
Common Logarithms of Numbers
N 0 1 2 3 4 5 6 7 8 9
10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374
11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755
12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106
13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430
14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732

15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014
16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279
17 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529
18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765
19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989

20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201
21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404
22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598
23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784
24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962

25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133
26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298
27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456
28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609
29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757

30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900
31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038
32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172
33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302
34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428

35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551
36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670
37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786
38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899
39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010

40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117
41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325
43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425
44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522

45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618
46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712
47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803
48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893
49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981

50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067
51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152
52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235
53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316
54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396

log ( x * y) = log x  + log y log ( x / y) = log x  – log y

logb b x = x

log b m = m log b

blogb x  = x

by = x is equivalent to y = logb x

logp x  =
logq x
logq p
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Foreword 
Many, if not most or all, high school math and science teachers have had the experience of hearing a 

student exclaim something comparable to the following: “234 × 4,192 = 8,219 because the calculator said 
so.” Clearly the magnitude of such a product should have at least 5 places past the leading digit, 200 × 
4,000 = 800,000 … 2 zeros + 3 zeros = 5 zeros, etc. That’s not “rocket science.” While only a savant can 
perform the exact calculation above in their heads most educated people can estimate simple expressions 
and “sense” when either bad data was entered into the calculator (GIGO—garbage in, garbage out) or that 
the order of operation for an expression was incorrectly entered.  Similarly I have read of an experiment 
whereby calculators were wired to give answers to multiplication problems that were an order of 
magnitude off and then given to elementary students to see if they noticed the errors. They didn’t. 

What is happening here? Many people would say that the culprit is the lack of number sense in our 
young people. They say that four-function calculators are given to students too early in the grade school 
before number sense is developed. There is a school of thought that abstraction, a component of number 
sense, must be developed in stages from concrete, to pictorial, to purely abstract. Learning that 5 + 2 = 7 
needs to start with combining 5 coins (popsicle sticks, poker chips, etc.) with 2 coins resulting in 7 coins. 
From that experience, the student can proceed to learn that the photographic/pictorial images of 5 coins 
(popsicle sticks, poker chips, etc.) combined with the photographic/pictorial images of 2 coins results in 7 
coin images. Similarly, 5 tally marks combined with 2 tally marks results in 7 marks. Finally, one 
internalizes the abstraction 5 + 2 = 7 … concrete, pictorial, abstraction … concrete, pictorial, abstraction. 
Giving calculators too early in an attempt to shortcut the learning progression robs the student of the 
chance to learn or internalize number sense. The result of not being required to develop number sense and 
not memorizing the basic number facts at the elementary school level manifests itself daily in upper 
school math and science classrooms. There are people responsible who should know better. An “expert” 
for math curriculum for a local school district attaches the following words of wisdom to every email 
message she sends: “Life is too short for long division!!” … but I won’t even go there. 

Calculators make good students better but they do not compensate for a lack of number sense 
and knowing the basic number facts from memory. They do not make a poor math student into a 
good one! 

The introduction of the handheld “trig” calculator (four operations combined with all the trig and log 
and exp functions) into the math curriculum has had similar impact on the student’s ability to learn 
concepts associated with logarithms. Thank the engineers at HP and TI for that! Life is too short to spend 
on log tables, using them to find logs and antilogs (inverse logs), and interpolating to extend your log 
table decimal value from four positions out to five! Yuck! However, by completely eliminating the 
traditional study of logarithms, we have deprived our students of the evolution of ideas and concepts that 
leads to deeper understanding of many concepts associated with logarithms. As a result, teachers now 
could hear 

 “(5.2)y = 30.47, y = 6.32 because the calculator says so,” (52 = 25 for goodness sakes!!) 
 or “y = log4.8 (714.6), y = 22.9 because the calculator says so.” (54 = 625,   55 = 3125!!) 
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Typically, today’s students experience teachers incanting: “The log of a product is the sum of the 
logs.” “The log of a quotient is the difference of the logs.” The students see the rules 
 

 
 
 
 
 
 
with little development of ideas behind them or history of how they were used in conjunction with log 
tables (or slide rules which are mechanized log tables) to do almost all of the world’s scientific and 
engineering calculations from the early 1600s until the wide-scale availability of scientific calculators in 
the 1970s. All three of these rules were actually taught in Algebra I, but in another format. Little effort is 
made in textbooks to make a connection between the Algebra I format (rules for exponents) and their 
logarithmic format. It is just assumed that the student sees and understands the connection. With the use 
of log tables and slide rules there was a daily, although subtle, reminder of the connection between these 
three rules and their parallel Algebra I “Rules of exponents.” 

 

 

 

 

 

  

 

“Black-box” calculator programming has obscured much of this connection. As a result, the progression 
of ideas associated with logarithms that existed for hundreds of years has been abbreviated. For really 
bright students, the curricular changes have not been a problem. For some students, however, the result 
has been confusion. 

Let me give you a specific example. The following quote is taken verbatim from 
http://mathforum.org/library/drmath/view/55522.html (website viable June., 2010) 

The Math Forum, “Ask Dr. Math.” “I have a bunch of rules for logs, properties and suchlike, but I find it 
hard to remember them without a proof. My precalculus book has no proof of why logs work or even what 
they are, nor does my calculus book. I understand what logs are … but I don’t understand why they are 
what they are. Please help me.” 

 This plea for help is from a calculus student who (presumably) has credit on their transcript for mastery 
of precalculus!! Yet, clearly he or she does not even know enough about logarithms to articulate a 
question regarding what they would like to know. 

My all time favorite magic log formulas are : 
 
 
 

 
 
 

1.)     log(a ×b)     = loga + logb or 

2.) 
    
log

a

b

 

 
 

 

 
      = loga − logb or 

3.)     logbm      = m logb 

     1.) xbx
b =log  

and 2.)     b
log

b
x

= x 

              Algebra 1 Rule                                 Associated Log Rule 

                 bm  * bn  =  bm + n                          logb(m  * n) = logb m + logb n 

                bm  / bn  =  bm - n                             logb(m  / n) = logb m - logb n 

                (bm)n = bmn                                     log bm  =  m log b 
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Where did those two formulas come from? There is some pretty simple logic behind these mysterious 
identities but teachers are always in a hurry to get to the “good stuff” … applying the rules to solve 
exponential equations with variable exponents. They don’t have time or take the time to develop and 
explain these “rules”.  And most books are not helpful with their terse presentation of these ideas. These 
formulas are still vital even today. The calculator has not made them obsolete in the way that the four 
function calculator has rescued us from the tyranny of the log tables and all the drudgery associated with 
them. Without these formulas we cannot knowledgeably use our scientific calculators to solve equations 
of the form (5.2)y = 30.47 or y = log4.8 (714.6). If the student does not understand the log rules, then he or 
she can still apply them and “get answers” just like the teacher. But unlike the teacher, some students 
really do not understand what is happening. If they make a severe error in their work they do not have the 
number sense that will enable them to catch unreasonable answers and they will be baffled in a later math 
class when the topic comes up again.   Chapter 2 is totally dedicated to understanding these two later 
rules. 

 

All the formulas shown above just seem to appear in the math books like “Athena jumping out of the 
head of Zeus” … deus ex machina!!! There is none of the development of ideas and evolution of thought 
that used to exist in the high school curriculum. The high school pre-calculus teacher may understand 
fully what is going on with these formulas and ideas and the class genius may also but Joe Shmick and 
Betty Shmoe do not! Many students are just sitting there working with abstractions that have not been 
developed and fully understood. It’s all magic … magic formulas and magic transformations. They are 
building “cognitive structures” without proper foundations. 

When students do not fully understand mathematical ideas they tend to quickly forget all the 
tricks that got them past their unit test and that “knowledge” is not there when a later math teacher 
asks them to recall and apply it. Also they do not have the number sense to know when their 
answers are not reasonable. 

Mathemagic is the learning of tricks that help a student to pass their immediate unit test. Mathemagic 
is confusing and quickly forgotten. Mathemagic is rigid. All problems that a student can solve using 
mathemagic must be in the exact same format as the problems the teacher used when teaching the unit. 
Mathematics is the learning and understanding of ideas, theories, and rules that stay with you for years 
or even decades and allow you to attack and solve problems that are not in the exact same format as the 
problems the teacher solved when teaching the material. Mathematics is a disciplined, organized way of 
thinking. 

If a student fully understands the ideas behind working with logarithms, then correct answers, comfort 
with logarithmic situations, and multiyear retention will result. This is not an if-and-only-if relation. If a 
student can get correct answers on her/his immediate unit test that does not mean that s/he understood the 
concepts or that retention will occur so that the necessary recognition and skills will be there for the 
student should a future occasion (math, science, and business classes) require them. 

The omnipresence of scientific calculators today means that even most teachers have not experienced 
the joys  of working with log tables or working with a slide rule . For the most part that is good. I 
would not wish my worst enemy to have to learn about logarithms the way I did, using log tables to find 
logs and anti-logs and interpolating to tweak out one more decimal value for both. There was also the 
special case situation of using a log table to determine the log of x where 0 < x < 1. All the preceding was 
a real a “pain in the patootie” which we are spared today. The calculator allows us to concentrate on the 
application and not be distracted by the mechanics and minutia of the arithmetic! I do feel, however, that 
in the education world there is a need to develop the ideas and history associated with logarithms prior to 
expecting the students to work with them. Doing so will replace the mystery of the study of logarithms 
with a deep appreciation and understanding of log ideas and concepts that will stay with the student for an 
extended period of time. That is the motivation behind this material. 
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Note to Teachers 
This text is not written for you. With the exception of parts of chapters 5, 6, and 7 and Appendix A, I 

assume that you already understand all the ideas presented. This is a book written for students who do not 
understand logarithms even if they can apply the rules and get correct answers. However, it would 
greatly gratify me if a teacher were to tell me that he or she enjoyed my organization and presentation. 

I am a high school math teacher, not a mathematician. As such, I live and work in a world where 
sequence and progression of concepts leading to key ideas, along with pacing, “anticipatory sets,” 
evolution and organization of ideas, reinforcement, examples and counterexamples, patterns, visuals, 
repeated threading and spiraling of concepts, and, especially, repetition, repetition, and repetition are all 
more important than rigor. It has always seemed ironic that authors and teachers, so knowledgeable about 
mathematical sequences, could be so insensitive and clumsy about the sequencing of curriculum … how 
they could be so knowledgeable about continuity of functions but so discontinuous in their writing. 

There are plenty of materials available on teaching logarithms that are mathematically rigorous. I 
believe that “rigor before readiness” is counter-productive for all but the most gifted students. As such, I 
present many, many examples to help the student to see patterns and only then do I present the abstraction 
which will allow for generalization to all cases. Induction is a powerful teaching tool.  Because of 
economy imposed by the publisher or perhaps because the material is so “obvious” to the authors most 
textbooks present the abstraction (generalization) first with little attempt to develop the rationale behind it 
or to connect the material to previous material such as the Algebra I Laws of Exponents or the history of 
logarithms. Those texts then proceed hurriedly to applying the abstraction to specific situations. 

I believe that the best way to introduce a new idea is to somehow relate it to previous ideas the student 
has been using for some time. Using this approach, new concepts are an extension of previous ideas … a 
logical progression. Logarithms are a way to apply many of the laws of exponents taught in Algebra I. It 
is important that the students understand that!!  I also believe in introducing an idea in one chapter and 
revisiting that idea repeatedly in different ways throughout the book. 

The materials presented here are usually spread over two years of math instruction: precalculus and 
calculus. Doing so, however, separates ideas and examples that are helpful in the synthesis that leads to a 
deeper understanding of logarithms. For example, most high school text books seem to shy away from a 
meaningful discussion of why scientists and other professionals prefer to work with base e, the natural 
log, rather than the more intuitive common base, base 10. They do so because the pre-calculus student has 
not yet been exposed to the ideas that are necessary to justify the use of base e. If the goal is “rigor” then 
indeed many ideas associated with e must be postponed until calculus. But if your goal is to create 
familiarity with logarithms and appreciation of the number e, I do not believe that all that rigor is 
required. I have tried to bring all those ideas down to the pre-calculus level. I hope that I have done so. 
My approach, however, has been done at the expense of rigor. If I get consigned to one of the levels of 
Dante’s Inferno because of my transgression it will be worth it if I am able to help young students past 
what, for me, was an unnecessarily difficult multiyear journey. When I did make an attempt at “rigor,” I 
chose the formal two column proof over the abbreviated paragraph proof. 

I see three different audiences for this text: 1.) students who have never worked with logarithms 
before, 2.) those students in calculus or science who did not manage to master logarithms during their 
algebra/pre-calculus instruction, and 3.) summer reading for students preparing for calculus.  The former 
students will need to receive instruction, but the second and third group of students, if sufficiently 
motivated, should be able to read these materials on their own with little or no help. There are questions at 
the end of each chapter to use to evaluate student understanding. Heavy emphasis is placed upon 
practicing estimation skills!!!
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Chapter 1: Logarithms Used to Calculate Products 
For hundreds of years scientists and mathematicians did their calculations using the standard approach 

currently taught in elementary school. 

 361 5 3 . 1 1 7 etc. 
  × 25 17 9 0 3 . 0 0 0 
 1 8 0 5  8 5 
 7 2 2     5 3 
                9 0 2 5     5 1 
        2  0 
        1  7 
          3 0 
          1 7 
          1 3 0 
          1 1 9 
           1 1 etc. 

Not only were all these calculations tedious and prone to error, but the time spent in doing those 
calculations took away from the tasks requiring those calculations … astronomy, navigation, etc. People 
were always looking for a way to aid in the calculation process. 
 

For now, define logarithms as a technique developed to aid in the drudgery of doing long and tedious 
calculations. In 1614, a Scottish mathematician, John Napier (1550–1617), published his table of 
logarithms and revolutionized the calculation process. (Joost Burgi, a Swiss watchmaker who interacted 
and worked with the famous astronomer Johann Kepler, also seems to have independently discovered 
logarithms, but Napier was the first to publish and he is usually given credit for their discovery and 
development.) For reasons that are distracting to the flow of ideas in this book, we will instead focus on 
the approach to logarithms by English mathematician Henry Briggs (1561–1630) who consulted with and 
was inspired by Mr. Napier’s insight and original ideas. 
 

The term logarithm is a portmanteau word … a word made of two smaller words. In this case, 
logarithm is made of two Greek words (logos, ratio and arithmos, number). In brief, a logarithm is 
nothing more than an exponent. In the equation 5y = 10 the “y” is a logarithm. 
 

 

 
For years, mathematicians had noticed a certain pattern held for sequences of exponentials with fixed 

bases. 
 

For example: 

Exponential  20 21 22 23 24 25 26 27 28 29 210 

Exponent  0 1 2 3 4 5 6 7 8 9 10 

Value  1 2 4 8 16 32 64 128 256 512 1,024 

Notice that 8 × 32 = 256 

 23 × 25 = 256 

 or 23 × 25 = 28 

Logarithms Used to Multiply 
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or 

Exponential  30 31 32 33 34 35 36 37 38 

Exponent  0 1 2 3 4 5 6 7 8 

Value  1 3 9 27 81 243 729 2,187 6,561 

Notice that 9 × 243 = 2,187 

 32 × 35 = 2,187 

 or 32 × 35 = 37 

From before 23 × 25 = 28 

and now 32 × 35 = 37 

By induction, we move from the specific to the general: 

 

 
Another way to think of this rule is to apply the definition of exponentiation …. 
                                                                      m times 
 
Definition of exponentiation:   bm = b * b * b * …               * b     (b times itself m times) 

For example: b4 ×  b3 = 
     (b × b × b × b)  ×      (b × b × b)  = (definition of exponentiation) 
   b × b × b × b × b × b × b  = (associative property of multiplication) 
  b7   (definition of exponentiation) 

By transitive       b4 × b3 = b7  or     bm × bn = b(m+n) 

When monomials with the same base are multiplied, one can obtain the result by adding the respective 
exponents. Napier (and later Briggs) saw from this pattern the possibility of converting a complicated, 
difficult multiplication problem into an easier, far less error-prone, addition problem. For example: 

 4,971.26 × 0.2459 = 

 10m × 10n = 10(m + n) 

 Where 3 < m < 4 and –1 < n < 0 

 Because 104 = 10,000 and 100 = 1 

  10m = 4,971.26 and 10n = 0.2459 

  103 = 1,000 and 10–1 = 1/10 = 0.1 

This approach follows immediately from the pattern noted before 

     bm × bn = b(m+n) 

 

Product of Common Base Factors Rule  (rule applies for all m & n) 

                   bm × bn = b(m+n)

Product of Common Base Factor Rule

Product of Common Base Factors Rule 
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Mr. Briggs devoted a great deal of the last 20 years of his life to identifying those values of y whereby 
10y = x. In the equation 10y = x, the exponent y came to be know as the logarithm of the number x using a 

base of 10,     y = log10(x ). Hence 10y = x is equivalent to   y = log10 x . For example,   10 =10(1/ 2) =100.5 = 
3.162277. In English … “0.5 is the base 10 logarithm of 3.162277.” 

 
 
 

Appendix A goes into detail about some of the ingenious techniques Mr. Briggs used to develop his 
logarithmic information. The curious reader is referred there because a discussion of those ideas here 
would distract from the more important goal of explaining how logarithms were used to convert tedious 
multiplication problems into simpler addition problems. 

Mr. Briggs organized his work into tables. Discussing that organization and adding the new 
vocabulary words (characteristic, mantissa, antilogarithm) necessary to use the table would also distract 
from the discussion at hand and is mostly omitted from this book. See Appendix A, pg. 1 for a hint. 
Suffice to say that in the table of logarithms that Mr. Briggs developed was information comparable to the 
following: 

Logarithm Exponent Form Number  
0 100 1 (log10 0        =  1) 
0.08720 100.08720 1.222 (log10 1.222 =  0.087) 
0.39076 100.39076 2.459 (log10 2.459 =  0.39076) 
0.69644 100.69644  4.971 (log10 4.971 =  0.69644) 
1 101 10 (log10 10      =  1) 

Thus, the problem originally posed can be evaluated as follows: 

 4,971.26 ×                             0.2459                    = 

 4.97126 × 103 × 2.459 × 10(–1) = (scientific notation) 

 100.69644 × 103 × 100.39076 × 10(–1) = (exponent values taken from table) 

       103.08720 = (   bmbnbob p = b(m+n+o+ p)
  ) 

     103 × 100.08720 = (see 100.08720 in box above) 

     1,000 × 1.222 = 1,222 

By calculator 4,971.26 × 0.2459 = 1,222.432834 which compares very favorably with the answer 
obtained using Mr. Briggs’ logarithm technique. Three additional thoughts here: 1.) Mr. Briggs’ log table 
had as many as 13 decimal places (more than a TI-83 calculator), which would have made our work 
greatly more accurate had we used his raw data. 2.) Scientists and engineers are usually happy with 
“close” answers as long as the answers are close enough for the work they are doing to succeed. The 
number 1.414213562 would make most engineers very happy, but for the mathematician only the 2  
would be acceptable. 3.) There are complications involved in using a log table when finding the log of x 
when 0 < x < 1. Fortunately, the scientific calculator saves us from having to deal with those 
complications. See Appendix D if you are curious about this matter. 

10y = x is equivalent to     y = log10 x Equivalent Symbolism Rule 
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Notice the relationship between Briggs’ logarithmic approach to multiplying numbers and the form of 
math called scientific notation. 

Multiply Avogadro’s number by the mass of an electron. (It’s probably not good science, but it is 
good math.) 

 Avogadro’s number × mass of an electron 

 600,000,000,000,000,000,000,000 × 0.0000000000000000000000000000009 = 

 6 × 1023 × 9 × 10(–31) = 

   54 × 10(–8) = 

   5.4 × 10(–7) = 0.00000054 kg 

Your turn. Use your scientific calculator to evaluate the following product using the logarithmic 
technique shown on the previous page. Use the × button on your calculator to check your work. 

 274,246 × 0.0005461 = 

 10m × 10n = 

 10log 274246 × 10log 0.0005461 = (using calculator twice for log m and log n) 

 10(log 274246 + log 0.0005461) = Product of Common Base Factors Rule 

                                                                                         bm × bn = b(m+n) 
 etc., use your calculator to finish and check 

(Using a log table to obtain the log of  a number less than one (1) involves some ideas that used to be very important but which 
are all dealt with now by the black-box code inside those marvelous scientific calculators. For a more complete discussion, 
please see Appendix D.) 

Evaluate using the rule bm × bn = b(m + n). Use a calculator to determine necessary logs. Check your work. 

1.) 3,451,234 × 9,871,298,345 = 

2.) 56,819,234,008 × 0.004881234 = 

3.) 0.00003810842 × 0.000000089234913 = 

It is important to make a connection between the Product of Common Base Factors Rule and a new rule 
that will be called the Log of a Product Rule: 

These rules are two different forms of the same idea. The latter simply states that if two numbers x and y 
are being multiplied, they can both be expressed as exponentials with a common base. Once the exponents 
of the respective factors are added, the resulting exponent can be used to determine the result of the 
original problem by using that exponent sum as a power (antilog or inverse) of the common base. On the 
calculator, the antilog or inverse button is marked 10x. We use symbols to avoid convoluted statements 
like these! 

     a ×b =10(loga+logb)
 

      bm × bn = b(m+n) Product of Common Base Factors Rule 

 and     log(x × y) = logx + log y  Log of a Product Rule 



 Chapter 1: Logarithms Used to Calculate Products 5 

 

 
By Product of Common Base Factors Rule By Log of a Product Rule 

 5 × 7 = x  5 × 7 = x 

 100.69897 × 100.84509 = x  log (5 × 7) = log (x) iff Log Rule 
     (m = n) iff (log m = log n) 

   101.54406 = x  log 5 + log 7 = log (x) Log of a Product 

   34.99935 = x  0.69897 + 0.84509 = log (x) 

   1.54406 = log (x) 

 Applying the intuitive rule m = n iff 10m = 10n 
   10(1.54406) = 10log (x)

 Finally applying the decidedly nonintuitive Antilog 
(Inverse) Log Rule … 10log x = x (discussed later in 
chapter 2) on the right side and a calculator on the left 
side 34.99935 = x (by calculator) 

 

(Note to the reader.  For all my work to fit on the page I restricted my precision to 5 decimals.  Be assured that the use of 10 
decimals does result in a product of 35 as would the use of Mr. Briggs’ 13 place log tables.) 

With practice, the steps shown at the right to calculate 5 × 7 can be shortcut as follows: 

To multiply two numbers add their respective logs and take the antilog of the sum. 

4971.26 × 0.2459 = antilog (log 4,971.26 + log 0.2459) 

Shortly after the appearance of log tables, two English mathematicians, Edmund Gunter and William 
Oughtred, had the insight to mechanize the process of obtaining log and antilog values. This picture 
shows a modern slide rule. The magic behind how the slide rule multiplies values is the rule 
a × b = antilog (log a + log b).  

 
Source: The Museum of HP Calculators http://www.hpmuseum.org 
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Chapter 1 Summary—From the early 1600s to the late 1990s, one of the main applications of 
logarithms was to obtain the result of difficult or tedious multiplication problems through the 
easier, less error-prone operation of addition. Using log tables, one could multiply two 
numbers by adding their respective logs and taking the antilog of the sum.   (Do you see how 
awkward the wording of the procedure to use logarithms to multiply two numbers is? That is why 
we use rules. The use of symbolic rules allows us to focus on the process and ideas without 
getting confused with words).    In the words of John Napier, “Cast away from the work itself 
even the very numbers themselves that are to be multiplied,… and putteth other numbers in their 
place which perform much as they can do, only by addition…”   Source:  John Napier, Cannon 
of Loagarthms in “When Slide Rules Ruled”, by Cliff Stoll, Scientific American, May, 2006, pg. 
83 

Symbolically 

a × b = antilog (log a + log b) or a × b = inverse log of (log a + log b) 
(the antilog button is marked 10x on some calculators and “inv log” on others) 

123 × 4,567 = 10(log 123 + log 4567) or 123 × 4,567 = inverse log of (log 123 + log 4,567) 

 

 

 

 

Just in case it slipped by you, the function y = log10 x is the inverse of the function y = 10x 
and the function y =10x  is the inverse of the function y = log10 x . 

 
1.) The function y = log10 x  is the inverse of exponential function y =10x . 
2.) The function y =10x  is the inverse of the log function y = log10 x . 

There is much, much more on this in chapter 2! The entire chapter 2 is written 
to clarify and emphasize these last two ideas!! 

Log Rules through chapter 1 

  bm × bn = b( m+n )  Product of Common Base Factors Rule 

log(x × y) = logx + logy  Log of a Product Rule 

m = n iff bm = bn  iff Antilog (10x) Rule 

m = n iff logm = log n  iff Log Rule 

by = x  is equivalent to y = logb x  Equivalent Symbolism Rule 

The Algebra I rule   bm × bn = b( m + n )  and the log rule 
log baba loglog)( +=×  are two different forms of the 

same idea.    Although it is not proved they work for 
both integer and real values.
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Chapter 1 Exercises 

1.) Approximate log10 285,962 by bracketing it between two known powers of 10 as shown in 
Chapter 1. 

10? =  _________  

10? = 285,962 

10? =  _________  

2.) Approximate log10 0.000368 by bracketing it between two known powers of 10 as shown in 
Chapter 1. 

10? =  _________  

10? = 0.000368 

10? =  _________  

3.) Mentally approximate using the Equivalent Symbolism Rule, 10y = x  is equivalent to 
y = log10 x . Check yourself using a calculator. 

e.g., log10 200 ≈ 2–3 because 102 = 100  <   200 < 1,000 = 103 

 a.) log10 56 b.) log10 687 c.) log10 43,921 
 d.) log10 0.0219 e.) log10 0.0000038 f.) log10 0.00007871 

(There are special case ideas associated with using a log table to find the log of a number x, 
where 0 < x < 1. These ideas used to be important, but they are all dealt with by the black-box 
code inside those wonderful scientific calculators. See Appendix D if you are curious.) 

4.) Using your calculator to obtain log values, multiply the following numbers using the technique        
a × b = 10(log a + log b). Show each step as you would have had to do before calculators. Use your 
calculator, however, to obtain the necessary log and antilog values. Check yourself using the × 
button on your calculator. 

a.) 4,526 × 104,264 = 

b.) 0.061538 × 40,126.7 = 

c.) 0.015872 × 0.000000183218 = 



 Chapter 1: Logarithms Used to Calculate Products 8 

 

5.) The Equivalent Symbolism Rule was presented as follows: 

In this case, the base of the exponentiation is 10. In practice, it could be any number. More generally, the 
rule would look like the following: 

Use the Generalized Equivalent Symbolism Rule to change each of the following equations into its 
“equivalent form.” 

 a.) y = 3x f.) y = log8 x 
 b.) 5 = 2x g.) y = log3 x 
 c.) y = 7x h.) y = log7 x 
 d.) y = pq i.) 8 = log2 x 
 e.) g = w3.2 j.) 9 = logx 11 

10 y = x  is equivalent to y = log10 x  Equivalent Symbolism Rule 

by = x  is equivalent to y = logb x  

Generalized Form Equivalent Symbolism Rule 
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Chapter 2: The Inverse Log Rules 
There is no escaping it … one must learn and feel comfortable applying several math rules when 

working with logarithms. These rules symbolize in abstract form very sophisticated ideas that cannot 
easily be put into a few words. We have already seen, discussed, and applied several. They are reviewed 
here along with a new one, the iff Log Rule (if and only if Log Rule) 

Two more rules, I call the Inverse Log Rules, are presented in most textbooks with only very terse  
explanation or clarification: 

     There are several ideas that build to an understanding of these Inverse Log Rules. For those readers 
who already know all this material, please skip ahead. I am not writing this material for you. 

Idea #1: A function refers to two sets, called domain and range, together with a rule that matches each 
member of the domain to exactly one member of the range. (“Domain” refers to allowable x 
values while “range” refers to allowable y values.) 

 Rule 
 
 

x 
(domain) 

y 
(range) 

–2 –5 
–1 –2 
0 1 
1 4 
2 7 

1.) logb b x = x and Inverse Log Rule #1 (Log of an Exponential Rule) 

2.) b logb x = x  Inverse Log Rule #2 (Power of a Base Rule) 

y = 3x +1 

Log Rules through chapter 1 

  bm × bn = b( m+n )  Product of Common Base Factors Rule 

log(x × y) = logx + logy  Log of a Product Rule 

m = n iff bm = bn  iff Antilog Rule 

m = n iff logm = log n  iff Log Rule 

by = x  is equivalent to y = logb x  Equivalent Symbolism Rule 

—5 —4

—4

—3

—3

—2

—2

—1—1 1

1

2

2

3

3

4

4

5

5

6

6

7 8

y = 3x + 1
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Idea #2: An inverse function, if it exists, of a given function can be found by exchanging the x and y 
variables in the given function. For y = 3x + 1, we get x = 3y + 1. We then traditionally solve this 
new equation for y … y = (x – 1)/3. There is an interesting geometric relationship between the 
graph of the original function and the graph of it’s inverse function. Both graphs are symmetric 
around the line y = x. If you fold the graph along the line y = x the graph of both functions fall 
upon each other. 

e.g., Original function y = 3x + 1 
 Inverse function x = 3y + 1 

 or x – 1 = 3y 
 or 3y = x – 1 
 or y = (x – 1)/3 

x 
(domain of 

inverse function) 

y 
(range of inverse 

function) 
–5 –2 
–2 –1 
1 0 
4 1 
7 2 

Placing the table of (x, y) values for the original function … y = 3x + 1 … side by side with the table of 

(x, y) values of the inverse function … y = x −1

3
 we notice that the x and y values of each pair have been 

exchanged. 

 Original function Inverse function 

 y = 3x + 1 y = x −1

3
 

x 
(domain) 

y 
(range) 

 x 
(domain) 

y 
(range) 

–2 –5 ⇐compare –5 –2 
–1 –2 ⇐compare –2 –1 
0 1 ⇐compare 1 0 
1 4 ⇐compare 4 1 
2 7 ⇐compare 7 2 

This should not be surprising.  The inverse function was formed by exchanging the x and the y in the 
original function. This is what causes the two graphs to be symmetric around the line y = x. 

—5 —4

—4

—3

—3

—2

—2

—1—1 1

1

2

2

3

3

4

4

5

5

6

6

7 8

y = 3x + 1

y = x

y = 3
(x-1)
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Idea #3 The exponential equation y = bx is a function. 

e.g., y = 2x (base b > 1) 

x Y 
–2 ¼ 
–1 ½ 
0 1 
1 2 
2 4 
3 8 

Idea # 4 Exchanging the x and y values in the exponential equation y = bx results in its inverse x = by. For 
graphing purposes, we traditionally solve equations for y. You enter graphing mode by pressing 
the “y = ” button, right? You specify the graph you want graphed by filling in the “y = ” field 
that results, right? We solve for y using techniques taught in Algebra I: 1.) the 
Addition/Subtraction Property of Equality, 2.) the Multiplication/Division Properties of 
Equality, 3.) a combination of the Addition/Subtraction Properties of Equality with the 
Multiplication/Division Properties of Equality, 4.) raising both sides of an equation to a power, 
and 5.) taking the root of both sides of an equation. 

               6.) How do we solve for y in the equation x = by? The techniques that we learned to solve for y in 
Algebra I all fail to solve an equation for “y” when it is an exponent. 

(Sub. Prop. Of Eq.) 

1.) x = y + 2 
 x – 2 = y + 2 – 2 
 x – 2 = y 
 y = x – 2 

(Div Prop. of Eq.) 

2.) x + 2 = 3y 

 
x + 2

3
 = 

3y

3
 

 y = 
x + 2

3
 

(Sub. & Div. Prop. Of Eq.) 

3.) x = 3y + 2 
 x – 2 = 3y 

 
x − 2

3
 = 

3y

3
 

 y = 
x − 2

3
  

(Square both sides) 

4.) x – 1 = y  

 (x – 1)2 = ( y )2 
 y = (x – 1)2 
 

(Take the sq. root both sides) 

5.) y2 = x – 5 

 y 2( ) = x − 5( ) 

 y = ± x − 5( )  

(How to solve for y?) 

6.) x = by 
                   ??? 
 y = ???? 
 

This problem of solving for y in equation #6 above is overcome by what is essentially a definition. 
“y” is defined to be the exponent of a base (b) which results in a desired value (x). Hence, x = by is 
equivalent to y = logb x. In this book, this is known as The Equivalent Symbolism Rule. 

When you graph by = x (a.k.a. y = logb x) you are basically graphing bx = y but with all the ordered 
pairs exchanged. 

by = x is equivalent to y = logb x Equivalent Symbolism Rule

—2 —1 1

1

2

2

3

3

4

4
5
6
7
8

y = 2x



 Chapter 2: The Inverse Log Rules 12 

 

—2—3—4 —1 1

1

—1

—2

—3

2

2

3

3

4 5 6 7

y = 1-2
x

(x = 1-2
y)

y = x

domain: all real
range: y > 0

y = log x1-2

domain: x > 0
range: all real

—2 —1 1

1

2

2

3

3

4

4
5
6
7
8

y = 2x

y = x

x = 2y

(y = log2x
domain: x > 0
range: all real)

(y = 2x

domain: all real
range: y > 0)

The graph at the right below shows the graphs of two functions—y = 2x and its inverse, x = 2y—both 
plotted on the same x–y axis. Again notice that folding the graph along the line y = x causes the two 
inverse functions to match up with each other. The two functions are symmetric around the line y = x. 
Notice the domain and range of y = 2x and notice that the domain and range restrictions have been 
exchanged for x = 2y (a.k.a.  y = log2 x) 

 y = 2x (base b > 1) x = 2y or y = log2x (base > 1) 

x y  x Y 
–2 1/4 

 1/4 –2 
–1 1/2 

 1/2 –1 
0 1  1 0 
1 2  2 1 
2 4  4 2 
3 8  8 3 

 
Think of the graph by = x (a.k.a.  y = logb x) as graphing bx = y but with all the ordered pairs 
exchanged. 

Ideas #3 and #4 for base < 1 

  x = 1

2

 
 
 
 
 
 

y

 

 y = 1

2

 
 
 
 
 
 

x

 y = log1

2

x
 

 
 

 

 
  

x y  x Y 
–2 4  4 –2 
–1 2  2 –1 
0 1  1 0 
1 1/4  ¼ 1 
2 1/2  ½ 2 

Think of the graph by = x (a.k.a. y = logb x) as graphing bx = y but with all the ordered pairs 
exchanged. 

 

Repeating for emphasis: 

1.) For the graph y = bx, the domain is all real numbers and the range is positive. 

2.) For the graph x = by  (a.k.a.  y = logb x), the domain is positive 

                                                                   and the range is all real numbers. 
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—2 —1 1

1

2

2

3

3

4

4
5

—2
—1

y = (—2)x

x is an integer

Idea #5 As we are discussing restrictions on the domain and range for the exponential and log functions, 
this would be a good time to discuss the restrictions on b … namely b > 0. What would it mean 
to have a function y = bx with b < 0? Let’s experiment for y = (–2)x. Recall that raising a negative 
number to an even power results in a positive value whereas a negative number raised to an odd 
power results in a negative result. 

 y = (–2)x 

x Y 
–2  ¼ 
–1  –1/2 
0  1 
1  –2 
2  4 
3  –8 

Is this function continuous? How do you connect these points? The chart above only shows x for 
selected integer values. The domain for y = bx is all real. What if we had fractions and decimals and 
irrational numbers for x in the chart of x–y values? Let’s try an experiment. 

 
Enter (–2)(3/2) or (–2)(1.5) or (–2)π into your calculator. Be sure to place parenthesis about the (–2). The 

TI-83 Plus gives ERR: Non-Real Answer. Now since the log function y = log(–2) x is the inverse function 
of y = (–2)x, what does all this discussion mean for our log function? Maybe we should just avoid the 
whole situation by requiring our base, b, to be nonnegative. What if b = 0? e.g., y = 0x? Well, you can 
actually raise 0 to positive powers but 00 is not defined and for negative powers, 0–1 = 1/(01) = 1 / 0, you 
get division by zero!! So clearly b must be positive in the two functions y = bx and y = logb x. 

What about b = 1? b must be positive and we have seen graphs 
for both y = bx with 0 < b < 1 and y = bx for b > 1. What would the 
graphs of y = 1x and its inverse y = log1 (x) look like? y = 1x would 
actually be OK although it would be written more simply as y = 1, 
the special case horizontal line. For y = 1x exchange x and y 
resulting in x = 1y (a.k.a. y = log1 x) or more simply, x = 1. Notice 
that x = 1 is a vertical line and therefore not a function. A function 
cannot have more than one y value for any given x value. Obviously 
y = log1 (x) fails the vertical line test and cannot be a function. 

Conclusion: For y = bx, b > 0. For y = logb x, b > 0 and b ≠ 1. 

-2 -1 1 2 3 4

-2

-1

-2

1

2

3

y = 1

y = x
x = 1
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One last thing!! The equation y = bx for b < 0 is 
not allowed, but that is not the same thing as     
y = –(bx) for b > 0. y = –(bx) is a reflection of y = bx 
about the x axis and is allowed. There will be more 
on this in chapter 9. Stay tuned. 

Let’s review: Idea #4 … the domain for the exponential function is all real, the range for the 
exponential function is y > 0 … the domain for the log function is x > 0, the range for the log function is 
all real …. Idea #5 … the base requirement for the exponential function is b > 0, the base requirement for 
the log function is b > 0, b ≠ 1. These ideas are all important, but they can be confusing. Let’s use a chart 
to summarize and review them. 

Function Domain Range Base (b) 
y = bx –∞ < x < ∞ y > 0 b > 0 

y = logb (x) 
(x = by) 

x > 0 –∞ < y < ∞ b > 0, b ≠ 1 

 

—1 1

1

2

2

3

3

4

4
5

—3
—2
—1

y = log2x

y = log x1-2

For both functions
domain: x > 0
range: all real

—2 —1 1

1

2

2

3

3

4

4
5 y = 2x

y = 1-2
x

for both functions
domain: all real
range: y > 0

 

 

     The fact that b > 0 for both the exponential and the log functions gives us another way to understand 
the domain and range restrictions on both those functions. For y = bx, we see a positive number b (b > 0, 
remember?) raised to a power. Since exponentiation is repeated multiplication and the set of positive 
numbers is closed under multiplication, bx must be positive. Therefore, the range (y values) of the 
exponential function is positive. For y = logb (x) the base is also a positive number, b > 0, b ≠ 1. It follows 
that by = x means that a positive number is repeatedly multiplied so by > 0. Therefore, the domain (x 
values) of the function y = logb x must be positive. 

—2 —1 1

1

2

2

3

3

4—5 —4—6 —3

4

—4
—3
—2
—1

y = 2x

y = —(2x)
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Idea #6: Composition of functions occurs when the result of one function is used as input to another. 

e.g., f(x) = 2x + 1 g(x) = 3x – 1 
x f(x) g(f(x)) g(x) f(g(x)) 
–1 –1 –4 –4 –7
0 1 2 –1 –1 
1 3 8 2 5
  *  * 

     
     

  Compare 
 g(f(x)) ≠ f(g(x)) 

Idea #7: The order of composition of functions is important. 
g(f(x)) might not equal f(g(x)). 
In the chart above compare g(f(x)) with f(g(x)). 

Also notice in the graph at right that the graphs of 
g(f(x)) and f(g(x)) do not match up when folded across 
the line y = x. 

Idea #8: Sometimes the graphs of f(x) and g(x) do match 
up when folded across the line y = x. 

 
f (x) = 3x +1 g(x) = x −1

3
 

x f(x) g(f(x)) g(x) f(g(x)) 
–1 –2 –1 –2/3 –1
0 1 0 –1/3 0
1 4 1 0 1

     
     

 Compare  
 x =g(f(x)) = f(g(x))  

Inverse functions are symmetric with the line y = x and composition of inverse functions will result in 
x regardless of the order of composition. That is, x =f(g(x)) = g(f(x))  

—5 —4

—4

—3

—3

—2

—2

—1—1 1

1

2

2

3

3

4

4

5

5

6

y = 2x + 1

y = 3x — 1

y = x

—5 —4

—4

—3

—3

—2

—2

—1—1 1

1

2

2

3

3

4

4

5

5

6

6

7 8

y = 3x + 1

y = x

y = 3
(x-1)
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Idea #9: The exponential function and the log function are inverse functions of each other. y = bx  is an 
exponential function … x = by the inverse …a.k.a.  y = logb x,  logarithmic form of the inverse 

—2 —1 1

1

2

2

3

3

4

4
5
6
7
8

y = bx

b > 1

y = logb x
b > 1

y = x

 

Let f(x) = bx exponential function 
and g(x) = logb x inverse of bx in log form 

Then f(g(x)) = x (because they are inverse functions) and g(f(x)) = x (because they are inverse functions) 
 f(logb x) = x  g(bx) = x 

 x
x

bb =
log

 Inverse Log Rule #2 logb b
x = x Inverse Log Rule #1 

  (Power of a Base Rule)  (Log of an Exponential Rule) 

Restating the Inverse Log Rules together, we get 

These rules pop up in the most unexpected situations. For example, refer back to the last few lines of 
chapter 1. 

 5 × 7 = x 

 log (5 × 7) = log (x) iff Log Rule, m = n iff log m = log n 

 log 5 + log 7 = log (x) Log of a Product 

 0.69897 + 0.84509 = log (x) by calculator 

  1.54406  = log (x) 

 Applying the intuitive rule m = n iff 10m = 10n (equivalent to saying if 3 = 3 then 103 = 103) 

  10(1.54406804)  = 10log (x) 

***** And the decidedly nonintuitive Inverse Log Rule #2 … 10log x = x ***** 

  34.99935  = x (using a calculator for 101.54406804) 

 logb b
x = x Inverse Log Rule #1 (Log of an Exponential Rule) 

and x
x

bb =
log

 Inverse Log Rule #2 (Power of a Base Rule) 
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Following is an example of applying Inverse Log Rule #1, logb b
x = x 

 10x = 35 

 log10 10x = log10 35 Taking the log of both sides, iff Log Rule … m = n iff log10 m = log10 n 

 x = log10 35 Inverse Log Rule #1 (Log of an Exponential Rule) 

 x = 1.54406 by calculator (ck: 101.54406 = 34.99935) 

You should be aware that many textbooks and teachers will shortcut the previous work because they 
expect that you have fully internalized the log rules and are prepared for shortcuts. 

Compare the two following approaches to solve 10x = 35: 

As presented here                        As frequently presented 

 1.) 10x = 35 1.) 10x = 35 

 2.) log10 10x = log10 35 2.) x = log10 35 

 3.) x = log10 35 3.) x = 1.54406 

 4.) x = 1.54406 (ck: 101.54406 = 34.99935171) 

The problem 10x = 35 is actually a bit contrived. The solutions shown immediately above would not 
be applicable if the problem had been 23x = 35…or 17x = 100…or 30x = 2456, etc. 

 23x = 35 

 log10 23x = log10 35 

  ???? 

Here we can go no further as the Log of a Power Rule, logb b
x = x, cannot be applied to the situation 

log10 23x. The base of the log must be the same as the base of the log’s argument for the rule “logb b
x = x ” 

to work. In a later chapter, we will learn how to solve for an exponent in an equation where this 
requirement is no longer necessary in order to solve for an unknown exponent (eg. .  23x = 35 ). That is 
called solving for a “general case logarithm.”    

Often when learning new rules, concepts, and ideas it is helpful to look at them in different ways. For 
example, on previous pages the two inverse log rules were shown to hold by function composition:  
f(g(x)) = x and g(f(x)) = x. Here is another way to look at those same two rules. 

I y = y 

                 by = by iff Antilog Rule: m = n  iff  bm = bn 

                 by = x arbitrary substitution, let x = by, you will see why in two more steps 

 y = logb x Equivalent Symbolism Rule by = x is equivalent to y = logb x 

 y = logb b
y back substituting y = bx results in Inverse Log Rule #1 

 The Log of an Exponential Rule 

     or        x    =   logb b
x                   another arbritrary substitution, let y = x
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x
x

bb =
log

II x = x 

 logb x = logb x iff Log Rule Take the log of both sides. This is like saying 
 100 = 100 iff log 100 = log 100 (2 = 2) 

 logb x = y arbitrary substitution, let y = logb x, you will see why in two more steps 

 by = x Equivalent Symbolism Rule by = x is equivalent to y = logb x 

Finally blogb x  = x back substituting y = logb x results in Inverse Log Rule #2 
 The Power of a Base Rule 

Chapter 2 Summary—People who write mathematics books have worked extensively over the years 
with logarithms and they tend to forget that there are people who do not have their 
background and familiarity with logarithms. The result is that they will omit steps in their 
explanations because the step was “obvious,” expecting the reader to understand what was 
done. This is particularly the case with the two iff Log rules and the two Inverse Log rules. 

 m = n iff bm = bn iff Antilog Rule 
  4 = 4 iff 104 = 104 

 m = n iff log m = log n iff Log Rule 
  3 = 3 iff log 3 = log 3 

 logb b
x = x and Inverse Log Rule #1 (Log of an Exponential Rule) 

 b
log

b
x

= x  Inverse Log Rule #2 (Power of a Base Rule) 

These latter two rules hold true because they are inverses of each other and hence, by the 
definition of inverse functions, f(g(x)) = g(f(x)) = x. 

When reading passages talking about logarithms, one must constantly be on guard for 
applications of one of these “stealth” Inverse Log and iff Log rules. 

 

All the rules learned to this point are gathered together and listed below for reference 

  bm × bn = b( m+n )  Product of Common Base Factors Rule 

log(x × y) = logx + logy  Log of a Product Rule 

m = n iff bm = bn  iff Antilog Rule 

m = n iff logm = log n  iff Log Rule 

by = x  is equivalent to y = logb x  Equivalent Symbolism Rule 

logb b
x = x Inverse Log Rule #1 (Log of an Exponential Rule) 

b
log

b
x

= x  Inverse Log Rule #2 (Power of a Base Rule) 
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                                                    Chapter 2 Exercises 

1.) Given y = 2x + 5. Fill in the following chart and graph. 

 
y = 2x + 5 

x y 
–2  
–1  
0  
1  
2  

2.) Exchange the x and y variables in the equation y = 2x + 5 and solve for y. Use the values of y in 
the previous chart as your x values in the chart below, complete the chart. 

 
x = 2y + 5 

x y 
  
  
  
  
  

3.) Graph the relations for #1 and #2 above on the same x–y axis. What do you notice? 

4.) Given r(x) and s(x) as inverse functions, complete the following statement. 
 r(s(x)) = 
 and 
 s(r(x)) = 

5.) If two functions f(x) and g(x) are inverse functions then f(g(x)) = g(f(x)). Is this an “iff” (if and 
only if) relation? That is, “If f(g(x)) = g(f(x)), are f(x) and g(x) inverse functions? Do their graphs 
reflect about the line y = x?” 

Hint: a.) Try with f(x) = 3x and g(x) = 3x. 
 b.) Try with f(x) = 2x and g(x) = 3x 
 c.) Try with f(x) = x2 and g(x) = x3. 

6.) State the two Inverse Log Rules from memory. 

7.) Given p = q state the iff Antilog Rule. 

8.) Given p = q state the iff Log Rule. 

9.) Convert each of the following using the Equivalent Symbolism Rule. 
 a.) x = (–5)y b.) y = log(–2) 7 
 
10.)  Use a scientific calculator to find the log of a number x, x > 1.   Use the result as a power of 
         10.   Repeat this activity a few times.  What are you demonstrating?    
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Chapter 3: Logarithms Used to Calculate Quotients 
For hundreds of years scientists and mathematicians did their calculations using the standard approach 

currently taught in elementary school. 
 361 5 3 . 1 1 7 etc. 
  × 25 17 9 0 3 . 0 0 0 
 1 8 0 5  8 5 
 7 2 2     5 3 
 9 0 2 5   5 1 
        2  0 
        1  7 
          3 0 
          1 7 
          1 3 0 
          1 1 9 
           1 1 etc. 

The log tables and log rules that were so helpful in finding products can also be applied to quotients. 

For years, mathematicians had noticed a certain pattern held for sequences of exponentials with fixed 
bases. 

For example: 

Exponential  20 21 22 23 24 25 26 27 28 29 210 

Exponent  0 1 2 3 4 5 6 7 8 9 10 

Value  1 2 4 8 16 32 64 128 256 512 1024 

Notice that 32 / 8 = 4 

 25 / 23 = 4 

 or 25 / 23 = 22 

or 

Exponential  30 31 32 33 34 35 36 37 38 

Exponent  0 1 2 3 4 5 6 7 8 

Value  1 3 9 27 81 243 729 2187 6561 

Notice that 2,187 / 27 = 81 

 37 / 33 = 81 

 or 37 / 33 = 34 

Logarithms Used to Find Quotients 
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bm

bn = b( m−n )  Quotient of Common Bases Rule 

From before 25 / 23 = 22 

and now 37 / 33 = 34 

By induction, we move from the specific to the general case: 
bm

bn = b( m−n )  

Another way to think of this rule is to apply the definition of exponentiation …. 

                                                                         m times 
 
Definition of exponentiation:   bm = b * b * b * …               * b     (b times itself m times) 
 

For example: b8 / b3 = 

b⁄ × b⁄ × b⁄ × b × b × b × b × b
= (definition of exponentiation) 

b⁄ × b⁄ × b⁄ 

  b × b × b × b × b  = b5 

By transitive b8 / b3 = b5 or 

 

When monomials with the same 
base are divided, one can obtain the result by subtracting the respective exponents. Napier (and later 
Briggs) saw from this pattern the possibility of converting a complicated, difficult division problem into 
an easier, far less error-prone, subtraction problem. For example: 

 4,971.26 / 0.2459 = 

 10m / 10n = 10(m - n) 

 Where 3 < m < 4 and –1 < n < 0 

 Because 104 = 10,000 and 100 = 1 

  10m = 4,971.26 and 10n = 0.2459 

  103 = 1,000 and 10–1 = 1/10 = 0.1 

 

This approach follows immediately from  

the pattern noted before 

 

From previous discussion and from Appendix A, we know that from a table of logarithms (or today from 
a calculator) we can find the following information. 

Logarithm Exponent Form Number  
0 100 1 (log10 1        = 0) 
0.30568 100.30568 2.022 (log10 2.022 = 0.30568) 
0.39076 100.39076 2.459 (log10 2.459 = 0.39076) 
0.69644 100.69644 4.971 (log10 4.971 = 0.69644) 
1 101 10 (log10 10      = 1) 

bm

bn = b( m−n )  Quotient of Common Bases Rule 

                    Although it is not proved this rule holds true 
                    for all m & n . 
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Thus the problem originally posed 

4971.26  
=   

0.2459  

4.97126 × 103  
=   

2.459 × 10(–1)  

100.69644 × 103  
=  (from the table on the previous page) 

100.39076 × 10(–1)  

103.69644  
=  Product of Common Bases Rule,   bm × bn = b( m+n ) 10(–0.60924)  

10(3.69644 – (–0.60924)) =  Quotient of Common Bases Rule, 
bm

bn
= b( m−n )  

104.30568 =   

104 × 100.30568 = 20,220 (100.30568 = 2.022 from the table on the previous page) 

By calculator 4,971.26 / 0.2459 = 20,216.59211 which approximates the answer obtained using Mr. 
Briggs’ logarithm technique. As stated before in chapter 1: 1.) Mr. Briggs’ log table had as many as 13 
decimal places, which would have made our work greatly more accurate had we used his raw data.         
2.) Scientists and engineers are usually happy with “close” answers as long as the answers are close 
enough for the work they are doing to succeed. The number 1.414213562 would make most engineers 
very happy, but for the mathematician only 2  would be acceptable. 3.) There are special-case 
complications when using a log table to obtain the log of a number between 0 and 1. These issues are 
dealt with by the black-box code inside scientific calculators. (See Appendix D.) 

 

Once again, notice the relationship between Briggs’ logarithmic approach to dividing numbers and 
scientific notation. 

 

Divide Avogadro’s number by the mass of an electron. (It’s probably not good science, but it is good 
math.) 
 Avogadro’s number / mass of an electron 

 600,000,000,000,000,000,000,000 / 0.0000000000000000000000000000009 

 ( 6 × 1023 )   / ( 9 × 10(–31)  )   = 

   2/3 × 1054        = 

   0.667 × 1054        = 6.667 × 1053 kg–1 

Your turn. Use your scientific calculator to evaluate the following product using the logarithmic 
technique shown on the previous page. Use the × button on your calculator to check your work. 

 274,246 / 0.0005461 = 

 10m / 10n = 

 10log 274246 / 10log 0.0005461 = (using calculator twice for log m and log n) 

 10(log 274246 – log 0.0005461) = Quotient of Common Bases Rule, 
bm

bn = b( m−n )  

 etc., use your calculator to finish and check 
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Do the same for the  following problems using the rule 
bm

bn = b(m−n ).  Use your calculator to obtain values 

m and n and 10(m – n).   Check yourself using the “/” operation on your calculator. 

1.) 3,451,234 / 9,871,298,345 = 

2.) 56,819,234,008 / 0.004881234 = 

3.) 0.00003810842 / 0.000000089234913 = 

It is important to notice that the two formulas, 

are two different forms of the same idea. The latter simply states that if two numbers x and y are being 
divided they can both be expressed as exponentials with a common base. Once the exponents of the 
respective numbers are subtracted the resulting exponent can be used to determine the quotient of the 
original problem by using that exponent difference as a power (antilog) of the common base. This 
convoluted wording is a classic example of why we use symbols in math to communicate ideas. 

a

b
= antilog(loga − log b)  

a

b
= 10(log a− log b )  

a

b
= inverselog(loga − log b)              These rules apply to both integers and reals. 

The example from chapter 1 is recycled here to demonstrate this: 5 / 7 

By Quotient of Common Base Factors Rule By Log of a Quotient Rule 

 
5

7
 = x  

5

7
 = x 

 
100.69897

100.84509
 = x  log

5

7
 = log (x) iff Log Rule 

    (m = n) iff (log m = log n) 

 10(–0.14613) = x  log 5 – log 7 = log (x) Log of a Product 

 0.7142824907 = x 0.69897 – 0.84509 = log (x) 

  –0.14613 = log (x) 

 Applying the intuitive rule m = n iff 10m = 10n 
  10(–0.14613) = 10log (x)

 And the decidedly nonintuitive Antilog Log Rule 

 0.7142824907 = x (by calculator) 

 
bm

bn
= b(m−n ) Quotient of Common Bases Rule 

and log
x

y

 

 
 

 

 
 = log x − log y  Log of a Quotient Rule, 
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With practice the steps shown above to calculate 5 / 7 can be shortcut as follows: 

5

7
 = antilog (log 5 – log 7) or 

5

7
 = 10(log 5 – log 7) … inverse log (log 5 – log 7) 

a

b
 = antilog (log a – log b) or       

a

b
 = 10(log a – log b) … inverse log (log a – log b) 

To divide two numbers subtract their respective logs and take the antilog of the difference. 

As stated in chapter 1, the development of the slide rule mechanized the process of obtaining logs and 
antilogs. The magic behind how the slide rule divides values is the rule a / b = antilog (log a – log b). 

 
Source: The Museum of HP Calculators http://www.hpmuseum.org 

Chapter 3 Summary—From the early 1600s to the late 1990s, one of the main applications of 
logarithms was to obtain the result of difficult division problems through the easier, less error-
prone operation of subtraction. To divide two numbers, subtract their respective logs and take 
the antilog (10x) of the difference.    In the words of John Napier, “Cast away from the work 
itself even the very numbers themselves that are to be divided,… and putteth other numbers in 
their place which perform much as they can do, only by… subtraction…”   Source:  “When Slide 
Rules Ruled”, by Cliff Stoll, Scientific American, May, 2006, pg. 83 

 

            
a

b
= antilog(loga − logb)         

a

b
= 10(log a− log b )       

a

b
= inverselog(loga − log b)  

                    Chapter 3 Exercises 

1.) Using your calculator to obtain log values, divide the following numbers using the Rule to 

Divide Using Logarithms, 
a

b
= 10(log a− log b ) . Check yourself using the / operator on your 

calculator. 

a.) 
676 

b.) 
0.000000676

c.) 
6.76 

94283 94.283 0.94283

For each quotient above what do you notice about the pattern of significant digits. Explain.

The Algebra I Rule, 
bm

bn
= b( m−n ) , and the log rule, 

log
x

y

 

 
 

 

 
 = logx − log y , are two different forms of the same idea. 

These rules apply to both integer and real numbers. 
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Chapter 4: Solving for an Exponent—The General Case 

In chapter 2, we showed how to solve for an exponent if the base was 10. 

 10x = 35 

 log10 10x = log10 35 Taking the log of both sides, iff Log Rule … m = n iff log10 m = log10 n 

 x = log10 35 Inverse Log Rule #1 (Log of an Exponential Rule) 

 x = 1.54406 by calculator 

However, we were stymied, at that time, about how to solve for a general-case exponent where the 
base being exponentiated was not 10 . 

 23x =35             (231 = 23 so clearly 1 < x < 2 ) 

 log10 23x = log10 35 What next? 

Or even better, find 23
1

7  (i.e., 237 ). How do you proceed? 

All the rules learned to this point are gathered together and listed below for reference 

  bm × bn = b( m+n )  Product of Common Base Factors Rule 

bm

bn
= b(m−n ) Quotient of Common Bases Rule 

log(x × y) = logx + logy  Log of a Product Rule 

log
x

y

 

 
 

 

 
 = log x − log y  Log of a Quotient Rule, 

m = n iff bm = bn  iff Antilog Rule 

m = n iff logm = log n  iff Log Rule 

by = x  is equivalent to y = logb x  Equivalent Symbolism Rule 

logb b
x = x Inverse Log Rule #1 (Log of an Exponential Rule) 

b
log

b
x

= x  Inverse Log Rule #2 (Power of a Base Rule) 

x × y =10(log x + logy ) Rule to Multiply Using Logarithms 

x

y
=10(log x− logy ) Rule to Divide Using Logarithms 
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As has been stated before, for hundreds of years one of the main uses of logarithms was to obtain the 
answer of a difficult problem by somehow transforming the necessary calculation to an easier operation. 
We have seen how to obtain the answer to difficult multiplication problems by the easier operation of 
addition (of logarithms). We have seen how to obtain the answer to difficult division problems by the 
easier subtraction (of logarithms) operation. We are now going to find how to evaluate exponential 
situations by converting them to an easier multiplication operation. We start by reviewing the first log rule 
we learned: 

log(x × y) = logx + logy  Log of a Product Rule 

Everything about this rule screams out that it can be generalized as follows: 
                                m  times                                          m  times 
 
log  bm  =    b x b x b x ……… x  b    =     log b + log b + log b + … + log b    =    m log b 
 
By the transitive rule, log bm = m log b           Log of a Base Raised to a Power Rule 

 

 

 

Now this rule can be used to solve or evaluate the two problems posed on the previous page: 

 23x = 35  23
1

7  = x (i.e., 237  = ?) 

 log 23x = log 35  log (23
1

7 ) = log (x) take the log of both sides 

 x log 23 = log 35  1/7 log 23 = log x log (x) Log of a Base… 

 x = 
log35

log23
  log (x) = 1/7 log 23 Algebra Symmetry Rule 

 x = 
1.544068044

1.361727836
  log (x) = 1/7 (1.361727836) by calculator 

 x = 1.133903562  log (x) = 0.194532548 by calculator 

Check 

231.133903562 =                       

                  34.999999950 

 10log x = 100.194532548 taking the antilog of both sides 

  x = 1.565065608 left: Power of a Base, right: calculator 

 Check 23(1/7) = 1.565065608 by calculator 

Your turn: 

Solve or evaluate the following using logarithm skills. Check yourself using a calculator. 

1.) 5.97x = 250. Solve for x. 

2.) Find 82435 . Recall that 5/35 3 bb = .   Therefore x = 824(3/5) 

The rules       1.) (bm)n = bmn and 2.) log bm = m log b 
 
                      are two different forms of the same idea! 
                      They apply to both integer and real m and n. 
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Chapter 4 Summary—In this chapter we learned a new log rule  

 
and used it in two ways: 

1)  we learned how to solve an equation with a variable exponent and arbitrary base. (This 
skill is still very relevant today!!!) and 

2)  we learned how nth roots and fractional roots were extracted for hundreds of years until 
the calculator gave us an alternative.   In the words of John Napier, “Cast away from the 
work itself even the very numbers themselves that are to be…resolved into roots, and putteth 
other numbers in their place which perform much as they can do, only by… division by two or 
division by three.”  Source: Cannon of Logarithms by John Napier, 1614, as quoted by Cliff 
Stoll, “When SlideRules Ruled”, Scientific American, May, 2006, pg. 83. 

After chapter 2, we could only solve for variable exponents when the base was 10: 

10x = 20. 

We now have a way to solve for the exponent of all exponential equations, not just the ones 
with a base of 10: 

7x = 10. 

Also we have learned how to use logarithms to extract any desired integer root, x1/5, 
or rational root, x3/5. I won’t even attempt to put this process (algorithm) into words. That is 
why we use symbols in math … to avoid having to put complicated ideas into words. 

If bx = y then x = 
log y

logb
 

 23x = 35 then x = 
log35

log23
 

 b
p

q  = x then x = 10
p

q × log b  

 23
1

7  = x then x = 10
1

7× log 23  

 

 

 

 

Recall the restrictions on b and log b 

             log bm = m log b       Log of a Base Raised to a Power Rule 

 
(The formulas log bm = m log b and (bm)n = bmn are two different forms of the same idea. 

           They apply to both integer and real numbers.  ) 
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Chapter 4 Exercises 

1.) Approximate log4 200 by bracketing it between powers of 4 as shown in chapter 1 for powers of 
10. 

 4? = _______ 
 4? = 200 
 4? = _______ 

2.) Approximate x in the following equation and then solve for a more precise answer applying the 
Log of a Base Raised to a Power Rule and a calculator. 

 10x = 14,290 

3.) Approximate log17 14,290 by bracketing it between powers of 17 as shown in chapter 1 for      
powers of 10.     

                      17? =  _______ 
 17? = 14,290 
 17? =    _______ 

       4.)  Attempt to solve 17x = 14,290 using the iff Log Rule, m = n iff log m = log n. What is the 
problem with your approach? 

 5.)  Solve the equation 17x = 14,290 using the iff Log Rule and the Log of a Base Raised to a Power 
Rule. Is your answer consistent with the work you did in #3? 

6.) Check your work in #5 using a calculator … 17your answer in #5 = …. 

      7.)    Evaluate 6215  using the logarithmic approach. Check yourself using a calculator … 621
1

5 . 

8.)    Evaluate 6219 7
 using the logarithmic approach. Check yourself using a calculator … 621

7
9 . 
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Chapter 5: Change of Base, e, the Natural Logarithm 
So far the impression has been given that logarithmic representation of values are 
always given with a base of 10. Working with a base of 10 is intuitive to most 
people. For example, estimate log 450. 

Since 100 < 450 < 1,000 

 102 < 10x < 103 

then 2 < x < 3 … x = 2.something 

 102.something = 450 

Working with powers of 10 is easy because of the relationship between the power of ten and the last 
several digits of the result. 

 102 = 100, power of 10 = 2, 2 zeros after the 1 
 105 = 100,000, power of 10 = 5, 5 zeros after the 1 

 10–1 = 0.1, power of 10 = –1, no zeros before the one (abs (–1) – 1 = 0) 
 10–2 = 0.01 power of 10 = –2, 1 zero before the one (abs (–2) – 1 = 1) 
 10–3 = 0.001 power of 10 = –3, 2 zeros before the one (abs (–3) – 1 = 2) 

However, the logarithmic base could be something other than 10. For example, you could use 
logarithms with a base 5. To do so one would have to indicate the fact that you are using a different base 
because the default base for working with logarithms is 10. For example, log 450 is understood to be 
log10 450. If you wanted to let other people know that you were assuming a base of 5, you would have to 
explicitly indicate the desired base as 5 somehow. The standard format to do so is log5 450. 

Estimate log5 450 

Since 125 < 450 < 625, and 53 < 5x < 54 

then log5 450 = 3.something 

Therefore  53.something = 450 

Exactly what is log5 450? Applying skills that have been developed in this book 
 5x = 450 
 log (5x) = log (450) taking the log of both sides, iff Rule of Logs 
 x log (5) = log (450) Log of a Power Rule 

 x = 
log450

log5
 

 x = 
2.653212514

0.6989700043
 by calculator 

 x = 3.795888948 

Check: 53.795888948 = 450.000000691 

Summarizing, log5 450 = 
log450

log5
 or 

log10 450

log10 5
= 3.795888948 

Change of Base 

53 = 125 
5x = 450 
54 = 625 

 102 = 100 

 10x = 450 

 103 = 1,000 
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Summarizing, log5 450 = 
log450

log5
 or 

log10 450

log10 5
 

or generalizing,  logp 450 (for any base p) = 
log450

log p
 or 

log10 450

log10 p
 

log p x =
logq x

logq p
 

Change of Base Log Rule … change from base p into base q. 
(Often, base q is either 10 or e.) 

Now that we have seen that the choice of 10 as the base of a log function 
is arbitrary and based upon our predilection of working with powers of 

10, it is not so big a step to consider another base: e named after the famous Swiss mathematician, Euler. 

e is an irrational number that begins as follows: 2.718281828. 

Hence, while log (450) =  2.653212514 because 102.653212514 = 450, 

 loge (450) =  6.109247583 because 2.7182818286.109247583 = 449.999999642 

Because e is used so often as a base for work with logarithms, there is special symbolism to indicate its 
use … “ln.” We write “ln x” instead of “loge x.” In this case the omitted base of “ln x” is, by convention e, 
just as the omitted base of “log x” is 10. 

 ln x = loge x and log x = log10 x 

It is important to note that ln e = 1 because ln e = loge e and by the Equivalent Symbolism Law e1 = e. 

This equivalence can be used in solving for the “6.109247583” that appeared magically above. 

when obtaining loge  450 

ex = 450    Equivalent Symbolism Rule 

ln ex = ln 450     iff ln Rule 

x ln e = ln 450    ln of a Base Raised to a Power Rule 

x (1) = ln 450      ln e = 1…here it is! 

    x  =  ln 450 

    x  =  6.109247583  (by calculator) 

Why use base e? It seems like a very curious choice. The short answer is that there are 
numerous situations that arise in the physical world that involve e or that that involve a function 
with a base of e. Following are a few examples. 

 
 
 
 
 
 
 

e and the Natural Log 
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S = P ert 
 

We could eliminate the e value and express this same idea in our comfortable base 10 as follows: 

Set e = 10x 

 log e = log 10x taking the log of both sides, iff Log Rule 

 log e = x log (10) Log of a Power Rule 

 x = 
10log

log e
 log (e) by calculator … can you evaluate log 10 mentally? 

 x = 0.4342944819 

Check: 10(0.4342944819) = 2.718281828 

So now the original formula S = P ert could be rewritten with base 10 as 

 S = P (100.4342944819)rt 

 or S = P × 100.4342944819rt 
If we let k = 0.4342944819 then the equation S=P ert with e = 2.718281828 

 becomes S = P (10)krt with k = 0.4342944819 

We have in effect exchanged one mysterious number (e = 2.718281828 …) with another 
(k = 0.4342944819 …) which is itself derived from e. In other words the expression of many real 
world phenomenon is dependent upon a sort of “universal constant” … e. 

There are many quantities out there in the world that are 
governed (at least for a short time period) by the equation, 

f = i × akt, 

where f represents the final quantity, i represents the initial quantity, k represents a constant of 
proportionality, and t represents a unit of time. If k is positive, then the function will grow without bound 
and is called the exponential growth equation. Likewise, if k is negative the function will die down to 
zero and is called the exponential decay equation. Often the base (a) in such equations is the number 
e. (see #3 and # 7 below!) 

 

 

 

 

2.) Exponential Growth and Decay 

1.) Continuous compound interest 
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The formula for the bell curve is clearly dependent on the value of the 
mysterious e. 

y = e
−x 2

2

2π
 

The shape of the bell curve is like the silhouette of a bell, hence the name. 

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

-0.5-1.0-1.5-2.0-2.5-3.0-3.5  

 

 

A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete Fourier 
transform (DFT) and its inverse. FFTs are of great importance to a wide variety of applications, 
from digital signal processing to solving partial differential equations to algorithms for quickly 
multiplying large integers. Let x0, …, xn–1 be complex numbers. The DFT is defined by the 
formula 

f j = xke
− 2πi

n
jk

k= 0

n−1

 j = 0,…,n −1. 

Note the e in this series definition. 

Source: Wikipedia, the free encyclopedia  

(http://en.wikipedia.org/wiki/Fast_Fourier_transform) 

 

 

3.) Bell/Normal Curve 

4.) Fast Fourier transform 
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The equation for the logarithmic spiral is r = eat (polar form with          
“r” = radius, “a” being a constant, and “t” = theta.)   Again notice the    
base e. 

Alternatively, since e = 100.4342944819, the equation could be written with a base of 10 as                        
r = 100.4342944819at. Notice the replacement of base e in the original formula results in a mysterious 
0.4342944819 in the exponent. And, since that number is derived from solving e = 10x, then we have 
just eliminated the mysterious number e by substituting another mysterious number derived from e. 

 

 

 

 

 

 

 

 

 

When a flexible wire or chain is supported at each of its ends gravity will shape the wire or chain in 
what looks like a concave up parabola, y – k = (x – h)2 but is actually a different curve called a catenary 
… derived from the Latin word for chain. The equation for a catenary curve is      y = (ex + e–x) / 2. Notice 
the number e in the formula. e seems to be some sort of universal number built into the design of the 
universe. The St. Louis Arch closely approximates an inverted catenary. 
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5.) Logarithmic spiral 

6.) Catenary Curve, y = ex + e−x

2
 

r = eat

or 

r = 10(0.4342944819at) 
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Newton’s Law of Cooling is used to model the temperature change of an object of some temperature 
placed in an environment of a different temperature. A formula that 
grows out of Newton’s Law is 

T(t) = Tm + (Ti – Tm) × e(–kt), 

where T(t) is the temperature of the object at time t, Tm is the temperature of the surrounding medium,     
Ti is the initial temperature of the object and k is a constant of proportionality. What this law says is that 
the rate of change of temperature is proportional to the difference between the temperature of the object 
and that of the surrounding environment. Notice the e in the formula. 

Chapter 5 Summary—The reason that scientists and mathematicians prefer working with base 
e is that it appears frequently in nature and its use makes for a simpler, more aesthetic equation 
than would the same equation if it were written with a base of 10. Nicholas Mercator was the first 
person to describe loge x (or ln x) as log naturalis. The number e seems to be a sort of universal 
constant in the way that π (pi) and ϕ (phi) are. Simply put, e is somehow built into the fabric or 
design of nature … of the universe. The function y = loge x (a.k.a.  y = ln x) is said to be the natural 
logarithm while the function y = log10 x is called the common logarithm. Since we can solve for x in 
the equation e = 10x, we could replace the e values in each of the above situations involving e with an 
equivalent form involving our more comfortable base 10. However, in doing so we will be replacing 
one unfamiliar number, 2.71828, with another, 100.4342944819, which is dependent upon e to begin 
with. A religious person might describe e as “God’s number.” As loge e = 1 is equivalent to ln e = 1 
you can substitute 1 anywhere you see ln e. 

7.) Newton’s Law of Cooling 
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Chapter 5 Exercises 

1.)   Estimate each of the following for y. Justify your estimate. 
a.) y = 52.7 b.) y = 8.642.13 

2.)   Obtain exact answers for the problems in #1. Compare with your estimates in #1. 

3.)   Estimate x for each of the following. Justify your estimate. 
a.) 32.7 = 4x b.) 117 = 5x 

4.)    Solve for exact answers for the problems in #3. Compare with your estimates in #3. 

5.)    Estimate each of the following. Justify your estimate. 
a.) 10 = x2.6 b.) 62.73 = x4.31 

6.)   Solve for exact answers for the problems in #5. Compare with your estimates in #5. 

7.)   Estimate each of the following values for x. 
a.) 54.6 = 7x b.) 82.7 = 6x 

8.)   Solve for exact answers for the problems in #7. Compare with your estimates in #8. 

9.)   Estimate y for each of the following. Justify your estimate. 
a.) y = log2 50 b.) y = log3 28. 

10.)  Solve for exact answers for the problems in #9. (Hint. Either change to equivalent exponential form 
        and solve for y or use the Change of Base rule to change the problem to one involving only log10.) 
        Compare with your estimates in #9. 

11.)   Estimate the following values of x. Justify your estimate. 
a.) 6.1 = log2 x b.) log9 x = 5.1 

12.)   Solve for exact answers for the problems in #11. Compare with your estimates in #11. 

13.)   Estimate for x. Justify your estimate. 
a.) 4.9 = logx 37.1 b.) logx 126.21 = 3.207 

14.)   Solve for exact answers in #13. Compare with your estimates in #13. 
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15.)  Given 

y = e
−x 2

2

2π
 

Without using a graphing calculator capability (only the 
function/operation keys) find the two values of x that will result 
in a y value of 0.2. Check using your graphing calculator 
(intersection of y = f1 and y = f2). 

16.)   Recall Newton’s Law of Cooling: T(t) = Tm + (Ti – Tm) × e(–kt)
 

A hard-boiled egg at temperature 90 °C is placed in water at 20 °C to cool. Three minutes later 
the temperature of the egg is 60 °C. 

Step 1: Use the given information to solve for k. 

Step 2: Use the k that you solved for in Step 1 to determine when the egg will be 30 °C. 

17.)   The equation for the logarithmic spiral is 
          r = eat (polar form with r = radius, 
          a being a constant, and t = theta.) 
          For the spiral at right. Estimate theta 
          when r = 4. Solve for theta when 
          radius = 4. 
 
 
 
 
 
 
 
 
 
 
 
 

18.)   The formula for calculating pH is: 

, 

where pH is the acidity of the solution and H+ is the hydrogen ion concentration. 

a.) If Grandma’s lye soap has a hydrogen ion concentration of 9.2 × 10(–12) what is its pH? 
b.) If the pH of a tomato is 4.2 what is its hydrogen ion concentration? 
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Chapter 6: “When will we ever use this stuff?” 

There many areas in science, sociology, economics, etc., that require knowledge of logarithms. 

Compound interest, exponential growth and decay, pH, depreciation, measurement of the magnitude 
of volume, of earthquakes, of sound, of the efficiency of algorithms and of fractional dimensions for 
fractals are all examples of the need to be able to understand and work with logarithms. Use the 
natural log function when working with an expression involving a base of e. Use the common 
logarithm when the expression involves a base of “10.” 

All the rules learned to this point are gathered together and listed below for reference 

  bm × bn = b( m+n )  Product of Common Base Factors Rule 

bm

bn = b(m−n ) Quotient of Common Bases Rule 

log(x × y) = logx + logy  Log of a Product Rule 

log
x

y

 

 
 

 

 
 = log x − log y  Log of a Quotient Rule, 

m = n iff bm = bn  iff Antilog Rule 

m = n iff logm = log n  iff Log Rule 

by = x  is equivalent to y = logb x  Equivalent Symbolism Rule 

logb b
x = x Inverse Log Rule #1 (Log of an Exponential Rule) 

b
log

b
x

= x  Inverse Log Rule #2 (Power of a Base Rule) 

log bm = m log b Log of a Base Raised to a Power Rule 

x × y =10(log x + log y ) Rule to Multiply Using Logarithms 

x

y
=10(log x− log y ) Rule to Divide Using Logarithms 

logp x =
logq x

logq p
 Change of Base Log Rule … change from base p to q. 

If bx = y then x = log y

logb
 Rule to Solve for an Exponent 
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One application of logarithms is to work problems involving  compound interest. Interest is a fee paid or 
received for the lending of money. Interest is usually calculated in terms of percent. Say, for example, that 
you wished to determine how long it would take $1,000 to double if invested at 20% interest compounded 
annually. 

Year Amount Interest = PRT at end of year (I = PR if T = 1) 
0 $1,000 $200 
1 1,200 240 
2 1,440 288 
3 1,728 345.6 
4 ** 2,073.6 **  

Apparently at 20% interest compounded yearly it will take almost four (4) years for the $1,000 to 
double in value. What if you wished to compound the interest 1.) for more than 4 years or 2.) several 
times a year for several years? What if, for example, you wished to compound (calculate interest and add 
it to the principal) interest for 120 years? How much would the original amount of money be worth? We 
would not want to develop the chart above to find out our answer as that would be 120 rows!! Let’s look 
at the problem above again and see if we can see a pattern. 

Let Pn = principal (amount of money) during year n. Therefore, for P0 (the first year of the loan) the 
money involved was $1,000 … P1 (the second year of the loan) the principal was worth $1,200, etc. 

P0 = $1,000 

P1 = $1,200 = P0 (1 + 0.20) 

P2 = $1,440 = P1 (1 + 0.20) 
   = {P0 (1 + 0.20)} (1 + 0.20) … substituting for P1 
   = P0 (1 + 0.20)2 

P3 = $1,728 = P2 (1 + 0.20) 
   = {P0 (1 + 0.20)2} (1 + 0.20) … substituting for P2 
   = P0 (1 + 0.20)3 

P4 = $2,073.6 = P3 (1 + 0.20) 
   = {P0 (1 + 0.20)3} (1 + 0.20) … substituting for P3 
   = P0 (1 + 0.20)4 

This pattern suggests the formula Pf = P0 (1 + r)y where Pf = final principal after y years 

                      P0 = initial principal 
                   and r = interest rate of loan 
                   and y     =     number of years of the loan. 
 
 Normally interest is not compounded yearly but for a smaller time interval … say quarterly. In this case 
the formula that would be used would be 

Pf = P0 1+ r

k

 
 
 

 
 
 

k 

 
 

 

 
 

y

 
where Pf = final principal after y years 
 P0 = original principal 
 r = annual interest rate of loan 
 k = number of times per year that the interest is calculated 

and compounded 
  y = number of years of the loan 
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Pf = P0 1+ r

k

 
 
 

 
 
 

k 

 
 

 

 
 

y

 
where Pf = final principal after y years 
 P0 = original principal 
 r = annual interest rate of loan 
 k = number of times per year that the interest is calculated 

and compounded 
  y = number of years of the loan 

Here we have one equation with five different unknowns. If k and y are both known values as well as 
any two of the remaining variables then, combining Algebra I skills with the power of a calculator, it is 
not usually difficult to solve for whatever the remaining unknown is. However, if either k or y is unknown 
then you will need to have knowledge of the log rules in order to solve for the unknown power. 

 

How many years will be required for $1,000 to double if 5% interest is paid and interest is 
compounded quarterly. Here Pf = 2,000, P0 = 1,000, r = 0.05, k = 4. 

y4

4

05.0
1000,1000,2 






 +=  

 2 = 1  (1.0125)4y divide both sides by 1,000 

 log 2 = log (1.0125)4y take the log of both sides, iff Log Rule 

 log 2 = 4y log (1.0125) Log of a Base Raised to a Power Rule 

 0.3010299957 = 4y (0.0053950319) calculator values for log 2 and log (1.0125) 

 4y = 
0.3010299957

0.0053950319
 division property of equality 

 y = 13.949 years by calculator 

There is a part of the formula for compound interest                            
that involves the compounding of interest for k time  
intervals over one year. It is shown in bold at the right. 

                                                                                             

Lets do an experiment. Let r = 1 in the subformula and 
let k get bigger and bigger. Watch what happens. 

The fact that k gets larger and larger  in the 
formula above means that our formula is 
compounding interest for more and more time 
intervals over one (1) year period of time. In 
fact, as k approaches infinity we say that we are 
computing continuous compound interest. 

 
 
 
 

1+ 1

10

 
 
 

 
 
 

10

 = 2.593742460 

1+ 1

100

 
 
 

 
 
 

100
 = 2.704813829 

1+ 1

1,000

 
 
 

 
 
 
1,000

 = 2.716923932 

1+ 1

10,000

 
 
 

 
 
 
10,000

 = 2.718145927 

1+ 1

100,000

 
 
 

 
 
 
100,000

 = 2.718268237 

1+ 1

1,000,000

 
 
 

 
 
 
1,000,000

       =   2.718280469 

y

f PP

















 +=

k

k

r
10
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Since, for very large k and r = 1, 1+ r

k

 
 
 

 
 
 

k

 = 2.71828  we can substitute e = 2.71828 … in the formula 

Pf = P0 1+ r

k

 
 
 

 
 
 

k 

 
 

 

 
 

y

 (assuming r = 1 and k is very large) 

giving the formula 

Pf = P0 e[ ]y
 (assuming r = 1), which would be the formula for computing continuous 

compound interest at a 100% annual rate of interest. That would be a really nice 
rate of return for the lender, but it’s hardly practical for the one borrowing 

. 
Lets do another experiment. Let r = 0.05 in the highlighted portion of the formula and let k get bigger 
and bigger. Watch what happens. 

1+ r

k

 
 
 

 
 
 

k

 

 1+ 0.05

10

 
 
 

 
 
 

10

 = 1.05114013 

 1+ 0.05

100

 
 
 

 
 
 

100

 = 1.05125796 

 1+ 0.05

1,000

 
 
 

 
 
 
1,000

 = 1.05126978 

 1+ 0.05

10,000

 
 
 

 
 
 
10,000

 = 1.05127097 

 1+ 0.05

100,000

 
 
 

 
 
 
100,000

 = 1.05127108 

 1+ 0.05

1,000,000

 
 
 

 
 
 
1,000,000

 = 1.05127109 

But since e = 2.71828 … and e0.05 = 1.051271096 it appears that 

 
000,000,1

000,000,1

05.0
1 







 +  = 1.05127109 (from the table above) ≈ e0.05 

By transitive 

 
000,000,1

000,000,1

05.0
1 







 +  = e0.05 

In other words 1+ r

k

 
 
 

 
 
 

k

 = er 

So in the original formula we developed above 

Pf = P0 1 + r

k

 
 
 

 
 
 

k 

 
 

 

 
 

y

 = 

Pf = P0 er[ ]y
 = 

Pf = P0e
ry  where Pf = final principal after y years 

 P0 = original principal 
 r = annual interest rate of loan 
 k = number of times per year that the interest is calculated 

and compounded 
  y = number of years of the loan 
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Pf = P0e
ry  

Here we have one equation with five unknowns. If any four of the unknowns can be determined from 
the problem conditions then the fifth can also be determined. Again, as before, if either of the exponents 
is unknown, then knowledge of logarithms must be applied to solve the equation. Repeating the same 
conditions as before (finding years necessary to double principal) for continuous compounding, we get 

 2,000 = 1,000 (e0.05y) substituting known values into appropriate formula 

 2 = e0.05y divide both sides by 1,000 

 ln 2 = ln e0.05y take the natural log of both sides, iff Log Rule 

 ln 2 = 0.05y (ln e) Log of a Base Raised to a Power Rule 

 0.05y =        ln 2                     reflexive property, and ln e = 1  

 0.05y = 0.6931471806 by calculator 

 y = 13.86294361 yrs divide both sides by 0.05 

Continuous compounding doubles our money slightly faster than quarterly compounding. 

When calculating compound interest one sees the result of a quantity 
growing larger and larger at predictable rates. This happens a lot in 
mathematics and science. Let’s say that a colony of 100 bacteria grows 10 

times larger every 5 days. In chart form, we get the following. 

 Day Number of bacteria 
 0 100 d0 = 100 
 5 1,000 d5 = 1,000 = 10 d0 
 10 10,000 d10 = 10,000 = d5 (10)1 
    = (10 d0) (10) … substituting for d5 
    = d0 (10)2 
 15 100,000 d15 = 100,000 = d10 (10) 
    =      [d0(10)2) (10)] … substituting for d10 
    = d0(10)3 

This is the classic pattern of what is known as a geometric progression: Each term in a sequence is a fixed 
multiple of the previous term: 

tn = 10 × t(n – 1) 

Also, if you do not have access to the previous term’s value but do know the initial term and the 
geometric ratio, you could have tn = t0 × r(n–1), where n is the term number and r is the ratio of change 
from term to term 

Exponential Growth 
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There are many quantities out there in the world that are governed (at least for a short time period) by the 
equation, 

f = i × rkt (or f = i × bkt with b = constant ratio of change), 

where f represents the final quantity, i represents the initial quantity, k represents a constant of 
proportionality (which varies from problem to problem) and t represents a unit of time. If k is positive, 
then the equation will grow without bound and is called the exponential growth equation. Likewise, if k 
is negative the equation will die down to zero and is called the exponential decay equation. 
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Short-term population growth is often modeled by the exponential growth equation and the decay of a 
radioactive element is governed by the exponential decay equation. 

Say the number of bacteria per square millimeter in a culture in a biology lab is increasing six-fold daily. 
On Monday, there are 2,000 bacteria per square millimeter. On Wednesday, the number has increased to 
4,500 per square millimeter. 

a.) Use the given information to obtain the constant of proportionality, k. 

                     f            =           i × bkt 

 f = i × 6kt 

 4,500 = 2,000 × 6k(2) (where t is in days) substituting given information into equation 

 
4,500

2,000
 = 62k division property of equality 

 log (9/4) = log 62k taking the log of both sides, iff Log Rule 

 log 2.25 = 2k (log 6) log bm = m log b rule 

 0.4525887711 = 2k using a calculator 

 k = 0.2262943855 

     Notice that if k = 1 in the equation i × 6kt  then  i × 6t and since t = 2 (Monday to Wednesday = 2) 
then the number of bacteria would be f = 2000 * 62 = 72,000.   (Monday = 2000, Tuesday = 12,000,  
Wednesday = 72,000)   However the number of bacteria is given to be 4,500 on Wednesday.  The “k” or 
constant of proportionality affects the rate of growth.  Basically it allows for a fine tune modification on 
the t in the equation.   With  k < 1 one should expect for fewer than  i × 6t bacteria to be present for any 
given t. 
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b.)   Use the work in part a.) to predict how many bacteria there will be on Saturday (5 days from the start 
of the experiment). 

 f = i × 6kt same formula 

  =        2,000 × 6(0.2262943855 × 5) substitution of given information into the formula 

                  =        2,000 × 61.131471928 

  = 2,000 × 7.59375 

  = 15,187 bacteria per square millimeter 

Photosynthesis is the chemical process that takes place in the green leaves of a 
plant. During photosynthesis the plant takes in carbon dioxide (CO2) and gives 
off oxygen (O2). Some of the CO2 that the plant takes in contains the carbon 
isotope called carbon 14. Carbon 14 results when the sun strikes the CO2 in the 

atmosphere in just the right way. When the plant dies, the carbon 14 in the plant slowly decays, changing 
into nitrogen 14. Assume that it takes 5,750 years for the amount of carbon 14 originally in the plant to 
steadily decay to one-half (1/2) of its original amount. What would be the expression giving the amount of 
carbon 14 t years after the tree died? Assume the common ratio to be e. 

 f = i × ekt 

 f = i × ek × 5750 

 50% i = i × e5750 × k 

 0.50 = e5750k divide both sides by “i” 

 ln (0.50) = ln e5750k iff log rule for b = e, m = n so ln m = ln n 

 –0.6931471806 = 5,750k (ln e) log of a power rule 

 –0.6931471806 = 5,750k (ln e = 1) 

 k = 
−0.6931471806

5750
 

 k = –0.0001205473358 k < 0 indicating exponential decay, not growth 

 f = i× e–0.0001205473358t final amount of carbon 14 t years after plant dies 

Exponential Decay 
Carbon-14 Testing 
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An artifact in a museum was displayed as being the masthead of a Viking ship dating back to the 
1200s. An analysis of a sample of that artifact revealed that it had 90% of its carbon 14 remaining. Could 
that artifact have dated back to the 1200s? 

 f = i × ekt i = initial amount of carbon 14, f = final amount 

 f = i× ek × 5750 

 90% i = i  ×  e–0.0001205473358 t 

 0.90 = e–0.0001205473358 t divide both sides by i 

 ln (0.90) = ln e–0.0001205473358 t iff log rule for b = e, m = n so ln m = ln n 

 –0.1053605157 = –0.0001205473358t (ln e) log of a power rule 

 –0.1053605157 = –0.0001205473358t (ln e = 1) 

 t = 
−0.1053605157

−0.0001205473358
 

 t ≈ 874 years Yes, the results of the carbon 14 test support the idea that 
the artifact dates back to the 1200s. 

The Richter scale is commonly used to measure the intensity of an 
earthquake. It was developed by C. Richter in the 1930s. There are many 

different ways of computing this scale based on a variety of different quantities. Here is one based upon a, 
the amplitude (in micrometers) of the vertical ground motion at the receiving station, T, the period of the 
seismic wave (in seconds), and B, a factor that accounts for the weakening of the seismic wave with 
increasing distance from the epicenter of the earthquake. 

The energy released, measured in joules, during an earthquake is proportional to the antilog of the 
magnitude and magnitude of the earthquake is given by, 

R = log
a
T

 
 
 

 
 
 + B 

Here we have one equation with four unknowns. There are no unknown exponents involved, so given 
any three of the variables in the equation we can solve for the fourth variable using only algebra and a 
scientific calculator. However, feeling comfortable with the concept of logarithm gives you the number 
sense to understand the formula and to better know if your answers are reasonable. 

Richter Scale numbers are a really good example for you to test yourself on your understanding of 
logarithmic numbers. The San Francisco earthquake of 1906 measured 8.25 on the Richter scale.  The 
Seattle earthquake of 1965 measured 7 on the Richter scale. Richter scale numbers are logarithmic 
numbers. How much stronger was the San Francisco quake than the Seattle quake? A simple ratio of the 
two quakes’ Richter scale values (8.25 / 7) would make it seem as if the San Francisco quake was only 
1.1785 times as severe as the Seattle quake. That would be misleading as the Richter scale measurements 
are both base 10 logarithmic numbers. The answer 1.1785 is not reasonable!   If we were to compare the 
numbers 1,000 (103) and 100 (102) by comparing the two exponents 3 against 2 we would conclude that 
1,000 is 1.5 times as much as 100 when obviously the ratio of 1,000 to 100 is 10 to 1. To accurately 
compare the numbers 1,000 and 100 we do not compare the 3 against the 2 but the base 10 antilog of 3 
(1000) against the base 10 antilog of 2 (100). 

How much stronger was the San Francisco quake than the Seattle quake? 

108.25

107 = 177827941

10000000
=17.7827941 times as severe!!! 

Earthquake Intensity 
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pH is the measure of activity of hydrogen ions in a solution 

The formula for calculating pH is pH = –log10[H+] 

[H+] denotes the activity of H+ ions (or more accurately written, [H3O
+], the equivalent hydronions), 

measured in moles per liter (also known as molarity). The pH factor determines whether a substance is 
classified as acidic, neutral, or alkaline depending on if the pH < 7, pH = 7, or pH > 7. Tomato juice has 
H+ = 6.3 × 10(–5). What is the pH value? 

 pH = – log (6.3 × 10 (–5)) 
  ≈ 4.2 Therefore tomato juice is acidic. 

Again, feeling comfortable with the concept of logarithms gives you the number sense to understand 
the formula and to better know if your numbers do not make sense. 

In 1825, a German physiologist, Ernst Weber, 
formulated a mathematical law that was introduced to 
measure the human response to physical stimuli such 

as weight, pressure, or sound. The decibel scale is a result of Mr. Weber’s law. The decibel is not a unit 
in the sense that a meter or a second is. Meters and seconds are objectively defined quantities of 
distance and time. You can go to the National Bureau of Standards and see their definition. They never 
change and are not subjective in the way that they are quantified. Decibels, however, are in accordance 
with Mr. Weber’s laws, defined to be the logarithm of the ratio of two different sounds. 

Db =10 × log
powerA

powerB

 

 
 

 

 
  

Logarithmic scales are often used for comparing quantities of greatly disparate values. For example, if the 
softest audible sound has a power of 0.000000000001 W/sq ft and the “threshold of pain” is about 1 
W/sq ft, then we would evaluate the decibels of the later to be 

 Db =10 × log
1W

ft 2

10−12 W
ft 2

 

 
 

 

 
  

  = 10 × log 1012 

  = 10 × 12 (Inverse Log Rule #1, Log of an Exponential Rule) 

  = 120 decibels 

Notice that, for logarithmic scales every 10-fold increase of a quantity results in a scale increase of only 
one. Think powers of 10 (a logarithm is a power, right?): 100 = 1, 101 = 10, 102 = 100, 103 = 1,000, etc. 

Decibel scales … example of a log function 

Measurement of pH 
Example of a Log Function 
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Measurement of efficiency of algorithms 
Understanding logarithmic ideas and concepts comes in 
handy in an area of computer science called “measuring 
the efficiency of algorithms … Big O.”   Big O is a type 

of category comparison system … not the linear type of rating system you are probably used to with 
scalars. In a category comparison system, items are grouped into categories. You can meaningfully 
compare categories against one another and by inference you can compare items of one category against 
the items in another. But you cannot compare items within a category against other items within the same 
category. 

For example, if you were to do a sequential search for the value sv (search value) on the following set 
of randomly ordered numbers … x1, x2, x3, x4, …, x100 you would compare sv against the first item of the 
list, x1, then against the second item of the list, x2, then against the third, x3, etc. until either you have a 
match or until you run out of numbers to compare against. search you would find a match for sv in the 
first item of data, x1. This would be considered an O(1) efficiency. In the In the best case worst case you 
would not find a match of sv until x100, the nth number. This would be considered an O(n) efficiency … 
order of efficiency of n. In an O(n) category efficiency algorithm, the effort or work of the algorithm, in 
this case the number of comparisons, increases proportionally with the number (n) of data values. 

If the numbers were in order, that is, x1 < x2 < x3 < x4 < … < x100 it is possible to take advantage of the 
ordering of the numbers to do a more efficient search called the binary search. For example let’s assume 
that the number we are looking for is in the 78th number of the set of x’s, but we don’t know that ahead of 
time because we are dealing with variable values. We set variable left to indicate the leftmost position of 
numbers being searched, variable right to indicate the rightmost position of numbers being searched, and 
variable mid to (left + right)/2. 








 <<<<<<<
rightmidleft

100504321 xxxxxx 
 

Compare the search value, sv, against the value in the position marked mid. If sv is equal to x50, you 
may cease your search. If sv < the value in position marked mid, then because of the ordering of the array, 
you need no longer search in positions mid and up. Accordingly, you would pull in the rightmost bound to 
the location to the left of mid: 

10050494321

midrightleft

xxxxxxx <<<







 <<<<< 
 

On the other hand if sv > the value in the position marked mid, then you would no longer need to 
search in positions mid and down. Accordingly, you would pull in the leftmost bound to the location to 
the right of mid: 








 <<<<<<<<
rightleftmid

10051504321 xxxxxxx 
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Determining the Fractional Dimension of a Fractal 

This process is continued until you either locate sv in the list or determine that it is not in the list. 
Notice that each time you apply this search algorithm you effectively eliminate ½ of the remaining 
numbers. Of the original set of 100 ordered numbers you originally considered, each step leaves 

 Step 0: all 100 

 Step 1: then only 50  

 Step 2: then only 25  

 Step 3: then only 13  

  etc. 

Number of data 

Number of comparisons 

A binary search of 100 numbers will take, in the worst-case scenario, 7 search attempts until the 
search value, sv, is found (or determined not to be in the set of data.) 

There really must be a more efficient way of determining how many search attempts will be necessary 
to search 100 ordered numbers other than enumerating and counting the phases. 

Look at the following: 26 = 64 
2? = 100 
27 = 128 

Using the binary search, the number of comparison searches necessary to locate data in an ordered list 
is, are you ready for this? … ta da!! The answer is log2 100 because 2x = 100. Logarithms! You gotta love 
’em! (Actually, since searching steps are discrete, the value is 7 … not log2 100 which would be a decimal 
… 6.64385619.) The logarithmic efficiency of the binary search algorithm is said to be O(log2 n), where n 
represents the number of items in the ordered list that are being searched. It can be said (for large n) all 
algorithms of algorithmic efficiency rating O(log2 n) are more efficient than all algorithms of with an O(n) 
efficiency rating. 

In the spirit of George Cantor, the 19th-
century mathematician who took the historical 

concept of infinity and extended it to include different kinds of infinity … aleph0, aleph1, etc. Benoit 
Mandelbrot, a 20th-century mathematician, took the historical concept of dimension and extended it to 
include rational dimensions. To do so, he needed to use the knowledge of logarithms that we have 
developed in this text. 

In the book The Golden Ratio by Mario Livio, Random House, 2002, the author prepares the reader 
for the concept of rational dimensions of fractals by first reviewing some ideas from the traditional 
dimensions: 1-space, 2-space, and 3-space. 

100, 50, 25 13, 7, 4, 2, 1

          
1 

  
2 

  
3 

 
4 

 
5 

 
6 

 
7
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One-Space 

Take a line segment (1 dimension) and divide 
it into halves. There are two equal subparts. 

 

Take a line segment (1 dimension) and divide it into 
thirds. There are three equal subparts. 

 

The quantities The quantities 

 d (dimension, 1),  d (dimension, 1), 
 n (number of subparts, 2),  n (number of subparts, 3) 
and f (fraction of each part, 1/2) and f (fraction of each part, 1/3) 

can be related as follows: Can be related as follows: 

2 = 1
1
2

 

 
 
 

 
 

1

 3 = 1
1
3

 

 
 
 

 
 

1

 

or in general  

n = 1

f

 

 
 

 

 
 

d

 
where d = dimension(s) of object 

f = fraction each side is divided into 
n = number of subparts after division 

Two Space 

Take a square (2 dimensions) and divide each 
side into halves. There are now four equal 
subparts. 

Take a square (2 dimensions) and divide each side into 
thirds. There are now nine equal subparts. 

  

  

 

   

   

   

The quantities The quantities 

 d (dimension, 2),  d (dimension, 2), 
 n (number of subparts, 4),  n (number of subparts, 9) 
and f (fraction of each part, 1/2) and f (fraction of each part, 1/3) 

can be related as follows: Can be related as follows: 

4 = 1
1
2

 

 
 
 

 
 

2

 9 = 1
1
3

 

 
 
 

 
 

2

 

or in general  

n = 1

f

 

 
 

 

 
 

d

 
where d = dimension(s) of object 

f = fraction each side is divided into 
n = number of subparts after division 
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Three Space 

Take a cube (3 dimensions) and divide each 
side into halves. There are now eight equal 
subparts. 

Take a cube (3 dimensions) and divide each side into 
thirds. There are now 27 equal subparts. 

  

The quantities The quantities 

 d (dimension, 3),  d (dimension, 3), 
 n (number of subparts, 8),  n (number of subparts, 27) 
and f (fraction of each part, 1/2) and f (fraction of each part, 1/3) 

can be related as follows: Can be related as follows: 

8 = 1
1
2

 

 
 
 

 
 

3

 27 = 1
1
3

 

 
 
 

 
 

3

 

or in general  

n = 1

f

 

 
 

 

 
 

d

 
where d = dimension(s) of object 

f = fraction each side is divided into 
n = number of subparts after division 

Mandelbrot is particularly known for his work with fractals … self-similar shapes. Fractals are shapes 
that repeat an identical pattern over and over. Following is an example of a snowflake fractal. Start with 
an equilateral triangle. Divide each side into three (3) equal parts. 

 

 

 

x x 

x 

x 
3 

x 
3 

x 
3 
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On each side of the triangle form a new equilateral triangles whose base is 1/3 the length of a side of the 
original triangle. 

 

 

 

Repeating this process, we now get 

 

 

 

 

It occurred to Mandelbrot that the area enclosed by this snowflake area was greater than the area 
under a 1 dimensional line but less that the area of a bounding square that could enclose it. 

1 < dimension < 2 

Notice above that each time a side is divided into three (3) equal parts, four subparts are formed. 

 

 

Applying the formula we developed previously, we get 

n = 1
f

 

 
 

 

 
 

d

 

d = dimension(s) of object 
f = fraction each side is divided into 
n = number of subparts after division 4 = 1

1
3

 

 
  
 

 
  

d

 

4 = 3d
 

1

2 3

4

I II III
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Using logarithms, we can solve for the dimension of this “snowflake” fractal. 

 log 4 = log 3d 

 log 4 = d log 3 

 
log 4

log 3
 = d 

 d = 1.261859507 

The fractional dimension of a fractal is “a measure of the wrinkliness of the fractal, or of how fast 
length, surface, or volume increases if we measure it with respect to ever-decreasing scales.” (Livio, The 
Golden Ratio) Logarithms!! 

A “geometric series” is defined to be an addition of numbers (terms) such that 
each term is a fixed multiple of the preceding one. 

 3 + 9 + 27 + 81 + 243 + 729 + 2,187  etc. is a series because each term is 3 times the previous 
 3 + 3(3) + 3(32) + 3(33) + 3(34) + 3(35) + 3(36) + … 
 t1 + t2 + t3 + t4 + t5 + t6 + t7 + … 
 

In general a finite geometric sum for n terms looks like the following: 

Eq. 1 Sn = a + a(r) + a(r2) + a(r3) + … + a(rn–1) 

Multiplying both sides of Eq. 1 by r 

 Sn = a + a(r) + a(r2) + a(r3) + … + a(rn–1) 

we get 

 r Sn = r × [ a + a(r) + a(r2) + a(r3) + … + a(rn–1) ] 

Eq. 2 r Sn = ar + a(r2) + a(r3) + … +a(rn–1)+ a(rn) 

Placing eq.1 and eq. 2 together we get 
 

Eq. 1 Sn = a + a(r) + a(r2) + a(r3) + … + A(rn–1)  

Eq. 2 rSn =   a(r) + a(r2) + a(r3) + … + A(rn–1) + a(rn)

Subtracting Eq. 1 – Eq. 2, we get 

 Sn – r Sn = a –   a(rn) 

 Sn(1 – r)  = a(1 – rn) 

 Sn = a
1− rn

1− r
 Sum of n terms of the geometric series with common ratio r and first term a. 

Geometric Series 
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For the series 2 + 2 × (3/2)
1 + 2 × (3/2)

2 + 2 × (3/2)
3 + 2 × (3/2)

4 + …, 

 2 + 3 + (9/2) + (27/4) + (81/8) + … 

find how many terms will be necessary to result in a sum > 100. 

 Sn < a
1− rn

1− r
 

 100 <
2 1− 3

2( )n[ ]
1− 3

2

 

 50 <
1− 3

2( )n

1− 3
2

 

 50 <
1− 3

2( )n

− 1
2

 

 −25 >1− 3
2( )n

 

 −26 > − 3
2( )n

 

 26 < 3
2( )n

 

 log(26) < log 3
2( )n

 

 log(26) < n log 3
2( ) 

 1.414973348 < n (0.1760912591) 

 n > 8.03545454773 terms 

  
check: 2 + 3 + (9/2) + (27/4) + (81/8) + (243/16) + (729/32) + (2187/64) = 
  5  + 4.5 + 6.75 + 10.125 + 15.1875 + 22.78125 + 34.171875 = 
       16.25 +  25.3125  +  56.953125  = 
            98.515625 

Since the “number of terms” is discrete data, it will take 9 terms before the sum > 100. 

Once again, we need logarithms to solve this problem. 
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A power law relationship between two scalar quantities x and y is any such relationship that can be 
written as: 

y = axk 

Power laws are observed in many fields, including physics, biology, geography, sociology, economics, 
linguistics, war, and terrorism. Power laws are among the most frequent scaling laws that describe the 
scale invariance found in many natural phenomena. 

Examples of power law relationships: 

The Stefan–Boltzmann law 
The Gompertz Law of Mortality 
The Ramberg–Osgood stress–strain relationship 
Gamma correction relating light intensity with voltage 
Kleiber’s law relating animal metabolism to size 
Behavior near second-order phase transitions involving critical exponents 
Frequency of events or effects of varying size in self-organized critical systems: e.g., Gutenberg–Richter 
Law of earthquake magnitudes and Horton’s laws describing river systems 
Proposed form of experience curve effects 
Scale-free networks where the distribution of links is given by a power law (in particular, the World Wide 
Web) 
The differential energy spectrum of cosmic-ray nuclei 

Examples of power law probability distributions: 

The Pareto distribution 
Zipf’s law 
Weibull distribution 

Source: http://en.wikipedia.org/wiki/Power_law 

In each case if the exponent is unknown, it must be solved for using logarithmic skills. 

Examples Ad Nauseum, Ad Infinitum 
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Chapter 6 Summary—There many areas in science which require knowledge of logarithms. 
Compound interest, exponential growth and decay, ph, depreciation, measurement of the 
magnitude of volume, of earthquakes, of sound, of the efficiency of algorithms, and of 
fractional dimensions for fractals are all examples of the need to be able to understand and 
work with logarithms. Use the natural log function when working with an expression 
involving a base of e. Use the common logarithm when the expression involves a base of “10.” 

Chapter 6 Exercises 

1.) How long will it take an amount of money to triple in value if the money is compounded 
monthly at 7%? 

2.) What rate of interest would be necessary for $900 to be compounded to $1,500 in 10 years if 
compounded continuously? 

3.) In chapter 6, there was an example where $1,000 was compounded annually at 20% interest. The 
money doubled in value in just under 4 years. Find out exactly the day of the year that the 
money will have doubled. Assume there are 365 days in a year. Ignore the inconsistency of 
identifying a specific date using a formula that compounds annually. 

4.) When Mary was 6 years old, her father invested a sum of money at 5% interest compounded 
semiannually so that Mary received $10,000 from that investment when she graduated from med 
school at age 26. How much money was invested? 

5.) A certain radioactive material decays at a rate given by the formula Qf = Qi × 10(–kt) where Qf 
represents the final amount of material in grams and Qi = 500 grams is the initial amount. Find k 
if Qf = 400 grams when t = 1,000 years. 

6.) Use the value of k you found in problem #5 to find Qf when t = 2,000 years. 

7.) If t is the thickness of a material, k is an absorption coefficient that results from the physical 
characteristics of the material, and I the intensity of a beam of gamma radiation, the intensity of 
the gamma beam after passing the material is given by If = Ii × 10(–kt). Find the absorption 
coefficient k of a material for which 9.4 cm thickness reduces a beam of 1 million electron volts 
to 100,000 electron volts intensity. 

8.) For question #7 find the thickness of the material that will reduce the initial I value, Io, by half. 

9.) Say an air conditioner puts out 65 decibels of sound. Use the formula 

  Db =10 × log
powerA

powerB

 

 
 

 

 
  

to evaluate the noise of that air conditioner in watts per square foot of power. Use data for “softest 
audible sound” given in the text for powerB. 
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10.) “Moore’s law” states that the number of transistors on an integrated circuit will double every two 
years. Its mathematical form is 

n2 = 2
y2 −y1

2 × n1 
where n2 = # transistors in base year y1 and 
 n1 = # transistors in later year y2 
If a microprocessor had 376 million transistors in 2007 approximate what year it will have 
12,024,000,000 transistors on it? 

11.) You wish to locate a telephone number in the Dallas phone book for John Q. Public. You open 
the phone book to the middle and find names beginning with M. You reason that the name you 
are searching for is in the set of pages to the right of M. You move your left hand to the Ms and 
proceed to open the pages M to Z to the middle again searching for John Q. Public. This time 
you find that you are on the names beginning with S. Since Public starts with P you decide to 
ignore all the pages to the right of the S names and do so by moving your right hand to the Ss. 
You continue this process until you locate the desired telephone number. Assuming there are 
1,050,000 people in the Dallas phone book and that there are 200 names per page, how many 
times will you have to search until you locate the number? 

12.) The Koch snowflake had a fractal dimension between 1 and 2. By extension, what dimension do 
you estimate a self-similar polyhedron will have? 

13.) A wooden spear is found at an ancient burial site. It is found to have only 80% the amount of 
carbon-14 that a live tree has. How many years ago did the tree live that was used to make that 
spear? Assume the half-life for carbon-14 is 5,750 years. 

14.) There are 64 teams competing in a basketball tournament. Each tournament “round” eliminates 
1/2 of the remaining teams. Write the exponential equation that describes how many rounds will 
be necessary to decide the winner of the tournament. Solve that equation. 

15.) Following is a chart showing how many biological relatives Bobby has going back several 
generations. 

 Parents Grandparents Great-grandparents GG-grandparents GGG-grandparents, etc. 

Bobby 2 4 8 16 32 

 21 22 23 24 25 

How many Gs (GGGG … G) are there in the generation where Bobby had 8,192 ancestors? 
Do not solve by enumeration. Solve using logarithmic skills. 

16.) A capacitor is a device that can store an electrical charge for later use. An example of such use 
would be the charge needed for a camera flash or for computer back-up if power fails. The 
voltage of a capacitor decreases steadily over time (exponential decay). Use the following 
formula 

v f = vi × e
− t

RC  where vf = final voltage 
t = time 
R = resistance in ohms 
C = capacitance in millifarads 

and vi = initial voltage 

to determine how much time will elapse until the voltage falls to 10% of its initial voltage if 
capacitance = 35 µF and resistance = 120 Ω. 
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Chapter 7: More about e and the Natural Logarithm 
The number e, when viewed as a base for an exponential expression has some very interesting 

properties. 1.) the rate of change of the exponential equation y = ex is itself ex. 2.) The area under the 
curve y = ex from negative infinity to x = 1 is e square units. 3.) The rate of change for the inverse of the 
function y = ex (i.e., the function y = ln x) is 1/x. 4.) The area under the curve y = (1/x) from x = 1 to x = e 
is equal to 1. 5.) The functions f(x) = ex and f(x) = ln (x) can both be evaluated using esthetically pleasing 
infinite-series polynomials. 6.) The sequence (1 + 1/n)n approaches e as n approaches ∞. 7.) As x gets 
close to 0 by powers of 10, the function log (1 + x) gets closer and closer to a “diminished magnitude” of 
log e. 8.) Finally, as x gets close to 0 by powers of 10, the function 10x gets closer and closer to the sum of 
1 plus a diminished magnitude of ln 10. Say what?!? 

These ideas will require some prerequisite background. 

Prerequisite idea: How do you find the slope of a tangent line to a curve? In Algebra I, we learned how 
to find the slope of a line connecting two points. Since, by definition, a secant line 
crosses a curve at two points we merely identify those two points (x1, y1) and (x2, y2) 
and use the slope formula, to find the slope of a secant line. 

m = y2 − y1

x2 − x1

 

However, a tangent line has only one point in common with a curve. Since the slope formula requires 
two points and the tangent line has only one point we must “get at” the desired information (slope of a 
tangent line) through successively approximating it with secant line slopes which are formed by moving 
point p2 (and its coordinate pair (x2, y2)) closer and closer to point p1 (and its coordinate pair (x1, y1)). The 
sequence of secant-line slopes sec1, sec2, sec3, gets closer and closer to the desired tangent-line slope. 

—2

—2

—1
—1

1

1

2

2

3

3

4 5 6

tan

sec3

sec2

sec1

The slope of the tangent line is 
successively approximated by 
the slope of sec1, sec2, and sec3.

points p2
approaching p1

p1

 

Now why do we care about the slope of a tangent line? Ostensibly, there is no reason to find the slope 
of a line tangent to a curve! Remarkably, though, that skill is mathematically equivalent to an abstract 
idea called the instantaneous rate of speed, which has great utility in physics and engineering. The 
connection between the two ideas, slope of a line tangent to a curve at a specified point and the 
instantaneous rate of speed comes about because the formula for the slope of a tangent line found by 
approaching secant lines using the formula m = (y2 – y1)/(x2 – x1) as point p2 approaches point p1 is 
equivalent to the formula for average rate of speed, r = d/t as time intervals decrease to zero. 

This is shown in great detail on the following page. 
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RELATIONSHIP BETWEEN 
1.) The slope of a tangent to a curve at a given point 

and 
2.) Instantaneous rate of speed 

PROBLEM: A missile is fired at a target 64 miles away. The distance in miles that the missile has 
traveled from its starting point is given by the function f(t) = t 2/ 4. Determine the speed of 
the missile at the precise instant when it strikes the target—its instantaneous rate of speed. 

 distance = rate × time therefore 

 d = r × t rate = distance

time
 this is a ratio just like 

 e.g., 100 miles = 50 mph × 2 hours r = d

t
 m = y2 − y1

x2 − x1

 
ratios

Notice the progression of “average rates of” speeds (or 
equivalently the progression of secant slope lines) 
m = 4, m = 6, m = 7, m = 7/5, m = 73/4, m = 77/8. As these 
average speeds keep getting calculated over distances 
that are decreasing to zero you are approaching the 
“instantaneous rate of speed.” Or, stated another way, 
the slopes of the secant lines are approaching the slope 
of the tangent line at that point.

1.) Average rate of speed from t = 0 to t = 16: 

r = d

t
= 64 − 0

16 − 0
= 64

16
= 4 mpm average speed. 

Slope of secant line from (0, 0) to (16, 64): 

m = y2 − y2

x2 − x2

= 64 − 0

16 − 0
= 64

16
= 4  

2.) Average rate of speed from t = 8 to t = 16: 

r = d

t
= 64 −16

16 − 8
= 48

8
= 6 mpm average speed. 

Slope of secant line from (8, 16) to (16, 64): 

m = y2 − y2

x2 − x2

= 64 −16

16 − 8
= 48

8
= 6 

3.) Average rate of speed from t = 12 to t = 16: 

r = d

t
= 64 − 36

16 −12
= 28

4
= 7 mpm average speed. 

Slope of secant line from (12, 36) to (16, 64): 

m = y2 − y2

x2 − x2

= 64 − 36

16 −12
= 28

4
= 7 

4.) Average rate of speed from t = 14 to t = 16: 

r = d

t
= 64 − 49

16 −14
= 15

2
=  71/2 mpm average speed. 

5.) Average rate of speed from t = 15 to t = 16: 

r = d

t
= 64 − 225

4

16 −15
=

256
4 − 225

4

16 −15
=

31
4

1
=  73/4. 

6.) Average rate of speed from t = 151/2 to t = 16: 

r = d

t
= 64 − 961

16

16 −15
=

1024
16 − 961

16

16 −15
=

63
16

1
2

= 63

8
=77/8. 
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Now that you have an understanding of the idea of “slope of a line tangent to a curve at a specific point” 
we can get back to the first idea on the first page of Chapter 7 regarding the number e. 

At left below, we see the graph of the curve y = x2, and in the rightmost graph we see the graph of the 
curve y = x3. Notice for the two curves below that f(x) does not equal the slope of the line tangent at that 
point. 

—2

—2

—1—3
—1

1

1

2

2

3

3

4 —2

—2

—1
—1

1

1

2

2

3

3

4

f(x) = x2

f(x) = x3

At point (1,1), m = 3 and 
f(1) = 1. The slope does 
not equal the function 
value.

At point (1,1), m = 2 and 
f(1) = 1. The slope does 
not equal the function 
value.

 

However, for the curve y = ex, for any x, the slope of the tangent line at that point (x, y) is ex. Also the 
value of the function at x is ex. That’s pretty neat!! 
 
 

—2 —1 1

1

2

2

3

3

4

4
5
6
7
8 f(x) = ex

At point (x, ex), m = ex. At 
point x, f(x) = ex. Therefore, 
f(x) equals the slope of the 
tangent at point (x, ex).

 

1.) The function y = ex at point x evaluates to ex. The slope of the tangent 
line to the curve y = ex at any point x is also ex. 
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     This remarkable pattern continues.  The area 
under the curve y = ex from -∞ to x for any x is ex 

square units.  See the figure at right. 

 

 

      In the graph of the log function shown below, you can see that a line drawn tangent to the log function 
between 0 and 1 is very, very steep. As x grows larger and larger, the slope grows more and more flat. 
That is, m is large when the denominator of 1/x is between 0 and 1 but becomes smaller and smaller as x 
grows larger and larger. For the curve y = ln (x) the slope of the tangent line at any point is 1/x.  !!! 

—2

—2

—1
—1

1

1

2

2

3

3

4 5 6
The slope at any point on y = ln x is 1/x!!

at x = 3

at x = 1/2

m = 1/3

m = 2

2.) The area under the curve y = ex from –∞ to x = 1 is e units. Not 2, not 5, not 10 
but e units. That’s neat too! 

3.) The rate of change (the slope of a tangent at any given point) for the inverse of the function 
of y = ex—i.e., the log function, y = ln(x)—is 1/x. That’s interesting! 

—2 —1 1

1

2

2

3—3

3

4—4

y = ex

The area under the 
curve is e units.

—2 —1 1

1

2

3
2

3—3

4
5
6
7
8

4—4

y = ex

area = e2
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1

1

—1

2 3 4

y = 1/x

area = 1

2.71818
 

...
!5

1

!4

1

!3

1

!2

1

!1

1

!0

1 ++++++=e
 

Check it out: 

etc.,71805556.2
720

1

120

1

24

1

6

1

2

1
11

7166667.2
120

1

24

1

6

1

2

1
11

70833.2
24

1

6

1

2

1
11

66667.2
6

1

2

1
11

5.2
2

1
11

211

1

7

6

5

4

3

2

1

=++++++≈

=+++++≈

=++++≈

=+++≈

=++≈

=+≈
≈

e

e

e

e

e

e

e

 

The terms in the sequence 1, 2, 2.5, 2.66666, 2.70833, 2.7166633, 2.7180555 … would seem to be  
converging to e, 2.718281828 … 

 
 
 
 
 
 

4.) The area under the curve y = 1/x from x = 1 to x = e is equal to 1 square unit. It 
only makes sense that there must be a value of x that will be cause the area under 
the curve y = 1/x from 1 to x to be 1 square unit but who would have thought that 
the value would be e? Why e?! Is that a coincidence or what!

5.) The functions f(x) = ex and f(x) = ln x can both be evaluated using esthetically 
pleasing infinite series polynomials.
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6.) The sequence defined by 1+ 1

k

 
 
 

 
 
 

k

 converges to e. 

(  x > 1 ) 
 
Check it out (let x = 5 then (x-1)/x = 4/5 = 0.8): 

( ) ( ) ( ) ( ) ( ) ( )654321 8.0
6

1
8.0

5

1
8.0

4

1
8.0

3

1
8.0

2

1
8.05ln +++++≈  

ln (5) ≈ 0.8 
ln (5) ≈ 0.8 + 0.32 = 1.12 
ln (5) ≈ 0.8 + 0.32 + 0.17066 = 1.29067 
ln (5) ≈ 0.8 + 0.32 + 0.17066 + 0.1024 = 1.39307 
ln (5) ≈ 0.8 + 0.32 + 0.17066 + 0.1024 + 0.65536 = 1.458602667 
ln (5) ≈ 0.8 + 0.32 + 0.17066 + 0.1024 + 0.65536 + 0.043690667 = 1.502293333 
ln (5) ≈ 1.50229333 + 0.0299593 = 1.532252647 
ln (5) ≈ 1.532252647 + 0.02097152 = 1.5532241676 
ln (5) ≈ 1.5532241676 + 0.0149130808 = 1.5681372485 
ln (5) ≈ 1.5681372485 + 0.01073741824 = 1.57887466675 
ln (5) ≈ 1.57887466674 + 0.00780903145 = 1.58668369820 
ln (5) ≈ 1.58668369819 + 0.00572662306 = 1.59241032126 
ln (5) ≈ 1.59241032125 + 0.00422889088 = 1.59663921213 
ln (5) ≈ 1.59663921213 + 0.00314146179 = 1.59978067393 
ln (5) ≈ 1.59978067392 + 0.00234562480 = 1.6021262987 

The sequence above 0.8, 1.12, 1.29066, 1.39306, 1.458602666, etc. is slowly converging to 
ln 5 = 1.60943791 

As discussed before 
 
 
 

1+ 1

10

 
 
 

 
 
 

10

= 2.59374246

1+ 1

100

 
 
 

 
 
 

100

= 2.704813829

1+ 1

1000

 
 
 

 
 
 

1000

= 2.716923932

1+ 1

10000

 
 
 

 
 
 

10000

= 2.718145927

1+ 1

100000

 
 
 

 
 
 

100000

= 2.718268237

1+ 1

1000000

 
 
 

 
 
 

1000000

= 2.718280469

 

5.) continued 

( ) ( ) ( ) ( ) ( )
...

1

5

11

4

11

3

11

2

11

1

1
ln

5

5

4

4

3

3

2

2

1

1

+−+−+−+−+−=
x

x

x

x

x

x

x

x

x

x
x
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while the sequence defined by 1+ x

k

 
 
 

 
 
 

k

 converges to ex as k gets larger and larger. 

We know that log 1 = 0 because 100 = 1. So it is not surprising that log (1 + x) is not 0. However, there is 
a fascinating, highly predictable sequence of numbers that results when taking log values that get closer 
and closer to 1 by powers of 10 … that is the function y = log (1 + x) as x decreases to 0 by powers of 10. 
That is surprising! Let’s do an experiment taking log values of numbers that get closer and closer to 1 by 
powers of 10 and see if a pattern results that we recognize. 

Number Log of number Distance “x” of Number from 1 

1.1 0.0413926852 0.1 
1.01 0.0043213738 0.01 
1.001 0.0004340774793 0.001 
1.0001 0.00004342727686 0.0001 
1.00001 0.000004342923104 0.00001 
1.000001 0.0000004342942647 0.000001 
1.0000001 0.00000004342944604 0.0000001 

Numbers decreasing 
by powers of 10 

Numbers here decreasing 
to zero as expected 

Deja vu! Those bold face numbers in the middle column look familiar. Back in chapter 5, we discussed 
the mysterious number e (2.718281828) that frequently occurs in nature and business and how it could be 
replaced with a power of 10. The formula for continuous interest, S = P ert, was rewritten as 
S = P (10)0.4342944819rt. We were able to rewrite that formula by the following process: 

 e = 10x 
 log e = log 10x 

 log e = x log 10 
 log e = x × 1 (do you understand why log 10 = 1?) 
 log e = x 
 x = log e = 0.4342944819 by calculator 

Now do you remember? Revisit the table above and see what is happening. As x decreases to 0 by powers 
of 10 the function log (1 + x) decreases to 0 as expected. (Recall that log 1 = 0.) But also at the same time 
the significant digits of the log (1 + x) get closer and closer to log e, 0.4342944819. 

0.0413926852, 0.0043213738, 0.0004340774793, 0.00004342727686, 
0.000004342923104, 0.0000004342942647, 0.00000004342944604 … 

At each step as x is diminished by powers of 10, the resulting term decreases to zero, while the number of 
significant digits of log e is increased. Symbolically, log (1 + x) = x (log e) = log ex as x gets smaller and 
smaller. The number e (2.718281828) or in this case log e (0.4342944819) seems to pop up over and over 
and over in the most unexpected situations! The existence of a numerical sequence decreasing to zero for 
log (1 + x) should have been anticipated but did you anticipate the “e based pattern of significant digits” 
for each term in the sequence? Cute! 

7.) As x gets close to 0 by powers of 10, the 
function log(1 + x) gets closer and closer 
to a diminished magnitude of log e!
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and finally 

We know that 100 = 1, so it not surprising that 10x ≠ 1 when x ≠ 0. However, there is a highly predictable 
sequence of numbers that results by evaluating 10x for values that get closer and closer to 0 by powers of 
10. That is surprising! Let’s do an experiment by obtaining values 10x for x values getting closer and 
closer to zero and see if we can recognize a pattern. 
 
 x 10x 
 0.1 1.2589254117941673 
 0.01 1.023292992280754 
 0.001 1.0023052380778996 
 0.0001 1.0002302850208247 
 0.00001 1.0000230261160268 
 0.000001 1.000002302587744 
 0.0000001 1.0000002302585358 
 0.00000001 1.0000000230258512 

Since 100 = 1 it is not surprising that the sequence of numbers in column 2 is decreasing to 1. What is 
surprising is the predictable pattern of significant digits in the numbers in column 2. Compare that 
sequence of numbers in the second column with ln 10 = 2.302585092994046. Recall that ln 10 is 
equivalent to loge 10. There’s that number e again!! 

Chapter 7 Summary—The number e, when viewed as a base for an exponential expression has 
some very interesting properties. 

1.) The rate of change of the function y = ex is itself ex. 

2.) The area under the curve y = ex from negative infinity to x = 1 is e units. 

3.) The rate of change of the natural log function with base e at any point is 1/x. 

4.) The area under the curve y = 1

x
 from x = 1 to x = e is exactly 1. 

5.) The functions f(x) = ex and f(x) = ln (x) can both be evaluated using esthetically pleasing 
infinite series polynomials. 

6.) The sequence defined by 1+ 1

k

 
 
 

 
 
 

k

 converges to e1  while the sequence defined by 1+ x

k

 
 
 

 
 
 

k

 

converges to ex. 

7.) As x gets closer and closer to 0 by powers of 10, the function log (1 + x) gets closer and 
closer to a diminished magnitude of log e … log (1 + x) = x log e. 

8.) As x gets closer and closer to 0 by powers of 10, the function 10x gets closer and closer to 
1 + a diminished magnitude of ln 10 (i.e., 1 + x × loge 10) 

8.) As x gets close to 0 by powers of 10, the function 10x gets 
closer and closer to 1 + a diminished magnitude of ln 10.
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Chapter 7 Exercises 

1.) On the second page of this chapter, there was a discussion of instantaneous rate of speed. From 
that discussion of the rate of speed over decreasing intervals of time, how fast do you think the 
missile will be traveling at the “instant” that it strikes the target? Explain your answer. 

2.) In the graph of y = ex (at right) you should 
see several secant lines all drawn through 
the same end point, (1, e). By repeatedly 
applying the slope-between-two-points 
formula,    m = (y2 – y1)/(x2 – x1), find the 
slope of sec1,  sec2, sec3, and sec4. 

Describe what is happening to the successive 
secant slopes as the initial points approach the 
fixed end point at (1, e). 

3.) For the graph at right, y = 1/x, approximate 
the area under the curve from 1 to 2.71828 by 
adding up the areas of the four rectangles, 
r1 + r2 + r3 + r4. 

4.) For the graph at right, y = 1/x, approximate the 
area under the curve from 1 to 2.71828 by adding 
up the areas of the four rectangles, r1 + r2 + r3 + r4. 

—2 —1 1

1

2

2

3—3

3

4—4

y = ex

(1, e1)

(0.5, e0.5)

(0, e0)

(—1, e—1)

(—2, e-2)

sec2

sec1 sec4

sec3

1

1

—1

2 3 4

y = 1/x

2.71818

r1
r2 r3 r4

1

1

—1

2 3 4

y = 1/x

2.71818

r1
r2 r3 r4
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5.) Average the two areas you got in questions #4 and #5. What did you get? What do you think 
might happen if the number of rectangles is increased to say 8, 16, etc.? 

6.) You know that log10 1 = 0. Use your 
calculator to find each of the following 
values: 

log10 0.9 = 
log10 0.99 = 
log10 0.999 = 
log10 0.9999 = 
log10 0.99999 = 
log10 0.999999 = 
log10 0.9999999 = 
log10 0.99999999 = 
log10 0.999999999 = 

What do you notice about the pattern of your answers? 

7.) You are on a game show … “The Weakest Link.” You are asked to enumerate eight fun facts 
about the number e, the exponential curve y = ex, or the log curve y = ln x. How many can you 
name? 

—2

—2

—1
—1

1

1

2

2

3

3

4 5 6
Evaluate these y values.
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Chapter 8: More Log Rules 

Depending on the curriculum you are in, it is possible that you might see other log rules. For example, 
 a.) loga b = 1

logb a
 

 b.) (loga b) (logb c) = loga c 

In general you should approach each of these formulas as follows: 

1.) Get a feel for the log rule by choosing arbitrary values for a, b, and c and check to how the 
formula holds for your values. 

2.) See if you can apply a combination of the above-listed Log Rules to prove the new rule. Be 
creative and flexible. 

All the rules learned to this point are gathered together and listed below for reference 

  bm × bn = b( m+n )  Product of Common Base Factors Rule 

bm

bn = b(m−n ) Quotient of Common Bases Rule 

log(x × y) = logx + logy  Log of a Product Rule 

log
x

y

 

 
 

 

 
 = log x − log y  Log of a Quotient Rule, 

m = n iff bm = bn  iff Antilog Rule 

m = n iff logm = log n  iff Log Rule 

by = x  is equivalent to y = logb x  Equivalent Symbolism Rule 

logb b
x = x Inverse Log Rule #1 (Log of an Exponential Rule) 

b
log

b
x

= x  Inverse Log Rule #2 (Power of a Base Rule) 

log bm = m log b Log of a Base Raised to a Power Rule 

x × y =10(log x + log y ) Rule to Multiply Using Logarithms 

x

y
=10(log x− log y ) Rule to Divide Using Logarithms 

logp x =
logq x

logq p
 Change of Base Log Rule … change from base p to q. 

If bx = y then x = log y

logb
 Rule to Solve for an Exponent 

If b
x

y = q then q =10
x

y log b  Rule to Raise a Constant to a Power 
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For example: a.) loga b = 1

logb a
 

1.) Get a feel for the log rule by choosing arbitrary values for a and b and check how the rule 
holds for your values. Let a = 10 and b = 450 

 so loga b = 
1

logb a
 

 becomes log10 450  =
?

 
1

log45010
 

  2.653212514 =
?

 
1

log45010
 

 Solving for log450 10 = 
log1010

log10 450
 Change of Base Rule 

   = 
1

2.653212514
 Inverse Log Rule #1 

   = 0.3769015843. 

Substituting 0.3769015843 for log450 10 into the previous equation, 

  2.653212514 =
?

 
1

0.3769015843
 

  2.653212514 = 2.653212514 check 

2.) See if you can apply a combination of the above-listed Log Rules to prove the new rule. 
Be creative and flexible. 

 loga b =
?

 
1

logb a
 

 loga b × logb a = 1 cross-multiply 

 let k = loga b arbitrary substitution, you will see why in two more steps 

 k × logb a = 1 substitution 

 logb a
k = 1 Log of a Base Raised to a Power Rule 

 logb aloga b  = 1 back substitution 

 logb b = 1 Power of a Base Rule  (Inverse Log Rule 2) 

 b1 = b Equivalent Symbolism Rule    QED 
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Your turn. 
 

Process the log rule (loga b) (logb c) = loga c 
 

1.) Get a feel for the log rule by choosing arbitrary values for a, b, and c and checking how the 
rule holds for your values. Say a = 3, b = 5, and c = 7. Hint, convert each term into Base 10 
using 

 logp x = log10 x

log10 p
 Change of Base Log Rule … change from base p into base 10 

2.) prove (loga b) (logb c) = loga c 
Since two of the three terms in the log rule (loga b) (logb c) = loga c have a base of “a” Maybe 
changing the remaining term, (logb c) to base “a” using the Change of Base Log Rule and 
substituting appropriately might be helpful. 

 logp x =
logq x

logq p
 Change of Base Log Rule … change from base p into base q 

Chapter 8 Summary—Chapter 8 discussed the fact that there are more log rules than have been 
discussed up to now. Should you ever encounter them, apply the following two steps to 
learning about them and feeling comfortable about them. 

1.) Get a feel for the log rule by choosing arbitrary values for whatever variables are involved 
and checking how the formula holds for your values. 

2.) See if you can apply a combination of the above-listed Log Rules to prove the new rule. Be 
creative and flexible. 

Chapter 8 Exercises 

Given the log rule log
bn xn = logb x  

Show that you can apply the process discussed in this chapter to the new log rule above. Hint: Apply the 
Equivalent Symbolism Rule for logs and the Power of a Power Rule from algebra to prove this rule. 
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y = 1-2
x

Chapter 9: Asymptotes, Curve Sketching, Domains & Ranges 
The astute reader may have noticed something about all the exponential and log curves we have seen 

so far. The exponential curves have always had nonnegative y values. This comes about because the base 
of an exponential curve is positive by definition. In that case, y = bx will always be positive due to the 
closure property of multiplication. Notice that when x < 1 the corresponding y is small, and as x becomes 
larger than 1 y becomes large very fast. At least, this is true when the base (2 in this case) is greater than 
one. 

 y = 2x 

x y 
–2 1/4 
–1 1/2 
0 1 
1 2 
2 4 
3 8 

However when 0 < base < 1 the curve’s appearance is as follows. 

 y = 1/2
x 

x y 
–3 8 
–3 4 
–1 2 
0 1 
1 1/2 
2 1/4 

Plotting both curves on the same axis, we get 
the figure at right. 

Regardless of the value of b (as long as b is positive) the resulting graph of the exponential function y = bx 
never drops below the x axis. Its domain is all real numbers and its range is positive. We say that the 
function f(x) = bx is asymptotic with the x axis. 
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y = 2x

—2 —1 1

1
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y = bx

b > 1
y = bx

b < 1



 Chapter 9: Asymptotes, Curve Sketching, Domains & Ranges 70 

 

—2 —1 1

1

2

2

3

3

4

4
5
6
7
8

y = 2x

y = x

x = 2y

(y = log2x
domain: x > 0
range: all real)

(y = 2x

domain: all real
range: y > 0)
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1
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y = 1-2
x

(x = 1-2
y)

y = x

domain: all real
range: y > 0

y = log x1-2

domain: x > 0
range: all real

Forming the inverse of y = 2x, we get its associated log curve. As the two curves are inverses, it 
should not surprise us when the asymptotes for the two curves are exchanged along with the 
exchange of the x and y values. 

 y = 2x x = 2y 
  (y = log2 x) 

x y  x y 
–2 1/4  1/4 –2 
–1 1/2  1/2 –1 
0 1  1 0 
1 2  2 1 
2 4  4 2 
3 8  8 3 

Choosing b, where 0 < b < 1, and again placing the exponential curve on the same x–y axis as its inverse 
we get the figure at right. Again the 
asymptotes are exchanged. 

 y = 1/2
x x = 1/2

y 
  ( y = log1

2
x ) 

x y  x y 
–3 8  8 –3 
–3 4  4 –3 
–1 2  2 –1 
0 1  1 0 
1 1/2  1/2 1 
2 1/4  1/4 2 

All the curve-sketching tricks you 
learned with polynomial and trig graphs work with exponential and log curves as well. For y = a × bx the 
curve stretches vertically for a > 1 and flattens for a < 1. The curve y = a × log (x) stretches vertically for 
a > 1 and flattens for a < 1. Notice that the asymptote of neither curve is affected by the multiplier!! 
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y = abx

a > 1

y = abx

a = 1

y = abx

a < 1

y = alogb x
a > 1

y = alogb x
a = 1

y = alogb x
a < 1
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Continuing our experiment with curve-sketching techniques, we illustrate the vertical shift for y = bx and 
for y = logb x. Here the asymptote for the exponential functions is affected but not those of the log 
functions. Why is the asymptote for the exponential functions affected by a vertical shift while the 
asymptote for the log function is not? Well, to begin with, a vertical shift is either up or down and that 
would not change a vertical asymptote. Another way of thinking about this is to change from y = log2 (x) 
into x = 2y. Now a vertical shift only changes the y value. As long as the base is positive (2 in this case), 
the x value will have to remain positive. 

—2—3—4—5 —1 1

1

2

2

3

4 4y = 2x+3
y = 2x

y = 2x—1 y = log2 x  

y = log2 x  + 3

y = log2 x  -2

—1 1

1

—1—1

2

2

—3

—2

3

3

4 5 6

 

And of course we need to experiment with the horizontal shift for both the exponential and the 
logarithmic functions. Notice that the exponential functions’ asymptotes are unchanged after the 
horizontal shift, but the horizontal shift does affect the asymptote for the log function. Why would this 
be? 

—2—3—4—5 —1 1

1

2

2

3

3
y = 2(x+3)

y = 2(x-1)
y = 2x

y = log2 (x + 3)

y = log2 x
y = log2 (x — 2)

—1—2—3 1

1

—1

2

2

3

3

4 5 6
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We have been examining all the curve-sketching 
skills as they apply to graphing the exponential and 
log curves. In general form, we have now analyzed  
y = a logb (x – h) + k. Is there anything else? Well, in 
the example given above, the multiplier was positive. 
What would happen if the multiplier were negative? 
Do you see that the rising log curve gets reflected 
about the x axis? We should have anticipated that a 
negative multiplier would change any previously 
positive values to negative values and vice versa. 

 

Let’s put all this together. Graph 

y = − 1

3
log1

2
(x + 4) + 2 without a graphing calculator. 

A quick look at this functions shows that there are 6 things to take into consideration: 

1.) This is a log function for b > 1 2.) This is a log function with a base less than one 
(say 1/2). This requires using the change of base 
formula for work with a calculator. 

—1 1

1

—1

—2

—3

2

2

3

3

4 5 6

y = logb x with b < 1

—1 1

1

—1

—2

—3

2

2

3

3

4 5 6

y = logb x with b > 1

 

Vertical asymptote here is x = 0. 
Domain: x > 0 
Range: –∞ < y < ∞ 

 Vertical asymptote here is still x = 0. 
Domain: x > 0 
Range: –∞ < y < ∞ 

 

—1 1

1

—1

—2

—3

2

2

3

3

4 5 6

y = log2 x

y = —log2 x
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3.) The negative multiplier will reflect the curve 
about the x axis. 

4.) There is a “shrink” or flattening effect because 
the absolute value of the multiplier is less than 
1. 

—1 1

1

—1

—2

—3

2

2

3

3

4 5 6—1 1

1

—1

—2

—3

2

2

3

3

4 5 6

y = —log1/2
 x y = —1/3

log1/2
 x

 

Vertical asymptote here is x = 0. 
Domain: x > 0 
Range: –∞ < y < ∞ 

 Vertical asymptote here is still x = 0. 
Domain: x > 0 
Range: –∞ < y < ∞ 

 
5.) There is a horizontal shift of –4. 6.) And finally, there is a vertical shift of 2. 

—1 1

1

—1

—2

—3

2

2

3

3

4 5 6—1 1

1

—1

—2

—3

2

2

3

3

4 5 6

y = —1/3log1/2
 (x+4) + 2y = —1/3log1/2

 (x+4)

 

Vertical asymptote here is  still x = –4. 
Domain: x > –4 
Range: –∞ < y < ∞ 

 Vertical asymptote here is now x = –4. 
Domain: x > –4 
Range: –∞ < y < ∞ 

From inspection of the figure in #6, what are the domain and range of the final function? 

y = − 1

3
log1

2
(x + 4) + 2 

From looking at the generalized formula y = a × logb (x + h) + k what are the domain, range, and 
asymptote of that generalized function in terms of h and k? 

Your turn: In stages, as shown above, use what you know about curve sketching to find the domain 
and range of the function f(x) = 5 × log7 (x + 7) – 4. Sketch the curve labeling all important 
information. 



 Chapter 9: Asymptotes, Curve Sketching, Domains & Ranges 74 

 

Problem: Give the domain and range of the relation logx (y – 2) = logx (4 – x) 

This sort of problem requires some thought.  

Step 1: The term domain pertains to allowable x values. 

Step 2: In chapter 2, we found, for y = logb x, that b > 0, b ≠ 1, and x > 0 (in a log function the 
domain is positive and the base is positive and not equal to 1). 

 In both sides of the equation above the base = x, therefore x > 0, x ≠ 1 

 Also, in logb k, k > 0 (see chapter 2). therefore, for y = logx (4 – x), (4 – x) > 0 

 So 4 > x + 0 
 x < 4 

 1.) x > 0 
 2.) x ≠ 1 
 3.) x < 4 

Or 0 < x < 4, x ≠ 1 

Step 3: The term range pertains to allowable y values. 

Step 4: Since, for logb k, k > 0 (See chapter 2). 
 Therefore, for y = logx (y – 2), y – 2 > 0, so y > 2 

Applying the iff Log Rule (a = b iff log a = log b) 
to the original equation in order to put into 
graphing form “y = ” 

 logx (y–2) = logx (4–x) 
 y – 2 = 4 – x 

y = –x + 6 with 0 < x < 4, x ≠ 1 

Chapter 9 Summary—We have found 
that the curve-sketching techniques 
that work with both polynomials 
and trig curves also work with the 
exponential and logarithmic curves. 
We have found that exponential curves are always asymptotic with a horizontal line and log 
curves are always asymptotic with a vertical line. We reviewed that the base of an exponential 
function and its inverse function (the log function) is positive (but ≠ 1 for the log function). We 
also reviewed that the domain for the exponential function was all real numbers while the 
range for the log function was all real numbers. Finally we reviewed that the range for the 
exponential function is positive while the domain for the log function is positive. 

 
 
 

X y 
0 Err 
0.5 5.5
1 Err 
1.5 4.5
2 4 
2.5 3.5
2.5 3.5
3 3 
3.5 2.5
4 Err 
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logx (x—4)

—1 1

1

4

5

6

2

2

3

3

4 5

0 < x < 4, x ›  1

y > 2

logx (y—2) = logx (x—4)
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Chapter 9 Exercises 

1.) In chapter 9, we learned that after a vertical shift the asymptotes for the exponential function are 
affected, but not those of the log functions. The text tries to explain why that would be. Then we 
saw figures that showed a horizontal shift for the exponential and log functions. Notice that the 
exponential functions’ asymptote are unaffected after the horizontal shift, but the horizontal shift 
does affect the asymptote for the log function. Explain. 

—2—3—4—5 —1 1

1

2

2

3

3
y = 2(x+3)

y = 2(x-1)
y = 2x

y = log2 (x + 3)

y = log2 x
y = log2 (x — 2)

—1—2—3 1

1

—1

2

2

3

3

4 5 6

 

2.) In chapter 9, you saw the step by step graphing of the log function y = − 1

3
log1

2
(x + 4) + 2. Show 

that you understand progressive graphing by graphing the exponential curve y = − 1

5
2(x−3) − 4 . At 

each graphing stage, indicate the asymptote, the domain, and the range for the function at that 
step. 

3.) In chapter 5, we were shown the formula for the measurement of pH. 

 

pH is the measure of activity of hydrogen ions in a solution. 

The formula for calculating pH is: 

 

Graph this relation with pH as the dependent variable. 

Measurement of PH 
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Chapter 10 … Practice, Practice, Practice 
     As with any skill proficiency requires practice, practice, and more practice.   This entire chapter is 
dedicated to practicing all the skills learned to this point in different ways and situations. 

 

Problem #1: Problem #2: 
Graph log y = –log x 
 log y = log x–1 Log of a Base Raised to 

a Power Rule 
 y = x–1 iff Log Rule 

Graph log y = 2 log x 
 log y = log x2 Log of a Base Raised to 

a Power Rule 
 y = x2 iff Log Rule 

—2

—1

1

2

—4 —3 —2 —1 1 2 3 4 5

y=1/x
for y>0

x>0

 
—2

—1

1

2

—4 —3 —2 —1 1 2 3 4 5

y=x2

for y>0
x>0

All the rules learned to this point are gathered together and listed below for reference 

  bm × bn = b( m+n )  Product of Common Base Factors Rule 
bm

bn = b(m−n ) Quotient of Common Bases Rule 

log(x × y) = logx + logy  Log of a Product Rule 

log
x

y

 

 
 

 

 
 = log x − log y  Log of a Quotient Rule, 

m = n iff bm = bn  iff Antilog Rule 
m = n iff logm = log n  iff Log Rule 
by = x  is equivalent to y = logb x  Equivalent Symbolism Rule 
logb b

x = x Inverse Log Rule #1 (Log of an Exponential Rule) 

b
log

b
x

= x  Inverse Log Rule #2 (Power of a Base Rule) 
log bm = m log b Log of a Base Raised to a Power Rule 
x × y =10(log x + logy ) Rule to Multiply Using Logarithms 
x

y
=10(log x− log y ) Rule to Divide Using Logarithms 

logp x =
logq x

logq p
 Change of Base Log Rule … change from base p to q. 

If bx = y then x = log y

logb
 Rule to Solve for an Exponent 

If b
x

y = q then q =10
x

y log b  Rule to Raise a Constant to a Power 



 Chapter 10 … Practice, Practice, Practice 77 

 

3.) Evaluate log6 6
–20 without a calculator 4.) Evaluate 3 log2 4 without a calculator

Applying the rule logb b
x = x this is easy … –20 Let 3 log2 4 = x 

Then log2 4
3 = x Log of a Base Raised to a 

Power Rule 
 2x = 43 Equivalent Symbolism 

Rule 
 2x = (22)3 
 2x = 26 
 x = 6 iff Antilog Rule 

5.)   Estimate log3 15. Then evaluate using the Change of Base Rule and your calculator. 
Estimate as follows: 9 = 32 < 3x < 33 = 27 

Now applying the Change of Base Log Rule … change from base p into base q 

 logp x=  
logq x

logq p
 

then log3 15 = 
log15

log3
 

  = 
1.17609

0.47712
 

  = 2.464974 

Check: log3 15 = x can be rewritten as 3x = 15 by the Equivalent Symbolism Rule Then 32.464974 
= 15.00007898 by calculator verifies our work 

6.) Simplify (logx y) (logy x) 
When faced with a logarithm problem with different bases it is a good rule of thumb that you 
convert one of them so that both terms have the same base. 
Applying the Change of Base Log Rule … change from base p into base q, 

 logp x = 
logq x

logq p
      (general rule) 

 logx y = 
logy y

logy x
      (applying the general rule to (logx y) and substituting 

Then 
logy y
logy x logy x  = 1 (can you see that logy y = 1?) 

By the transitive rule, (logx y) (logy x) = 1 … the original two terms were multiplicative inverses!! 
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         7.)  Simplify 4 log5 p – log5 q 

 log5 p
4 – log5 q Log of a Base Raised to a Power Rule 

 log5

p4

q
 Log of a Quotient Rule 

8.)    Solve log2 (x – 3) + log2 (x + 1) = 5 
                        log2 (x – 3)(x + 1) = 5  Log of a Product Rule 

 log2 (x
2 – 2x – 3) = 5 FOIL 

 25 = x2 – 2x – 3 Equivalent Symbolism Rule 

 x2 – 2x – 3 = 32 

 x2 – 2x – 35 = 0 

 (x – 7)(x + 5) = 0 Reverse FOIL 

 x = 7, –5 

check: log2 (7 – 3) + log2 (7 + 1) = 5 ? log2 (–5 – 3) + log2 (–5 + 1) = 5 ? 

 log2 4 + log2 8 = 5 ? log2 (–8) + log2 (–4) = 5 ? 

 log2 (4 × 8) = 5 ? log2 (–8 × –4) = 5 ? 

 log2 32 = 5 ? log2 32 = 5 ? 

 25 = 32 ck! 25 = 32 ck! ?????? 

What is wrong with the second 
answer, x = –5? Let’s look at the graph of 
the conditions. Hopefully you can see for 
the sum graph that only values x > 3 are 
allowed in the solution set. So we will 
have to reject the solution x = –5 as 
extraneous. 

We should have checked on the 
domain in the equation at first. Because 
logb x requires x > 0 then log2 (x – 3) 
requires (x – 3) > 0 and log2 (x + 1) 
requires (x + 1) > 0. Therefore                
(x > 3) ∩ (x > –1) results in a domain    
of x > 3. 

4

5

log2 (x  — 3)
+

log2 (x  + 1)

log2 (x  + 1)
(domain x  > —1) log2 (x  — 3)

(domain x  > 3)

—1—2—3—4 1

1

—1

2

2

—2

3

3

4 5 6 7
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9.) Expand log
p q

c

 

 
 

 

 
  using the laws of logarithms. 

log p + 1/2 log (q) – log c by Log of Product, Quotient, and a Base Raised to a Power Rules 

10.) Given log2 3 = x, log2 5 = y, log2 7 = z 

 Express log2

15

7
 in terms of x, y, and z 

 Let k = log2

15

7
 

  k = log2

3 × 5

7
 Inverse Log Rule #1 … Log of a Power Rule 

  k = log2 (3) + log2 (5) – log2 (7) Log of a Product and Quotient Rules 

  k = x + y – z Substitution 

11.) Simplify log3 54 – log3 8 + log3 4 
log3 54 – log3 8 + log3 4 = 

log3 (54 / 8) + log3 4 = Log of a Quotient Rule 

log3 ((27 / 4) × 4) = Log of a Product Rule 

log3 27 = x 

3x = 27 Equivalent Symbolism Rule 

x = 3 

12.) State the values of x for which the following identity is true. 
 log5 (x+1) + log5 (x–4) = log5 (x

2 – 3x – 4) 

 log5 ((x+1) × (x–4)) = log5 (x
2 – 3x – 4) Log of Product Rule 

 (x + 1) × (x – 4) = x2 – 3x – 4 iff Log Rule 

 x2 – 3x – 4 = x2 – 3x – 4 FOIL 

 all real values of x 

Well, maybe not. log5 (x + 1)has a domain of x > –1 and log5 (x – 4) has a domain of x > 4 
 { x > –1} ∩ {x > 4} = {x > 4} 
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Let’s see what the function log5 (x
2 – 3x – 4) looks like: 

y = log5 (x2 — 3x —4)

—1—2—3—4 1

1

—1

2

2

3 4 5 6

 

Wow! Who would have thought?! Where did that log graph come from anyway? We have never taken 
the log of a quadratic expression before, only linear ones. Let’s graph the parabola x2 – 3x – 4 and 
compare the log curve above with this parabola. 

y = log5 (x2 — 3x —4)

y = x2 — 3x —4

y = log5 (x2 — 3x —4)

—1—2—3—4 1

1

—1
—2
—3
—4
—5
—6
—7

2

2
3

3 4 5 6

 

By visualizing vertical asymptotes at x = –1 and x = 4, we notice that whenever y = x2 – 3x – 4 < 0  
(–1 < x < 4) the log curve y = log (x2 – 3x – 4) is undefined. That makes sense as the log function is 
only defined for when the log argument > 0 (Chap. 2 remember?).  So we conclude that 
 log5 (x

2 – 3x – 4) implies that  x2 – 3x – 4 > 0. Therefore (x + 1) (x – 4) > 0 which is only true when  
 x  > -1 and x > 4   (or when x < -1 and x < 4) 
 
 

 
                 {x > –1} ∩ {x > 4} = {x > 4}  so reject x > –1 for the domain of the identity. 
  Also        {x < –1} ∩ {x < 4} = {x < -1} so reject x < 4  for the domain of the identity 
 
                 Domain for function log5 (x

2 – 3x – 4)  is:   { x < -1 } union { x > 4 } 
 

13.) Solve 42x (8x+3) = 32(4–x) 
 (22)2x (23)(x+3) = (25)(4–x) check: 4(22/12) × 8(11/12 + 3) = 32(4 – 11/12) ??? 

 24x × 2(3x + 9) = 2(20 – 5x)  (22)(22/12) × (23)(47/12) = (25)(37/12) ??? 

 2(7x + 9) = 2(20 – 5x)  2(44/12) × 2(141/12) = 2(185/12) ??? 

 7x + 9 = 20 – 5x  2(185/12) = 2(185/12) check 

 12x = 11 

 x = 11/12 
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14.) Solve 4 × 3(3x) = 9(x+1) 
Somehow combine the x terms 

 
4 × 33x

33x  = 
9x +1

33x  

 4 ×1 = 
32( )x +1

33x  

 4 = 
32x+2

33x
 

 4 = 3(–x + 2) 
bm

bn
= bm−n

 

 log (4) = log 3(–x + 2) iff Log Rule 

 log (4) = (–x + 2) log 3 Log of a Base Raised to a Power Rule 

 
log4

log3
 = –x + 2 

 x = 2 – 
log4

log3
 

 x = 2 – 
0.60206

0.47712
 

 x = 2 – 1.2618 

 x = 0.7382 

ck: 4 × 32.2146 = 91.7382 ??? 

 45.5714 = 45.5685 ck (to within the rounding error of the calculations) 

15.) Solve for x: (log x)2 = a2 
 log x = ± (a) 

 10(± a) = x 

 x = 10a, 10–a 

16.) Prove loga x =  −log1
a
x  

Get rid of negative coefficient and (1/a) base. 
 loga x = log1

a
x−1 Log of a Base Raised to a Power Rule 

 log1
a
x−1 = loga x Symmetric Property 

 
1

a

loga x

 = x(–1) Equivalent Symbolism Rule 

 a−1( )loga x
 = x(–1) (1/a ) = a(–1) 

 a− loga x  = x(–1) (bm)n = bmn 

 
1log −xaa  = x(–1) Log of a Base Raised to a Power Rule 

 x(–1) = x(–1) Inverse Rule #2 Power of a Log Rule Q.E.D. 
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1 2 3 4 5

y = ln 2
2

y = ln x
x

3

2

1

4

17.) Solve 
lnx

x
= ln2

2
 

 Approach #1: Approach #2 Cross multiply 

 
1

x
ln x  = 

1

2
ln2 2 ln (x) = x × ln (2), domain x > 0 

 ln x
1

x  = ln2
1

2  ln (x)2 = ln (2)x 

 x
1

x  = 2
1

2  x2 = 2x 

 xx

 = 2  x = ± 2x  domain x > 0 

 x = {2, 4} by inspection x = { 2, 4 } by inspection 

Approach #3 If the problem is not contrived to give a clean answer, or if you are unsure of 
yourself, and if the problem involves the log or ln functions. which are available on 
any graphing calculator, you can graph your conditions and use the “Calc” button. 

window: domain: [0,5] 

 range: [0, 0.5] 

 curve intercepts: (2 & 4) 

 x = {2, 4} 

18.) Solve  log2 8 − log1
2
8 = 

Let log2 8  = x and let log1
2
8 = y 

Then 2x = 8 and (1/2)
y = 8 

 x = 3  2(–y) = 23 

 x = 3  y = –3 

Substituting x and y back into the original expression 

3 – (–3) = 6 

With practice you can do these sort of problems in your head. Cover up the work and try. 
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Chapter 10 Exercises 

1.) Solve for x. 
a.) log2 x = 3 
b.) log1

3
x = 4  

c.) log4 x = –1/2 
d.) log(–4) x = 1/2 
e.) log3 x = –4 

2.) Solve for x. 
a.) log4 16 = x 
b.) log1

2
8 = x  

c.) log5 0 = x 
d.) log(–2) 10 = x 
e.) log3 1 = x 

3.) Solve for x. 
a.) logx 16 = 4 
b.) logx 4 = 1 
c.) logx 16 = –4 
d.) logx 64 = 3/4 
e.) logx 0 = 2 

4.) Simplify the expression 
a.) log51 518 
b.) 5log5 10  
c.) 3log24 24− 2

3  
d.) 8 log19 192 
e.) 4 log4 85 

5.) Solve for x. 
a.) 0.1963x = 2.68 
b.) 242x = 5,240 

6.) Find x 
a.) log3 79 = x 
b.) logx 79 = 6 
c.) log3 x = 7.2 
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7.) Simplify 
a.) log5 625 + log3 (

1/81) = 
b.) 42× log4 3 + 32× log3 4= 
c.) 6

1
2× log6 36 × 92× log9 81 = 

d.) 3 log10 4 – 2 log10 8 = 
e.) log2 4 + log4 2 = 

8.) Evaluate without a calculator 
a.) ln 1 e.) log 1 
b.) ln e f.) log 10 
c.) ln ey g.) log 10y 
d.) eln y h.) 10log y 

9.) Rewrite as an expression using sums and differences using the Log Rules 

log
16x 2

y
 

10.) The rule log (a + b) = log a + log b seems plausible. Let a = 10 and b = 20. Investigate using 
your calculator. What did you find out? 

11.) The rule log
a

b
= loga

logb
 looks plausible. Let a = 10 and b = 20. Investigate using your calculator. 

What did you find out? 

12.) Solve without a calculator. 20
1

2

 
 
 
 
 
 

x

3
= 5 

13.) Solve ln (3x – 2) + ln (x – 1) = 2(ln x) in two different ways: 
a.) algebraically without a graphing calculator 
b.) graphically with a calculator 

14.) Solve 3(x – 1) = 5(2x + 3) in two different ways: 
a.) algebraically without a graphing calculator 
b.) graphically with a calculator 

15.) State the Equivalence Symbolism Rule from memory. 
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Appendix A: 
How Did Briggs Construct His Table of Common Logs? 

The first five chapters of this text are pretty well written on the assumption that common logarithms 
(logs with a base of 10) are somehow magically available. In the “post-scientific calculator world” we live 
in, that assumption is close to accurate. However, prior to the availability of scientific calculators common 
logarithms (powers of 10 required for any given numbers) were only available in a table of logarithms 
that looked like the following: 

From the log table, can you 
see that the log of 2.81 
(log10 2.81) is 0.4487? 

Check it out on your 
calculator. 

What do you think the log 
of 28.1 would have been? 
(see bottom of page) of 
281? of 2,810? of 0.00281? 
If you do not know, use 
your calculator to find out. 

(Beware. Obtaining log 
table values of numbers  

0 < x < 1 

 involve a special case 
complication. See 
Appendix D if you are 
interested.) 

There are sources that 
detail how Henry Briggs spent decades developing and applying methods used to obtain this logarithmic 
information. Very little of that history is relevant to today’s student. Still, a brief treatment of that process 
may be of interest to the curious student. Actually, Mr. Briggs documented several techniques that he 
used. I have chosen what I believe are the main ones to share with you. After developing the necessary 
background, I will be presenting what I believe to be the spirit of Mr. Briggs’ work. Historical and 
mathematical purists should refer to the following websites: 1.) www.jacques-laporte.org, Briggs and the 
HP-35 submenu, 2.) http://www.jacques-laporte.org/The method of Henry Briggs.htm, and 3.) if you read 
Danish, www.matematiksider.dk by Erik Vestergaard. All three websites were viable June 2010.. 

Answers: log 28.1 = 1.4487… where 1 is called the characteristic of the log and 0.4487 is called the mantissa 
 log 281 = 2.4487… where 2 is called the characteristic of the log and 0.4487 is called the mantissa 
 log 2,810 = 3.4487… where 3 is called the characteristic of the log and 0.4487 is called the mantissa 
 log 0.002810 = 0.4487 – 3 = –2.55129 See Appendix D for more discussion of the special case of  using a log table to take a 

log of a number x when 0 < x < 1 
Note that the mantissa is the same for numbers 28.1, 281, 2,810, and all numbers x > 1 starting with digits 2,8,1. 
The characteristic, however, is dependent on and communicates information about the magnitude of the number. 

Common Logarithms of Numbers
 N 0 1 2 3 4 5 6 7 8 9
10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374
11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755
12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106
13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430
14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732
15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014
16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279
17 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529
18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765
19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989
20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201
21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404
22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598
23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784
24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962
25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133
26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298
27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456
28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609
29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757
30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900
31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038
32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172
33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302
34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428
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Step #1: Finding the square root of a number without using a calculator. 

The ability to find a square root was well known in Mr. Briggs’ time. Even as late as the 1960s, I was 
taught an algorithm that was probably very similar to the one he used. The reader is strongly advised to 
skip over this material in Step #1. It is really tedious and very boring and irrelevant to today’s student. 

1.) From the decimal in the radical, group the digits in groups of two. Group in twos going to the left and 
to the right. 

2.) Find the extreme left digit (or pair of digits) and mentally approximate the square root of it placing it 
above the group. Here, the square root of 7 would be approximated to be 2 … place the 2 above the 
seven. Square the number (2) and place below the seven. 

3.) Subtract the 4 from the 7 and bring down the next two digits from the radical … 46. 

746.84 7 46 . 84 7 46 . 84
2

4
7 46 . 84

3 46

2

4

Step 1 Step 2 Step 3

 

4.) Double the partial square root at that stage (2) and place the result to the left of the 3 46 with a _ 
indicating a digit to fill in later. Think: What is the highest digit I can place in the missing digit 
location that will divide the 346? In this case it is 7. 

5.) Locate that 7 above the radical and in the missing digit location. (4 becomes 47) 

6.) Multiply 7 × 47 placing the result below the 3 46. Proceed to subtract and bring down the next group 
of two digits … 84. 

7 46 . 84

Step 4

7 46 . 84
2

4

Step 5

7 46 . 84

17 . 84

3 46
3 29

2

4
3 46

2

4

Step 6

(4_) 3 46(47) (47)

7 7

 

7.) Repeat starting in step 4. Double the partial square root at that stage (27) and place the result (54_) to 
the left of the 17 84. Think: What is the highest digit I can place in the missing digit location that will 
divide the 1,784? In this case it is 3. 

8.) Locate that 3 above the radical and in the missing digit location. 

9.) Multiply 3 × 543 placing the result below the 1,784. Proceed to subtract and bring down the next 
group of two digits. Repeat step 4–6 (or 7–9) as many times as desired. 

7 46 . 84

Step 7

7 46 . 84
2

4

Step 8

7 46 . 84 00

17 . 84
16 . 29

3 46
3 29

2

4

1 . 55 00

17 . 84
3 29
3 46

2

4

Step 9

(47)

(54_) 17 . 84
3 29

(543) (543)

3 46(47) (47)

2 7 .7 .7 . 3

 

ck: 27.3 × 27.3 = 745.29 
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Step #2: Repeated applications of the square root process could result in the following table of 
information. 

 10
1

2  = 100.5 = 3.16227766 

 10
1

4  = 100.25 = 1.77827941 

 10
1

8  = 100.125 = 1.333521432 

 10
1

16  = 100.0625 = 1.154781985 

 10
1

32 = 100.03125 = 1.074607828 

 10
1

64  = 100.0156625 = 1.036632928 

 10
1

128 = 100.0078125 = 1.018151722 

 10
1

256  = 100.00390625 = 1.009035045 

 etc. 

Also, because  b
m

n = bmn , Mr. Briggs could also have calculated 10
3

4  (100.75) or  10
3

8  (100.375) or 10
5

16  
(100.3125) or 10

17
32  (100.53125) or 10

63
128 (100.4921875) or 10

11
256 (100.04296875) or any power whose 

denominator was a power of two (2). 

This technique was used by Mr. Briggs to get many of the values in his log table. More will be 
discussed. 

Step #3: Cube Roots 

It is well documented that the mathematicians of the late 1500s could solve a generalized cubic 
equation. Appendix B documents this fact. 

As the ability to solve a cubic equation is predicated on the ability to extract a cube, it would be safe 
to assume that Mr. Briggs knew how to extract a cube. That would allow him to calculate the 
following log values in a manner similar to the way he extracted log values using the ability to take a 
square root (refer to www.nist.gov/dads/HTML/cubeRoot.html, viable June, 2010, if you are really 
curious.) Historical purists please forgive. There is nothing I can find that says Mr. Briggs utilized a 
cube root algorithm in constructing his log table but it was a great excuse to put Cardan’s formula 
into my text (Appendix B). It was available during the time period that Briggs was doing his work. 

 10
1

3(0.333) 10
2

3(0.667) 10
1

9(0.111)  10
2

9(0.222) 10
3

9(0.444 )  10
5

9(0.556) 10
7

9(0.778) 10
8

9(0.889) 

or any root that is a composite of the factors of 2 and 3, 

e.g., 10
1

6(0.167) , 10
5

6(0.833) , 10
1
12(0.83), 10

5
12(0.417), 10

11
12(0.917) , 10

1
18(0.056), 10

17
18(0.944) , 10

53
54(0.981), etc. 

The humble log table started in Step 2 has been greatly expanded! 
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Step #4: Integer Factoring 

The reader has, no doubt, been exposed to the idea of integer factoring. For example, to factor 210 … 

 210/2 = 105 Therefore 210 = 2 × 105 

 105/7 = 15 Therefore 105 = 7 × 15 
    Therefore 210 = 2 × 7 × 15 

 15/3 = 5 Therefore 3 × 5 = 15 
    Therefore 210 = 2 × 7 × 3 × 5 

It can be proven that integer factoring or factoring to the primes always results in a unique set of 
factors. In other words, there is only one set of factors in a complete integer factorization of an 
integer. 

Step #5: “Non-integer Factoring”   For example, “factor” the number 131. 

 
131

7
 = 18.71428571 Therefore 131 = 7 × 18.71428571 

 
18.71428571

5
 = 3.7428571 Therefore 18.71428571 = 5 × 3.7428571 

    Therefore 131 = 7 × 5 × 3.7428571 

 
3.7428571

3
 = 1.247619048 Therefore 3.7428571 = 3 ×  1.247619048 

    Therefore 131 = 7 × 5 × 3 ×  1.247619048 

 
1.247619048

1.2
 = 1.03968254 Therefore 1.247619048 = 1.2 × 1.03968254 

    Therefore 131 = 7 × 5 × 3 × 1.2 × 1.03968254 

 
1.03968254

1.035
 = 1.004524193 Therefore 1.03968254 = 1.035 × 1.004524193 

    Therefore 131 = 7 × 5 × 3 × 1.2 × 1.035 × 1.004524193 

What do you notice the sequence of factors that are underlined above? 

18.71428571, 3.7428571, 1.247619048, 1.03968254, 1.004524193, … 
 These numbers are decreasing and approaching 1. In other words 131 can be factored as follows 

“Non-integer factoring” does not generate a unique set of factors. 

131 = a × b × c × d × e × f × g × … × x × some number very close to one then for all practical 
                                                                  purposes, we could probably just write the expression as 

131 = a × b × c × d × e × f × g × … × x and eliminate that last factor by applying the multiplicative 
property of 1, x × 1 = x.



 Appendix A: How Did Briggs Construct His Table of Common Logs? 89 

 

Step # 6: 

Combine concepts #2 and #5 above to approximate the log of any number to as many places as 
desired. Replicating the chart of even root logarithms from step #2 above, we proceed to approximate 
log 5 to several places of accuracy.  This process starts with the technique of “non-integer factoring.” I 
learned this technique from Dr. Art Miller of Mount Allison University, Sackville, N.B., Canada, who 
in turn gives credit for this algorithm to Mr. Henry Briggs. (www.mta.ca/~amiller/) 

 100.5 = 3.16227766 #1 

 100.25 = 1.77827941 #2 

 100.125 = 1.333521432 #3 

 100.0625 = 1.154781985 #4 

 100.03125 = 1.074607828 #5 

 100.0156625 = 1.036632928 #6 

 100.0078125 = 1.018151722 #7 

 100.00390625 = 1.009035045 #8 

        Divide the number 5 by the largest value < 5 shown in the table above.   Likewise divide each of the 
resulting  “non-integer factors” (1.58113881, 1.1856868853, 1.026762541, etc.) by the largest value in 
the table less than the current “non-integer factor.”   This is shown below. 

Step 6.a: 
5

3.16227766
=     1.58113883        (dividing by table value #1 above)                                                    

Therefore                       5 =   3.16227766 × 1.58113883  
                                                                                     

Step 6.b: 
1.58113883

1.333521432
=     1.1856868853    (dividing by table value #3 above) 

  Therefore 1.58113883 = 1.333521432 × 1.1856868853 
and therefore 5 = 3.16227766 × 1.333521432 × 1.1856868853 

Step 6.c:                
1.1856868853

1.154781985
 =     1.026762541      (dividing by table value #4 above)                                      

Therefore 1.1856868853 = 1.154781985 × 1.026762541                                                                       
and therefore                5  = 3.16227766 × 1.333521432 × 1.154781985 × 1.026762541 

Step 6.d: 
1.026762541

1.018151722
=     1.008457304      (dividing by table value #7 above) 

  Therefore 1.026762541 = 1.018151722 × 1.008457304 
and therefore 5 = 3.16227766 × 1.333521432 × 1.154781985 × 1.018151722 × 1.008457304 

Finally       5 = 3.16227766 × 1.333521432 × 1.154781985 × 1.018151722 × 1.008457304 

take the log of both sides, iff Log Rule 

Step 6.f:    log (5) = log (3.16227766 × 1.333521432 × 1.154781985 × 1.018151722 × 1.008457304)                          

 

**** etc. until the last factor is close enough to 1 to give the desired accuracy ***** 
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(continuing from the previous page) 

Step 6.f:  log (5) = log [3.16227766 × 1.333521432 × 1.154781985 × 1.018151722 × 1.008457304] 

Step 6.g: log (5) = log (3.16227766) + log (1.333521432) + log (1.154781985) + log(1.018151722) 

                                                                                       +log (1.008457304)  (omit this term!) 

Step 6.h: log (5) = 0.5 + 0.125 + 0.0625 + 0.0078125 (log values taken from table on prior page) 

Step 6.i: log (5) = 0.6953125 which compares very favorably with the calculator value 

by calculator log (5) = 0.6989700043 

Question: How could you improve the noncalculator log (5) value shown above? 

Answer:  Repeat the iterative process as many times necessary to obtain the desired accuracy!! 

class CalcLogOf5     // Java code… Mr. Briggs could not have imagined such a tool 
{ 
 public static void main(String args[]) 
 { 
     double x = 5; 
     double origX = x; 
     double logSum = 0; 
     double rootOf10 = 10; 
     double power = 1; 
 
     while (rootOf10 > 1.0000000000001) 
      { 
       rootOf10 = Math.sqrt(rootOf10); 
       power /= 2.0; 
        
       if (rootOf10 < x) 
       { 
           logSum +=power;   // summing the "logs" 
           System.out.print(power + " + "); 
           x = x / rootOf10; 
       }// end if 
        
      }// end while 
       
     System.out.println("\n\n  logSum = " + logSum); 
     System.out.println("log " + origX + "  = " + Math.log10(origX)); 
 }// end main 
}// end class 
 
 
(output on next page) 
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--------------------Configuration: <Default>-------------------- 

0.5 + 0.125 + 0.0625 + 0.0078125 + 0.001953125 + 9.765625E-4 + 4.8828125E-4 + 1.220703125E-4 + 
6.103515625E-5 + 3.0517578125E-5 + 1.52587890625E-5 + 7.62939453125E-6 + 1.9073486328125E-6 
+ 9.5367431640625E-7 + 1.1920928955078125E-7 + 2.9802322387695312E-8 + 7.450580596923828E-
9 + 3.725290298461914E-9 + 1.862645149230957E-9 + 9.313225746154785E-10 + 
2.3283064365386963E-10 + 1.1641532182693481E-10 + 1.8189894035458565E-12 + 
5.6843418860808015E-14 + 2.8421709430404007E-14 +  

  logSum =  0.6989700043360187 

 log 5.0    = 0.6989700043360189 

 

 

 

 

We now have a pre-calculator method of expanding the “log table” started in steps 2 & 3 to contain 
the log of any number we wish. For example it would be helpful to have common log (base 10) values for 
all the prime numbers up to 100: log 2, log 3, log 5, log 7, log 11, log 13, log 17, …. We now know how 
to do it, right? Then we can use prime number log values together with the Log of a Product Rule [ log (a 
× b) = log a + log b ] to determine unknown logarithms of composite numbers: 

 
log 2 = 0.3010299957 
log 3 = 0.4771212547 

log (6) = log (2 × 3) = 0.3010299957 + 0.4771212547 = 0.7781512504 

calculator check: log 6 = 0.7781512504 

The practical ramifications of this “trick” are huge as the factor combinations for each prime number 
combination are numerous …. 

log (2 × 2), log (2 × 3), log (2 × 4), … log (3 × 3), log (3 × 4), … log (5 × 5), log (5 × 6), … 
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Step 7: 

Another way to expand our log table using pre-calculator methods also involves using previously 
developed log values. By cross multiplying a proportion and applying log rules, Briggs could use numbers 
with known logarithmic values to obtain new ones. From work done so far in Appendix A, we could set 
up the following ration.    (Logarithm… logos/ratio… arithmos/number… remember ?  ) 

 
5 known log

10 known log
 = 

3.16227766 known log

6.32455532 unknown log
 (100.5 = 3.16227766 remember?) 

 5 × 6.32455532 = 10 × 3.16227766 cross-multiplying 

 log (5 × 6.32455532) = log (10 × 3.16227766) 

 log 5 + log 6.32455532 = log 10 + log 3.16227766 

 0.6953125 + log 6.32455532 = 1 + 0.5 

 log 6.32455532 = 0.8046875 

calculator check: 100.8046875 = 6.3780438 (not too far off) 
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Assuming we have the log values for 2, 3, 4, 5, 6, 7, 8, and 9 we could proceed to set up and use other 
ratios: 

 
2

3
= value with known log

value with unknown log
, 

4

9
= value with known log

value with unknown log
 

Do not be distracted by the fact that there are infinite numbers and hence infinite ways that they can 
be multiplied or divided. As daunting as Mr. Briggs’ task was, it was finite in its nature. It is important to 
remember that the way log tables were used only required values for the significant digits of the numbers 
which he called the “mantissa.” All the details associated with magnitude were dealt with using what was 
called the “characteristic.” (This is where working with logarithms is almost exactly like working with 
scientific notation.) The work involved in multiplying 34.1 × 802 requires the same log table information 
as multiplying 0.0341 × 8.02, etc., etc. To illustrate, let’s use a hypothetical 3-digit log table. 
Compare the following. Notice that the information in bold, the mantissa, would have come from a 3 digit 

log table while the information in parenthesis, the characteristic—which basically keeps track of the order 
of magnitude—would have been mentally supplied by the “human calculator.” (There are complications 
in determining the log of a value x, 0 < x < 1, which are discussed in Appendix D.) 

 34.1 × 802 = x  0.0341 × 8.02 = x 

 log (34.1 × 802) = log (x)  log (0.0341 × 8.02) = log (x) 

 log (34.1) + log (802) = log (x) 
 (look up log 3.41 and log 8.02) 

 log (0.0341) + log (8.02) = log (x) 
 (again look up log 3.41 and log 8.02!!!!!) 

 (1).533 + (2).904 = log (x)  0.533–2 + (0).904 = log (x) 
 (not –2.532, see Appendix D) 

 (3) + 1.437 = log (x)  –0.563 = log (x)     (10(–0.563) works in calc.) 

 (4).437 = log (x)  0.437 –1 = log (x) 
 (see Appendix D) 

 10(4).437 = 10log x  100.437 – 1 = 10log x 

 104 × 100.437 = x  100.437 × 10–1 = x

 27,300 = x (3 sig. digits)  0.27300 = x (3 sig. digits) 

 By calculator x = 27,348.2 and  0.273482 respectively

Yes, by using a hypothetical three (3) digit log table to obtain logs and anti-log values, we would have 
been off a bit in the calculations shown above, but using Mr. Briggs’ 13–14-digit log table values, you 
would hardly notice if you were an engineer, an astronomer, or a scientist. 

 

log 2.73 = 0.437 
log 3.41 = 0.533 
log 8.02 = 0.904 
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As stated previously, there is a simple esthetic infinite-series polynomial that will allow a person to 
compute loge (x) (ln x) to as many places as desired. 

 
 

 
(for x > 1) 
 

Using this series, it would have been much simpler to develop the table of natural logs than it was to 
develop the table of common logs!! This is yet another reason why (from the 1600s to the era of the 
calculator) mathematicians and scientists usually use the natural log (e-based) logarithm. What are the 
chances that the engineers at HP and TI that program those nifty scientific calculators know about this 
series? 

It was not long after Mr. Briggs did his work that other mathematicians figured this series out.  From that 
time on, mathematicians could develop common log (base 10) tables by generating the ln value and 

converting over to base 10 using the Change of Base Log Rule …  logx = loge x

loge 10
 

e.g., ln (7) = 1.945910149 by the series above 

 ln (10) = 2.302585093 by series above 

 therefore log (7) = 
ln7

ln10
 =

1.945910149

2.302585093
 = 0.84509804 

 By calculator log (7) = 0.84509804 

( ) ( ) ( ) ( ) ( )
...

1

5

11

4

11

3

11

2

11

1

1
ln

5

5

4

4

3

3

2

2

1

1

+−+−+−+−+−=
x

x

x

x

x

x

x

x

x

x
x



 Appendix B: Cardano’s Formula—Solving the Generalized Cubic Equation 95 

 

Appendix B: 
Cardano’s Formula—Solving the Generalized Cubic Equation 

Material taken from www.math.vanderbilt.edu/~schectex/courses/cubic 
Eric Schechter, Website viable as of June, 2010. 

The Cubic Formula 
(Solve Any 3rd-Degree Polynomial Equation) 

I’m putting this on the web because some students might find it interesting. It could easily be mentioned 
in many undergraduate math courses, though it doesn’t seem to appear in most textbooks used for those 
courses. None of this material was discovered by me. – ES 

You should know that the solution of ax2 + bx + c = 0 is 

x = −b ± b2 − 4ac

2a
. 

There is an analogous formula for polynomials of degree three. The solution of ax3 + bx2 + cx + d = 0 is 

x = −b3

27a3 + bc

6a2 − d

2a

 

 
 

 

 
 +

−b3

27a3 + bc

6a2 − d

2a

 

 
 

 

 
 

2

+ c

3a
− b2

9a2

 

 
 

 

 
 

3

3

+ −b3

27a3
+ bc

6a2
− d

2a

 

 
 

 

 
 −

−b3

27a3
+ bc

6a2
− d

2a

 

 
 

 

 
 

2

+ c

3a
− b2

9a2

 

 
 

 

 
 

3

3 − b

3a
.

 

(A formula like this was first published by Cardano in 1545.) Or, more briefly, 

x = q + q2 + r − p2( )3[ ]
1

2 
 
 

 
 
 

1
3

+ q − q2 + r − p2( )3[ ]
1

2 
 
 

 
 
 

1
3

+ p, 

where 

p = −b

3a
, q = p3 + bc − 3ad

6a2
, r = c

3a
. 
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Appendix C: Semilog Paper 
It is often useful to plot the logarithm curve in such a way that allows for techniques applied to linear 

functions to also be applied on the log curve. This is particularly true when plotting experimental data. 

When y = a × xn, 

 log y = log (a × xn) 
 log y = log a + log (xn) 
 log y = log a + n (log x) 
 log y = n (log x) + log a 

Compare the following and see if you can make the connection. 

 log y = n log x + log a 
 y = mx + b (equation of a line in slope-intercept form) 

In the graph paper at the right below, known as semi-log paper, the y axis markings are not equally 
spaced, but the markings along the x axis are. (If both axes are spaced the way that the y axis is spaced the 
paper is called semi-log log paper.) Notice that the spacing along the y axis reflects the growth rate of the 
log curve … rapid at first and then gradual after that. 

—2 —1 1 2 3 4 5
0 1

1
2

2

3

3

4

4

5

6
7
8
9

10

1

2

3

4

5

6

7

8

(1,1)

(2,2)

(3,4)

(4,8)

y = 1/2 2x

 
 y = 1/2 (2

x) on a Standard Graph y = 1/2 (2
x) on a Semilog Graph 
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Appendix D: Logarithms of Values Less than One 
A long, long time ago, in chapter 2, we 

were introduced to the idea that the log of 
numbers x > 1 was different from the log of 
numbers 0 < x < 1. (See the figure at right.) 
Our scientific calculators distinguish the two 
cases for us, but b.c. (before calculators) one 
had to use log tables one way for x > 1 and 
another way for 0 < x < 1. 

Lets do another experiment. The mantissa is 
the part of the logarithm that represents the 
significant digits of the logarithm while the 
characteristic represents the order of 
magnitude of the logarithm. 

x Log (x) expected 
Log (x) actual 

from calculator Since 1,000 < 2,197 < 10,000 
2,197 3.341830057 3.341830057 Then 3 < log 2,197 < 4 

219.7 2.341830057 2.341830057  2 < log 219.7 < 3 

21.97 1.341830057 1.341830057  1 < log 21.97 < 2 
2.197 0.341830057 0.341830057  0 < log 2.197 < 1 

******* ********* **********  
0.2197 –1.341830057 –0.658169943 What is going on here??? 

0.02197 –2.341830057 –1.658179943 The pattern of mantissas has changed. 
0.002197 –3.341830057 –2.658169943 Or has it??? 

Maybe the pattern that should have been anticipated is not the decrease of the characteristic combined 
with a constant mantissa as shown in the second column, but rather the fact that the argument of log (x) 
decreases by one order of magnitude in the argument. That pattern matches exactly the correct data shown 
in the third column. 

Let’s try again. log 4.59 (x > 1) = 0.661826855. 
 log 459 (x > 1) = 2.661826855. 
 but log (0.00459) (0 < x < 1) ≠ –3.661826855. 
 log (0.00459) (0 < x < 1) = log (4.59) – 3 
  = 0.661826855 – 3 = –2.338187314 

This is the way that you would have had to work with log x values (0 < x < 1) when you were working 
with log tables. 

Calculator check: log (0.00459) = –2.338187314 check! 

Thank you calculator engineers for taking care of this for us so that we do not have to worry about these 
special case situations—log x for (0 < x < 1)—any more!!! 

 
 

—3 —2 —1 1 2 3 4 5 6

—3

—2

—1

1

2

3

For both functions
domain: x > 0
range: all real

y = log2 x

y = log1/2
 x

0 < x < 1
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Appendix 2.71818 : Euler’s Equation, An Introduction 
     It has been previously noted (without proof) that 
 

 
 
 
It is not appropriate to the level of this text to discuss where this magic expression comes from. 
 
A very famous mathematician, Brook Taylor (circa 1712), is given credit for finding a way to 
approximate any function  to any degree of accuracy by adding up a series of smaller functions.    The 
technique to do this is appropriately called Taylor series.  To understand how Mr. Taylor did his magic 
you would need to take a Calculus class.    That is clearly not possible in the space here.    By   Mr. 
Taylor’s work the following,  more general formula,  can be proved. 
 
 
 
 
 
 
 
Also by Mr. Taylor’s work 

...
!8!6!4!2!0

)cos(
86420

++−+−= xxxxx
x  

and  

...
!7!5!3!1

)sin(
7531

+−+−= xxxx
x  

 
Putting these three equations together yields a remarkable result called “Euler’s Equation”  
 
 
 
 
and will be shown on the next  2 pages. 
 
Step 1:  Rearranging terms from ex shown above  (Can you anticipate the cos(x) and sin(x) ? ) 
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Step 2: Arbitrarily substitute x = Π i    (don’t ask questions at this stage) 

 
 

 
 
 
 
 
 
 
 

     Step3:   Now from Algebra we know that (ab)m   = ambm Hence the equation above can be written as: 

 

 

 

      

 

 

 

 

 

 

 

      Step 4a:  Apply Algebra rules  i0  =  1,   i1  =  i,   i2  =  -1,   i3  =  -i,  and   i4  =  1 to the first set of terms 

 
 
 
 
 
 

 
     Step 4b:  and factoring out an “i”  from the second set of terms 
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Step 5:  Substituting cos(Π) into the first set of terms and again applying  Algebra rules 
 
  i0  =  1,   i1  =  i,   i2  =  -1,   i3  =  -i,  and   i4  =  1  to the second set of terms. 

 
 
 
 
 
 
 

 
 
              Step 6: 
 
              From trig we know that cos(Π) = -1   and sin(Π) = 0 
 

            Step 7:  
 

 
                      Step 8: 
 
                  

                 Step 9: 

 
  There you have it,   Euler’s equation… 

 
          e, Π, i, 1, and 0 all in the same equation!!! 

 
 

   Nerd heaven!! 
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The following discussion has nothing to do with logarithms 
or the number e but if you got this far you might be 
interested in the following bit of trivia…   
 
           ii is a real number 

 
   e 

Πi     =     -1 
 
   (e Πi )1/2     =     (-1)1/2 

 

   (e Πi )1/2     =     i 
 
   (e Πi/2 )     =     i 
 
   (e Πi/2 )i     =     ii  
 
   (e Πi*i/2 )     =     ii  

 
   (e -Π/2 )     =     ii  

 

    ii  is a real number! 
 
QED due to closure operations of real numbers 
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Appendix F : Exponents, Powers, Logarithms…What’s the Difference? 

     Many people use the terms exponents, powers, and logarithms interchangeably.   I have heard people 
read  “23 = 8”  as “2 to the 3rd power is 8” and then say in their next breath that “8 is a power of 2.”  Well, 
what is it?  Is 3 the power or is 8 the power?    Did they mean “8 is the 3rd power of 2”  but just not 
explicitedly state that?  As long as everyone in the room understands from context clues what is meant I 
guess it really does not matter what term is used.   However, when the terms exponents, powers, and 
logarithms are used quickly, interchangeably, and esoterically with students trying to learn new ideas and 
concepts then confusion can result.    
 
    I propose that the terms “exponents” and “powers” be used interchangeably whenever repeated 
multiplication is implied.   That is, when only two numbers are involved … a base and an 
exponent/power then the base is multiplied by itself the number of times indicated by the exponent/power. 
 
 
Another way to think of this rule is to apply the definition of exponentiation …. 
                                                                      m times 
 
Definition of exponentiation:   bm = b*b*b* …                 * b     (b times itself m times, m is an exp/power) 
 
Here there is a relation between two numbers being described. 
 
The term logarithm should be use whenever a relation among three numbers is indicated. 
 
             log 2  8  = 3      Here 3 is the logarithm of the number 8 when 2 is the base. 
 
You can see where confusion can arise.  In the equation  log 2  8  = 3  involving three numbers   
the “3” is clearly the logarithm.   
 
 But by the Equivalent Symbolism Rule,  by = x is equivalent to y = logb x   
 
    log 2 8  = 3 is equivalent to 23 = 8 transforming the “logarithm 3” into a power or “exponent of 3.” 
 
One can assist students by only using the term logarithm as part of a prepositional phrase.   That is, do not 
say “log” but say “log of a number” or, better yet, log, base b of a number.     
 
To review:   when talking to people who are not “in the know” and cannot interpret 
changing and imprecise vocabulary use the terms power/exponents when talking about 
the interaction and relation between two numbers (repeated multiplication shown in 
exponential form, 23 …3 is an exponent/power )  and use the term logarithm when 
talking about the interaction and relation among three numbers (logarithmic form. 
 log 2 8  = 3, 3 is a logarithm  here but  in 23  the symbol “3” is a power/exponent. ) 
 
 

 
 



 

 

Answers to Exercises 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 1 Answers Chapter 2 Answers 
(continued) 

1.) 100,000 < 285,962 < 1,000,000 
 105 < 285,962 < 106 
 105.something = 285,962 
 log 285,962 = 5.something 

2.) 0.0001 < 0.000368 < 0.001 
 10–4 < 0.000368 < 10–3 
 10–3.something = 0.000368  
 log (0.000368) = –3.something 

3.) a.) 10 < 56 < 100 
 101 < 101.something < 102 

 b.) 100 < 687 < 1,000 
  102 < 102.something < 103 
 c.) 10,000 < 43,921 < 100,000 
  104 < 104.something < 105 
 d.) 0.01 < 0.0219 < 0.1 
  10–2 < 10–1.something < 10–1 
 e.) 0.000001 < 0.0000038 < 0.00001 
  10–6 < 10–5.something < 10–5 
 f.) 0.00001 < 0.00007871 < 0.0001 
  10–5 < 10–4.something < 10–4 

4.) a.) 4,526 × 104,264 = 10(log 4,526 + log 104,264) 
   = 10(3.65571455 + 5.018134382) 

   = 108.673848932 
   = 471,898,864 
 b.) 0.061538 × 40,126.7 = 10(log 0.061538 + log 40,126.7) 
   = 10(–1.210856623 + 4.603433445) 
   = 10(3.392576823) 
   = 2,469.316865 
 c.) 0.015872 × 0.000000183218 = 10(log 0.015872 + log 0.000000183218) 
   = 10(–1.799368345 + –6.7370318621) 
   = 10(–8.536400207) 
   = 2.908036096 × 10–9 

5.) a.) x = log3 y f.) 8y = x 
 b.) x = log2 5 g.) 3y = x 
 c.) x = log7 y h) 7y = x 
 d.) q = logp y i.) 28 = x 
 e.) 3.2 = logw g j.) x9 = 11 

4.) r(s(x)) = s(r(x)) = x 
s(r(x)) = r(s(x)) = x 

5.) No, not iff. If f(x) = 3x and g(x) = 2x, then 
f(g(x)) = f(2x) = 6x and g(f(x)) = g(3x) = 6x 
f(g(x)) = g(f(x)), but the two graphs are not 
symmetric with the line y = x 

6.) Inverse Log Rules 
logb b

x = x and blogb x = x  

7.) iff Antilog Rule … p = q iff bp = bq 

8.) iff Log Rule. p = q iff log p = log q 

9.) Cannot be done 
for y = bx, b > 0 
for y = logb x, b > 0, b ≠ 1 

1.) a.) 

676

94283  = 10(log 676 – log 94283) 
   = 10(2.829946696 – 4.974433393) 
   = 10–2.144486697 

   = 0.0071699034 

 b.) 

0.000000676

94.283  = 10(log 0.000000676 – log 94.283) 

   = 10(–6.170053304 – 1.974433393) 
   = 10–8.144486697 

   = 7.169903376 × 10–9 

 c.) 

6.76

0.94283  = 10(log 6.76 – log 0.94283) 
   = 10(0.829946696 – (–0.025566607)

   = 100.855513303 

   = 7.169903376 
Since each numerator and denominator have 

the same significant digits then the significant 
digits of each quotient will be the same. Only the 

it d f h ti t ill b diff t

Chapter 3 Answers 

Chapter 2 Answers 

1.) y = 2x + 5  2.) x = 2y + 5 
      

x y   x y 
 –2 1   1 –2 
 –1 3   3 –1 
 0 5   5 0 
 1 7   7 1 
 2 9   9 2 

3.) The graphs y = 2x + 5 and x = 2y + 5 are symmetric with the 
line y = x. 

Chapter 4 Answers 

1.) 64 < 200 < 256 
 43 < 43.something < 44 
 log4 200 = 3.something 

2.) 10x = 14,290 
 x ≈ 4.something 
 log 10x = log 14,293 
 x = 4.155032229 

3.) 4,913 < 14,290 < 83,521 
 173 < 173.something < 174 
 log17 14290 = 3.something 



 

 

 
Chapter 4 Answers 

(continued) 
Chapter 5 Answers 

(continued) 

4.) 17x = 14,290 
 log10 17x = log10 14,290 
 log10 17x = 4.15503 ?? Now what?? 

5.) 17x = 14,290 
 log 17x = log 14,290 
 x log 17 = log 14,290 

 x = 

log14,290

log17  
 x ≈ 3.376842514 

6.) 173.376842514 = 14,290 

7.) 6215
 

 x = 621
1
5  

 log x = (1/5) log 621 
 x = 3.619247808 

8.) 6219
7

 
 x = 621

7
9  

 log x = log621
7

9

 
 x = (7/9)log 621 = 148.732055 

1.) a.) 25  =  52  < 52.7  <53  =  125 
 25 < 52.7 < 125 
 b.) 92 = 81, y ≈ 81 

2.)  52.7 = 77.129 
 8.642.13 = 98.804 

3.) a.) 42 = 16   < 32.7  <  64  =  43  
 Therefore 2 < x < 3 
 b.)     52    = 25 < 117  < 125  =  53  
 Therefore 2 < x < 3 

4.) a.) 32.7 = 4x 
 log 32.7 = log 4x 
 log 32.7 = x log 4 
 x = 2.515609365 
 b.) 117 = 5x 
 log 117 = x log 5 

 x = 

log117

log5  
 x = 2.958905030 

5.) a.) 9 < 10 < 27 
 32 = 9 33 = 27 
 2 < x < 3 

 b.) 16 < 62.73 < 81 
 24 = 16 34 = 81 
 2 < x < 3 

6.) a.) log 10 = log x2.6 
 1 = 2.6 log x 
 1/2.6 = log x 
 log x = 0.3846153846 
 10log x = 100.3846153846 
 x = 2.424462017 
 b.) log 62.73 = log x4.31 
 1.797475288 = 4.31 log x 
 log x = 0.4170476305 
 10log x = 100.4170476306 
 x = 2.612447855 

7.) a.) 54 = 625, 55 = 3,125, 74 = 2,401, x ≈ 4 
b.) 82 = 64, 83 = 512, 63 = 216, x ≈ 3 

8.) a.) 54.6 = 7x 
 log 54.6 = log 7x 
 3.21526202 = x log 7 
 x = 3.80460238 
 b.) 82.7 = 6x 
 log 82.7 = log 6x 
 2.438342965 = x log 6 
 x = 3.133507739 

9.) a.) 25 = 32  <  50  <  64  =  26  
 5 < y < 6 
 b.)33  =  27 <  28  < 81  =  34  
 3 < y < 4 

10.) a.) log2 50 = 

log50

log2  
  = 5.64385619 
 b.) 3y = 28 
 log 3y = log 28 

 y = 

log28

log 3  
 y = 3.033103256 

11.) a.) 26 = 64, x ≈ 64 
 b.) 95 = 59,049, x ≈ 59,049 

12.) a.) 26.1 = 68.5935016 
 b.) 95.1 = 73,559.16625 

13.) a.) 25 = 32, x ≈ 2 
 b.) 53 = 125, x ≈ 5 

14.) a.) x4.9 = 37.1 
 log x4.9 = log 37.1 
 4.9 log x = log 37.1 

 log x = 

log 37.1

4.9  
 10log x = 100.3202803897 
 x = 2.09064546 
 b.) x3.207 = 126.21 
 log x3.207 = log 126.21 
 3.207 log x = log 126.21 

 log x = 

log126.21

3.207  
 10log x = 100.6551586426 = 4.520210321 

Chapter 5 Answers 



 

 

 
Chapter 5 Answers 

(continued) 
2.) Pf = Po e

ry 
 1,500 = 900e10r 
 15/9 = e10r 
 ln (5/3) = 10r (ln e) 
 0.5108256238 = 10r 
 r = 0.05108256238 
 r = 5.1% 

3.) Pr = Po [(1 + r/k)
k]y 

 2,000 = 1,000[(1 + 20%/1)
1]y 

 2 = 1.20y 

 y = 

log2

log1.2  
 y = 3.801784017 yrs. 
 0.801784017 × 365 = 292 

On the 292nd day of the third year after the money 
was invested. 

4.) Pr = Po [(1 + r/k)
k]y 

 10,000 = Po [(1 + 5%/2)
2]20 

 10,000 = Po[(1.025)2]20 
 10,000 = Po × 2.6850638384 

 original principal = $3,724.31 

5.) Qf = Qi × 10–kt
 

 400 = 500 × 10–1,000k 
 4/5 = 10–1,000k 
 log 0.8 = log 10–1,000k 
 log 0.8 = –1,000k log 10 
 log 0.8 = –1,000k 
 k = 9.6910013 × 10–5 

6.) Qf = Qi × 10–kt
 

 Qf = 500 ×10−9.651001301×10−5×2,000  
                             Qf  = 500 × 0.64r 
 Qf = 320 

7.) If = Ii 10–kt 
 100,000 = 1,000,000 × 10–9.4k 
 0.10 = 10–9.4k 

 log 0.1 = –9.4k (log 10) 
 k = 0.1063829787 

8.) 1/2x = x 10–0.1063829787t 

 log 0.5 = log 10–0.1063829787t 
 t = 2.82968196 cm. 

9.) Db = 
10 log

powera

powerb  

 65 = 
10 log

x

10−12 W
ft2  

 6.5 = 
log

x

10−12 W
ft2  

 10left = 10right 

 3,162,277.66 = 

x

10−12
 

 x = 3,162,277.66 × 10–12 

 x = 0.00000316227766
W

ft 2  

15.) 0.2 = 

e
− x2

2

2π  

 0.2 2π  = e
− x2

2  
 ln 0.5013256549 = –1/2x

2 ln e 
 (not to worry, ln 0 < x < 1 will be negative) 
 –0.6904993792 = –1/2x

2 
 1.380998758 = x2 
 x = ±1.175159035 

16.) a.) T(t) = Tm + (Ti −Tm )e−kt

 
 60 = 20 + (90 – 20)e–3k 
 40 = 70e–3k 
 4/7 = e–3k 
 ln 0.5714285714 = ln e–3k 
 –0.559615788 = –3k ln e 
 –0.559615788 = –3k 
 k = 0.186538596 
 b.) 30 = 20 + (90 – 20)e–0.186538596t 
 10 = 70 e–0.186538596t 
 1/7 = e–0.186538596t 
 ln (1/7) = ln e–0.186538596t 
 ln (1/7) = –0.186538596t ln e 
 ln (1/7) = –0.186538596t 
 t = 10.43167575 min 

17.) r = eat 
 estimate 360° + 360° + 90° = 810° 
 Solve 4 = eat 
 4 = e0.1t 
 ln 4 = ln e0.1t 
 ln 4 = ln e0.1t 
 ln 4 = 0.1t ln e 

 t = 

ln 4

0.1  
 t = 13.86294361 radians = 794.288° 

18.) a.) pH = –log[H+] 
 pH = –log [9.2 × 10–12] 
 pH = 11.0362 
 b.) 4.2 = –log x 
 –4.2 = log x 
 10–4.2 = x 

x = 6 30957 × 10–5

Chapter 6 Answers 
(continued) 

1.) Pr = Po [(1 + r/k)
k]y 

 3x = x[(1 + 7%/12)
12]y 

 3 = [(1 + 7/1200)
12]y 

 3 = 1.072290081y 
 log 3 = log 1.072290081y 
 log 3 = y log 1.072290081 
 y = 15.74 yrs. 

Chapter 6 Answers 



 

 

 

Chapter 7 Answers 

Chapter 7 Answers 
(continued) 

10.) 12,024 m = 2
( y−2,007 )

2  376 m 

 31.9787234 = 2
( y−2,007 )

2  

 log 31.9787234 = 

y − 2,007

2
log 2

 

 4.999040442 = 

y − 2,007

2  
 9.998080884 = y – 2,007 
 y ≈ 2,017 

11.) 

1,050,000

200  = 5,250 pages 
 2x = 5,250 
 log 2x = log 5,250 
 x log 2 = log 5,250 

 x = 

log5,250

log2  
 x = 12.358 
 x = 13 bisections 

12.)      2 < dimension < 3 

13.) f = I × e–0.0001205473358t 
 0.80 x = x × e–0.0001205473358t 
 0.80 = e–0.0001205473358t 
 ln 0.80 = ln e–0.0001205473358t 
 ln 0.80 = –0.00012054733t ln e 
 t = 1,851.086 years ago 

14.) 2x = 64 
 x = 6 

15.) 2x = 8,192 
 log 2x = log 8,192 

 x = 

log8,192

log2  
 x = 13  (13th generation) 
 13 – 2 = 11 Gs 

16.) Vf = vie
− t

RC

 
 let RC = (120 Ω) × (35 µF) = 4.2 × 10–3 s 

 10% x = xe
− t

4.2×10−3 s  

 ln (0.10) = ln e
− t

4.2×10−3 s  

 ln (0.10) = − t
4.2×10−3 s ln e 

 –t = ln 0.10 × 4.2 × 10–3 s 
3

3.) area rec1 + area rec2 + area rec3 + area rec4 = 
 b1 × h1 + b2 × h2 + b3 × h3 + b4 × h4 = 
 1/2 × 1 + 1/2 × 2/3 + 1/2 × 1/2 + 0.21828 × 2/5 = 
 (1/2) + (1/3) + (1/4) + 0.087313 = 1.17

4.) area rec1 + area rec2 + area rec3 + area rec4 = 
 b1 × h1 + b2 × h2 + b3 × h3 + b4 × h4 = 
 1/2 × 2/3 + 1/2 × 1/2 + 1/2 × 2/5 + 0.21828 × 0.36788
 = 
 1/3 + 1/4 + 1/5 + 0.0803 = 0.86

5.) 1/2(1.170645 + 0.863634) = 1.01714 
As the number of rectangular partitions increases, 
the average of the sum of rectangles will get closer 
and closer to 1. 

6.) log 0.9 = –0.0457574906 
 log 0.99 = –0.0043648054 
 log 0.999 = –0.00043451177 
 log 0.9999 = –0.0000434316 
 log 0.99999 = –0.0000043429665 
 log 0.999999 = –0.0000004342947 
 etc. 
 log e = 0.4342944819 

 log
bn x n

 = logb x ????? 

arbitrarily let b = 2, x = 3, and n = 4. 

 log
24 34

 = log2 3 ????? 
 log 16 81 = log2 3 ???? 

 log 16 81 = 

log81

log16  = 1.584962501 

 log2 3 = 

log 3

log2  = 1.584962501 

Seems to be an identity. 

 log
bn x n

 = logb x 

Applying Equivalent Symbolism Rule 
 logb x = y is equivalent to 
 by = x 

 bn logb x

 = xn 

 ApplyingPower of a Power Rule 

 (bm)n = bmn 
 bn logb x

 = xn 

 b logb x n

 = xn 

Chapter 8 Answers 

Chapter 6 Answers 
(continued) 

1.) m = 4, 6, 7, 7.75, 7.875, … , 8. Instantaneous rate of 
speed will be the same value as the slope of the 
tangent line which is suggested by the approaching 
secant line slopes. 

2.) m =

y2 − y1

x2 − x1 , msec1 = 0.8610, msec2 = 1.1752, msec3 = 
1.7183, msec4 = 2.1391. The slopes of the secant 
lines approach the slope of the tangent at (1, e) = e. 



 

 

Chapter 9 Answers 

1.) a.) 23 = x, x = 8 
b.) 1/3

4 = x, x = 1/81 
c.) 4–1/2 = x, x = 1/2 
d.) x = Ø for logb x = y, b > 0, b ≠ 1 
e.) 3–4 = x, x = 1/81 

2.) a.) 4x = 16, x = 2 
b.) 1/2

x = 8, x = –3 
c.) x = Ø, 5x = 0, x = ?? 
d.) x = Ø, for logb x = y, b > 0, b ≠ 1 
e.) 3x = 1, x = 0 

3.) a.) x4 = 16, x = 2 
b.) x1 = 4, x = 4 
c.) x–4 = 16, x = 1/2 

d.) x3/4 = 64, x3/4 = 26, 
x

3
4( )4

3 = 26( )4
3

, x = 28, x = 256
e.) x2 = 0, x = Ø 

4.) All problems in 4 are best solved by Inverse Log 
Rules #1 and #2 
a.) 8 b.) 10 c.) –2 d.) 16 e.) 85 

5.) a.) 
3x = log2.68

log0.196 , x = –0.2016429845 

b.) 
x = log5,240

log242 , x = 1.560243021 

6.) a.) 3x = 79 

  x = 

log 79

log 3  
  x = 3.977242834 
 b.) x6 = 79 

  x 6
1

6

 = 79
1

6  
  x = 2.071434389 
 c.) 37.2 = x 
  x = 2,724.413565 

1.) Exponential functions have a horizontal asymptote—y = 0. Horizontal asymptotes are therefore not affected by a 
horizontal shift. Log functions have a vertical asymptote—x = 0. Vertical asymptotes are affected by a horizontal 
shift. 

2.) Graph y = –1/3log(1/2) (x + 4) + 2. There are several correct approaches. 

a.) Graph y = log (1/2) x. Use the change of base formula: 

log x

log 1
2 . This should look like y = logb x with 0 < b < 1 

b.) Graph y = log(1/2) (x + 4). This will cause a horizontal shift to the left for the graph in part a. 
c.) Graph y = log(1/2) (x + 4) + 2. This will cause a vertical shift up for the graph in part b. 
d.) Graph y = 1/3log(1/2) (x + 4) + 2. This will cause a flattening of the graph in part c. 
e.) Graph y = –1/3log(1/2) (x + 4) + 2. This will cause a reflection about the x-axis for the graph in part d. 

3.) y = –logb x 
a.) Graph y = logb x 
b.) Reflect the graph in part a about the x–axis. 

7.) a.) 4 – 4 = 0 

 b.) 4 log4 32

+ 3log3 42

= 9 + 16 = 25 

 c.) 6log6 36
1

2 × 9log9 812

= 6 × 6,561 = 39,366 
 d.) log 43 – log 82 = log 64/64 = 0 
 e.) 2 + 1/2 = 2.5 

8.) a.) ln 1 = 0 e.) log 1 = 0 
 b.) ln e = 1 f.) log 10 = 1 
 c.) ln ey = y g.) log 10y = y 
 d.) eln y = y h.) 10log y = y 

9.) 
log

16x2

y  = log 16 + 2 log x – log y 
  Or 2 log 4 + 2 log x – log y 

10.) log (10 + 20) = log 10 + log 20 ??? 
 log 30 = 1 + 1.3 ??? 
 1.48 ≠ 1.3 

11.) log 10/20 = 

log10

log20  ??? 
 log 0.5 = 1/1.3 ??? 
 negative ≠ positive 
(The actual values are not really important.) 

12.)  

1

2

 
 
 

 
 
 

x
3

 = 1/4 

 

1

2

 
 
 

 
 
 

x
3 

 
 
 

 

 
 
 

3

 = 1/4
3 

 1/2
x = 1/64 

 1/2
x = 1/2
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Chapter 10 Answers



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

14.) log (3x – 1) = log(52x + 3) 
 log 3(x – 1) = log 5(2x + 3) 
 (x – 1) log 3 = (2x + 3) log 5 
 x log 3 – log 3 = 2x log 5 + 3log 5 
 x log 3 – 2x log 5 = log 3 + 3log 5 
 0.4771212547x – 2x 0.6989700043 = 2.574031268 
 –0.9208187540x = 2.574031268 
 x = –2.795372333 

15.) x = by is equivalent to y = logb x 

Chapter 10 Answers
(continued) 

13.) ln [(3x – 2)(x – 1)] = ln x2 
 3x2 – 5x + 2 = x2 
 2x2 – 5x + 2 = 0 
 (2x – 1) (x – 2) = 0 
 x = 1/2, x = 2 

Recall that for ln p = q, p > 0 (domain for log curves 
is positive). Hence, 3x – 2 > 0 and x – 1 > 0 individually. 
Therefore, reject x = 1/2. 



 

 

 
For over 350 years, from the early 1600s until the widespread 
availability of calculators in the 1970s, most of the mathematics 
done by scientists, engineers, and astronomers was assisted by 
logarithms. The logarithmic technique was developed to aid in the 
drudgery of simplifying long and tedious arithmetic expressions. 
Logarithms worked by reducing arithmetic expressions of one level 
of difficulty to a lesser level of difficulty. Scientific calculators have 
made much of the pre-1970 precalculus curriculum obsolete. But 
the use of calculators has also come with a price. The instruction of 
logarithms today is much, much more condensed and abstract than 
it used to be. As a result, many of today’s students do not achieve 
the same level of understanding and “internalization” of 
logarithmic concepts and ideas. Many of them do not understand 
the “magic” formulas they are taught and asked to manipulate. 

      The website The Math Forum, “Ask Dr. Math,” has the 
following request for help.                                                                                         
“I understand what logs are … but I don’t understand why they are 

what they are. Please help me.” 

This is a plea for help from a student who, at the time of his plea, was enrolled in a calculus class! 

Explaining Logarithms, A Progression of Ideas Illuminating an Important Mathematical 
Concept, does not advocate a return to the precalculator “good old days.” The author lived through 
them. They were not so good!! However, this book is written under the belief that a quick review of 
mathematics as it was practiced for hundreds of years would be helpful for many students in 
understanding logarithms as they are still used today. The student quoted above was not instructed 
in a way that he internalized what logarithms are all about. It is a “readiness issue” which this book 
attempts to remedy. 

                                                                          
                                                                                           The author, Dan Umbarger, has taught 
                                                                                      various levels of mathematics from grades 
                                                                                      5 to grade 12 for over 30 years.    
                                                                                       
                                                            
                                                                                     He is married and the proud  father of 
                                                                                     three children:  Jimmy, Terri, and Keelan. 
                                                                             
 

 

 

 N 0 1 2 3 4 5 6 7 8 9
10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374
11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755
12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106
13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430
14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732
15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014
16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279
17 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529
18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765
19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989
20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201
21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404
22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598
23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784
24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962
25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133
26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298
27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456
28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609
29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757
30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900
31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038
32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172
33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302
34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428
35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551
36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670
37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786
38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899
39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010
40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117
41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325
43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425
44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522
45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618
46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712
47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803
48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893
49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981
50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067
51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152
52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235
53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316
54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396
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