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Abstract

We develop the asymptotics of linear filtering when some of the
observation and driving noises are small. We show, using a Girsanov
transformation, that linear filters are asymptotically optimal for certain
nonlinear filtering problems.

1. INTRODUCTION

At present the most widely used algorithm for nonlinear filtering is the
Extended Kalman Filter. This is a heuristically derived method, whose
"...performance must be verified by monte carlo simulation. There is no
guarantee that the actual estimate obtained will be close to the truly optimal
estimate. Fortunately, the extended Kalman filter has been found to yield
accurate estimates in a number of important practical applications. Because of
this experience and its similarity to the conventional Kalman filter, it is
usually one of the first methods to be tried for any nonlinear filtering
problem." Gelb et. al. [3, p. 189]

In this paper we would like to briefly describe a new nonlinear filter
which in implimentation resembles the Kalman and Extended Kalman Filters. It is
not applicable to every nonlinear filtering problem. Loosely speaking, it is
appropriate for those problems in which the nonlinearities depend only on state
variables which can be estimated quickly and accurately.

If some of the observation and driving noises are small then there are

such state variables, but it is not always obvious whether the nonlinearities
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depend only on these variables. This is because linearity is in the eyes of the
beholder, or more precisely, in the coordinate system of the beholder.

Nonlinear changes of coordinates can transform a linear filtering problem into a
nonlinear one and vice versa. A key component of our approach is to choose
coordinates so that the problem looks as linear as possible. fn this paper we
shall not describe how this is done but instead refer the reader to [9].

These changes of coordinates are computed off-line when the filtering
algorithm is being developed. This increased computational burden and the
restriction to problems with small noises and complimentary nonlinearities are
the principle disadvantages of our method as compared with the Extended Kalman
Filter. The principle advantages are that two-fold. The first is that our
filter can be shown to be asymptotically optimal. As the small noises and/or
the nonlinearities go to zero our filter performs asymptotically as well as the
optimal nonlinear filter. The additional error incurred by using our filter
instead of the optimal nonlinear filters is asymptotically smaller than the
error of the optimal nonlinear filter.

The second advantage of our filter over the Extended Kalman Filter is that
the filter gains can be computed off-line before filtering has begun as in the
standard Kalman filter. This greatly reduces the real time computational burden
and hence the filter can be implimented by a much slower processor for a given
dimensional problem. Moreover, our filter can be taken to its long time limit
where the filter gains are constant as in the stationary Kalman and Wiener
Filters.

The derivation of our filter is rather complicated as it involves
geometric, stochastic and asymptotic techniques. In this paper we give an
overview of the asymptotic and stochastic aspects of the approach and only

indicate the methods of proof. The full details will appear in [9].
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2. ASYMPTOTICS OF LINEAR FILTERING

In this section we discuss the asymptotics of the Kalman-Bucy filter for a
linear system with some small observation and driving noises. We describe how
some of the states can be estimated quickly and accurately, while chers cannot.
Haddad [5] has considered the filtering of linear systems with two time scales.
Hijab [6,7] applied WKB and large deviations techniques to nonlinear filtering
problem where all the noises are small. Our approach is closer to that of
Katzur, Bobrovsky and Schuss [8] and Picard {101 who considered the filtering of
a one-dimensional nonlinear state process with small observation noise. See
also the review article of Blankership [1] and its references.

Our approach is to expand the linear filtering equation in terms of a
small parameter which measures the size of the small noises and to solve these
equations for their lowest order nonzero terms. We do not give proofs but our

approach is a standard one, which can be found in the usual references such as

[21.
In this section we are concerned with the linear filtering model
(2.1a) dx = Axdt + Bdw
(2.2b) dy = Cxdt + Ddv
(2.2¢0) x(0) = x°

where x(t) € IJI, y(t) € HJ), w(t) and  v(t) are independent Wiener processes

with covariances Q(tAs) and R(tAs) and x° is an independent Gaussian

~

random vector of mean xo and covariance P(0). The matrices A, B, C, D, Q and
R are assumed to be autonomous and (C,A) is assumed to be an observable pair.
We also assume that certain of the observation and driving noises are

"small". To make this precise it is convenient to make a change state
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coordinates so that the system is in observable form. We elaborate on this
point. Let (C,A) have observability indices 9,1, ,lp > 0. This means that

we can choose coordinates

= *
(2-3) X (X11, ’XHL ) rxp1: ,qu‘ )
1 p
s0 that
(2.4) C.AJ_1x = X, .
i ij
for 1 =1, ,pand1£jiki.

Relative to these coordinates we have the observable form

(2.5a) a-Jo ]

e

(2.5¢) ¢ = 0 \

The p diagonal blocks of A and C are 9’1 xli and 1 x R.i respectively.

We have chosen the coordinates (2.4) because they are convenient for the

describing which noises are small. The small noise indices k1 pEREYd kp, >0

are integers satisfying O < ki < li. If ki > 0 we assume that there is small

observation noise in the differential equation for yi and small driving noise
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in the differential equations for x ,j=1, Just how small is "small"

i3 ,ki—1.

depends on ki and j. In particular we assume that
ki—l ]
(2.5b) B = €
\ 0 0 0
!
1
. \ 0
k -1
e P
0 0 ~_.0
€
1
S 1
kl
(2.5d) D = € 0

We subdivide the x and y vectors into fast and slow components,
= *
(2.6a) Xp (XH""’XH(]’ 'XP1’ "xpk )
(2.6b) ( :
: R S R T A N R S EAREE LS AL
1 1 P
The dimension of x_. is n_ = k, + + k and the dimension of x_ is n = n-n._.
f f 1 P s s f
Suppose ki >0 if i < q and ki =0 if i > q then
(2.6c) Ve (y1,.--.yq)
(2.6d) Vg = (yqﬂ,...,yp)

We make similar decompositions of the noises, w = (wf,ws) and v = (vf,vs).
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Instead of fast and slow, one could call these the noiseless and noisy
scalings on the noises (2.5b,d) have been
have a time constant of

The ¢
e

components of x and vy.
chosen so that dynamics of the errors in estimating
order €. The errors in estimating Xs have a time constant of order 1. This

explains the fast/slow terminologv.
Some of the driving noises may actually be smaller than indicated (e.g., Q

The sizes of the small noises are fixed by the

might depend on «¢).

R
Unless these can be increased, there is no change in the

and/or
Of course one could

small noise indices.
order of magnitude of the error or the speed of the filter.
consider problems involving more than one small parameter but to keep things

reasonably simple we shall not do so.
It is convenient to put the model (2.1) in block form with respect to the

fast and slow variables
. " -
dxf} Ao Bes | | % Bee O (W
(2.7a) = dt +
dx J A A X 0 I dw
s sf ssd Usd s_|
— — - 5 -
dyf lcff 0 xp fo 0 dvf
(2.7b) = dt +
dy 0 C X 0 I dv
s ssd Lls g - _
I
‘xf(O) Pff(o) PfS(O)
(2.7¢) f ~ N (0, )
Lxs(o) Psf(O) PSS(O)_
Because of our earlier assumptions, (Cfr'Aff) is an observable pair in
dual Brunovsky form with observability indices k1, ,kq. The matrices C
€.

and fo depend on

and CSf are zero and Bff

fs
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To analyze the asymptotic behaviour as ¢ goes to zero of the filtering

equations for (2.7), we rescale variables

k172
yi/c 1<1<aq
(2.8a) Y, =
1 .
Yy qg<i<p
k;=j+1/2
X, . /e 1<j <k,
1 —-v =1
(2.8b) £, =
H X, . K. < j< 4.
ij i - i

We define the fast and slow parts of ¢ and & as in (2.6), then (2.7) becomes

— -1 -1/2 - -1/2

‘ T 3

[ag, £ A, € Aeg {gf € I 0 dwa
(2.10a) | = i dt +

ng ae'’?) o Lﬁs 0 I dw

-1 - -1/2

wa} I& Cop O W Ep € I 0] dv.
(2.100) | = | J de +

EWSJ L 0 CSS ES__ 0 I__. de

The Kalman-Bucy filter [3] for (2.10) is given by

- -1 -1/2 -
L " B
(2.11a) = dat +
- 1/2 -
Es“ ole ) Ass F’s
Kee  Kes d¥p = & Cpp Ep at
_st Kss dwf Css F’s at

where the filter gain K is given by
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-1, % -1 -1/2 -1
Kf‘f Kfs Hff Hfs € Cff 0 e R € R

(2.11b) =

sf 3s sf Hss sS sf sSs

and the covariance matrix I satisfies the Riccati differential equation

-1 -1/2
dlep  dllpg e hep ' Rl T Mg
; - +
e dn o' I, @
sf ss (e ss sf ss
-1 1/2 1 1/2
Hff Hfs € Aff (e )] € fo Qfs
-1/2, * * -1/2
Hsf Hss € Afs Ass € st st
N, 1 el o g e ah e o L. x
er Urs| |5 vrr € Fep F fs ¢ trr ff fs
- dt
* -
il Il 0 C € 1/2R R 0 C il I
sf s 55 sf ss ss. sf ss

We apologize to our gentle readers for displaying such an equation in
polite company. However the asymptotic solution of (2.13) is relatively
straightforward.

We assume the 1 has a series expansion in half-integer powers of e

0 172 1 2
€

(2.12) f=1e) - 10+ v e’ + o(e3'?)

If we plug this into (2.13) and collect the terms associated to like

powers of €, we obtain a series of simpler equations. For example collecting

terms in e_1, we obtain in the f - f block
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- *
(2.13a) o=¢" (.1 0

ee Tpe * Tep Bpp * Q

ff

0 * = 0
Tep Coe Bee Cpp Tepd At
and in the f - s block
(2.13b) 0 =¢ A Ity dt

where

(2.13¢) Ree = Ree ™ Bpg Ryg Ryp

~0 0 0 ¥ =
(2.14) Aff = Ape Top Crf Rff cff

0
The first equation (2.13a) is an algebraic Riccati equation for Hff.

This is the cA1 part of the Riccati equation for a reduced order filtering

problem

I
™
£
™
(Y
ot

+
™

i
(ve]
[o%
X,

(2.143) dg
(2.14p) dy,. = ¢ cff gf dt + ¢ dv
where We is as before and v, is a q dimensional Wiener process with

covariance ﬁ%f(tAs).

If we use H?f to define the filter gain, then the resulting filter is
asymptotically optimal for the reduced problem (2.14a,b) and is given by

(2.14¢) g = 1 R0 £oae + 10 ¢ ® dy
£ or °r £f Crf Cff

This filter is stable since (Cff,Aff) is an observable pair. 1In

particular this implies that K?f is invertible. From (2.13b) we see that
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(2.15) Hfs = nsf =0

Now we look at some equations obtained from (2.11¢c) by collecting terms in

¢ V2. The r-f block yields
-1/2 ~0 ] 1 ~0 %
(2.16a) 0 =¢ {Aff Hff + Hff Aff }

and the f-s block yields

(2.160) 0= 23 1! vq v 1°

The invertibility of KO

¢ and (2.16) imply that

(2.17a) 1§ =0

(2.17b) 0 o-ns - -@ ) e s a1
fs sf ff fs fs “ss

Next we look at an equation obtained from (2.11c¢c) by collecting terms in

eo. The s-s block ylelds

(2.18a) dHO = {A HO + HO A* +Q
55 ss 'ss ss ' ss ss
1% = -1 1 0 * = -1 0
Hsfcff ff Cff Hfs Hss ss  ss Css r[ss
1 * 0 0 * * 1
i sf Cff M Css 83 Hss S5 M cff Hfs} dt
where
= -1
(2.180) Rss ™ Rss ™ RBor Rep Bpg
and
-1 = -1
(2.18¢) M = -R R R

ff fs ss

These quantities and ﬁff arise because
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-1
-1 -1/2 = -1 1/2
€ Rff € Rfs eRff € M
(2.184) = = -1
s

-1/2
R
€ Rsf fss

By substituting (2.17b) into (2.18a) we obtain a Riccati differential
. 0 " R . X 0 i
equation for N_ (t). The initial condition is M. (0) = P_ (0) of (2.7¢). We
ss ss ss

solve this for HO (t) and then find H] (t) from (2.17b). These and HO
ss fs ff

yield the lowest order terms in the asymptotic expansion of the filter gain K

(2.11b),
Kff Kfs
(2.19) =
st Kss
0o * = - -1/2 * /2.1 ¥ — -1
MeeCrpRep  +7e) € e CopMre TeCoshss +O(e)
/2, 1 %= -1 0 % # 1 ¥ 0 ¥ — -1 1/2
(HsfcffRff +HsscssM )+ e Hsf‘Cf‘t‘M+HssCssRss +Xe )

Now suppose we filter (2.10) but instead of using the optimal filter gain

K in (2.11a) we use R} the lowest order nonzero terms in the asymptotic

expansion (2.19)

ff fs
(2.20a) _ _ =
af Kss
0 = -1/2 *
Ter Cer Rep € £ Cpe M
1/2, 1 * = 0 * * 1 * 0 * = -
(Hsf Cff Rff ¥ Hss Css M) Hsf cff Mo Hss Css Rss

The resulting filter is not optimal but it is asymptotically optimal. This

follows because the solution of the Lyapunov equation for the error covariance

for the filter with K gain has the same lowest order nonzero terms as the

covariance of the filter with gain K, i.e., both are of the form
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0 1/2 1
Tep * n(e) € Hsf(t) + 3(e)

172 1
€

(2.20Db)
1l (6) + m(e) (0 + oe'’?)

Note that the f-f block of (2.20b) is up to 0(e) the same as the error
covariance of the reduced order filter (2.14¢c). Hence this reduced order filter
is asymptotically optimal not only for the reduced order problem (2.14) but also
for the fast states of the full order problem (2.10). In other words the
optimal filter for the fast states asymptotically decouples from the slow state
estimates. Moreover this reduced order filter is autonomous to order ¢ and so
is the f-f error covariance.

The full order filter can be made autonomous in the standard fashion. As

1 0 . 1 0
L o, Hfs(t) and Hss(t) converges to the constant solutions Hfs(w) and Hss(w)

of (2.17a) and (2.18a). In particular Hgs(m) is the unique positive definite
solution obtained by substituting (2.17a) into the left side of (2.18a) and

equating it to zero. From Hgs(m) and (2.17a) we obtain H1 ().

fs
Next we look at the asymptotic behaviour of the eigenvalues of the filter

dynamies(2.20). It is not hard to see that as € + 0, k of these eigenvalues go

. . -1 . R
off to infiity like € . They are asymptotic to the eigenvalues of

-1 ~0
(2.21b) € Aff

The corresponding left eigenvectors converge asymptotically to the fast state
coordinate functions. For the autonomous filter the remaining n-k eigenvalues
remain finite and converge to the eigenvalues of

0 )_1A

~ 1 ®
(2.22b) ASS( ) LN ( )Cff.(Aff. fs

f

where

(2.22¢) AT (t) = A -0 (t) C C
55 55 s3 ss 'ss

We return to the x-y coordinates of (2.3), (2.4) and (2.5).
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~ - ki—kr—j 0 ~
(2.23a) dx.. = x. ., . dt + ) € .. . (dy_ - x_. dt)
ij ij+1 1<r<q ij,ri r ri
k. ~j+1 -
+ € ) n}. 1 (dyr - det)
q<r‘ip Js
0 . 0 .
The symbol "ij 1 denotes the corresponding scalar entry of 1 in
s

distinction to IIO which is a submatrix of IIO. If 1 <i<p and ki <j <

ff i
then
p ll"
(2.23b) dx,, = Voa.. x4t
iJ re1 pap HareTe
. *kr 1 ~
+ ) € T, . (dy_ - x . dt)
14r<q ij,1r r ri
. 0 ~
+ ¥ w, . . (de - x . dt)
a<r<p ij,ir r ri

In (2.23b) we have included those terms of order (9(51/2) that we neglected in
the development subsequent to (2.10b).
This filter is asymptotically optimal with an asymptotic error covariance

P obtained by scaling 1N in accordance with (2.8). In other words

kitkpmizerl

2.24 - i j . 1 .

(2.24%a) pij,rp € ("ij,rp+ (e)) if 15351(1 and ipikr
kimd+ 172

. = i j . < .

(2.24pb) pij,rp € (“ij,rp+ ole M if 1 <i g k1 and kr‘ <p < Qr'
o /2, X

(2.24¢) pij,r‘p = ﬂij,r’p+ e ) if ki <J< H,i and kr <p< Q'r*'
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Notice that error covariance (2.24a) of the fast coordinates goes to zero n(e)

or faster while that (2.24c) of the slow coordinates is ((1). The cross

: . 1/2
variance (2.24b) between the fast and slow variables goes to zero e faster
than would be expected from (2.24a,c). This is because HO = 0. In other

fs

words asymptotically speaking the fast and slow errors are orthogonal.

3. NONLINEAR FILTERING

Suppose we consider a nonlinear perturbation of (2.7) i.e.

dxf Aff Afs Xp 0
(3.1a) = dt + dt
dxs Asf Ass *s as(xf)
Bff 0 dwf
0 I dw
s
dyf Cff 0 xf fo 4] dvf
(3.1b) = dt +
dy 0 C X 0 I dv
S 58 s
xf(O) Pff(o) Pfs(O)
(3.1¢) ~ N(O, )
xs(O) Psf(O) PSS(O)

Of course this (3.1) is a very specific form of the nonlinear filtering
model. In a future paper [9] we discuss how we might be able to transform a
general problem into this form.

A closely related filtering model is

Tl 1A SIANYAY .
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dxp T 0
(3.2a) = dt + _ dt
dxs Asf‘ Ass X as(xf)
.0
Bff 0 dwf
0 1 dwo
S
d C ¢} X D 0 dv0
Ve rf £ £f £
(3.2b) - dt + 0
dy 0 C X ¢} I dv
S, 53 S S
g Pepl0) Ppg(0)
(3.2¢0) ~ N (0, )
% P_.0 P (0)

where xf, ;s are defined by
dx, Pff g 11 %, 0
(3.3a) _ = _ dat + _ dt
CU(s |_Asf Ass _xs 0‘s(xf‘)
bep Lpg| [9¥p 7~ Cpp X AT
+ ~
L'sf‘ L‘ss_ dys N Css Xs e
xf(O) 0
(3.3b) _ =
xS(O) 0

The matrix L is the gain of the Kalman-Bucy filter for (3.2a,b,c) when

Even when a * 0, (3.2a,b,c) is a linear filtering problem because the

nonlinearity as(;f‘) is a functional of the observations given by (3.2h) and

373
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(;},;é) is the optimal estimate of the state of (3.2). The error covariance is

not affected by us(;k).

We would like to study the relationship between (3.1) and (3.2, 3.3).

Notice that the driving and observation noises are different in (3.1) and (3.2),

although we assume that w and wo have the same distribution as does v and

0
v

Let £ be the measure on the spaces of paths {wo(t),vo(t)} under which

they are independent Wiener processes with the desired covariances. We define

w(t) and v(t) as functionals of wO(t) and vo(t) by the stochastic

differential equations

(3.4a) aw, = dw(f) , we(0) = w?,(O) -0

(3.40)  aw_ = aw v (a_(X.(0)-a_(x.(£)))dt , w_(0) = w2(0) = O
L} s s f s °f ' s s

(3.4¢) av = av’ , v(0) = v2(0) = o.

where xf(t) and ;}(t) are the functionals of wO, vO defined by (3.2) and

(3.3).

The process (w(t),v(t)) defined by (3.4) is not Wiener under the measure

. But using the theorem of Girsanov [4], one can define a new probability

measure ¥ which is a Wiener measure on the space of paths (w(t),v(t)) and

which is absolutely continuous with respect to PO. This measure is defined by

its Radon-Nikodym derivative with respect to PO



Asvmptotics of Linear and Nonlinear Filters 375
ar
ar?

if 7t is the o-algebra generated by the {x(s),y(s): 0< s <t} of (3.2) and

(3.%) A

(3.3) then A(t) defined by

(3.6) e = 60 F)

is an ?t - martingale. (EO denotes expectation with respect to PO and E

denotes expectation with respect to ). Moreover A(t) satisfies the

stochastic differential equation.

(3.7a) da) = a8  (Dawo (L) A0) = 1
where
(3.7b) B(t) = a (x(t)) - as&(t)).

Hence by using the linear model and filter (3.2) and (3.3) and A, we can
construct the nonlinear model (3.1). If ¢(x) is any smooth function of x, we

denote by ¢(t) the conditional mean of ¢(x{(t)) with respect to § given

the past observations of the nonlinear model (3.1).

We denote by ¢(t) the conditional mean of  ¢(x(t) with respect to PO

given the past observations of the linear model (3.2) (3.3). Then

0 0
(3.8) ¢(t) + E(olx)y,) - E (0 Gy IN () [y ) [ET(ACE) [y, )

= o(x ALY /p(E) .

%, is the o-algebra generated by the past observation {y(s): 0<s <t} of

either model.
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Lemma EO(AtI ) = a, =1 a.s.

Proof We use a technique of E. Wong [11, p. 269]. K£ is a Yt local

martingale so by the martingale representative theoren,

(3.9) dA(t) = n(t)dy(t)

where n(t) is a ut adapted process of dimension 1xp. But
E @)y, ©]y,) = E@G©y, (0y,)
i t i t

Using the martingale differential rule and (3.7) we obtain

(3.10) EO(dA(t)Yi(t)lut) = EO(A(t)dyi(t)

+ y; (©nle) B*(t)dwg(t) + oy B(e)” d<w2 (t),yi(t)>|ut)

0

X(t)ci;(t)dt

0.
where <wgtt),yi(t)> denotes the quadratic variation and Ci is the ith row in

(2.5¢). In a similar fashion from (3.9) we obtain

O, 0~
(3.11)E ET(d(ale)y (t)]y) = B (A(t)dy, (t)

vy nt)dy(e) + n(t)dy (L) ;y(e)>fy,)

I

(L) ciikt)dt + yi(t)n(t)CE(t)

*
+ ﬂ(t)DRDi

where D  and its iEQ- row Di are from (2.5d) and R(tas) is the covariance

of the observation noise. Equating (3.10) and (3.11) we have
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n{t) (Cx(t) y () + DRD:) =0

for i =1, »P.  But clearly this implies that n(t) = 0 a.s. QED.

In light of the above lemma we have a simplification of (3.8)

- o -
(3.12) o(t) = E(o(x )|y, ) - E (G{x IAE) [y, ) = ¢{LIACE)

The differential equation (3.7) has the solution

['t

* o] 1 *
(3.13) ACt) = exp(| 8 (Ddw (1) -5 8 (T)B(T)dT)

o

where B(t) is given by (3.7b). There are several ways to analyze (3.13) as
€ » 0 including the method of large deviations {2]. However for simplicity we

shall use only the most straightforward approach. Recall that xf(t) and

;f(t) of (3.7b) are from the linear model and filter (3.2) and (3.3). Hence

the conditional (and unconditional) distribution of xr(t) - ;}(t) is a zero
mean Gaussian with variance Pff that goes to zero with ¢ according to the

asymptotic expansion (2.24a). 1If as(xf) is a smooth function of Xq

satisfying a Lipschitz condition like

2

1 2 1
]as(xf) as(xf) | <t Xe = X
then B8(t) is approximately a zero mean Gaussian with variance G(eLz). The

size of second derivative of a and e determine how much Bg(t) differs from

a Gaussian.
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In any case by a standard result [2, p.44] we see that

(3.14) £{ lin max lAt—1|=O} =1
€*0  0<t<T

This justifies using the linear filter (3.3) to filter the nonlinear model

(3.1).
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