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0 - INTRODUCTION

“A cable is a source of potential trouble connecting two other sources of potential trouble.” This
joke among electronic system engineers is worth keeping in mind. Any signal accumulates noise
as it flows through the equipment and cables in a system. Once noise contaminates a signal, it's
essentially impossible to remove it without altering or degrading the original signal. For this
reason, no system can be quieter than its noisiest link. Noise and interference must be prevented
along the entire signal path. Delivering a signal from one box to another may seem simple, but
when it comes to noise, the signal interface is usually the danger zone, not the equipment’s
internal signal processing.

Many designers and installers of audio/video systems think of grounding and interfacing as a
black art. How many times have you heard someone say that a cable is “picking up” noise —
presumably from the air like a radio receiver? Or that the solution is “better” shielding? Even
equipment manufacturers often don’t have a clue what’s really going on. The most basic rules of
physics are routinely overlooked, ignored, or forgotten. College electrical engineering courses
rarely even mention practical issues of grounding. As a result, myth and misinformation have
become epidemic! This course intends to replace mystery with insight and knowledge.

0.1 - HOW QUIET IS QUIET?

How much noise and interference is tolerable depends on what the system is and how it’s used. A
monitor system in a recording studio obviously needs much more immunity to ground noise and
interference than a construction site paging system. The dynamic range of a system is the ratio,
generally measured in dB, of its maximum undistorted output signal to its residual output noise or
noise floor — up to 120 dB of dynamic range may be required in high-performance sound
systems in typical homes. [19] In video systems, a 50 dB signal-to-noise ratio is a generally
accepted threshold beyond which no further improvement in images is perceivable, even by
expert viewers.

Of course, a predictable amount of “white” noise is inherent in all electronic devices and must be
expected. White noise is statistically random and its power is uniformly spread across the signal
frequency range. In an audio system, it sounds like a “hiss.” In a video system, it appears as
grainy movement or “snow” in the image. Excess random noise is generally due to improper gain
structure, which will not be discussed here. Ground noise, usually heard as hum, buzz, clicks or
pops in audio signals or seen as hum bars or specks in video signals, is generally much more
noticeable and irritating.

10 dB noise reductions are generally described as “half as loud” and 2 or 3 dB reductions as “just
noticeable.”

0.2 - MYTHS ABOUT EARTH GROUNDING AND WIRES

As electronics developed, the common return paths of various circuits were also referred to as
“ground,” regardless of whether or not they were eventually connected to earth. In addition, a
single ground circuit most often serves, either intentionally or accidentally, more than one
purpose. Thus, the very meaning of the term ground has become vague, ambiguous, and often
quite fanciful. Some engineers have a strong urge to reduce these unwanted voltage differences
by “shorting them out” with massive conductors — the results are most often disappointing. [8]
Other engineers think that system noise can be improved experimentally by simply finding a
“better” or “quieter” ground. Many indulge in wishful thinking that noise currents can somehow be
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skillfully directed to an earth ground, where they will disappear forever! [9] Here are some
common myths about grounding:

Earth grounds are all at zero volts  — presumably with respect to each other and to some
“mystical absolute” reference point. This leads to whimsical ideas about lots of ground rods
making system noises disappear! In fact, the soil resistance between ground rods is much higher
(often tens of ohms) than a wire between them.

Note: Impedance, symbolized Z, is the apparent ac resistance of a circuit containing
capacitance and/or inductance in addition to pure resistance.

Wires have zero impedance — and, therefore, can extend a zero-voltage reference to many
locations in a system, eliminating voltage differences. In fact, wires are quite limited:

! The DC resistance of a wire applies only at very low frequencies and is directly proportional to
its length. For example, the resistance of 10 feet of #12 gauge wire is about 0.015 Ù.

! The inductance of a wire is nearly independent of its diameter (gauge) but is directly
proportional to its length and increases at bends or loops. Our 10 feet of #12 gauge wire has
an impedance of 30 Ù at 1 MHz (AM broadcast band) as shown in the graph. Substituting a ½-
inch diameter solid copper rod lowers the impedance only slightly to about 25 Ù.

! A wire resonates (becomes an antenna) when its physical length is a quarter wavelength. For
a 10-foot wire, this means it will essentially become an open circuit at about 25 MHz.

Are EARTH grounds necessary to prevent noise? Think about all the electronics in an airplane!
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1 - GROUNDING, AC POWER, AND SAFETY

Broadly, the purpose of grounding is to electrically interconnect conductive objects, such as
equipment, in order to minimize voltage differences between them. An excellent broad definition is
that a ground is simply a return path for current. We must remember that current always
returns to its source through either an intentional or accidental path - electrons don’t care and
they don’t read schematics! [1]

The following drawing shows how ac power is supplied through a "three-wire service" to the load
at an outlet (only two of the three are shown in the drawing for simplicity). One of the incoming
service wires, which is often un-insulated, is the grounded or "neutral" conductor. National Electric
Code requires that 120-volt ac power distribution (i.e., “branch circuits”) in homes and buildings
must be a 3-wire system. The neutral (white) and line (black) wires are part of the normal load
current circuit shown by the arrows. Note that the neutral (white) and safety ground (green) wires
of each branch circuit are tied or “bonded” to each other and to an earth ground rod at the
service entrance.

1.1 - PROTECTION FROM DEFECTIVE EQUIPMENT

Any ac line powered device with exposed conductive parts (including signal connectors) can
become a shock or electrocution hazard if it develops certain internal defects. For example,
insulation is used in power transformers, switches, motors and other internal parts to keep the
electricity where it belongs. But, for various reasons, the insulation may fail and effectively
connect “live” power to exposed metal as shown in the drawing. This kind of defect is called a
fault.



CEDIA EST016 UNDERSTANDING, FINDING, & ELIMINATING GROUND LOOPS Page 6

For example, if the motor in a washing machine overheated and caused its insulation to fail, the
housing of the machine could assume full line voltage. A person accidentally touching the
machine and anything grounded, such as a water faucet, at the same time could be seriously
shocked or electrocuted. To prevent this, many devices have a third wire connecting exposed
metal to the safety ground pin of their plugs. The outlet safety ground is routed, through either the
green wire or metallic conduit, to the neutral conductor at the main breaker panel. This low-
impedance connection to neutral allows high fault current to flow, quickly tripping the circuit
breaker and removing power from the circuit. To function properly, the SAFETY GROUND MUST
RETURN TO NEUTRAL. Note that the earth connection had absolutely nothing to do with this
process!

NEVER, EVER use devices such as 3 to 2-prong ac plug
adapters, a.k.a. "ground lifters," to solve a noise problem! 

Such an adapter is intended to provide a safety
ground (read the fine print) in cases where
3-prong plugs must be connected to 2-prong
receptacles. If a proper safety ground isn’t
available, always use a ground-fault circuit
interrupter or GFCI. A GFCI works by sensing the difference in current
between the line and neutral conductors. This difference represents current
in the hot conductor that is not returning in the neutral - the assumption is
that the missing current is flowing through a person. If the difference reaches
about 5 mA, an internal circuit breaker is tripped. The GFCI shown at left is
unusual because it has a retractable ground pin that allows it to be used with
a 2-prong outlet. [5]

Consider two devices connected by a signal cable, each device having a 3-prong ac plug. One
device has a ground “lifter” on its ac plug and the other doesn’t. If a fault occurs in the “lifted”
device, the fault current flows through the signal cable to get to the grounded device. It’s very
likely that the cable will melt and burn! Defeating safety grounding is both dangerous and
illegal - it also makes you legally liable!



CEDIA EST016 UNDERSTANDING, FINDING, & ELIMINATING GROUND LOOPS Page 7

In a typical year, consumer audio and
video equipment electrocutes 10
people and causes some 2,000
residential fires which result in 100
civilian injuries, 20 deaths, and over
$30 million in property losses. [6] [7]

The resistance of dry human skin is
high enough to safely allow lightly
touching a live 120-volt conductor, but
normal skin moisture allows more
current to flow as does increased
contact area and pressure. It is current
that determines severity of electric
shock. At 1 mA or less, it’s simply an
unpleasant tingle. But at about 10 mA,
involuntary muscle contractions can
result in a “death grip” - or suffocation if
the current flows through the chest.
Currents of 50 to 100 mA through the
chest usually induce ventricular
fibrillation that leads to death. Always
have a healthy respect for electricity!

1.2 - PROTECTION FROM LIGHTNING

An EARTH ground is one actually connected to the earth and is necessary for LIGHTNING
protection. Overhead power lines are frequent targets of lightning. Before modern standards such
as the Code existed, power lines effectively directed lightning strikes into buildings, starting fires
and killing people. Therefore, virtually all modern electric power is distributed over lines that have
one conductor connected to earth ground periodically along its length. These and the earth
ground at the service entry panel serve as easy, low-impedance paths to discharge lightning
strikes before they can enter the building. Telephone, CATV, and satellite TV cables are also
required to “arrest” lightning energy before it enters a building. Another benefit of the safety
ground to earth ground connection is that, during an equipment fault event, only a few volts will be
present on the exposed parts of the faulty device with respect to other earth-grounded objects.
Since soil has resistance just like any other conductor, earth ground connections are not at zero
volts, with respect to each other or any other mystical or “absolute” reference point. Code allows
the resistance to earth (measured with special techniques) of a residential ground rod to be as
high as 25 Ù. It is far too high to trip the circuit breaker under fault conditions in the dangerous
hookup shown on the next page (claimed to be a “quieter” equipment ground). The soil resistance
between separate ground rods can also allow thousands of volts to develop between them if
lightning strike current should actually flow in one of them. This can seriously damage a computer
modem, for example, if it “straddles” a computer (grounded via its power cord to the utility ground
rod) and a telephone line protected via a separate ground rod. [3] For this reason, other protective
ground connections (telephone, CATV, etc.) should be made to the same rod used for utility
power, if at all possible. If multiple ground rods are used, Code requires that they all must be
bonded to the main utility power grounding electrode. [4]
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1.3 - THE FACTS OF LIFE ABOUT AC POWER

Most systems consist of at least two devices which operate on utility ac power. Although hum and
other problems are often blamed on improper grounding, in most cases there is actually nothing
“improper” about the system grounding. A properly installed, fully code-compliant ac power
distribution system will develop small, entirely safe voltage differences between the safety
grounds of all outlets. In general, the lowest voltage differences (a few millivolts) will exist
between physically close outlets on the same branch circuit and the highest (up to several volts)
will exist between physically distant outlets on different branch circuits. These normally
insignificant voltages cause problems only when they exist between vulnerable points in a system
— which is more unfortunate than improper.

In all real equipment, there are parasitic capacitances between the power line and the
equipment ground. They are the unavoidable inter-winding capacitances of its power transformer
that are never shown in schematic diagrams. Especially if the equipment contains anything digital,
internal electro-magnetic interference (a.k.a. EMI) filters will further add to the capacitance. These
capacitances allow leakage current to flow between power line and chassis/ground inside each
piece of equipment.

In UL-approved ungrounded (i.e., 2-prong ac power plug) devices, this current is limited to
0.75 mA. Such equipment incorporates a number of protective mechanisms so that it remains
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Upper = Line Voltage
Lower = Lamp Current

safe in spite of internal component failures, overload, and rough handling. Because this
equipment is ungrounded, it’s chassis (or input/output connections) can assume relatively high
voltages with respect to the ground system. Although a voltmeter may indicate well over 50 volts,
the current available is small and will cause only a slight tingle if it flows through a person.
However, any connection between two such devices or such a device and a grounded one will
carry this leakage current. We must accept this fact as reality.

In UL-approved grounded (i.e., 3-prong ac power plug) devices, leakage current is limited to
5 mA. It flows into the safety ground and accumulates in a branch circuit, generating small voltage
drops in the resistance of the wiring. However, for grounded equipment, the effects of leakage
current are usually insignificant compared to voltage differences between outlet grounds.
Substantial voltages are magnetically induced in premises safety ground wiring by the imperfect
cancellation of magnetic fields that surround the two load-current-carrying conductors. The
highest induced voltages generally occur with individual loose wires in steel conduit, which
enhances the magnetic efficiency of the parasitic transformer. Considerably lower induced
voltages are generally produced by the uniform conductor geometry of Romex® or similar bonded
cable. In any case, a small but significant ground voltage difference (1 volt is not unusual) will
exist between the chassis or local “ground” of any two pieces of safety-grounded equipment. We
must also accept this fact as reality.

1.4 - IT’S NOT JUST 60 HZ

Power-line voltage normally consists of a broad spectrum of
harmonics and noise in addition to the pure 60 Hz sine wave.
The noise is created by power supplies in electronic
equipment, fluorescent lights, light dimmers, and intermittent
or sparking loads such as switches, relays, or brush type
motors (blenders, vacuum cleaners, etc.). The drawing at
right shows how sudden changes in load current caused by
an ordinary phase-control light dimmer generate high-
frequency power line noise. At high frequencies, a building's
power wiring behaves like a system of mis-terminated
transmission lines gone berserk, reflecting high frequency
energy back and forth throughout the building’s wiring until it
is eventually absorbed or radiated.
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The graph at right shows the
spectrum of leakage (noise)
current flow in a 3 nF
parasitic capacitance fed by
a typical ac outlet. The 60 Hz
harmonics, almost entirely
odd-order due to “flat-top”
distortion of the power line
voltage, are what give “buzz”
its sonic character. Note how
much energy exists above
100 kHz, including AM radio.

2 - UNBALANCED AUDIO INTERFACES

The price alone of high-end audiophile equipment might imply that designs are state-of-the-art.
Manufacturers often tout very impressive measurements of performance. But, because the
measurements are made in a laboratory setting, they reveal nothing about the noise problems
that are all too common in real-world systems. Sadly, most audiophile and virtually all consumer
audio devices still use unbalanced interfaces that are inherently extremely susceptible to power-
line noise. This seems ironic when you consider that the signal-to-noise ratio of available program
material has steadily increased over the last 50 years.

2.1 - INTERFACES AND IMPEDANCES

An interface is a signal
transport sub-system
consisting of a line driver
(one device’s output), the
line or cable itself, and a line
receiver (another device’s
input). An interface may be
unbalanced or balanced,
depending only on the impedances (to ground) of the line’s two conductors. As shown above, in
an unbalanced interface, one conductor is grounded (zero-impedance) and the other has some
higher impedance.

Every driver has an internal impedance called its output impedance, shown as Zo. For practical
reasons, real equipment outputs do not have zero output impedance. Likewise, every receiver
has an internal impedance called its input impedance, shown as Zi. For practical reasons, real
equipment inputs do not have infinite input impedance.
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When an output is connected to an input, the output impedance of the driver and the input
impedance of the receiver form a series circuit. Since current is the same in all parts of a series
circuit but voltage drops are proportional to impedance, it is sometimes called a voltage divider.
Thus, to transfer maximum signal voltage, Zi should be much larger than Zo. In typical
equipment, Zo ranges from 100 Ù to 1 kÙ and Zi ranges from 10 kÙ to 100 kÙ. This transfers
90% to 99.9% of the available signal voltage.

Low output impedance is important! Output impedance is often confused with load impedance
and is frequently missing from vendor spec sheets. Sometimes "20 kÙ minimum load impedance"
is the only spec for an output - and not very useful!

2.2 - MATCHING AND TERMINATION

A common misconception is that audio outputs and inputs must be impedance matched. Circuit
theory tells us that when source and load impedances are the same, maximum power is
transferred. Although useful in some passive signal processing systems, this concept does NOT
apply to modern audio signal interfaces. Their goal is to transfer voltage, not power! If Zi is made
to match Zo, half the signal voltage is lost and the output drives an unnecessarily heavy load.

However, impedance matching or termination is required for video and RF cables because the
signals have much shorter wavelengths! As a general rule, cables begin to exhibit “transmission
line” effects when their physical length is 10% or more of a wavelength at the highest signal
frequency. This occurs with video cables over a few feet long and with CATV cables over a few
inches long. To avoid reflections of energy from one end of the cable to the other, the driving
source and receiving load impedances at each physical end of the cable must match the cable’s
characteristic impedance. Such reflections will cause visible “ghosts” or “rings” in video images.
For AUDIO cables, termination is NOT necessary unless cables are over about 4,000 feet long!

2.3 - HOW THE NOISE GETS IN

With ungrounded devices, power-line leakage current flows in the grounded signal conductor. [10]
Since this conductor has resistance, a small noise voltage is generated over its length. Because
the interface is a series circuit, this noise voltage is directly added to the signal arriving at the
receiver. Because the impedance of the grounded conductor is "common" to both signal and
noise current paths, this mechanism is called common impedance coupling.

Consider a 25-foot interconnect cable with foil shield and a #26 AWG drain wire. From standard
wire tables (or actual measurement) its shield resistance is found to be 1.0 Ù. The resistance of
the inner conductor is insignificant and is not discussed here. If the leakage current is 316 ìA, the
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noise voltage will be 316 ìV. Since the !10 dBV reference level for consumer audio is 316 mV,
the noise will be only 20 x log (316 ìV ÷ 316 mV) = !60 dB relative to the signal. For most
systems, this is a very poor signal-to-noise ratio. Replacing the cable with Belden #8241F, for
example, would reduce shield resistance to 0.065 Ù and reduce noise by about 24 dB!

Common-impedance coupling can become very severe in an unbalanced interface between two
grounded devices. Any ground voltage difference developed in the building wiring, which generally
ranges from a few millivolts to a volt, is effectively impressed across the ends of the grounded
signal conductor, typically the cable shield. Ground voltage differences may be even higher
between the power grounding system and some other ground connection, such as a CATV feed.
In audio systems, this results in a severe hum problem.

2.4 - FINDING THE PROBLEM INTERFACE

Under fortuitous conditions, systems may be acceptably quiet in spite of poor techniques. But
physics will ultimately rule and noises may appear for no apparent reason!  If we understand how
grounding systems and interfaces actually work and how noises couple into signals, finding and
fixing problems becomes simple and logical.

Perhaps the most important aspect of troubleshooting is how (or if) you think about the problem.
Without a methodical approach, chasing noise problems can be both frustrating and time-
consuming. For example, don’t fall into the trap of thinking something can’t be the problem just
because you’ve always done it that way. Remember, things that “can’t go wrong” do!  Further,
problems that go away by themselves also tend to reappear by themselves!!

Don’t start by changing things! Because many problems reveal themselves if we just gather
enough clues, gather as much information as possible before you change anything.

Ask questions! Troubleshooting guru Bob Pease suggests these basics: Did it ever work right?
What symptoms tell you it’s not working right? When did it start working badly or stop working?
What other symptoms showed up just before, just after, or at the same time? [20]

Be alert to clues from the equipment itself! Operation of the equipment’s controls, along with
some simple logic, can provide very valuable clues. For example, if the noise is unaffected by the
setting of a volume control or selector, logic dictates that it must be entering the signal path after
that control. If the noise can be eliminated by turning the volume down or selecting another input,
it must be entering the signal path before that control.

Write everything down! Less than perfect memory can waste a lot of time.

Sketch a block diagram of the system! Show all signal interconnecting cables, including digital
and RF, and indicate their approximate length. Mark any balanced inputs or outputs. Generally,
stereo pairs can be indicated with a single line. Note any equipment that’s grounded via its 3-
prong power plug. Note any other ground connections such as cable TV or DSS dishes.

Work through the system backwards! As a general rule, and unless clues suggest another
starting point, always begin at the inputs to the power amplifiers (for audio systems) or the input to
the monitor (for video systems) and sequentially test interfaces backward toward the signal
sources. Easily constructed test adapters or “dummies” allow the system to test itself and pinpoint
the exact entry point of noise or interference. By temporarily placing the dummies at strategic
locations in the interface, precise information about the nature of the problem is also revealed.
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The tests can specifically identify:

! Common-impedance coupling in unbalanced cables (vast majority of problems),
! Magnetic or electrostatic pickup by cable of nearby fields, or
! Common-impedance coupling inside defective equipment (see 3.3 for details).

The dummies are made from standard connectors wired
as shown at right. THEY DO NOT PASS SIGNAL, so
make sure they’re clearly marked and don’t accidentally
become permanently installed in a system! Be very
careful not to damage speakers or ears! The surest
way to avoid problems is to turn off the power
amplifier(s) before re-configuring cables for each test
step.

Each signal interface is tested using the following four-
step procedure:

STEP 1 - Unplug the cable from the input of Box B and plug in only the dummy.

Output quiet? No — The problem is either in Box B or further downstream.
Yes — Go to next step.

STEP 2 - Leaving the dummy in place at the input of Box B, plug the cable into the dummy.

Output quiet? No — Box B has an internal “pin 1 problem.” The hummer test can confirm this.
Yes — Go to next step.

STEP 3 - Remove the dummy and plug the cable into the input of Box B. Unplug the other end of
the cable from Box A and plug it into the dummy. Be sure the dummy doesn’t touch anything
conductive.
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Output quiet? No — Noise is being induced in the cable. Re-route it to avoid interfering fields.
Yes — Go to next step.

STEP 4 - Leaving the dummy in place on the cable, plug the dummy into the output of Box A.

Output quiet? No  — The problem is common-impedance coupling. Install an isolator in the
signal path.
Yes — The noise is coming from the output of Box A. Perform the test sequence
at the next upstream interface. Repeat as necessary until problem found.

2.5 - SOLUTIONS

Devices called “ground isolators” solve the fundamental problem with unbalanced interfaces.
Broadly defined, they are differential responding devices with high common-mode rejection. An
isolator is NOT A FILTER that can magically recognize and remove noise when placed anywhere
in the signal path. In order to solve the problem, an isolator must be installed in the signal
path at the point where the noise coupling actually occurs.

Transformers make
excellent ground
isolators. They
transfer signal voltage
from winding to
winding without any
electrical connection
between them. This
opens the path of the
noise current that
would otherwise flow
between devices.

In theory, since no noise current flows in the cable, noise coupling is completely eliminated. But in
practice, the reduction in ground noise depends critically on the type of transformer used. There
are two basic types of audio transformers. The first type, known as output, puts primary and
secondary windings very close together. The considerable capacitance thus formed allows noise
current to couple between windings, especially at higher audio frequencies. Of course, this current
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Isolators Using Output-Type Transformers
Ebtech HE-2

Isolator Using Input-Type
Transformers

Jensen ISO-MAX CI-2RR

couples noise into the signal as it flows in the cable shield. The second type, known as input,
places a shield between the windings. Called a Faraday shield (not a magnetic shield), it
effectively eliminates the capacitive coupling between windings, vastly improving noise rejection.

The graph shows noise
rejection versus frequency for a
typical unbalanced interface.
The output impedance of device
A is 600 Ù and the input
impedance of device B is
50 kÙ. By definition, without an
isolator, there is 0 dB of
rejection in an unbalanced
interface as shown by the upper
plot. The middle plot shows a
typical isolator using an output
transformer. Although it reduces
60 Hz hum by 70 dB, buzz
artifacts around 3 kHz are
reduced by only 35 dB. The
lower plot shows a typical
isolator using an input
transformer. Its rejection is over
100 dB at 60 Hz and over 65 dB
at 3 kHz.

There are a remarkable number of “black
boxes” on the market intended to solve
“ground loop” problems. This includes
quite a number of transformer-based
boxes. With very rare exception, those
boxes contain output transformers. An
advantage of these boxes is that they can
be installed anywhere along the length of
a cable or can be used at patch-bays.

While boxes containing input transformers offer some 30 dB better noise rejection, their high-
frequency response is degraded by excessive cable capacitance at their outputs. Results are
always better, but they must be installed near the equipment input using no more than 2 or 3 feet
of cable.

Except in extraordinary situations, it is not necessary to
“balance” a line (using an unbalanced to balanced converter) at
the driving end and then “unbalance” it (using a balanced to
unbalanced converter) at the receiving end. The noise rejection
of such a scheme is no better, and often worse, than that of a
single isolator, using an input transformer, installed at the
receiving end.

Check performance data for isolators carefully. Many have
scanty, vague, or non-existent specs — and many use cheap,
telephone-grade transformers! These miniature transformers can cause loss of deep bass, bass
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Typical “Active” Interface
Radio Design Labs STA-1

distortion, and poor transient response. Data for high-quality ground isolators, such as the ISO-
MAX® series, is complete, unambiguous, and verifiable. Transformer-based isolators have other
benefits, too:

! Their inputs are truly universal, accepting signals from either unbalanced or balanced outputs,
while maintaining very high noise rejection. Rejection of 100 dB at 60 Hz and over 65 dB at
3 kHz is typical for isolators using Faraday-shielded input transformers (indicated by an “I” in
ISO-MAX model numbers).

! Isolators using input transformers also provide inherent suppression of RF and ultrasonic
interference. The subsequent reduction of “spectral contamination” is often described as a
marvelous new sonic clarity. [11]

! They can solve the “pin 1 problem” (common-impedance coupling inside poorly designed
equipment, see section 3.3).

! They are passive, requiring no power.

! They are inherently robust, reliable, and virtually immune to transient over-voltages.

A wide variety of commercial interface devices are
“active” (i.e., powered) devices. Although they
incorporate many useful features, they invariably use
differential amplifier circuits to “isolate” their unbalanced
inputs. As explained later (see section 3.2), the ground
noise rejection of ordinary differential amplifiers is
extremely sensitive to impedance imbalances in the
driving source. With unbalanced sources, their entire
output impedance becomes “imbalance” and typically
ranges from 200 Ù to 1 kÙ or more. Under these
conditions, the noise rejection of diff-amps is quite poor.

The plots at left compare the 60 Hz
hum rejection performance of
another typical active interface
device, the now discontinued
Sonance AGI-1 “audio ground
isolator,” to that of an input-
transformer based isolator. Over the
consumer output impedance range
of 200 Ù to 1 kÙ, the active isolator
achieves only 15 to 30 dB of
rejection while the ISO-MAX®
CI-2RR isolator improves that by
some 80 dB!



CEDIA EST016 UNDERSTANDING, FINDING, & ELIMINATING GROUND LOOPS Page 17

2.6 - WHERE TO BREAK THE LOOP

When a system contains two or more pieces of grounded equipment, whether via power-cords or
other ground connections, a “ground loop” may be formed.

There is often
substantial ground
noise voltage
between the
CATV ground and
the ac power
safety ground
system, causing a
relatively large
noise current flow
in the shield of
ALL the signal
cables that are
part of the ground
loop between the TV and the sub-woofer. Thus, common-impedance coupling will introduce noise
in both audio cables in the path, generally in proportion to their lengths. This system would exhibit
a loud hum regardless of preamp control settings because of coupling in the 20-foot cable.

Of course, the loop could be broken by defeating the sub-woofer safety
ground. DON’T DO IT! Remember, audio cables that connect equipment
together will also carry lethal voltages throughout the system or could start a
fire if the sub-woofer develops a power-line fault.

A safe way to break the ground loop is to install a ground isolator
somewhere in the audio signal path from TV to sub-woofer. Since longer cables are more likely to
couple noise, the preferred location in this system would be at the receive end of the longer 20-
foot cable, as shown.

Another safe solution is to break the loop by installing a ground isolator in the CATV signal path
at the TV as shown. CATV isolators should generally be installed where the cable first connects to
the audio or video system, such as at a VCR or TV receiver input.
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CATV Isolator
ISO-MAX VRD-1FF

Since most consumer equipment uses 2-prong ac plugs (ungrounded), installing an isolator may
leave some devices "floating." This can allow the voltage between the input and output ports of an
isolator to approach 120 volts ac.

While not dangerous, this situation puts an extreme and unnecessary rejection burden on the
isolator! The problem is easily solved by adding separate ground connections to the floating
devices. This is most easily done by replacing the equipment’s 2-prong plug with a 3-prong type
and adding a wire (green preferred) between the safety ground contact of the replacement ac
plug and a chassis ground. To find out if a possible chassis connection point (like a screw) is
actually grounded, use an ohmmeter to check for continuity to the outer contact of an RCA
connector, which itself can serve as the connection point if necessary.

2.7 - CATV AND SATELLITE TV DISHES

High-quality CATV isolators pass high-frequency signals with virtually
no loss or degradation but prevent low-frequency current flow, thus
preventing power-line ground loops.

! They must always be installed downstream of the lightning ground.
! CATV isolators work at CATV, broadcast TV and FM frequencies.
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RS-232 Isolator
B&B Electronics

The isolator shown also passes cable modem signals.

! Be aware that signal splitters connect shields at their outputs, providing possible paths for
ground loops between destination systems. Separate isolators are generally recommended at
each splitter output destination.

! CATV isolators will NOT work in the path from DSS dish to receiver. They cannot pass dc
power from receiver to the dish.

Satellite dish systems must be grounded in compliance with NEC code sections 250 and 810
to provide protection from lightning. This grounding can create the same kind of ground loops as a
CATV connection. An “isolated ground adapter” in series with the ground rod allows the dish to
remain safely ungrounded under normal operating conditions. The adapter baseplate is
connected to the earth ground rod. The dish’s grounding block is then mounted to the ground
adapter’s other terminal. The ground wire for the dish assembly itself is also connected to this
terminal. Should the voltage across the adapter reach 90 volts, as it would just prior to a nearby or
direct lightning strike, an internal gas tube ionizes to its “on” state and is capable of sustaining an
18,000 ampere direct hit of lightning. After the strike, the tube reverts to its “off” state. [26]

If the DSS receiver has a 3-prong (grounding) ac plug, it may be necessary to install a GFCI
which safety disconnects its safety ground. In some situations, it may make more sense to use
audio and video isolators on the satellite receiver output lines.

2.8 - ISOLATION FOR DIGITAL INTERFACES

The venerable RS-232 data interface is unbalanced, making it very
susceptible to ground noise via common-impedance coupling — but the
noise symptoms are usually called “unexplainable.”  The optically isolated
device shown can withstand 2,000 volts between its input and output ports.
Similar devices are available from several manufacturers for RS-232, RS-
422 and other popular interfaces. See www.bb-elec.com or
www.telebyteusa.com for more detailed information.

2.9 - CHOOSING CABLES

Strong ac electric fields (often inaccurately
called electrostatic fields) surround any
conductor operating at a high ac voltage —
neon signs and ac power cords, for example.
The field strength falls off rapidly with
distance. Enclosing signal conductors in a
shield can prevent noise coupling due to
these electric fields.

The space between any two conductors
forms a capacitance Cc and any change in
the voltage between them requires current
flow through the capacitance. Without a
shield, the current flows in the parallel
impedances Zo and Zi, adding a noise
voltage to the signal. But a grounded shield
diverts the noise currents to ground. The
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cable's outer shield conductor, if it completely surrounds the inner signal conductor, is said to
have 100% coverage. Foil shields are usually 100% while braided shields, because their tiny
openings, generally vary from 85% to 95% Š entirely adequate in most cases. Electric fields
usually cause noise problem only when the driving source has very high impedance, as with some
vacuum-tube audio consumer gear. Noise is generally not an airborne contaminant “picked up” by
cables with inadequate shielding. To emphasize how generally trivial shielding is in real-world
systems, note that one well-known manufacturer has several lines of unbalanced and balanced
interconnect cables, ranging in price from $80 to $500 per 1-meter pair, which have no overall
shield —  ground and signal wires are simply woven together.

Beware of high capacitance
cables. Some exotic audio cables
have very high capacitance and can
seriously degrade high frequency
response. Cable capacitance and
driver output impedance form a low-
pass filter. Thus, high output
impedance in combination with long and/or high-capacitance cable can seriously degrade treble
response. For example, if the output impedance is 1 kÙ (typical of consumer equipment) and
cable capacitance is 50 pF per foot (typical of ordinary cables), 20 kHz response will be down
0.5 dB for 50 feet, 1.5 dB for 100 feet, and 4 dB for 200 feet of cable. Be aware that some “exotic”
cables have significantly higher capacitance.

Unbalanced cables are susceptible to ac magnetic fields. Regardless of cable construction,
unbalanced interfaces are susceptible to noise induced by nearby ac magnetic field sources.
Unlike balanced interfaces, the noise cannot be nullified by the receiving input.

Audio cables are NOT transmission lines. Marketing hype for exotic cables often invokes
classic transmission line theory and implies that nano-second response is somehow important.
Real physics reminds us that audio cables do not begin to exhibit transmission-line effects in the
engineering sense until they reach about 4,000 feet in physical length.

NO OTHER PRODUCT IS AS SHROUDED IN HYPE AND MYSTERY AS THE AUDIO CABLE!
The audio industry, especially the "high-end" segment, abounds with misinformation, myth, and
mysticism. Scientific double-blind tests have shown that there is nothing unexplainable about
audible differences among cables — when the differences can be demonstrated to truly exist. For
example, the physical design of a cable is known to affect its coupling of ultrasonic power line
noise. Even very low levels of this noise can cause audible “spectral contamination” in
downstream amplifiers. [11] The real solution to this problem is to prevent the coupling in the first
place, rather than agonize over which “designer cable” makes the most pleasing improvement.

Expensive and exotic cables, even if double or triple shielded, made of 100% pure un-
obtainium, and hand-made by virgins, have NO significant effect on hum and buzz
problems!

In engineering terms, a high-performance cable for unbalanced audio should have low
capacitance and very low shield resistance. A good example of such a cable is Belden #8241F.
Its 17 pF per foot capacitance allows driving a 200 foot run from a typical 1 kÙ consumer output
while maintaining a !3 dB bandwidth of 50 kHz. Its low 2.6 mÙ per foot shield resistance is
equivalent to #14 gauge wire, which can significantly reduce common-impedance coupling. It’s
also quite flexible and available in many colors.
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2.10 - A CHECKLIST

Keep cables as short as possible. Longer cables increase the common-impedance
coupling. Coiling excess cable length invites magnetic pickup.

Use cables with heavy gauge shields. This is especially important when cables must be long.
The only property of cable that has any significant effect on audio noise coupling is shield
resistance.

Bundle signal cables. All signal cables between any two boxes should be bundled. For example,
if the L and R cables of a stereo pair are separated, nearby ac magnetic fields will induce a
current in the loop area inside the two shields — coupling hum into both signals. Bundling all ac
power cords separately helps to average their magnetic and electrostatic fields, which reduces
their net radiation. Of course, keep signal bundles and power bundles as far apart as possible.
Remember that cables or bundles that run parallel will couple the most, while those that cross at
90E angles will couple the least.

Maintain good connections. Connectors left undisturbed for long periods can oxidize and
develop high (and often distortion-producing non-linear) contact resistance. Hum or other noise
that changes when the connector is wiggled indicates a poor contact. Use a good commercial
contact fluid and/or gold plated connectors to help prevent such problems.

DO NOT ADD unnecessary grounds. Additional grounding of equipment tends to increase
system ground noise current rather than reducing it. Of course, NEVER disconnect a safety
ground or lightning protection ground to solve a problem.

Use ground isolators at problem interfaces. Isolators are a “silver bullet” solution for common-
impedance coupling, which is the major weakness of unbalanced interfaces.

3 - BALANCED AUDIO INTERFACES

An interface may be unbalanced or balanced, depending only on the impedances (to ground)
of the line’s conductors. In balanced interfaces, both conductors have equal (and non-zero)
impedances. A balanced interface requires that driver, line, and receiver all maintain balanced
impedances to ground. Balanced interfaces are extremely potent in preventing all kinds of noise
coupling. In fact, it’s so powerful that many systems, such as telephone systems, use it instead of
shielding as the main noise reduction technique!

3.1 - A QUESTION OF BALANCE

The true nature of balanced interfaces is widely misunderstood. For example “Each conductor is
always equal in voltage but opposite in polarity to the other. The circuit that receives this signal in
the mixer is called a differential amplifier and this opposing polarity of the conductors is essential
for its operation.” [12] This, like many explanations in print, describes signal symmetry (i.e.,
“equal in voltage but opposite in polarity”) but completely overlooks the most important feature of
a balanced interface. The notion that signal symmetry has anything to do with noise rejection is
simply WRONG! Quoting a part of the informative annex of IEC Standard 60268-3: “Therefore,
only the common-mode impedance balance of the driver, line, and receiver play a role in noise or
interference rejection. This noise or interference rejection property is independent of the presence
of a desired differential signal. Therefore, it can make no difference whether the desired signal
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exists entirely on one line, as a greater voltage on one line than the other, or as equal voltages on
both of them. Symmetry of the desired signal has advantages, but they concern headroom and
crosstalk, not noise or interference rejection.” An accurate definition is “A balanced circuit is a
two-conductor circuit in which both conductors and all circuits connected to them have the same
impedance with respect to ground and to all other conductors. The purpose of balancing is to
make the noise pickup equal in both conductors, in which case it will be a common-mode signal
which can be made to cancel out in the load.” [13] A simplified balanced interface is shown in the
schematic.

Theoretically, it can
reject any interference,
whether due to ground
voltage differences,
magnetic fields, or
electric fields, as long as
it produces identical
voltages each of the
signal lines and the
resulting peak voltages
don’t exceed receiver

capability. When both devices are grounded to the safety ground system, the ground voltage
difference between them becomes the “ground noise” shown. When one or both devices is
ungrounded, the ground voltage difference can become very large. Traditionally, balanced audio
interconnects use shielded cable with each end of the shield connected to respective device
ground. This connection serves to minimize the ground voltage difference between the devices.
However, if such a connection is absent, other measures may be required to limit the ground
voltage difference. The voltage that appears identically on both inputs, since it is common to both
inputs, is called the common-mode voltage.

A balanced receiver uses a differential device, either a
specialized amplifier or a transformer, which inherently
responds only to the voltage difference between its
inputs. An ideal receiver would have no response to
common-mode voltages. But with real devices, the
response is not zero. The ratio of the device’s
differential gain to its common-mode gain is called its
common-mode rejection ratio, or CMRR. It’s usually
expressed in dB, where higher numbers mean better
rejection. Note that the common-mode (i.e., with respect
to ground) output impedances of the driver and input
impedances of the receiver effectively form a
Wheatstone bridge as shown. If the bridge is not
balanced or nulled, a portion of the ground noise Vcm
will be converted to a differential signal on the line. The
nulling of the common-mode voltage is critically
dependent on the ratio matching of these pairs of

driver/receiver common-mode impedances. The nulling is relatively unaffected by impedance
across the lines — only the common-mode impedances matter!
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3.2 - NO TRUTH IN ADVERTISING

The bridge is most sensitive to small fractional impedance changes in one of its arms when all
arms have the same impedance. [14] It is least sensitive when upper and lower arms have widely
differing impedances. Therefore, we can minimize the CMRR degradation in a balanced interface
caused by normal component tolerances by making common-mode impedances very low at
one end of the line and very high at the other. [15] The output impedances of virtually all real line
drivers are determined by series resistors (and often coupling capacitors) that typically have ±5%
tolerances. Because of this, typical drivers can have output impedance imbalances in the vicinity
of 10 Ù. The common-mode input impedances of typical balanced input circuits is in the 10 kÙ to
50 kÙ range, making its CMRR exquisitely sensitive to normal imbalances in driver output
impedance. For example, the CMRR of the widely used SSM-2141 will degrade some 25 dB
with only a 1 Ù imbalance. Devices such as input transformers or the InGenius® balanced
receiver IC, are essentially unaffected by imbalances as high as several hundred ohms because
their common-mode input impedances are about 50 MÙ — over 1000 times higher than ordinary
“active” inputs.

Noise rejection in a real-world balanced interface is often far less than that touted for the
input. That’s because the performance of balanced inputs have traditionally been measured in
ways that ignore the effects of driver and cable impedances. For example, the old IEC method
essentially “tweaked” the driving source impedance until it had zero imbalance. Another method,
which simply ties the two inputs together and is still used by many engineers, is equally
unrealistic. This author is quite pleased to have persuaded the IEC to adopt a new CMRR test
that inserts realistic impedance imbalances in the driving source. The new test is included in the
third edition of IEC Standard 60268-3, Sound System Equipment - Part 3: Amplifiers, August
2000. It's very important to understand that noise rejection in a balanced interface isn't just a
function of the receiver — actual performance in a real system depends on how the driver, cable,
and receiver interact.

3.3 - PIN 1 PROBLEMS AND THE HUMMER

Dubbed he “pin 1 problem” (pin 1 is shield in XLR connectors) by Neil Muncy, common-
impedance coupling has been inadvertently designed into a surprising number of products with
balanced interfaces. As Neil says, “Balancing is thus acquiring a tarnished reputation, which it
does not deserve. This is indeed a curious situation. Balanced line-level interconnections are
supposed to ensure noise-free system performance, but often they do not.” [16]

The pin 1 problem effectively turns the shield connection into a very low-impedance signal
input. Shield current, consisting mainly of power-line noise, is allowed to flow in internal wiring or
circuit board traces shared by amplifier circuitry. The tiny voltage drops created are amplified and
appear at the device output. When this problem exists in systems, it can interact with other noise
coupling mechanisms to make noise
problems seem nonsensical and
unpredictable. The problem afflicts
equipment with unbalanced interfaces, too.

Fortunately, there is a simple test to reveal
the pin 1 problem. The “hummer” is
based on an idea suggested by John
Windt. [18] This simple device, whose
schematic is shown here, forces an ac
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current of about 50 mA to flow through the potentially troublesome shield connections in the
device under test. In properly designed equipment, this causes no additional noise at the
equipment output. The diode is used to create easily audible harmonics of 60 Hz and the lamp is
useful to show that a good connection has been made and current is indeed flowing.

Testing with the “hummer”:
1. Disconnect all input and output cables, except the output to be monitored, as well as any

chassis connections (rack mounting, for example) from the device under test.
2. Power up the device.
3. Meter (and listen, if possible) to the device output. The only noise should be white noise or

"hiss." Try various settings of operator controls to familiarize yourself with the noise
characteristics of the device under test without the hummer connected.

4. Connect one hummer lead to the device chassis and touch the other lead to the shield contact
of each input or output connector. If the device is properly designed, there will be no output
hum or change in the noise floor.

5. Test other potentially troublesome paths, such as from an input shield contact to an output
shield contact or from the safety ground pin of the power cord to the chassis.

In some equipment, Pin 1 of XLR connectors may not be connected directly to ground —
hopefully, this will be at inputs only! In this case, the hummer’s lamp may not glow. This is OK.

3.4 - FINDING THE PROBLEM INTERFACE

Easily constructed test adapters or “dummies” allow the system to test itself and pinpoint the
exact entry point of noise or interference. By temporarily placing the dummies at strategic
locations in the interface, precise information about the nature of the problem is also revealed.
The tests can specifically identify:

! Shield-current-induced coupling in cables,
! Magnetic or electrostatic pickup by cables of nearby

fields, or
! Common-impedance coupling inside defective

equipment.

The dummies are made from standard connectors wired
as shown. Remember that THEY DO NOT PASS
SIGNAL. Each signal interface is tested using the
following four-step procedure:

STEP 1 - Unplug the cable from the input of Box B and
plug in only the dummy.

Output quiet? No — The problem is either in Box B or further downstream.
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Isolator for Balanced Interfaces
Jensen ISO-MAX PI-2XX

Yes — Go to next step.

STEP 2 - Leaving the dummy in place at the input of Box B, plug the cable into the dummy.

Output quiet? No — Box B has an internal “pin 1 problem.” The hummer test can confirm this.
Yes — Go to next step.

STEP 3 - Remove the dummy and plug the cable into the input of Box B. Unplug the other end of
the cable from Box A and plug it into the dummy. Be sure the dummy doesn’t touch anything
conductive.

Output quiet? No — Noise is being induced in the cable. Re-route it to avoid interfering fields.
Yes — Go to next step.

STEP 4 - Leaving the dummy in place on the cable, plug the dummy into the output of Box A.

Output quiet? No — The problem is shield-current-induced noise or SCIN. Replace the cable
with a different type or take steps to reduce current flow in the shield.
Yes — The noise is coming from the output of Box A. Perform the test sequence
at the next upstream interface.

3.5 - SOLUTIONS
The most common problems with balanced interfaces are
due to poor CMRR in the equipment input and “pin 1
problems.”  The isolator shown here uses input
transformers to vastly improve CMRR and RF interference
rejection. As explained in the previous section, CMRR
improvement will depend on what type of transformer is
used in the isolator.
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The graph shows CMRR versus
frequency for a balanced interface
tested with the IEC 60268-3 method.
The driver is a typical 600 Ù balanced
output, except that its common-mode
impedances were precision matched
to within ± 0.1% (i.e., virtually zero
imbalance). The receiver is a typical
“active” (a three op-amp
“instrumentation” circuit) having an
input impedance of 40 kÙ (common-
mode impedances = 20 kÙ) having
90 dB CMRR when directly connected
to the driver. These are the laboratory
conditions under which most
advertised CMRR figures are
obtained!

Recognizing that real-world outputs are very rarely so precisely matched, the new IEC test
intentionally imbalances the lines by ± 10 Ù. For this typical input, with no isolator, the CMRR
drops from its advertised or “rated” 90 dB down to 65 dB as shown in the upper plot. The middle
plot shows the effect of using an ordinary output transformer isolator. While 60 Hz hum is reduced
by some 20 dB, the reduction is near zero at 3 kHz. However, a high-performance isolator using
an input transformer reduces 60 Hz hum by almost 60 dB and reduces 3 kHz (buzz artifacts) by
over 20 dB.

As mentioned earlier, beware of products that are not well-specified. They can sometimes
solve noise problems, but at the expense of sound quality. The isolator shown above also solves
pin 1 problems via switches (on its underside) that reconfigure shield connections. As in
unbalanced applications, input transformer-based isolators have other benefits, too:

! Their inputs are truly universal, accepting signals from either balanced or unbalanced outputs,
while maintaining very high noise rejection. Improvement in CMRR of 40 to 60 dB is typical for
isolators using Faraday-shielded input transformers (indicated by an “I” in ISO-MAX model
numbers).

! Isolators using input transformers also provide inherent suppression of RF and ultrasonic
interference. The subsequent reduction of “spectral contamination” is often described as a
marvelous new sonic clarity. [11]

! They can solve “pin 1 problem” (common-impedance coupling inside poorly designed
equipment).

! They are passive, requiring no power.

! They are inherently robust, reliable, and virtually immune to transient over-voltages.

3.6 - ABOUT CABLES AND SHIELD CONNECTIONS

As with unbalanced cables, electric fields can capacitively couple noise into signal conductors. In
a balanced interface, equal voltages would theoretically be induced on the two balanced lines.
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ALWAYS Ground Shield at Driver

NEVER Ground Shield ONLY at Receiver

Since that makes it a common-mode voltage, it is theoretically rejected by the receiver. In
practice, the rejection is limited by the matching of both the capacitive coupling and the line
impedances. The matching of capacitive coupling can be improved by twisting the balanced pair,
averaging their physical positions (and capacitances) relative to the field source. However, a
grounded shield solves the entire problem by simply diverting the noise currents to ground. Here
again, braided shields with 85% to 95% coverage are usually adequate.

Shield ground connections can affect CMRR.
Cable capacitances between each signal
conductor and shield are mismatched by 4%
to 6% in typical cable. If the shield is
grounded at the receiver end, these
capacitances and driver common-mode
output impedances, themselves often
mismatched by 5% or more, form a pair of
low-pass filters for common-mode noise. The
mis-tracking of these filters converts a portion
of common-mode noise to differential signal.
If the shield is simply connected only at the driver,
this conversion mechanism is completely
eliminated because all filter elements are at
the same (driver ground) potential! [22]

Signal voltage swings on the inner
conductors cause current flow to the shield
through the cable capacitances. If signals
were perfectly symmetrical (equal and
opposite voltage swings) and capacitances
were perfectly matched, the two capacitively-
coupled signal currents into the shield would
cancel. However, imperfect symmetry and/or mis-matched capacitances will cause signal current
in the shield. This current should be returned directly to the driver from which it came. If the shield
is grounded at the receiver, all or part of this current will return via an undefined path which can
induce crosstalk, distortion, or oscillation as it flows through sensitive circuitry. [22] Therefore, for
shielded balanced audio cables, the shield should ALWAYS be grounded at the driver —
whether or not the receiving end is grounded.

However, this conflicts with “mesh” grounding methods preferred at RF frequencies. To guard
against RF interference, where typical system cables become a fraction of a wavelength,
additional grounding is desirable. Therefore, the most widespread industry practice is to ground
the shield at both ends, which compromises CMRR to some degree. But a high-frequency
treatment can be superposed on the low-frequency treatment to get both highest possible CMRR
and improved RF immunity. This approach, called hybrid grounding, couples the receive end of
the shield to ground through a capacitor. The capacitor is effectively a short circuit at RF
frequencies but an open circuit at audio frequencies. [23] [24] The merits of this scheme have
been the subject of several years of debate in an AES Standards Committee working group.

Strong ac magnetic fields surround any conductor operating at a high ac current — building
wiring, power transformers, motors, and CRT displays, for example. The field strength generally
falls off rapidly with distance from the source. Physics tells use that any conductor exposed to a
time-varying (ac) magnetic field will have a voltage induced in it. In a perfect balanced interface,
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Level-Shifter Using Transformers for Gain
EbTech LLS-2

equal voltages would be induced in the signal pair, making it a common-mode voltage which
would be completely rejected by the receiver. In practice, the rejection is limited by the degree of
matching in both the magnetic coupling and the line impedances. The matching of magnetic
coupling can be improved by twisting the balanced pair, averaging their physical distance to the
field source. Be sure all balanced line pairs are twisted. Twisting makes shielded or unshielded
balanced pair lines nearly immune to magnetic fields and makes unshielded balanced lines nearly
immune to electric fields. This is especially important in low level microphone circuits. Remember
that wiring at terminal or punch-down blocks and inside XLR connectors is vulnerable because the
twisting is opened up, effectively creating magnetic pickup loops. In magnetically hostile
environments, consider “star-quad” microphone cable — it improves immunity to magnetic fields
by about 40 dB compared to standard shielded twisted pair cable.

Effective magnetic shielding, especially at power frequencies, is very difficult to achieve. Only
magnetic materials such as steel conduit can provide significant shielding — it is NOT provided by
ordinary shielded cables. Current flow in the cable shield creates a magnetic field very close to
the twisted pair. In an ideal cable with perfect symmetry in its physical construction, equal
voltages would be induced in the pair and the common-mode voltage would be rejected by the
receiver. However, imperfections in real cables result in unequal induced voltages that add noise
to the differential signal. This effect was noted in 1994 by Neil Muncy who gave it the acronym
SCIN for shield-current-induced-noise. Generally, the best cables have braided or counter-
wrapped spiral shielding and the worst have foil shields and drain wires. [16] [17]

3.7 - UNBALANCED TO BALANCED INTERFACES

Signal operating and reference levels are different in consumer (unbalanced) and professional
(balanced) equipment. The consumer reference is !10 dBV or 316 mV rms while the professional
reference is +4 dBu or 1.228 V rms. Therefore, a voltage gain of 3.9 or about 12 dB is required.

A fair question might be “Why not use a
step-up transformer for this gain?” Several
commercial products do, but I do NOT
recommend them. Let me explain: Assume
the transformer has a turns
(voltage) ratio of 1:4 for a theoretical
voltage gain of 12 dB. This unavoidably
makes its impedance ratio 1:16. Therefore,
any load impedance at the pro (balanced)
side will be reflected to the consumer (unbalanced) side as 1/16 of that. Since typical balanced
inputs have impedances ranging from 10 to 40 kÙ, they’ll be seen by the driving consumer output
as 625 Ù to 2.5 kÙ. Recall that consumer outputs are typically rated to drive a “10 kÙ minimum
load.” That’s because their internal (or “output”) impedance (usually unspecified) is typically 1 kÙ
or more. Therefore, the actual gain is not 12 dB, but only 3 to 8 dB. In addition, the consumer
output will experience a serious headroom loss, up to 8 dB, causing premature clipping. Since
most consumer outputs use coupling capacitors designed for a “10 kÙ minimum load,” the severe
loading will usually result in poor bass response, too. Usually, specs relating to these issues are
conspicuously absent from manufacturers’ data sheets!!

Gain is usually not a real issue in most systems because pro equipment inputs generally have
additional gain “reach.” If we eliminate the gain requirement, we have more options for
unbalanced to balanced interfaces. In most cases, noise rejection is by far a more important
issue.
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WRONG Connection Uses RCA to XLR Adapter - Noise Rejection = 0 dB

CORRECT Connection is Much Better - Noise Rejection = 20 dB to 30 dB

The widely-used simple hookup shown below, using shielded single-conductor cable and an
RCA to XLR adapter, results in 0 dB of ground noise rejection — wasting all the potential noise
rejection of the balanced input!

The alternate hookup, using shielded twisted-pair cable, takes advantage of the noise rejection
available from the balanced input. Because ground noise now flows in the shield conductor rather
than one of the signal conductors, noise rejection is improved by about 30 dB when the input is a
typical "active" differential-amplifier type. If the equipment’s balanced input used an input
transformer or the InGenius® IC, rejection would be improved by about 80 dB. [27]

The graph shows noise
rejection for various
unbalanced to balanced
interfaces. The top plot at
0 dB represents the simple
adapter and 2-conductor
cable connection. The plot at
!30 dB shows the
improvement due to the 3-
conductor alternate hookup.
The next plot shows the
effect of an isolator using an
ordinary output transformer.
It improves 60 Hz hum by a
bit over 20 dB, but has little
effect on buzz artifacts over
about 1 kHz. A high-quality
isolator using an input
transformer increases
rejection to almost 100 dB at
60 Hz and about 65 dB at 3 kHz. For the best possible noise rejection, don’t use a 2-conductor
cable from the unbalanced output to the isolator input. Instead, use a balanced (XLR connector)
input and the 3-conductor cable wired as in the alternate hookup. These tests were done using a
600 Ù unbalanced output and the same 40 kÙ balanced input described in section 3.5.
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Pro to Consumer Isolator
Jensen ISO-MAX PC-2XR

3.8 - BALANCED TO UNBALANCED INTERFACES

Operating level differences are a legitimate concern in these interfaces. Because consumer
inputs rarely include a passive attenuator, they are easily overloaded by pro signal levels. Again,
since the professional reference is +4 dBu or 1.228 V rms and the consumer reference is
!10 dBV or 316 mV rms, a loss of about 12 dB is required. Obviously, the output of a professional
device could be turned down 12 dB, but then its level meters would be useless and noise
performance would be degraded. Rejection of ground noise is also desirable.

The graph shows noise
rejection for various balanced
to unbalanced interfaces.
The upper plot at 0 dB
represents a direct
connection, such as with an
adapter or adapter cable.
Direct connections invite
problems because of the
wide variety of balanced
output circuits in equipment,
each having its own
limitations. Some, such as
the one in the schematic, can
be damaged if one of its
output terminals is grounded.
Outputs stages using either
transformers or widely-used
“servo-balanced” outputs,
must have one terminal
grounded in order to produce
a proper output signal at the other. But the “servo-balanced” output can oscillate or become
unstable if the ground connection is made at the far (receive) end of a cable. [28] This dilemma
can be solved by using a transformer. The middle plot shows that an output transformer reduces
60 Hz hum by about 50 dB and buzz artifacts around 3 kHz by less than 20 dB. A high-quality
input transformer, such as the one shown below, increases rejection to over 105 dB at 60 Hz and
to nearly 75 dB at 3 kHz.

A transformer-based isolator is the only “universal” interface that
will perform well with any known output stage. Conveniently, a
transformer with a 4:1 turns ratio also attenuates the signal by the
required 12 dB.
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4 - VIDEO INTERFACES

4.1 - THE “HUM BAR”

The Academic Press Dictionary of Science and Technology defines a hum bar as “a dark,
horizontal bar in a television picture caused by hum interference in the video signal.” For standard
NTSC video displays, a disturbance which slowly creeps upward is its signature. The movement is
caused by the slight frequency difference between the NTSC video field rate, 59.94 Hz, and the
60 Hz of the power line. The 0.06 Hz frequency difference means it takes about 16 seconds to
move from bottom to the top of the screen. As explained earlier, ground voltage differences are
often generated by the parasitic transformer in building wiring and are a function of branch circuit
load currents. Since many, if not most, loads draw their power-line current as pulses at each peak
of the ac cycle (i.e., at 120 Hz), a pair of disturbances is most commonly seen.

The shield of coaxial
video cable is the
return path for the
video signal current
but, as shown in the
drawing, it also
becomes a path for
power-line ground
current. The
magnitude of the
current in this loop
depends on the
system ground voltage difference and the total resistance in the loop, in accordance with Ohm’s
Law. This also means that a voltage drop, proportional to the resistance of the shield, will appear
across the length of the cable. Because driver (device A) and receiver (device B) impedances are
equal, half of this voltage is added to the signal as seen by the receiver. As in all unbalanced
interfaces, the shield impedance (resistance) is common to both the signal and the ground current
paths, creating this mechanism called common-impedance coupling.

A standard video signal has a total magnitude of 1 V peak-to-peak and about 700 mV of it
corresponds to the active black to white range in the displayed image. Although some video
displays process video with “pedestal clamping” circuits that make them more tolerant of low-
frequency disturbances such as hum bars, interference of less than 7 mV peak-to-peak is
discernable in many systems under worst-case conditions. Therefore, as little as 14 mV peak-to-
peak of voltage difference from end to end on a cable can create a visible problem. Normal
leakage currents from equipment with 2-prong plugs rarely causes a hum bar problem. Generally
problems occur only with the higher current flow between two grounded pieces of equipment.

4.2 - FINDING THE PROBLEM INTERFACE [21]

This is a simple variation of the audio troubleshooting procedures. Because many, if not most,
monitors will revert to a blue screen in the absence of a video signal, this test uses a portable
video source to keep the display active. If you do much video work, you may already own
something similar to the B&K Precision model 1257 NTSC pattern generator. It’s important that
the generator is battery-powered and ungrounded. The other thing you’ll need is a test adapter or
“dummy” wired as shown below. It’s convenient to put it in a small cast-aluminum box using both
RCA and BNC connectors.
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By temporarily placing the dummy and generator
at strategic locations in the system, precise
information about the nature of the problem is
revealed. The cable between the dummy and Box
B must be as short as possible and much shorter
than the cable under test. Always start at the
input to the display and WORK BACKWARDS
toward the signal sources.

Each signal interface is tested using a four-step procedure:

Step 1
Unplug the cable from the input of Box B and connect the dummy/generator as shown below
using a very short cable. This test prevents any noise current, which might otherwise flow in the
cable shield, from entering Box B.

Disturbance gone? No — the problem is either with Box B or further downstream. Reconnect the
cable and perform this test on the next downstream interface.
Yes — go to next step.

Step 2
Leaving the dummy/generator in place, plug the cable into the dummy as shown below. This test
allows noise current in the cable’s shield to enter Box B.

Disturbance gone? No — the problem may be due to common-impedance coupling inside Box B
or a device farther downstream. If the input is differential (i.e., shield not
directly grounded), the problem may be due to exceeding its common-mode
voltage limits. If the problem is not in Box B, reconnect the cable and begin
the test procedure on the next downstream interface.
Yes — go to next step.
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Step 3
Remove the dummy/generator and plug the cable directly into the input of Box B. Unplug the
other end of the cable from the output of Box A and plug it into the dummy/generator as shown
below. Do NOT connect the dummy to Box A or let it touch anything conductive. This step tests
the cable itself for noise induced in it by magnetic or electrostatic fields. The far end of the cable is
left electrically floating to prevent any other current flow in its shield.

Disturbance gone? No — the disturbance is being induced in the cable itself. This is most often
caused by a strong ac magnetic field near the cable. Re-route the cable to
avoid the strong field. Sources of such fields include high-current power
wiring, power transformers, and CRT displays. Electric field coupling is also
possible, but extremely rare in video systems unless the shield itself is broken
or disconnected.
Yes — go to next step.

Step 4
Leaving the dummy/generator in place on the cable, connect the dummy to the output of Box A as
shown below. This test prevents Box A from driving Box B but allows ground current to flow
through the cable shield which connects them.

Disturbance gone? No — ground current is being coupled by the common-impedance of the
cable shield. Install a suitable ground isolator device.
Yes — the disturbance exists on the output of Box A. Perform this four-step
test on the interface between Box A and the upstream signal source.

4.3 - TROUBLESHOOTING WITH A CLAMP-ON AMMETER

An alternative test, especially useful for multi-channel or
“component” video, uses a sensitive clamp-on ammeter
or “leakage tester” that can measure low currents with a
resolution of 1 mA or better. The one pictured costs
about $250 and is available from Mitchell Instruments as
item WB380947 (www.mitchellinstruments.com). These
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instruments work by sensing the magnetic field surrounding any conductor carrying current.
Signal current in a coaxial cable generates equal but opposing fields that cancel each other.
Similarly, load current in an ac power cable results in zero net field. Since ground loop current
does not return in the same cable, the field it generates is sensed by the meter, which indicates
loop current. This allows us to determine the path of, and measure the current in, ground loops by
simply clamping the meter around cables — without disturbing the system in any way. In any of
our schematics, we would measure the same current whether clamped around the power cable of
Device A, the video cable, or the power cable of Device B.

The current required to cause a hum bar depends on the shield resistance of the cable, which is a
function of both its construction and length. The following table is a general guideline:

Type O.D. mA for 50' mA for 20' mA for 10'

RG-11 0.285" 80 200 400

RG-59 0.242" 35 90 180

"Precision" 0.233" 26 65 130

Miniature 0.125" 17 43 86

Miniature 0.097" 9 22 43

Peak loop current is assumed to be 3 times the rms value listed and will produce a 15 mV peak
voltage over the length of the cable. Typically, this results in a barely visible hum bar. Higher
currents, of course, will make the disturbance more visible. Once the offending interface is
located, a solution can be considered. It’s clear from the table that larger-diameter cables, with
more copper (and less resistance) in their shields, will tolerate higher ground loop currents.

4.4 - SOLUTIONS [25]

At power frequencies, about half of the voltage drop over the length of a coaxial cable’s shield is
added directly to the video signal. Therefore, the objective of any solution is to reduce this voltage
drop. Obviously, it makes sense to reduce system ground voltage differences as much as
possible, but this often requires expensive utility power modifications or rewiring. Likewise, use of
shorter cables or types with lower shield resistance will reduce the coupling impedance. But, if
none of these measures is practical, the general solution is to reduce shield current by inserting a
device in the signal path that has high common-mode impedance (i.e., impedance to voltage
appearing between its inputs and outputs). There are three basic kinds of devices to do this:

True Isolation Transformers

Like an audio transformer for unbalanced interfaces, a transformer converts the video signal itself
into an ac magnetic field which then induces a replica signal in the secondary winding. Since the
two windings are electrically insulated, common-mode impedance is very high at 60 Hz. Likewise,
ground voltage is limited only by internal insulation and is commonly 300 volts or more.
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S-Video Isolator
Jensen ISO-MAX VS-1SS

Composite Video Isolator
Jensen ISO-MAX VB-1RR

Therefore, the biggest advantage of a
transformer is that loop current is
reduced to negligible levels and hum
rejection remains very high even with
extreme ground voltage
differences and/or very long cables.

Transformers are also passive (i.e.,
require no power) and bi-directional (passing camera control codes, for example, in the opposite
direction). Their main limitation is bandwidth. Realizable transformers cannot have dc response
and are limited to about a 1,000,000:1 frequency range. For NTSC video, poor low-frequency
response can cause black level to vary from the top of the image to the bottom — this is referred
to as “field-rate tilt.” Good performance in this respect requires low-frequency response extending
to about 10 Hz. Therefore, practical, state-of-the-art video transformers have good response from
about 10 Hz to 10 MHz, making them suitable for most composite or s-video applications.

Common-Mode Chokes

Whether called a hum eliminator, hum suppressor, humbucker, ground loop inhibitor, ground loop
isolator, or (mistakenly) transformer, the most widely used solution for hum bars is the common-
mode or CM choke. Although they use windings and core material like a transformer, their
construction and operation is fundamentally different.

Referring to the schematic, note that the video signal current flows from device A to device B
through the upper winding and returns through the bottom winding. Because the two windings
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Multi-Channel Common-Mode Chokes
Jensen ISO-MAX VBH-3RR and VBH-5BB

Differential-In DA
Video Accessory VB/VDA-H

have the same number of turns and the same current flows through them in opposite directions,
their magnetic fields cancel and there is no signal-related magnetic field. However, ground loop
current flows through the shield and inner conductors in the same direction (nearly all flows in the
shield since inner conductor circuit has much higher impedance). Therefore, ground loop current
does produce a magnetic field in the core that reacts with the coil to create an inductor (a.k.a.
choke), which determines common-mode impedance. The two “windings” are actually a single
length of miniature coaxial cable. Inductance for commercial units generally ranges from 25 to
250 mH, adding 10 to 100 Ù respectively to the impedance of the ground loop at 60 Hz. As
explained earlier, since the choke is now the highest impedance in the ground loop, most of the
ground voltage difference will now appear between its input and output ports. However, there is a
limitation on the ground voltage difference. The core material and number of turns used will
determine the common-mode voltage at which the core will become magnetically “saturated,”
causing the impedance of the choke to plummet. Therefore, ground voltage differences over a
certain level will cause hum rejection to deteriorate or vanish. Commercial units vary widely in this
respect! Compare specs (if they exist) carefully!

As with transformers, CM chokes are also passive and
bi-directional. The major advantage of a CM choke is
wide bandwidth. Low-frequency response extends to
dc and high-frequency response is limited only by the
length and type of coaxial cable used in the winding.
Typical bandwidths range from 100 to 1,000 MHz,
making these units suitable for high-definition TV
systems. Commercial units are available in 1, 3, and 5
channel configurations for composite, RGB, RGBHV,
and other multi-channel formats. The 5-channel
versions can be used with breakout cables adapting
them to many computer display formats as well.

Isolation Amplifiers
A differential amplifier, such as the generalized one shown in the
schematic has the capability to “null” its response to common-mode
voltage. Of course, at video frequencies, the circuit must be designed
carefully to maintain high bandwidth. In typical designs, the common-
mode impedance is about 1 kÙ. This relatively low common-mode
impedance makes rejection very dependent on the driving source
impedances. In a video system, these impedances vary with cable
resistance (length) and accuracy of the 75 Ù source. Therefore, most
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differential amplifier devices require a “trim” adjustment to achieve maximum common-mode
rejection. This might be a disadvantage in portable systems where cables are frequently changed
or re-routed. Although differential amplifiers require power and contain active circuitry, features
such as multiple outputs and adjustable gain can be useful.

How Much Bandwidth is Necessary?

Typical Source Format Resolution Frame Rate Bandwidth*

VHS Videocassette NTSC 240 “TV Lines” 30 Hz 4 MHz

Analog Broadcast NTSC 330 “TV Lines” 30 Hz 6 MHz

Std Digital Broadcast, DVD SDTV 480i 720 x 480 pixels 30 Hz 15 MHz

“Progressive” DVD EDTV 480p 720 x 480 pixels 60 Hz 30 MHz

Computer XGA 1024 x 768 pixels 60 Hz 71 MHz

HD Broadcast, DVD HDTV 720p 1280 x 720 pixels 60 Hz 83 MHz

HD Broadcast, DVD HDTV 1080i 1920 x 1080 pixels 30 Hz 93 MHz

Computer SXGA 1280 x 1024 pixels 60 Hz 118 MHz

* equals 1.5 × total pixels × refresh rate (formula courtesy of Peter Putman) for digital formats,
and 1.5 x inherent source bandwidth for analog formats. For good designs, this !3 dB overall
bandwidth will cause negligible resolution loss.

Which Device to Use?

Of course, performance requirements depend on bandwidth required, how much ground voltage
difference is present, and the length and type of cable at the problem interface. A few points to
keep in mind:

! Regardless of type, the ground noise rejection for any device will decrease as the cable gets
longer. A device that works well on a 10-foot cable may produce unacceptable results with a
100-foot cable.

! Ground voltage differences may exceed the capability of a device. Maximum voltages can
range from as little as 0.1 volt to as much as 1,500 volts rms (for opto-coupled units),
depending on make and model.

! Coaxial cables themselves limit bandwidth. For example, !3 dB bandwidth for 100 feet of RG6
or RG11 is about 300 MHz; for 100 feet of RG59, about 150 MHz; for 1,000 feet of RG11, only
5 MHz.

! Critical information may be conspicuously absent from manufacturer’s data sheets. In many
cases a key specification, such as “rejection” or “CMRR” is offered without a clue as to how
the test was actually performed — or might be verified by a skeptic like me!
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5 - RF INTERFERENCE AND POWER LINE TREATMENTS

5.1 - IT SURROUNDS US

Electromagnetic interference, commonly called EMI, isn't hard to find — it’s actually very difficult
to avoid, especially in urban areas. It can be radiated (through the air) and/or conducted (via
signal or power cables) into the equipment. Common sources of radiated interference include AM,
shortwave, FM, and TV broadcasts; ham, CB, remote control, wireless phone, cellular phone, and
a myriad of commercial 2-way radio and radar transmitters; and medical and industrial RF
devices. Electrical sparks, including welders, brush-type motors, relays, and switches are potent
wide-band sources of radiated and/or conducted interference. Less obvious sources include
arcing or corona discharge on power line insulators (common in coastal or high-humidity areas) or
malfunctioning fluorescent or neon lighting. Of course, lightning (the ultimate spark) is a well
known producer of momentary interference to virtually anything electronic. Because power and
telephone lines also behave as huge outdoor antennas, they are often teeming with AM radio
signals and other interference (see “It’s Not Just 60 Hz”). But the most troublesome sources are
usually inside the building and the interference is delivered through the power wiring. The
offending source may be in the same room as your system or, worse yet, it may be a part of your
system! The most common offenders are inexpensive light dimmers, fluorescent lights, CRT
displays, and devices with switching power supplies.

Immunity to RFI is part of good equipment design. Although testing for RFI susceptibility is
now mandated in Europe, the CE mark is certainly no guarantee of trouble-free performance.
Sadly, much of the equipment available today still has very poor immunity. In audio systems,
symptoms can range from actual demodulation of radio, CB, or TV signals, heard as background
music or voices (buzz in the case of TV signals) to more subtle distortions, often described as a
"veiled" or "grainy" quality in the reproduced audio. [11] Video, RF and data systems can exhibit a
wide range of symptoms. Under unfavorable conditions, external measures may be needed to
achieve adequate immunity. [29]

5.2 - SQUELCHING RF

For RF interference over about 20 MHz, ferrite “clamshell” cores
are easily installed over the outside of existing cables and can be
very effective. In most cases, they work best when placed on the
cable at or near the receive end. Often they can be made more
effective by looping the cable through the core several times.

If this is inadequate, or the frequency is lower (such as AM radio),
a low-pass (high-frequency reject) RFI filter may be necessary in
the signal line. The schematics below show sample filters for
unbalanced and balanced line-level applications. For best
performance and
highest audio quality,
use NP0 or C0G type
ceramic capacitors
with leads kept
extremely short (well
under ¼” preferred).
The 680 ìH inductors
are small ferrite core types — current rating and DC resistance are not critical. For interference
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Power Isolation Transformer

over about 100 MHz, a ferrite bead or two on a wire may be used in place of L. In very difficult AM
radio situations, it may be necessary to use higher values of C — up to about 1000 pF maximum.
For the balanced filter, the inductors and capacitors should be ±5% tolerance or better. These
filters generally work best at the receive end of the cable, inputs usually being more susceptible to
RF than outputs - although this is not always the case. If used for low-level microphone lines,
miniature toroid inductors should be used to prevent possible hum pickup from stray ac magnetic
fields.

5.3 - TECHNICAL GROUNDING

So-called “technical” or “isolated” grounding schemes can sometimes reduce electrical noise in
the safety ground system. It is most applicable in situations where conduit may come in contact
with building steel, water pipes, gas pipes, or other structures which may be grounded and
carrying noisy currents. Special insulated ground or "IG" outlets (generally orange in color) are
used, which intentionally insulate the green safety ground terminal from their mounting yokes or
saddles. Therefore, safety grounding is not provided by the "J-box" and conduit, but by a separate
insulated green wire which must be routed back to the electrical panel alongside the white and
black circuit conductors to keep inductance low. Most often, wiring is not "daisy-chained" to
outlets on the same branch circuit, so noisy leakage current from one device has less coupling to
others on the same branch circuit. However, inductive coupling from phase conductors to the
ground conductor (a major source of ground voltage differences between outlets) is not reduced.
Technical grounding practices are covered by NEC Article 250-74 and its exceptions.

5.4 - POWER ISOLATION, FILTERS, AND “BALANCED POWER”

Because system noises are most frequently coupled from the power line, solutions which
somehow “cleanse” or “purify” it have great intuitive appeal. However, in this author’s experience,
such treatments usually produce marginal improvements, if any. Generally, the most cost-
effective solution is to identify and eliminate the ground loops or other problems which allow the
noise to couple into signal paths. This approach solves the real problem. Treating the power
line to get rid of noise is like using a shotgun instead of a silver bullet to target the
problem!

First, when any line filter, conditioner, or
isolation transformer is used, Code requires
that the device as well as its load still be
connected to safety ground as shown.
Because transformer winding capacitances
and/or filter capacitors divert additional 60 Hz
and high-frequency noise currents into the
safety ground system, they frequently
aggravate the problem they claim to solve.
Second, the touted noise attenuation figures
for virtually all these power line devices are
very unrealistic. Measurements are made with all the equipment (generator, detector, and device
under test) mounted on a large metal ground plane. Although the resulting specs are impressive,
they simply don’t apply to performance in a real-world situation where grounding is via safety
ground wires or conduit. But such devices can be very effective when installed at the power
service entrance, where all system safety grounds are physically very close to a common
reference point (usually the ground rod).
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Balanced Power Attempts to Cancel Ground Current with Symmetrical Voltages

“Balanced power” or, more properly, symmetrical ac power is a seductively appealing concept.
However, its proponents often mistakenly assume that equipment has precisely matched
capacitances from each leg of the power line to chassis (C1 and C2 or C3 and C4) when they
explain how it itcancelsly ground noise. Of course, if this were true, capacitive noise currents from
each 60-volt leg would then be of equal magnitude and opposite polarity, and completely cancel.
But the assumption is not valid for the overwhelming majority of real-world equipment, whose
capacitance ratios are often 3:1 or 4:1. Even balanced power proponents admit that actual noise
reduction is usually under 10 dB and rarely exceeds 15 dB (recall that 10 dB noise reductions
are generally described as “half as loud” by listeners). And it’s not likely that equipment
manufacturers will ever adopt expensive power transformers with capacitively “balanced” primary
windings or RFI filters that use precision capacitors.

But balanced power can make cost-effective sense in some systems. One example might be a
video duplication facility having 50 unbalanced (coax) video interconnects and hum bars at an
unacceptable level of !30 dB. Here, the 10 dB improvement likely from balanced power (or
“technical grounding” for that matter) might reduce the hum bars to a more acceptable level of
!40 dB, effectively solving the problem. But, for audio, a 10 dB improvement will rarely make the
difference between unacceptable and acceptable performance! In reality, many of the benefits
often ascribed to “power treatment” schemes are simply due to plugging all system
equipment into the same outlet strip or dedicated branch circuit. For obvious reasons, this
is always a good idea!

A simple outlet wiring
error that swaps the
neutral and safety
ground conductors
allows load current to
flow in the safety
ground wiring. The
abnormally high
voltage drops created
can cause severe
ground noise in
systems using safety-
grounded equipment. This error cannot be found with simple outlet testers, but measuring current
at points A, B, and C with a clamp-on ammeter will clearly reveal it. [30]

5.5 - SURGE SUPPRESSION CAUTIONS

Over the years, fear, horror-stories, and junk science have been used to sell a host of surge
protection devices. However, thoughtless use of conventional surge suppressors at outlets can
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Series-Mode Surge Protection
Surge-X SX-2120

Series-Mode Protection for Branch Circuit
Surge-X SX-15NE

actually increase the risk of equipment damage! Ordinary suppressors use three MOV (metal-
oxide varistor) devices that divert surge energy into the safety ground system. As shown in the
following drawing, during an actual surge or spike very high voltage differences are created in the
safety ground system. When signal lines connect devices on different outlets or branch circuits,
interface circuits are often damaged when exposed to these high voltages. [31]

To protect against lightning induced power line surges, protective devices need to be installed at
the main service entry. For protecting sub-circuits or pieces of equipment, I highly recommend
series-mode suppressors, such as those made by Surge-X. Rather than diverting surge energy,
series-mode devices present a high impedance to the surge that limits its current and slowly
dissipates its energy. They don’t dump noise or potentially damaging high currents into the safety
ground system.
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