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Abstract

Kernel approximation is commonly used to scale
kernel-based algorithms to applications contain-
ing as many as several million instances. This
paper analyzes the effect of such approximations
in the kernel matrix on the hypothesis generated
by several widely used learning algorithms. We
give stability bounds based on the norm of the
kernel approximation for these algorithms, in-
cluding SVMs, KRR, and graph Laplacian-based
regularization algorithms. These bounds help de-
termine the degree of approximation that can be
tolerated in the estimation of the kernel matrix.
Our analysis is general and applies to arbitrary
approximations of the kernel matrix. However,
we also give a specific analysis of the Nystrom
low-rank approximation in this context and re-
port the results of experiments evaluating the
quality of the Nystrom low-rank kernel approx-
imation when used with ridge regression.

Introduction

nohri @s. nyu. edu

aneet @s. nyu. edu

One solution suggested for dealing with such large-scale
problems consists of a low-rank approximation of the ker-
nel matrix (Williams and Seeger, 2000). Other variants
of these approximation techniques based on the Nystrom
method have also been recently presented and shown to be
applicable to large-scale problems (Belabbas and Wolfe,
2009; Drineas and Mahoney, 2005; Kuneral., 2009a;
Talwalkar et al., 2008; Zhanget al, 2008). Kernel ap-
proximations based on other techniques such as column
sampling (Kumaet al, 2009b), incomplete Cholesky de-
composition (Bach and Jordan, 2002; Fine and Scheinberg,
2002) or Kernel Matching Pursuit (KMP) (Hussain and
Shawe-Taylor, 2008; Vincent and Bengio, 2000) have also
been widely used in large-scale learning applications, But
how does the kernel approximation affect the performance
of the learning algorithm?

There exists some previous work on this subject. Spectral
clustering with perturbed data was studied in a restrictive
setting with several assumption by Huagtgal. (2008). In

Fine and Scheinberg (2002), the authors address this ques-
tion in terms of the impact on the value of théjective
functionto be optimized by the learning algorithm. How-
ever, we strive to take the question one step further and di-
rectly analyze the effect of an approximation in the kernel
matrix on thehypothesigenerated by several widely used

The size of modern day learning problems found in com-kernel-based learning algorithms.

puter vision, natural language processing, systems desi
and many other areas is often in the order of hundreds o
thousands and can exceed several million. Scaling standa
kernel-based algorithms such as support vector machin
(SVMs) (Cortes and Vapnik, 1995), kernel ridge regressio
(KRR) (Saunderst al,, 1998), kernel principal component
analysis (KPCA) (Scholkopét al., 1998) to such magni-

tudes is a serious issue since even storing the kernel matr

can be prohibitive at this size.

g\{r\]le give stability bounds based on the norm of the ker-

nel approximation for these algorithms, including SVMs,
R, and graph Laplacian-based regularization algorithms

E(%elkin et al, 2004). These bounds help determine the de-

gree of approximation that can be tolerated in the estima-
tion of the kernel matrix. Our analysis differs from pre-
vious applications of stability analysis as put forward by
%(ousquet and Elisseeff (2001). Instead of studying the ef-
fect of changing one training point, we study the effect of

Appearing in Proceedings of thi!" International Conference changing the kernel matrix. Our analysis is general and
on Artificial Intelligence and Statistics (AISTATS) 2010hi@ La-  applies to arbitrary approximations of the kernel matrix.

guna Resort, Sardinia, Italy. Volume 9 of IMLR: W&CP 9. Copy- However, we also give a specific analysis of the Nystrom
right 2010 by the authors.
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low-rank approximation given the recent interest in thismatrix K’ € R™*™. Furthermore, defing > 0 such that
method and the successful applications of this algorithmi (z, ) <x and K'(x,x) <k for all z € X. This condi-
to large-scale applications. We also report the results ofion is verified withx =1 for Gaussian kernels for example.
experiments evaluating the quality of this kernel approxi-Then the following inequalities hold for all € X,

mation when used with ridge regression.

| . W)~ ()] < S K Kl (2)
The remainder of this paper is organized as follows. Sec- Agm

tion 2 introduces the problem of kernel stability and gives _ _ _

a kernel stability analysis of several algorithms. Sec-Proof. Let a’ denote the solution obtained using the ap-
tion 3 provides a brief review of the Nystrom approxima- Proximate kernel matri¥’. We can write

tion method and gives error bounds that can be combined , o 1 1
with the kernel stability bounds. Section 4 reports the re- o —o=(K +//\I) }:1_ (If +AD Y . (3)
sults of experiments with kernel approximation combined = - [(K'+ )7 (K' - K)(K+ )" ']y, (4)

with kernel ridge regression. where we used the identilyl’'~1 — M—1 = — M/~ L(M’ —
M)M ! valid for any invertible matricedI, M’. Thus,

2 Kernel Stability Analysis |la’ — || can be bounded as follows:
. : : - le = e < (K + ADTHK — K|[[[(K +AD ™[l

In this section we analyze the impact of kernel approxima- K - K

tion on several common kernel-based learning algorithms: < ”/ — Kil2 [ly] , (5)

KRR, SVM and graph Laplacian-based regularization al- Amin (K 4+ A1) Amin (K + AT

gorithms. Our stability analyses result in bounds on th%hereAmin(K’+AI) is the smallest eigenvalue B + \I
hypotheses directly in terms of the quality of the kernel ap-gng Amin(K + AI) the smallest eigenvalue d§ + I
proximation. In our analysis we assume that the kernel apThe hypothesig: derived with the exact kernel matrix is
proximation is only used during training where the kernelyefined byh(z) = Y7, ;K (z,2;) = o'k,, where
approximation may serve to reduce resource requirementﬁ.m = (K(z,21),...,K(z,2,))". By assumption, no ap-

nario that we are considering is standard for the Nystromg given by/(z)=a' "k, and

method and other approximations.

W (x) — h(z)| < || — al|||k:| € kv/m|a’ —all. (6)
We consider the standard supervised learning setting where| (=) @l < el | |

the learning algorithm receives a samplesoflabeled  Using the bound offfa’ — || given by inequality (5), the
pointsS = ((z1,y1), ..., (Tm,ym)) € (X x Y)™, where fact that the eigenvalues ¢K’ + AI) and (K + M) are
X is the input space ant the set of labelsy” = R with larger than or equal ta sinceK andK’ are SPSD matri-
ly] < M in the regression case, alid= {—1,+1}inthe  ces, andly|| </mM yields

classification case. Throughout the paper the kernel matrix

K and its approximatiofi’ are assumed to be symmetric, |W'(z) — h(z)]
positive, and semi-definite (SPSD).

rmM|| K — K]z
o Amin (K/ + )\I))\min (K + )\I)

rM
/\Q—mHK/ — K]z O
0

2.1 Kernel Ridge Regression

We first provide a stability analysis of kernel ridge re- 1€ generalization bounds for KRR, e.g., stability bounds
gression. The following is the dual optimization problem (Bousauet and Elisseeff, 2001), are of the foftth) <

solved by KRR (Saundet al, 1998): E(h) +O(1/y/m), where R(l?) denotes the generaliza-
tion error andR(h) the empirical error of a hypothesis
max \a'a+ aKa —2a'y, (1)  With respect to the square loss. The proposition shows
ackm that |h/(z) — h(x)|> = O(|K' — K||3/ m?). Thus, it

suggests that the kernel approximation tolerated should be
such that|K’'— K3/ \¢m? < O(1/y/m), that s, such that
(AFm®/).

where\ = mAy > 0 is the ridge parameter. The problem
admits the closed form solutian = (K+\I)~'y. We de- .
note byh the hypothesis returned by kernel ridge regressiorﬂK —Kl: <0

when using the exact kernel matrix. Note that the main bound used in the proof of the theorem,

Proposition 1. Let 1’/ denote the hypothesis returned by inequality (5), is tight in the sense that it can be matched
kernel ridge regression when using the approximate kernefor some kernelds and K. Indeed, letk' and K’ be the
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kernel functions defined bi (x,y) =5 andK'(x,y)=/4"  and®’ can be defined by
if e=y, K'(z,y)= K(z,y)=0 otherwise, with3, 3’ > 0.

Then, the corresponding kernel matrices for a sarfjdee [ K(z1,u) ]
K = I andK’ = #'I, and the dual parameter vectors are O(u) = Kfnlfl : (10)
given bya =y/(5+)) anda’ =y /(3 +)). Now, since K (2mi1,) |

Amin(K' + M) = 8+ X and A\pin (K + M) = 8+ A, and

-, _
|K' — K|| =" — 3, the following equality holds: /2 K'(z1,u)
and @'(u) =K';,13 : , (1)
’_ _Kl(xm-ﬁ-lau)_
o' = all = s @
K~ K| where K7, ., denotes the pseudo-inverse Kf,,,;; and

= lyll. (8 K, thatofK] ,,. Itis not hard to see then that for
Amin (K + AL Amin (K + AI) all u,v € Xpnp1, K(u,v) = ®(u) " ®(v) and K’ (u,v) =
' (u) T ®'(v) (Scholkopf and Smola, 2002). Since the op-
This limits significant improvements of the bound of tjmization problem depends only on the sam§leve can
Proposition 1 using similar techniques. use the feature mappings just defined in the expression of
Fx andFk.. This does not affect in any way the standard
SVMs optimization problem.

2.2 Support Vector Machines

Letw € R™*! denote the minimizer of - andw’ that of
This section analyzes the kernel stability of SVMs. Forfx'- By definition, if we letAw denotew’ — w, for all
simplicity, we shall consider the case where the classificas € [0, 1], the following inequalities hold:
tion function sought has no offset. In practice, this corre-

sponds to using a constant feature. fetX — F de- Fr(w) < F(w + sAw) (12)
note a feature mapping from the input spaé¢o a Hilbert and Fg/(w') < Frr(w' — sAw). (13)
spacel’ corresponding to some kerngl. The hypothesis ) ) N )

set we consider is thuff = {h: Iw € F|vz € X, h(z)= _Summ|r_1gth<_ese two inequalities, rearranging terms, and us-
wTd(z)}. ing the identity(||w +sAw||? — ||w]|?) + (| W' — sAw||? —

[w'|[?)=—2s(1-s)
The following is the standard primal optimization problem Elisseeff, 2001):
for SVMs:

2, we obtain as in (Bousquet and

s(1—8)|Awl? < Co [(}?K(w + sAw) — Ric(w))
. 1 5 . ~
Note thatw 4+ sAw = sw’ + (1 — s)w andw’ — sAw =

sw + (1 — s)w’. Then, by the convexity of the hinge loss
and thusk i and R, the following inequalities hold:

whereRy (w) =L S | L(yiw " ®(a;)) is the empirical
error, with L(y;w " ®(x;)) = max(0, 1 — y;w ' ®(z;)) the
hinge loss associated to ttté point.

In the following, we analyze the difference between the hy- R (w + sAw) = R (W) < s(Rg (W) = Ric(w))
pothesis: returned by SVMs when trained on the sample Ry (w'—sAw)— R/ (w') < —s( R (W) — Ry (w)).

of m points and using a kernél, versus the hypothesig

obtained when training on the same sample with the kerngPlugging in these inequalities on the left-hand side, simpl
K'. For a fixedr € X, we shall compare more specifi- fying by s and taking the limits — 0 yields

cally h(x) andh’(z). Thus, we can work with the finite set

Xmt1={x1, ..., Ty, Ty}, With 2,11 =2 [Aw||? < Co {(EK(WI)_EK’ (w')+ (EK’ (W)_EK(W))}
Different feature mappings can be associated to the same Oo Z {( yiw' T D(z;)) — L(y_W/Tq)/(x_)))
kernel K. To compare the solutions andw’ of the opti- ' ‘ . '

mization problems based df and F/, we can choose

the feature mappings and®’ associated té& andK’ such + (L(inT‘I"(xi)) - L(inT@(Ii))] ;

that they both map t&™*! as follows. LetK,, ; denote

the Gram matrix associated 16 andK;,  , that of kernel ~ where the last inequality results from the definition of the
K’ for the set of pointsY,,,, ;. Thenforallu € X,,, 11, ® empirical error. Since the hinge losslid.ipschitz, we can
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bound the terms on the right-hand side as follows:

O m
Jaw|? < =237 (w1 (@) - ()]
=1
+ (Wl ® (2:) — (3| (14)
o CO E / /
= — 2 (Wl +lwl) |2(z:) — @(z3)[|. (15)
i=1
Let e; denote theith unit vector of R™*! then
(K(Il, Ii), R ,K(merl, Il))T :Kerlel-. Thus, in view

of the definition of®, for all i € [1,m + 1],

D(z;) = K:‘;fl (K (21,2:),. .., K(2m, x), K (2, 2;)] "
=K, Knie = K2 e, (16)
and similarly®’(z;) :K;ll/flei. K:r{ilei is theith column
of Kfﬁl and similarlyK'!/2¢; the ith column ofK;ll/fl.
Thus, (15) can be rewritten as

CVO - 1/2 1/2
ZENT (W) K K el
=1

w—w]? <
[
m

!/
As for the case of ridge regression, we shall assume that |h

there exists: > 0 such thatK (z, ) <k and K'(z,z) <k

for all z € X,,+1. Now, sincew can be written in
terms of the dual variable8 < «; < C, C = Cy/m

asw = > ", a;K(z;,-), it can be bounded apw|| <

mCo/mrk'/? = K'/2C,y and similarly [|w’| < &/2Cj.

Thus, we can write

208K12 & 1/2 1/2
W' = w* < =2 D K~ K e
=1
208K12 & 1/2 1/2
< TSI Kl
i=1
= 20352~ K (7)

Let K denote the Gram matrix associateddandK’ that
of kernel K’ for the sampleS. Then, the following result
holds.

Proof. In view of (16) and (17), the following holds:
I (x) — h()]
= [w' ' (z) - w' P(2)]
= (W' —w) "' () + w ' (¢'(2) - D(a))]
< [[lw' = wll[|®"()] + [w[[®'(z) — ()]
= [[w' = wl[[|®"(2)]| + [W]l[|®"(@m+1) — P(@m+1)]
1/2
< (203"@1/2HK;11431 - K71T{3>1||) K2

+ &Y 20| (K — K2 Demanl

< V2R ACo|KE — K2 |2
+ w20 K — K2

Now, by Lemma 1 (see Appendix])K;ll/f1 —KiﬁﬂHQ <

1K, — KmHH;/Q By assumption, the kernel ap-
proximation is only used at training time 96(x, x;) =
K'(z,z;), for all i € [1,m], and since by definition
T = Tm+1, the last rows or the last columns of the ma-
tricesK;, ; andK,,,; coincide. Therefore, the matrix
K, .1 —K;,+1 coincides with the matriK’—K bordered

with a zero-column and zero-row aﬁKgﬁl—Kiﬁrl l2<

|K'—K||}/%. Thus,

() — hlz)] < V2r*Col K — K|V

+ K720 K - K|'/2, (19)

which is exactly the statement of the proposition. [

Since the hinge loséis 1-Lipschitz, Proposition 2 leads
directly to the following bound on the pointwise difference
of the hinge loss between the hypothekeandh.

Corollary 1. Let 1/ denote the hypothesis returned by
SVMs when using the approximate kernel malik €
R™>™_Then, the following inequality holds for alle X
andy € ):

|L(yh'(z)) — L(yh(2))| <

VERt Gyl K — K3 [1+ [ (20)

The bounds we obtain for SVMs are weaker than our bound
for KRR. This is due mainly to the different loss functions

Proposition 2. Let 7’ denote the hypothesis returned by gefining the optimization problems of these algorithms.

SVMs when using the approximate kernel makik €
R™>™_Then, the following inequality holds for alle X’:

W (z) — h(z)| <
VERi Gy K — K3 [1+ (K] ag)

2.3 Graph Laplacian regularization algorithms

We lastly study the kernel stability of graph-Laplacian-reg
ularization algorithms such as that of Bellehal. (2004).
Given a connected weighted graph= (X, E) in which



Corinna Cortes, Mehryar Mohri, Ameet Talwalkar

edge weights can be interpreted as similarities between veto write
tices, the task consists of predicting the vertex labels of

u vertices using a labeled training samgeof m ver- [h— W[ = [[M™'ys - M lys]| (23)
tices. The input spacé’ is thus reduced to the set of = (M~ =M Yys|| (24)
vgrtices, .apd a- hypot-hes/ls X — R can bg iQentified = |-M (M- M )M lyg| (25)
with the finite-dimensional vectdi of its predictionsh = m . R

[h(z1),. .., (zmia)] . The hypothesis sef can thus be < FO”_M (L= L)M™ ys|| (26)

identified withR”™** here. Lethg denote the restriction
of h to the training pointsj(z1), ..., h(z,)] " €R™, and
similarly letys denot€ely;, ..., y,]" € R™. Then, the fol-

. . L . . i m+u) X1 i in-
lowing is the optimization problem corresponding to this FOF @ny column matrix RUm+wx1, by the triangle in
problem: equality and the projection properiyP yz|| < ||z|, the

following inequalities hold:

m — _
=M HMH (lys L = L. (27)

C
. T 0 T m m
min h'Lh+ -—(hs —ys) (hs —ys) (21) ||FOPHL|| = ||FOPHL +Pylsz — Pylsz|  (28)

subjectto h'1 =0, < | ZPyL+ Pplszl| + [Prlsz| (29)
0

where L is the graph Laplacian and the column < ||PH(EL+IS)ZH + |Lsz]]. (30)

vector with all entries equal td. Thus, h'Lh = Co

>oii—1 wig(h(xi)—h(z;))?, for some weight matrixw;;).  This yields the lower bound:

The label vectoy is assumed to be centered, which implies

thatl "y = 0. Since the graph is connected, the eigenvalue [Mz|| = |[Py (EL + Is) z| (31)

zero of the Laplacian has multiplicity one. 0

Y

m
DefineIs e Rt x(m+u) tg pe the diagonal matrix with FOHPHLH — sz (32)
Is]i; = 1if i < m and O otherwise. Maintaining the m
notation used in Belkiret al. (2004), we letP denote <C_0)\2 - 1> =],
the projection on the hyperplaiié orthogonal tol and let

. . : -1
M =Py (CﬂOL i Is) andM’ = P, (CﬂOL/ +15). We Whl(/:fllﬁ:lves the following upper bounds dM~—*|| and

v

(33)

denote byh the hypothesis returned by the algorithm when 1M
using the exact kernel matrix and byL’ an approximate . 1 1 1

graph Laplacian such that' L'h = Zgzl wi; (h(z;) — M| < ZX—1 and [[M™| < ZNy -1
h(z;))?, based on matrixw;;) instead of(w;;). We shall ’ ’

assume that there exi8t > 0 such thaty; < M for i €  Plugging in these inequalities in (27) and usihgs|| <
1, m). m!/2M lead to

m3/2M/Cy
(ZeAde = (& A — 1)

Proposition 3. Leth’ denote the hypothesis returned by the
graph-Laplacian regularization algorithm when using an
approximate Laplaciaid, € R™*™. Then, the following
inequality holds:

h— || < L =L O

The generalization bounds for the graph-Laplacian algo-
rithm are of the formR(h) < ﬁ(h)+0((cﬂA%l)2) (Belkin

I -1, (22)  etal, 2004). In view of the bound giv%n by the theorem,
this suggests that the approximation tolerated shouldyeri
L = L[ <O(1/vm).

3/2M
|’ — h|| < mAi/OO
(gpA2 —1)2
whereXz = max{A2, A5} with A\ denoting the second
smallest eigenyalue of the kernel mattixand \;, the sec- 3 Application to Nystrém method
ond smallest eigenvalue &f.

Proof. The closed-f luti f Problem 21 is ai The previous section provided stability analyses for sev-
fool. The closed-Torm sofution of Froblem _'15 9VEN eral common learning algorithms studying the effect of us-

by Belkin et al. (2004): h = (PH (cﬂoL+Is)) ys-  ing an approximate kernel matrix instead of the true one.
Thus, we can use that expression and the matrix identityrhe difference in hypothesis value is expressed simply in
for (M~—1—M’'~1) we already used in the analysis of KRR terms of the difference between the kernels measured by
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Dataset Description # Points (n) | # Featuresd) | Kernel| Largest label {7)
ABALONE || physical attributes of abalongs 4177 8 RBF 29
KIN-8nm kinematics of robot arm 4000 8 RBF 15

Table 1: Summary of datasets used in our experiments (Asateid Newman, 2007; Ghahramani, 1996).

some norm. Although these bounds are general boundev; = >°% | ai‘lUiUiT, whereU* denotes theth col-
that are independent of how the approximation is obtainedimn of U. Since the running time complexity of SVD is
(so long asK’ remains SPSD), one relevant application of O(n?) andO(nmk) is required for multiplication withC,
these bounds involves the Nystrom method. the total complexity of the Nystréom approximation compu-

- ___tation isO(n®+nmk).
As shown by Williams and Seeger (2000), later by Drineas

and Mahoney (2005); Talwalkat al. (2008); Zhanget al. ) _ )

(2008), low-rank approximations of the kernel matrix via 3-2 Nystrom kemel ridge regression

the Nystréom method can provide an effective technique for . o

tackling large-scale data sets. However, all previous the-rhe accuracy of low-rank Nystrém .apprOX|mat|0ns has
oretical work analyzing the performance of the Nystr()mIoeen theoretically analyzed by Drmeas_ and Mahoney
method has focused on the quality of the low-rank approx§2005); Kumaret. al. (2009c).  The following theorem,
imations, rather than the performance of the kernel Iearn‘:"dapted from Drineas and Mahoney (2005) for the case

ing algorithms used in conjunction with these approxima—Of uniform sampling, gives an upper bound on the norm-

tions. In this section, we first provide a brief review of the 2 error of the Nystrom approximation of the forfiK —
K|z < ||IK—-Kgl|2/||K|2+O(1/+/n). We denote

Nystrom method and then show how we can leverage tthQ/H ) :
analysis of Section 2 to present novel performance guararP—y Kinax the ma>i|mum diagonal entry df.

tees for the Nystrom method in the context of kernel learn-Theorem 1. Let K denote the rank: Nystiom approxima-
ing algorithms. tion of K based om columns sampled uniformly at ran-
dom with replacement frol, and K, the best rankk ap-
proximation ofKK. Then, with probability at least — §, the

3.1 Nystrdom method . - .
following inequalities hold for any sample of size

The Nystrom approximation of a symmetric positive
semidefinite (SPSD) matriK is based on a sample k&
m columns ofK (Drineas and Mahoney, 2005; Williams
and Seeger, 2000). L€ denote then x n matrix formed ~ Theorem 1 focuses on the quality of low-rank approxima-
by these columns an¥ then xn matrix consisting of the  tions. Combining the analysis from Section 2 with this
intersection of these columns with the corresponding  theorem enables us to bound the relative performance of
rows of K. The columns and rows d€ can be rearranged the kernel learning algorithms when the Nystrom method
based on this sampling so tHdtandC be written as fol-  is used as a means of scaling kernel learning algorithms.
lows: To illustrate this point, Theorem 2 uses Proposition 1 along
with Theorem 1 to upper bound the relative performance of
(34) kernel ridge regression as a function of the approximation
accuracy of the Nystrom method.

1K — Kl|2 < K = K|z + 25 Knax (2 + log §).

K [W KJ,

A%%
and C = .
Ko K22} [ ]

K21

Note thatW is also SPSD sincK is SPSD. For a uniform Theorem 2. Let%’ denote the hypothesis returned by ker-
sampling of the columns, the Nystrom method generates Rl ridge regression when using the approximate rénk-

rank+ approximatiorK of K for k <n defined by: kernelK € R™*" generated using the Nysim method.
B Then, with probability at least — §, the following inequal-
K=CW;C' =K, (35) ity holds forallz € X,

whereV.V;C is the beslk—rank approximation oW for the I (2)—h(z)| < HQ_M I\K—Kk||2+%Kmax(2+1Og %)}
Frobenius norm, that iV, = argmin,, . vy—x [W — Agm

V| andW, denotes the pseudo-inversedf; . W,

can be derived from the singular value decompositionA similar technique can be used to bound the error of the
(SVD) of W, W = UXU', whereU is orthonormal Nystrdom approximation when used with the other algo-

andX = diag(oq,...,04,) is a real diagonal matrix with rithms discussed in Section 2. The results are omitted due
o1 >---> o, > 0. Fork < rank(W), it is given by  to space constraints.
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Abalone Kin—-8nm
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Figure 1: Average absolute error of the kernel ridge regmessypothesish/(-), generated from the Nystrdom approxi-
mation, K, as a function of relative spectral distarji& — K||./|K||.. For each dataset, the reported results show the
average absolute error as a function of relative spectstuce for both the full dataset and for a subset of the data co
tainingm = 2000 points. Results for the same valuerafare connected with a line. The different points along thedin
correspond to various numbers of sampled columnsyi.&nging froml% to 50% of m.

3.3 Nystrom Woodbury Approximation a set of Nystrom approximations, using various numbers
of sampled columns, i.en ranging from1% to 50% of

The Nystrom method provides an effective algorithm form. For each Nystrém approximatiok,, we computed the

obtaining a ranke approximation for the kernel matrix. As associated hypothesi$(-) using the same ridge and mea-

suggested by Williams and Seeger (2000) in the context ofured the distance betwekrand?’ as follows:

Gaussian Processes, this approximation can be combined ,

with the Woodbury inversion lemma to derive an efficient  ayerage absolute errer 2oerlV (@) — h(x”. (39)

algorithm for inverting the kernel matrix. The Woodbury ||

inversion Lemma states that the inverse of a rardorrec-

tion of some matrix can be computed by doing a r&n

k. We measured the distance betwdérmndK as follows:

correction to the inverse of the original matrix. In the con- IK - K|»

text of KRR, using the rank-approximatiorK given by relative spectral distance IR x 100.  (40)

the Nystrom method, instead Bf, and applying the inver- 2

sion lemma yields Figure 1 presents results for each dataset using albints
(I +K)~! (36) and a subset a2000 points. The plots show the average

. absolute error ofi(-) as a function of relative spectral dis-

~ (\I+CW;C') (37)  tance. Proposition 1 predicts a linear relationship betwee
1 T =Lt ~T kernel approximation and relative error which is corrobo-
DY (I -C [)\Ik W C C} Wi C ) (38) rated by the experiments, as both datasets display this be-
Thus, only an inversion of a matrix of sizeis needed as havior for different sizes of training data.

opposed to the original problem of size

5 Conclusion
4 Experiments

Kernel approximationis used in a variety of contexts and its
For our experimental results, we focused on the kernel staise is crucial for scaling many learning algorithms to very
bility of kernel ridge regression, generating approximatelarge tasks. We presented a stability-based analysis of the
kernel matrices using the Nystrom method. We workedeffect of kernel approximation on the hypotheses returned
with the datasets listed in Table 1, and for each datasehy several common learning algorithms. Our analysis is in-
we randomly selecteg% of the points to general€ and  dependent of how the approximation is obtained and sim-
used the remaining0% as the test sefl. For each test- ply expresses the change in hypothesis value in terms of
train split, we first performed grid search to determine thethe difference between the approximate kernel matrix and
optimal ridge forK, as well as the associated optimal hy- the true one measured by some norm. We also provided a
pothesish(-). Next, using this optimal ridge, we generated specific analysis of the Nystrom low-rank approximationin
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this context and reported experimental results that suppoPetros Drineas and Michael W. Mahoney. On the Nystrom
our theoretical analysis. method for approximating a Gram matrix for improved

) ] o kernel-based learningournal of Machine Learning Re-
In practice, the two steps of kernel matrix approximation search 6:2153-2175, 2005,

and training of a kernel-based algorithm are typically ex- o ] o o
ecuted separately. Work by Bach and Jordan (2005) SugS_hal_Fme and Katya Scheinberg. E_ff|C|ent SVM training
gested one possible method for combining these two steps. using Iow-rgnk kernel representationdournal of Ma-
Perhaps more accurate results could be obtained by com- CNine Leaming ResearcR:243-264, 2002.

bining these two stages using the bounds we presented @oubin Ghahramani. The kin datasets, 1996.

other similar ones based on our analysis. Ling Huang, Donghui Yan, Michael Jordan, and Nina Taft.
Spectral clustering with perturbed data. Advances in
A Lemmal Neural Information Processing Syster2®08.

Zakria Hussain and John Shawe-Taylor. Theory of match-
The proof of Lemma 1 is given for completeness. ing pursuit. InAdvances in Neural Information Process-

Lemma 1. Let M and M’ be twon x n SPSD matrices. ing Systems2008.

Then, the following bound holds for the difference of theSanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. En-

square root matrices M/1/2 — M/, < M/ — M||3/2. semble Nystrom method. lAdvances in Neural Infor-
mation Processing Systen2909.

Proof. By definition of the spectral normiyI’ — M =< Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. On
M’ — M]||.I wherel is then x n identity matrix. Hence, sampling-based approximate spectral decomposition. In
M’ <M + |[M' — M|]o.I andM""/2 < (M + AI)V/2, International Conference on Machine Learnjr&09.

with A = [|[M’ — M||. Thus,M'"/2 < (M + A\I)'/2 <
M'/2 + \'/21, by sub-additivity of,/~. This shows that
M'1/2_M'/2 < \/21 and by symmetriM /2 —M'1/2 <
AM/2T, thus [M/1/2 — MY/2|l, < M/ — M52, which

Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Sam-
pling techniques for the Nystrom method.@onference
on Atrtificial Intelligence and Statistic2009.

Craig Saunders, Alexander Gammerman, and Volodya

proves the statement of the lemma. O : . . : § )
Vovk. Ridge regression learning algorithm in dual vari-
ables. Ininternational Conference on Machine Learn-
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