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Abstract. This note is a review of a series of results on the interaction between diffu-
sion and fluid flow that have been presented by the author at the International Congress
in Mathematical Physics in Rio, 2006. The main object of study is the enhancement of
diffusive mixing by a fast incompressible flow. Due to its physical relevance, the subject
has been studied in detail from different angles. Here, we describe some of the recent work
which combines PDE, functional analysis and dynamical systems theory by trying to estab-
lish links between diffusion enhancement and mixing properties inherent to the dynamical
system generated by the flow. The proofs are based on a general criterion for the decay of
the semigroup generated by an operator of the form Γ + iAL with a negative unbounded
self-adjoint operator Γ, a self-adjoint operator L, and parameter A� 1. In particular, they
employ the RAGE theorem describing evolution of a quantum state belonging to the con-
tinuous spectral subspace of the hamiltonian (related to a classical theorem of Wiener on
Fourier transforms of measures).

1. Introduction

Let M be a smooth compact d-dimensional Riemannian manifold. The main subject of
this paper is the effect of a strong incompressible flow on diffusion on M. Namely, we consider
solutions of the passive scalar equation

φAt (x, t) + Au · ∇φA(x, t)−∆φA(x, t) = 0, φA(x, 0) = φ0(x). (1.1)

Here ∆ is the Laplace-Beltrami operator on M, u is a divergence free vector field, ∇ is the
covariant derivative, and A ∈ R is a parameter regulating the strength of the flow. We are
interested in the behavior of solutions of (1.1) for A� 1 at a fixed time τ > 0.

It is well known that as time tends to infinity, the solution φA(x, t) will tend to its average,

φ ≡ 1

|M |
∫

M

φA(x, t) dµ =
1

|M |
∫

M

φ0(x) dµ,

with |M | being the volume of M . We would like to understand how the speed of convergence
to the average depends on the properties of the flow and determine which flows are efficient
in enhancing the relaxation process.

The question of the influence of advection on diffusion is very natural and physically
relevant, and the subject has a long history. The passive scalar model is one of the most
studied PDEs in both mathematical and physical literature. One important direction of
research focused on homogenization, where in a long time–large propagation distance limit
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the solution of a passive advection-diffusion equation converges to a solution of an effective
diffusion equation. Then one is interested in the dependence of the diffusion coefficient on
the strength of the fluid flow. We refer to [27] for more details and references. The main
difference with the present work is that here we are interested in the flow effect in a finite
time without the long time limit.

On the other hand, the Freidlin-Wentzell theory [15, 16, 17, 18] studies (1.1) in R2 and, for
a class of Hamiltonian flows, proves the convergence of solutions as A → ∞ to solutions of
an effective diffusion equation on the Reeb graph of the hamiltonian. The graph, essentially,
is obtained by identifying all points on any streamline. The conditions on the flows for
which the procedure can be carried out are given in terms of certain non-degeneracy and
growth assumptions on the stream function. The Freidlin-Wentzell method does not apply,
in particular, to ergodic flows or in odd dimensions.

Perhaps the closest to our setting is the work of Kifer and more recently a result of Beresty-
cki, Hamel and Nadirashvili. Kifer’s work (see [20, 21, 22, 23] where further references can
be found) employs probabilistic methods and is focused, in particular, on the estimates of
the principal eigenvalue (and, in some special situations, other eigenvalues) of the operator
−ε∆ + u · ∇ when ε is small, mainly in the case of the Dirichlet boundary conditions. In
particular, the asymptotic behavior of the principal eigenvalue λε0 and the corresponding pos-
itive eigenfunction φε0 for small ε has been described in the case where the operator u · ∇
has a discrete spectrum and sufficiently smooth eigenfunctions. It is well known that the
principal eigenvalue determines the asymptotic rate of decay of the solutions of the initial
value problem, namely

lim
t→∞

t−1 log ‖φε(x, t)‖L2 = −λε0 (1.2)

(see e.g. [21]). In a related recent work [2], Berestycki, Hamel and Nadirashvili utilize PDE
methods to prove a sharp result on the behavior of the principal eigenvalue λA of the operator
−∆ +Au · ∇ defined on a bounded domain Ω ⊂ Rd with the Dirichlet boundary conditions.
The main conclusion is that λA stays bounded as A→∞ if and only if u has a first integral
w in H1

0 (Ω) (that is, u · ∇w = 0). An elegant variational principle determining the limit of
λA as A→∞ is also proved. In addition, [2] provides a direct link between the behavior of
the principal eigenvalue and the dynamics which is more robust than (1.2): it is shown that
‖φA(·, 1)‖L2(Ω) can be made arbitrarily small for any initial datum by increasing A if and only
if λA →∞ as A→∞ (and, therefore, if and only if the flow u does not have a first integral
in H1

0 (Ω)). We should mention that there are many earlier works providing variational
characterization of the principal eigenvalues, and refer to [2, 23] for more references.

Many of the studies mentioned above also apply in the case of a compact manifold with-
out boundary or Neumann boundary conditions, which is the primary focus of this paper.
However, in this case the principal eigenvalue is simply zero and corresponds to the constant
eigenfunction. Instead one is interested in the speed of convergence of the solution to its
average, the relaxation speed. A recent work of Franke [14] provides estimates on the heat
kernels corresponding to the incompressible drift and diffusion on manifolds, but these esti-
mates lead to upper bounds on ‖φA(1) − φ‖ which essentially do not improve as A → ∞.
One way to study the convergence speed is to estimate the spectral gap – the difference
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between the principal eigenvalue and the real part of the next eigenvalue. To the best of
our knowledge, there is very little known about such estimates in the context of (1.1); see
[21] p. 251 for a discussion. Neither probabilistic methods nor PDE methods of [2] seem to
apply in this situation, in particular because the eigenfunction corresponding to the eigen-
value(s) with the second smallest real part is no longer positive and the eigenvalue itself does
not need to be real. Moreover, even if the spectral gap estimate were available, generally it
only yields a limited asymptotic in time dynamical information of type (1.2), and how fast
the long time limit is achieved may depend on A. Part of our motivation for studying the
advection-enhanced diffusion comes from the applications to quenching in reaction-diffusion
equations (see e.g. [3, 11, 25, 30, 32]). For these applications, one needs estimates on the
A-dependent L∞ norm decay at a fixed positive time, the type of information the bound like
(1.2) does not provide. We are aware of only one case where enhanced relaxation estimates
of this kind are available. It is the recent work of Fannjiang, Nonnemacher and Wolowski
[9, 10], where such estimates are provided in the discrete setting (see also [21] for some related
earlier references). In these papers a unitary evolution step (a certain measure preserving
map on the torus) alternates with a dissipation step, which, for example, acts simply by
multiplying the Fourier coefficients by damping factors. The absence of sufficiently regular
eigenfunctions appears as a key for the lack of enhanced relaxation in this particular class
of dynamical systems. In [9, 10], the authors also provide finer estimates of the dissipation
time for particular classes of toral automorphisms (that is, they estimate how many steps are
needed to reduce the L2 norm of the solution by a factor of two if the diffusion strength is ε).

Our main goal in this paper is to provide a review of recent work that addresses a question
of sharp characterization of incompressible flows that are relaxation enhancing, in a quite
general setup. The following natural definition has been introduced in [4] as a measure of
the flow efficiency in improving the solution relaxation.

Definition 1.1. Let M be a smooth compact Riemannian manifold. The incompressible flow
u on M is called relaxation enhancing if for every τ > 0 and δ > 0, there exist A(τ, δ) such
that for any A > A(τ, δ) and any φ0 ∈ L2(M) with ‖φ0‖L2(M) = 1 we have

‖φA(·, τ)− φ‖L2(M) < δ, (1.3)

where φA(x, t) is the solution of (1.1) and φ the average of φ0.

Remarks. 1. In [4] it was shown that the choice of the L2 norm in the definition is not
essential and can be replaced by any Lp-norm with 1 ≤ p ≤ ∞.

2. It follows from the proofs of our main results that the relaxation enhancing class is not
changed even when we allow the flow strength that ensures (1.3) to depend on φ0, that is, if
we require (1.3) to hold for all φ0 ∈ L2(M) with ‖φ0‖L2(M) = 1 and all A > A(τ, δ, φ0).

The main approach is to bypass the issue of the spectral gap, and work directly with
dynamical estimates. The first result we describe has been proved in [4].

Theorem 1.2. Let M be a smooth compact Riemannian manifold. A Lipschitz continuous
incompressible flow u ∈ Lip(M) is relaxation enhancing if and only if the operator u · ∇ has
no eigenfunctions in H1(M), other than the constant function.
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Any incompressible flow u ∈ Lip(M) generates a unitary evolution group U t on L2(M),
defined by U tf(x) = f(Φ−t(x)). Here Φt(x) is a measure preserving transformation associated
with the flow, defined by d

dt
Φt(x) = u(Φt(x)), Φ0(x) = x. Recall that a flow u is called weakly

mixing if the corresponding operator U has only continuous spectrum. The weakly mixing
flows are ergodic, but not necessarily mixing (see e.g. [5]). There exist fairly explicit examples
of weakly mixing flows (see e.g. [1, 12, 13, 26, 31, 29]). A direct consequence of Theorem 1.2
is the following Corollary.

Corollary 1.3. Any weakly mixing incompressible flow u ∈ Lip(M) is relaxation enhancing.

Theorem 1.2 in its turn follows from quite general abstract criterion, which we are now
going to describe. Let Γ be a self-adjoint, positive, unbounded operator with a discrete
spectrum on a separable Hilbert space H. Let 0 < λ1 ≤ λ2 ≤ . . . be the eigenvalues of Γ,
and ej the corresponding orthonormal eigenvectors forming a basis in H. The (homogenous)
Sobolev space Hm(Γ) associated with Γ is formed by all vectors ψ =

∑
j cjej such that

‖ψ‖2
Hm(Γ) ≡

∑
j

λmj |cj|2 <∞.

Note that H2(Γ) is the domain D(Γ) of Γ. Let L be a self-adjoint operator such that, for
any ψ ∈ H1(Γ) and t > 0 we have

‖Lψ‖H ≤ C‖ψ‖H1(Γ) and ‖eiLtψ‖H1(Γ) ≤ B(t)‖ψ‖H1(Γ) (1.4)

with both the constant C and the function B(t) <∞ independent of ψ and B(t) ∈ L2
loc(0,∞).

Here eiLt is the unitary evolution group generated by the self-adjoint operator L.
Consider a solution φA(t) of the Bochner differential equation

d

dt
φA(t) = iALφA(t)− ΓφA(t), φA(0) = φ0. (1.5)

Similarly to the Definition 1.1 above, we say

Definition 1.4. We call evolution corresponding to (1.5) relaxation enhancing if for any
τ, δ > 0 there exists A(τ, δ) such that for any A > A(τ, δ) and any φ0 ∈ H with ‖φ0‖H = 1,
the solution φA(t) of the equation (1.5) satisfies ‖φA(τ)‖H < δ.

Theorem 1.5. Let Γ be a self-adjoint, positive, unbounded operator with a discrete spectrum
and let a self-adjoint operator L satisfy conditions (1.4). Then the following two statements
are equivalent:

• The evolution is relaxation enhancing
• The operator L has no eigenvectors lying in H1(Γ).

Remark. Here L corresponds to iu · ∇ (or, to be precise, a self-adjoint operator generating
the unitary evolution group U t which is equal to iu ·∇ on H1(M)), and Γ to −∆ in Theorem
1.2, with H ⊂ L2(M) the subspace of mean zero functions.

Theorem 1.5 provides a sharp answer to the general question of when a combination of
fast unitary evolution and dissipation produces a significantly stronger dissipative effect than
dissipation alone. It can be useful in any model describing a physical situation which involves
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fast unitary dynamics with dissipation (or, equivalently, unitary dynamics with weak dissi-
pation). The proof uses ideas from quantum dynamics, in particularly the RAGE theorem
(see e.g., [6]) describing evolution of a quantum state belonging to the continuous spectral
subspace of a self-adjoint operator.

A natural concern is if the existence of rough eigenvectors of L is consistent with the
condition (1.4) which says that the dynamics corresponding to L preserves H1(Γ). In [4], this
question was answered in the affirmative by providing examples where rough eigenfunctions
exist yet (1.4) holds. One of the examples involved a discrete version of the celebrated
Wigner-von Neumann construction of an imbedded eigenvalue of a Schrödinger operator [28].
Moreover, another example constructed in [4] involved a smooth flow on the two dimensional
torus T2 with discrete spectrum and rough (not H1(T2)) eigenfunctions – the idea of this
example essentially goes back to Kolmogorov [26]. Thus, the issue of rough eigenfunctions is
not moot and result of Theorem 1.5 is precise.

The third result we are going to describe is a natural extension of Theorem 1.5 and The-
orem 1.2 to the case of time periodic flows [24]. Clearly, most flows in practice are time
dependent, and it is important to understand this more general case. The time periodic
situation is a natural first step. Without loss of generality, we will assume that the period
in time is equal to one, and will state only the general result. Let L(t) be a self-adjoint (for
any t) operator, periodic with respect to t with period 1 and such that the following two
conditions hold.

Condition 1. For any ψ ∈ H1(Γ) we have

‖L(t)ψ‖ ≤ C0‖ψ‖1 (1.6)

with constant C0 independent of t.

Denote by U(t, s) unitary group associated with equation

d

dt
ψ(t) = iL(t)ψ(t). (1.7)

Thus, U(t, s)ψ(s) = ψ(t). Due to periodicity of L(t) we have U(t + 1, s + 1) = U(t, s). For
period operator U(1, 0) we use the notation V .

Condition 2. For any ψ ∈ H1(Γ) we have

‖U(s+ t, s)ψ‖1 ≤ B(t, s)‖ψ‖1 (1.8)

with constant B(t, s) <∞ (periodic in s) such that for any X > 0

sup
t∈[0,X]

sup
s∈[0,1]

B(t, s) ≤ C∗(X) <∞. (1.9)

Consider the equation

d

dt
φA(t) = iL(t)φA(t)− ΓφA(t), φA(0) = φ0, (1.10)

where Γ is as before. Then the main result is the following [24]:
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Theorem 1.6. Under conditions 1 and 2 evolution is relaxation enhancing (in the sense of
Definition 1.4) if and only if the unitary operator V has no eigenfunctions in H1(Γ).

Thus the relaxation enhancement for time periodic flows is equivalent to the investigation
of the eigenfunctions of the time one map V. It is interesting to note that in the case of a fluid
flow u(x, t), the problem reduces to studying a different flow of special form in one extra space
dimension. Namely, let us denote the unit circle by T. In the Hilbert space H := L2(T, H) -
functions on T which are L2 with values in H consider unitary evolution eiKσ defined by

eiKσf(t) := U(t, t− σ)f(t− σ). (1.11)

We denote by K the self-adjoint generator of the unitary group eiKσ. Formally,

K := i
d

dt
+ L(t). (1.12)

Then one can prove [24]

Theorem 1.7. Operator V has an eigenfunction in H1(Γ) if and only if operator K has an
eigenfunction f(x, t) in H1 := L2(T, H1(Γ)) ∩H1(T, H).

Finally, the last result we are going to mention deals with relaxation enhancement in non-
compact regions (specifically, R2 and R × T). Given an incompressible Lipshitz flow v in a
domain D, let us denote Pt(v) the solution operator for the equation

ψt + v · ∇ψ = ∆ψ, ψ(0) = ψ0 (1.13)

on D. That is, Pt(v)ψ0 = ψ(·, t) when ψ solves (1.13). The following theorem has been proved
in [33]:

Theorem 1.8. Let u be a periodic, incompressible, Lipshitz flow on D = R2 or D = R× T
with a cell of periodicity C, and let φA solve (1.1) in D. The the following are equivalent.
(i) For some 1 ≤ p ≤ q ≤ ∞ and each τ > 0, φ0 ∈ Lp(D),

‖φA(·, τ)‖Lp(D) → 0 as A→∞. (1.14)

(ii) For any 1 ≤ p ≤ q ≤ ∞ such that p <∞ and q > 1, and each τ > 0, φ0 ∈ Lp(D),

‖φA(·, τ)‖Lp(D) → 0 as A→∞.
(iii) For any 1 ≤ p ≤ q ≤ ∞ and each τ > 0,

‖Pτ (Au)‖Lp(D)→Lq(D) → 0 as A→∞.
(iv) No bounded open subset of D is invariant under u and any eigenfunction of u on C that
belongs to H1(C) is a first integral of u.

The first three statements in the above theorem provide essentially different equivalent
definitions of relaxation enhancement (which may be more reasonable to call dissipation
enhancement in this setting, since the limiting value is going to be equal to zero). The fourth
is a sharp characterization of flows that provide such dissipation enhancement on D. An
interesting aspect of this theorem is that in the non-compact setting the class of relaxation
enhancing flows includes some flows with first integrals on the cell, such as shear flows in
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the infinite direction which have a plateau. The paper [33] contains some other interesting
examples and generalizations.

In the following section we sketch some of the main ideas behind the proof of the Theo-
rems 1.2, 1.5, 1.6 and 1.8.

2. The Heart of the Matter

While we are not going to present detailed proofs, we would like to outline, or perhaps even
just illustrate, the main idea behind the general criterion Theorem 1.5 and its connection with
estimates on wavepacket spreading in quantum mechanics. For this purpose, it is convenient
to switch to an equivalent formulation with small parameter ε = A−1. Namely, we will look
at the equation

φεt = iLφε − εΓφε, φε(0) = φ0. (2.1)

The question then becomes under what conditions on L for any τ, δ > 0 we can find sufficiently
small ε(τ, δ) such that for any ε < ε(τ, δ) we have ‖φε(τ/ε)‖ < δ?

One direction of the Theorem 1.5 is rather straightforward. If there exists φ ∈ H1 such
that Lφ = λφ, then it is not difficult to show that L cannot be relaxation enhancing. It
suffices to take the initial data φ0 equal to φ and carry out a few elementary estimates on
the equation [4].

The converse direction is trickier. The evolution due to L is unitary, while unperturbed
dissipative part due to εΓ delivers decay by just a fixed factor on the time scale of the order
ε−1 - if there is no mixing by L. Thus enhanced dissipation can only happen if the unitary
evolution transports the initial data to progressively higher harmonics of Γ. Since at any time
t we have

∂t‖φε‖2 = ε‖φε(s)‖2
1, (2.2)

we just need to obtain sufficiently strong lower bound (perhaps on average) for the H1 norm
of the solution. Let us recall the following statement, well known in mathematical quantum
mechanics as the RAGE theorem (in honor of Ruelle, Ahmrein, Georgescu and Enss [6]).

Theorem 2.1. Assume L is a self-adjoint operator, and denote Pc the projector on the
continuous spectral subspace. Let C be a compact operator. Then for any φ ∈ H, we have

1

T

T∫

0

‖C exp(iLt)Pcφ‖2 dt→ 0 (2.3)

as T →∞.
This is a precise formulation of a well known informal principle saying that the quantum

evolution corresponding to continuous spectrum is unbounded. Indeed, think of a discrete
case, where H = l2(Zd), and take K equal to a projection on a ball of radius R. Then the
statement of the Theorem says that the wavepacket, on average, will stay out of this ball for
large times. The proof is based on a well known and simple Wiener theorem saying that if µ
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is a probability measure with point masses at ai and µ̂ is its Fourier transform, then

1

T

T∫

0

|µ̂(t)|2 dt→
∑
i

µ(ai)
2

as T → ∞. Clearly, the unboundedness of the unitary dynamics should be very relevant in
our case, where the natural basis is given by the eigenfunctions of Γ and the goal is to show
that the evolution migrates to high modes and dissipates.

Let us now consider the case where our operator L has purely continuous spectrum. In
this case, the proof is especially transparent. The key are the following two lemmas. The
first lemma ensures that the solution of (2.1) stays close for a while to the unitary evolution
φ0(t) = exp(iLt)φ0.

Lemma 2.2. Assume the conditions (1.4) hold. Let φ0(t), φε(t) be solutions of

(φ0)′(t) = iLφ0(t), (φε)′(t) = (iL− εΓ)φε(t),

satisfying φ0(0) = φε(0) = φ0 ∈ H1. Then we have

d

dt
‖φε(t)− φ0(t)‖2 ≤ 1

2
ε‖φ0(t)‖2

1 ≤
1

2
εB2(t)‖φ0‖2

1. (2.4)

As a consequence,

‖φε(t)− φ0(t)‖2 ≤ 1

2
ε‖φ0‖2

1

∫ τ

0

B2(t) dt

for any time t ≤ τ.

This lemma can be proved by elementary arguments [4].
The second lemma is an upgraded version of the RAGE theorem. Recall that we denote

by 0 < λ1 ≤ λ2 ≤ . . . the eigenvalues of the operator Γ and by e1, e2, . . . the corresponding
orthonormal eigenvectors. Let us also denote by PN the orthogonal projection on the subspace
spanned by the first N eigenvectors e1, . . . , eN and by S = {φ ∈ H : ‖φ‖ = 1} the unit sphere
in H. The following lemma shows that if the initial data lies in the continuous spectrum of
L then the L-evolution will spend most of time in the higher modes of Γ.

Lemma 2.3. Let K ⊂ S be a compact set. For any N, σ > 0, there exists Tc(N, σ,K) such
that for all T ≥ Tc(N, σ,K) and any φ ∈ K, we have

1

T

T∫

0

‖PNeiLtPcφ‖2 dt ≤ σ‖φ‖2. (2.5)

An important aspect of this lemma is the uniformity of the estimate in φ ∈ K.
Given these two lemmas, here is a sketch of the proof of Theorem 1.5.
Fix δ, τ > 0. Take σ = 1/10, and choose N so that

exp(−λNτ/10) < δ. (2.6)
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We will also assume that λN is chosen to be large than one. Define a compact set

K =
{
φ ∈ H

∣∣‖φ‖2
1 ≤ λN‖φ‖2

}
.

Define τ1 = Tc(N, 1/10, K). Finally, take any ε < ε(τ, δ) where the latter is defined by a
condition

ε(τ, δ)

τ1∫

0

B2(t) dt ≤ 1

20λN
. (2.7)

Assume that we have ‖φε(t)‖2
1 > λN‖φε(t)‖2 for any t in some interval [a, b] ⊂ [0, τ/ε].

Then from (2.2), it follows that

‖φε(b)‖2 ≤ exp(−ελN(b− a))‖φε(a)‖2. (2.8)

In particular, if we could take [a, b] = [0, τ/ε], then by (2.6) the norm of the solution will be
less than δ at t = τ/ε.

Now let us examine what happens if at any time τ0 we have ‖φε(τ0)‖2
1 ≤ λN‖φε(τ0)‖2. For

the sake of transparency, henceforth we will denote φε(τ0) = φ0. On the interval [τ0, τ0 + τ1],
consider the function φ0(t) satisfying d

dt
φ0(t) = iLφ0(t), φ0(τ0) = φ0. Note that by the choice

of ε, τ0, (2.7), and Lemma 2.4, we have

‖φε(t)− φ0(t)‖2 ≤ 1

10
‖φ0‖2 (2.9)

for all t ∈ [τ0, τ0 + τ1]. Our choice of τ1 implies that

1

τ1

τ0+τ1∫

τ0

‖PNφ0(t)‖2 dt ≤ 1

10
‖φ0‖2. (2.10)

Taking into account that the evolution φ0(t) is unitary, it follows that

1

τ1

τ0+τ1∫

τ0

‖(I − PN)φ0(t)‖2 dt ≥ 9

10
‖φ0‖2. (2.11)

Using (2.9), we conclude that

1

τ1

τ0+τ1∫

τ0

‖(I − PN)φε(t)‖2 dt ≥ 1

2
‖φ0‖2. (2.12)

This estimate implies that
τ0+τ1∫

τ0

‖φε(t)‖2
1 dt ≥

λNτ1

2
‖φ0‖2. (2.13)

Combining (2.13) with (2.2) yields

‖φε(τ0 + τ1)‖2 ≤
(

1− λNετ1

2

)
‖φε(τ0)‖2 ≤ e−λN ετ1/2‖φε(τ0)‖2. (2.14)
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The whole interval [0, τ/ε] can now be split into a union of intervals such that either (2.8)
or (2.14) applies. Thus we obtain (assuming ‖φ0‖ = 1)

‖φε(τ/ε)‖2 ≤ exp(−λNτ/2) < δ2,

finishing the proof in this case.
Including the point spectrum case is technically tricky, and we refer to [4] for the complete

treatment. However, the argument that we just provided illustrates some key ideas well. The
overall plan of the argument is flexible enough to also apply in the time periodic case [24].

3. Open Questions

In this section, we briefly discuss some open questions. There are many natural directions
in which one can pursue further developments. For example, discrete time version, more
precise quantitative estimates of the enhancement and links to relevant properties of the
dynamical systems and nonlinear dissipation are all of interest. However here we will focus
on describing in detail just two questions - which are most likely hardest but are also in our
opinion very interesting.

1. The spectral analog. The first question is to obtain estimates on the spectral gap in
this truly non-selfajoint situation. The issue is really twofold. Consider the operator

HA = iAL− Γ.

Let is denote λA1 the eigenvalue with the minimal real part (one of those eigenvalues if it is
not unique). Obtaining any analytical estimate on the <λA1 of the operator HA would require
completely new ideas. As we mentioned in the introduction, the current estimates available
in the Dirichlet boundary condition setting for the flow operator depend critically on the fact
that the principal eigenvalue is real and the corresponding eigenfunction is positive. Clearly,
such properties have no analog in general for (3). The second question is if the link between
dynamical behavior and spectral gap remains true in this case. A natural conjecture is that
lim supA→∞<λA1 <∞ if and only if L has H1(Γ) eigenfunctions and if and only if evolution
is not relaxation enhancing. In fact, the ”only if” direction can be proved similarly to [2]; it
is the ”if” direction that looks difficult. Finding what the above limit (if it exists and finite)
is going to be equal to is another interesting problem.

Generally, it is well known that in non-selfadjoint spectral analysis, ”anything can hap-
pen”. The question is if the natural problem that we are looking at has sufficient structure
to still possess some nice properties.

2. Examples of time-dependent flows. Theorem 1.6 provides a simple characterization of
the time-periodic relaxation enhancing flows. Intuitively, it is clear that time dependence
of the flow is likely to improve its mixing properties in many situations. A very reasonable
question is therefore the following:
Find an example of a 2D incompressible flow u(x, y, t), periodic both in space and time with
period 1, such that for each fixed t0, u(x, y, t0) is not relaxation enhancing (for instance, the
mean of u is zero) but the time time dependent flow u(x, y, t) is relaxation enhancing.
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We were unable to find such examples in the existing literature. One approach suggested by
Theorem 1.6, would be to start from a relaxation enhancing (for example, mixing) time one
map, and try to build a flow leading to it. However, most explicit mixing maps on the torus
that appear in the literature, such as simple Anosov diffeomorphisms, are not homotopic to
the identity map - and so cannot be realized by a smooth flow on the torus. We believe
that the above question is interesting purely from the dynamical systems point of view,
independently of its applications to the advection-diffusion.
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