
Web Archive Profiling Through CDX
Summarization

Sawood Alam1, Michael L. Nelson1, Herbert Van de Sompel2,
Lyudmila L. Balakireva2, Harihar Shankar2, and David S. H. Rosenthal3

1 Computer Science Department, Old Dominion University, Norfolk, VA (USA)
{salam,mln}@cs.odu.edu

2 Los Alamos National Laboratory, Los Alamos, NM (USA)
{herbertv,ludab,harihar}@lanl.gov

3 Stanford University Libraries, Stanford, CA (USA)
dshr@stanford.edu

Abstract. With the proliferation of public web archives, it is becom-
ing more important to better profile their contents, both to understand
their immense holdings as well as support routing of requests in the Me-
mento aggregator. To save time, the Memento aggregator should only
poll the archives that are likely to have a copy of the requested URI.
Using the CDX files produced after crawling, we can generate profiles
of the archives that summarize their holdings and can be used to in-
form routing of the Memento aggregator’s URI requests. Previous work
in profiling ranged from using full URIs (no false positives, but with
large profiles) to using only top-level domains (TLDs) (smaller profiles,
but with many false positives). This work explores strategies in between
these two extremes. In our experiments, we gained up to 22% routing
precision with less than 5% relative cost as compared to the complete
knowledge profile without any false negatives. With respect to the TLD-
only profile, the registered domain profile doubled the routing precision,
while complete hostname and one path segment gave a five fold increase
in routing precision.

Keywords: Web Archives, Profiling, CDX Files, Memento

1 Introduction

The number of public web archives supporting the Memento protocol [17] na-
tively or through proxies continues to grow. The Memento Aggregator [12], the
Time Travel Service1, and other services, both research and production, need
to know which archives to poll when a request for an archived version of a file
is received. In previous work, we showed that simple rules are insufficient to
accurately model a web archive’s holdings [4, 3]. For example, simply routing
requests for *.uk URIs to the UK National Archives is insufficient: many other

1 http://timetravel.mementoweb.org/

2 Sawood Alam et al.

archives hold *.uk URIs, and the UK National Archives holds much more than
just *.uk URIs. This is true for the many other national web archives as well.

In this paper we examine strategies for producing profiles of web archives.
The idea is that profiles are a light-weight description of an archive’s holdings to
support applications such as coordinated crawling between archives, visualiza-
tion of the archive’s holdings, or routing of requests to the Memento Aggregator.
It is the latter application that is the focus of this paper.

An archive profile has an inherent trade-off in its size vs. its ability to accu-
rately describe the holdings of the archive. If a profile records each individual
original URI (URI-R in Memento terminology) the size of the profile can grow
quite large and difficult to share, query, and update. On the other hand, an ag-
gregator making routing decisions will have perfect knowledge about whether or
not an archive holds archived copies of the page, or mementos (URI-Ms in Me-
mento terminology). On the other hand, if a profile contains just the summaries
of top-level domains (TLDs) of an archive the profile size will be small but can
result in many unnecessary queries being sent to the archive. For example, the
presence of a single memento of bbc.co.uk will result in the profile advertising
.uk holdings even though this may not be reflective of the archive’s collection
policy.

In this paper we examine various policies for generating profiles, from the
extremes of using the entire URI-R to just the TLD. Using the CDX files2 of
the UK Web Archive (covering 10 years and 0.5 TB) and the ODU copy of the
Archive-It (covering 14 years and 1.8 TB), we examine the trade-offs in profile
size and routing precision for three million URIs requests.

2 Related Work

Query routing is common practice in various fields including meta-searching
and search aggregation. Memento query routing was explored in the two efforts
described below, but they explored extreme cases of profiling. We believe that an
intermediate approach that gives flexibility with regards to balancing accuracy
and effort can result in better and more effective routing.

Sanderson et al. created exhaustive profiles [13] of various IIPC member
archives by collecting their CDX files and extracting URI-Rs from them (we
denote it as URIR Profile in this paper). This approach gave them complete
knowledge of the holdings in each participating archive, hence they can route
queries precisely to archives that have any mementos (URI-M) for the given URI-
R. It is a resource and time intensive task to generate such profiles and some
archives may be unwilling or unable to provide their CDX files. Such profiles
are so big in size (typically, a few billion URI-R keys) that they require special
infrastructure to support fast lookup. Acquiring fresh CDX files from various
archives and updating these profiles regularly is not easy.

2 CDX files are created as an index of the WARC [10] files generated from the Heritrix
web crawler; see [8] for a description of the CDX file format.

Web Archive Profiling Through CDX Summarization 3

Many web archives tend to limit their crawling and holdings to some specific
TLDs, for example, the British Library Web Archive prefers sites with .uk TLD.
AlSum et al. created profiles based on TLD [4, 3] in which they recorded URI-R
Count and URI-M Count under each TLD for twelve public web archives. Their
results show that they were able to retrieve the complete TimeMap [17] in 84%
of the cases using only the top 3 archives and in 91% of the cases when using the
top 6 archives. This simple approach can reduce the number of queries generated
by a Memento aggregator significantly with some loss in coverage.

3 Methodology

In this study we used CDX files to generate profiles, but profile generation is
not limited to only CDX processing, it can also be done by sampling URI sets
and querying the live archives or by using full-text searching feature provided
by some archives. To deal with periodic updates of profiles, smaller profiles are
generated with new data and these small profiles are merged into the base profile.
Without an option to merge smaller profiles to build a large profile gradually,
updates will require a complete reprocessing of the entire dataset, including the
dataset previously processed. In these two cases the statistical measures such as
URI-R count cannot have absolute values, so we use the sum of URI-M counts
(as “frequency”) from all the profiles under each URI-Key and keep track of the
number of profiles they came from (as “spread”) as an indication of the holdings
as shown in Figure 1.

URI-Key is a term we introduced to describe the keys generated from a URI
based on various policies. So far we have created policies that can be classi-
fied in two categories, HmPn and DLim. Policies of the generic form HmPn
mean that the keys will have a maximum of “m” segments from the host-
name and a maximum of “n” segments from the path. A URI-Key policy with
only one hostname segment and no path segments (H1P0) is called TLD-only
policy (as discussed in Section 2). H3P0 policy covers most of the registered
domains (that have one or two segments in their suffix [11], such as .com or
.co.uk). If the number of segments are not limited, they are denoted with
an “x”, for example, HxP1 policy covers any number of hostname segments
with maximum of one path segment and HxPx means any number of hostname
and path segments. Note that the HxPx policy is not the same as the URIR
policy (as discussed in Section 2) because it strips off the query parameters
from the URI, while the URIR policy stores complete URIs. Policies of the
generic form DLim are based on the registered domain name, the number of
segments in sub-domain, path, and query sections of a URI and the initial letter

1 @context https://oduwsdl.github.io/contexts/archiveprofile.jsonld
2 @id http://www.webarchive.org.uk/ukwa/
3 @about {"name": "UKWA 1996 Collection", "type": "urikey#H3P1", "...": "..."}
4 com,dilos)/region {"frequency": 14, "spread": 2}
5 edu,orst)/groups {"frequency": 3, "spread": 1}
6 uk,ac,rpms)/ {"frequency": 124, "spread": 1}
7 uk,co,bbc)/images {"frequency": 152, "spread": 3}

Fig. 1: Sample Profile in CDXJ Format

4 Sawood Alam et al.

1 URI: https://www.news.BBC.co.uk/images/Logo.png?width=200&height=80&rotate=90#top
2 Canonical URL: news.bbc.co.uk/images/Logo.png?height=80&rotate=90&width=200
3 SURT URL: uk,co,bbc,news)/images/Logo.png?height=80&rotate=90&width=200
4 Registered Domain: uk,co,bbc)/
5 Segment Counts: {subdomain:1, path: 2, query: 3}
6 Path Initial: i
7 URI-Keys:
8 H1P0: uk)/
9 H3P0: uk,co,bbc)/

10 HxP1: uk,co,bbc,news)/images
11 DDom: uk,co,bbc)/
12 DPth: uk,co,bbc)/1/2
13 DIni: uk,co,bbc)/1/2/3/i

Fig. 2: Illustration of URI-Key

of the path. A generic template for this category of URI-Keys can be given as
“registered domain)/[#subdomain[/#path[/#query[/path initial]]]]”.
The DDom policy includes only the registered domain name in Sort-friendly URI
Reordering Transform (SURT) [14] format, while DSub, DPth, DQry, and DIni
policies also include sections of the template up to #subdomain, #path, #query,
and path initial respectively.

Figure 2 illustrates the process of generating URI-Keys from a URI. URIs are
first canonicalized then go through SURT. For HmPn policies, query section and
fragment identifier of the URI are removed (if present), then depending on the
values of “m” and “n” any excess portions from the SURT URL are chopped off.
The hostname segments are given precedence over the path segments in a way
that no path segment is added until all the hostname segments are included,
hence uk,co)/images is an invalid URI-Key, but uk,co,bbc,news)/images

would be valid if the hostname is news.bbc.co.uk or www.news.bbc.co.uk.
For DLim policies, the registered domain name is extracted with the help of
the Public Suffix list (which is updated periodically). Then depending on the
individual policies, segments from zero or more sections (such as sub-domain
and path) of the URI are counted, and if necessary, the initial letter of the first
path segment is extracted (replaced with a “-” if not alphanumeric). These values
are then placed inside the above template to form the key.

4 Implementation

We have implemented a URI-Key Generator, more than one CDX Profiler, and
a script to merge profiles and published the code on GitHub3. We have also
made the code available for analyzing and benchmarking the profiles. We plan
to collect all the profiles generated from various places in a public repository,
but our script currently generates local files and publishes them in the form of
a public Gist4 if configured to do so.

Our initial implementation used JSON [5] and JSON-LD [15] for profile seri-
alization. It was good for small profiles, but for large profiles any data format that
has a single root node (such as JSON, XML, or YAML) introduces many scale
challenges. To make frequent lookup in these single root node profiles efficient,
they need to be completely loaded into memory, which becomes a bottleneck. A

3 https://github.com/oduwsdl/archive_profiler
4 https://gist.github.com/

Web Archive Profiling Through CDX Summarization 5

Fig. 3: Railroad Diagram: CDXJ File Format

single malformed character can make these profiles unusable. Hence a more lin-
ear key-value(s) based data formats such as CDX or ARFF [18] is more suitable
in such cases as they allow an arbitrary split of data and enable easier profile
merging. We have come up with a similar sort and index friendly file format
“CDXJ” that is a fusion of CDX and JSON formats as illustrated in Figure 3
and utilized in Figure 1. The new CDXJ format also reduces the number of keys
in a profile as it allows partial key lookup as opposed to the JSON format where
we had to store all the intermediate smaller keys for higher level statistics.

Our initial implementation built the complete data structure in memory be-
fore serializing it to a file. We encountered a limitation in Python’s dictionary
implementation that degrades performance significantly when the number of
keys in the dictionary is large. Hence, to make it scalable, we experimented with
different profile generation optimization techniques such as preprocessing CDX
files with standard Unix utilities (like grep, sort, uniq, sed, and awk) or using
key-value databases (file based or in memory) for intermediate processing. The
latter approaches involve more steps and setup, but scale well.

5 Evaluation

We generated 23 different profiles (17 HmPn policies, five DLim policies, and one
URIR policy) for each archive dataset to measure their resource requirement and
routing efficiency. To perform the analysis we prepared two types of datasets,
archive profiles and query URI-Rs. For profiles, we used two archives:

– Archive-It Collections – We acquired the complete holdings of Archive-It [9]
before 2013 and indexed the collections (in CDX format) to create a replica
of the service. The archive has 2,952 collections with more than 5.3 billion
URI-Ms and about 1.9 billion unique URI-Rs. Our Archive-It replica has
more than 1.9 million ARC/WARC files that take about 230 TB disk space
in compressed format. We created URI-Key profiles with various policies for
the entire archive from the CDX files.

– UK Web Archive – We acquired a publicly available CDX index dataset from
UKWA [16]. The dataset has separate CDX files for each year. We created
individual URI-Key profiles from each of the early 10 years of CDX files
(from year 1996 to 2005) with different profiling policies. We also created a
combined profile by incrementally accumulating data for each successive year
to analyze the growth. These 10 years of CDX files have about 1.7 billion
URI-Ms and about 0.7 billion unique URI-Rs.

6 Sawood Alam et al.

A second dataset was created by collecting three million URIs; one million
random unique URI-R samples from each of these three sources:

– DMOZ Archive – URIs used in a study of HTTP methods [1].
– IA Wayback Access Log – URIs extracted from the access log used in a study

of links to the Internet Archive (IA) content [2].
– Memento Aggregator Access Log – URIs extracted from the access log used

in a previous archive profiling study [4].

5.1 Profile Growth Analysis

In commonly used CDX files each entry corresponds to a URI-M5. The length of
each line in a CDX file depends on the length of the URI-R in it. Our experiment
shows that the average number of bytes per line (α) in our dataset is about 275,
which means every one gigabyte of CDX file holds about 3.9 million URI-Ms.
Figure 4(a) can be used to estimate α in a CDX file. Equation 1 can be used
to quickly estimate number of URI-Ms (Cm) in a large collection if total size of
CDX files in bytes (Sc) is known.

Cm =
Sc
α

(1)

Figure 4(b) shows the relationship between URI-M Count (Cm) and URI-R
Count (Cr) in two ways; 1) for each year of UKWA CDX files individually as
if they were separate collections and 2) accumulated ten consecutive years of
data one year at a time while each time it recalculates total number of unique
URI-Rs visited. The ratio of URI-M Count to URI-R Count (γ) as shown in
Equation 2 is indicative of the average number of revisits per URI-R for any given
time period. The value of γ varies from one archive to the other because some
archives perform shallow archiving while others revisit old URI-Rs regularly.
In our dataset the value of γ is 2.46 for UKWA and 2.87 for Archive-It. The
accumulated trend better accounts for how archives actually grow over time. It
follows Heaps’ Law [6] as shown in Equation 3 where URI-Rs are analogous to
unique words in a corpus. K and β are free parameters that are affected by the
value of γ, but the actual values are determined empirically. For the UKWA
dataset K=2.686 and β=0.911.

γ =
Cm
Cr

(2)

Cr = KCβm (3)

URI-Keys are used as lookup keys in the URI-Key profile. The number of
URI-Keys is a function of URI-Rs, not URI-Ms, hence increasing URI-Ms with-
out introducing new URI-Rs does not affect the number of URI-Keys, instead,
it only changes the value. Figure 4(c) shows the number of unique URI-Keys

5 In our dataset Archive-It has 0.71% non-HTTP entries in their CDX files while
UKWA has no non-HTTP entries.

Web Archive Profiling Through CDX Summarization 7

(a) URI-Ms Growth with CDX Size (b) URI-R Growth with URI-M Count

(c) Space Cost (d) Time Cost

Fig. 4: Growth Costs Analysis for Different Profiling Policies

(Ch) generated for different numbers of unique URI-Rs (Cr) on different pro-
filing policies. Every profiling policy follows a straight line with a slope value
(φpolicy) and zero Y-axis intersect because for zero URI-Rs there will be zero
URI-Keys. For a given profile policy, we define the ratio of URI-Key Count to
URI-R Count as Relative Cost (φpolicy) as shown in Equation 4. The Relative
Cost (φpolicy) varies from one archive to the other based on their crawling pol-
icy. Archives that crawl only a few URIs from each domain will have relatively
higher Relative Cost than those who crawl most of the URIs from each domain
they visit. Table 1 lists φpolicy values for UKWA dataset.

φpolicy =
Ch
Cr

(4)

Figure 4(d) illustrates the time required to generate profiles with different
policies and different data sizes. Previously we used memory based, but now we
use a file based profiling, which scales better and allows for distributed process-
ing. Our experiment shows that the profiling time is mostly independent of the
policy used, but we found that DLim policies take slightly more time than HmPn
policies because they require more effort to extract the registered domain based
on the public suffix list. We found that about 95% of the profiling time is spent
on generating keys from URIs and storing them in a temporary file while the
remaining time is used for sorting and counting the keys and writing the final

8 Sawood Alam et al.

Table 1: Relative Cost of Various Profiling Policies for UKWA.
Policy Rel. Cost Policy Rel. Cost Policy Rel. Cost

φH1P0 8.5e-07 φH5P0 0.01368 φH3P3 0.34668
φH2P0 0.00026 φHxP0 0.01371 φHxP2 0.36298
φH2P1 0.00038 φDPth 0.01577 φHxP3 0.49902
φH2P2 0.00056 φDQry 0.01838 φHxP4 0.58442
φDDom 0.00857 φDIni 0.06892 φHxP5 0.64365
φH3P0 0.00858 φH3P1 0.11812 φHxPx 0.70583
φDSub 0.00876 φHxP1 0.16247 φURIR 1.00000
φH4P0 0.01340 φH3P2 0.25379

profile file. Hence a memory based key-value store can be used for the temporary
data to speed up the process. Also, when an archive has a high value of γ, it
might be a good idea to generate keys from each URI-R only once and multiply
the keys with the number of occurrences of the corresponding URI-Rs, but when
profiles are generated on small sub-sets of the archive there is a lower chance
of revisits. Mean time to generate a key for one CDX entry τ can be estimated
using Equation 5 where T is the time required to generate a profile from a CDX
file with Cm URI-Ms. The value of τ depends on the processing power, memory,
and I/O speed of the machine. On our test machine it was between 5.7e-5 to
6.2e-5 seconds per URI-M (wall clock time). As a result, we were able to generate
a profile from a 45GB CDX file with 181 million URI-Ms and 96 million unique
URI-Rs in it in three hours.

τ =
T

Cm
(5)

Figure 5 illustrates the correlation among the number of URI-Keys 5(a) and
profile size on disk 5(b) for various collection sizes with various profiling policies.
The policies are sorted in the increasing order of their resource requirement. If
generated profiles are compressed (using gzip [7] with the default compression
level), for bigger profiles they use about 15 times less storage than uncompressed
profiles, but result in a similar growth trend. These figures are helpful in identify-
ing the right profiling policy depending on the available resources such as storage,
memory, computing power. Here are some common observations in these figures:

– For host segments less than three, path segments do not make a significant
difference as they are not included unless all the host segments of the URI
are already included.

– Keeping either the hostname or path segments constant while increasing
the other shows growth in the value, but the growth rate decreases as the
segment count increases.

– DDom profile shows quite the same results as H3P0 profile.
– The last data-point (HxPx) shows a different trend, it is not just one path

segment ahead of its predecessor (HxP5), but any path segments more than
5 are included in it.

Web Archive Profiling Through CDX Summarization 9

(a) URI-Key Count. (b) Profile Size.

Fig. 5: Resource Requirement for Various Profiling Policies and Collection Sizes

– Growth due to path segments is significantly faster than the growth due to
hostname segments.

– If a single path segment is to be included, it is better to include all host
segments as it will not cause any significant resource overhead, but will
provide better details.

5.2 Routing Efficiency

To analyze the routing efficiency of profiles, we picked eight policies from the 23
policies we have used to generate profiles for both the archives in our dataset.
These policies are TLD-only (H1P0), H3P0, HxP1, and all the five variations of
the DLim policies. We then examined the presence of resources in the archives
for our three query URI sample sets, each containing one million unique URI-
Rs. Based on the profiling policy, a query URI-R is transformed into a URI-Key
then it is looked up in the URI-Key profile keys to predict its presence.

To establish a baseline, we only check to see if the lookup key is present in the
profile and do not use the statistical values (such as their frequency) present in
the profile. This brings false positives in the result, but no false negatives, hence
we do not miss any URI-Ms from the archive for the query URI-R. Table 2
is a good indicator of why archive profiles are useful: since both archives have
< 5% of any of the query sets, there would be many unnecessary queries if an
aggregator simply broadcasted all queries to all archives.

Routing Precisionpolicy =
|URI-R Present in Archive|

|URI-R Predicted by Profilepolicy in Archive|
(6)

As illustrated in Figures 6(a) and 6(b), from both archives it can be seen
that the Routing Precision (as defined in Equation 6) grows when a profile with
higher Relative Cost is chosen. Figure 6 shows that DDom profile doubles the
precision as compared to the TLD-only profile and the HxP1 profile brings five
fold increment in the routing precision. These figures also show that inclusion
of sub-domain count does not affect the results much as there are not many

10 Sawood Alam et al.

(a) Precision in Archive-It. (b) Precision in UKWA.

(c) Precision and Cost in Archive-It. (d) Precision and Cost in UKWA.

Fig. 6: Routing Precision of Different Profiling Policies in Different Archives.

domains that are utilizing more than one sub-domain. Figures 6(c) and 6(d)
show that there is significant gain in Routing Precision with little increment
in Relative Cost. The difference in the trends of Figures 6(c) and 6(d) can be
understood by means of the following factors:

– Table 2 shows that less than 0.3% of the sample URIs from MementoProxy
and IAWayback logs are archived in UKWA. This affects the growth in Rout-
ing Precision (on Y-axis) from one profile to the next.

– UKWA uses a shallow crawling policy which results in higher Relative Cost.
This increases the distance (on X-axis) from one profile to the next.

A URI-Key profile is more robust than a URIR profile because it can predict
the presence of resources in an archive that were added in the archive after the
profile was generated. For example, if a new image Large-Logo.png is added
under bbc.co.uk/images, it is very likely that the archives that crawl BBC will
capture the new image. Without any update the URI-Key profile illustrated in
Figure 1 will be able to predict the presence of the new resource, but a URIR
profile will need an update to include the new URI-R before it can predict it.

Table 2: Presence of the Sample Query URI-Rs in Each Archive.
Archive DMOZ MementoProxy IAWayback

Archive-It 4.097% 4.182% 3.716%
UK Web Archive 1.912% 0.179% 0.231%

Web Archive Profiling Through CDX Summarization 11

6 Future Work and Conclusions

In this paper we have examined the space and precision trade-offs in different
policies for producing profiles of web archives. We defined the term “URI-Key”
to refer to the keys generated from a URI based on various policies that are used
to track the distribution of holdings of an archive at different hostname and path
depths or different segment counts. We found that the growth of the profile with
respect to the growth of the archive follows Heaps Law, but the values of free
parameters are archive dependent. We implemented a URI-Key generator and
profiler scripts and published the code. We used CDX files from ODU’s Archive-
It replica and the UK Web Archive for generating profiles, and evaluated the
profiles using a query set of three million URIs, created from one million URIs
from each of DMOZ, IA Wayback access logs, and Memento Aggregator access
logs. With precision defined as correctly predicting that the requested URI is
present in the archive, we gained up to 22% routing precision without any false
negatives with less than 5% relative cost as compared to the complete knowledge
profile (URIR profile) that has both routing precision and relative cost 100%.
The registered domain profile doubles the routing precision with respect to the
TLD-only profile, while a profile with complete hostname and one path segment
gives five fold routing precision. We found that less than 5% of the queried URIs
are present in each of the individual archives. As a result, looking each URI up in
every archive is wasteful. Hence, even a small improvement in routing precision
can save a lot of resources and time in Memento aggregation.

Going forward, we plan to study the trade-off between the routing precision
and recall by utilizing the statistical values stored against each key in the profile.
We plan to develop a more sophisticated non-absolute statistical property to
predict distribution of the holdings for various lookup keys that remains useful
after merging multiple profiles. We plan to combine results of more than one
type of profiles (such as Time and URI-Key) to improve the routing precision
and recall. We also plan to create profiles of live archives from non-CDX sources,
such as URI and keyword sampling to generate URI-Key, Language, Time, and
Media Type profiles. We would also like to generate classification based profiles
such as news, social media, game, and art. Finally, we would like to implement
a production ready profile based Memento query routing system to be used in
aggregators.

7 Acknowledgements

This work is supported in part by the International Internet Preservation Con-
sortium (IIPC). Andy Jackson (BL) helped us with the UKWA datasets. Kris
Carpenter (IA) and Joseph E. Ruettgers (ODU) helped us with the Archive-
It data sets. Ilya Kreymer contributed to the discussion about CDXJ profile
serialization format.

12 Sawood Alam et al.

References

1. Alam, S., Cartledge, C.L., Nelson, M.L.: Support for Various HTTP Methods on
the Web. Tech. Rep. arXiv:1405.2330 (2014)

2. AlNoamany, Y., AlSum, A., Weigle, M.C., Nelson, M.L.: Who and what links to
the Internet Archive. International Journal on Digital Libraries 14(3-4), 101–115
(2014)

3. AlSum, A., Weigle, M.C., Nelson, M.L., Van de Sompel, H.: Profiling Web Archive
Coverage for Top-Level Domain and Content Language. In: Proceedings of the
International Conference on Theory and Practice of Digital Libraries, TPDL 2013.
pp. 60–71 (2013)

4. AlSum, A., Weigle, M.C., Nelson, M.L., Van de Sompel, H.: Profiling Web Archive
Coverage for Top-Level Domain and Content Language. International Journal on
Digital Libraries 14(3-4), 149–166 (2014)

5. Crockford, D.: The application/json Media Type for JavaScript Object Notation
(JSON). RFC 4627 (Jul 2006)

6. Egghe, L.: Untangling Herdan’s law and Heaps’ law: Mathematical and informetric
arguments. Journal of the American Society for Information Science and Technol-
ogy 58(5), 702–709 (2007)

7. Gailly, J., Adler, M.: GZIP File Format. http://www.gzip.org/ (2013)
8. Internet Archive: CDX File Format. http://archive.org/web/researcher/cdx_

file_format.php (2003)
9. Internet Archive: Archive-It - Web Archiving Services for Libraries and Archives.

https://www.archive-it.org/ (2006)
10. ISO 28500: WARC (Web ARChive) file format. http://www.

digitalpreservation.gov/formats/fdd/fdd000236.shtml (2009)
11. Mozilla Foundation: Public Suffix List. https://publicsuffix.org/ (2015)
12. Sanderson, R.: Global Web Archive Integration with Memento. In: Proceedings of

the 12th ACM/IEEE-CS Joint Conference on Digital Libraries. pp. 379–380. ACM
(2012)

13. Sanderson, R., Van de Sompel, H., Nelson, M.L.: IIPC Memento Aggregator
Experiment. http://www.netpreserve.org/sites/default/files/resources/

Sanderson.pdf (2012)
14. Sigurðsson, K., Stack, M., Ranitovic, I.: Heritrix User Manual: Sort-friendly URI

Reordering Transform. http://crawler.archive.org/articles/user_manual/

glossary.html#surt (2006)
15. Sporny, M., Kellogg, G., Lanthaler, M.: A JSON-based Serialization for Linked

Data. W3C Recommendation (2014)
16. UK Web Archive: Crawled URL Index JISC UK Web Domain Dataset (1996-2013).

doi:10.5259/ukwa.ds.2/cdx/1 (2014)
17. Van de Sompel, H., Nelson, M.L., Sanderson, R.: HTTP Framework for Time-Based

Access to Resource States – Memento. RFC 7089 (Dec 2013)
18. Weka: Attribute-Relation File Format (ARFF). http://weka.wikispaces.com/

ARFF (2009)

