {U .TYPE←Z}T :Type. Similarly we have E ′ `hm {U .TYPE←Z}T ′:Type.

By the previous case, E ′ `hm {U .TYPE←Z}T == {U .TYPE←Z}T ′.
By Lemma E.6 (environments have to be ok) and Lemma E.7 (prefixes of ok environments are ok), we
have E0,U :[X :Eq(T0),T1] `hm ok. Using Lemma E.8 (ok environments have no repetition in the do-
main), we get U /∈ {Z} ∪ dom ({U .TYPE←Z}E1), so by Lemma F.5 (combined weakening), we have
E0,U :[X :Eq(T0),T1],Z :Eq(T0), {U .TYPE←Z}E1 `hm {U .TYPE←Z}T == {U .TYPE←Z}T ′.
By (US.var) and (TK.mod), we have E0,U :[X :Eq(T0),T1] `hm U .TYPE:Eq(T0). By Lemma E.19 (com-
puting the pvu of a type world judgement), we can apply Lemma F.14 (type preservation by substitution).
We get E0,U :[X :Eq(T0),T1], {Z←U .TYPE}{U .TYPE←Z}E1 `hm {Z←U .TYPE}{U .TYPE←Z}T ==
{Z←U .TYPE}{U .TYPE←Z}T ′. Since Z was fresh, we have E `hm T == T ′, as desired.

Theorem I.7 (semantic interpretation of type world judgements) Let E `hm J be any type world judgement. It is
derivable iff all of the following conditions are met:

1. E has no repetition in the domain and unresolved free variables.

2. All the free variables of J are in dom E .

3. All the hashes in E `hm J are correct.

4. The following extra condition is met, depending on the form of J :

Case E `hm ok or E `hm K ok or E `hm T :Type or T `hm S ok: no extra condition.

Case E `hm T == T ′ or E `hm T :Eq(T ′): revealhmpartenvsubE T = revealhmpartenvsubE T ′.

Case E `hm K == K ′: either K = K ′ = Type, or there exist T and T ′ such that K = Eq(T ) and K ′ =
Eq(T ′) and E `hm T == T ′.

Case E `hm K <: K ′: either K ′ = Type, or there exist T and T ′ such that K = Eq(T ) and K ′ = Eq(T ′) and
E `hm T == T ′.

Case E `hm [X :K ,T ] <: [X :K ′,T ′]: E `hm K <: K ′ and E ,X :K `hm T == T ′.

Case E `hm U :[X :K ,T ]: E contains a binding of the form U :[X :K1,T2] for some K1 and T2, and E `hm

[X :Eq(U .TYPE),T2] <: [X :K ,T ].

Proof. If E `hm J , then E has no repetition in the domain and no unresolved free variables by Lemma E.6 (environments
have to be ok) and Lemma E.8 (ok environments have no repetition in the domain) and Lemma F.13 (ok environments
have no unresolved free variables); all the hashes in J are correct by Lemma E.5 (hashes have to be ok), and all the free
variables of J are in dom E by Lemma E.9 (free variables of a judgement come from the environment). We now assume
that conditions 1–3 are met, and prove that E `hm J is derivable iff condition 4 is met.

Cases E `hm ok, E `hm K ok, E `hm T :Type, E `hm [X :K ,T ] ok: Since there is no extra condition, we just have
to prove that the judgement is derivable. We induct on the length of E .

Case nil `hm ok: By condition 3 (if hm is a hash) or (hmok.zero) (if hm = •), we can derive ` hm ok, whence
we apply (envok.nil).

Case E , ζ:τ `hm ok: Given the (envok.*) rules, this judgement is derivable iff the judgement E `hm ζ:τ is. By
induction, these judgements are derivable.

Case E `hm T :Type: By the previous cases, E `hm ok is derivable. By Lemma F.9 (types are ok provided their
hashes are), E `hm T :Type is derivable.
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Case E `hm Type ok: By the previous cases, E `hm ok is derivable. Then we can derive E `hm Type ok by
(Kok.Type).

Case E `hm Eq(T ) ok: By the previous cases, E `hm ok is derivable. By Lemma F.9 (types are ok provided
their hashes are), E `hm T :Type is derivable. Then we can derive E `hm Eq(T ) ok by (Kok.Eq).

Case E `hm [X :K ,T ] ok: By the previous cases, E `hm K ok is derivable. By alpha-conversion, we can choose
X not in dom E . By (envok.X), we get a proof of E ,X :K `hm ok. By Lemma F.9 (types are ok provided
their hashes are), since fv T ⊆ fv [X :K ,T ] ∪ {X } ⊆ dom E ∪ {X }, E ,X :K `hm T :Type is derivable.
Then, by (Sok), we get E `hm [X :K ,T ] ok.

Case E `hm T == T ′: Note that by Lemma F.9 (types are ok provided their hashes are), we have E `hm T :Type and
E `hm T ′:Type. Apply Lemma I.6 (open interpretation of type equivalence).

Case E `hm T :Eq(T ′): Given (TK.Eq) and (Teq.Eq), this judgement is equivalent to E `hm T == T ′. Apply the
previous case.

Case E `hm K == K ′: Obvious from (Keq.*).

Case E `hm K <: K ′: Subcase K = K ′ = Type: Trivial.

Subcase K = Eq(T ) and K ′ = Type: By Lemma F.9 (types are ok provided their hashes are) and (Kok.Eq),
E `hm Eq(T ) ok is derivable. By Lemma E.6 (environments have to be ok) and (Kok.Type), we have
E `hm Type. By (Ksub.Eq), we have E `hm Eq(T ) <: Type.

Subcase K = Type and K ′ = Eq(T ′): By Lemma G.4 (discreteness of subkinding below Type) and the (Keq.*)

rules, this is impossible.

Subcase K = Eq(T ) and K ′ = Eq(T ′): If E `hm T == T ′ then E `hm Eq(T ) <: Eq(T ′) by (Keq.Eq) and
(Ksub.refl). The converse follows from Lemma G.4 (discreteness of subkinding below Type).

Case E `hm [X :K ,T ] <: [X :K ,T ′]: Apply Lemma F.26 (reversing subsignaturing judgement). Conversely, apply
(Ssub.struct).

Case E `hm U :[X :K ,T ]: Apply Lemma F.27 (reversing module value variable typing judgement) and Lemma F.28
(obtaining module value variable typing judgement).

Lemma I.8 (uniqueness of expression typing) If E `hm e:T then E `hm e:T ′ iff E `hm T == T ′.

Proof. If E `hm e:T and E `hm T == T ′ then E `hm e:T ′ by (eT.eq). Now we prove the converse by induction on
the structure of e. The crux of the matter is that (1) apart from (eT.eq), the expression typing rules are syntax-directed
and (2) type equivalence is a congruence.

We have E `hm e:T and E `hm e:T ′. By Lemma G.1 (shortening typing proof), there exist T1 and T ′1 such
that E `hm e:T1 and E `hm T ′1 by proofs Π and Π′ that do not end with (eT.eq), and E `hm T == T1 and
E `hm T ′ == T ′1. We now prove that E `hm T1 == T ′1; by (Teq.tran) and (Teq.sym) this gives E `hm T == T ′ as
desired. Note that it is enough to prove that T1 = T ′1. We do case analysis on the structure of e; in each case Π and Π′

have to end with the same rule.

Case e = x (eT.var): Then E contains a binding for x ; by Lemma E.6 (environments have to be ok) and Lemma E.8 (ok
environments have no repetition in the domain), this binding is unique, and the type attributed to x is T1 = T ′1.

Case e = U .term (eT.mod): Then there exist K and K ′ such that E `hm U :[X :K ,T1] and E `hm U :[X :K ,T ′1].
By Theorem I.7 (semantic interpretation of type world judgements) and Lemma F.26 (reversing subsignaturing
judgement), we see that there exists T2 such that E ,X :Eq(U .TYPE) `hm T2 == T1 and E ,X :Eq(U .TYPE) `hm

T2 == T ′1. By (Teq.tran) and (Teq.sym), we get E ,X :Eq(U .TYPE) `hm T1 == T ′1. Since E `hm T1:Type and
E `hm T ′1:Type, by Lemma E.9 (free variables of a judgement come from the environment), X /∈ fv T1 ∪ fv T ′1.
Hence, by Lemma F.15 (strengthening), we get E `hm T1 == T ′1 as desired.

Case e = e1 e2 (eT.ap): Then there exist T2 and T ′2 such that E `hm e1:T2→T1 and E `hm e ′1:T ′2→T ′1. By induction,
we get E `hm T2→T1 == T ′2→T ′1. By Lemma I.6 (open interpretation of type equivalence) applied once in each
direction, we get E `hm T1 == T ′1 as desired.
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Case e = λx :T0.e0 (eT.fun): Then there exist T2 and T ′2 such that T1 = T0→T2 and T1 = T0→T ′2 and E , x :T0 `hm

e0:T2 and E , x :T0 `hm e0:T ′2. By induction we get E , x :T0 `hm T2 == T ′2. By Lemma E.21 (types do not
contain free expression variables) and Lemma F.15 (strengthening), we get E `hm T2 == T ′2. By (Teq.refl) and
(Teq.cong.fun), we get E `hm T1 == T ′1 as desired.

Cases e = ! e0, e = () (eT.send, eT.unit): Then T1 = UNIT = T ′1.

Cases e = ?, e = mar (e0:T0), e = marshalled (e0:T0) (eT.recv, eT.mar, eT.marred): Then T1 = STRING = T ′1.

Cases e = unmar e0:T0, e = UnmarFailureT0 , e = [e0]T0

hm0
(eT.unmar, eT.Undynfailure, eT.col):

Then T1 = T0 = T ′1.

Case e = (e1, ..., ej) (eT.tuple): Similar to the (eT.fun) case, using (Teq.cong.tuple).

Case e = proji e0 (eT.proj): Similar to the (eT.ap) case.

Definition I.9 (reconstructed type of an expression) We define the reconstructed type of an expression e in an
environment E and a colour hm , written basictypeE

hm e, recursively as follows:
basictypeE

hm (x ) = σE
hmT where E = ..., x :T , ...

basictypeE
hm (U .term) = σE

hm{X←U .TYPE}T where E = ...,U :[X :K ,T ], ...

basictypeE
hm (λx :T0.e0) = (σE

hmT0)→(basictypeE ,x :T0

hm e0)

basictypeE
hm (e1 e2) = T1 where basictypeE

hm e1 = T2→T1

basictypeE
hm ((e1, ..., ej)) = basictypeE

hm e1 ∗ ... ∗ basictypeE
hm ej

basictypeE
hm (proji e0) = Ti where basictypeE

hm e0 = T1 ∗ ... ∗ Tj
basictypeE

hm (mar (e0:T0)) = STRING

basictypeE
hm (marshalled (e0:T0)) = STRING

basictypeE
hm (unmar e0:T0) = σE

hmT0

basictypeE
hm (! e0) = UNIT

basictypeE
hm (?) = STRING

basictypeE
hm ([e0]T0

hm0
) = σE

hmT0

basictypeE
hm (UnmarFailureT0) = σE

hmT0

where σE
hm = revealhmpartenvsubE .

Note that this definition basictypeE
hm is partial: it fails if a subexpression does not have a type of the required form

(cases e1 e2, (e1, ..., ej)) or if a variable is not bound by the environment (cases x , U .term).

Lemma I.10 (simplicity of the reconstructed type) If basictypeE
hm e is well-defined, it contains no hm , nor does it

contain any variable that is bound concretely in E .

Proof. Trivial by induction.

Lemma I.11 (assurance of correctness of the reconstructed type) If E `hm e:T then basictypeE
hm e is well-defined

and E `hm e:basictypeE
hm e.

Proof. Induct on the derivation of E `hm e:T . By Lemma G.1 (shortening typing proof), there exists T ′ such that
E `hm e:T ′ by a subproof Π that does not end in (eT.eq), and E `hm T ′ == T . Note that by Lemma I.6 (open
interpretation of type equivalence), revealhmpartenvsubE T = revealhmpartenvsubE T ′. We discriminate on the last
rule of Π.

Case (eT.var): We have E = E0, x :T ′,E1 and e = x . By Lemma I.4 (stability of types through revelation), E `hm

T ′ == revealhmpartenvsubE T ′, so by (eT.eq) we get E `hm x :revealhmpartenvsubE T ′ as desired.

Case (eT.mod): The premises are E `hm U :[X :K ,T ] and E `hm T :Type. By Theorem I.7 (semantic interpretation
of type world judgements) and Lemma F.26 (reversing subsignaturing judgement), there exist E0, E1, K ′ and T ′

such that E = E0,U :[X :K ′,T ′],E1 and E ,X :Eq(U .TYPE) `hm T ′ == T . By Lemma E.9 (free variables
of a judgement come from the environment), we have X /∈ fv T . By Lemma E.19 (computing the pvu of a type
world judgement) and Lemma F.14 (type preservation by substitution), we have E `hm {X←U .TYPE}T ′ ==
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T . By Lemma I.4 (stability of types through revelation) and (Teq.tran) and (Teq.sym), we have E `hm T ==
revealhmpartenvsubE{X←U .TYPE}T ′ as desired.

Case (eT.fun): There exist T1 and T2 such that e = λx :T1.e1 and T ′ = T1→T2, and the premise is
E , x :T1 `hm e1:T2. By induction, E , x :T1 `hm e1:basictypeE ,x :T1

hm e1. Thus, by (eT.fun), we get E `hm

λx :T1.e1:T1→basictypeE ,x :T1

hm e1. By Lemma I.4 (stability of types through revelation), we have E `hm

revealhmpartenvsubE T1 == T1, whence the desired result by (Teq.cong.fun).

Case (eT.ap): There exist e1, e2 and T2 such that e = e1 e2 the premises are E `hm e1:T2→T ′ and E `hm

e2:T2. By induction, we have E `hm e1:basictypehm
E e1. By Lemma I.8 (uniqueness of expression typ-

ing), we have E `hm basictypehm
E e1 == T2→T ′. By Lemma I.10 (simplicity of the reconstructed type),

partenvsubhm(basictypehm
E e1) = basictypehm

E e1. By using Lemma F.14 (type preservation by substitution)
and Lemma F.33 (type preservation by fully carried out module substitution) once for each concrete binding in E ,
we get that E ′ `basictypehm

E e1
== (partenvsubE T2)→(partenvsubE T ′) with E ′ fully abstract. By Lemma G.11

(type decomposition), and given that basictypehm
E e1 6= hm by Lemma I.10 (simplicity of the reconstructed type),

basictypehm
E e1 must have the form T ′2→T ′1, with E ′ `hm T ′1 == T1. By Lemma I.6 (open interpretation of type

equivalence) applied once in each direction, we have E `hm T ′1 == T ′. Thus E `hm (basictypeE
hm e) == T ′,

whence the desired result.

Case (eT.tuple): Similar to the lambda-abstraction case.

Case (eT.proj): Similar to the application case.

Cases (eT.mar), (eT.marred), (eT.send), (eT.recv): Trivial.

Case (eT.unmar), (eT.col), (eT.Undynfailure): Trivial.

Lemma I.12 (validity of the reconstructed type) If basictypeE
hm e is well-defined and E `hm ok then E `hm

basictypeE
hm e:Type and E `hm e:basictypeE

hm e.

Proof. Induct on the structure of e. The rules to define basictypeE
hm were chosen on purpose. Some steps apply

revealhmpartenvsubE , which produces an equivalent type by an easy application of Lemma I.6 (open interpretation
of type equivalence).

Corollary I.13 (deciding expression typing through type reconstruction) E `hm e:T is derivable iff basictypeE
hm e

is well-defined and revealhmpartenvsubE T = basictypeE
hm e and E `hm T :Type.

Proof. If E `hm e:T is derivable then, by Lemma I.11 (assurance of correctness of the reconstructed type),
basictypeE

hm e is well-defined and E `hm e:basictypeE
hm e. By Lemma I.8 (uniqueness of expression typing),

E `hm T == basictypeE
hm e. By Lemma I.10 (simplicity of the reconstructed type) and Lemma I.6 (open inter-

pretation of type equivalence), revealhmpartenvsubE T = basictypeE
hm e. Finally, E `hm T :Type by Lemma E.6

(environments have to be ok).
Conversely, assume basictypeE

hm e is well-defined and revealhmpartenvsubE T = basictypeE
hm e and E `hm

T :Type. By Lemma E.6 (environments have to be ok) and Lemma I.12 (validity of the reconstructed type), we have
E `hm e:basictypeE

hm e. By Lemma I.10 (simplicity of the reconstructed type) and Lemma I.6 (open interpretation of
type equivalence), E `hm (basictypeE

hm e) == T . Thus, by (eT.eq), we have E `hm e:T .

Theorem I.14 (decidability of type checking) There is algorithm that decides whether any given judgement ζ /∈ dom E ,
` hm ok, E `hm J or ` n ok is derivable.

Note that given Lemma I.12 (validity of the reconstructed type), type checking for expressions does not in fact need to
be given a type, it can infer it. As in the simply-typed lambda-calculus, of course, we need to annotate function arguments;
and we also have explicit type annotations on the dynamic typing constructs and coloured brackets.
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Proof. We explain how to reduce the decidability of a judgement to the decidability of a number of strictly smaller
judgements, the size of a judgement being here the lexically ordered pair (a, b) where a is the number of expression
syntax nodes (including those inside hashes) and b is the total size of the judgement.

By Lemma E.3 (non-membership in domain is interpreted trivially), we get a decision procedure for checking deriv-
ability of ζ /∈ dom E judgements, provided we have a decision procedure for checking correctness of embedded hashes.

For type world judgements, Theorem I.7 (semantic interpretation of type world judgements) easily translates into an
algorithm.

Given the rules (hmok.*), (MS.struct), (mT.*), and (nok.*), decidability of derivability for judgements of the form
` hm ok, E `hm M :S , E `hm m:T , and ` n ok follows from decidability of smaler type world and expression typing
judgements.

For expression typing, Corollary I.13 (deciding expression typing through type reconstruction) gives a decision pro-
cedure: to decide whether E `hm e:T is derivable, construct basictypeE

hm e (if this fails, then e has no type), and check
some smaller type world jdugements.

Definition I.15 (user source program) User source programs are programs that contain no hashes or coloured brackets.

Discussion I.16 (decidability of type checking for user programs) User source programs can be type checked without
any computation on hashes. Following the decision procedure given in the previous proofs, type checking does not
introduce extra hashes, hence hash-free programs can be checked without ever encountering hashes.

I.2 Bracket elimination

Definition I.17 (bracket elimination subsystem) The bracket elimination subsystem is a reduction relation −→
be

hm on

expressions consisting of (ered.cong) and the (ered.col.*) rules.

Lemma I.18 (determinism of bracket elimination) Bracket elimination is deterministic.

Proof. Trivial consequence of Theorem H.11 (determinism of expression reduction).

Lemma I.19 (termination of bracket elimination) Bracket elimination is strongly normalising.

Proof. Define the bracket elimination weight of an expression wbe(e) structurally on the expression.
wbe(()) = 1

wbe((e1, ..., ej)) = wbe(e1) + · · ·+ wbe(ej) + 1
wbe(proji e) = wbe(e) + 1

wbe(x ) = 1
wbe(λx :T .e) = 1
wbe(e1 e2) = wbe(e1) + wbe(e2) + 1

wbe(mar (e:T )) = wbe(e) + 1
wbe(marshalled (e:T )) = wbe(e) + 1

wbe(unmar e:T ) = wbe(e) + 1
wbe(! e) = wbe(e) + 1
wbe(?) = 1

wbe(U .term) = 1
wbe([e]Thm) = 2wbe(e)

wbe(UnmarFailureT ) = 1
It is obvious that wbe(e) is always a positive integer.

We prove that if e −→
be

hme ′ then wbe(e) > wbe(e ′). We induct on the derivation of the reduction.

Case (ered.col.unit): Here e = [()]UNIT
hm′ and e ′ = (). We have wbe(e) = 2 > 1 = wbe(e ′).

Case (ered.col.tuple): Here e = [(v hm′
1 , ..., vhm′

j )]
T1∗...∗Tj
hm′ and e ′ = ([vhm′

1 ]T1

hm′ , ..., [v
hm′
j ]

Tj
hm′). We have wbe(e) =

2(1 +
∑
i wbe(vhm′

i )) >
∑
i 2wbe(vhm′

i ) = wbe(e ′).

Case (ered.col.fun): Here e = [λx :T .e0]T
′→T ′′

hm′ and e ′ = λx :T ′.[{x←[x ]T
′

hm}e0]T
′′

hm′ . We have wbe(e) = 2 > 1 =
wbe(e ′)
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Case (ered.col.marred): Here e = [marshalled (e0:T )]STRING
hm′ and e ′ = marshalled (e0:T ). We have wbe(e) =

2(1 + wbe(e0)) > 1 + wbe(e0) = wbe(e ′).

Case (ered.col.col): Here e = [[v h0 ]h0

h0
]h0

h1
and e ′ = [vh0 ]v

h0

vh0
. We have wbe(e) = 2wbe(e ′) > wbe(e ′).

Case (ered.col.le): Here e = [v hm′ ]h
′′

hm′ and e ′ = vhm′ . We have wbe(e) = 2wbe(e ′) > wbe(e ′).

Case (ered.cong): Here e = C hm
hm0

e0 and e ′ = C hm
hm0

e ′0 and e0 −→
be

hm0
e ′0. By induction, wbe(e0) > wbe(e ′0). If

C hm
hm0

= [ ]T0

hm0
, then wbe(e) = 2wbe(e0) > 2wbe(e ′0) = wbe(e ′). Otherwise, there exists an integer k such that

wbe(e) = k + wbe(e0) > k + wbe(e ′0) = wbe(e ′).

Since the weight of an expression is a positive integer that decreases at each step of reduction, bracket elimination is
strongly normalising (bracket elimination of e terminates in at most wbe(e) steps).

Definition I.20 (bracket erasure) If ℵ is any syntactic entity, erase brackets(ℵ) is ℵ with all brackets outside hashes
erased. In particular, erase brackets(h) = h , and erase brackets([e]Thm) = erase brackets(e).

Definition I.21 (colourless proof) A colourless proof is one that does not use (hmok.hash) nor (eT.col).

A colourless expression, type, etc., is one whose validity can be derived by a colourless proof. It is left as an exercise
to the reader to prove that colourless types are those that contain no hashes and colourless expressions are those that
contain no brackets and whose type annotations only use colourless types.

Definition I.22 (bracketless expressions) A bracketless expression is one that does not have any coloured brackets in
it. Ditto for values, contexts, and networks.

Definition I.23 (bracketless reductions) Define e −→
nb

e ′ on bracketless expressions as given by the (ered.*) rules other

than (ered.col.*), with the right-hand sides modified to not introduce brackets, namely:

• (ered.ap) becomes (λx :T .e)v −→
nb
{x←v}e;

• (ered.mar) becomes mar (e:T ) −→
nb

marshalled (e:T ).

Also define n −→
nb

n ′ for networks in the obvious way.

Lemma I.24 (progress and determinism of bracketless expression reduction) If è is a bracketless expression then
exactly one of the following cases holds:

• è is a bracketless value;

• è is dormant, i.e. is UnmarFailureT or a communication in a bracketless evalution context;

• è reduces by −→
nb

; moreover there is exactly one rule with one redex applicable.

Proof. Use Theorem H.6 (progress of expressions) for the “at least one” part. Similar to the proof of Theorem H.11
(determinism of expression reduction) for the “at most one” part.

Theorem I.25 (bracket erasure preserves expression reduction outcomes) If nil `hm e:T and e −→hm e ′ then
erase brackets(e) −→

nb

?erase brackets(e ′).

Proof. (Sketch.) Induct on the derivation of the reduction. If e −→hm e ′ by one of the bracket pushing
rules, then erase brackets(e) = erase brackets(e ′) (check each case). If e −→hm e ′ by another rule, then
erase brackets(e) −→

nb
erase brackets(e ′) (check each case, noticing that if v hm1 is a value then erase brackets(v hm1)

is a bracketless value). Finally, the case of (ered.cong) follows by induction.

Theorem I.26 (bracket erasure preserves reduction outcomes) If ` n ok and n −→ n ′ then
erase brackets(n) −→

nb

?erase brackets(n ′).

Proof. Follows from Theorem I.25 (bracket erasure preserves expression reduction outcomes).
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Theorem I.27 (bracket erasure does not add expression reduction outcomes) If nil `hm e:T and
erase brackets(e) −→

nb
è then there exists e ′ such that erase brackets(e ′) = è and e −→+

hm e ′

Proof. By Theorem H.6 (progress of expressions) and Lemma I.19 (termination of bracket elimination), there exists a
sequence of expressions e = e0, e1, ..., ej such that ei−1 −→

be
hmei for 1 6 i 6 j and ej does not reduce by any bracket

pushing rule. By definition, erase brackets(e) = erase brackets(ej). Thus by hypothesis, erase brackets(ej) −→
nb

è.

By Theorem H.6 (progress of expressions) one of the following cases holds:

Case ej is an hm-value: Then erase brackets(ej) is a bracketless value, so by Lemma I.24 (progress and determinism
of bracketless expression reduction) does not reduce by −→

nb
, a contradiction.

Case ej is dormant: Then erase brackets(ej) is a bracketless dormant expression, so by Lemma I.24 (progress and
determinism of bracketless expression reduction) does not reduce by −→

nb
, a contradiction.

Case ej reduces: Therefore there exists e ′ such that ej −→hm e ′, a non bracket pushing reduction. Hence
erase brackets(ej) −→

nb
erase brackets(e ′). By Lemma I.24 (progress and determinism of bracketless expres-

sion reduction), erase brackets(e ′) = è.

Theorem I.28 (bracket erasure does not add reduction outcomes) If ` n ok and erase brackets(n) −→
nb

n0 then there

exists n ′ such that erase brackets(n ′) = n0 and n −→+ n ′

This means we can erase all brackets once all the modules have been reduced away. Clearly−→
nb

is not type preserving

but it represents a possible implementation strategy.

Proof. Follows from Theorem I.27 (bracket erasure does not add expression reduction outcomes).

We might hope that: If ` n ok then n −→∗ n ′ iff erase brackets(n) −→
nb

∗erase brackets(n ′).

This is not true! Counterexample: erase brackets(3) −→
nb

=erase brackets([3]INT
h ) but not 3 −→∗• [3]INT

h

Definition I.29 (type erasure) We define erase(e) to be e with all type annotations and brackets erased except that the
type annotations on mar , marshalled , and unmar are left unchanged. Ditto for networks. We define−−−→

erase
to be like

−→hm by taking the erase-image of the left- and right-hand sides of each rule (and removing rules that would become
e −−−→

erase
e). Ditto for networks.

Note that erased terms do not form a subsyntax of our usual syntax since e.g. erase(λx :T .e) = (λx .e). We will not
make explicit any formal reasoning about erased terms so do not construct this new syntax explicitly.

Note that the only difference between erase(e) and erase brackets(e) is that the former removes type annotations
from lambda-expressions. Moreover,−−−→

erase
is the same as−→

nb
except that the type annotations in the lambda-expressions

are erased.

Theorem I.30 (type erasure) Assume ` n ok. We have that n −→ n ′ implies erase(n) −−−→
erase

?erase(n ′). Conversely,

erase(n) −−−→
erase

n0 implies that there exists n ′ such that erase(n ′) = n0 and n −→+ n ′.

Proof. By Theorem I.26 (bracket erasure preserves reduction outcomes) and Theorem I.28 (bracket erasure does not add
reduction outcomes), the theorem holds for erase brackets in place of erase. Note that the type annotation T in λx :T .e
never influences −→

nb
reduction, as desired.
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J Coincidence of undyn-time type checking and static type checking

We prove a theorem relating the undyn-tyime type checking in a single machine to static typechecking.

Definition J.1 (multiple-let context)

CL ::= multiple-let context
identity

module NU = M :S in CL module declaration

Definition J.2 (correct multiple-let context) A multiple-let context CL is correct in E if the following (recursive)
properties hold:

Case CL = : We require E `• ok.

Case CL = module NU = M :S in CL′: We require E `• M :S and CL′ is correct in E ,U :S .

We say CL is correct if CL is correct in nil.

Lemma J.3 (correct multiple-let contexts yield ok environments) If CL is correct in E then E , envofcl CL `• ok.

Proof. Induct on the length of CL.

Case CL = : By the definition of correctness, E `• ok, as desired.

Case CL = module NU = M :S in CL′: Then envofcl CL = U :S , envofcl CL′. By definition of correctness,
E ,U :S `• ok and CL′ is correct in E ,U :S . By induction, E ,U :S , envofcl CL′ `• ok, i.e. E , envofcl CL `• ok
as desired.

Lemma J.4 (machine judgement characterisation of correct multiple-let contexts) CL is a correct multiple-let con-
text iff nil `• CL():UNIT.

Proof. We prove that CL is correct in E iff E `• CL():UNIT. We induct on the length of CL.

Case CL = : If CL is correct in E , then E `• ok whence by (eT.unit) E `• ():UNIT. Conversely, assume E `•
():UNIT: by Lemma E.6 (environments have to be ok), we get E `• ok, i.e. CL is correct in E .

Case CL = module NU = M :S in CL′, forward direction: We have that E `• M :S and CL′ is correct in E ,U :S .
By induction, E ,U :S `• CL′():UNIT. By (mT.let), we get E `• module NU = M :S in CL′():UNIT, as desired.

Case CL = module NU = M :S in CL′, backward direction: We have E `• CL():UNIT. By reversing (mT.let), we
get E `• M :S and E ,U :S `• CL′():UNIT. By induction, CL′ is correct in E ,U :S . By definition of correctness,
CL is correct in E .

Lemma J.5 (peeling outer let from a multiple-let context preserves correctness) Let CL be a multiple-let context.

1. If CL = module NU = [T , v •]:[X :Eq(T ′′),T ′] in CL′ is correct then σCL′ is correct, where σ =
{U .TYPE←T ′′,U .term←v •}.

2. If CL = module NU = [T , v •]:[X :Type,T ′] in CL′ is correct then σCL′ is correct where σ =

{U .TYPE←h,U .term←[v •]
{X←h}T ′
h } and h = hash(N , [T , v •]:[X :Type,T ′]).

Proof. By Lemma J.4 (machine judgement characterisation of correct multiple-let contexts), the hypotheses are equiv-
alent to nil `• CL():UNIT and the conclusions are equivalent to nil `• σCL′():UNIT. By the definition of machine
reduction CL() −→• σCL′() in both cases. By Theorem G.18 (type preservation for machine reduction), we get
nil `• σCL′():UNIT, as desired.

Now we define a metafunction hashlistofcl which maps a multiple-let context to a list of the corresponding hashes:



Global abstraction-safe marshalling with hash types 77

Definition J.6 (hash list of a multiple-let context)

hashlistofcl = ()

hashlistofcl (module NU = [T , v •]:[X :Eq(T ′′),T ′] in CL) = hashlistofcl ({U .TYPE←T ′′,U .term←v •}CL)

hashlistofcl (module NU = [T , v •]:[X :Type,T ′] in CL) = h,hashlistofcl (σCL)

where h = hash(N , [T , v •]:[X :Type,T ′]) and σ = {U .TYPE←h,U .term←[v •]
{X←h}T ′
h }

Definition J.7 (no shadowing in a multiple-let context) There is no shadowing in the multiple-let context CL iff
hashlistofcl CL contains no repetitions.

Definition J.8 (environment corresponding to a multiple-let context)

envofcl = nil

envofcl (module NU = M :S in CL) = U :S , envofcl CL

Definition J.9 (substitution corresponding to a multiple-let context)

subofcl = id

subofcl (module NU = [T , v •]:[X :Eq(T ′′),T ′] in CL) = (subofclσCL )σ

where σ = {U .TYPE←T ′′,U .term←v •}
subofcl (module NU = [T , v •]:[X :Type,T ′] in CL) = (subofclσCL )σ

where σ = {U .TYPE←h,U .term←[v •]
{X←h}T ′
h }

and h = hash(N , [T , v •]:[X :Type,T ′])

Lemma J.10 (substituting through the partial type substitution associated to an environment) Let µ be any substitu-
tion of the form {χ1←η1, ..., χj←ηj}where (D∪R)∩dom E = ∅where D = fvχ1∪...∪fvχj and R = fv η1∪...∪fv ηj .
Then µpartenvsubE = partenvsubµEµ.

Proof. Induct on the length of E . The only non-trivial cases are as follows:

Case E = E ′,X :Eq(T ): Then µpartenvsubE = µpartenvsubE ′{X←T}. Since dom E ′ ⊆ dom E , we can apply
induction to get that the last composition is equal to partenvsubµE ′µ{X←T}. Since X /∈ D ∪ R, we can further
rewrite the composition as partenvsubµE ′{X←µT}µ = partenvsubµ(E ′,X :Eq(T))µ, as desired.

Case E = E ′,U :[X :Eq(T ),T ′]: similar to the previous.

Note that in the previous result we refer to fvχ0, not just χ0, since χ0 could be of the form U .TYPE or U .term.

Lemma J.11 (partial type substitution associated to an environment via left folding) Let partenvsubE be as in
Definition I.2 (partial type substitution associated to an environment). Then

partenvsubnil = id

partenvsubx :T ,E = partenvsubE

partenvsubX :Type,E = partenvsubE

partenvsubX :Eq(T),E = {X←T}partenvsubE

partenvsubU :[X :Type,T ′],E = partenvsubE

partenvsubU :[X :Eq(T),T ′],E = {U .TYPE←T}partenvsubE

Proof. Follows from the associativity of substitution composition.

Definition J.12 (partially ok environment) An environment E is partially ok if it has no repetition in the domain and
all decompositions E = E0,E1 have the property ufv E0 ∩ dom E1 = ∅.

Lemma J.13 (ok environments are partially ok) If E `hm ok then E is partially ok.
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Proof. If E `hm ok then E has no repetition in the domain by Lemma E.8 (ok environments have no repetition in the
domain). By Lemma E.7 (prefixes of ok environments are ok) and Lemma F.13 (ok environments have no unresolved free
variables), ufv E0 = ∅, whence ufv E0 ∩ dom E1 = ∅.

Lemma J.14 (partial type substitution associated to an environment, alternative characterisation) Let E be a
partially ok environment. Let partenvsubE be as in Definition I.2 (partial type substitution associated to an environment).
Let

σ′nil = id

σ′x :T ,E = σ′E

σ′X :Type,E = σ′E

σ′X :Eq(T),E = σ′{X←T}E{X←T}
σ′U :[X :Type,T ′],E = σ′E

σ′U :[X :Eq(T),T ′],E = σ′{U .TYPE←T}E{U .TYPE←T}

Then partenvsubE = σ′E .

Proof. Induct on the length of E . By Lemma J.11 (partial type substitution associated to an environment via left folding)
most cases are trivial, except for the following:

Case E = X :Eq(T ),E ′: By Lemma J.11 (partial type substitution associated to an environment via left folding),
partenvsubE = {X←T}partenvsubE ′ . Since E is partially ok, ({X } ∪ fv T ) ∩ dom E ′ = ∅. Thus by Lemma
J.10 (substituting through the partial type substitution associated to an environment), we have that the composition
is equal to partenvsub{X←T}E ′{X←T}. Since {X←T}E ′ is also partially ok, by induction the composition is
equal to σ′{X←T}E ′{X←T} = σ′X :Eq(T),E ′ , as desired.

Case E = E ′,U :[X :Eq(T ),T ′]: similar.

Lemma J.15 (correspondence between open and hashed interpretation of type equivalence) Let CL be a multiple-let
context. Suppose

1. CL has no shadowing.

2. CL is correct.

3. None of the hashes in CL is in hashlistofcl CL.

4. For all i = 0, 1 we have that none of the hashes in Ti is in hashlistofcl CL.

5. For all i = 0, 1 we have that envofcl CL `• Ti:Type.

Let partenvsubE be the substitution from Definition I.2 (partial type substitution associated to an environment). Then
partenvsubenvofcl CLT0 = partenvsubenvofcl CLT1 iff subofcl CL T0 = subofcl CL T1.

Proof. We freely use Lemma J.14 (partial type substitution associated to an environment, alternative characterisation)
with Lemma J.13 (ok environments are partially ok) to reason about partenvsub.

We will prove some useful properties, then consider each of the mutual implications.

Prelude Prelude of the prelude Suppose that CL = module NU = M :S in CL′. Write M :S = [T , v •]:[X :K ,T ′].
Let σ = {U .TYPE←typepart (N ,M :S ),U .term←termpart (N ,M :S )} and CL′′ = σCL′.
By hypothesis 2 and Definition J.2 (correct multiple-let context), nil `• M :S . By Lemma E.9 (free variables
of a judgement come from the environment), U /∈ fv M ∪ fv S . Whether S is concrete or abstract, this implies
that U /∈ fv typepart (N ,M :S ) and U /∈ fv termpart (N ,U :S ). Hence

{U .term←termpart (N ,M :S )}{U .TYPE←typepart (N ,M :S )}
= {U .TYPE←typepart (N ,M :S ),U .term←termpart (N ,M :S )}

= {U .TYPE←typepart (N ,M :S )}{U .term←termpart (N ,M :S )}.
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We will use this fact freely throughout the proof.

By Lemma E.21 (types do not contain free expression variables), {U .term←termpart (N ,M :S )}Ti = Ti,
whence σTi = {U .TYPE←typepart (N ,M :S )}Ti.

By Lemma E.23 (expression substitution in environment) applied to envofcl CL = (U :S , envofcl CL′)
(which is correct by hypothesis 2 and Lemma J.3 (correct multiple-let contexts yield ok environments)),
{U .term←termpart (N ,M :S )}envofcl CL′ = envofcl CL′, whence envofcl CL′′ = σenvofcl CL′ =
{U .TYPE←typepart (N ,M :S )}envofcl CL′.

We now show that the numbered hypotheses hold for CL′′ in place of CL and σTi in place of Ti.

Prelude: concrete case: K = Eq(T ′′) 1. By definition, hashlistofcl CL′′ = hashlistofcl CL, therefore, CL′′

contains no shadowing since CL contains no shadowing (hypothesis 1).

2. Since CL is correct by hypothesis 2, by Lemma J.5 (peeling outer let from a multiple-let context preserves
correctness), CL′′ is correct.

3. Each hash in CL′′ in an element of the union of the hashes in T ′′ and v• and CL′, which is disjoint from
hashlistofcl CL = hashlistofcl CL′′ by hypothesis 3.

4. Each hash in σTi = {U .TYPE←T ′′}Ti is an element of the union of the hashes in T ′′ and Ti, which is
disjoint from hashlistofcl CL = hashlistofcl CL′′ by hypotheses 3 (for T ′′) and 4.

5. By hypothesis 5, for i = 0, 1 we have U :[X :Eq(T ′′),T ′], envofcl CL′ `• Ti:Type. By
Lemma F.32 (simplified module and type equality substitution for type world judgements),
{U .TYPE←T ′′}(envofcl CL′) `• {U .TYPE←T ′′}Ti:Type, i.e. envofcl CL′′ `• σTi:Type.

Prelude: abstract case: K = Type Let h = hash(N ,M :[X :Type,T ′]).

1. By definition, (h,hashlistofcl CL′′) = hashlistofcl CL, therefore, CL′′ contains no shadowing since CL
contains no shadowing (hypothesis 1).

(†) Also, since CL contains no shadowing, h is not in hashlistofcl CL′′ (used below).

2. Since CL is correct by hypothesis 2, by Lemma J.5 (peeling outer let from a multiple-let context preserves
correctness), CL′′ is correct.

3. Each hash in CL′′ in an element of the union of {h} and the hashes in T ′′ and v• and CL′.
By (†), h does not appear in hashlistofcl CL′′. By hypothesis 3, the hashes in T ′′ and v• and CL′ do not
appear in hashlistofcl CL, hence do not appear in hashlistofcl CL′′.

4. Each hash in σTi is an element of the union of {h} and the hashes in T ′′ and v• and Ti, which is disjoint
from hashlistofcl CL′′, by (†) (for h) and hypothesis 3 (for T ′′ and v•) and hypothesis 4 (for Ti).

5. By hypothesis 5, for i = 0, 1 we have envofcl CL `• Ti:Type, i.e. U :[X :Type,T ′], envofcl CL′ `•
Ti:Type. Given nil `• [T , v•]:[X :Type,T ′], we can apply Lemma F.33 (type preservation by fully
carried out module substitution) to get σenvofcl CL′ `• σTi:Type, i.e. envofcl CL′′ `• σTi:Type.

We also prove that partenvsubenvofcl CL′′σ = σpartenvsubenvofcl CL′ .

Let D = {U } be the variables in the domain of σ. Let R = fv h ∪ fv ([v •]
{X←h}T ′
h ) be the free variables in

the range of σ. By standard reasoning about free variables and substitutions, R = fv h∪ fv v •∪(fv T ′ \{X }).

By hypothesis 2 and Definition J.2 (correct multiple-let context), nil `• [T , v•]:[X :Type,T ′]. By Lemma
E.9 (free variables of a judgement come from the environment) and the definition of free variables, fv v • = ∅
and fv T ′ ⊆ {X }. Also, given nil `• [T , v•]:[X :Type,T ′], we have ` h ok by (hmok.hash), whence by
Lemma E.9 (free variables of a judgement come from the environment) fv h = ∅.

By Lemma J.3 (correct multiple-let contexts yield ok environments), envofcl CL `• ok. By Lemma E.8 (ok
environments have no repetition in the domain), U /∈ dom CL′.

In summary, (D ∪ R) ∩ dom (envofcl CL′) = ∅. By Lemma J.10 (substituting through the partial
type substitution associated to an environment), partenvsubenvofcl CL′′σ = partenvsubσenvofcl CL′σ =
σpartenvsubenvofcl CL′ .

Direction partenvsubenvofcl CLT0 = partenvsubenvofcl CLT1 implies subofcl CL T0 = subofcl CL T1: Induct on the
length of CL.

Case CL = : By hypothesis, T0 = T1, as desired.
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Concrete case: CL = (module NU = [T , v •]:[X :Eq(T ′′),T ′] in CL′): We can write the hypothesis as
partenvsub{U .TYPE←T ′′}(envofcl CL′){U .TYPE←T ′′}Ti is constant w.r.t. i ∈ {0, 1}). By the prelude
to the prelude, envofcl CL′′ = {U .TYPE←T ′′}(envofcl CL′) and σTi = {U .TYPE←T ′′}Ti, so
partenvsub(envofcl CL′′)σTi is constant w.r.t. i ∈ {0, 1}).
By the prelude (concrete case), we can apply induction. We get that subofcl CL′′ σTi is constant w.r.t. i ∈
{0, 1}). By Definition J.9 (substitution corresponding to a multiple-let context), we have subofcl CL Ti is
constant w.r.t. i ∈ {0, 1}) as desired.

Abstract case: CL = (module NU = [T , v •]:[X :Type,T ′] in CL′): We can write the hypothesis as
partenvsubenvofcl CL′Ti is constant w.r.t. i ∈ {0, 1}). Thus, σpartenvsubenvofcl CL′Ti is constant w.r.t.

i ∈ {0, 1}), where σ = {U .TYPE←h,U .term←[v •]
{X←h}T ′
h } and h = hash(N , [T , v •]:[X :Type,T ′]).

Let CL′′ = σCL′. By the prelude (abstract case), σpartenvsubenvofcl CL′ = partenvsubenvofcl CL′′σ. There-
fore partenvsubenvofcl CL′′σTi is constant w.r.t. i ∈ {0, 1}).
Given the prelude (abstract case), we can apply induction. We get that subofcl (envofcl (CL′′))σTi is constant
w.r.t. i ∈ {0, 1}). Hence by definition, subofcl (envofcl CL) Ti is constant w.r.t. i ∈ {0, 1}), as desired.

Direction subofcl CL T0 = subofcl CL T1 implies partenvsubenvofcl CLT0 = partenvsubenvofcl CLT1: Induct on the
length of CL.

Case CL = : By hypothesis, T0 = T1, as desired.

Concrete case: CL = (module NU = [T , v •]:[X :Eq(T ′′),T ′] in CL′): Recall that CL′′ = σCL′ and σ =
{U .TYPE←T ′′,U .term←v •}. We have subofcl CL = subofcl CL′′ σ. Our hypothesis is therefore that
subofcl CL′′ σTi is constant w.r.t. i ∈ {0, 1}).
By the prelude (concrete case), we can apply induction. We get partenvsubenvofcl CL′′σTi is constant w.r.t.
i ∈ {0, 1}). By the prelude to the prelude, partenvsub{U .TYPE←T ′′}envofcl CL′{U .TYPE←T ′′}Ti is constant
w.r.t. i ∈ {0, 1}).
By Lemma J.14 (partial type substitution associated to an environment, alternative characterisation),
partenvsubenvofcl CL = partenvsub{U .TYPE←T ′′}envofcl CL′{U .TYPE←T ′′}.
Thus partenvsubenvofcl CLTi is constant w.r.t. i ∈ {0, 1}) as desired.

Abstract case: CL = (module NU = [T , v •]:[X :Type,T ′] in CL′): By hypothesis, subofcl CL′′ σTi is con-
stant w.r.t. i ∈ {0, 1}). By the prelude (abstract case), we can apply induction, getting
partenvsubenvofcl CL′′σTi is constant w.r.t. i ∈ {0, 1}).
By the prelude to the prelude, partenvsub{U .TYPE←T ′′}envofcl CL′{U .TYPE←T ′′}Ti is constant w.r.t. i ∈
{0, 1}).
By Lemma J.14 (partial type substitution associated to an environment, alternative characterisation),
partenvsubenvofcl CL = partenvsub{U .TYPE←T ′′}envofcl CL′{U .TYPE←T ′′}.
Thus partenvsubenvofcl CLTi is constant w.r.t. i ∈ {0, 1}) as desired.

Theorem J.16 (coincidence between undyn-time and static type checking) Let CL be a multiple-let context. Suppose

• CL has no shadowing.

• CL is correct.

• None of the hashes in CL is in hashlistofcl CL.

• For all i = 0, 1 we have envofcl CL `• Ti:Type and that none of the hashes in Ti is in hashlistofcl CL.

Then envofcl CL `• T0 == T1 iff subofcl CL T0 = subofcl CL T1.

In other words, dynamic type checking corresponds exactly to static type checking when two conditions hold: no two
module have the same hash (i.e. are of identical structure after their ancestors have been substituted in); the hashes in the
modules and in the types being compared are different from the hashes that will be generated by reduction (such as is the
case with a user program that contains no hashes at all).
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Proof. Immediate from Lemma J.15 (correspondence between open and hashed interpretation of type equivalence) and
Lemma I.6 (open interpretation of type equivalence).

Definition J.17 (list of external names in a multiple-let context) Define the list of external names in a multiple-let
context by structural induction:

enlistofcl = ()

enlistofcl (module NU = M :S in CL) = (N , enlistofcl CL)

Definition J.18 (external name shadowing) Let CL be a multiple-let context. We say that CL has external name
shadowing iff enlistofcl CL contains duplicates.

Lemma J.19 (non-shadowing through external names) If CL has no external name shadowing then CL has no shad-
owing.

Proof. Trivial by induction on the length of CL.

Lemma J.20 (generalised machine judgement characterisation of correct multiple-let contexts) If nil `0

CL.e:UNIT then CL is correct.

Proof. By reversing (mT.let) once for each binding in CL, substituting envofcl CL `0 ():UNIT for envofcl CL `0 e:UNIT

and reapplying (mT.let)’s again, we get nil `0 CL.():UNIT. By Lemma J.4 (machine judgement characterisation of
correct multiple-let contexts), CL is correct.

Corollary J.21 (coincidence between undyn-time and static type checking with non-repeated external names) Sup-
pose that nil `0 CL.e:UNIT, that CL contains no hashes, and that CL has no external name shadowing. Assume
that T0 and T1 contain no hashes and envofcl CL `• Ti:Type for i = 0, 1. Then envofcl CL `• T0 == T1 iff
subofcl CL T0 = subofcl CL T1.

Proof. By Lemma J.19 (non-shadowing through external names), CL has no shadowing. By Lemma J.20 (generalised
machine judgement characterisation of correct multiple-let contexts), CL is correct. Thus we can apply Theorem J.16
(coincidence between undyn-time and static type checking).
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