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Preface

This SAS manual is to be used with Introduction to the Practice of Sta-
tistics, Third Edition, by David S. Moore and George P. McCabe, and to the
CD-ROM that accompanies this text. We abbreviate the textbook title as
IPS.

SAS is a sophisticated computer package containing many components.
The capabilities of the entire package extend far beyond the needs of an
introductory statistics course. In this book we present an introduction to SAS
that provides you with the skills necessary to do all the statistical analyses
asked for in IPS and also sufficient background to use SAS to do many of
the analyses you might encounter throughout your undergraduate career.
While the manual’s primary goal is to teach SAS, more generally we want to
help develop strong data analytic skills in conjunction with the text and the
CD-ROM.

The manual is divided into three parts. Part I is an introduction that
provides the necessary details to start using SAS and in particular discusses
how to construct SAS programs. The material in this section is based on
references 1 and 2 in Appendix E. Not all the material in Part I needs to be
fully absorbed on first reading. Overall, Part I serves as a reference for many
of the nonstatistical commands in SAS.

Part II follows the structure of the textbook. Each chapter is titled and
numbered as in IPS. The last two chapters are not in IPS but correspond to
optional material included on the CD-ROM. The SAS procedures (proc’s)
relevant to doing the problems in each IPS chapter are introduced and their
use illustrated. Each chapter concludes with a set of exercises, some of which
are modifications of or related to problems in IPS and many of which are new



x

and specifically designed to ensure that the relevant SAS material has been
understood. The material in this part is based on references 3, 4, 5 and 6 in
Appendix E.
We recommend that you read Part I before starting Chapter 1 of Part II.

Sections I.5.3, I.5.4, and I.5.5 do not need to be read in great detail the first
time through. Part I together with the early chapters of Part II represent
a fairly heavy investment in study time but there is a payoff, as subsequent
chapters are much easier to absorb and less time is required. Again, each
chapter in Part II contains more material than is really necessary to do the
problems in IPS. In part, they are to serve as references for the various
procedures discussed. So the idea is not to read a chapter with the aim of
absorbing and committing to memory every detail recorded there, but rather
get a general idea of the contents and the capabilities of each procedure. Of
course you want to acquire enough knowledge to do the problems in IPS using
SAS. It is recommended that you use SAS to do as many of the problems as
possible. This will ensure that you become a proficient user of SAS.
Part III contains Appendices dealing with more advanced features of SAS,

such as matrix algebra. Appendices A and B are based on more advanced
material from references 1 and 2 in Appendix E. Appendix C is based on
reference 7 in Appendix E. This material may prove useful after taking the
course, so it is a handy reference and hopefully an easy place to learn the
material. Appendix D lists some of the more advanced statistical procedures
found in references 3 and 4.
SAS is available in a variety of versions and for different types of comput-

ing systems. In writing the manual we have used Release 6.12 for Windows.
For the most part the manual should be compatible with other versions of
SAS as well.
Many thanks to Patrick Farace, Chris Granville, and Chris Spavens of

W. H. Freeman for their help. Also thanks to Rosemary and Heather for
their support.
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SAS Language

1





SAS statements introduced in this part

by file libname proc sort storage
cards goto list put update
contents id lostcard rename var
data if-then-else merge run
datalines infile missing select-otherwise
do-end input output set
drop keep proc print stop

1 Overview and Conventions

Part I is concerned with getting data into and out of SAS and giving you
the tools necessary to perform various elementary operations on the data so
that they are in a form in which you can carry out a statistical analysis. You
don’t need to understand everything in Part I to begin doing the problems in
your course. But before you start on Part II, you should read Part I, perhaps
reading sections 5.3-5.5 lightly and returning to them later for reference.
SAS is a software package that runs on several different types of computers

and comes in a number of versions. This manual does not try to describe
all the possible implementations or the full extent of the package. We limit
our discussion to aspects of version 6.12 of SAS running under Windows
95/98/NT. Also, for the most part, we present only those aspects of SAS
relevant to carrying out the statistical analyses discussed in IPS. Of course,
this is a fairly wide range of analyses, but the full power of SAS is nevertheless
unnecessary. The material in this manual should be enough to successfully

3



4 SAS Language

carry out, in any version of SAS, the analyses required in your course.

In this manual special statistical or SAS concepts are highlighted in italic
font. You should be sure you understand these concepts. We provide a brief
explanation for any terms not defined in IPS. When a reference is made to a
SAS statement or procedure its name is in bold face. Menu commands are
accessed by clicking the left button of the mouse on items in lists. We use a
special notation for menu commands. For example,

A I B I C

means left-click the command A on the menu bar, then in the list that drops
down left-click the command B and finally left-click C. The menu commands
are denoted in ordinary font exactly as they appear. The record of a SAS
session – the commands we type and the output obtained – are denoted in
typewriter font, as are the names of any files used by SAS, variables, and
constants.

SAS is case insensitive except for the values of character variables. The
statement PROC PRINT; has the same effect as proc print; and the variable
a is the same as the variable A. However, if a and b are character variables
that take the values X and x for a particular observation, then they are not
equal. For convenience we use lower case whenever possible except, of course,
when referring to the values of character variables that include upper case.

At the end of Part I and of each chapter in Part II we provide a few
exercises that can be used to make sure you have understood the material.
We also recommend that whenever possible you use SAS to do the problems in
IPS. While many problems can be done by hand you will save a considerable
amount of time and avoid errors by learning to use SAS effectively. We also
recommend that you try out the SAS concepts and commands as you read
about them to ensure full understanding.

2 Accessing and Exiting SAS

The first thing you should do is find out how to access the SAS package
for your course. This information will come from your instructor or system
personnel, or from software documentation if you have purchased SAS to
run on your own computer. If you are not running SAS on your own system,
you will probably need a login name and a password to the computer system
being used in your course. After you have logged on – provided a login and
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Figure 1: Short-cut icon to SAS software.

password to the computer system – you then access SAS.
Under Windows 95/98/NT you can access SAS in a number of ways.

Perhaps the easiest method is to left-click or double left-click, whichever is
relevant to your system, an icon such as the short-cut icon in Figure 1.
Alternatively you may use the Start button on the task bar in the lower

left-hand corner of your screen: Start I Run, fill in the dialog box that pops
up with

C:\SAS\sas.exe
and hit Enter. This gives the pathname for the SAS program, which here
resides on the C drive in the folder called SAS. If the software resides in a
different folder, then a different pathname must be given. In either case,
once you have invoked SAS, the Display Manager window shown in Figure 2
should be displayed on your screen.
The top line of the Display Manager window is called the menu bar. It

contains F
¯
ile, E

¯
dit, V

¯
iew, L

¯
ocals, G

¯
lobals, O

¯
ptions, W

¯
indow, and H

¯
elp when

the Program Editor window is active and F
¯
ile, E

¯
dit, V

¯
iew, G

¯
lobals, O

¯
ptions,

W
¯
indow and H

¯
elp when the Log window is active. A window is made active

by clicking on it. The upper border of an active window is dark blue; that of
an inactive window is gray. Left-clicking any of the commands in the menu
bar produces a drop-down list. Below the menu bar is a small window where
text can be typed and a row of buttons called the task bar. The buttons
in the task bar correspond to frequently used commands that can also be
accessed from the drop-down lists in the menu bar.
Below the task bar is the Log window. When you run a SAS program,

a listing of the program is printed in this window. Details concerning the
running of the program are printed here, e.g. how much time it took. If the
program doesn’t work, SAS prints messages along with the program, that
indicate where it found errors. The Log window should always be examined
after running a SAS program.
The Program Editor window appears below the Log window. It is here
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Figure 2: SAS Display Manager window containing menu bar, task bar, Log
window and Program Editor window.
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that the various commands that make up a SAS program are typed. Once
a SAS program is typed into the Program Editor window it is submitted for
execution. We describe action this in Section I.3.
If the program runs successfully then the output from the program will

appear in the Output window. To access the Output window use the menu
command W

¯
indow I 3

¯
OUTPUT. Notice that you can toggle between win-

dows by using W
¯
indow I 1

¯
LOG, W

¯
indow I 2

¯
PROGRAM EDITOR and

W
¯
indow I 3

¯
OUTPUT. If you use the command W

¯
indow I C

¯
ascade then

all three windows are displayed in the Display Manager window, overlaying
one another, with the active one on top. You can then toggle between the
windows by left-clicking in the window you wish to be active. Clicking any-
where on the upper border of a window will maximize the window to fill
the entire Display Manager window. Note that you can also toggle between
the windows by clicking on the relevant item in the drop-down list that is
produced from G

¯
lobals I .

To exit SAS you can simply click on the close window symbol in the upper
right-hand corner of the Display Manager window. You are then asked if you
really want to terminate your SAS session. If you respond by clicking OK,
then the Display Manager window closes and the SAS session ends. Of
course, any programs, logs, or output produced during the SAS session are
lost unless they have been saved. We subsequently discuss how to save such
data so that it can be reused. Alternatively you can use the menu command
F
¯
ile I Ex

¯
it with the same results.

3 Getting Help

At times you may want more information about a command or some other
aspect of SAS than this manual provides, or you may wish to remind yourself
of some detail you have partially forgotten. SAS contains a convenient online
help manual. There are several ways to access help. The simplest method is
to click on the help button in the task bar depicted in Figure 3.

Figure 3: The Help button.

Alternatively use the menu command H
¯
elp I Online d

¯
ocumentation. Ei-
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Figure 4: Help window.

ther of these opens a help window, as depicted in Figure 4. Observe that
there are three tabs. The first tab is called Contents and gives a list of major
topics in the online manual, each with a book icon beside it. Click on any
of these and then click on Open at the bottom of the Help window. This
causes a further list of topics to be displayed. Documents describing features
of SAS are marked with the document icon (Figure 5); a book icon leads to
a further set of topics. Clicking on a document icon and the Display button
at the bottom of the Help window causes the text of the document topic to
be displayed.

This method is fine when we want to read about large topics. Often,
however, we want to go directly to the point in the manual where a specific
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Figure 5: Document icon.

topic is discussed, for example, the input statement. For this we click on the
Index tab and type “input” into the small window that appears there. The
section of the manual that discusses this statement immediately opens. If
there is more than one section relevant to what we typed, the window scrolls
to a place in the list where these entries are listed. Clicking on one of them
and then on the Display button causes the text to be displayed.
If the topic we are interested in cannot be easily located in the Contents

or Index, then we can use the Find tab to search the manual for entries
relevant to the word or phrase of interest. This is often the most convenient
way to call up information about a topic.
Conveniently there are hyperlinks throughout the manual that allow you

to navigate your way through the manual via related topics. Spend some
time getting acquainted with Help. Undoubtedly you will need to use it at
some time.

4 SAS Programs

A SAS program typed into the Program Editor window is submitted for
processing by clicking on the Submit button shown in Figure 6. Alternatively
you can use the menu command L

¯
ocals I S

¯
ubmit.

Figure 6: Submit program button.

A SAS program consists of SAS statements and sometimes data. Each
statement must end in a semicolon. A SAS statement can be placed on more
than one line. If a statement does not scan correctly as a valid SAS statement,
then an error will occur and the program will not run. Broadly speaking the
statements in a SAS program are organized in groups in two categories: data
steps and procedures (hereafter referred to as proc’s, as is standard when
discussing SAS). Essentially the data steps are concerned with constructing
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SAS data sets that are then analyzed via various procedures. The data step
typically involves inputting some data from a source, such as an external
file, and then manipulating the data so that they are in a form suitable for
analysis by a procedure. In an application we will have identified some SAS
statistical procedures as providing answers to questions we have about the
real-world phenomenon that gave rise to the data. There are many different
SAS procedures, and they carry out a wide variety of statistical analyses.
After a SAS procedure has analyzed the data, output is created. This may
take the form of (a) actual output written in the Output window (b) data
written to an external file, or (c) a temporary file holding a SAS data set.
Let us look at a very simple SAS program. Suppose we type the following

commands in the Program Editor window:

data;
input x;
cards;
1
2
3
proc print;
var x;
run;

The data step consists of all the SAS statements starting with the line data;
and ending with the line cards;. The cards statement tells SAS that this
data step is over. The word cards is a holdover from the days when programs
were submitted to computers on punch cards. Alternatively we can use the
word datalines instead of cards. Immediately following the end of the
data step are the data; in this case there are three observations, or cases,
where each observation consists of one variable x. The value of x for the first
observation is 1, for the second 2, and for the third 3. SAS constructs this
data set and calls it work.data1. This is a default name until we learn how
to name data sets.
Immediately after the data comes the first procedure, in this case the

proc print procedure. SAS knows that the actual data have ended when it
sees a word like data or proc on a line. The procedure proc print consists
of the line proc print; and the subsequent line var x;. The var statement
tells proc print which variables to print in the just created SAS data set
work.data. Since there is only one variable in this data set, there is really
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no need to include this statement. As we will see, we can also tell a proc
which SAS data set to operate on; if we don’t, the proc will operate on the
most recently created data set by default.
The run command tells SAS that everything above this line is to be exe-

cuted. If no run command is given, the program does not execute although
the program is still checked for errors and a listing produced in the Log
window. Prior to submission, the Program Editor window looks like Figure
7.

Figure 7: Program Editor window.

After submitting the program, the Program Editor window empties and a
listing of the program together with comments is printed in the Log window
displayed in Figure 8. We see from the Log window that the program ran, so
we then check the Output window for the output from the program (Figure
9). Notice that the Output window contains the three observations.
Suppose you submit your program and you have made an error. Because

the Program Editor window empties after submission, you have to put the
originally submitted program back into this window and correct it. This is
done by the menu command L

¯
ocals I R

¯
ecall text when the Program Editor

window is active. If you forgot to type in the run command, then the listing
and any error messages based on the syntax of SAS commands only, no error
messages based on the execution of the program, are produced in the Log
window. If a program has a long running time, this is a good way to scan
the program for syntax errors before actually running it.
If you have text in any of the windows and you don’t want it there, then

the window can be emptied by activating the window and using the command
E
¯
dit I Cl

¯
ear text. Alternatively, you may want to print the contents of a

window. This is done by making the relevant window active and then using
the command F

¯
ile I P

¯
rint. If you want to save the contents of a window to a
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Figure 8: Log window.

Figure 9: Output window.
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file, use the command F
¯
ile I S

¯
ave or F

¯
ile I Sa

¯
ve as. A window pops up and

you are asked which folder you want to save the window contents in, what
name you want to give the file and what suffix you want to give the file name.
For example, you can choose the suffices .sas, .log, .lst, .dat, or .rtf. If you
choose .dat or .rtf, then the contents of the window are placed in a text file,
and clicking on the file is likely to result in some editor on the system opening
the file to be edited. The .sas ending, however, is treated in a special way, as
this suffix identifies the contents of the file as consisting of a SAS program
(whether it is a valid program or not). Clicking on such a file causes the SAS
program to launch and the contents of the file to be loaded into the Program
Editor window. Note that this gives you an alternative way of constructing
SAS programs: use your favorite editor and then save the SAS statements
in a file with the suffix .sas. If you use the .lst suffix, clicking on the file
results in it being opened by the SAS System Viewer, provided this software
has been installed on your system. The System Viewer regards .lst files as
output from a SAS program that has been written to the Output window.
If you use the .log suffix, clicking on the file results in it being opened by
the System Viewer, which regards the file as a listing of a program, together
with comments, that has been written to the Log window.

A SAS program can also contain comments. This is helpful when you have
a long program and you want to be able to remind yourself later about what
the program does and how it does it. Comments can be placed anywhere in
a SAS program provided they start with /* and end with */. For example,

data; /* this is the data step */
input x;
cards;
1 /* this is the data */
2
2
proc print; /* this is a procedure */
run;

5 Data Step

We discuss only the key features of the data step in this section. For
the many other more advanced procedures, we refer the reader to reference
1 in Appendix E. In Appendix B we discuss arrays, which are useful when
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carrying out extensive data processing that requires recoding of data. This
material is not needed in an elementary statistics course, however.

5.1 Form and Behavior of a Data Step

The first thing you have to know how to do is to get your data into the SAS
program so that they can be analyzed. SAS uses data steps to construct SAS
data sets. Several SAS data sets can be constructed in a single SAS program
by including several data steps. These data sets can be combined to form
new SAS data sets, and they can be permanently stored in computer files so
that they can be accessed at a later date.

The general form of the data step is

data name;
statements
cards;

where name corresponds to a name we give to the SAS data set being con-
structed and statements is a set of SAS statements. These statements typi-
cally involve reading data from observations from some source and perhaps
performing various mathematical operations on the data to form new vari-
ables. SAS expects to read data from some source whenever there is an
input statement included in statements. For example, the default method
of supplying the data to an input statement is to include the data in the
program immediately after the cards statement. If we are not going to use
this method, and it is often inconvenient because it may involve a lot of
error-prone typing, then we must tell SAS where to find the data. We don’t
have to supply name, but if we don’t, a default name is assigned, with the
first unnamed SAS data set in the program called work.data1, the second
called work.data2, and so on. In general it is better to name a data set
with some evocative name so that you can remember what kind of data it
contains. The value given to name must conform to certain rules, it must be
a valid SAS name. A SAS name must begin with a letter or underscore _,
can consist of letters, numbers, and the underscore _, and can be no longer
than eight characters. For example, x1, ab_c, and lemon are all valid SAS
names.

If there is no input statement, then the statements are executed and the
data set name consists of one observation containing any variables introduced
in statements. If an input statement is given in statements, then SAS uses an
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indexing variable _N_ in the following fashion. Initially it is given the value
_N_=1, the first observation is read from the source, and each statements in
statements is executed. Then the assignment _N_=_N_+1 is made, the next
observation is read, and each statement in statements is again executed. This
continues until the last observation has been read from the data source. So
you can see that a data step behaves like an implicit loop, and it is important
to remember this. For example,

data one;
input x y;
z=x+y;
cards;
1 10
3 11
proc print;
run;

construct a SAS data set with two observations and three variables x, y,
and z where x and y are read in from the data supplied in the program and
the new variable z is constructed for each observation by adding its x and y
values. The print procedure outputs

OBS X Y Z
1 1 10 11
2 3 11 14

in the Output window. The automatic variable _N_ can be referenced in
the data step if we want to change the behavior of the data set for certain
observations.

5.2 SAS Constants, Variables, and Expressions

There are two types of SAS constants. A numeric constant is sim-
ply a number that appears in a SAS statement. Numeric constants can
use a decimal point, a minus sign, and scientific notation. For example,
1, 1.23, 01,−5, 1.2E23, 0.5E − 10 are all valid constants that can appear in a
SAS program. A character constant consists of 1 to 200 characters enclosed
in single quotes. For example,

data;
name=’tom’;
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cards;
proc print;

creates a SAS data set with a single observation with one variable called name
that takes the value tom.
SAS variables are given SAS names, as described in Section 5.1. When

several variable names all have the same beginning but differ by a final num-
ber that increases by 1, such as in x1, x2, ... , x100, then the entire list may
be referenced as a group, called a range list, as in x1-x100. This can be a
significant convenience, as we avoid having to type in long lists of variables
when entering a SAS program.
SAS variables are either numeric or character in type. The type is deter-

mined by an input statement or an assignment statement. Numeric variables
take real number values. For example, the assignment statement

x = 3;

assigns the value 3 to the numeric variable x. When a numeric variable exists
in SAS but does not have a value, the value is said to bemissing. SAS assigns
a period as the value of the variable in this case. For example, the statement

x = .;

establishes that the variable x in the SAS data set being constructed is a
numeric variable and is missing its value. It is very important in the analysis
of data that you pay attention to observations with missing values. Typically,
observations with missing values are ignored by SAS procedures.
Character variables take character values. For example, the assignment

statement

x = ’abc’;

establishes that x is a character variable taking the value abc. If a character
variable has no value (is missing), then SAS assigns a blank to the value, for
example,

x = ’ ’;

establishes that the variable x in the SAS data set being constructed is a
character variable missing its value. In general we try to avoid the use of
character variables, as handling them is troublesome, but sometimes we need
to use them. For example, if you have a variable in a data set to denote
an individual’s gender, ,use 0 and 1 to distinguish between male and female
rather than male and female or M and F.
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A SAS expression is a sequence of constants, variables, and operators that
determines a value. For example, in the statement

x=y+z;

the numeric variable x is formed by adding the numeric variables y and z in
the arithmetic expression y+z. The expression

x<y;

takes the value 1 when the variable x is less than y and the value 0 otherwise;
i.e., it takes the value 1 when the logical expression x<y is true and the value
0 otherwise.
A variety of operators can be used in SAS expressions. There are arith-

metic operators such as addition +, subtraction −, multiplication *, division
/ and exponentiation **. There are comparison operators such as <, >, <=,
>= and logical operators such as & (and), | (or) and ~ (not). For a full
list of the operators available in SAS, see Appendix A.1. Also detailed there
is the priority of the operators. If we use a SAS expression in a program,
then we have to be concerned about how it is going to be evaluated; what
is the value of 3− 2/4, 2.5 or .25 (answer: 2.5 because of the priority of the
operators)? The simplest way to avoid having to remember the priority of
the operators is to use parentheses (); e.g., write 3−(2/4), as the expressions
inside parentheses are always evaluated first. The value of an expression
involving comparison operators or logical operators is 1 or 0 depending on
whether the expression is true or false.
There is also a variety of a functions available in SAS, such as sin, cos,

log (base e), exp. These are useful for forming new variables. For a complete
listing see Appendix A.2. There are arithmetical functions such as sqrt(x)
which calculates the nonnegative square root of x and special functions such
as the Gamma function. Of some importance to this course are the proba-
bility functions that allow you to calculate cumulative distribution functions
(cdf’s) and inverse cumulative distribution functions for various distributions.
For example,. probnorm(x) calculates the N(0, 1) distribution function at
x and probit(x) calculates the inverse distribution function for the N(0, 1)
distribution at x.

5.3 Input

We now describe more fully how to input data using the input statement.
We identify three methods: from observations placed in the program, from
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external text files, and from other SAS data sets. In Sections I.5.3.1, I.5.3.2,
and I.5.3.4 we describe these methods of input using a restricted form of list
input. By this we mean that each observation is on a single line and the
values of its variables are separated by spaces. This is the simplest kind
of input, but it is not always possible. In Section I.5.3.4 we describe more
general forms of input.

5.3.1 Data Input from the Program

Suppose each observation consists of three variables, y = weight, x1 =
height, and x2 = average number of calories consumed daily. Suppose we
have four observations given by

160 66 400
152 70 500
180 72 4500
240 68 7000

The statements

data example;
input y x1 x2;
cards;
160 66 400
152 70 500
180 72 4500
240 68 7000

create a SAS data set named example, containing four observations, each
having three variables y, x1, and x2.

5.3.2 Data Input from a Text File

Suppose we have previously created a text file called C:\datafile.txt,
where we have provided its full pathname, and suppose it contains the data

160 66 400
152 70 500
180 72 4500
240 68 7000

To access this file for input we use the infile statement. The program
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data example;
infile ’C:\datafile’;
input y x1 x2;
cards;

reads these data into the SAS data set example and creates the SAS data
set example.

5.3.3 Data Input from a SAS Data Set

Suppose we have a SAS program that creates a number of distinct data
sets, and we want to combine the data sets to form a larger SAS data set.
We do this using the set statement. For example, if the file C:\stuff.txt
contains

1 2
3 4

then the SAS program

data one;
infile ’C:\stuff.txt’;
input x y;
cards;
data two;
input x y;
cards;
5 6
data three;
set one two;
proc print data = three;

creates a new SAS data set called three that is the concatenation of one and
two, i.e., the observations of one followed by the observations of two. The
SAS data set three contains two variables x and y and three observations.
We can also use set to construct a data set consisting of a subset of the

observations in a data set. The program

data one;
infile ’C:\stuff.txt’;
input x y;
cards;
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data two;
set one;
if y = 2;

creates a data set two from one by selecting only those observations for which
y = 2. Therefore two has only one observation. This is called a subsetting if
statement.
If data set one contains variables x1, x2, . . ., z and data set two contains

variables y1, y2, . . ., z and these data sets are sorted by z (see Section I.6.2),
then

data three;
set one two;
by z;

creates a new data set three that contains all the observations in one and
two, interleaved. By this, we mean that the observations in three occur in
the following order: all observations in one with the first value of z, then
all observations in two with the first value of z, then all observations in one
with the second value of z, and so on. When there are many observations
in one say with the same value of z, they are listed in three with the same
order they had in one. This is called interleaving data sets.
While set concatenates two data sets vertically, we can also concatenate

data sets horizontally using merge. The program

data one;
infile ’C:\stuff.txt’;
input x y;
cards;
data two;
input z;
cards;
5
6
data three;
merge one two;
proc print data = three;

creates a data set three with two observations and three variables x, y,
and z by taking the horizontal union of one and two; then prints the result.
This is called one-to-one merging. Of course, the first observation in one is
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matched with the first observation in two, so make sure that this makes sense
in a particular application.
When using set or merge, it may be that you do not wish to keep all

the variables. For example, suppose a SAS data set one contains w, x, y, and
z. Then the statements

data two;
set one;
keep w x;

forms a new data set two from one that has the same observations but only
two variables. The keep statement drops all variables but those named in
the statement. The drop statement keeps all variables except those named
in the statement. For example,

data two;
set one;
drop w;

creates data set two with the same observations as one but without the w
variable values. The drop and keep statements can also appear as options
in the data statement. For example,

data two (drop = x) three (keep = x);
set one;

creates two data sets from data set one. Data set two has variables w, y,
and z and three has only variable x. The keep and drop statements help
cut down the size of SAS data sets. This is important when we have only a
limited amount of memory or have to pay for permanent storage.
It is also possible to rename variables in the newly created SAS data set

using the rename statement. For example,

data two;
set one;
keep w x;
rename x = mnx;

creates a data set two with two variables w and mnx, where mnx takes the
values of x.
While we have described the operation of the database commands set

and merge on only two SAS data sets at a time, they can operate on any
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number. For example, the statement set one two three; vertically con-
catenates data sets one, two, and three.
As we will describe in Section I.5.4, it is possible to write a SAS data

set out to a permanent file. Such files end in the suffix .sd2, which identifies
them as SAS data sets. These are formatted files and they cannot be edited
except by using SAS tools. Suppose we have written a SAS data set to the
file C:\three.sd2. Then the statements
libname storage ’C:\’;
data one;
set storage.three;
cards;
proc print;

read this data set into a SAS data set named one and print out its contents.
Note that we did not need to include the suffix .sd2 in the set statement.
Also we could have used any directory, other than the root directory on the
C drive, as the storage directory. We have to specify the full pathname for
this directory in the libname statement, and, of course, the file we wish to
read has to be there. In this example we do not do anything with the data
set read in. Alternatively, as we will see, we can operate directly on stored
SAS data sets using proc’s.

5.3.4 More General Input

In the examples considered so far, we have always used list input where
each observation occupied only one row, data values of variables are separated
by blanks, and missing values are represented by a period. In fact, we have
only considered the input of numeric variables. While this simple form of
input works quite often, it is clear that in some contexts more elaborate
methods are required.
First we deal with character data. Recall that a character constant is

a sequence of characters; e.g., x = ’a15b’ specifies that x is a character
variable and that it takes the value a15b. This is how we specify character
variables in assignment statements. If we want to read in the values of a
character variable in a data set, a $ sign must follow the name of the variable
in the input statement: input x $;. We can then input character variables
just as with numeric variables with blanks delimiting the values of
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the variable.

5.3.4.1 Pointer

As SAS reads an input record, it keeps track of its position, as it scans
the record, with a pointer. Various commands can be used to change the
position of the pointer. Here are some of them:

@n moves the pointer to column n
+n moves the pointer n columns
#n moves the pointer to line n

We discuss later how to use pointer commands to read in various types of
input records.

5.3.4.2 List Input

With list input, variable names occur in the input statement in the order
in which they appear in the data records. Values in data records are separated
by blanks unless some other character is specified as a delimiter in an infile
statement. For example, if the data is stored in a file C:\datafile.txt and
the variable values are separated by commas, then the infile statement must
be changed to

infile ’C:\datafile.txt’ delimiter = ’,’;
Any other character can be used to separate data values. Missing values are
represented by periods for all variables. Suppose the file C:\records.txt
contains the data
A 1
3
BB 3
4

which we want to be read in as two observations with three variables x, y,
and z, with x a character variable. The program

data example;
infile ’C:\records.txt’;
input x $ y #2 z;
cards;
proc print;
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does this and prints out the values; namely, in the first observation x = A, y
= 1, z = 3, and in the second observation x = BB, y = 3, and z = 4. Notice
that the pointer control # allows us to read in observations that occupy more
than one line in the file.

5.3.4.3 Column Input

With column input, the values of variables occupy certain columns in the
data record and not others. You must tell SAS what these columns are in the
input statement. Blanks or periods alone are interpreted as missing values.
Leading and trailing blanks around a data value are ignored. Suppose the
file C:\datafile.txt contains two records containing two variables, where
the first variable is in columns 1 to 10 and the second variable is in columns
15 to 20 and both are numeric. Suppose the actual file contains two lines,
where the first line has 6.6 in columns 5, 6, and 7 and 234.5 in columns 16,
17, 18, 19, and 20 and the second line has 1345 in columns 2, 3, 4, and 5 and
678 in columns 11, 12, and 13. Then the program

data example;
infile ’datafile’ pad;
input x 1-10 y 15-20;
cards;

reads in two observations where x = 6.6, y = 234.5 for the first observation
and x = 1345, y = . (missing) for the second observation. Note that the
pad option in infile is needed when the length of the values varies from
record to record.
With column input, we can also specify the number of decimal places a

value will have. For example,

input x 1-10 .3 y 15-20 .2;

with the previous data gives x = 6.600, y = 234.50 for the first observation
and x = 1.345, y = . for the second.

5.3.4.4 Formatted Input

Sometimes list and column input are not possible or convenient. With
formatted input, an informat follows each variable name in the input state-
ment. The informat defines how a variable is to be read. A missing value is
denoted by a period for numeric data and a blank for character data. There
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are many different types of informats for reading various types of data. We
describe only the most commonly used informats and refer the reader to
reference 1 in Appendix E otherwise.

w.d is for reading standard numeric data. The w represents the width in
columns and the d value specifies the number of digits to the right of
the decimal point. The numeric value can be anywhere in the field.
If data already contain a decimal point, then d is ignored; otherwise
the number is divided by 10d. The w.d informat also reads numbers in
scientific notation, e.g., 1.257E3 = 1.257× 103 = 1257.

$CHARw. is for reading character data. The w value specifies the width in
columns. Blanks are treated as characters with this informat. If you
do not want to interpret leading or trailing blanks as characters, then
use the informat $w., which is otherwise the same.

For example, suppose that the file C:\datafile.txt has two data lines
in it. The first has the word michael in columns 2 to 8, the number 10 in
columns 10, 11 and the number 1.3E5 in columns 13 to 17 and the second
data line having the word evans in columns 4 to 8, the number 11 in columns
10, 11, and . in column 13. Then the program

data example;
infile ’datafile’ pad;
input x $9. y 2.0 @13 z 5.2;
cards;

creates two observations where the first has x = michael, y = 10, z = 130000
and the second has x = evans, y = 11, and z = .; i.e., z is missing in the
second observation. Note that x occupies columns 1 to 9, y occupies columns
10 to 11, and z occupies columns 13 to 17.
A great convenience arises with formatted input when there are many

variables that can be treated alike, for we can then use grouped informat
lists. For this, we create lists of variables in parentheses, followed by a list of
informats in parentheses. The informats are recycled until all variables are
read. For example,

input (x y z) (3. 3. 3.);

reads three numeric variables, each occupying three columns, and is equiva-
lent to
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input (x y z) (3.);

as the informat 3. is recycled. If many variables are stored consecutively and
all have the same length, then it is convenient to give them all the same first
letter in their name. For example,

input (x1-x60) (1.) #2 (x61-x70) (2.) #3 x71 $4.;

reads in 60 variables x1, x2, ..., x60 stored consecutively in the first row,
one column apiece, 10 variables x61, x62, ..., x70 stored consecutively in the
second row, two columns apiece, and one variable x71, a character variable
stored in the third row in four columns.
There are other forms of input and many other features of the ones dis-

cussed here. If you cannot input your data using one of the methods we have
described, most probably an appropriate method exists. Consult reference
1 in Appendix E. For example, it is possible to define default informats for
variables and specific informats for variables using the informat statement.

5.3.4.5 MISSING and LOSTCARD

Sometimes you want to specify that characters other than a period or a
blank should be treated as missing data. For example, themissing statement
in

data example;
missing a r;
input $ x $ y;
cards;

declares that the characters a and r are to be treated as missing values for
character variables x and y whenever they are encountered in a record.
When multiple records are used to form a single observation, you must

be careful that each observation has the correct number of records in the file.
You can do this using the lostcard statement when each record contains a
variable that is the same for each observation, i.e., an identifier. For example,
suppose the file C:\records contains
100 1 2
100 3
101 4 5
102 6 7
102 8
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Then the program

data example;
infile ’C:\records’;
input id1 x y #2 id2 z;
if id1 ne id2 then
do;
put ’error in data records’ ’id1 =’ id1 ’id2 =’ id2;
lostcard;
end;
cards;
proc print;

checks to make sure that each observation has the right number of records
and prints out an error message if they don’t in the SAS Log window using
the put statement described in Section I.5.4. The lostcard statement tells
SAS to delete the observation where the error occurred and resynchronize
the data. Hence, the data set example has two observations corresponding
to id1 = id2 = 100 and id1 = id2 = 102 with three variables, x, y, and
z. The do-end statements are discussed in Section I.5.5.

5.4 Output

5.4.1 Output to the Output Window

After we have input data we commonly want to print it to make sure
that we have input the data correctly. In fact this is recommended. We
have already seen that proc print can be used to print data records in the
Output window. We discuss proc print more extensively in Section I.6.1.
The output of most proc’s are recorded in the Output window.

5.4.2 Output to the Log Window

The put statement can be used to write in the Log window or to an
external file. To write in the Log window, the put statement occurs in a
data step without a file statement. For example,

data example;
input x y;
z = x + y;
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put ’x = ’ x ’y = ’ y ’z = ’ z;
cards;
1 2
3 4

writes

x = 1 y = 2 z = 3
x = 3 y = 4 z = 7

in the Log window. Note that we can output characters by enclosing them
in single quotes.

There are three basic types of output: list, column, and formatted output.
These behave analogously to list, column, and formatted input. There is a
pointer that controls the column where put prints a value with the same
commands to control the pointer as in Section I.5.2. Rather than informats,
we have formats with put statements. There are two basic formats, w.d and
$CHARw. (and $w.), and they behave just as their corresponding informats
do. For example,

data example;
input x y;
put x 5.3 @10 y 4.1;
cards;
1 2
3 4

writes

1.000 2.0
2.000 3.0

in the Log window. Note that x occupies columns 1 to 5 and y occupies
columns 10 to13 and they are printed right-justified in their fields. There
is also a format statement used to define default formats for variables and
specific formats for variables or to define entirely new formats. See reference
1 in Appendix E for a discussion.

The list statement is used to list in the Log window the input lines for
the observation being processed. This is useful for printing suspicious input
lines. For example,
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data example;
input x y z;
if y = . then list;
cards;

prints out the entire observation each time the y variable is missing.

5.4.3 Output to a Text File

The file statement is used before put when we want a put statement to
write to an external file. For example, if we want the output to go into a file
called C:\records.txt, then the statement
file ’C:\records.txt’;

must appear before the put statement. If C:\records.txt already exists,
it will be overwritten, otherwise it is created.

5.4.4 Output to a SAS Data Set

As mentioned earlier, the data step works as an implicit loop. An ob-
servation is read in, then all the statements in the data step are executed,
the observation is added to the SAS data set being created, and then the
process starts all over again with a new observation until there are no more
observations left to read. The output statement overrides this operation.
For example, suppose we have a file c:\saslibrary\data.txt that contains
observations with a character variable called gender and a numeric variable
x. The variable gender takes the values M and F for male and female. The
following program

data males females;
infile ’c:\saslibrary\data.txt’;
input gender $ x;
if gender=’M’ then output males;
y=x**2;
cards;

creates two SAS data sets called males and females, where males contains
all the observations with gender = M and females contains all the observa-
tions with gender = F. Note that an observation is written to the SAS data
set named in the output statement as soon as the output statement is in-
voked. For example, in the program here the variable y has all missing values
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in males but takes the assigned value in females. If an output statement
is used in a data step, then an output statement must be used whenever we
want to output an observation to a SAS data set; SAS no longer implicitly
outputs an observation at the end of the data step.
The output statement is very useful. For example, we can use it inside

a do-end group to create variables and write them out as observations to a
SAS data set even if the program does not input any observations. This is
important, as we can then use SAS to carry out many computations for us.
Even though we haven’t discussed the do statement yet (see Section I.5.5),
we illustrate with a simple example. The program

data one;
do i=1 to 101;
x=-3+(i-1)*(6/100);
y=1/(1+x**2);
output one;
end;
drop i;
cards;

creates a SAS data set one with 101 observations and two variables x and y.
The variable x ranges from −3 to 3 in increments of .06 and y = (1+x2)−1.
We use the drop statement to get rid of the index variable i. For example,
we may wish to plot the points (x,y), and as we shall see, there are procs
that permit us to do so.

5.4.5 Output to a SAS Data Set File

Sometimes we want to create a permanent record of a SAS data set. We
do this by first creating a folder in which the files are to be stored. For
example, we might create the folder C:\saslibrary and think of this as
a library for various SAS data sets that we create and want to save. We
can have a number of different SAS libraries that can hold data sets with
common features. Suppose we have created a folder called C:\saslibrary.
Then the libname statement in the program

libname storage ’C:\saslibrary’;
data storage.example;
input y x1 x2;
cards;
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1 2 3
4 5 6
run;

creates a permanent SAS file in the folder C:\saslibrary called example.sd2
that contains a SAS data set with two observations and the three variables
y, x1, and x2. This file contains a permanent record of the SAS data set
example. This is useful when we have a very large data set, want to carry
out many analyses on it, and don’t want to run the data step every time we
do an analysis.
A SAS data set stored in a file can be accessed by proc’s for analysis. For

example,

libname storage ’C:\saslibrary’;
proc print data = storage.example;

prints out the contents of the SAS data set example.
If you should forget what a stored SAS data set contains, for example,

the data set example, then use proc contents as in

libname storage ’C:\saslibrary’;
proc contents data = storage.example;

It prints a listing in the Output window of the number of observations and
the number of variables and their type in the SAS data set example.
Sometimes we want to alter the contents of a stored SAS data set, for

example, change the values of some variables in some observations or add
observations. To do so, we use the update statement. Suppose the SAS
data set one, stored in the file one.sd2 in folder C:\saslibrary, contains
the variables y, x1, and x2 and four observations with the values:

152 70 5000
160 66 4000
180 72 4500
240 68 7000

Then the program

libname storage ’measures’;
data two;
input y x1 x2;
cards;
152 72 5000
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232 60 2500
data storage.one;
update storage.one two;
by y;

produces a new data set one stored in C:\saslibrary\one.sd2;. the old file
is overwritten, given by

152 72 5000
160 66 4000
180 72 4500
232 60 2500
240 68 7000

Note that the value of x1 has been changed from 70 to 72 in the observation
in the old data set corresponding to y = 152 and a new observation has been
added corresponding to y = 232. For update to work, both the old data
set, called the master data set, in this case one, and the data set containing
the changes, called the transactions data set, in this case two, must be sorted
(see Section I.6.2) by a common variable, in this case y.

5.5 Control Statements

There are a number of statements that control the flow of execution of
statements in the data step.

5.5.1 IF-THEN-ELSE

If-then-else statements are used to conditionally execute a SAS statement.
They take the form

if expression then statement1 ;
else statement2 ;

where statement1 is executed if expression is true, statement2 otherwise. The
else part is optional, and if it is left out, control passes to the first statement
after the if-then statement when expression is false. For example,

data example;
input x $ y;
if x eq ’blue’ then z = 1;
else z = 0;
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cards;
red 1
blue 2

compares x to blue after input. A new variable, z, is set equal to 1 when x
equals blue, otherwise z is set equal to 0. See Appendix A for a listing of all
comparison and logical operators that can be used in such statements.

5.5.2 GOTO and RETURN

A goto statement tells SAS to jump immediately to another statement
in the same data step and begin executing statements from that point. For
example,

data info;
input x y;
if 1<=x then goto OK;
x = 3;
OK: return;
cards;

checks to see if the input value of x is greater than or equal to 1; if it is not,
then x is set equal to 3; if it is then the SAS program jumps to the statement
labelled OK. This is a return statement which tells SAS to begin processing
a new observation.

5.5.3 STOP

The stop statement stops processing a SAS data step. The observation
being processed when the stop statement is encountered is not added to the
data set and processing resumes with the first statement after this data step.
For example, in

data example;
input x y z;
if x = 2 then stop;
cards;

stops building the data set when a value of x = 2 is encountered.
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5.5.4 DO-END

The do statement designates a group of statements to be executed as
a unit until a matching end statement is encountered. A number of do
statements can be nested within do groups. A simple do is often used
within if-then-else statements to designate a group of statements to be
executed depending on whether an if condition is true or false. For example,
the program

data example;
input x;
if x gt 0 then
do;
y = x*x;
z = -x;
end;
else w = x;
cards;

creates two new variables y and z when x > 0 and one new variable w when
x ≤ 0. Note that these variables are equal to . when they are not assigned
anything.

There are several variations of the do-end statement. For example, the
version that takes the form

do index = start to stop by increment ;
statements
end;

executes statements repetitively between do and end where statements is
a group of SAS statements. This is called an iterative do statement. The
number of times statements is executed is determined as follows. Initially the
variable index is set at start and statements executed. Next the increment
is added to the index and the new value is compared to stop. If the new
value of index is less than or equal to stop, then statements is executed
again; otherwise, it is not. If no increment is specified, the default is 1. The
process continues until the value of index is greater than the value of stop,
upon which control passes to the first statement past the end statement. For
example, the program
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data;
sum = 0;
do i=1 to 100;
sum = sum + i*i;
end;
put sum;

writes 338350 in the Log window. This is the sum 12 + 22 + . . .+ 1002.
We can also addwhile and until conditions to an iterative do statement,

as in

do index = start to stop by increment while (expression);
do index = start to stop by increment until (expression);

For example,

data;
sum = 0;
do i = 1 to 100 until (sum gt 1.0E5);
sum = sum + i*i;
end;
put i sum;

writes 67 102510 in the Log window. The value 102510 is the sum 12 +
22 + . . . + 672. The until condition is checked after each iteration. If the
condition is false, we stop iterating; otherwise we continue until index equals
stop. A while condition is evaluated at the start of each iteration. If it is
false, only that iteration and no further iterations are carried out. Otherwise
the program continues iterating until index equals stop.
Another variant is the do until statement. For example, in

do until (expression);
statements
end;

statements is repetitively executed until expression is false. The value of
expression is evaluated after each iteration. The do while statement is
another variation, with while replacing until. In a do while statement, the
expression is evaluated before each iteration, and the statements are executed
while the expression is true. For example,

data;
sum = 0;
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i = 1;
do while (i le 100);
sum = sum + i*i;
i = i+1;
end;
put sum;

writes 338350 in the Log window. This is the sum 12 + 22 + . . . + 1002.

5.5.5 SELECT-OTHERWISE

The select-otherwise statement replaces a sequence of if-then-else
statements. The select statement takes the form:

select (expression);
when (expression1 ) statement1 ;
when (expression2 ) statement2 ;
...

otherwise statement ;
end;

In this group of statements, SAS compares expression to expressioni. If they
are equal, then statementi is executed. If none are equal, then statement is
executed. The otherwise statement is optional. An end statement ends a
select group. For example, the program

data example;
input x;
select(x);
when(1) z = 0;
when(2) z = 0;
when(3) z = 0;
otherwise z = 1;
end;
cards;

adds a variable z to the data set example, which takes the value 0 when x =
1, 2, or 3 and the value 1 when x takes any other value.
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6 SAS Procedures

The analysis of a SAS data set takes place in proc steps. A proc step
takes the form

proc name data = dataset1 options1 ;
statements / options2

where name gives the name of the proc being used, data= dataset1 gives the
name of the SAS data set to be analyzed by the procedure (if it is omitted, the
most recently created SAS data set is used), options1 specifies other features
specific to the proc, statements provides further instructions concerning the
behavior of the proc with the data set, and options2 specifies options for
the way the statements work. Typically, there is a default setting for the
options. For example, data = is an option, and if it is omitted the most
recently created SAS data set is used. Another common option allows the
proc to create a SAS data set as part of its output when this is appropriate.
There are many different proc’s. For example, proc reg carries out a

statistical analysis known as a regression analysis. Typically, we need to
know more about the proc than just its name before we can use it effectively,
as there are different options and statements that go with each one.
Many different proc’s can be used on the same SAS data set and appear

in the same SAS program. We discuss several important procedures in this
section.

6.1 PROC PRINT

The procedure proc print lists data in a SAS data set as a table of
observations by variables. The following statements can be used with print.

proc print options;
var variables;
id variable;
by variables;

The following option may appear in the proc print statement..

data = SASdataset

where SASdataset is the one printed. If none is specified, then the last SAS
data set created is printed. If no var statement is included, then all variables
in the data set are printed, otherwise only those listed, and in the order in
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which they are listed are printed. When an id statement is used, SAS prints
each observation with the values of the id variables first rather than the
observation number, which is the default. For example, if the output for an
observation consists of several lines, each line starts with the values of the
id variables for that observation. As a specific case, if data set one contains
variables name, x1-x100, then

proc print data = one;
var x1-x50;
id name;

prints only variables x1-x50, and each line of output for an observation
begins with the value of name for that observation. This provides an easy
way of identifying all lines associated with observations on output listings
when name is chosen evocatively.
The by statement is explained in Section I.6.2.

6.2 PROC SORT

The procedure proc sort sorts observations in a SAS data set by one or
more variables, storing the resulting sorted observations in a new SAS data
set or replacing the original. The following statements are used with proc
sort.

proc sort options;
by variables;

Following are some of the options that may appear with the proc sort
statement.

data = SASdataset1
out = SASdataset2

If the out = SASdataset2 statement doesn’t appear, then the SAS data set
being sorted is overwritten.
A by statement must be used with proc sort. Any number of variables

can be specified in the by statement. The procedure proc sort first arranges
the observations in the order of the first variable in the by statement, then
it sorts the observations with a given value of the first variable by the second
variable, and so on. By order, we mean increasing in value, or ascending
order. If we want a by variable to be used in descending order, then the
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word descending must precede the name of the variable in the by list. For
example, suppose the data set one contains

variable x y z
obs1 1 2 100
obs2 4 1 200
obs3 3 4 300
obs4 3 3 400

Then the statements

proc sort data=one out=two;
by x;

produce the data set two, which contains

variable x y z
obs1 1 2 100
obs2 3 4 300
obs3 3 3 400
obs4 4 1 200

Notice that the values with a common value of x retain their relative positions
from one to two. The statements

proc sort data=one out=two;
by descending x y;

produce the data set two, which contains

variable x y z
obs1 4 1 200
obs2 3 3 400
obs3 3 4 300
obs4 1 2 100

In this case the observations are sorted first into descending order by x, then
any observations that have a common value of x are sorted in ascending order
by y. We can have any number of variables in the by statement with obvious
generalizations for how the sorting procedure works.
We note that we have not restricted the by variables to be numeric and

they needn’t be. If a by variable is character, then the sorting is done using
ASCII order. From smallest to largest, the ASCII sequence is
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blank ! ” # $ % & ’ ( ) * + , - . / 0 1 2 ... 9 : ; < = > ? @ A B C ... Z [ ]
ˆ_ ‘ a b c ... z { | }∼
Notice that A is smaller than a here. The smallest value is a blank and the
largest is a ∼. For numeric by variables, the order is the usual ordering of
real numbers, but a missing value is treated as being smaller than any other
real value.
Most proc’s allow what is called by group processing. The data set being

used in the proc has typically been sorted by the by variables. The proc is
then applied to each of the subgroups specified by particular values of the
by variables. For example, if the data set one is as earlier, then

proc sort data=one out=two;
by x;
proc print data=two;
by x;

prints out the data in three groups identified by the value of x namely, the
values of y and z when x = 1, then the values of y and z when x = 3, and
finally, the values of y and z when x = 4. The statement by descending x
y; creates four groups. If the data are sorted in descending order for any of
the by variables, then the word descending must precede this variable in
the by statement of the proc.
In certain cases, as in the SAS data set one, the observations appear in

groups with a common value of a variable(s), in this case x, but they are not
sorted by this variable(s) in ascending or descending order. If we do not wish
to sort them, which can be time-consuming for large data sets, we can still
use by group processing, but the word notsorted must precede any such
variable(s) in the by statement of the proc.
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7 Exercises

1. The following data give the high and low trading prices in Canadian
dollars for various stocks on a given day on the Toronto Stock Exchange.
Enter these data into a SAS data set with three variables, Stock, Hi,
and Low and 10 observations. Print the data set in the Output window
to check that you have successfully entered it. Save the data set as a
permanent SAS data set giving it the name stocks.

Stock Hi Low
ACR 7.95 7.80
MGI 4.75 4.00
BLD 112.25 109.75
CFP 9.65 9.25
MAL 8.25 8.10
CM 45.90 45.30
AZC 1.99 1.93
CMW 20.00 19.00
AMZ 2.70 2.30
GAC 52.00 50.25

2. In a data step input the SAS data set stocks created in Exercise 1 from
the file containing it. Calculate the average of the Hi and Low prices
for all the stocks and save it in a variable called average. Calculate
the average of all the Hi prices and output it. Do the same for all the
Low prices. Save the data set using the same name. Write the data set
stocks to a file called stocks.dat. Print the file stocks.dat on your
system printer.

3. Using the SAS data set created in Exercise 2, calculate, using SAS
commands, the number of stocks in the data set whose average is
greater than $5.00 and less than or equal to $45.00.

4. Using the SAS data set created in Exercise 2, add the following stocks
to the permanent data set.

Stock Hi Low
CLV 1.85 1.78
SIL 34.00 34.00
AC 14.45 14.05
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Remove the variable average from the data set and save the data set.

5. Using the data set created in Exercise 4 and the sort procedure, sort
the stocks into alphabetical order. Save the data set.

6. Using the data set created in Exercise 5 and the by statement, calculate
the average Hi price of all the stocks beginning in A.

7. Using the data set created in Exercise 5, recode all the Low prices in
the range $0 to $9.99 as 1, in $10 to $39.99 as 2, and greater than or
equal to $40 as 3, and save the recoded variable in a new variable.
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Chapter 1

Looking at Data: Distributions

SAS statements introduced in this chapter

options proc gchart proc plot title
proc chart proc gplot proc timeplot
proc freq proc means proc univariate

This chapter of IPS is concerned with the various ways of presenting and
summarizing a data set and also introduces the normal distribution. By
presenting data we mean convenient and informative methods of conveying
the information contained in a data set. There are two basic methods for
presenting data, through graphics and through tabulations. It can be hard
to summarize exactly what graphics or tables are saying about data. The
chapter introduces various summary statistics that are commonly used to
convey meaningful information in a concise way. The normal distribution
is of great importance in the theory and application of statistics, and it is
necessary to gain some facility with carrying out various computations with
this distribution.
All these topics would involve much tedious, error-prone calculation if we

did them by hand. In fact, you should almost never rely on hand calculation
in carrying out a data analysis. Not only are there many far more important
things for you to be thinking about, as the text discusses, but you are also
likely to make errors. On the other hand, never blindly trust the computer!
Check your results and make sure that they make sense in light of the ap-
plication. For this a few simple hand calculations can prove valuable. In

45
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working through the problems in IPS you should try to use SAS as much as
possible; your skill with the package will increase and inevitably your data
analyses will be easier and more effective.

1.1 Tabulating and Summarizing Data

If a variable is categorical, we construct a table using the values of the vari-
able and recording the frequency (count) and perhaps the relative frequency
(proportion) of each value in the data. The relative frequencies serve as a
convenient summarization of the data.
If the variable is quantitative, we typically group the data in some way,

i.e., divide the range of the data into nonoverlapping intervals and then
record the frequency and proportion of values in each interval. Grouping a
variable is accomplished during the data step by introducing a new variable
that takes a particular value whenever the original variable is in a certain
range. If the original variable were height in feet, we might define a new
variable gheight that takes the value 1 when height is less than 5, the value
2 when 5 ≤ height < 6, and so on.
If the values of a variable are ordered, then we can record the cumulative

distribution, the proportion of values less than or equal to each value. Quan-
titative variables are always ordered, but sometimes categorical variables are
as well, e.g. when a categorical variable arises from grouping a quantitative
variable.
Often it is convenient with quantitative variables to record the empirical

distribution function, which for data values x1, . . . , xn and at a value x is
given by

F̂ (x) =
# of xi ≤ x

n
.

F̂ (x) is the proportion of data values less than or equal to x. We can sum-
marize such a presentation via the calculation of a few quantities such as
the first quartile, the median, and the third quartile or the mean and the
standard deviation.

1.1.1 PROC FREQ

The proc freq procedure produces frequency tables. A frequency table
is table of counts of the values variables take. Frequency tables show the
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Figure 1.1: Output from proc freq.

distribution of variable values and are primarily useful with variables where
values are repeated in the data set. For example, suppose the data set one
contains ten observations of the categorical variable family corresponding
to the number of members in a family. The program

data one;
input family;
cards;
2
3
1
5
3
2
4
6
1
2
proc freq data=one;
tables family;
run;

produces the output shown in Figure 1.1, which gives the unique values taken
by the variable family, the frequency or count of each variable value, the
relative frequency or percent of each value, the cumulative frequency, and
the cumulative relative frequency.
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Some of the features of proc freq are described here. Other capabilities
of this procedure are described in subsequent parts of this manual when we
need them; in particular see Section II.2.2. Some of the statements used with
proc freq follow.

proc freq options;
tables requests/options;
weight variable;
by variables;

Following are two options that can be used in the proc freq statement.

data = SASdataset
noprint

where SASdataset is the SAS data set containing the variables we want to
tabulate.
Suppose the SAS data set two contains the variables a, b, c, and w. If

you want a one-way frequency table for each variable, then simply name the
variables in a tables statement. For example, the statements

proc freq data=one;
tables a b;

produce two one-way frequency tables, one giving the values of a and the
number of observations corresponding to each value a assumes, and the other
doing the same for b.
The commands

data;
input a;
cards;
1
1
0
0
1
1
proc freq noprint;
tables a/out=save;
proc print data=save;
run;
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cause a SAS data set called save to be created that contains two observa-
tions, (corresponding to the number of values a assumes) and three variables
a, count, and percent using the out = SASdataset option to the tables
statement. The output

OBS A COUNT PERCENT
1 0 2 33.3333
2 1 4 66.6667

is produced from proc print data=save;. Because of the noprint option
to proc freq, this procedure yields no printed output.
If a weight statement appears, then each cell contains the total of all the

variable values for the observations in that cell. For example,

data;
input w a;
cards;
1 0
2 1
3 0
4 1
-5 0
6 1
3.2 1
proc freq;
tables a;
weight w;

produces a 2× 1 table with frequency -1 in the 0-cell and frequency 15.2 in
the 1-cell.
Tables can also be produced for each by group as specified by variables

in the by statement. See proc sort for further discussion.

1.1.2 Calculating the Empirical Distribution Function

We consider calculating the empirical distribution for Newcomb’s measure-
ments in Table 1.1 of IPS. Suppose these data are in the text file
c:/saslibrary/newcomb.txt with each measurement on a single line. Then
the program
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Figure 1.2: Output from proc freq applied to the data set in Table 1.1 of
IPS gives the empirical distribution function in the last column.

data newcomb;
infile ’c:/saslibrary/newcomb.txt’;
input light;
cards;
proc freq data=newcomb;
tables light;
run;

reads the data from this file into the variable light in the SAS data set
newcomb and then proc freq produces the table given as Figure 1.2. Note
that the first column gives the unique values taken by the variable light
and the last column gives the value of the empirical distribution function at
each of these points. Note that from this printout we see that the value of
the empirical distribution function at 16 is 6.1%.

1.1.3 PROC MEANS

Rather than printing out the entire empirical distribution function for a quan-
titative variable in a data set, it is sometimes preferable to record just a few
numbers that summarize key features of the distribution. One possible choice
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Figure 1.3: Output from running proc means on the Newcomb data.

is to record the mean and standard deviation of a variable. We can use the
procedure proc means to do this in SAS. For example, suppose we want to
use proc means on Newcomb’s measurements in Table 1.1 of IPS, which is
in the text file c:/saslibrary/newcomb.txt. Then the commands

options nodate nonumber;
data newcomb;
infile ’c:\saslibrary\newcomb.txt’;
input light;
cards;
proc means;
title ’Mean and standard deviation for Newcomb data’;
var light;

produce the output shown in Figure 1.3. This gives n the total number of
observations used – observations for which the variable value is missing are
not used – the mean, the standard deviation, the minimum data value, and
the maximum data value.

We just introduced two new statements that can be used in SAS proce-
dures. The options statement placed before a procedure affects the way the
output from the procedure is written in the Output window. Here we have
asked that the output suppress the date and the page number, both of which
are usually printed on the output. There are many other options that can be
specified; we refer the reader to reference 1 in Appendix E for a discussion.
Also the title statement is used with proc means to write a title in the
Output window in place of the default title “The SAS System”. The title
statement can be used with any procedure.



52 Chapter 1

The procedure proc means has many features beyond just producing
the output in Figure 1.3. Many other descriptive statistics can be calculated
and saved permanently in a SAS data set. We describe here some of the more
useful features of proc means. Spending some time now learning about the
many features of proc means will be helpful in learning about the behavior
of many of the procedures in SAS, as they have a number of features in
common.
The statements that may appear with this procedure follow.

proc means options keyword names;
var variables;
class variables;
freq variable;
weight variable;
output out = SASdataset keyword = names;
by variables;

Following are some of the options that can be used in themeans statement.

data = SAS dataset
nway
noprint

The following statistics may be requested with proc means by giving the
keyword names of the statistics in the proc means statement. These key-
words may also be used in the output statement. Some of the statistics
listed here are not relevant to this part of the course, but we list them all for
convenience later.

n number of observations on which the calculations are based.
nmiss number of missing values.
mean mean.
std standard deviation.
min smallest value.
max largest value.
range range = max − min.
sum sum.
var variance.
uss uncorrected sum of squares = sum of squares of the data values.
css corrected sum of squares = sum of squared deviations of the data values
from their mean.
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stderr standard error of the mean.
cv coefficient of variation (percent) = standard error divided by the mean
and then multiplied by 100.
skewness measure of skewness.
kurtosis measure of kurtosis.
t Student’s t value for testing the hypothesis that the population mean is 0.
prt probability of a greater absolute value of Student’s t.

When no statistics are specifically requested in the proc means state-
ment, the procedure prints only n, mean, standard deviation, minimum and
maximum for each variable in the var statement. The results are printed in
the order of the variables on the var statement. If no var statement is given
then these statistics are computed for all numeric variables in the input SAS
data set specified in the data option. If no data set is specified then the last
SAS data set created in the program is used.
The variables in the class statement are used to form subgroups; i.e.

these variables are used to classify observations. The class variables may
be either numeric or character, but normally each variable takes a small
number of values or levels. The class statement works like the by statement
(see proc sort), but we do not require that the data set be sorted by the
class variables as we do with the by statement. For example, suppose the
SAS data set one contains

variable x y
obs1 1 1.1
obs2 1 2.2
obs3 2 -3.0
obs4 2 2.0

Then the statements

proc means data=one mean std cv;
class x;

form two class groups; when x = 1 and x = 2, and compute the mean, stan-
dard deviation and coefficient of variation for each group. The output from
this program is given in Figure 1.4.
If the freq variable; statement appears, then the i-th observation occurs

in the original data set the number of times given by the i-th value of variable.
Therefore the values assumed by variable must be positive integers or that
observation is not included in the calculations. For example, if the i-th
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Figure 1.4: Means, standard deviations and coefficients of variation for two
class groups.

observation occurred fi times in the original data, then the mean of a variable
x is

x =

Pn
i=1 fixiPn
i=1 fi

and the i-th value of variable must be equal to fi.
The weight variable statement behaves similarly to the freq variable

statement. In this case the i-th value of variable is a weight wi ≥ 0 that is
applied to the i-th observation in calculations. For example, the weighted
mean is given by

x =

Pn
i=1wixiPn
i=1wi

.

Note that the weights are not constrained to be nonnegative integers.

The output statement requests that proc means output statistics to a
new SAS data set that is specified as SASdataset in out = SASdataset. The
list of statistics specifies which statistics are to be included in the output
data set. The names are used to give names to the output variables. For
example, if data set one contains variables x, y, then

proc means data=one;
var x y;
output out=two mean=mn1 mn2 std=std1 std2;
proc print data=two;
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Figure 1.5: Data set created by output statement consisting of values of
statistics computed on primary data.

creates a SAS data set two with one observation and variables mn1, mn2,
std1, and std2, where mn1 is the mean of x, mn2 is the mean of y, std1
is the standard deviation of x, and std2 is the standard deviation of y.
Therefore the first name in a list is associated with the value of the statistic
for the first variable in the var list, the second name is associated with the
value of the statistic for the second variable in the var list, and so on. The
output from printing the data set two is given in Figure 1.5. The value of
putting these statistics in a SAS data set is that they are now available for
analysis by other SAS procedures.
Notice that two additional automatic variables are added to the output

data set, namely, _type_ and _freq_. The value of _freq_ is the number
of data values used to compute the value of the statistic. If there is no class
statement, then _type_ always equals 0 and there is only one observation in
the output data set. When class variables are included, SAS creates a single
observation for each subgroup and adds variables for the class variables taking
the values that define the subgroups. In addition, observations that depend
on the class variables are added. The values of _type_ are more complicated
to explain, while _freq_ retains its earlier interpretation. To suppress the
addition of these observations, which is what we typically want to do, use
the nway option in the proc means statement. For example, if the SAS
data set three contains

variable a b x y
obs1 -1 1 6 0
obs2 1 2 3 -1
obs3 -1 1 2 2
obs4 1 2 0 3
obs5 -1 2 1 4
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obs6 1 2 3 3

then

proc means data=three nway;
class a b;
var x y;
output out=four means=mnx mny;

creates the SAS data set four which contains

variable a b type freq mnx mny
obs1 -1 1 3 2 4 1.00000
obs2 -1 2 3 1 1 4.00000
obs3 1 2 3 3 2 1.66667

Therefore there are three unique values of (a,b). The value (−1, 1) has
_freq_=2 observations, and the means of the x and y values for that subgroup
are mnx = 4 and mny = 1, respectively. For more details on the _type_ vari-
able, see reference [2] in Appendix E. Similar considerations apply when a
by statement is included.
If we do not want proc means to print any output, e.g. when we want

only to create an output data set, then we use the noprint option in the
proc means statement.

1.1.4 PROC UNIVARIATE

The proc univariate procedure is used to produce descriptive summary
statistics for quantitative variables. It is similar to proc means, but it
has some unique features. For example, proc means permits class variables
while proc univariate does not. On the other hand proc univariate allows
for many more descriptive statistics to be calculated. Features in proc
univariate include detail on the extreme values of a variable, quantiles,
several plots to picture the distribution, frequency tables, and a test that the
data are normally distributed. For example, suppose we want to use proc
univariate on Newcomb’s measurements in Table 1.1 of IPS, which is in the
text file c:/saslibrary/newcomb.txt. Then the commands

options nodate nonumber;
data newcomb;
infile ’c:/saslibrary/newcomb.txt’;
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Figure 1.6: Output from proc univariate applied to Newcomb’s data.

input light;
cards;
proc univariate;
title ’Summary of Newcomb Data’;
var light;
run;

produce the output shown in Figure 1.6.
We observe from Figure 1.6 that running proc univariate has resulted

in many summary statistics being printed for the data. We do not try to
explain them all here but note that the total number n of observations on
which the calculations are based is printed as well as the mean, standard
deviation, median, quartiles, interquartile range, minimum, and maximum.
So a great deal of information about the distribution of the variable can be
obtained from proc univariate.
The following statements can be used with proc univariate.

proc univariate options;
var variables;
freq variable;
weight variable;
id variables;
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output out=SASdataset statistic-keyword=names;
by variables;

Some of the options that can appear in the univariate statement are

data = Sasdataset
plot
freq
normal
noprint

The by, freq, and weight statements work as in proc means. The
output statement is used when you want to create an output SAS data set
with the values of statistics specified as the values of the variables. The new
data set contains an observation for each by group specified. For example,
if the SAS data set one contains the variables a, x, y, and z and it has been
sorted by a, then

proc univariate data=one;
var x y z;
by a;
output out=two mean=mnx mny mnz std=stdx stdy stdz;

creates a SAS data set two which has seven variables a, mnx, mny, mnz, stdx,
stdy, and stdz, with an observation for each value assumed by a. For a
value of a, the variable a in the new data set takes this value, mnx is the
mean of the x values corresponding to this value of a, and so on. If we use
the noprint option, then SAS only creates the data set. The statistics that
follow may be saved by proc univariate by giving the keyword names of
the statistics in the output statement. Note that the statistics include all
those available in proc means.

n
nmiss number of missing observation
nobs number of observations, nobs = n + nmiss
mean
stdmean standard deviation of the mean
sum
std
var
cv
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uss

css

skewness

kurtosis

sumwgt

min

max

range

q3 3rd quartile or 75th percentile

median

q1 1st quartile or 25th percentile

qrange interquartile range, q3 − q1
p1 1st percentile

p5 5th percentile

p10 10th percentile

p90 90th percentile

p95 95th percentile

p99 99th percentile

mode

t Student’s t statistic

probt probability of greater absolute value for Student’s t

msign sign statistic

probm probability of greater absolute value for the sign statistic

signrank Wilcoxon statistic

probs probability of a greater absolute value for the centered Wilcoxon sta-
tistic

normal Shapiro-Wilk test statistic for testing normality when sample size is
less than 200, otherwise the Kolmogorov statistic

probn P -value for testing the hypothesis that the sample is from a normal
distribution

If the plot option is used, then a stem-and-leaf plot, a boxplot, and a nor-
mal probability plot are produced for each variable. The freq option requests
a frequency table consisting of the variable values, frequencies, percentages,
and cumulative percentages. The normal option causes a test statistic to
be computed that tests the null hypothesis that the sample comes from a
normal distribution.



60 Chapter 1

1.2 Graphing Data

One of the most informative ways of presenting data is via a graph. There are
several methods for obtaining graphs in SAS. For example, suppose we use
proc univariate on Newcomb’s measurements in Table 1.1 of IPS, which is
in the text file c:/saslibrary/newcomb.txt. Then the commands

data one;
infile ’c:\saslibrary\newcomb.txt’;
input x;
proc univariate plot;
var x;
run;

produce the usual output from this procedure together with a stem-and-leaf
plot , a boxplot , and a normal probability plot for this data. In Figure 1.7
the stem-and-leaf and the boxplot are shown. For the boxplot the central
horizontal line is the median with the next two lines the quartiles. The
vertical lines extending from the quartiles extend to the minimum of the
range of the data or 1.5 times the interquartile range, whichever is less. Any
values further from the median than this but less than three interquartile
ranges are marked with a 0, while more extreme values are marked with an
asterisk. The plus sign represents the sample mean.

1.2.1 PROC CHART

The procedure proc chart produces vertical and horizontal bar charts, block
charts, and pie charts. These charts are useful for showing pictorially a
variable’s values or the relationships between two or more variables. The
following statements can be used with this procedure.

proc chart options;
vbar variables/options;
hbar variables/options;
block variables/options;
pie variables/options;
by variables;

An option available in the proc chart statement is

data = SASdataset
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Figure 1.7: Stem-and-leaf plot and boxplot for Newcomb’s data.

where SASdataset specifies the SAS data set containing the variables you
want to plot.
In the vbar statement, list the variables for which you want vertical bar

charts. Each chart takes one page. The hbar statement requests a horizontal
bar chart for each variable listed. Each chart occupies one or more pages. In
the block statement, list the variables for which you want block charts. See
reference 2 in Appendix E for further discussion of block charts. The pie
statement requests a pie chart for each variable listed. Each pie chart takes
one page. See reference 2 in Appendix E for further discussion of pie charts.
The following options may be used with the vbar and hbar statements.

If they are used, a slash (/) must precede the option keywords.

discrete Used when the quantitative variable specified is discrete. If dis-
crete is omitted, then proc chart assumes that all numeric variables are
continuous.

type = Specifies what the bars or sections in the chart represent. The
following statements are used:

type = freq;
type = pct;
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type = cfreq;
type = cpct;
type = sum;
type = mean;

The abbreviation freq makes each bar or section represent the frequency
with which a value occurs for the variable in the data, pct makes each bar or
section represent the percentage of observations of the variable having a given
value, cfreq makes each bar or section represent cumulative frequency, cpct
makes each bar or section represent cumulative percentage, sum makes each
bar or section represent the sum of the sumvar = variable for observations
having the bar’s value, and mean makes each bar or section represent the
mean of the sumvar = variable for observations having the bar’s value. If
no type = is specified, the default is type = freq.

sumvar = variable names the variable to collect summaries for means, sums
or frequencies.

group = variable produces side-by-side charts with each chart represent-
ing the observations having a given value of variable. This variable can be
numeric or character and it is assumed to be discrete.

subgroup = variable subdivides each bar into characters that show vari-
able’s contribution to the bar.

For example, suppose we use proc chart on Newcomb’s measurements
in Table 1.1 of IPS, which has been placed in the SAS data set one with the
measurements in the variable x. Then the commands

proc chart data=one;
vbar x/ type=pct;
run;

produce a vertical bar chart as presented in Figure 1.8. In this case the ver-
tical bar chart is also called a histogram of x. SAS sorts the x values, divides
them into subgroups according to whether or not they fall into equal-length
subintervals, and then plots the proportion of the total number of values
falling into that subinterval as the height of a vertical bar over the midpoint
value for the subinterval. SAS has an internal algorithm for choosing the
various parameters that determine the appearance of the plot.
As another example of plotting a histogram, suppose the SAS data set

two contains a numeric variable x and a character variable sex, which takes
the values M and F. Then
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Figure 1.8: Histogram of Newcomb’s data.

proc chart data=two;
hbar sex;

produces a horizontal bar chart, with the length of the two bars representing
the frequencies, or counts. The commands

proc chart data=two;
vbar x / subgroup=sex;

produce a vertical bar chart for x with each bar divided to show how many
M and F are in the subgroup.
If you do not like the appearance of the plot automatically produced by

the algorithm in proc chart, you can change the character of the plot using
the following options.

midpoints= values defines the range of values each bar or section represents
by specifying the range midpoints. This is the most important option in
determining the appearance of the plot. For example, the statement

vbar x / midpoints=10 20 30 40 50;
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produces a chart with five bars: the first bar represents the range of data
values with a midpoint of 10, the second bar represents the range of data
values with a midpoint of 20, and so on. You can also abbreviate the list of
midpoints as

vbar x/ midpoints=10 to 50 by 10;

which produces the same result. For character variables, midpoints may
be useful in specifying a subset of the possible values. For example, you can
give a list of the form

vbar sex / midpoints=m;

which produces a bar chart with only one bar for sex, giving the frequency
of M.

axis = value specifies the maximum value to use in constructing the freq,
pct, cfreq, or cpct axis.

The following options may be used with the vbar and hbar statements.

levels = n specifies the number of bars n representing each variable when
the variables given in the vbar statement are continuous.

symbol =’char ’ defines the symbol char to be used in the body of standard
hbar and vbar charts. The default symbol value is the asterisk ’*’.

missing specifies that missing values are to be considered as valid levels for
the chart variable.

nozeros specifies that any bar with zero value be suppressed.

ascending prints the bars in ascending order of size within groups.

descending prints the bars in descending order of size within groups.

The following options may be used with the hbar statement.

nostat specifies that no statistics be printed with a horizontal bar chart.

freq specifies that the frequency of each bar be printed to the side of the
chart.

cfreq specifies that the cumulative frequency be printed.

percent specifies that the percentages of observations having a given value
for the chart variable be printed.

cpercent specifies that the cumulative percentages be printed.

sum specifies that the total number of observations that each bar represents
be printed.
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mean specifies that the mean of the observations represented by each bar be
printed.

For charts produced with any type = specification without a sumvar =
variable option, proc chart can print freq, cfreq, percent, and cpercent.
For type = mean with a sumvar= variable option, proc chart can print
freq andmean. For a type = sum specification, proc chart can print freq
and sum.
By group processing is also available with proc chart. For a discussion,

see proc sort.

1.2.2 PROC TIMEPLOT

The procedure proc timeplot is used to plot time series. For example, the
program

data one;
input group y z;
cards;
1 2.2 5.0
1 4.2 4.5
1 3.3 2.3
1 4.0 1.1
1 5.0 2.1
2 2.6 5.1
2 3.3 4.2
2 5.3 3.2
2 6.1 2.4
2 1.5 3.2
proc timeplot data=one uniform;
plot y = ’*’ z =’+’ /overlay;
by group;
run;

creates two plots, one for each by group as specified by the value of the
variable group. The uniform option to proc timeplot specifies that the
horizontal scale, which is the scale for the variables, is the same for each plot
and a time plot is given for variables y and z with these plots overlaid as
specified by the overlay option to the plot statement. The time plot for
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Figure 1.9: Overlaid time plots from proc timeplot.

group=1 is given in Figure 1.9. Notice that the vertical axis is time, and
of course we are assuming here that the order in each group corresponds
to the time order in which each observation was collected. Also the values
of the variables are printed by the time axis. In the plot statement we
list all the variables for which time plots are requested and here specify the
plotting symbols, as in y = ’*’ z =’+’, which indicates that each value of
y is plotted with * and each value of z is plotted with +. As with proc
means, a class statement can also be used with proc timeplot.

1.3 Graphing Using SAS/Graph

Higher-resolution plots than those discussed for proc chart are available
if you have the SAS/Graph software as part of your SAS implementation.
SAS/Graph plots are displayed in the Graph window, which can be accessed
via G

¯
lobals I G

¯
raph. Not only are there a number of much more elaborate

plots, but plots can be enhanced in many ways, e.g., through the use of
color. It is possible to edit a graph using E

¯
dit I Edit g

¯
raph, e.g., typing text

directly onto the graph. The graph can be printed using F
¯
ile I P

¯
rint. Also

the plot can be saved in some format such as .bmp or .jpeg using Export
I, and graphics files in different formats can be imported into SAS/Graph
using Import I .

We can describe only a small proportion of the features available in
SAS/Graph and refer the reader to references 5 and 6 in Appendix E. Here-
after we will primarily present SAS/Graph plots because of their better ap-
pearance.
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1.3.1 PROC GCHART

The procedure proc gchart works just like proc chart but it plots to the
Graph window, the plots have a more professional look, and there is much
more control over the appearance of the plot. For example, suppose we use
proc gchart on Newcomb’s measurements in Table 1.1 of IPS, which has
been placed in the SAS data set one with the measurements in the variable
x. Then the commands

axis1 label=(’Passage time of light’) length=4 in;
axis2 length=4 in;
proc gchart data=one;
vbar x / midpoints=-40 to 40 by 10 frame maxis=axis1

raxis=axis2;
run;

produce Figure 1.10, which is a frequency histogram of the data. Here we
have used the axis statement to define two axes (there can be up to 99
different axes defined); axis1 has the label Passage time of light and
the length 4 inches (can also use centimeters) and axis2 has no label but
is required to have a length of 4 inches as well. We assigned axis1 to the
midpoint axis maxis and axis2 to the response axis raxis as options in the
vbar statement. The frame option in the vbar statement ensures that a
frame is drawn around the plot. As with any proc, we can also place a title
on the plot if we wish by using a title statement. There are many additional
ways in which the appearance of this plot can be controlled; we refer the
reader to reference 6 in Appendix E.

1.4 Normal Distribution

It is important in statistics to be able to do computations with the normal
distribution. As noted in IPS, the equation of the density curve for the
normal distribution with mean µ and standard deviation σ is given by

1√
2π

e−
1
2(

z−µ
σ )

2

where z is a number. We refer to this as the N(µ, σ) density curve. Also of
interest is the area under the density curve from −∞ to a number x, i.e., the
area between the graph of theN(µ, σ) density curve and the interval (−∞, x].
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Figure 1.10: Histogram of Newcomb’s data.

Recall that this is the value of the N(µ, σ) distribution function at x and it
equals the value of the N(0, 1) distribution function at the standardized value

z =
x− µ

σ
.

The N(0, 1) distribution function is available in SAS as probnorm (see
Appendix A). Sometimes we specify a value p between 0 and 1 and then
want to find the point xp such that p of the area for the N(µ, σ) density curve
under its graph over (−∞, xp]. The point xp is called the p-th percentile of the
N(µ, σ) density curve. If zp is the p-th percentile of the N(0, 1) distribution,
then xp = µ + σzp. The function probit is available to evaluate percentiles
for the N(0, 1) distribution.
All these calculations can be carried out from within the data step in

SAS. For example, if µ = 5, σ = 2.2, p = .75, and x = 7.3, then the program

data;
mu=5;
sigma=2.2;
x=7.3;
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z=(x-mu)/sigma;
put ’The standardized value = ’ z;
pn=probnorm(z);
put ’The N(5,2.2) distribution function at 7.3 = ’ pn;
ip=probit(.75);
ip=mu+sigma*ip;
put ’The 75-th percentile of the N(5,2.2) distribution = ’

ip;
cards;
run;

writes

The standardized value = 1.0454545455
The N(5,2.2) distribution function at 7.3 = 0.8520935309
The 75-th percentile of the N(5,2.2) distribution

= 6.4838774504

in the Log window.

1.4.1 Normal Quantile Plots

Some statistical procedures require that we assume that values for some
variables are a sample from a normal distribution. A normal quantile plot
is a diagnostic that checks for the reasonableness of this assumption. Note
that quantile means the same as percentile. To create such a plot we use
proc univariate with the plot option. For example, if the Newcomb data
is in the data set one as the single variable light, then the commands

proc univariate plot;
var light;

produce as part of the output the normal quantile plot shown in Figure 1.11.
Note that in this plot asterisks * correspond to data values and pluses +
correspond to a reference straight line. We see in this example a marked
deviation from a straight line. See IPS for further discussion of this example.

1.5 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
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Figure 1.11: Normal quantile plot of Newcomb’s data.

to be carried out using SAS, and the exercises are designed to reinforce your
understanding of the SAS material in this chapter. More generally, you
should use SAS to do all the computations and plotting required for the
problems in IPS.

1. Using Newcomb’s measurements in Table 1.1 of IPS, create a new vari-
able by grouping these values into three subintervals (−50, 0), [0, 20),
[20, 50). Calculate the frequency distribution, the relative frequency
distribution, and the cumulative distribution of this ordered categorical
variable.

2. Using the data in Example 1.5 of IPS on the amount of money spent
by shoppers in a supermarket, print the empirical distribution function
and determine the first quartile, median, and third quartile. Also use
the empirical distribution function to compute the 10-th and 90-th
percentiles.

3. (1.23) Use SAS commands for the stem-and-leaf plot and the histogram.
Use SAS commands to compute a numerical summary of this data and
justify your choices.

4. (1.24) Transform the data in this problem by subtracting 5 from each
value and then multiplying by 10. Calculate the means and standard
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deviations, using any SAS commands, of both the original and trans-
formed data. Compute the ratio of the standard deviation of the trans-
formed data to the standard deviation of the original data. Comment
on this value.

5. (1.27) Transform this data by multiplying each value by 3. Compute
the ratio of the standard deviation to the mean (called the coefficient of
variation) for the original data and for the transformed data. Justify
the outcome.

6. (1.38) Use SAS to draw time plots for the mens and women’s winning
times in the Boston marathon on a common set of axes.

7. For the N(6, 1.1) density curve, compute the area between the interval
(3,5) and the density curve. What number has 53% of the area to the
left of it for this density curve?

8. Use SAS commands to verify the 68—95—99.7 rule for theN(2, 3) density
curve.

9. Use SAS commands to make the normal quantile plot presented in
Figure 1.32 of IPS.
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Chapter 2

Looking at Data: Relationships

SAS statements introduced in this chapter

proc corr proc gplot proc plot proc reg proc tabulate

In this chapter we describe SAS procedures that permit the analysis of
relationships among two variables. The methods are different depending on
whether or not both variables are quantitative, both variables are categorical,
or one variable is quantitative and the other is categorical. Graphical meth-
ods are useful in looking for relationships among variables, and we examine
various plots.

2.1 Relationships Between Two Quantitative

Variables

2.1.1 PROC PLOT and PROC GPLOT

A scatterplot of two quantitative variables is a very useful technique when
looking for a relationship between two variables. By a scatterplot we mean
a plot of one variable on the y axis against the other variable on the x axis.
For example, consider Example 2.4 in IPS where we are concerned with the
relationship between the length of the femur and the length of the humerus
for an extinct species. Then the program

73
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Figure 2.1: Scatterplot of humerus length versus femur length in Example
2.4 of IPS using proc gplot.

data archaeop;

input femur humerus;

cards;

38 41

56 63

59 70

64 72

74 84

symbol value=dot;

axis1 length=4 in;

axis2 length=5 in;

proc gplot data=archaeop;

plot humerus*femur/ vaxis= axis1 haxis = axis2 frame;

run;

produces the high-resolution scatterplot shown in Figure 2.1. This program
uses the SAS/Graph procedure proc gplot, but if it is not available you can
substitute proc plot. We describe proc plot first and then proc gplot.
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PROC PLOT

The proc plot procedure graphs one variable against another, producing a
scatterplot. This procedure takes the values that occur for each observation
in an input SAS data set on two variables, say x and y, and plots the values
of (x,y), one for each observation. The following statements are used with
proc plot.

proc plot options;
plot requests/options;
by variables;

Following are some of the options available in the proc plot.

data = SASdataset
uniform

Here SASdataset represents the SAS data set that contains the variables to
be plotted.
The plot statement lists the plots to be produced. You may include many

plot statements and specify many plot requests on one plot statement. The
general form of the plot request is vertical * horizontal ;. first you name the
variable to be plotted on the y axis, then a *, and then the variable to be
plotted on the x axis. When a point on the plot represents a single obser-
vation, the letter A is used to represent this point. When a point represents
two observations, the letter B is used, and so on. When a value of a variable
is missing, that point is not included in the plot.
Another form of the plot request is vertical*horizontal=’character’. With

this form, you are naming the variables to be plotted on the y and x axes
and also specifying a character (inside single quotation marks) to be used to
mark each point on the plot.
A further form of the plot request is vertical*horizontal=variable, where

the value of variable is now printed to mark each point. If you want to plot
all combinations of one set of variables with another, you can use a grouping
specification. For example, if the SAS data set one contains variables x1, x2,
y1, y2, y3, then the statement

plot (x1 x2) * (y1-y3);

is equivalent to

plot x1*y1 x1*y2 x1*y3 x2*y1 x2*y2 x2*y3;



76 Chapter 2

and produces six plots. If a variable appears in both lists, then it will not be
plotted against itself. To plot all unique combinations of a list of variables,
simply omit the second list. For example,

plot (x1 - x3);

produces plots x1*x2, x1*x3, x2*x3. If a by variables; statement is included,
then the plot requests are carried out for each by group of observations. When
the uniform option is specified, all the axes have the same scale for each
pair of variables and for each by group so that the plots are comparable.
The plot statement also has a number of options. The options are speci-

fied by placing a slash / after the plot requests and then listing the options.
For example,

plot x1*x2=’+’ x1*x3=’.’ / overlay;

causes the x1*x2 and x1*x3 plots to be overlaid on the same set of axes
with different plotting characters for each plot. It is possible to control the
appearance of the axes using the haxis and vaxis options. For example,

plot x1*x2 / haxis = 10 20 30 40 vaxis = -3 -2 -1 0 1 2 3;

plots x1 against x2 with the tick marks on the x axis at 10, 20, 30 and 40
and the tick marks on the y axis at -3, -2, -1 0, 1, 2 and 3. Alternatively, as
we have equispaced tick marks, we can write this command as

plot x1*x2 / haxis = 10 to 40 by 10 vaxis = -3 to 3 by 1;

produce the same graph..
There are many other options for the plot statement. For example, we

can control the size of the plots so that multiple plots can appear on one
page. See reference 2 in Appendix E for a full discussion of proc plot.
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PROC GPLOT

The procedure proc gplot produces higher-resolution graphics such as Fig-
ure 2.1. We have much more control over the appearance of the plot with
this procedure. The following statements are among those that can be used
with this procedure.

proc gplot options;
plot requests/options;
by variables;

As with proc gchart we can also use axis statements (up to 99, labeled
axis1, axis2, and so on) to control the appearance of the axes. Alternatively,
we can control the appearance of the axes as in proc plot. For example, the
statements

symbol value=dot;
axis1 30 to 80 by 10;
axis2 40 to 90 by 5;
proc gplot data=archaeop;
plot humerus*femur/ haxis = axis1 vaxis = axis2;
run;

substituted into the program that produced Figure 2.1 produce the same
graph.
The default plotting symbol is +. The symbol statement is used to

define alternative plotting characters and control other characteristics such as
whether or not we want to join the points. More than one symbol statement
can appear (up to 99, labeled symbol1, symbol2, and so on) When more
than one plot is requested, the appropriate symbol statement is referenced
by using vertical*horizontal=n where n refers to the n-th symbol generated in
the program (not necessarily the one labeled this). Actually a full description
of the use of the symbol statement is reasonably complicated, particularly
if colors are being used, and we refer the reader to references 5 and 6 in
Appendix E. It is better to specify the color of each symbol if we want
to ensure that n refers to the n-th symbol statement. For example, the
program

data one;
input x y z;
cards;
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1 3.2 4.3
2 2.1 1.0
3 6.3 2.1
4 4.3 3.3
5 1.0 0.0
axis1 length=4 in label= (’independent variable’);
axis2 length=4 in label =(’ dependent variables’);
symbol1 value=dot interpol=join color=black;
symbol2 value=circle color=black;
proc gplot data=one;
plot y*x=1 z*x=2/overlay haxis = axis1 vaxis =axis2 legend;
run;

produces Figure 2.2. Notice that we have specified the color for both plotting
symbols, as this ensures that symbol1 corresponds to y*x and symbol2 cor-
responds to z*x. Note that value = symbol specifies the plotting character
used, and some of the possibilities are

plus +
x ×
square ¤
dot •
circle ◦
diamond ¦
triangle 4
Many more are listed in reference 5 of Appendix E. Also we joined the points
in the first plot of Figure 2.2 using interpol in symbol1 and requested a
legend for the graph using the legend option in the plot statement.
There are many more features for proc gplot. We will encounter some

of them in the remainder of this manual. In particular, if we want a boxplot
of a quantitative variable, we use interpol=box in the relevant symbol
statement.

2.1.2 PROC CORR

While a scatterplot is a convenient graphical method for assessing whether
or not there is any relationship between two variables, we would also like to
assess their relationship numerically. The correlation coefficient provides a
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Figure 2.2: Overlaid scatterplots produced by proc gplot.

numerical summarization of the degree to which a linear relationship exists
between two quantitative variables, and can be calculated using the proc
corr command. For example, for the data of Example 2.4 in IPS, depicted
in Figure 2.1, the commands

data archaeop;
input femur humerus;
cards;
38 41
56 63
59 70
64 72
74 84
proc corr data=archaeop;
var femur humerus;
run;

produce the output shown in Figure 2.3. It gives the mean, standard devia-
tion, sum, minimum, and maximum of each variable and a 2× 2 array that
contains the value .99415 in the upper right and lower left corners. This is
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Figure 2.3: Correlation coefficient for Example 2.4 in IPS computed using
proc corr.

the value of the correlation coefficient (sometimes called the Pearson correla-
tion coefficient). The numbers below the correlation coefficient are P -values
that are used to test whether or not the correlations are in fact 0. At this
point in the course we ignore these numbers.
The following statements can be used in the proc corr procedure.

proc corr options;
var variables;
with variables;
weight variable;
freq variable;
by variables;

Some of the options that may appear in the proc corr statement are

data = SASdataset
outp = name
nomiss

To illustrate the use of these statements and options the data set one below
contains the variables w, x, y, and z, and the commands

data one;
input w x y z;
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Figure 2.4: Correlation matrix produced by proc corr.

cards;
.3 3.2 4.2 5.3
.2 1.1 2.0 1.0
.2 0.4 1.5 4.3
.1 1.2 1.4 3.2
.2 3.0 2.3 4.3
proc corr data=one;
var x y z;
run;

compute the correlations between variables x and y, x, and z, and y, and
z. Part of the output is provided in Figure 2.4 (we have deleted the means,
standard deviations and so on) in the form of a 3 × 3 correlation matrix.
The correlation between x and y is .80096, between x and z it is .52568, and
between y and z the correlation is .51152.
If the var statement is omitted, then correlations are computed between

all numeric variables in the data set. If you want to produce correlations
only for specific combinations, then use the with statement. For example,

proc corr data=one;
var x;
with y, z;

produces correlations between x and y, and x and z only.
To compute a weighted correlation coefficient use the weight statement.

This is used when some observations are felt to be more important than
others. If the i-th observation is given weight wi >= 0 , then the weighted
correlation coefficient between x1, . . . , xn and y1, . . . , yn is
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rw =

Pn
i=1[wi(xi − x̄w)(yi − ȳw)]

[
Pn

i=1wi(xi − x̄w)2
Pn

i=1wi(yi − ȳw)2]
1
2

where

x̄w =

Pn
i=1wixiPn
i=1wi

and

ȳw =

Pn
i=1wiyiPn
i=1wi

are the weighted means. When w1 = · · · = wn = 1, we get the usual
correlation coefficient. Otherwise, observations with more weight have a
larger influence on the computed value (wi = 0 means no influence). If, in
data set one, the variable w contains the weights, then

proc corr data=one;
var x y z;
weight w;

computes this correlation coefficient between x and y, x and z, and y and z.
The weighted correlation between x and y is 0.82119.
If the i-th observation represents fi observations — the pair (xi, yi) is

observed fi times — then the appropriate formula for the correlation is

r =

Pn
i=1 fi(xi − x̄f )(yi − ȳf)

[
Pn

i=1 fi(xi − x̄f )2
Pn

i=1 fi(yi − ȳf)2]
1
2

where

x̄f =

Pn
i=1 fixiPn
i=1 fi

and

ȳf =

Pn
i=1 fixiPn
i=1 fi

This formula agrees with the weighted case on taking wi = fi. To compute
the correlation coefficients in this case, however, we must use the freq state-
ment, as the test that a correlation coefficient is 0 that SAS does is different
when the wi are truly only weights and not counts.
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If the outp = name option is specified, then SAS creates an output data
set called name of a somewhat different structure. It is called a type = corr
data set and it contains basic statistics and the Pearson correlation matrix
for the variables in the var statement. Other SAS procedures recognize and
use this type of data set.
The nomiss option specifies that any observations that have any missing

values in them must be excluded from any calculations.

2.1.3 PROC REG

Regression is a technique for assessing the strength of a linear relationship
between two variables. For regression we use proc reg command. Actually
regression analysis applies to the analysis of many more variables than just
two. We discuss more fully the proc reg procedure in Chapters II.10 and
II.11.
As noted in IPS the regression analysis of two quantitative variables in-

volves computing the least-squares line y = a+bx, where one variable is taken
to be the response variable y and the other is taken to be the explanatory or
predictor variable x. Note that the least-squares line is different depending
upon which choice is made. For example, for the data of Example 2.4 in IPS
and plotted in Figure 2.1, letting femur length be the response and humerus
length be the explanatory variable, the commands

proc reg data = archaeop;
model femur = humerus;
run;

give the output in Figure 2.5. Much of this can be ignored at this point in
the course. The table labeled Parameter Estimates gives the least-squares
line as y = 3.700990 + 0.825743x, i.e., a = 3.700990 and b = 0.825743. Also
the value of the square of the correlation coefficient is given as R-Square,
which here equals .9883 or 98.83.We discuss the remaining output from the
regress command in Chapter II.10.
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Figure 2.5: Output from application of proc reg to the data of Example 2.4
in IPS.

The following statements can appear with this procedure.

proc reg options;
model dependent=independent /options;
by variables;
freq variable;
id variable;
var variables;
weight variable;
plot yvariable*xvariable = ’symbol ’ /options;
output out = SAS-dataset keyword = names;

The following options are some of those that may appear in the proc reg
statement.

data = SASdataset
corr
simple
noprint

The model statement causes the least-squares line of the form dependent
= a + b (independent) to be calculated, where dependent is the response
variable and independent is the explanatory or predictor variable. There
can be several model statements in a proc reg. The by statement works
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as described in other procedures; see proc sort for discussion. The freq
statement identifies a variable that gives a count for the number of times
that observation occurs in the original data set. The id statement identifies a
variable whose values are used as an identifier for observations. This is useful
in some of the diagnostic procedures where we want to identify influential or
aberrant observations. The var statement must be used when severalmodel
statements are used, or only those variables that appear in the first model
statement are available for subsequent analysis. Thus we must list all the
variables we are going to use in the var statement. The weight statement
identifies variable as containing weights for the dependent variable values.
The plot statement causes scatterplots to be produced. For example, the

statements

proc reg data = archaeop;
model femur = humerus;
plot femur*humerus=’0’ residual.*humerus=’+’

residual.*predicted.=’*’/ hplots =2 vplots=3;
run;

cause three scatterplots to be produced: femur versus humerus, residual
versus humerus, and residual versus predicted values. Figure 2.6 is the
plot of residual versus humerus that results from this command. Note the
use of the period after the keyword names predicted and residual in this
statement.

We may wish to compute other functions of residuals — predicted values,
for example — or form other plots. Hence it is useful to be able to save
these quantities in a SAS data set. This is accomplished using the output
statement. For example,

proc reg data = archaeop noprint;
model femur = humerus;
output out=save predicted=yhat residual=r;
proc print data=save;
run;

creates a SAS data set called save with five observations and four variables
femur, humerus, yhat, and r, where yhat is the predicted value for an obser-
vation and r is the residual for an observation, i.e., the difference between the
observed value of femur and the predicted value. The program also prints
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Figure 2.6: Residual plot for Example 2.4 in IPS produced by proc reg.

this data set and we show this output in Figure 2.7. In general all the vari-
ables in the original data set are included plus those defined. The format is
to specify the statistic and name for the variable that will contain its values
in the new data set via statistic=name. There are other statistics besides
the predicted values and the residuals that we can save; we discuss them in
Chapter II.10. If we want to create a data set with only some of these values,
then the option noprint in the proc reg statement can be given to suppress
printing.
Various options are available in the proc reg statement. Many model

statements may appear in the procedure, and if an option appears in the
proc reg statement it applies to all of them. For example, corr requests
that the correlation matrix of all the variables in a model statement be
printed, simple requests that the sum, mean, variance, standard deviation
and uncorrected sum of squares be printed for each variable.
Several options can be used with the model statement.

noint causes the model y = bx to be fit; i.e. no intercept term a is included.
p causes predicted values and ordinary residuals (difference between observed
and predicted values) to be printed.

A useful plot for this context is obtained using proc gplot. The com-
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Figure 2.7: The saved date set save from proc reg applied to Example 2.4
in IPS.

mands

axis length=4 in;
symbol value=dot interpol=r;
proc gplot data=archaeop;
plot femur*humerus/ haxis=axis vaxis=axis;

produce a scatterplot of femur versus humerus, and the symbol statement
with interpol=r causes the least-squares line to be plotted on this graph as
well. This is shown in Figure 2.8.

2.2 Relationships Between Two Categorical

Variables

The relationship between two categorical variables is typically assessed by
crosstabulating the variables in a table. For this the proc freq and proc
tabulate procedures are available.
We discussed proc freq in Section II.1.1.1, and we advise the reader to

review that section. Here we simply add that proc freq has the capacity
to cross tabulate variables as well as produce tabulations of single variables.
For example,

data one;
input x y;
cards;
1 2
0 1
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Figure 2.8: Scatterplot of data together with least-squares line in Example
2.4 of IPS produced using proc gplot.

2 2
0 2
2 2
1 1
2 1
2 1
1 2
proc freq data=one;
tables x*y;
run;

produces the 3× 2 table given in Figure 2.9. To see if there is a relationship
between the two variables we compare the conditional distributions of y given
x, or the conditional distributions of x given y. In this case, comparing the
conditional distributions of y given x, the three conditional distributions
(.5,.5), (.33,.33) and (.5,.5) are different and so there would appear to be a
relationship. Of course this is a small amount of data. In Chapters II.8 and
II.9 we will see how to assess such a conclusion statistically.

If you want a cross tabulation table, then in the tables statement give the
two variables for the table, separating the names with an asterisk *. Values of
the first variable form the rows of the table, values of the second variable form
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Figure 2.9: Table resulting from cross tabulation using proc freq.

the columns. If you want a three-way (or n-way) cross tabulation table, join
the three (or n) variables with asterisks. Values of the last variable form the
columns, and values of the next-to-last variable form the rows. A separate
table is produced for each level(or combination of levels) of the remaining
variables. For example, the statements

proc freq data=example;
tables a*b*c;

produce m tables, where m is the number of different values for the variable
a. Each table has the values of b down the side and the values of c across
the top.
Variable lists can be used to specify many tables. For example,

tables (x1 - x3)*(y1 y2);

is equivalent to

tables x1*y1 x1*y2 x2*y1 x2*y2 x3*y1 x3*y2;

If the page option is included in the proc freq statement, then no more
than one table is printed on a single page.
Often it is a good idea to graph the conditional distributions in bar charts

to visually compare them. For example, using the SAS data set one we
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Figure 2.10: Side-by-side bar plots of the conditional distributions of y given
x produced using proc gplot.

created, the commands

axis length = 4 in;
proc gchart data=one;
vbar y/type=pct group=x midpoints = 1 2
maxis = axis raxis = axis;
title ’Conditional distributions of y given x’;

create Figure 2.10, where the conditional distributions are plotted side-by-
side using the group = variable option in the vbar statement.

2.3 Relationship Between a Categorical

Variable and a Quantitative Variable

Suppose now that one variable is categorical and one is quantitative. We treat
the situation where the categorical variable is explanatory and the quantita-
tive variable is the response (the reverse situation is covered in Chapter II.15).
To examine the relationship between such variables we look at the conditional
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distributions of the response variable given the explanatory variable. Since
the response variable is quantitative, it is convenient to summarize these con-
ditional distributions using means, standard deviations, or other summary
statistics. To examine them in tabular form we use proc tabulate.

2.3.1 PROC TABULATE

This procedure constructs tables of descriptive statistics such as means,
counts, standard deviations, and so on for cross-classified data. Each ta-
ble cell contains a descriptive statistic calculated on all values of a response
variable from observations sharing the same values of a set of categorical ex-
planatory variable values. Note that this is different from proc freq, which
only gives tables of counts or percentages for cross-classified data. Also the
tables produced by proc tabulate can be more attractive because you have
more control over their format.
To illustrate we use the data in Exercise 2.16 of IPS. Here we have four

different colors of insect trap – lemon yellow, white, green and blue – and
the number of insects trapped in six different instances in each trap. We
have these data in a file called c:\saslibrary\traps.dat with variables
trap and count. The variable trap takes the value 1 indicating a lemon
yellow trap, 2 indicating white, 3 indicating green, and 4 indicating blue.
The variable count is equal to the number of insects trapped in a particular
trap. We then calculate the mean number of insects trapped for each trap
using proc tabulate. The commands

data insect;
infile ’c:\saslibrary\traps.dat’;
input trap count;
cards;
proc tabulate data=insect;
var count;
class trap;
table trap*count*mean ;
run;

produces a table (Figure 2.11) of mean counts for each of the four traps.
Following are some of the statements that can appear with proc tabu-

late.

proc tabulate options;
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Figure 2.11: Table of means for the data of Exercise 2.16 in IPS produced
by proc tabulate.

class variables;
var variables;
table definition / options;
freq variable;
weight variable;
by variables;
keylabel keyword = text;

An option available in the proc tabulate statement is

data = SASdataset

where SASdataset is a SAS data set containing the variables we want to
tabulate.

The proc tabulate statement is always accompanied by one or more ta-
ble statements specifying the tables to be produced. In the table statement,
definition defines the table to be constructed and it can have a fairly elab-
orate structure. We discuss only cross tabulations here. We recognize two
kinds of variables, namely, class variables and analysis variables. Class vari-
ables are identified in the class statement and analysis variables are identified
in the var statement. Any of these variables can be crossed using the oper-
ator *. Keywords for statistics (such as mean and std) can also be crossed.
When you cross class variables, categories are created from the combination
of values of the variables. If one of the elements in a crossing is an analysis
variable, then the statistics for the analysis variable are calculated for the
categories created by the class variables.
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The following keywords are used to specify statistics whose values will
appear in the table cells. Only one of these can be specified in definition.

css corrected sum of squares.
cv coefficient of variation as a percentage.
max maximum value.
mean mean.
min minimum value.
n number of observations with nonmissing variable values.
nmiss number of observations with missing variable values.
range range = maximum - minimum
std standard deviation.
stderr standard error of the mean.
sum sum.
sumwgt sum of the weights.
uss uncorrected sum of squares
var variance.

Suppose that SAS data set one contains three categorical variables a, b,
and c and one quantitative variable x and each of the categorical variables
takes two values. Then the program

proc tabulate data=one;
var x;
class a b c;
table a * b * c * x * mean;

produces a table of means for x in each cell of the (a,b,c) classification in
column format: the values of a form two columns, each of which is composed
of two columns for b, each of which is composed of two columns for c, with
the means of x written along the bottom of the table. The table statement

table a * b * x * mean;

produces a similar table, but now the means of x are for the (a,b) classifica-
tion.
The by, freq, and weight statements occur once and apply to all tables

defined in table statements. These statements work as described in proc
corr and proc means. Many additional features of proc tabulate give
you a great deal of control over the appearance of the tables. See reference
2 in Appendix E for more details.
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2.4 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using SAS, and the exercises are designed to reinforce your
understanding of the SAS material in this chapter. More generally, you
should use SAS to do all the computations and plotting required for the
problems in IPS.

1. (2.8) Calculate the least-squares line and make a scatterplot of Fuel
used against Speed together with the least-squares line. Plot the resid-
uals against Speed. What is the squared correlation coefficient between
these variables?

2. (2.10) Make a scatterplot of Rate against Mass, labeling the points for
males and females differently and including the least-squares line.

3. (2.17) Make a scatterplot of Weight against Pecking Order that includes
the means and labels the points according to which pen they correspond
to.

4. Create a SAS data set with 991 observations with two variables x and
y, where x takes the values 1 through 100 with an increment of .1 and
y = x2. Calculate the correlation coefficient between x and y. Multiply
each value in x by 10, add 5, and place the results in w. Calculate
the correlation coefficient between y and w. Why are the correlation
coefficients the same? Hint: To create the SAS data set use the method
discussed in Section I.5.4.4.

5. Using the SAS data set created in Exercise 4, calculate the least-squares
line with y as response and x as explanatory variable. Plot the residuals
and describe the shape of the you observe. What transformation might
you use to remedy the problem?

6. (2.40) For the data in this problem, numerically verify the algebraic
relationship between the correlation coefficient and the slope of the
least-squares line.

7. For Example 2.17 in IPS, calculate the least-squares line and repro-
duce Figure 2.21. Calculate the sum of the residuals and the sum of
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the squared residuals. Divide the sum of the squared residuals by the
number of data points minus 2. Is there anything you can say about
what these quantities are equal to in general?

8. Suppose the observations in the following table are made on two cate-
gorical variables where variable 1 takes two values and variable 2 takes
three values. Using proc freq, crosstabulate these data in a table of
frequencies and in a table of relative frequencies. Calculate the condi-
tional distributions of variable 1 given variable 2. Plot the conditional
distributions in bar charts. Is there any indication of a relationship
existing between the variables? How many conditional distributions of
variable 2 given variable 1 are there?

Obs Var 1 Var 2
1 0 2
2 0 1
3 0 0
4 1 0
5 1 2
6 0 1
7 1 2
8 0 0
9 0 1
10 1 1

9. Create a SAS data set consisting of two variables x and y where x takes
the values 1 through 10 with an increment of .1 and y = exp (−1 + 2x).
Calculate the least-squares line using y as the response variable and plot
the residuals against x. What transformation would you use to remedy
this residual plot? What is the least-squares line when you carry out
this transformation?

10. (2.90) For the table given in this problem, use SAS commands to calcu-
late the marginal distributions and the conditional distributions given
field of study. Plot the conditional distributions.



96 Chapter 2



Chapter 3

Producing Data

SAS statement introduced in this chapter

proc plan

This chapter is concerned with the collection of data, perhaps the most im-
portant step in a statistical problem because it determines the quality of
whatever conclusions are subsequently drawn. A poor analysis can be fixed
if the data collected are good simply by redoing the analysis. But if the
data have not been appropriately collected, no amount of analysis can rescue
the study. We discuss SAS statements and procedures that enable you to
generate samples from populations and also to randomly allocate treatments
to experimental units.

Once data have been collected, they are analyzed using a variety of sta-
tistical techniques. Virtually all of them involve computing statistics that
measure some aspect of the data concerning questions we wish to answer.
The answers determined by these statistics are subject to the uncertainty
caused by the fact that we typically have not the full population but only
a sample from the population. We therefore have to be concerned with the
variability in the answers when different samples are obtained. This leads to
a concern with the sampling distribution of a statistic. To assess the sam-
pling distribution of a statistic, we make use of a powerful computational
tool known as simulation, which we discuss in this and the following chapter.
SAS uses computer algorithms to mimic randomness. So the results are

97
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not truly random and in fact any simulation in SAS can be repeated, obtain-
ing exactly the same results provided we start our simulation with the same
seed.

3.1 PROC PLAN

Suppose we have a large population of size N and we want to select a sam-
ple of n < N from the population. Further, suppose the elements of the
population are ordered: a unique number 1, . . . , N has been assigned to each
element of the population. To avoid selection biases we want this to be a
random sample; i.e., every subset of size n from the population has the same
“chance” of being selected. We could do this physically using a simple ran-
dom system such as chips in a bowl or coin tossing; we could use a table
of random numbers, or, more conveniently, we can use computer algorithms
that mimic the behavior of random systems.
For example, suppose there are 1000 elements in a population and we

want to generate a sample of 100 from this population without replacement.
We can use proc plan to do this. For example, the commands

proc plan seed=20398;
factors a=100 of 1000;
run;

generate the simple random sample of 100 from the set {1, 2, . . . , 1000} ; i.e.,
the commands generate a random sample from this set without replacement
(Figure 3.1). If we were to run this procedure again with the same value for
seed, we would get exactly the same sample. If you are going to generate
multiple samples, be sure to change seed with each application of proc plan
to ensure different samples. Note that seed must be any nonnegative integer
less than or equal to 231 − 1.
Sometimes we want to generate random permutations, i.e., m = n and

we are simply reordering the elements of the population. For example, in
experimental design suppose we have n = n1 + · · · + nk experimental units
and k treatments. We want to allocate ni applications of treatment i, and
further, we want all possible such applications to be equally likely. Then
we generate a random permutation (l1, . . . , lN) of (1, . . . , N) and allocate
treatment 1 to experimental units labeled l1, . . . , ln1, allocate treatment 2 to
experimental units labeled ln1+1, . . . , ln1+n2 , and so on. The procedure proc
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Figure 3.1: Simple random sample (sampling without replacement) of 100
from the numbers 1 through 1000 generated using proc plan.

plan can be used for this as well. For example,

proc plan seed=4449994;
factors a=25 of 25/noprint;
output out=one;
proc print data=one;
run;

generates a random permutation of (1, 2, . . . , 25) and outputs this to SAS
data set one, as 25 observations of the variable a. The noprint option
to the factors statement ensures that no output is printed in the Output
window.
These examples show how to directly generate a sample from a popula-

tion of modest size, but what happens if the population is huge or it is not
convenient to label each unit with a number? For example, suppose we have
a population of size 100,000 for which we have an ordered list and we want
a sample of size 100. More sophisticated techniques need to be used, but
simple random sampling can still typically be accomplished; see Exercise 3
for a simple method that works in some contexts.

3.2 Sampling from Distributions

Once we have generated a sample from a population, we measure various
attributes of the sampled elements. For example, if we were sampling from
a population of humans we might measure each sampled unit’s height. The
height for the sample unit is now a random quantity that follows the height
distribution in the population we are sampling from. For example, if 80%
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of the people in the population are between 4.5 feet and 6 feet, then under
repeated sampling of an element from the population (with replacement), in
the long run the heights of 80% of the sampled units will be in this range.
Sometimes we want to sample directly from this population distribution,

i.e., generate a number in such a way that under repeated sampling the
proportion of values falling in any range agrees with that prescribed by the
population distribution. Of course we typically don’t know the population
distribution; it is what we want to identify in a statistical investigation. Still
there are many instances where we want to pretend that we do know it and
simulate from this distribution. For perhaps we want to consider the effect
of various choices of population distribution on the sampling distribution of
some statistic of interest.
Computer algorithms allow us to generate random samples from a variety

of different distributions. In SAS this is accomplished in the data step using
the random number functions discussed in Appendix A.2.7. For example,
suppose we want to simulate the tossing of a coin. Then the commands

data sample;
seed=1234556;
sum=0;
do i=1 to 100;
x=ranbin(seed,1,.75);
output sample;
sum=sum+x;
end;
prop=sum/100;
put prop;
drop seed i sum;
cards;
run;

generate a sample of 100 from the Bernoulli(.75) distribution. This sample
is output to the SAS data set sample as the variable x. Also the program
computes the proportion of 1’s in the sample and outputs this value in the
Log window using the put statement. For this run we obtained the value
prop=.84. We used the drop statement to stop any variables we aren’t
interested in from being written to sample. The drop statement can appear
anywhere in the data step. When we ran the program generating a sample
of size 104 we got the value prop=.7472.
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Often a normal distribution with some particular mean and standard
deviation is considered a reasonable assumption for the distribution of a
measurement in a population. For example,

data;
seed=67536;
sum=0;
do i=1 to 10000;
x=2+5*rannor(seed);
if x le 3 then sum =sum+1;
end;
prop=sum/10000;
put prop;
cards;
run;

generates a sample of 104 from the N(2, 5) distribution, computes the pro-
portion less than or equal to 3, and writes it in the Log window. In this case
we got prop=.5777. The theoretically correct proportion is .5793.

3.3 Simulating Sampling Distributions

Once a sample is obtained, we compute various statistics based on these
data. For example, suppose we flip a possibly biased coin n times and then
want to estimate the unknown probability p of getting head. The natural
estimate is p̂ the proportion of heads in the sample. We would like to assess
the sampling behavior of this statistic in a simulation. To do this we choose
a value for p, then generate N samples from the Bernoulli distribution of
size n, for each of these compute p̂, then look at the empirical distribution of
these N values, perhaps plotting a histogram as well. The larger N is, the
closer the empirical distribution and histogram will be to the true sampling
distribution of p̂.
Note that there are two sample sizes here: the sample size n of the original

sample the statistic is based on, which is fixed, and the simulation sample size
N, which we can control. This is characteristic of all simulations. Sometimes,
using more advanced analytical techniques, we can determine N so that
the sampling distribution of the statistic is estimated with some prescribed
accuracy. Some techniques for doing this are discussed in later chapters of
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IPS. Another method is to repeat the simulation a number of times, slowly
increasing N until we see the results stabilize. This is sometimes the only
way available, but caution should be shown as it is easy for simulation results
to be very misleading if the final N is too small.
We illustrate a simulation to determine the sampling distribution of p̂

when sampling from a Bernoulli(.75) distribution. The commands

data dist;
seed= 345234;
do i=1 to 10000;
sum=0;
do j=1 to 25;
x=ranbin(seed,1,.2);
sum=sum+x;
end;
prop=sum/25;
drop i j sum seed x;
output dist;
end;
cards;
axis length = 4 in;
proc gchart data=dist ;
vbar prop / type=pct raxis=axis maxis=axis;
run;

generate 104 samples of 25 from the Bernoulli(.2) distribution, computes the
proportion of 1’s in this sample in the variable prop, outputs prop to the
SAS data set dist, and then plots these 104 values of prop in a histogram.
Note that we used the drop statement to eliminate any variables we weren’t
interested in having in the output data set.

3.4 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using SAS, and the exercises are designed to reinforce your
understanding of the SAS material in this chapter. More generally, you
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Figure 3.2: Histogram of 105 proportions of 1’s generated in a sample of 25
from the Bernoulli(.2) distribution.

should use SAS to do all the computations and plotting required for the
problems in IPS.

1. (3.14) Generate a random permutation of the names.

2. (3.27) Use the proc sort command to order the subjects by weight.
Create five blocks of equal size by placing the four heaviest in the first
block, the next four heaviest in the next block, and so on. Generate a
random permutation of each block.

3. Use the following methodology to generate a sample of 20 from a pop-
ulation of 100,000. Repeatedly generate sequences of six uniformly
distributed values in {0, 1, . . . , 9} until you obtain 20 unique sequences
corresponding to numbers in {0, . . . , 99, 999} , and then select the 20
individuals in the population with these labels. Why does this work?

4. Suppose you want to carry out stratified sampling where there are three
strata, the first stratum containing 500 elements, the second stratum
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containing 400 elements, and the third stratum containing 100 ele-
ments. Generate a stratified sample with 50 elements from the first
stratum, 40 elements from the second stratum and 10 elements from
the third stratum. When the strata sample sizes are the same propor-
tion of the total sample size as the strata population sizes are of the
total population size this is called proportional sampling.

5. Carry out a simulation study with N = 1000 of the sampling distribu-
tion of p̂ for n = 5, 10, 20 and for p = .5, .75, .95. In particular calculate
the empirical distribution functions and plot the histograms. Comment
on your findings.

6. Carry out a simulation study with N = 2000 of the sampling distribu-
tion of the sample standard deviation when sampling from the N(0, 1)
distribution based on a sample of size n = 5. In particular plot the his-
togram using midpoints 0, 1.5, 2.0, 2.5, 3.0, 5.0. Repeat this task for
the sample coefficient of variation (sample standard deviation divided
by the sample mean) using the midpoints −10, −9, ..., 0, ..., 9, 10.
Comment on the shapes of the histograms relative to a N(0, 1) density
curve.

7. Suppose we have an urn containing 100 balls with 20 labeled 1, 50
labeled 2, and 30 labeled 3. Using sampling with replacement, generate
a sample of size 1000 from this distribution. Hint: Use the random
number function rantbl. Use proc freq to record the proportion of
each label in the sample.
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Probability: The Study of
Randomness

SAS statement introduced in this chapter

retain

In this chapter of IPS the concept of probability is introduced more formally.
Probability theory underlies a powerful computational methodology known
as simulation. Simulation has many applications in probability and statistics
and also in many other fields, such as engineering, chemistry, physics, and
economics. We discussed some aspects of simulation in Chapter 3 and we
continue here. We show how to do basic calculations and simulations in the
data step. Actually, this is perhaps not the best way to do these kinds of
calculations in SAS, as the data step is not designed for this purpose. For
relatively small numbers of calculations this is not an issue, but if you are
considering many calculations it would be better to use proc iml described
in Appendix C.

4.1 Basic Probability Calculations

The calculation of probabilities for random variables can often be simplified
by tabulating the cumulative distribution function. Also means and variances
are easily calculated using SAS. For example, suppose we have the probability

105
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distribution
x 1 2 3 4

probability .1 .2 .3 .4

in columns C1 and C2 with the values in C1 and the probabilities in C2.
Then the commands

data calcul;
retain cum 0;
retain mean 0;
retain sum2 0;
input x p;
y1=x*p;
y2=x*x*p;
cum=cum +p;
mean=mean+y1;
sum2=sum2+y2;
var=sum2-mean**2;
if _N_=4 then
put ’mean = ’ mean ’variance = ’ var;
cards;
1 .1
2 .2
3 .3
4 .4
proc print data=calcul;
var x cum;
run;

input the observations, calculate the cumulative distribution function, the
mean, and the variance of this distribution, and print the cumulative distrib-
ution function in the Output window and the mean and variance in the Log
window. We use the implicit do index variable _N_ so that we write out only
the mean and variance when we have finished inputting the data. Recall that
_N_ is a variable that is set to 1 when the first observation is input and then
is incremented by 1 as each subsequent observation is input. The retain
statement takes the form

retain variable initial-value
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and it causes variable to retain its value from one iteration of the data step
to the next and variable is set equal to initial-value in the first iteration of
the data step. There are other ways to carry out these calculations using
SAS that are somewhat simpler. In particular arrays, discussed in Appendix
B, are helpful in this regard.

4.2 Simulation

We already discussed and illustrated in Chapter 3 the use of the random num-
ber functions available in SAS (listed in Appendix A.2.7). We now illustrate
some common simulations that we encounter in applications of statistics and
probability.

4.2.1 Simulation for Approximating Probabilities

Simulation can be used to approximate probabilities. For example, suppose
we are asked to calculate

P (.1 ≤ X1 +X2 ≤ .3)

when X1, X2 are both independent and follow the uniform distribution on
the interval (0, 1) . Then the commands

data;
seed=1111111;
sum=0;
do i=1 to 10000;
x1=ranuni(seed);
x2=ranuni(seed);
y=x1+x2;
if .1 lt y & y lt .3 then
sum=sum+1;
end;
prop=sum/10000;
sd=sqrt(prop*(1-prop)/10000);
put ’estimated probability = ’ prop ’standard error = ’ sd;
cards;
run;
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generate two independent U(0, 1) random variables 104 times, compute the
proportion of times their sum lies in the interval (.1, .3) and produce the
output

estimated probability = 0.0368 standard error = 0.0018827044

in the Log window. We will see later that a good measure of the accuracy of
this estimated probability is the standard error of the estimate, which in this
case is given by

p
p̂ (1− p̂) /N where p̂ is the estimated probability and N

is the Monte Carlo sample size. As the simulation size N increases, the law
of large numbers says that p̂ converges to the true value of the probability.

4.2.2 Simulation for Approximating Means

The means of distributions can also be approximated using simulations in
SAS. For example, suppose X1,X2 are both independent and follow the uni-
form distribution on the interval (0, 1) , and suppose we want to calculate
the mean of Y = 1/ (1 +X1 +X2) . We can approximate this mean in a
simulation. The code

data;
seed=5671111;
sum=0;
sum2=0;
do i=1 to 10000;
x1=ranuni(seed);
x2=ranuni(seed);
y=1/(1+x1+x2);
sum=sum+y;
sum2=sum2+y**2;
end;
mean=sum/10000;
var=(sum2-mean**2)/9999;
sd=sqrt(var/10000);
put ’estimated mean = ’ mean ’standard error = ’ sd;
cards;
run;

generates 104 independent pairs of uniforms (X1, X2) and for each of these
computes Y. The average Ȳ of these 104 values of Y is the estimate of the



Probability: The Study of Randomness 109

mean of Y, and vuut 1

N(N − 1)

"
NX
i=1

Y 2
i − Ȳ 2

#

for N = 104 is the standard error of this estimate, which we will see provides
an assessment of the accuracy of the estimate Ȳ . Finally the program outputs

estimated mean = 0.5239339101 standard error = 0.005368738

in the Log window. As the simulation size N increases, the law of large
numbers says that the approximation converges to the true value of the mean.

4.3 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using SAS, and the exercises are designed to reinforce your
understanding of the SAS material in this chapter. More generally, you
should use SAS to do all the computations and plotting required for the
problems in IPS.

1. Suppose we have the probability distribution

x 1 2 3 4 5
probability .15 .05 .33 .37 .10

Using SAS verify that this is a probability distribution. Make a bar
chart (probability histogram) of this distribution. Tabulate the cumula-
tive distribution. Calculate the mean and variance of this distribution.
Suppose that three independent outcomes (X1, X2, X3) are generated
from this distribution. Compute the probability that 1 < X1 ≤ 4, 2 ≤
X2 and 3 < X3 ≤ 5.

2. (4.26) Indicate how you would simulate the game of roulette using SAS.
Based on a simulation of N = 1000, estimate the probability of getting
red and a multiple of 3. Also record the standard error of the estimate.
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3. A probability distribution is placed on the integers 1, 2, ..., 100, where
the probability of integer i is c/i2. Determine c so that this is a probabil-
ity distribution. What is the mean value? What is the 90-th percentile?
Generate a sample of 20 from the distribution.

4. The expression e−x for x > 0 is the density curve for what is called the
Exponential (1) distribution. Plot this density curve in the interval
from 0 to 10 using an increment of .1. The random number function
ranexp can be used to generate from this distribution. Generate a
sample of 1000 from this distribution and estimate its mean. Approx-
imate the probability that a value generated from this distribution is
in the interval (1,2). The general Exponential (λ) has a density curve,
for x > 0 given by λ−1e−x/λ, where λ > 0 is a fixed constant. If X
is distributed Exponential (1) then it can be shown that Y = λX is
distributed Exponential (λ) . Repeat the simulation with λ = 3. Com-
ment on the values of the estimated means.

5. Suppose you carry out a simulation to approximate the mean of a
random variable X and you report the value 1.23 with a standard error
of .025. If you are then asked to approximate the mean of Y = 3+5X,
do you have to carry out another simulation? If not, what is your
approximation and what is the standard error of this approximation?

6. (4.50) Simulate 5 rounds of the game Keno where you bet on 10 each
time. Calculate your total winnings (losses!).

7. Suppose a random variable X follows a N(3, 2.3) distribution. Sub-
sequently conditions change and no values smaller than −1 or bigger
than 9.5 can occur; i.e., the distribution is conditioned to the interval
(−1, 9.5). Generate a sample of 1000 from the truncated distribution
and use the sample to approximate its mean.

8. Suppose X is a random variable and follows a N(0, 1) distribution.
Simulate N = 1000 values from the distribution of Y = X2 and
plot these values in a histogram with midpoints 0, .5, 1, 1.5, ..., 15.
Approximate the mean of this distribution. Now generate Y directly
from its distribution, which is known as a Chisquare(1) distribution.
In general the Chisquare(k) distribution can be generated from us-
ing the rangam random number function; namely if X is distributed
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Gamma(α, 1), then Y = 2X is distributed Chisquare(2α). Plot the Y
values in a histogram using the same midpoints. Comment on the two
histograms.

9. If X1 and X2 are independent random variables with X1 following a
Chisquare(k1) distribution andX2 following a Chisquare(k2) distribu-
tion, then it is known that Y = X1 + X2 follows a Chisquare(k1+ k2)
distribution. For k1 = 1, k2 = 1, verify this empirically by plotting
histograms with midpoints 0, .5, 1, 1.5, ..., 15 based on simulations of
size N = 1000.

10. If X1 and X2 are independent random variables with X1 following a
N(0, 1) distribution andX2 following aChisquare(k) distribution, then
it is known that

Y =
X1p
X2/k

follows a Student(k) distribution. Use this to generate a sample of 105

from the Student(3) distribution. Plot a histogram with midpoints
−10, −9, ..., 9, 10.

11. If X1 and X2 are independent random variables with X1 following a
Chisquare(k1) distribution and X2 following a Chisquare(k2) distrib-
ution, then it is known that

Y =
X1/k1
X2/k2

follows a F (k1, k2) distribution. Use this to generate a sample of 10
5

from the F (1, 1) distribution. Plot a histogram with midpoints 0, .5,
1, 1.5, ..., 15 based on simulations of size N = 1000.
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Chapter 5

From Probability to Inference

SAS statement introduced in this chapter

proc shewhart

In this chapter the subject of statistical inference is introduced. Whereas we
may feel fairly confident that the variation in a system can be described by
probability, it is typical that we don’t know which probability distribution is
appropriate. Statistical inference prescribes methods for using data derived
from the contexts in question to choose appropriate probability distributions.
For example, in a coin-tossing problem the Bernoulli(p) distribution is ap-
propriate when the tosses are independent, but what is an appropriate choice
of p?

5.1 Binomial Distribution

Suppose X1, . . . , Xn is a sample from the Bernoulli(p) distribution; i.e.,
X1, . . . , Xn are independent realizations where each Xi takes the value 1
or 0 with probabilities p and 1− p, respectively. Then the random variable
Y = X1 + · · · + Xn equals the number of 1’s in the sample and follows, as
discussed in IPS, a Binomial(n, p) distribution. Therefore Y can take on any
of the values 0, 1, . . . , n with positive probability. In fact an exact formula

113
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can be derived for these probabilities.

P (Y = k) =

µ
n

k

¶
pk(1− p)n−k

is the probability that Y takes the value k for 0 ≤ k ≤ n. When n and k are
small, this formula can be used to evaluate this probability but it is almost
always better to use software like SAS to do it; when these values are not
small, it is necessary. Also we can use SAS to compute the Binomial(n, p)
cumulative probability distribution, i.e., the probability contents of intervals
(−∞, x].
For example, the SAS program

data;
x=probbnml(.3,20,6)-probbnml(.3,20,5);
put x;
cards;
run;

computes the Binomial(20, .3) probability at 6 by evaluating the distribu-
tion function of this distribution at 6 and subtracting from the value of the
distribution function at 5. The answer 0.1916389828 is printed in the Log
window. Note that the function probbnml is used to compute the distribu-
tion function of the binomial distribution. The general form of this function
is

probbnml(p, n,m)

where this gives the Binomial(n, p) distribution function evaluated at m ∈
{0, . . . , n} .
Should we also want to simulate from the Binomial(n, p) distribution,

we use the ranbin function. For example,

data;
seed=1123456;
x=ranbin(seed,40,.8);
put x;
cards;
run;

generates a sample of five values from the Binomial(40, .8) distribution and
prints the values obtained
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33
26
37
27
28

in the Log window.

5.2 Control Charts

Control charts are used to monitor a process to ensure that it is under sta-
tistical control. There is a wide variety of such charts, depending on the
statistic used for the monitoring and the test used to detect when a process
is out of control.

5.2.1 PROC SHEWHART

If you have SAS/QC as part of your version of SAS, proc shewhart can be
used to plot control charts. For example, the commands

data control;
seed=342999;
do i=1 to 100;
x=5+2*rannor(seed);
sub=ceil(i/5);
output;
drop seed;
end;
cards;
axis1 length= 8 in;
axis2 length= 4 in;
proc shewhart data=control graphics ;
xchart x*sub/ mu0=5 sigma0=2 haxis=axis1 vaxis=axis2;
run;

create a data set called control with variables i, x, and sub in the data
step. The variable x consists of a random sample of 100 from the N(5, 2)
distribution, the variable i is an index for these observations; and the vari-
able sub groups the observations successively into subgroups of size 5. The
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Figure 5.1: An x̄ chart produced using proc shewhart with the theoretically
correct values of µ and σ.

procedure is then used to create an x̄ chart of these data, which is given in
Figure 5.1. The 100 observations are partitioned into successive groups of
5 and x̄ is plotted for each. The center line of the chart is at the mean 5
and the lines three standard deviations above and below the center line are
drawn at 5+ 3 · 2/√5 = 7.683 and at 5− 3 · 2/√5 = 2.317, respectively. The
chart confirms that these choices for µ and σ are reasonable, as we might
expect. The option graphics in the proc shewhart statement leads to a
high-resolution plot in a Graph window otherwise a plot is provided in the
Output window. Note that we had to create the grouping variable in the
data step.
Of course we will typically not know the true values of µ and σ and these

must be estimated from the data. The command

xchart x*sub/ haxis=axis1 vaxis=axis2;

draws the plot given in Figure 5.2. Here µ is estimated by the overall mean
and σ is estimated by pooling the sample deviations for each subgroup.
Again, this control chart indicates that everything is in order.
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Figure 5.2: An x̄-chart produced using proc shewhart with estimated val-
ues of µ and σ.

Following are some of the statements that can be used in proc shewhart.

proc shewhart options;
xchart variable*grouping / options;
pchart variable*grouping / options;
by variables;

When the graphics option is used, all the SAS/Graph statements we have
discussed – axis, symbol and so on – are available for modifying the ap-
pearance of the plot.
The xchart statement indicates that an x̄ chart is to be drawn with the

means of the values of variable on the y axis for each subgroup and the
values of grouping along the x axis. The following options can be used with
the xchart statement.

mu0 = value
sigma0 = value
noconnect
alpha = value
tests = values
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where themu0 specifies value as the mean of the population, sigma0 speci-
fies value as the standard deviation of the population, noconnect indicates
that the points in the plot should not be connected by lines, and alpha
specifies that the control limits should be such that a proportion of the ob-
servations, specified by value, should lie outside the control limits when the
process is under control. When alpha is not specified, the default is to draw
three sigma control limits. Using the tests option, various tests for control
can be carried out. For example, tests = 1 checks to see if there is a least
one point outside the control limits, tests =2 checks to see if there are nine
points in a row on one side of the central line, tests = 3 checks to see if
there are six points in a row steadily increasing, etc. Eight different tests can
be performed, and as many as you like can be specified, e.g,. tests = 2 3.
The pchart statement works almost the same as xchart except that it

produces p charts. A p chart is appropriate when a response is coming from
a Binomial (n, p) distribution, e.g., the count of the number of defectives in
a batch of size n and we use the proportion of defectives p̂ to control the
process. For example, the program

data control;
seed=342999;
do i=1 to 20;
x=ranbin(seed,55,.4);
output;
end;
cards;
axis1 length= 8 in;
axis2 length= 4 in;
proc shewhart data=control graphics ;
pchart x*i/ subgroupn = 55 haxis=axis1 vaxis=axis2 ;
run;

produces a plot like the high-resolution plot shown in Figure 5.3. Here 20 val-
ues are generated from a Binomial(55, .4) distribution as presumably arising
from a quality control process where 55 items were tested and the number
defective recorded each of the 20 times this was done. Therefore the propor-
tion of defectives in each group of 55 is plotted against time as represented
by the index variable i, which is part of the data set control and presum-
ably represents time here. The pchart statement has the same options as
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Figure 5.3: A p-chart obtained using proc shewhart.

xchart with the exception that the subgroupn= value option must appear.
It determines the number of items tested.
Many other control charts can be created using SAS/QC, and many other

options can be used to control the plots. We refer the reader to references 8
and 9 in Appendix E.

5.3 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using SAS, and the exercises are designed to reinforce your
understanding of the SAS material in this chapter. More generally, you
should use SAS to do all the computations and plotting required for the
problems in IPS.

1. Calculate all the probabilities for the Binomial(5, .4) distribution and
the Binomial(5, .6) distribution. What relationship do you observe?
Can you explain it and state a general rule?
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2. Compute all the probabilities for a Binomial(5, .8) distribution and use
them to directly calculate the mean and variance. Verify your answers
using the formulas provided in IPS.

3. (5.17) Approximate the probability that in 50 polygraph tests given to
truthful persons, at least one person will be accused of lying.

4. Generate N = 1000 samples of size n = 5 from the N(0, 1) distribution.
Record a histogram for x̄ using the midpoints −3, −2.5, −2, ..., 2.5,
3.0. Generate a sample of size N = 1000 from the N(0, 1/

√
5) distrib-

ution. Plot the histogram using the same midpoints and compare the
histograms. What will happen to these histograms as we increase N?

5. Generate N = 1000 values of X1, X2, where X1 follows a N(3, 2) distri-
bution andX2 follows aN(−1, 3) distribution. Compute Y = X1−2X2

for each of these pairs and plot a histogram for Y using the midpoints
−20,−15, ..., 25, 30. Generate a sample of N = 1000 from the appropri-
ate distribution of Y and plot a histogram using the same midpoints.

6. Plot the density curve for the Exponential(3) distribution (see Exercise
II.4.4) between 0 and 15 with an increment of .1. Generate N = 1000
samples of size n = 2 from the Exponential(3) distribution and record
the sample means. Standardize the sample of x̄ using µ = 3 and σ = 3.
Plot a histogram of the standardized values using the midpoints −5,
−4, ..., 4, 5. Repeat this task for n = 5, 10. Comment on the shapes of
the histograms. See Example 5.18 in IPS for further discussion of this
distribution.

7. Plot the density of the uniform distribution on (0,1). Generate N =
1000 samples of size n = 2 from this distribution. Standardize the
sample of x̄ using µ = .5 and σ =

p
1/12. Plot a histogram of the

standardized values using the midpoints −5, −4, ..., 4, 5. Repeat this
task for n = 5, 10. Comment on the shapes of the histograms.

8. The Weibull (β) has density curve βxβ−1e−x
β
for x > 0, where β > 0

is a fixed constant. Plot the Weibull (2) density in the range 0 to 10
with an increment of .1. See Section 5.2 in IPS for discussion of this
distribution.

9. (5.50) Make an x̄ chart for these data with three sigma control lines
using proc shewhart. What tests for control does the chart fail?
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10. (5.59) Make a p chart for these data with three sigma control lines
using proc shewhart. What tests for control does the chart fail?



122 Chapter 5



Chapter 6

Introduction to Inference

In this chapter the basic tools of statistical inference are discussed. There
are a number of SAS commands that aid in the computation of confidence
intervals and in carrying out tests of significance.

6.1 z Intervals and z tests

We want to make inference about the mean µ using a sample x1, . . . , xn from
a distribution where we know the standard deviation σ. The methods of this
section are appropriate in three situations.

(1) We are sampling from a normal distribution with unknown mean µ and
known standard deviation σ and thus

z =
x̄− µ

σ/
√
n

is distributed N(0, 1).
(2) We have a large sample from a distribution with unknown mean µ and
known standard deviation σ and the central limit theorem approximation to
the distribution of x̄ is appropriate, i.e.,

z =
x̄− µ

σ/
√
n

123
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is approximately distributed N(0, 1).
(3) We have a large sample from a distribution with unknown mean µ and
unknown standard deviation σ and the sample size is large enough so that

z =
x̄− µ

s/
√
n

is approximately N(0, 1), where s is the sample standard deviation.

The z confidence interval takes the form x̄± z∗σ/
√
n, where s is substituted

for σ in case (3) and z∗ is determined from the N(0, 1) distribution by the
confidence level desired, as described in IPS. Of course situation (3) is prob-
ably the most realistic, but note that the confidence intervals constructed
for (1) are exact while those constructed under (2) and (3) are only approxi-
mate and a larger sample size is required in (3) for the approximation to be
reasonable than in (2).
Consider Example 6.2 in IPS and suppose the data 190.5, 189.0, 195.5,

187.0 are stored in the SAS data set weights in the variable wt. Using, as
in the text, σ = 3 and n = 4, the program

proc means data = weights noprint;
var wt;
output out=calc mean=mnwt;
data;
set calc;
std=3/sqrt(4);
zl=mnwt-std*probit(.95);
zu=mnwt+std*probit(.95);
put ’.90 confidence interval is (’ zl ’,’ zu ’)’;
run;

calculates the mean of wt using proc means with no output to the Output
window because of the noprint option, but it creates the SAS data set calc,
which contains a single observation, and the variable mnwt, which contains
the mean of weight. In the data step the 90% confidence interval (zl,zu) is
computed using the inverse distribution function for the N(0, 1) distribution
via the probit function. The 90% confidence interval for µ

.90 confidence interval is (188.03271956 ,192.96728044 )

is written on the Log window using the put command.
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Suppose we want to test the hypothesis that the unknown mean µ equals
a value µ0 and one of the situations (1), (2) or (3) obtains. The z test is
based on computing a P -value using the observed value of

z =
x̄− µ0
σ/
√
n

and the N(0, 1) distribution as described in IPS.
Consider Example 6.6 in IPS, where we are asked to test the null hy-

pothesis H0 : µ = 187 against the alternative Ha : µ > 187. Suppose the
data 190.5, 189.0, 195.5, 187.0 are stored in the SAS data set weights in the
variable wt. Using, as in the text, σ = 3 and n = 4, the program

proc means data = weights noprint;
var wt;
output out=calc mean=mnwt;
data interval;
set calc;
std=3/sqrt(4);
z=(mnwt-187)/std;
p=1-probnorm(z);
put ’z = ’ z ’P-value = ’ p;
run;

calculates the z statistic and the P -value P (Z > z) = 1− P (Z ≤ z), where
Z ∼ N(0, 1). The values

z = 2.3333333333 P-value = 0.0098153286

are printed in the Log window. If we want to test H0 : µ = 187 against the
alternative Ha : µ 6= 187, then the relevant program is

proc means data = weights noprint;
var wt;
output out=calc mean=mnwt;
data interval;
set calc;
std=3/sqrt(4);
z=abs((mnwt-187)/std);
p=2*(1-probnorm(z));
put ’z = ’ z ’P-value = ’ p;
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which computes |z| using the abs function and the P -value P (|Z| > |z|) =
2 (1− P (Z ≤ z)) , where Z ∼ N(0, 1). The values

z = 2.3333333333 P-value = 0.0196306573

are printed in the Log window.

6.2 Simulations for Confidence Intervals

When we are sampling from a N(µ, σ) distribution and know the value of
σ, the confidence intervals constructed in II.6.1 are exact; in the long run a
proportion 95% of the 95% confidence intervals constructed for an unknown
mean µ will contain the true value of this quantity. Of course any given
confidence interval may or may not contain the true value of µ, and in any
finite number of such intervals so constructed, some proportion other than
95% will contain the true value of µ. As the number of intervals increases,
however, the proportion covering will go to 95%.
We illustrate this via a simulation study based on computing 90% confi-

dence intervals. The program

data conf;
seed=65398757;
z=probit(.95);
p=0;
do i=1 to 25;
x1=0;
do j=1 to 5;
x1= x1+(1+2*rannor(seed));
end;
x1=x1/5;
l=x1-z*2/sqrt(5);
u=x1+z*2/sqrt(5);
if l le 1 & 1 le u then
p=p+1;
output conf;
end;
p=p/25;
me=3*sqrt(p*(1-p)/25);
lp=p-me;
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up=p+me;
put p ’(’ lp ’,’ up ’)’;
drop seed z j x1 p me lp up;
cards;
symbol1 value= dot color=black;
symbol2 value= circle color=black;
axis1 length= 8 in;
axis2 length= 4 in label = (’limits’);
proc gplot data = conf;
plot l*i=1 u*i=2/overlay haxis=axis1 vaxis=axis2 vref=1;
run;

generates 25 samples of size 5 from the N(1, 2) distribution, calculates the
lower endpoint of the 90% confidence interval in the variable l and the up-
per endpoint in the variable u, outputs these values to the data set conf,
calculates the proportion of these confidence intervals that contain the true
value of µ = 1 in p together with the half-length of the interval that contains
the true proportion with virtual certainty in me, and then outputs p together
with this interval in the Log window. Finally, proc gplot is used to draw
Figure 6.1, which plots each confidence interval together with a reference line
at 1 (using the vref option). If the lower endpoint (black dot) is above this
reference line, or the upper endpoint (open circle) is below this reference line,
then the particular interval does not contain the true value. In this case the
ouptut

0.88 (0.6850230783 ,1.0749769217 )

was recorded in the Log wndow, indicating that 88% of the intervals cov-
ered. The interval (0.6850230783,1.0749769217) indicates, however, that
not much reliability can be placed in the estimate. When we repeated the
simulation with 104 samples, we obtained

0.8981 (0.8890244972 ,0.9071755028 )

which indicates considerably greater accuracy. Note that in plotting Figure
6.1, we made use of the label = ’text ’ option to the axis statement to label
the vertical axis.
The simulation just carried out simply verifies a theoretical fact. On

the other hand, when we are computing approximate confidence intervals –
when we are not necessarily sampling from a normal distribution – it is good
to do some simulations from various distributions to see how much reliance
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Figure 6.1: Plot of 25 .90 confidence intervals for the mean of a normal
distribution where 25 samples of size 5 were generated from an N(1, 2) dis-
tribution.

we can place in the approximation at a given sample size. The true coverage
probability of the interval – the long-run proportion of times that the interval
covers the true mean –will not in general be equal to the nominal confidence
level. Small deviations are not serious, but large ones are.

6.3 Simulations for Power Calculations

It is useful to know in a given context how sensitive a particular test of
significance is. By this we mean how likely it is that the test will lead us to
reject the null hypothesis when the null hypothesis is false. This is measured
by the concept of the power of a test. Typically a level α is chosen for the
P -value at which we would definitely reject the null hypothesis if the P -value
is smaller than α. For example, α = .05 is a common choice for this level.
Suppose then that we have chosen the level of .05 for the two-sided z test
and we want to evaluate the power of the test when the true value of the
mean is µ = µ1; i.e., we want to evaluate the probability of getting a P -value
smaller than .05 when the mean is µ1. The two-sided z test with level α
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rejects H0 : µ = µ0 whenever

P

µ
|Z| >

¯̄̄̄
x̄− µ0
σ/
√
n

¯̄̄̄¶
≤ α

where Z is a N(0, 1) random variable. This is equivalent to saying that the
null hypothesis is rejected whenever¯̄̄̄

x̄− µ0
σ/
√
n

¯̄̄̄
is greater than or equal to the 1−α/2 percentile for the N(0, 1) distribution.
For example, if α = .05, then 1 − α/2 = .975, and this percentile can be
obtained via the probit function, which gives the value 1.96. Denote this
percentile by z∗. Now if µ = µ1 then

x̄− µ0
σ/
√
n

is a realized value from the distribution of Y = X̄−µ0
σ/
√
n
when X̄ is distrib-

uted N(µ1, σ/
√
n). Therefore Y follows a N(µ1−µ0

σ/
√
n
, 1) distribution. Then the

power of the two-sided test at µ = µ1 is

P (|Y | > z∗)

and this can be evaluated exactly using the probnorm function after writing

P (|Y | > z∗) = P (Y > z∗) + P (Y < −z∗)
= P

µ
Z > −(µ1 − µ0)

σ/
√
n

+ z∗
¶
+ P

µ
Z < −(µ1 − µ0)

σ/
√
n
− z∗

¶
with Z following a N(0, 1) distribution.
This derivation of the power of the two-sided test depends on the sample

coming from a normal distribution so that X̄ has an exact normal distri-
bution. In general, however, X̄ will only be approximately normal, so the
normal calculation is not exact. To assess the effect of the non-normality,
however, we can often simulate sampling from a variety of distributions and
estimate the probability P (|Y | > z∗). For example, suppose that we want
to test H0 : µ = 0 in a two-sided z test based on a sample of 10, where we
estimate σ by the sample standard deviation and we want to evaluate the
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power at 3. Let us further suppose that we are actually sampling from a
uniform distribution on the interval (−10, 16), which indeed has its mean at
3. Then the simulation

data;
seed= 83545454;

p=0;

do i=1 to 10000;
x=0;

s2=0;
do j=1 to 10;

z=-10+26*ranuni(seed);

x=x+z;
s2=s2+z*z;

end;
x=x/10;

s2=(s2-x*x)/9;
y=x/sqrt(s2/10);

if abs(y) ge 1.96 then

p=p+1;
end;

p=p/10000;
ep=sqrt(p*(1-p)/10000);

put ’Estimate of power =’ p ’with standard error =’ ep;

cards;
run;

generates 104 samples of size 10 from the U(−10, 16) distribution and calcu-
lates the proportion of times the null hypothesis is rejected in the variable p.
The output

Estimate of power =0.1342 with standard error =0.0034086707

is written in the Log window and gives the estimate of the power as .1342 and
the standard error of this estimate as approximately .003. The application
determines whether or not the assumption of a uniform distribution makes
sense and whether or not this power is indicative of a sensitive test or not.
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6.4 Chi-square Distribution

If Z is distributed according to the N(0, 1) distribution, then Y = Z2

is distributed according to the Chisquare(1) distribution. If X1 is dis-
tributed Chisquare(k1) independent of X2 distributed Chisquare(k2), then
Y = X1+X2 is distributed according to the Chisquare(k1+k2) distribution.
SAS commands assist in carrying out computations for the Chisquare(k)
distribution. Note that k is any nonnegative value and is referred to as the
degrees of freedom. The density curve of the Chisquare(k) distribution is
given by the formula

f(x) =
1

Γ
¡
k
2

¢ ³x
2

´ k
2
−1
exp

n
−x
2

oµ1
2

¶
for x > 0 and where Γ (w) can be evaluated using the gamma function
in SAS. For example, suppose we want to plot the Chisquare(10) density
function in the interval (0, 50) . Then the program

data density;
const=2*gamma(10/2);
do i=1 to 1000;
x=i*30/1000;
f=((x/2)**4)*exp(-x/2)/const;
output density;
drop i const;
end;
cards;
axis1 length=4 in;
axis2 length=6 in;
symbol1 interpol=join;
proc gplot data=density;
plot f*x=1/ vaxis=axis1 haxis=axis2;
run;

calculates this density in the variable f at 1000 equispaced values of the
variable x between 0 and 30 and then plots the curve in a scatterplot of f
against x, shown in Figure 6.2.
The probchi and cinv functions are used to calculate the cumulative

distribution and inverse cumulative distribution functions of the chi-square
distribution. For example, the statements
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Figure 6.2: Plot of the Chisquare(10) density curve.

data;
x=probchi(3,5);
put ’x= ’ x;
p=cinv(.68,7);
put ’p= ’ p;
cards;
run;

calculate the value of the Chisquare(2) distribution function at 3 and the
inverse Chisquare(7) distribution function at .68 – i.e., a .68-quantile –
and write

x= 0.3000141641
p= 8.1447886689

in the Log window.
To generate samples from the chi-square distribution we use the rangam

function. For example,

data;
seed=3241222;
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do i=1 to 100;
x=2*rangam(seed,5);
put x;
end;
run;

generates a sample of 100 from the Chisquare(10) distribution and prints
these values in the Log window. Notice that we need to multiply

rangam(seed,value)

by 2 and that the degrees of freedom of the chi-square distribution being
generated from equals 2(value).
Applications of the chi-square distribution are given later in the book,

but we mention one here. In particular, if x1, . . . , xn is a sample from a
N(µ, σ) distribution then (n− 1) s2/σ2 = Pn

i=1 (xi − x̄)2 /σ2 is known to
follow a Chisquare(n − 1), distribution and this fact is used as a basis for
inference about σ (confidence intervals and tests of significance). Because of
their nonrobustness to small deviations from normality, these inferences are
not recommended.

6.5 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using SAS, and the exercises are designed to reinforce your
understanding of the SAS material in this chapter. More generally, you
should use SAS to do all the computations and plotting required for the
problems in IPS.

1. (6.9) Use SAS to compute 90%, 95%, and 99% confidence intervals for
µ.

2. (6.39) Use SAS to test the null hypothesis against the appropriate
alternative. Evaluate the power of the test with level α = .05 at µ = 33.

3. Simulate N = 1000 samples of size 5 from the N(1, 2) distribution and
calculate the proportion of .90 confidence intervals for the mean that
cover the true value µ = 1.
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4. Simulate N = 1000 samples of size 10 from the uniform distribution
on (0,1) and calculate the proportion of .90 confidence intervals for the
mean that cover the true value µ = .5. Use σ = 1/

√
12.

5. Simulate N = 1000 samples of size 10 from the Exponential(1) distrib-
ution (see Exercise II.4.4) and calculate the proportion of .95 confidence
intervals for the mean that cover the true value µ = 1. Use σ = 3.

6. The density curve for the Student(1) distribution takes the form

1

π

1

1 + x2

for −∞ < x <∞. This special case is called the Cauchy distribution.
Plot this density curve in the range (−20, 20) at 1000 equispaced points.
Simulate N = 1000 samples of size 5 from the Student(1) distribution
(see Exercise II.4.3.10) and using the sample standard deviation for σ,
calculate the proportion of .90 confidence intervals for the mean that
cover the value µ = 0. It is possible to obtain very bad approximations
in this example because the central limit theorem does not apply to
the distribution. In fact it does not have a mean.

7. The uniform distribution on the interval (a, b) has mean µ = (a+ b) /2

and standard deviation σ =
q
(b− a)2 /12. Calculate the power at

µ = 1 of the two-sided z test at level α = .95 for testing H0 : µ =
0 when the sample size is n = 10, σ is the standard deviation of a
uniform distribution on (−10, 12) , and we are sampling from a normal
distribution. Compare your result with the example in Section II.6.4.

8. Suppose we are testingH0 : µ = 0 in a two-sided test based on a sample
of 3. Approximate the power of the z test at level α = .1 at µ = 5
when we are sampling from the distribution of Y = 5 +W where W
follows a Student(6) distribution (see Exercise II.4.3.10) and we use
the sample standard deviation to estimate σ. Note that the mean of
the distribution of Y is 5.
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Inference for Distributions

SAS statement introduced in this chapter

proc ttest

7.1 Student Distribution

If Z is distributed N(0, 1) independent of X distributed Chisquare(k) (see
II.6.4) then

T =
Zp
X/k

is distributed according to the Student(k) distribution. The value k is re-
ferred to as the degrees of freedom of the Student distribution. SAS functions
assist in carrying out computations for this distribution.
The density curve for the Student(k) distribution can be plotted using

the method of section II.6.4; see Exercise II.7.6.1. Also the functions probt
and tinv can be used to obtain the values of the Student(k) cumulative
distribution function and the inverse distribution function, respectively. For
example,

data;
p=probt(5,2);
x=tinv(.025,5);
put ’p= ’ p ’x=’ x;
run;

writes

135
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p= 0.9811252243 x=-2.570581836

in the Log Window. To generate a value T from the Student(k), generate a
value Z ∼ N(0, 1) and a value X ∼ Chisquare(k) and put T = X/

p
X/k.

7.2 The t Interval and t Test

When sampling from the N(µ, σ) distribution with µ and σ unknown, an ex-
act 1−α confidence interval for µ based on the sample x1, . . . , xn is given by
x̄± t∗s/

√
n, where t∗ is the 1−α/2 percentile of the Student(n−1) distribu-

tion. These intervals can be easily computed in SAS using the tinv function.
Suppose the SAS data set one contains 20 observations on the variable x,
which were generated from the N(6, 1) distribution, and we assume that the
values of µ and σ are unknown. Then the program

proc means data=one noprint;
var x;
output out=calc mean=mnx std=stdx;
data interval;
set calc;
n=_freq_;
cl=mnx-(stdx/sqrt(n))*tinv(.975,n-1);
cu=mnx+(stdx/sqrt(n))*tinv(.975,n-1);
proc print data=interval;
var cl cu;
run;

calculates the mean and standard deviation of x in proc means and outputs
these values to the data set calc as mnx and stdx respectively. The next
data step creates a SAS data set interval by reading in calc and adding the
variables cl and cu, which correspond to the lower and upper endpoints of a
.95 confidence interval for µ. The SAS data set calc contains one observation
and four variables _type_, _freq_, mnx and stdx. The variable _freq_ is the
sample size n in this case. Finally, proc print is used to print the confidence
interval

OBS CL CU
1 4.08516 7.42346

in the Output window.
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Suppose we have a sample x1, . . . , xn from a normal distribution, with un-
known mean µ and standard deviation σ, and we want to test the hypothesis
that the unknown mean equals a value µ0. The test is based on computing
a P -value using the observed value of

t =
x̄− µ0
s/
√
n

and the Student(n− 1) distribution as described in IPS. For example, if we
want to test H0 : µ = 6 versus the alternative Ha : µ 6= 6 for the variable x
in the data set one, then the program

proc means data=one noprint;
var x;
output out=calc mean=mnx std=stdx;
data interval;
set calc;
n=_freq_;
t=abs(sqrt(n)*(mnx-6)/stdx);
pval=2*(1-probt(t,n-1));
proc print data=interval;
var t pval;
run;

calculates the t statistic in the variable t and the P -value for this two-sided
test in the variable pval and prints the values

OBS T PVAL
1 0.30808 0.76137

in the Output window. Similarly, we can compute the P -values for the one-
sided tests. The two-sided t test can also be carried out using proc means.
For example, the statements

data two;
set one;
y=x-6;
proc means data=two t prt;
var y;
run;

result in the value of the t statistic together with the P -value for H0 : µ = 6
versus the alternative Ha : µ 6= 6 being printed in the Output window.
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We can also use this approach to construct the t intervals and carry out
the t test in a matched pairs design. We create a variable equal to the
difference of the measurements and apply the above analysis to this variable.
We can calculate the power of the t test using simulations. Note, however,

that we must prescribe not only the mean µ1 but the standard deviation σ1
as well, as there are two unknown parameters. For example, the program

data;
seed=23734;
n=20;
mu0=6;
mu1=4;
sigma1=3;
p=0;
t0=tinv(.975,n-1);
do i=1 to 10000;
xbar=mu1+sigma1*rannor(seed)/sqrt(n);
x=(sigma1**2)*(2*rangam(seed,(n-1)/2))/(n-1);
t=abs(sqrt(n)*(xbar-mu0)/sqrt(x));
if t gt t0 then
p=p+1;
end;
p=p/10000;
stdp=sqrt(p*(1-p)/10000);
put p stdp;
run;

carries out a simulation to approximate the power of the t test for testing
H0 : µ = 6 versus the alternative Ha : µ 6= 6 at level α = .05 with µ1 = 4,
σ1 = 3, and n = 20. The value of xbar is a randomly generated value of
x̄ from the N(2, 3) distribution, and the value of x is σ21/ (n− 1) times a
randomly generated value from the Chisquare(19) distribution (note that
(n − 1)s2/σ21 ∼ Chisquare (n− 1)). The test statistic t is calculated in the
variable t and the null hypothesis rejected whenever t>t0, where t0 is the
.975 quantile of the Student(n − 1) distribution. In this case, we generated
104 values of t and recorded the proportion of rejections in p, which is the
estimate of the power. This proportion together with standard error equal

0.8068 0.0039480851
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which is written in the Log window. See Exercise 9 for more relevant discus-
sion.

7.3 The Sign Test

As discussed in IPS, sometimes we cannot sensibly assume normality or trans-
form to normality or make use of large samples so that there is a central
limit theorem effect. In such a case we attempt to use distribution-free or
nonparametric methods. The sign test for the median is one such method.
For example, suppose we have the data for Example 7.1 in IPS in the

variable vitc in SAS data set ex71. Then the program

data test;
set ex71;
y=vitc-20;
proc univariate data=test noprint;
var y;
output out=results msign=sigstat probs=pvals;
proc print data=results;
var sigstat pvals;
run;

uses proc univariate to output to the SAS data set results. The data set
results contains the value of the sign statistic in sigstat and the P -value
in pvals, based on the variable y=vitc-20, for testing H0 : ζ = 0 versus
H0 : ζ 6= 0 where ζ denotes the population median. The values

OBS SIGSTAT PVALS
1 2 0 .35938

are then printed in the Output window. In this case the P -value of .35938
indicates that we would not reject the null hypothesis that the median of the
distribution of vitc is 20.
The test statistic calculated by proc univariate is M(Sign), which is

the sign test statistic minus its mean – n/2 where n is the sample size –
under H0 : ζ = 0 and the P -value for testing H0 against Ha : ζ 6= 0 is also
computed. Denote this P -value by P2. Suppose we want to instead test
H0 : ζ = 0 versus Ha : ζ > 0. Then if M(Sign)> 0, the relevant P -value
is .5P2, and if M(Sign)< 0, the relevant P -value is 1 − .5P2. Say we want
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to test H0 : ζ = 0 versus Ha : ζ < 0. Then if M(Sign)< 0, the relevant
P -value is .5P2, and if M(Sign)> 0, the relevant P -value is 1− .5P2.We can
also use the sign test when we have paired samples to test that the median
of the distribution of the difference between the two measurements on each
individual is 0. For this we just apply proc univariate to the differences.

7.4 PROC TTEST

If we have independent samples x11, . . . , x1n1 from the N(µ1, σ1) distribution
and x12, . . . , x1n2 from the N(µ2, σ2) distribution, where σ1 and σ2 are known
then we can base inferences about the difference of the means µ1−µ2 on the
z statistic given by

z =
x̄1 − x̄2 − (µ1 − µ2)q

σ21
n1
+

σ22
n2

.

Under these assumptions z has a N(0, 1) distribution. Therefore a 1 − α
confidence interval for µ1 − µ2 is given by

x̄1 − x̄2 ±
s

σ21
n1
+

σ22
n2

z∗

where z∗ is the 1 − α/2 percentile of the N(0, 1) distribution. Further, we
can test H0 : µ = µ0 against the alternative Ha : µ 6= µ0 by computing the
P -value P (|Z| > |z0|) = 2P (Z > z0), where Z is distributed N(0, 1) and z0
is the observed value of the z statistic. These inferences are also appropriate
without normality provided n1 and n2 are large and we have reasonable values
for σ1 and σ2. These inferences are easily carried out using SAS statements
we have already discussed.
In general, however, we will not have available suitable values of σ1 and

σ2 or large samples and will have to use the two-sample analogs of the single-
sample t procedures just discussed. This is acceptable provided, of course,
that we have checked that both samples are from normal distributions and
have agreed that it is reasonable to assume they are. These procedures are
based on the two-sample t statistic given by

t =
x̄1 − x̄2 − (µ1 − µ2)q

s21
n1
+

s22
n2
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where we have replaced the population standard deviations by their sample
estimates, when we don’t assume equal population variances, and on

t =
(x̄1 − x̄2)h

s2
³
1
n1
+ 1

n2

´i 1
2

where

s2 =
(n1 − 1) s21 + (n2 − 1) s22

n1 + n2 − 2
when we do assume equal population variances. Under the assumption of
equal variances, t ∼ Student(n1 + n2 − 2). When we can’t assume equal
variances, the exact distribution of t does not have a convenient form, but
of course we can always simulate its distribution. Actually it is typical to
use an approximation to the distribution of this statistic based on a Student
distribution. See the discussion on this topic in IPS.
The proc ttest procedure carries out the two-sample t test that two

means are equal. The procedure assumes that the samples are from normal
distributions. The following statements are available in this procedure.

proc ttest options;
var variables;
class variable;
by variables;

The option

data=SASdataset

can be used with the proc ttest statement, where SASdataset is a SAS data
set containing the variables.
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Figure 7.1: Output from proc ttest.

The program

data one;

input sex $ x;

cards;

m 1.1

m 2.2

m 1.5

f 2.6

f 1.8

f 4.4

f 2.3

proc ttest data=one;

class sex;

splits the SAS data set one into two groups by the values of the variable sex
and produces the output shown in Figure 7.1, which gives the values of both
two-sample t statistcs and the P -values for testing H0 : µ1 = µ2 against the
alternative Ha : µ1 6= µ2. In this case neither test rejects H0.

A class statement must appear, and the class variable can be numeric or
character but must assume exactly two values. The procedure also outputs
the F test for testing the null hypothesis that the two population variances
are equal; see Section II.7.5. The by and var statements work as with other
procedures.

Simulation can be used to approximate the power of the two-sample t
test. Note that in this case we must specify the difference µ1 − µ2 as well as
σ1 and σ2. See Exercise 8 for further details.
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7.5 F Distribution

IfX1 is distributedChisquare(k1) independent ofX2 distributedChisquare(k2),
then

F =
X1/k1
X2/k2

is distributed according to the F (k1, k2) distribution. The value k1 is called
the numerator degrees of freedom and the value k2 is called the denominator
degrees of freedom. SAS functions assist in carrying out computations for
this distribution.
The values of the density curve for the F (k1, k2) distribution can be plot-

ted as in Section II.6.4. The probf and finv functions are available to obtain
values of the F (k1, k2) cumulative distribution function and inverse distrib-
ution function, respectively. For example,

data;
p=probf(12,4,5);
x=finv(.65,3,12);
put ’p= ’ p ’x= ’ x;
run;

calculates the value of the F (4, 5) distribution function at 12 in p, calculates
the .65 quantile of the F (3, 12) distribution in x, and writes

p= 0.9910771094 x= 1.2045020058

in the Log window. To generate from the F (k1, k2) distribution, we generate
X1 ∼ Chisquare(k1), X2 ∼ Chisquare(k2) and then form F as before.
A number of applications of the F distribution arise later in the book

but we mention one here. In particular, if x11, . . . , x1n1 is a sample from the
N(µ1, σ1) distribution and x12, . . . , x1n2 a sample from the N(µ2, σ2) distri-
bution, then

F =
s21/σ

2
1

s22/σ
2
2

is known to follow a F (n1−1, n2−1). As explained in IPS, this fact is used as
a basis for inference about the ratio σ1/σ2, i.e., confidence intervals and tests
of significance and in particular testing for equality of variances between the
samples. Because of the nonrobustness of these inferences to small deviations
from normality, the inferences are not recommended.
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7.6 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using SAS, and the exercises are designed to reinforce your
understanding of the SAS material in this chapter. More generally, you
should use SAS to do all the computations and plotting required for the
problems in IPS.

1. The formula for the density curve of the Student(k) is given by

f(x) =
Γ
¡
λ+1
2

¢
Γ
¡
λ
2

¢
Γ
¡
1
2

¢ µ1 + x2

λ

¶−λ+1
2
µ
1√
λ

¶
for −∞ < x < ∞. Using the method of Section II.6.4, plot the
Student(k) density curve for k = 1, 2, 10, 30 and the N(0, 1) density
curve at 1000 equispaced points in the interval (−10, 10). Compare the
plots.

2. Make a table of the values of the cumulative distribution function of the
Student(k) distribution for k = 1, 2, 10, 30 and the N(0, 1) distribution
at points −10, −5, −3, −1, 0, 1 , 3, 5, 10. Comment on the values.

3. Make a table of the values of the inverse cumulative distribution func-
tion of the Student(k) distribution for k = 1, 2, 10, 30 and the N(0, 1)
distribution at the points .0001, .001, .01, .1, .25, .5. Comment on the
values.

4. Simulate N = 1000 values from Z distributed N(0, 1) and X distrib-
uted Chisquare(3) and plot a histogram of T = Z/

p
X/3 using the

midpoints −10,−9, . . . , 9, 10. Generate a sample of N = 1000 values
directly from the Student(3) distribution, plot a histogram with the
same midpoints, and compare the two histograms.

5. Carry out a simulation withN = 1000 to verify that the 95% confidence
interval based on the t statistic covers the true value of the mean 95%
of the time when taking samples of size 5 from the N(4, 2) distribution.

6. Generate a sample of 50 from the N(10, 2) distribution. Compare the
95% confidence intervals obtained via the t statistic and the z statistic
using the sample standard deviation as an estimate of σ.
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7. Carry out a simulation with N = 1000 to approximate the power of
the t-test at µ1 = 1, σ1 = 2 for testing H0 : µ = 0 versus the alternative
Ha : µ 6= 0 at level α = .05 based on a sample of five from the normal
distribution.

8. Carry out a simulation with N = 1000 to approximate the power of
the two-sample t test at µ1 = 1, σ1 = 2, µ2 = 2, σ1 = 3 for testing
H0 : µ1 − µ2 = 0 versus the alternative Ha : µ1 − µ2 6= 0 at level
α = .05 based on a sample of five from the N( µ1, σ1) distribution and
a sample of eight from the N(µ2, σ2) distribution. Use the conservative
rule when choosing the degrees of freedom for the approximate test:
choose the smaller of n1 − 1 and n2 − 1.

9. If Z is distributed N(µ, 1) and X is distributed Chisquare(k) indepen-
dent of Z, then

Y =
Zp
X/k

is distributed according to a noncentral Student(k) distribution with
noncentrality µ. Simulate samples of N = 1000 from this distribution
with k = 5 and µ = 0, 1, 5, 10. Plot the samples in histograms with
midpoints −20,−19, . . . , 19, 20 and compare the plots.

10. The density curve of the F (k1, k2) distribution is given by

f(x) =
Γ
¡
k1+k2
2

¢
Γ
¡
k1
2

¢
Γ
¡
k2
2

¢ µk1
k2
x

¶ k1
2
−1µ

1 +
k1
k2
x

¶−k1+k2
2
µ
k1
k2

¶
for x > 0. For k1 = 1, 5, 10 and k2 = 1, 5, 10, plot the densities on
(0, 30) .
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Chapter 8

Inference for Proportions

This chapter is concerned with inference methods for a proportion p and
for the comparison of two proportions p1 and p2. Proportions arise from mea-
suring a binary-valued categorical variable on population elements such as
gender in human populations. For example, p might be the proportion of
females in a given population or we might want to compare the proportion
p1 of females in population 1 with the proportion p2 of females in population
2. The need for inference arises as we base our conclusions about the values
of these proportions on samples from the populations rather than every ele-
ment in populations. For convenience, we denote the values assumed by the
binary categorical variables as 1 and 0, where 1 indicates the presence of a
characteristic and 0 indicates its absence.

8.1 Inference for a Single Proportion

Suppose x1, . . . , xn is a sample from a population where the variable is the
presence or absence of some trait, indicated by a 1 or 0, respectively. Let
p̂ be the proportion of 1’s in the sample. This is the estimate of the true
proportion p. For example, the sample could arise from coin tossing where
1 denotes heads and 0 tails and p̂ is the proportion of heads while p is
the probability of heads. If the population we are sampling from is finite,
then strictly speaking the sample elements are not independent. But if the
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population size is large relative to the sample size n, then independence is a
reasonable approximation; independence is necessary for the methods of this
chapter. So we will consider x1, . . . , xn as a sample from the Bernoulli(p)
distribution.
The standard error of the estimate p̂ is

p
p̂(1− p̂)/n, and since p̂ is an

average, the central limit theorem gives that

z =
p̂− pq
p̂(1−p̂)

n

is approximately N(0, 1) for large n. This leads to the approximate 1 − α
confidence interval given by p̂ ± pp̂(1− p̂)/nz∗, where z∗ is the 1 − α/2
percentile of the N(01) distribution. This interval can be easily computed
using SAS commands. For example, in Example 8.2 in IPS the probability of
heads was estimated by Count Buffon as p̂ = .5069 on the basis of a sample
of n = 4040 tosses. The statements

data;
p=.5069;
std=sqrt(p*(1-p)/4040);
z=probit(.95);
cl=p-std*z;
cu=p+std*z;
put ’90% confidence interval for p is (’ cl ’,’ cu ’)’;
run;

compute the approximate 90% confidence interval

90% confidence interval for p is (0.4939620574,0.5198379426)

which is printed in the Log window.
To test a null hypothesis H0 : p = p0, we make use of the fact that under

the null hypothesis the statistic

z =
p̂− p0q
p0(1−p0)

n

is approximately N(0, 1). To test H0 : p = p0 versus Ha : p 6= p0, we compute
P (|Z| > |z|) = 2P (Z > |z|), where Z is distributed N(0, 1). For example, in
Example 8.2 of IPS suppose we want to test H0 : p = .5 versus Ha : p 6= .5.
Then the statements
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data;
p=.5069;
p0=.5;
std=sqrt(p0*(1-p0)/4040);
z=abs((p-p0)/std);
pval=2*(1-probnorm(z));
put ’z-statistic =’ z ’P-value = ’ pval;
run;

compute the value of the z statistic and the P -value of this two-sided test to
be

z-statistic =0.8771417217 P-value = 0.3804096656

which is printed in the Log window. The formulas provided in IPS for com-
puting the P -values associated with one-sided tests are also easily imple-
mented in SAS.

8.2 Inference for Two Proportions

Suppose that x11, . . . , xn11 is a sample from population 1 and x12, . . . , xn22 is
a sample from population 2 where the variable is measuring the presence or
absence of some trait by a 1 or 0 respectively. We assume then that we have
a sample of n1 from the Bernoulli(p1) distribution and a sample of n2 from
the Bernoulli(p2) distribution. Suppose we want to make inferences about
the difference in the proportions p1 − p2. Let p̂i be the proportion of 1’s in
the i− th sample.

The central limit theorem gives that

z =
p̂1 − p̂2 − (p1 − p2)q

p̂1(1−p̂1)
n1

+ p̂2(1−p̂2)
n2

is approximately N(0, 1) for large n1 and n2. This leads to the approximate
1− α confidence interval given by

p̂1 − p̂2 ±
s

p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
z∗



150 Chapter 8

where z∗ is the 1−α/2 percentile of the N(01) distribution. We can compute
this interval using SAS commands just as we did for a confidence interval for
a single proportion in Section II.8.1.
To test a null hypothesis H0 : p1 = p2, we use the fact that under the null

hypothesis the statistic

z =
p̂1 − p̂2r

p̂(1− p̂)
³
1
n1
+ 1

n2

´
is approximately N(0, 1) for large n1 and n2, where

p̂ = (n1p̂1 + n2p̂2) / (n1 + n2)

is the estimate of the common value of the proportion when the null hy-
pothesis is true. To test H0 : p1 = p2 versus Ha : p1 6= p2, we compute
P (|Z| > |z|) = 2P (Z > |z|) where Z is distributed N(0, 1). For example, in
Example 8.9 of IPS, suppose we want to testH0 : p1 = p2 versus Ha : p1 6= p2,
where n1 = 7180, p̂1 = .227, n2 = 9916, p̂2 = .170. Then the statements

data;
p1=.227;
p2=.170;
n1=7180;
n2=9916;
p=(n1*p1+n2*p2)/(n1+n2);
std=sqrt(p*(1-p)*(1/n1+1/n2));
z=abs((p1-p2)/std);
pval=2*(1-probnorm(z));
put ’z-statistic =’ z ’P-value = ’ pval;
run;

compute the z statistic and the P -value and print

z-statistic =9.3033981753 P-value = 0

in the Log window. Here the P -value equals 0, so we would definitely reject.
Approximate power calculations can be carried out by simulating N pairs

of values from the Binomial(n1, p1) and Binomial(n2, p2) distributions. For
example, the statements
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data;

seed=43567;

p1=.3;

p2=.5;

n1=40;

n2=50;

power=0;

do i=1 to 1000;

k1=ranbin(seed,n1,p1);

p1hat=k1/n1;

k2=ranbin(seed,n2,p2);

p2hat=k2/n2;

phat=(n1*p1hat+n2*p2hat)/(n1+n2);

std=sqrt(phat*(1-phat)*(1/n1+1/n2));

z=abs((p1hat-p2hat)/std);

pval=2*(1-probnorm(z));

if pval le .05 then

power=power+1;

end;

power=power/1000;

stderr=sqrt(power*(1-power)/1000);

put ’Approximate power (standard error) at

p1=.3, p2=.5 n1=40 and n2=50 equals’;

put power ’(’ stderr ’)’;

run;

simulate generating 1000 samples of sizes 40 and 50 from the Bernoulli(.3)
and Bernoulli(.5), respectively, and then testing whether or not the pro-
portions are equal. The null hypothesis of equality is rejected whenever the
P -value is less than or equal to .05. The variable power records the propor-
tion of rejections in the simulations. The approximate power and its standard
error are given by

0.514 (0.015805189)

which is printed in the Log window.
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8.3 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using SAS, and the exercises are designed to reinforce your
understanding of the SAS material in this chapter. More generally, you
should use SAS to do all the computations and plotting required for the
problems in IPS.
Don’t forget to quote standard errors for any approximate probabilities

you quote in the following problems.

1. Carry out a simulation with the Binomial(40, .3) distribution to assess
the coverage of the 95% confidence interval for a single proportion.

2. The accuracy of a confidence interval procedure can be assessed by com-
puting probabilities of covering false values. Approximate the probabil-
ities of covering the values .1, .2, . . . , .9 for the 95% confidence interval
for a single proportion when sampling from the Binomial(20, .5) dis-
tribution.

3. Approximate the power of the two-sided test for testing H0 : p = .5 at
level α = .05 at the points n = 100, p = .1, . . . , 9 and plot the power
curve.

4. Carry out a simulation with theBinomial(40, .3) and theBinomial(50, .4)
distribution to assess the coverage of the 95% confidence interval for a
difference of proportions.

5. Approximate the power of the two-sided test for testing H0 : p1 = p2
versus Ha : p1 6= p2 at level α = .05 at n1 = 40, p1 = .3, n2 = 50, p2 =
.1, . . . , 9 and plot the power curve.
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Inference for Two-way Tables

In this chapter inference methods are discussed for comparing the distri-
butions of a categorical variable for a number of populations and for looking
for relationships amongst a number of categorical variables defined on a sin-
gle population. The chi-square test is the basic inferential tool, and it can
be carried out in SAS via the proc freq statement.

9.1 PROC FREQ with Nontabulated Data

You should recall or reread the discussion of the proc freq statement in
Section II.1.1, as we mention here only the additional features related to car-
rying out the chi-square test. For example, suppose that for 100 observations
in a SAS data set one we have a categorical variable x1 taking the values 0
and 1 and a categorical variable x2 taking the values 0, 1, and 2. Then the
statements

proc freq data=one;
tables x1*x2;
run;

record the counts in the six cells of a table with x1 indicating row and x2 indi-
cating column (Figure 9.1). The variable x1 could be indicating a population
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Figure 9.1: Two-way table produced by proc freq.

with x2 a categorical variable defined on each population (or conversely), or
both variables could be defined on a single population.

There is no relationship between two random variables – the variables
are independent – if and only if the conditional distributions of x2 given
x1 are all the same. In terms of the table this means comparing the two
distributions (.3182, .5455, .1364) and (.3718, .4872, .1410). Alternatively
we can compare the conditional distributions of x1 given x2, i.e., compare
the three distributions (.1944, .8056), (.2400, .7600) and (.2143, .7857). Of
course, there will be differences in these conditional distributions simply due
to sampling error. Whether or not the differences are significant is assessed
by conducting a chi-square test, which can be carried out using the chisq
option to the tables statement. The SAS statements

proc freq data=one;

tables x1*x2 /chisq cellchi2;

run;

produce the results shown in Figure 9.2. The table is the same as that in
Figure 9.1 with the exception that the expected option causes the expected
value of each cell to be printed and the cellchi2 option causes the contribu-
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tion of each cell to the chi-square statistic

χ2 =
X
cell

(observed count in cell − expected count in cell)2

expected count in cell

to be printed in the corresponding cell; i.e., in the (i, j)-th cell the value

(observed count in cell − expected count in cell)2
expected count in cell

is printed as Cell Chi-square. In this case the chi-square statistic takes the
value .256 and the P -value is .880, which indicates that there is no evidence of
a difference among the conditional distributions, that is, no evidence against
the statistical independence of x1 and x2. The P -value of the chi-square test
is obtained by computing the probability

P (Y > χ2)

where Y follows a Chisquare (k) distribution based on an appropriate degrees
of freedom k as determined by the table and the model being fitted. When
the table has r rows and c columns and we are testing for independence, then
k = (r − 1)(c − 1). This is an approximate distribution result. Recall that
the Chisquare (k) distribution was discussed in Section II.6.4.
It is possible to cross-tabulate more than two variables and to test for

pairwise statistical independence among the variables using the chisq option.
For example, if there are 3 categorical variables x1, x2, and x3 in SAS data
set one, then

proc freq data=one;
table x1*x2*x3/chisq ;
run;

causes a two-way table of x2 by x3 to be created for each value of x1 and a
chi-square test to be carried out for each two-way table.
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Figure 9.2: Two-way table produced by proc freqwith the chisq, expected
and cellchi2 option to the tables statement.

9.2 PROC FREQ with Tabulated Data

If the data come to you already tabulated, then you must use the weight
statement in proc freq together with the chisq option in the tables state-
ment to compute the chi-square statistic. For example, consider the data in
the table of Example 9.2 of IPS. Then the program

data one;
input binge $ gender $ count;
cards;
yes men 1630
yes women 1684
no men 5550
no women 8232
proc freq data=one;
weight count;
tables binge*gender/chisq;
run;

uses the weight statement to record the counts in each of the cells of the
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2×2 table formed by gender and binge in the variable counts. The output
for this program is shown in Figure 9.3. We see that the chi-square test for
this table gives a P -value of .001, so we would reject the null hypothesis of
no relationship between the variables gender and binge.

Figure 9.3: The chi-square test on the data in Example 9.2 of IPS. This
illustrates the use of proc freq with already tabulated data.

9.3 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using SAS, and the exercises are designed to reinforce your
understanding of the SAS material in this chapter. More generally, you
should use SAS to do all the computations and plotting required for the
problems in IPS.

1. Use SAS to directly compute the expected frequencies, standardized
residuals, chi-square statistic, and P -value for the hypothesis of inde-
pendence in the table of Example 9.8 in IPS.
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2. (9.17) Plot bar charts of the conditional distributions. Make sure you
use the same scale on each plot so that they are comparable.

3. Suppose we have a discrete distribution on the integers 1, . . . , k with
probabilities p1, . . . , pk. Further suppose we take a sample of n from
this distribution and record the counts f1, . . . , fk where fi records the
number of times we observed i. Then it can be shown that

P (f1 = n1, . . . , fk = nk) =

µ
n!

n1! · · ·nk!
¶
( pn11 · · · pnkk )

when the ni are nonnegative integers that sum to n. This is called
the Multinomial(n, p1, . . . , pk) distribution, and it is a generalization
of the Binomial(n, p) distribution. It is the relevant distribution for
describing the counts in cross tabulations. For k = 4, p1 = p2 = p3 =
p4 = .25, n = 3 calculate these probabilities and verify that it is a prob-
ability distribution. Recall that the gamma function (see Appendix
A) can be used to evaluate factorials such as n! and also 0! = 1.

4. Calculate P (f1 = 3, f2 = 5, f3 = 2) for the Multinomial(10, .2, .5, .3)
distribution.

5. Generate (f1, f2, f3) from theMultinomial(1000, .2, .4, .4) distribution.
Hint: Generate a sample of 1000 from the discrete distribution on 1, 2,
3 with probabilities .2, .4 , .4 respectively.
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Inference for Regression

This chapter deals with inference for the simple linear model. The proce-
dure proc reg for the fitting of this model was discussed in Section II.2.1.3,
and this material should be recalled or reread at this point. Here we dis-
cuss a number of additional features available with proc reg and present an
example.

10.1 PROC REG

The proc reg procedure fits the model y = β0 + β1x + �, where β0, β1 ∈
R1 are unknown and to be estimated, and � ∼ N(0, σ) with σ ∈ [0,∞)
unknown and to be estimated. We denote the least-squares estimates of β0
and β1 by b0 and b1, respectively, where they are based on the observed data
(x1, y1) , . . . , (xn, yn) . We also estimate the standard deviation σ by s which
equals the square root of the MSE (mean-squared error) for the regression
model.

Following are some of the statements that can appear with this procedure.
We discuss here only features that were not mentioned in Section II.2.1.3.

proc reg options;
model dependent=independent /options;
by variables;

159
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freq variable;
id variable;
var variables;
weight variable;
plot yvariable*xvariable = ’symbol ’ /options;
output out = SAS-dataset keyword = names;
test linear combination = value /option;

The test statement is used to test null hypotheses of the form H0 : l0β0 +
l1β1 = c versus Ha : l0β0 + l1β1 6= c. The statement takes the form

test l0 ∗ intercept+ l1 ∗ variable = c/print;

where variable is the predictor variable. The print option causes some inter-
mediate calculations to be output and can be deleted if the calculations are
not needed. Actually we can use this statement to construct predictions for
the response at given settings of the predictor variables. This is illustrated
in Section 10.2.
Following are some of the options that may appear in the proc reg

statement.

data = SASdataset
corr
simple
noprint

Following are some of the options that may appear in the model state-
ment.

cli prints 95% confidence limits for predicted values for observations.

clm prints 95% confidence limits for expected values for observations.

collin requests a collinearity analysis (see reference 4 in Appendix E for
discussion).

covb prints the covariance matrix for the least-squares estimates.

influence requests an influence analysis of each observation, the (ordinary)
residual, the leverage, rstudent (deleted studentized residual), covratio, dffits
and dfbetas are all printed (see reference 4 in Appendix E for definitions).

noint causes the model to be fit without an intercept term β0.

p prints the predicted values for the observations and the (ordinary = obser-
vation − prediction) residuals.
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r requests a residual analysis, the predicted values, the standard errors of
the predicted values, the (ordinary = observation − prediction) residuals and
their standard errors, the studentized residuals (ordinary residuals divided
by their standard errors here) and Cook’s D are all printed (see reference 4 in
Appendix E for more details). Note that the studentized residuals are often
referred to as the standardized residuals.

The following keywords may appear in the output statement. The
values of names are any valid SAS names, one for each model fit.

l95 = names lower 95% bound for prediction of observation.

u95 = names upper 95% bound for prediction of observation.

l95m = names lower 95% bound for expectation of observation.

u95m = names upper 95% bound for expectation of observation.3

p = names predicted values of observations.

r = names residuals (ordinary) of observations.

stdi = names standard error of predicted value.

stdr = names standard error of residual (ordinary).

student = names studentized (standardized residuals.

The overlay option may appear in the plot statement. The overlay
option causes multiple scatterplots to be plotted on the same set of axes.

10.2 Example

We illustrate the use of proc reg with Example 10.8 in IPS. We have four
data points

(x1, y1) = (1966, 73.1)

(x2, y2) = (1976, 88.0)

(x3, y3) = (1986, 119.4)

(x4, y4) = (1996, 127.1)

where x is year and y is yield in bushels per acre. Suppose we give x the
name year and y the name yield and place this data in the SAS data set
ex108. Then the program

data ex108;
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input year yield;
cards;
1966 73.1
1976 88.0
1986 119.4
1996 127.1
proc reg data=ex108;
model yield=year/p;
output out=regstuff student=stdresid;
proc univariate data=regstuff plot;
var stdresid;
run;

produces the output from proc reg shown in Figure 10.1. This gives the
least-squares line as y = −3729.354 + 1.934x. The standard error of b0 =
−3729.4 is 606.6, the standard error of b1 = 1.934 is 0.3062, the t statistic
for testing H0 : β0 = 0 versus Ha : β0 6= 0 is −6.148 with P -value 0.0255,
and the t statistic for testing H0 : β1 = 0 versus Ha : β1 6= 0 is 6.316 with
P -value 0.0242. The estimate of σ is s = 6.847, and the squared correlation is
R2 = .9523, indicating that 95% of the observed variation in y is explained by
the changes in x. The analysis of variance table indicates that the F statistic
for testing H0 : β1 = 0 versus Ha : β1 6= 0 is 39.892 with P -value 0.0242 and
the MSE (mean-squared error) is 46.881. The predicted value at x = 1996 is
130.9, and so on.
In Figure 10.2 some partial output from proc univariate is shown. In

particular this gives a stem-and-leaf, boxplot, and normal probability plot of
the standardized residuals. These plots don’t show any particular grounds
for concern, but of course there is very little data.
Now suppose we want to predict the value of the response at x = 2000.

Then the program

data ex108;
input year yield;
cards;
1966 73.1
1976 88.0
1986 119.4
1996 127.1
proc reg data=ex108;
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Figure 10.1: Output from proc reg for the example.

Figure 10.2: Part of the output from proc univariate for the example.



164 Chapter 10

model yield=year;
test intercept + 2000*year=0/print;
run;

produces as part of its output that shown in Figure 10.3. The value
Lb-c=138.646 is the prediction at year=2000. The standard error of this es-
timate is obtained by taking the square root of MSE*(L Ginv(X’X), L’)which
equals

p
46.881 ∗ (0.972) = 6.7504 in this case. These ingredients can be used

to construct confidence intervals for the expected value and predicted value.
For example,

data;
est=138.646;
l=0.972;
s2=46.881;
stderr1=sqrt(s2*l);
stderr2=sqrt(1+s2*l);
t=tinv(.975,2);
clexp=est-stderr1*t;
cuexp=est+stderr1*t;
clpred=est-stderr2*t;
cupred=est+stderr2*t;
put ’95% confidence interval for expected value

when year = 2000’;
put ’(’ clexp ’,’ cuexp ’)’;
put ’95% prediction interval for response

when year = 2000’;
put ’(’ clpred ’,’ cupred ’)’;
run;

prints

95% confidence interval for expected value when year = 2000
(109.60123539 ,167.69076461 )
95% prediction interval for response when year = 2000
(109.28427028 ,168.00772972 )

in the Log window. Note the difference between the intervals. Also note that
we have used the error degrees of freedom – namely, 2 – to determine the
appropriate Student distribution to use in forming the intervals.
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Figure 10.3: Output from the test statement in proc reg in the example.

10.3 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using SAS, and the exercises are designed to reinforce your
understanding of the SAS material in this chapter. More generally, you
should use SAS to do all the computations and plotting required for the
problems in IPS.

1. For the x values −3.0,−2.5,−2.0, . . . , 2.5, 3.0 and a sample of 13 from
the error �, where � is distributed N(0, 2), compute the values y =
β0+β1x+� = 1+3x+�. Calculate the least-squares estimates of β0 and
β1 and the estimate of σ

2. Repeat this example with five observations
at each value of x. Compare the estimates from the two situations and
their estimated standard deviations.

2. For the x values −3.0,−2.5,−2.0, . . . , 2.5, 3.0 and a sample of 13 from
the error �, where � is distributed N(0, 2), compute the values y =
β0 + β1x + � = 1 + 3x + �. Plot the least-squares line. Now repeat
your computations twice after changing the first y observation to 20
and then to 50 and make sure the scales on all the plots are the same.
What effect do you notice?

3. For the x values −3.0,−2.5,−2.0, . . . , 2.5, 3.0 and a sample of 13 from
the error �, where � is distributed N(0, 2), compute the values y =
β0 + β1x+ � = 1 + 3x+ �. Plot the standardized residuals in a normal
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quantile plot against the fitted values and against the explanatory vari-
able. Repeat your computations with the values of y = 1+3x−5x2+�.
Compare the residual plots.

4. For the x values −3.0,−2.5,−2.0, . . . , 2.5, 3.0 and a sample of 13 from
the error �, where � is distributed N(0, 2), compute the values y =
β0 + β1x+ � = 1+ 3x+ �. Plot the standardized residuals in a normal
quantile plot against the fitted values and against the explanatory vari-
able. Repeat your computations but for � use the values of a sample of
13 from the Student(1) distribution. Compare the residual plots.

5. For the x values −3.0,−2.5,−2.0, . . . , 2.5, 3.0 and a sample of 13 from
the error �, where � is distributed N(0, 2), compute the values y =
β0 + β1x + � = 1 + 3x + �. Calculate the predicted values and the
lengths of .95 confidence and prediction intervals for this quantity at
x = .1, 1.1, 2.1, 3.5, 5, 10 and 20. Explain the effect you observe.

6. For the x values −3.0,−2.5,−2.0, . . . , 2.5, 3.0 and a sample of 13 from
the error �, where � is distributed N(0, 2), compute the values y =
β0 + β1x + � = 1 + 3x + �. Calculate the least-squares estimates and
their estimated standard deviations. Repeat your computations but
for the x values use 12 values of −3 and one value of 3. Compare your
results and explain them.
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Multiple Regression

SAS statement introduced in this chapter

proc glm

In this chapter we discuss multiple regression– we have a single numeric
response variable y and k > 1 explanatory variables x1, . . . , xk. The descrip-
tions of the behavior of the proc reg procedure in Chapter 10 apply as well
to this chapter. This chapter briefly introduces a much more comprehensive
procedure for regression (proc glm). In Chapter 15 we show how a logistic
regression – a regression where the response variable y is binary-valued –
is carried out using SAS.

11.1 Example Using PROC REG

We consider a generated multiple regression example to illustrate the use of
the proc reg command in this context. Suppose that k = 2 and

y = β0 + β1x+ β2w + �

= 1 + 2x+ 3w + �

where � is distributed N(0, σ) with σ = 1.5. We generated the data for this
example. First we generated a sample of 16 from the N(0, 1.5) distribution
for the values of �. These values, together with every possible combination
of x1 = −1,−.5, .5, 1 and x2 = −2,−1, 1, 2, and with β0 = 1, β1 = 2 and
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β2 = 3, gave the values of y according to the above equation. We stored the
values of (x,w, y) in the SAS data set example. We then proceed to analyze
these data as if we didn’t know the values of β0, β1, β2, and σ. The program

proc reg data=example;
model y= x1 x2;
output out=resan student=stdres;
test intercept+.75*x1+0*x2=0/print;
proc univariate data=resan plot;
var stdres;
run;

produces the output given in Figures 11.1 and 11.2 from proc reg and par-
tial output from proc univariate is given in Figure 11.3. The least-squares
equation is given as y = 1.861516 + 2..099219x1 + 2.982794x2. For example,

the estimate of β1 is b1 = 2..099219 with standard error 0.33257638, and the
t statistic for testing H0 : β1 = 0 versus Ha : β1 6= 0 is 6.312 with P -value
0.0001. The estimate of σ is s = 1.05170 and R2 = .9653. The analysis of
variance table indicates that the F statistic for testing H0 : β1 = β2 = 0 ver-
sus Ha : β1 6= 0 or β2 6= 0 takes the value 180.798 with P -value 0.0001, so we
would definitely reject the null hypothesis. Also the MSE is given as 1.10607.
The output from the test statement in Figure 11.2 gives the prediction at
x1=.75, x2=0 as 3.4359304135, and the standard error of this estimate isp
(1.10607) ∗ (0.11875) = .3624166, which can be used as in Section II.10.2

to form confidence intervals for the expected response and prediction inter-
vals for the predicted response. Note that the error degrees of freedom here is
13, so we use the quantiles of the Student(13) distribution in forming these
intervals. Finally in Figure 11.3, we present a normal probability plot for
these data based on the standardized residuals. As we might expect, the
plot looks appropriate.
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Figure 11.1: Output from proc reg for the generated example.

Figure 11.2: Output from the test statement in proc reg for the generated
example.
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Figure 11.3: Normal probability plot obtained from proc univariate based
on standardized residuals for generated data.

11.2 PROC GLM

SAS contains another regression procedure called proc glm. Whereas proc
reg allows only quantitative variables for predictor variables, proc glm al-
lows both quantitative and categorical predictor variables. Categorical vari-
ables are called class variables in SAS, and in proc glm they are identified
in a class statement so that SAS knows to treat them appropriately. In
Chapters 12 and 13 we discuss the situation where all the predictor variables
are categorical, which can often be handled by another SAS procedure called
proc anova. We elect, however, to use proc glm because it has certain
advantages.
Suppose we analyze the data created in the SAS data set example in

Section II.11.1. The program

proc glm data=example;
model y= x1 x2;
run;

produces the output shown in Figure 11.4. There are two tables after the
analysis of variance table labeled Type I SS and Type III SS. In this case
the entries are identical, so it doesn’t matter which we use to test for the
existence of individual terms in the model. These tables give the P -values
for testing the hypotheses H0 : β2 = 0 versus Ha : β2 6= 0 and H0 : β1 = 0
versus Ha : β1 6= 0. We use the F statistics and the P -values given in the
table to carry out these tests . We see that we reject H0 : β2 = 0 as the
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Figure 11.4: Output from proc glm when applied to the generated example.

P -value is .0001. and similarly we reject H0 : β1 = 0.
In general Type I SS (sums of squares) and Type III SS will differ. Type

I SS correspond to the drop in the Error SS entailed by adding the term
corresponding to the row to the model, given that all the terms corresponding
to rows above it are in the model. These SS are sometimes called sequential
sums of squares and they are used when there is a natural sequence to testing
whether or not terms are in the model. For example, when fitting a cubic
y = β0+ β1x+ β2x

2+ β3x
3+ �, first test for the existence of the cubic term,

then the quadratic term, then the linear term. Obviously the order in which
we put variables into the model matters with these sequential tests except
when we have balanced data. Type III sums of squares correspond to the
drop in Error SS entailed by adding the term corresponding to the row to
the model, given that all the terms corresponding to the remaining rows are
in the model.
Following are some of the statements that can appear in proc glm.

proc glm;
class variables;
model dependents = independents /options;
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by variables;
freq variable;
id variable;
weight variable;
output out =SASdataset keyword = name;

All of these work as they do in proc reg with similar options. The class
statement simply lists all predictor variables that are categorical and appears
before the model statement that references these predictors. We consider
other features of proc glm in Chapters 12 and 13.

11.3 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using SAS, and the exercises are designed to reinforce your
understanding of the SAS material in this chapter. More generally, you
should use SAS to do all the computations and plotting required for the
problems in IPS.

1. For the x1 values −3.0,−2.5,−2.0, . . . , 2.5, 3.0 and a sample of 13 from
the error �, where � is distributed N(0, 2), compute the values of y =
β0+β1x1+β2x2+� = 1+3x1+5x

2
1+�. Calculate the least-squares esti-

mates of β0, β1 and β2 and the estimate of σ
2. Carry out the sequential

F tests testing first for the quadratic term and then, if necessary, for
the linear term.

2. For the x values −3.0,−2.5,−2.0, . . . , 2.5, 3.0 and a sample of 13 from
the error �, where � is distributed N(0, 2), compute the values of y =
β0 + β1x1 + β2x2 + � = 1 + 3 cos(x) + 5 sin(x) + �. Calculate the least-
squares estimates of β0, β1 and β2 and the estimate of σ

2. Carry out
the F test for any effect due to x. Are the sequential F tests meaningful
here?

3. For the x1 values −3.0,−2.5,−2.0, . . . , 2.5, 3.0 and a sample of 13 from
the error �, where � is distributed N(0, 2), compute the values of y =
1+3 cos(x)+5 sin(x)+�. Now fit the model y = β0+β1x1+β2x2+� and
plot the standardized residuals in a normal quantile plot and against
each of the explanatory variables.
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One-way Analysis of Variance

This chapter deals with methods for making inferences about the rela-
tionship between a single numeric response variable and a single categorical
explanatory variable. The basic inference methods are the one-way analy-
sis of variance (ANOVA) and the comparison of means. For this we use
the procedure proc glm. Other procedures for carrying out an ANOVA
in SAS include proc anova. A disadvantage of proc anova, however, is
that it must have balanced data; each cell formed by the cross-classification
of the explanatory variables has the same number of observations, and there
are limitations with respect to residual analysis. Due to the importance of
checking assumptions in a statistical analysis, we prefer to use proc glm
and refer the reader to reference 3 in Appendix E for a discussion of proc
anova.

We write the one-way ANOVA model as xij = µi+ �ij, where i = 1, . . . , I
indexes the levels of the categorical explanatory variable and j = 1, . . . , ni
indexes the individual observations at each level, µi is the mean response at
the i-th level, and the errors �ij are a sample from the N(0, σ) distribution.
Based on the observed xij, we want to make inferences about the unknown
values of the parameters µ1, . . . , µI , σ.
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12.1 Example

We analyze the data of Example 12.6 in IPS using proc glm. For this
example there are I = 3 levels corresponding to the values Basal, DRTA, and
Strat, and n1 = n2 = n3 = 22. Suppose we have the values of the xij in
score and the corresponding values of the categorical explanatory variable
in a character variable group taking the values Basal, DRTA, and Strat all
in the system file c:/saslibrary/ex12.txt. Then the program

data example;
infile ’c:/saslibrary/ex12.txt’;
input group $ score;
cards;
proc glm data=example;
class group;
model score = group/clm;
means group/t alpha=.01;
output out=resan p=preds student=stdres;
run;

carries out a one-way ANOVA for the data in score, with the levels in group.
Figure 12.1 contains the ANOVA table, and we see that the P -value for the F
test of H0 : µ1 = µ2 = µ3 versus H0 : µ1 6= µ2 or µ1 6= µ3 is .3288, soH0 is not
rejected. Also from this table the MSE gives the value s2 = 9.08658009. By
specifying the clm option in the model statement the predicted values, the
residuals, and the 95% confidence intervals for the expected values for each
observation are printed, although we do not reproduce this listing (there are
66 observations) here. In this context the predicted value for each observation
in a cell is the mean of that cell, so all such observations have the same
predicted values. Similarly, the 95% confidence intervals for the expected
observations are the same for all observations in the same cell. In this case
we get the 95% confidence intervals

(9.21572394, 11.78427606)

(8.44299666, 11.01154879)

(7.85208757, 10.42063970)

for Basal, DRTA and Strat respectively.
In the means statement, we have asked for the means of score for each

value of the group variable. The t option asks that all three pairwise tests of
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Figure 12.1: Output from proc glm for Example 12.6 in IPS.

equality of means be carried out using the two sample t procedure; i.e. using
the statistics

tij =
x̄i − x̄j

s
q

1
ni
+ 1

nj

to test for equality of means between two groups, with a difference being
declared if the P -value is smaller than alpha=.01. The output from the
means statement is given in Figure 12.2, and we see that no differences are
found.
The general form of the means statement is

means effects/options;

where effects specify the classifications for which the means are to be calcu-
lated for the response variable in the model statement. The options specify
which multiple comparison procedure is to be used for the comparisons of the
means. By specifying the option t, the Fisher’s LSD (least significant dif-
ference) method is selected. Lowering the critical level is standard practice
to make sure that, when conducting multiple tests of significance, the family
error rate –. the probability of declaring at least one result significant when
no null hypotheses are false – is not too high. The value of α is referred to
as the individual error rate. The default value of α, if the alpha option is
not given, is .05. Many other multiple comparison procedures are available
within proc glm, e.g., Bonferroni t tests (bon), Duncan’s multiple-range
test (duncan), Tukey’s studentized range test (tukey), and Scheffé’s mul-
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Figure 12.2: Output from the means statement in proc glm for Example
12.6 in IPS.

tiple comparison procedure (scheffe); see reference 3 in Appendix E for a
discussion of these and others.
Of course, it is important to carry out a residual analysis to check that the

assumptions we have made are reasonable. So in the output statement of
the above example we create a new data set resan containing the predicted
values and the standardized residuals in the variables preds and stdres,
respectively. Then the statements

axis1 length=6 in;
axis2 length=4 in;
symbol value=plus color=black;
symbol2 value=dot interpol=join color=black;
proc gplot data=resan;
plot stdres*group=1 preds*group=2/ haxis=axis1 vaxis=axis2;

give a scatterplot of the standardized residuals for each value of group in
Figure 12.3 and plot the cell means for each group in Figure 12.4. The
scatterplot for the standardized residuals indicates that the assumptions we
have made seem quite reasonable for this data set – the scatters are roughly
symmetrical about 0 and lie within (−3, 3) . Recall that we can get boxplots
and normal probability plots for the standardized residuals as well using proc
univariate. For evocative purposes, in the plot of Figure 12.4, we join the
cell means via lines. This plot seems to indicate some differences among the
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Figure 12.3: Plot of standardized residuals for fit of one-way ANOVA model
in Example 12.6 of IPS.

means although we have no justification for saying this from the results of
the statistical tests we conducted.
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Figure 12.4: Plot of cell means for each value of group in Example 12.6 of
IPS.

12.2 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are to
be carried out using SAS and the exercises are designed to ensure that you
have a reasonable understanding of the SAS material in this chapter. More
generally you should be using SAS to do all the computations and plotting
required for the problems in IPS.

1. Generate a sample of 10 from each of the N(µi, σ) distributions for
i = 1, . . . , 5, where µ1 = 1, µ2 = 1, µ3 = 1, µ4 = 1, µ5 = 2, and σ = 3.
Carry out a one-way ANOVA and plot a normal quantile plot of the
residuals and the residuals against the explanatory variable. Compute
.95 confidence intervals for the means. Carry out Fisher’s LSD proce-
dure with the individual error rate set at .03.

2. Generate a sample of 10 from each of the N(µi, σi) distributions for
i = 1, . . . , 5, where µ1 = 1, µ2 = 1, µ3 = 1, µ4 = 1, µ5 = 2, and σ1 =
σ2 = σ3 = σ4 = 3 and σ5 = 8. Carry out a one-way ANOVA and plot
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a normal quantile plot of the residuals and the residuals against the
explanatory variable. Compare the residual plots with those obtained
in Exercise 1.

3. If X1 is distributed Chisquare(k1) independently of X2, which is dis-
tributed N(δ, 1), then the random variable Y = X1+X2

2 is distributed
according to a noncentral Chisquare(k + 1) distribution with noncen-
trality λ = δ2. Generate samples of n = 1000 from this distribution
with k = 2 and λ = 0, 1, 5, 10. Plot histograms of these samples with
the midpoints 0, 1, . . . , 200. Comment on the appearance of the his-
tograms.

4. If X1 is distributed noncentral Chisquare(k1) with non-centrality λ in-
dependently of X2, which is distributed Chisquare(k2), then the ran-
dom variable

Y =
X1/k1
X2/k2

is distributed according to a noncentral F (k1, k2) distribution with
noncentrality λ. Generate samples of n = 1000 from this distribution
with k1 = 2, k2 = 3, and λ = 0, 1, 5, 10. Plot histograms of these sam-
ples with the midpoints 0, 1, . . . , 200. Comment on the appearance of
the histograms.

5. As noted in IPS, the F statistic in a one-way ANOVA, when the
standard deviation σ is constant from one level to another, is dis-
tributed noncentral F (k1, k2) with noncentrality λ, where k1 = I − 1,
k2 = n1 + · · ·nI − I,

λ =

PI
i=1 ni (µi − µ̄)2

σ2

and

µ̄ =

PI
i=1 niµiPI
i=1 ni

.

Using simulation approximate the power of the test in Exercise 1 with
level .05 and the values of the parameters specified by the estimates.
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Chapter 13

Two-way Analysis of Variance

This chapter deals with methods for making inferences about the relation-
ship existing between a single numeric response variable and two categorical
explanatory variables. The proc glm procedure is used to carry out a two-
way ANOVA.
We write the two-way ANOVA model as xijk = µij + �ijk, where i =

1, . . . , I and j = 1, . . . , J index the levels of the categorical explanatory vari-
ables and k = 1, . . . , nij indexes the individual observations at each treatment
(combination of levels), µij is the mean response at the i-th level and the
j -th level of the first and second explanatory variable, respectively, and the
errors �ijk are a sample from the N(0, σ) distribution. Based on the observed
xijk, we want to make inferences about the unknown values of the parameters
µ11, . . . , µIJ , σ.

13.1 Example

We consider a generated example where I = J = 2, µ11 = µ21 = µ12 =
1, µ22 = 3, σ = 3 and n11 = n21 = n12 = n22 = 5. The �ijk are generated as
a sample from the N(0, σ) distribution, and then we put xijk = µij + �ijk for
i = 1, . . . , I and j = 1, . . . , J and k = 1, . . . , nij . Then we pretend that we
don’t know the values of the parameters and carry out a two-way analysis
of variance. The xijk are stored in the variable respons, the values of i in
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factor1, and the values of j in factor2, all in the SAS data set example.
We generate the SAS data set using the program

data example;
seed=845443;
mu11=1;
mu21=1;
mu12=1;
mu22=3;
sigma=3;
do i=1 to 2;
do j=1 to 2;
do k=1 to 5;
factor1=i;
factor2=j;
if i=1 and j=1 then
x=mu11+sigma*rannor(seed);
if i=1 and j=1 then
factor=’11’;
if i=2 and j=1 then
x=mu21+sigma*rannor(seed);
if i=2 and j=1 then
factor=’21’;
if i=1 and j=2 then
x=mu12+sigma*rannor(seed);
if i=1 and j=2 then
factor=’12’;
if i=2 and j=2 then
x=mu22+sigma*rannor(seed);
if i=2 and j=2 then
factor=’22’;
output example;
end;
end;
end;

which is a bit clumsy, and we note that we can do this more efficiently using
arrays, discussed in Appendix B, or proc iml, discussed in Appendix C.
Note that we have created a character variable factor that is equal to one
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of the four values 11, 21, 12, 22. This proves useful when we want to plot
the data or residuals in side-by-side scatterplots as we will see. In any case,
given that we have generated the data in example as described, we proceed
to carry out a two-way ANOVA using

proc glm data=example;
class factor1 factor2;
model x = factor1 factor2 factor1*factor2;
means factor1 factor2 factor1*factor2;
output out=resan p=preds student=stdres;

which produces the output shown in Figures 13.1 and 13.2. We see that
the P -value for testing H0 : no interaction is given by the entry in the row
labeled FACTOR1*FACTOR2 and equals .0165, so we reject this null hypothesis.
Now there is no point in continuing to test for an effect due to factor1
or an effect due to factor2 (using the rows labeled FACTOR1 and FACTOR2,
respectively) because we know that both variables must have an effect if
there is an interaction. To analyze just what the interaction effect is we
look at the output from the means statement given in Figure 13.2. In the
means statement, we asked for the cell means to be printed for each level
of factor1, each level of factor2, and each value of (factor1, factor2).
When there is an interaction, it is the cell means for (factor1, factor2)
that we must look at to determine just what effect the explanatory variables
are having. We do this by plotting them and by carrying two-sample t tests
comparing the means. Note that while the multiple comparison procedures
are still available as options to the means statement, they work only with
main effects: comparisons of the means for levels of individual variables. SAS
does not permit the use of multiple comparison procedures with interaction
effects to discourage specifying too many tests.
Of course we must also check our assumptions to determine the validity

of the analysis. We note that we saved the predicted values and the stan-
dardized residuals in the SAS data set resan so that these variables would
be available for a residual analysis. The statements

axis1 length=6 in;
axis2 length=4 in;
symbol interpol=box;
proc gplot data=resan;
plot stdres*factor=1/ haxis=axis1 vaxis=axis2;
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Figure 13.1: Two-way ANOVA table from proc glm.

Figure 13.2: Output from means statement in proc glm.
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Figure 13.3: Side-by-side boxplots of standardized residuals for each cell.

result in the side-by-side boxplots of the standardized residuals given in Fig-
ure 13.3. The residuals don’t appear to have the same variance – even
though we know that all the assumptions hold in this example. On the other
hand, the sample sizes are small, so we can expect some plots like this to
look wrong. Of course other plots of the residuals should also be looked at.
To examine the interaction effect we first looked at a plot of the cell

means. The statements

axis1 length=6 in;
axis2 length=4 in;
symbol value=dot interpol=join;
proc gplot data=resan;
plot preds*factor1=factor2/ haxis=axis1 vaxis=axis2;

produce the plots of the response curves shown in Figure 13.4; the means are
plotted and joined by lines for each level of factor2. This gives an indication
of the form of the relationship. In particular, as factor1 goes from level 1
to level 2, the mean response increases when factor2=2 but stays about the
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Figure 13.4: Plot of response curves.

same when factor2=1, and, of course, this is correct. The statements

data comp;
set example;
if factor2=2;
proc ttest data=comp;
class factor1;
var x;

first construct the SAS data set comp by selecting the observations from
example where factor2=2 and then uses proc ttest to test for a difference
between the means when factor1=1 and factor1=2. The output in Fig-
ure 13.5 indicates that we would reject the null hypothesis of no difference
between these means. Other comparisons of means can be carried out in a
similar fashion.
It is possible to also fit a two-way model without an interaction effect. In

the example could do this with the model statement

model x = factor1 factor2;
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Figure 13.5: Output from proc ttest comparing the means when factor1=1,
factor2=2 and factor1=2, factor2=2.

and the ANOVA table would include the sums of squares corresponding to
interaction with the error. This would give more degrees of freedom for
estimating error and so could be regarded as a good thing. On the other
hand, it is worth noting that we would in addition be assuming no interaction
so we should play close attention to our residual analysis to make sure that
the assumption is warranted.

13.2 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using SAS, and the exercises are designed to reinforce your
understanding of the SAS material in this chapter. More generally, you
should use SAS to do all the computations and plotting required for the
problems in IPS.

1. Suppose I = J = 2, µ11 = µ21 = 1 and µ12 = µ22 = 2, and σ = 2, and
n11 = n21 = n12 = n22 = 10. Generate the data for this situation and
carry out a two-way analysis. Plot the cell means (an interaction effect
plot). Do your conclusions agree with what you know to be true?

2. Suppose I = J = 2, µ11 = µ21 = 1, and µ12 = 3, µ22 = 2, and σ = 2,
and n11 = n21 = n12 = n22 = 10. Generate the data for this situation
and carry out a two-way analysis. Plot the cell means (an interaction
effect plot). Do your conclusions agree with what you know to be true?

3. Suppose I = J = 2, µ11 = µ21 = 1, and µ12 = µ22 = 2, and σ = 2
and n11 = n21 = n12 = n22 = 10. Generate the data for this situation
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and carry out a two-way analysis. Form 95% confidence intervals for
the marginal means. Repeat your analysis using the model without
an interaction effect and compare the confidence intervals. Can you
explain your results?
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Nonparametric Tests

SAS statement introduced in this chapter

proc npar1way

This chapter deals with inference methods that do not depend on the
assumption of normality. These methods are sometimes called nonparametric
or distribution-free methods. Recall that we discussed a distribution-free
method in Section II.7.3 where we presented the sign test for the median.

14.1 PROC NPAR1WAY

This procedure provides for nonparametric analyses for testing that a random
variable has the same distribution across different groups. The procedure
analyzes only one-way classifications. The tests are all asymptotic and hence
require large sample sizes for validity.
Following are some of the statements are available with proc npar1way.

proc npar1way options;
var variables;
class variable;
by variables;

The class statement must appear. Note that only one classification variable
may be specified. The var variables; statement identifies response variables
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for which we want an analysis performed. The by statement works as de-
scribed in proc sort.
Following are some of the options available with the proc npar1way

statement.

data = SASdataset
wilcoxon

We describe the use of wilcoxon in Sections II.14.2 and II.14.4.
Note that the analysis techniques used by proc npar1way assume that

the distribution form is the same in each classification group but may differ
in their locations only.

14.2 Wilcoxon Rank Sum Test

The Wilcoxon rank sum procedure tests for a difference in the medians of
two distributions that differ at most in their medians. If y11, . . . , y1n1 is a
sample from a continuous distribution with median ζ1 and y21, . . . , y2n2 is a
sample from a continuous distribution with median ζ2, to test H0 : ζ1 = ζ2
versus one of the alternatives Ha : ζ1 6= ζ2,Ha : ζ1 < ζ2 or Ha : ζ1 > ζ2, we
use the Wilcoxon rank sum test, available via the wilcoxon option in the
proc npar1way statement.
For Example 14.1 of IPS we store the values of the class variable in weed

and the responses in the variable yield. Then the program

data example;
input weeds yield;
cards;
0 166.7
0 172.2
0 165
0 176.9
3 158.6
3 176.4
3 153.1
3 156
proc npar1way wilcoxon data=example;
class weeds;
var yield;
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Figure 14.1: Output from proc npar1way with wilcoxon option.

produces the output shown in Figure 14.1. This gives the value of the
Wilcoxon rank sum test statistic as S=23 and the approximate P -value for
testing H0 : ζ1 = ζ2 versus Ha : ζ1 6= ζ2 as Prob > |Z| = .1939 where
Z=1.22904,. Let us denote this P -value by P2 to indicate that it arises from
testing H0 against the two-sided alternative. If instead we want to test H0

against the one-sided alternative Ha : ζ1 > ζ2, the approximate P -value is
given by .5P2 when Z> 0, 1 − .5P2 when Z< 0. In this case the approx-
imate P -value for testing H0 : ζ1 = ζ2 versus Ha : ζ1 > ζ2 is given by
.5P2 = .5 (.1939) = 0.09695, so we don’t reject H0. If we want to test H0

against the one-sided alternative Ha : ζ1 < ζ2, the approximate P -value is
given by .5P2 when Z< 0, 1− .5P2 when Z> 0.

The Wilcoxon rank sum test for a difference between the locations of two
distributions is equivalent to another nonparametric test called the Mann-
Whitney test. Suppose we have two independent samples y11, . . . , y1n1 and
y21, . . . , y2n2 from two distributions that differ at most in their locations as
represented by their medians; in other words one distribution can be obtained
from the other by a location change. The Mann-Whitney statistic U is the
number of pairs (y1i, y2j) where y1i > y2j while the Wilcoxon rank sum test
statistic W is the sum of the ranks from the first sample when the ranks
are computed for the two samples considered as one sample. Then it can be
shown that W = U + n1(n1+1)/2.
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14.3 Sign Test and Wilcoxon Signed Rank

Test

We denote the median of a continuous distribution by ζ. As already men-
tioned in Section II.7.3, the value M(Sign), which equals the sign test statistic
minus its mean under H0 : ζ = 0, and the P -value for testing H0 against
Ha : ζ 6= 0 are printed out by proc univariate. We denote this P -value by
P2. Suppose we want to instead test H0 : ζ = 0 versus Ha : ζ > 0. Then if
M(Sign)> 0, the relevant P -value is .5P2, and if M(Sign)< 0, the relevant
P -value is 1 − .5P2. Suppose we want to test H0 : ζ = 0 versus Ha : ζ < 0.
Then if M(Sign)< 0, the relevant P -value is .5P2, and if M(Sign)> 0, the
relevant P -value is 1 − .5P2. We can also use the sign test when we have
paired samples to test that the median of the distribution of the difference
between the two measurements on each individual is 0. For this we just apply
proc univariate to the differences.
The Wilcoxon signed rank test can also be used for inferences about the

median of a distribution. The Wilcoxon signed rank test is based on the
ranks of sample values, which is not the case for the sign test. The Wilcoxon
signed rank test for the median also differs from the sign test in that it
requires an assumption that the response values come from a continuous
distribution symmetric about its median, while the sign test requires only a
continuous distribution. The procedure proc univariate also prints out Sgn
Rank, which is the value of the Wilcoxon signed rank statistic minus its mean
when H0 is true, and the value P2, which is the P -value for testing H0 : ζ = 0
versus Ha : ζ 6= 0. If instead we wish to test a one-sided hypothesis, then we
can compute the P -value using the values of Sgn Rank and P2 as discussed
for the sign test.
Consider the data of Example 14.8 in IPS, where the differences between

two scores is input as the variable diff in the SAS data set example, and
suppose we want to test H0 : ζ = 0 versus Ha : ζ > 0. Then the program

data example;
input diff;
cards;
.37
-.23
.66
-.08
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Figure 14.2: Part of the output from proc univariate applied to the variable
diff for Example 14.8 of IPS.

-.17
proc univariate data=example;
var diff;
run;

produces as part of its output the value of the sign test statistic and the
value of the Wilcoxon signed rank statistic and their associated P -values,
are shown in Figure 14.2. We see that the value of Sgn Rank is 1.5 and P2 is
.8125. The appropriate P -value is .5(.8125) = .40625, so we would not reject
H0.

14.4 Kruskal-Wallis Test

The Kruskal-Wallis test is the analog of the one-way ANOVA in the
nonparametric setting. The distributions being compared are assumed to
differ at most in their medians. This test can be carried out in SAS by using
proc nonpar1way with the wilcoxon option. Suppose the data for Exam-
ple 14.13 in IPS are stored in the SAS data set corn with weeds per meter in
the variable weeds and corn yield in the variable yield. Then the program

data example;
input weeds yield;
cards;
0 166.7
0 172.2
0 165.0
0 176.9
1 166.2
1 157.3
1 166.7
1 161.1
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Figure 14.3: Output from proc nonpar1way with wilcoxon option with
more than two groups.

3 158.6
3 176.4
3 153.1
3 156.0
9 162.8
9 142.4
9 162.7
9 162.4
proc npar1way wilcoxon data=example;
class weeds;
var yield;
run;

produces the output shown in Figure 14.3. We see a P -value of .1344 for
testing H0 : each sample comes from the same distribution versus Ha : at
least two of the samples come from different distributions. Accordingly, we
do not reject H0.

14.5 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using SAS, and the exercises are designed to reinforce your
understanding of the SAS material in this chapter. More generally, you
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should use SAS to do all the computations and plotting required for the
problems in IPS.

1. Generate a sample of n = 10 from theN(0, 1) distribution and compute
the P -value for testing H0 : the median is 0 versus Ha : the median
is not 0, using the t-test and the Wilcoxon signed rank test. Compare
the P -values. Repeat this exercise with n = 100.

2. Generate two samples of n = 10 from the Student(1) distribution and
to the second sample add 1. Then test H0 : the medians of the two
distributions are identical versus Ha : the medians are not equal using
the two sample t test and the Wilcoxon rank sum test. Compare the
results.

3. Generate a sample of 10 from each of the N(1, 2), N(2, 2), and N(3, 1)
distributions. Test for a difference among the distributions using a
one-way ANOVA and the Kruskal-Wallis test. Compare the results.
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Chapter 15

Logistic Regression

SAS statement introduced in this chapter

proc logistic

This chapter deals with the logistic regression model . This model arises
when the response variable y is binary, i.e., takes only two values, and we
have a number of explanatory variables x1, . . . , xk. In SAS we use proc
logistic for carrying out logistic regression.

15.1 Logistic Regression Model

The regression techniques discussed in Chapters 10 and 11 of IPS require the
response variable y to be a continuous variable. In many contexts, however,
the response is discrete and in fact binary. It takes the values 0 and 1. Let
p denote the probability of a 1. This probability is related to the values
of the explanatory variables x1, . . . , xk. We cannot, however, write this as
p = β0 + β1x1 + . . .+ βkxk because the right-hand side is not constrained to
lie in the interval [0, 1], which it must if it is to represent a probability. One
solution to this problem is to employ the logit link function, given by

ln

µ
p

1− p

¶
= β0 + β1x1 + · · ·+ βkxk
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and this leads to the equations

p

1− p
= exp {β0 + β1x1 + · · ·+ βkxk}

and

p =
exp {β0 + β1x1 + · · ·+ βkxk}

1 + exp {β0 + β1x1 + · · ·+ βkxk}
for the odds p/(1 − p) and probability p, respectively. The right-hand side
of the equation for p is now always between 0 and 1. Note that logistic
regression is based on an ordinary regression relation between the logarithm
of the odds in favor of the event occurring at a particular setting of the
explanatory variables and the values of the explanatory variables x1, . . . , xk.
The quantity ln (p/(1− p)) is referred to as the log odds.
The procedure for estimating the coefficients β0, β1, . . . , βk using this re-

lation and carrying out tests of significance on these values is known as logis-
tic regression. Typically, more sophisticated statistical methods than least
squares are needed for fitting and inference in this context, and we rely on
software such as SAS to carry out the necessary computations.
Other link functions that are often used are available in SAS. In particular

the probit link function is given by

Φ−1 (p) = β0 + β1x1 + · · ·+ βkxk

where Φ is the cumulative distribution function of the N(0, 1) distribution,
and this leads to the relation

p = Φ (β0 + β1x1 + · · ·+ βkxk)

which is also always between 0 and 1. We restrict our attention here to the
logit link function.

15.2 Example

Suppose we have the following 10 observations



Logistic Regression 199

y x1 x2
1 0 -0.65917 0.43450
2 0 0.69408 0.48175
3 1 -0.28772 0.08279
4 1 0.76911 0.59153
5 1 1.44037 2.07466
6 0 0.52674 0.27745
7 1 0.38593 0.14894
8 1 -0.00027 0.00000
9 0 1.15681 1.33822
10 1 0.60793 0.36958

where the response is y and the predictor variables are x1 and x2 (note that
x2 = x21). Suppose we want to fit the model

ln

µ
p

1− p

¶
= β0 + β1x1 + β2x2

and conduct statistical inference concerning the parameters of the model.
Then the program

data example;
input y x1 x2;
cards;
0 -0.65917 0.43450
0 0.69408 0.48175
1 -0.28772 0.08279
1 0.76911 0.59153
1 1.44037 2.07466
0 0.52674 0.27745
1 0.38593 0.14894
1 -0.00027 0.00000
0 1.15681 1.33822
1 0.60793 0.36958
proc logistic;
model y = x1 x2;
run;
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fits the model and computes various test statistics, as given in Figure 15.1.
The fitted model is given by

ln

µ
p

1− p

¶
= −0.5228− 0.7400x1 + 0.7796x2

and the standard errors of the estimates of β0, β1, and β2 are recorded as
0.9031, 1.6050, and 1.5844, respectively, so we can see that these quantities
are not being estimated with great accuracy. The output also gives the P -
value forH0 : β0 = 0 versusHa : β0 6= 0 as 0.5627, the P -value forH0 : β1 = 0
versus Ha : β1 6= 0 as 0.6448, and the P -value for H0 : β2 = 0 versus Ha :
β2 6= 0 as 0.6227. Further the test of H0 : β1 = β2 = 0 versus Ha : β1 6= 0 or
β2 6= 0 is recorded as -2 LOG L and has P -value .8759. In this example there
is no evidence of any nonzero coefficients. Note that when β0 = β1 = β2 = 0,
p = .5.
Also provided in the output is the estimate 0.477 for the odds ratio for

x1. The odds ratio for x1 is given by exp (β1) , which is the ratio of the odds
at x1 + 1 to the odds at x1 when x2 is held fixed or when β2 = 0. Since
there is evidence that β2 = 0 (P -value = .6227), the odds ratio has a direct
interpretation. Note, however, that if this wasn’t the case then the odds
ratio would not have such an interpretation; it doesn’t makes sense for x2 to
be held fixed when x1 changes in this example because they are functionally
related variables. Similar comments apply to the estimate 2.181 for the odds
ratio for x2.
Often the data come to us in the form of counts; namely, for each setting of

the explanatory variables we get the value (r, n) , where r corresponds to the
number of trials – e.g., tosses of a coin – and n corresponds to the number
of events – e.g., heads – that occurred. So n is Binomial (r, p) distributed
with p dependent on the values of the explanatory variables through the
logistic link. For example, suppose we have two explanatory variables x1
and x2 taking the values (−1,−1) , (−1, 1) , (1,−1) , (1, 1) and we observe
the values (20, 13) , (15, 10) , (18, 11) , (20, 12) respectively for (r, n) . Then the
program

data example;
input r n x1 x2;
cards;
20 13 -1 -1
15 10 -1 1
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Figure 15.1: Output from proc logistic.

18 11 1 -1

20 12 1 1

proc logistic;

model n/r= x1 x2;

run;

produces the output like that shown in Figure 15.1; we fit the model

ln

µ
p

1− p

¶
= β0 + β1x1 + β2x2

and carry out various tests of significance. Note the form of themodel state-
ment in this case. Many other aspects of fitting logistic regression models
are available in SAS, and we refer the reader to reference 4 in Appendix E
for a discussion of these.
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15.3 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using SAS, and the exercises are designed to reinforce your
understanding of the SAS material in this chapter. More generally, you
should use SAS to do all the computations and plotting required for the
problems in IPS.

1. Generate a sample of 20 from the Bernoulli(.25) distribution. Pretend-
ing that we don’t know p compute a 95% confidence interval for this
quantity. Using this confidence interval, form 95% confidence intervals
for the odds and the log odds.

2. Let x take the values −1, −.5, 0, .5 and 1. Plot the log odds

ln

µ
p

1− p

¶
= β0 + β1x

against x when β0 = 1 and β1 = 2. Plot the odds and the probability
p against x.

3. Let x take the values −1, −.5, 0, .5, and 1. At each of these values
generate a sample of four values from the Bernoulli(px) distribution
where

px =
exp {1 + 2x}

1 + exp {1 + 2x}
and let these values be the y response values. Carry out a logistic
regression analysis of these data using the model .

ln

µ
px

1− px

¶
= β0 + β1x

Test the null hypothesis H0 :β1 = 0 versus H0 :β1 6= 0 and determine
if the correct inference was made.

4. Let x take the values −1, −.5, 0, .5, and 1. At each of these values
generate a sample of four values from the Bernoulli(px) distribution
where

px =
exp {1 + 2x}

1 + exp {1 + 2x}
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and let these values be the y response values. Carry out a logistic
regression analysis of these data using the model

ln

µ
px

1− px

¶
= β0 + β1x+ β2x

2

Test the null hypothesis H0 : β2 = 0 versus Ha : β2 6= 0.
5. Let x take the values −1, −.5, 0, .5, and 1. At each of these values,
generate a sample of four values from the Bernoulli(.5) distribution.
Carry out a logistic regression analysis of these data using the model

ln

µ
px

1− px

¶
= β0 + β1x+ β2x

2

Test the null hypothesis H0 : β1 = β2 = 0 versus Ha : β1 6= 0 or β2 6= 0.
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Appendix A

Operators and Functions in the
Data Step

A.1 Operators

A number of different operators can be used in SAS programs. There is a
priority for how expressions are evaluated from left to right, but we advocate
the use of parentheses ( ) to make expressions easier to read. Here we group
operators by type.

A.1.1 Arithmetic Operators

Arithmetic operators indicate that an arithmetic calculation is to be per-
formed. The arithmetic operators are:

** exponentiation; e.g., x**y is “x raised to the power y, or xy”

* multiplication

/ division

+ addition

- subtraction

If a missing value is an operand for an arithmetic operator, the result is a
missing value.

207



208 Appendix A

A.1.2 Comparison Operators

Comparison operators propose a relationship between two quantities and ask
SAS to determine whether or not that relationship holds. As such, the output
from a comparison operation is 1 if the proposed comparison is true and 0 if
the proposed comparison is false.

= or EQ equal to
NE not equal to
> or GT greater than
NG not greater than
< or LT less than
NL not less than
>= or GE greater than or equal to
<= or LE less than or equal to

A.1.3 Logical Operators

Logical operators, also called Boolean operators, are usually used in expres-
sions to link sequences of comparisons. The logical operators are:

& and
| or
~ not

A.1.4 Other Operators

The operators in this category are:

>< minimum of two surrounding quantities
<> maximum of two surrounding quantities
|| concatenation of two character values

A.1.5 Priority of Operators

Expressions within parentheses are evaluated before those outside.

The operations **, + prefix, - prefix, ><, <> are then performed, followed
by * and /, which is followed by + and -, then ||, then <, <=, =, >=, >,
followed by &, and finally, |.
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Operations with the same priority are performed in the order in which they
appear.

When in doubt, use parentheses.

A.2 Functions

A SAS function is a routine that returns a value computed from arguments.

A.2.1 Arithmetic Functions

abs(x) returns the absolute value of x.

max(arguments) returns the largest value among the arguments. There may
be two or more arguments separated by commas or a variable range list pre-
ceded by of. For example, max(1,2,3) is 3, max(x,y,z) gives the maximum
of x, y, and z, and max(of x1-x100) gives the maximum of x1, x2, , x100.

min(arguments) returns the smallest value among the arguments. The ar-
guments obey the same rules as with max.

mod(argument1, argument2 ) calculates the remainder when the quotient of
argument1 divided by argument2 is calculated.

sign(x) returns a value of −1 if x < 0, a value of 0 if x = 0, a value of +1 if
x > 0.

sqrt(x) calculates the square root of the value of x. The value of x must be
nonnegative.

A.2.2 Truncation Functions

ceil(x) results in the smallest integer larger than x.

floor(x) results in the largest integer smaller than the argument.

int(x) results in the integer portion of the value of x.

round(value, roundoffunit) rounds a value to the nearest roundoff unit. The
value of the roundoffunit must be greater than zero. If the roundoffunit is
omitted, a value of 1 is used and value is rounded to the nearest integer.
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A.2.3 Special Functions

digamma(x) computes the derivative of the log of the gamma function. The
value of this function is undefined for nonpositive integers.

exp(x) raises e = 2.71828 to the power specified by x.

gamma(x) produces the complete gamma function. If x is an integer, then
gamma(x) is (x− 1)! (i.e. the factorial of (x− 1)).
lgamma(x) results in the natural logarithm of the gamma function of the
value of x.

log(x) results in the natural logarithm (base e) of the value of x. The value
of x must be a positive value.

log10(x) results in the common logarithm (log10) of the value of x.

trigamma(x) returns the derivative of the digamma function.

A.2.4 Trigonometric Functions

arcos(x) returns the inverse cosine of the value of x. The result is in radians
and −1 ≤ x ≤ +1.
arsin(x) returns the inverse sine of the value of x. The result is in radians
and −1 ≤ x ≤ +1.
atan(x) returns the inverse tangent of the value of x.

cos(x) returns the cosine of the value of x. The value of x is assumed to be
in radians.

cosh(x) returns the hyperbolic cosine of the value of x.

sin(x) returns the sine of the value of x. The value of x is assumed to be in
radians.

sinh(x) returns the hyperbolic sine of the value of x.

tan(x) returns the tangent of the value of x. The value of x is assumed to
be in radians; it may not be an odd multiple of π

2
.

tanh(x) returns the hyperbolic tangent of the value of x.

A.2.5 Probability Functions

betainv(p, a, b), where 0 ≤ p ≤ 1, a > 0, and b > 0, returns the Beta(a, b)
inverse distribution function at p.
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cinv(p, df) returns the inverse distribution function of the Chisquare(df)
distribution at p, 0 ≤ p ≤ 1.
finv(p, ndf, ddf) returns the inverse distribution function for the F(ndf, ddf)
distribution at p, 0 ≤ p ≤ 1.
gaminv(p, α), where 0 < p < 1 and α > 0, computes the Gamma(α,1)
inverse distribution function at p.

poisson(λ, n), where 0 ≤ λ and 0 ≤ n, returns the Poisson(λ) cdf at n.

probbeta(x, a, b), where 0 ≤ x ≤ 1 and 0 < a, b, returns the Beta(a, b) cdf
at x.

probbnml(p, n,m), where 0 ≤ p ≤ 1, 1 ≤ n, 0 ≤ m ≤ n, returns the
Binomial(n, p) cdf at m.

probchi(x, df) returns the Chisquare(df) cdf at x.

probf(x, ndf, ddf) returns the F(ndf, ddf) cdf at x.

probgam(x, α) returns the Gamma(α, 1) cdf at x.

probhypr(nn, k, n, x) returns the Hypergeometric(nn, k, n) cdf at x where
max(0, k + n− nn) ≤ x ≤ min(k, n).
probit(p) returns the N(0, 1) inverse distribution function at p.

probnegb(p, n,m) where 0 ≤ p ≤ 1, 1 ≤ n, 0 ≤ m, returns the Negative
Binomial(n, p) cdf at m.

probnorm(x) returns the N(0, 1) cdf at x.

probt(x, df) returns the Student(df) cdf at x.

tinv(p, df) returns the Student(df) inverse distribution function at p, 0 ≤
p ≤ 1.

A.2.6 Sample Statistical Functions

In the following functions, arguments may be a list of numbers separated
by commas, a list of variables separated by commas, or a variable range list
preceded by of.

css(arguments) results in the corrected sum of squares of the arguments.

cv(arguments) results in the coefficient of variation of the arguments.

kurtosis(arguments) results in the kurtosis statistic of the arguments.

mean(arguments) results in the average of the values of the arguments.

n(arguments) returns the number of nonmissing arguments.
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nmiss(arguments) gives the number of missing values in a string of argu-
ments.

range(arguments) gives the range of the values of the arguments.

skewness(arguments) results in a measure of the skewness of the arguments
values.

std(arguments) gives the standard deviation of the values of the arguments.

stderr(arguments) results in the standard error of the mean of the values of
the arguments.

sum(arguments) results in the sum of the arguments.

uss(arguments) calculates the uncorrected sum of squares of the arguments.

var(arguments) calculates the variance of the arguments.

A.2.7 Random Number Functions

You can generate random numbers for various distributions using the follow-
ing random number functions. The value of seed is any integer ≤ 231 − 1. If
seed ≤ 0, then the time of day is used to initialize the seed stream.
ranbin(seed, n, p) returns a Binomial(n, p) random variate.

rancau(seed) returns a Cauchy random variate.

ranexp(seed) returns an Exponential(1) variate.

rangam(seed,α) returns a Gamma(α, 1) variate.

rannor(seed) returns a N(0, 1) variate.

ranpoi(seed,λ), where λ > 0, returns a Poisson(λ) random variate.

rantbl(seed, p1, . . . , pn), where 0 ≤ pi ≤ 1 for 1 ≤ i ≤ n, returns an obser-
vation generated from the probability mass function defined by p1 through
pn.

rantri(seed, h), where 0 < h < 1 returns an observation generated from the
triangular distribution.

ranuni(seed) returns a number generated from the uniform distribution on
the interval (0, 1).
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Arrays in the Data Step

Arrays are used in SAS when there is a group of variables we want to process
in an identical way. For example, we may want to change 0 to . (missing)
for every numeric variable in a data set. This is called recoding. Arrays are
not permanent elements of a SAS data set. They exist only for the duration
of the data step in which they are created. However, any changes made to
elements of arrays are permanent for the variables they correspond to. Hence,
arrays are treated somewhat differently in SAS than in other programming
languages.
Arrays are created in array statements. For example, suppose a SAS data

set contains the numeric variables x, y, and z and the character variables a
and b. Then when dealing with this data set in a data step, the statements

array arr1{3} x y z;
array arr2{2} $ a b;

create two arrays: arr1 is a numeric array of length 3 containing the variables
x, y, and z, and arr2 is a character array of length 2 containing the variables
a and b.
The general form of the array statement is:

array array-name{number of elements} list-of-variables;

where array-name can be any valid SAS name. Instead of specifying the
number of elements, we can use a * instead and then SAS determines this
value from the list-of-variables. After an array has been formed, you can
determine the number of elements in it using the dim function. For example,

d=dim(arr1);
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put d;

prints 3 on the Log window. Note that we have to evaluate the function dim
first.
Often, we want to refer to specific variables in an array. This is done

using an index, as in array-name{index-value}. For example, arr1{1} refers
to variable x and arr2{2} refers to variable b, so the statement

put arr1{1} arr2{2};

writes the values of x and b in the Log window. References to arrays can
occur only after an array has been defined in the data step.
In our definition of an array the index runs from 1 up to dim(array-

name). Sometimes it is more convenient to let the index run between other
integer values. For example, if our data set contains the numeric variables
x50, x51, , x61 and we want to define an array x containing these variables,
then we could use

array x{12} x50-x61;

and x{i} refers to variable xj with j = 49 + i. More conveniently, we can
specify a lower and upper bound for the index in the definition, as in

array x{50:61} x50-x61;

and now the index ranges between 50 and 61. To determine the lower and up-
per bounds of the index of an array, use the lbound and hbound functions.
For example,

lb=lbound(x);
hb=hbound(x);
put lb hb;

writes 50 and 61 in the Log window when we define x with these lower and
upper bounds. We have to evaluate the functions lbound and hbound
first before we can output their values. Note that dim(array-name) =
hbound(array-name) − lbound(array-name).
It is also possible to initialize arrays to take specific values via a statement

of the form

array array-name {number of elements} variable.list (list of initial values
separated by blanks);

For example,
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array x{3} x1-x3 (0 1 2);

assigns the values x1 = 0, x2 = 1, and x3 = 2, and these variables are per-
manent elements of the data set (recall that arrays exist only for the duration
of the particular data step in which they are defined). The variables x1-x3
are retained in the SAS data set, so they should be dropped if they are not
needed.
Arrays are commonly used in do groups, allowing us to take advantage of

the indexing feature to process many variables at once. For example, suppose
we have 20 variables whose values are stored in a text file C:\datafile.txt
with spaces between the values. Further, suppose these variables take values
in {1, 2, ..., 10} but that 10 has been input into C:\datafile.txt as A. We
want to treat the variables as numeric variables, but we don’t want to edit
C:\datafile.txt to change every A to a 10. The following program does
this recoding.

data example (drop = t1-t10 x1-x20);
array test* $ t1-t10 (’1’ ’2’ ’3’ ’4’ ’5’ ’6’ ’7’ ’8’

’9’ ’A’);
array x{*} $ x1-x20;
array y{*} y1-y20;
infile ’datafile’;
input $ x1-x20;
do i=lbound(x) to hbound(x);
do j=1 to 10;
if (x{i} = test{j}) then y{i} = j;
end;
end;

Notice that we have dropped the character variables t1-t10 and x1-x20
from the data set example. This assumes that these variables will not be
needed in any part of the SAS program that will make use of the data set
example, and it is done to cut down the size of the data set. The program
keeps the numeric variables y1-y20 in the data set. These take values in
{1, 2, ..., 10} , and they are available for analysis by other SAS procedures.
Further, notice the use of lbound(x) and hbound(x). We could have sub-
stituted 1 and 20, respectively, but the application of these functions in this
program demonstrates a common usage.
The array statement has many other features. We discuss explicit arrays.

Implicit arrays, used in older versions of SAS, are to be avoided now. Further,
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there are multidimensional arrays. For a discussion of these features, see
reference 1 in Appendix E.
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PROC IML

The procedure proc iml (Interactive Matrix Language) can be used for
carrying out many of the calculations arising in linear algebra. Interactive
Matrix Language (IML) is really a programming language itself. To invoke
it we use the statement

proc iml;

within a SAS program. Various IML commands create matrices and perform
operations on them. We describe here some of the main features of the IML
language; the reader is referred to reference 7 in Appendix E for more details.
In IML matrices have the following characteristics:

• Matrices are referred to by SAS names; they must be from 1 to 8
characters in length, begin with a letter or an underscore, and consist
only of letters, numbers, and underscores.

• They may contain elements that have missing values.
• The dimension of the matrix is defined by the number of rows and
columns. An m×n matrix has mn elements –m rows and n columns.

C.1 Creating Matrices

C.1.1 Specifying Matrices Directly in IML Programs

A matrix can be specified in IML in a number of ways. The most direct
method is to specify each element of the matrix. The dimensions of the
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matrix are determined by the way you punctuate the values. If there are
multiple elements, i.e., the matrix is not 1 × 1, use braces { } to enclose
the values, with elements in the same row separated by spaces, and rows
separated by commas. If you use commas to create multiple rows, all rows
must have the same number of elements. A period represents a missing
numeric value. For example, the commands

proc iml;
c={1 2,3 4};
print c;
run;

creates the 2× 2 matrix
c =

µ
1 2
3 4

¶
and prints it in the Output window. Scalars are matrices that have only one
element. You define a scalar with the matrix name on the left-hand side and
its value on the right-hand side. You do not need to use braces when there
is only one element. A repetition factor can be placed in brackets before an
element. For example, the statement

d = {[2] 1, [2] 2};

creates the matrix

d =

µ
1 1
2 2

¶
If you use the same name for two matrices, the latest assignment in the
program overwrites the previous assignment.

C.1.2 Creating Matrices from SAS Data Sets

Sometimes you want to use data in a SAS data set to construct a matrix.
Before you can access the SAS data set from within IML, you must first
submit a use command to open it and make it the current data set for IML.
The general form of the use statement is

use SASdataset;

where SASdataset names some data set. This is the current data set until a
close command is issued to close the SAS data set. The form of the close
statement is
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close SASdataset ;

where SASdataset names the data set.
Transferring data from a SAS data set, after it has been opened, to a

matrix is done using the read statement. The general form of the read
statement is

read <range><var operand> <where(expression)> <into name>;

where range specifies a range of observations, operand selects a set of vari-
ables, expression is a logical expression that is true or false, and name names
a target matrix for the data.
The read statement with the var clause is used to read variables from the

current SAS data set into column vectors of the var clause. Each variable in
the var clause becomes a column vector. For example, the following program

data one;
input x y z;
cards;
1 2 3
4 5 6
proc iml;
use one;
read all var {x y} into a;

creates a data set called one containing two observations and three variables,
x, y, and z. Then IML creates the 2× 2 matrix

a =

µ
1 2
4 5

¶
from all the observations in this data set using variables x and y.
The following commands create the matrix

b =
¡
1 2

¢
by selecting only the observations where z = 3.

proc iml;
use one;
read all var {x y} into b where (z = 3);

If you want all variables to be used, use var_all_.
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C.1.3 Creating Matrices from Text Files

Use the infile and input statements to read the contents of a text file into
a SAS data set. Then invoke proc iml and use this data set to create the
matrix as in section C.1.2. For example, if the file c:\stuff.txt has contents
1 2 3
4 5 6

then the statements

data one;
infile ’c:\stuff’;
input x1 - x3;
proc iml;
use one;
read all var {x1 x2} into a;

create the matrix

a =

µ
1 2
4 5

¶
from the data in the file. The closefile statement, with the file pathname
specified, closes files opened by an infile statement.

C.2 Outputting Matrices

C.2.1 Printing

As we have seen, the print statement writes a matrix in the Output window.
For example, if a matrix C has been created, then

print c;

writes c in the Output window. It is possible to print a matrix with specified
row and column headings. For example, if you have a 3×5 matrix, consisting
of three students’ marks for tests 1 through 5, then the statements

student = {student1 student2 student3};
test = {test1 test2 test3};
print results[rowname = student colname = test];
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prints out the matrix named results using the row names given in the
student vector and the column names given in the test vector. Note that
the print statement can also print a message in the Output window by
enclosing such a message in double quotes. Multiple matrices can be printed
with the same print statement by listing them with a space between them.

C.2.2 Creating SAS Data Sets from Matrices

A SAS data set can be created from a matrix using the create and append
statements. The columns of the matrix become the data set variables and
the rows of the matrix become the observations. For example, an n × m
matrix creates a SAS data set with m variables and n observations. Suppose
we have created an n× 5 matrix a in IML. The following statements
varnames = {x1 x2 x3 x4 x5};
create one from a [colname = varnames];
append from a;

create a SAS data set called one that has as its observations the n rows of
matrix a and variables x1,x2,x3,x4,x5, which label the columns. Any other
variable names could be used.

C.2.3 Writing Matrices to Text Files

Use the file and put commands to write a matrix into a text file. For
example, the program

proc iml;
file ’c:\stuff’;
do i = 1 to nrow(a);
do j = 1 to ncol(a);
y = a[i,j];
put y @;
end;
put;
end;

writes the matrix a into the file c:\stuff row by row. The closefile state-
ment, with the file pathname specified, closes files opened by a file statement.
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C.3 Matrix Operations

Matrices can be created from other matrices by performing operations on
matrices. These operations can be functions applied to single matrices, such
as, “take the square root of every element in the matrix” or “form the inverse
of a matrix,” or they can operate on several matrices to produce a new
matrix. Mathematical functions of a single real argument (see Appendix A
for a listing) operate on a matrix elementwise. Matrix functions operate on
the entire matrix. For example,

a = sqrt(b);

assigns the square root of each element of matrix b to the corresponding
element of matrix a, while the command

x = inv(y);

calls the inv function to compute the inverse of the y matrix and assign the
results to x.

C.3.1 Operators

There are three types of operators used in matrix expressions, or expressions
involving one or more matrices.

prefix operators are placed in front of operands; e.g., -a reverses the sign
of each element of a.

infix operators are placed between operands; e.g., a + b adds correspond-
ing elements of the two matrices.

postfix operators are placed after an operand; e.g., a‘ uses the transpose
operator ‘ to transpose a.

We define various matrix operators but first note here the order of prece-
dence among the operators. Subscripts, ‘, -(prefix), ##, and ** have the
highest priority, followed by *, #, <>, ><, /, and @, followed by + and −,
followed by || and //, and finally <, <=, >, >=, = and ˆ=. We recommend
using parentheses to prevent ambiguity. For example, a*(b+c) forms the
matrix b + c and then premultiplies this matrix by a. When a missing value
occurs in an operand, IML assigns a missing value to the result.
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Addition +

The statements:

a = {1 2, 3 4};
b = {1 1, 1 1};
c = a + b;

produce the matrix

c =

µ
2 3
4 5

¶
You can also use the addition operator to add a matrix and a scalar or two
scalars. When you add a matrix and a scalar, the scalar value is added to
each element of the matrix to produce a new matrix. (When a missing value
occurs in an operand, IML assigns a missing value for the corresponding
element in the result.)

Comparison

The comparison operators include <, >, <=, >=, ˆ= (not equal to). The
comparison operators compare two matrices element by element and produce
a new matrix that contains only zeros and ones. If an element comparison
is true, the corresponding element of the new matrix is 1. Otherwise, the
corresponding element is 0.

Concatenation ||
This operator produces a new matrix by horizontally joining two matrices.
The statements

a = {1 2, 4 5};
b = {0, 8};
c = a || b;

produce the matrix

c =

µ
1 2 0
4 5 8

¶
Concatenation, Vertical //

This operator produces a new matrix by vertically joining two matrices. The
format is the same as that of the horizontal operator.
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Direct (Kronecker) Product @

The direct product operator @ produces a new matrix that is the direct prod-
uct of two matrices. If we have two matrices called matrix1 and matrix2,
then the statement

matrix3 = matrix1 @ matrix2;

takes the direct product of the two matrices and calls it matrix3.

Division /

The division operator in the statement

c = a / b;

divides each element of the matrix a by the corresponding element of the
matrix b producing a matrix of quotients. You can also use this operator
to divide a matrix by a scalar. If either operand is a scalar, the operation
does the division for each element and the scalar value. Once again, when
a missing value occurs in an operand, IML assigns a missing value for the
corresponding element in the result.

Element Maximum <>

The operator <> in the statement

c = a <> b;

compares each element of a to the corresponding element of b. The larger of
the two values becomes the corresponding element of the new matrix. When
either argument is a scalar, the comparison is between each matrix element
and the scalar.

Element Minimum ><

This operator works similarly to the element maximum operator, but it se-
lects the smaller of two elements.

Multiplication, Elementwise #

This operator produces a new matrix whose elements are the products of the
corresponding elements of two matrices. For example, the statements
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a = {1 2, 3 4};
b = {9 8, 7 6};
c = a # b;

produce the matrix

c =

µ
9 16
21 24

¶
Multiplication, Matrix *

This operator performs matrix multiplication. The first matrix must have
the same number of columns as the second matrix has rows. The new matrix
has the same number of rows as the first matrix and the same number of
columns as the second matrix. For example, the statements

a = {1 2, 3 4};
b = {1 2};
c = b * a;

produce the matrix
c =

¡
7 10

¢
Power, elementwise ##

This operator creates a new matrix whose elements are the elements of the
first matrix specified raised to the power of the corresponding elements of the
second matrix specified. If one of the operands is a scalar, then the operation
takes the power for each element and the scalar value. The statements

a = {1 2 3};
b=a##3;

produce the matrix
b =

¡
1 8 27

¢
Power, matrix **

This operator raises a matrix to a power. The matrix must be square, and
the scalar power that the matrix is raised to must be an integer greater than
or equal to −1. The statements
a = {1 2, 1 1};
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b = a ** 2;

produce the matrix

b =

µ
3 4
2 3

¶
Note that this operator can produce the inverse of a matrix; a ** (-1) is
equivalent to inv(a).

Sign Reverse −
This operator produces a new matrix whose elements are formed by reversing
the sign of each element in a matrix. Amissing value is assigned if the element
is missing. The statements

a = {-1 2, 3 4};
b = -a;

produce the matrix

b =

µ
1 −2
−3 −4

¶
Subscripts [ ]

Subscripts are postfix operators, placed in square brackets [ ] after a matrix
operand, that select submatrices. They can be used to refer to a single
element of a matrix, refer to an entire row or column of a matrix, or refer to
any submatrix contained within a matrix. If we have a 3× 4 matrix x, then
the statements

x21 = x[2, 1];
print x21;

print the element of x in the second row and first column. The statements

firstrow = x[1,];
print firstrow;

print the first row of x, and the statements

firstcol = x[,1];
print firstcol;

print the first column of x. You refer to a submatrix by the specific rows
and columns you want. Include within the brackets the rows you want, a
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comma, and the columns you want. For example, if y is a 4× 6 matrix, then
the statements

submat = y[{1 3},{2 3 5}];
print submat;

print out a matrix called submat, consisting of the first and third rows of y
and the second, third, and fifth columns of y.

Subtraction -

This operator in the statement

c = a - b;

produces a new matrix whose elements are formed by subtracting the cor-
responding elements of the second specified matrix from those of the first
specified matrix. You can also use the subtraction operator to subtract a
matrix and a scalar. If either argument is a scalar, the operation is per-
formed by using the scalar against each element of the matrix argument.

Transpose ‘

The transpose operator ‘ exchanges the rows and columns of a matrix. The
statements

a = {1 2, 3 4, 5 6};
b = a‘;

produce the matrix

b =

µ
1 3 5
2 4 6

¶

C.3.2 Matrix-generating Functions

Matrix-generating functions are functions that generate useful matrices.

block

The block function creates a block-diagonal matrix from the argument ma-
trices. For example if a and b are matrices then

c=block(a,b);
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is the matrix

c =

µ
A 0
0 B

¶

design

The design function creates a design matrix from a column vector. Each
unique value of the vector generates a column of the design matrix. This col-
umn contains ones in elements whose corresponding elements in the vector
are the current value; it contains zeros elsewhere. For example, the state-
ments

a = {1, 1, 2, 3};
a = design (a);

produce the design matrix

a =


1 0 0
1 0 0
0 1 0
0 0 1


i

The i function creates an identity matrix of a given size. For example,

Ident = i(4);

creates a 4× 4 identity matrix named Ident.

Index operator :

Using the index operator : creates index vectors. For example, the statement

r = 1:5;

produces an index vector r

r =
¡
1 2 3 4 5

¢
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j

The j function creates a matrix of a given dimension. This function has
the general form j(nrow, ncol, value), and it creates a matrix having nrow
rows, ncol columns and all element values are equal to value. The ncol and
value arguments are optional, but you will usually want to specify them. The
statement

a = j(1, 5, 1);

creates a 1× 5 row vector of 1’s.

C.3.3 Matrix Inquiry Functions

Matrix inquiry functions return information about a matrix.

all

The all function is used when a condition is to be evaluated in a matrix
expression. The resulting matrix is a matrix of 0’s, 1’s, and possibly missing
values. If all values of the result matrix are nonzero and nonmissing, the
condition is true; if any element in the resulting matrix is 0, the condition is
false.

any

The any function returns a value of 1 if any of the elements of the argument
matrix are nonzero and a value of 0 if all of the elements of the matrix are
zeros.

loc

The loc function creates a 1×n row vector, where n is the number of nonzero
elements in the argument. Missing values are treated as zeros. The values
in the resulting row vector are the locations of the nonzero elements in the
argument. For example,

a = {1 2 0, 0 3 4};
b = loc(a);

produce the row vector
b =

¡
1 2 5 6

¢
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ncol

The ncol function provides the number of columns of a given matrix.

nrow

The nrow function provides the number of rows of a given matrix.

C.3.4 Summary Functions

Summary functions return summary statistics on the matrix.

max

Themax function produces a single numeric value that is the largest element
in all arguments. There can be as many as 15 argument matrices.

min

The min function returns a scalar that is the smallest element in all argu-
ments.

ssq

The ssq function returns a scalar containing the sum of squares for all the
elements of all arguments. The statements

a = {1 2 3, 4 5 6};
x = ssq(a);

result in x having a value of 91.

sum

The sum function returns a scalar that is the sum of all elements in all
arguments.

C.3.5 Matrix Arithmetic Functions

Matrix arithmetic functions perform matrix algebraic operations on the ma-
trix.
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cusum

The cusum function returns a matrix of the same dimension as the argument
matrix. The result contains the cumulative sums obtained by scanning the
argument and summing in row-major order. For example,

b = cusum({5 6, 3 4});

produces the matrix

b =

µ
5 11
14 18

¶
hdir

The hdir function has the general form hdir(matrix1, matrix2 ). This func-
tion performs a direct product on all rows ofmatrix1 andmatrix2 and creates
a new matrix by stacking these row vectors into a matrix. The arguments,
matrix1 and matrix2 must contain the same number of rows. The resulting
matrix has the same number of rows as matrix1 and matrix2, and the num-
ber of columns is equal to the product of the number of columns in matrix1
and matrix2.

trace

The trace function returns the trace of the matrix. That is, it sums the
diagonal elements of a matrix. The statement

a = trace({5 2, 1 3});

produces the result
a = 8

C.3.6 Matrix Reshaping Functions

Matrix reshaping functions manipulate the matrix and produce a reshaped
matrix.

diag

The diag function returns a diagonal matrix whose diagonal elements are the
same as those of the matrix argument, and all elements not on the diagonal
are zeroes.



232 Appendix C

insert

The insert function inserts one matrix inside another matrix. This function
takes the form insert(x, y, row, column), where x is the target matrix, y is
the matrix to be inserted into the target matrix, row is the row where the
insertion is to be made, and column is the column where the insertion is to
be made. For example, the statements

a = {1 2, 3 4};
b = {5 6, 7 8};
c = insert(a, b, 2, 0);

produce the matrix

c =


1 2
5 6
7 8
3 4


rowcat

The rowcat function returns a one-column matrix with all row elements
concatenated into a single string. This function has the form rowcat(matrix,
rows, columns) where rows select the rows of the matrix and columns select
the columns of the matrix.

t

The t function returns the transpose of the argument matrix. It is equivalent
to the transpose postfix operator ‘. This function has the form t(matrix).

vecdiag

The vecdiag function returns a column vector containing the diagonal el-
ements of the argument matrix. The matrix must be square to use this
function.

C.3.7 Linear Algebra and Statistical Functions

Linear algebra and statistical functions perform algebraic functions on the
matrix.
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covlag

The covlag function computes a sequence of lagged cross-product matrices.
This function is useful for computing sample autocovariance sequences for
scalar or vector time series.

det

The det function computes the determinant of a square matrix. This func-
tion has the form det(matrix).

echelon

The echelon function uses elementary row operations to reduce a matrix to
row-echelon normal form.

eigval

The eigval function returns a column vector of the eigenvalues of a matrix.
The eigenvalues are arranged in descending order. The function has the form
eigval(matrix), where matrix is a symmetric matrix.

eigvec

The eigvec function returns a matrix containing eigenvectors of a matrix.
The columns of the resulting matrix are the eigenvectors. The function has
the form eigvec(matrix), where matrix is a symmetric matrix.

fft

The fft function performs the finite Fourier transform.

ginv

The ginv function returns the matrix that is the generalized inverse of the
argument matrix. This function has the form ginv(matrix), where matrix is
a numeric matrix or literal.
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hankel

The hankel function generates a Hankel matrix. This function has the form
hankel(matrix), where matrix is a numeric matrix.

hermite

The hermite function uses elementary row operations to reduce a matrix
to Hermite normal form. For square matrices, this normal form is upper-
triangular and idempotent. If the argument is square and nonsingular, the
result is the identity matrix. This function has the form hermite(matrix).

homogen

The homogen function solves the homogeneous system of linear equations
AX = 0 for X. This function has the form homogen(matrix), where matrix
is a numeric matrix.

ifft

The ifft function computes the inverse finite Fourier transform.

inv

The inv function produces a matrix that is the inverse of the argument
matrix. This function has the form inv(matrix), where matrix is a square,
nonsingular matrix.

polyroot

The polyroot function finds zeros of a real polynomial and returns a matrix
of roots. This function has the form polyroot(vector), where vector is an n×
1 (or 1×n) vector containing the coefficients of an (n−1) degree polynomial
with the coefficients arranged in order of decreasing powers. The polyroot
function returns an (n−1)×2 matrix containing the roots of the polynomial.
The first column of the matrix contains the real part of the complex roots
and the second column contains the imaginary part. If a root is real, the
imaginary part will be 0.
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rank

The rank function ranks the elements of a matrix and returns a matrix whose
elements are the ranks of the corresponding elements of the argument matrix.
The ranks of tied values are assigned arbitrarily rather than averaged. For
example, the statements

a = {2 2 1 0 5};
b = rank(a);

produce the vector

b =
¡
3 4 2 1 5

¢
ranktie

The ranktie function ranks the elements of a matrix using tie-averaging, and
returns a matrix whose elements are the ranks of the corresponding elements
of the argument matrix. For example, the statements

a = {2 2 1 0 5};
b = ranktie(a);

produce the vector

b =
¡
3.5 3.5 2 1 5

¢
root

The root function performs the Cholesky decomposition of a matrix and
returns an upper triangular matrix. This function has the form root(matrix),
where matrix is a positive-definite matrix.

solve

The solve function solves the set of linear equations AX = B for X. This
function has the form solve(A,B), where A is an n × n nonsingular matrix
and B is an n× p matrix. The statement x = solve(a,b); is equivalent to
the statement x = inv(a)*b; but the solve function is recommended over
the inv function because it is more efficient and accurate.
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sweep

The sweep function has the form sweep(matrix, index-vector). The sweep
function sweeps matrix on the pivots indicated in index-vector to produce a
new matrix. The values of the index-vector must be less than or equal to the
number of rows or the number of columns in matrix, whichever is smaller.

toeplitz

The toeplitz function generates a Toeplitz matrix. This function has the
form toeplitz(A), where A is a matrix.

C.4 Call Statements

Call statements invoke a subroutine to perform calculations, or operations.
They are often used in place of functions when the operation returns multiple
results. The general form of the call statement is

call subroutine (arguments);

where arguments can be matrix names, matrix literals, or expressions. If you
specify several arguments, use commas to separate them.

armacov

The armacov call statement computes an autocovariance sequence for an
ARMA model.

armalik

The armalik call statement computes the log likelihood and residuals for an
ARMA model.

eigen

The eigen call statement has the form call eigen(eigenvalues, eigenvec-
tors, symmetric-matrix);, where eigenvalues names a matrix to contain the
eigenvalues of the input matrix, eigenvectors names a matrix to contain the
eigenvectors of the input matrix, and symmetric-matrix is a symmetric, nu-
meric matrix. The eigen subroutine computes eigenvalues, a column vector
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containing the eigenvalues of the argument matrix, in descending order. It
also computes eigenvectors, a matrix containing the orthonormal column
eigenvectors of the argument matrix, arranged so that the first column of
eigenvectors is the eigenvector corresponding to the largest eigenvalue, and
so on.

geneig

The geneig call statement computes eigenvalues and eigenvectors of the
generalized eigenproblem. It has the form call geneig(eigenvalues, eigen-
vectors, symmetric-matrix1, symmetric-matrix2);, where eigenvalues is a re-
turned vector containing the eigenvalues, eigenvectors is a returned matrix
containing the corresponding eigenvectors, symmetric-matrix1 is a symmet-
ric numeric matrix, and symmetric-matrix2 is a positive definite matrix. The
statement

call geneig (m, e, a, b);

computes eigenvalues M and eigenvectors E of the generalized eigenproblem

AE = BE diag(M)

gsorth

The gsorth call statement computes the Gram-Schmidt factorization. It has
the form call gsorth(Q,R, lindep, A), where A is anm×n input matrix with
m ≥ n, Q is an m × n column orthonormal output matrix, R is an upper
triangular n× n output matrix, and lindep is an output flag with a value of
0 if columns of A are independent and a value of 1 if they are dependent.
The gsorth subroutine computes the column-orthonormal m × n matrix Q
and the upper-triangular n× n matrix R such that

A = QR

ipf

The ipf call statement performs an iterative proportional fit of the marginal
totals of a contingency table.

lp

The lp call statement solves the linear programming problem.
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svd

The svd call statement computes the singular value decomposition. It has the
form call svd(U,Q, V,A);, where U,Q and V are the returned decomposition
matrices, and A is the input matrix that is decomposed. The svd subroutine
decomposes a real m × n matrix A(where m is greater than or equal to n)
into the form

A = U diag(Q)V ‘.

C.5 Control Statements

IML is a programming language. It has many features that allow you to
control the path of execution through the statements.

abort and stop

The abort statement stops execution and exits from IML. If there are ad-
ditional procedures in the SAS program, they will be executed. The stop
statement stops execution but it does not cause an exit from IML.

if-then-else

The general form of the if-then-else statement is

if expression then statement1 ;
else statement2 ;

where expression is a logical expression and statement1 and statement2 are
executable IML statements. The truth value of the if expression is evaluated
first. If expression is true then statement1 is executed and statement2 is
ignored. If expression is false, then statement2 in the else statement, if
else is present, is executed. Otherwise, the next statement after the if-then
statement is executed. For example,

if max(a)<20 then p=0;
else p=1;

determines whether the largest value in the matrix a is less than 20. If it is,
then p is set to 0. Otherwise, p is set to 1.
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do

The do statement specifies that the statements following the do statement
are executed as a group until a matching end statement appears. These
statements group statements as a unit. The do statement is always accom-
panied by a corresponding end statement and would appear in a program
as

do;
statements
end;

where statements consists of a set of IML statements.
Often do statements appear in if-then-else statements, where they des-

ignate groups of statements to be performed when the if condition is true or
false. For example, in

if x=y then;
do;
i=i+1;
print x;
end;
print y;

the statements between the do and the end statements are performed only if
x=y. If this is not the case, then the statements in the do group are skipped
and the next statement is executed.
Statements between the do and the end statements can be executed

repetitively when the do group has the form

do variable = start to stop <by increment>;

where variable is the name of a variable indexing the loop, start is the starting
value for the looping variable, stop is the stopping value for the looping
variable, and increment is an increment value. The start, stop, and increment
values should be scalars. The variable is given a new value at the end of each
repetition of the group. It starts with the start value and is incremented by
the increment value after each iteration. The iterations continue as long as
the variable is less than or equal to the stop value. The statements

do i=1 to 5 by 2;
print i;
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end;

produce the output

1
3
5

The until expression makes the conditional execution of a set of state-
ments possible. This occurs in one of the forms

do until(expression);
do variable = start to stop <by increment> until(expression);

where expression is a logical expression whose truth value is evaluated at
the bottom of the loop, variable is the name of the variable indexing the
loop, start is the starting value for the looping variable, and increment is the
increment value for variable. In the statements

x=1;
do until (x > 100);
x+1;
end;
print x;

the body of the loop executes until the value of x exceeds 100 so that the
value x=101 is printed.
Using a while expression also makes possible the conditional execution

of a set of statements iteratively. This occurs in one of the forms

do while(expression);
do variable = start to stop <by increment> while(expression);

where expression is a logical expression whose truth value is evaluated at
the top of the loop and variable, start, stop, and increment are as previously
described. The while expression is evaluated at the top of the loop, and
the statements inside the loop are executed repeatedly as long as expression
yields a nonzero or nonmissing value. The statements

x=1;
do while (x<100);
x=x + 1;
end;
print x;
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start with x=1 and add 1 to x until x=100 and then this value is printed.

goto and link

During normal execution, statements are executed one after another. The
goto and link statements instruct IML to jump from one part of a program
to another. The place to which execution jumps is identified by a label,
which is a name followed by a colon placed before an executable statement.
You can program a jump by using either the goto statement or the link
statement. These take the form

goto label ;
link label ;

where label appears elsewhere in the program followed by a colon. Both the
goto and link statements instruct IML to jump immediately to the labeled
statement. However, the link statement reminds IML where it jumped from
so that execution can be returned there if a return statement is encountered.
The link statement provides a way of calling sections of code as if they were
subroutines. The link statement calls the routine. The routine begins with
the label and ends with a return statement. Note that the goto and link
statements must be located within a do group or module (see the following
discussion). Below are examples of the goto and link statements within do
groups. The statements

do;
if x <0 then goto negative;
y=sqrt(x);
print y;
stop;
negative:
print ’’Sorry,X is negative’’;
end;

cause an error message to be printed if we try to take the square root of a
negative number. And the statements

do;
if x < 0 then link negative;
y = sqrt(x);
print y;
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stop;
negative:
print ’’Using Abs. value of negative X’’;
x = abs(x);
return;
end;

compute the square root of a nonnegative number and the absolute value of
any negative number.

C.6 Modules

Modules are used for creating a group of statements that can be invoked as
a unit from anywhere in the program, that is, these statements constitute a
subroutine or function. A module always begins with the start statement
and ends with the finish statement. If a module returns a single parameter,
then it is called a function and it is executed as if it were a built-in IML
function. Otherwise, a module is called a subroutine, and you execute the
module with either the run statement or the call statement. Of course,
modules must appear in the program before they are used.
To write a function module, include a return statement that assigns the

returned value to a variable. This statement is necessary for a module to be
a function. The following statements

start add(x,y);
sum = x+y;
return(sum);
finish;

define a function called add for adding two arguments and assigns the re-
turned value to a variable called sum.
The statements

start mymod(a, b, c);
a = sqrt (c);
b = log (c);
finish;

define a module named mymod that returns matrices containing the square
root and log of each element of the argument matrix c. The subsequent
statement



PROC IML 243

run mymod (s, l, x);

causes the module mymod to be executed. Execution of the module statements
creates matrices s and l, containing the square roots and logs, respectively,
of the elements of x.
The pause statement stops execution of the module and remembers

where it stopped executing. It can be used to prompt a user for input.
A resume statement allows you to continue execution at the place where
the most recent pause statement was executed.

C.7 Simulations Within IML

All the random number functions are available in IML, so we can write pro-
grams in IML to do simulations. This is convenient when we want to run
a simulation where a substantial amount of the computation involves linear
algebra. For example, the program

proc iml;
seed = 1267824;
Z = J(10, 3, 1);
do i = 1 to 10;
do j = 1 to 3;
Z[i,j] = rannor(seed);
end;
end;

generates a 3×10 matrix Z containing independent N(0, 1) values. Note that
we must first create a matrix Z before we can assign a value to any element
of it. This is the role of the Z = J(3,10,1) statement. This statement
must come before any other do loops if we want to repeatedly generate such
matrices.
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Appendix D

Advanced Statistical Methods
in SAS

This manual covers many of the features available in SAS but there are a
number of other useful techniques, while not relevant to an elementary course,
are extremely useful in a variety of contexts. The material in this manual is
good preparation for using the more advanced techniques.
We list here some of the more advanced methods available in SAS and

refer the reader to references 3 and 4 in Appendix E for details.

General linear model and general ANOVA
Variance components and mixed models
MANOVA
Principal components
Factor analysis
Discriminant analysis
Cluster analysis
Nonlinear least-squares analysis
Time series analysis
Quality control tools
Survival analysis
Design of experiments
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abort, 239
all, 229
any, 229
append, 221
arithmetic expression, 17
arithmetic operators, 17, 207
armacov, 237
armalik, 237
array, 213
arrays, 213
ascending order, 38
assignment statement, 16
axis, 64, 67

balanced data, 173
bar charts, 60
binomial distribution, 114
block, 228
block charts, 60
Bonferonni t tests, 175
boxplot, 60
boxplots from proc gplot, 78
boxplots, side by side, 185
by, 38, 53
by group processing, 40

call statements, 236
cards, 10
character variables, 16
chi-square distribution, 131
chi-square test, 153

class, 53
class variables, 170
close, 219
closefile, 220
column output, 28
comments, 13
comparison operators, 17, 208
concatenation operator, 208
control charts, 115
correlation coefficient, 78
correlation matrix, 81
coverage probability, 128
covlag, 233
create, 221
cross tabulation, 88
cumulative distribution, 46
cusum, 231

data, 53
data step, 13
datalines, 10
delimiter, 23
density curve of the N(µ, σ), 67
descending, 39
descending order, 38
design, 228
det, 233
diag, 232
dim, 213
direct product, 224
display manager window, 5
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distribution-free methods, 139, 189
do-until, 35
do while, in IML, 241
do-end, 34
do-end until, 35
do-end while, 35
do-end, in IML, 239
do-until, in IML, 240
do-while, 35
drop, 21
Duncan’s multiple range test, 176

echelon, 233
eigen, 237
eigenvalues, 237
eigval, 233
eigvec, 234
empirical distribution function, 46,

49

F distribution, 143
family error rate, 175
fft, 234
file, 29
Fisher’s LSD, 175
format, 28
formats, 28
formatted input, 24
formatted output, 28
freq, 59
freq, 53
frequency, 46

gamma function, 131
geneigen, 237
generalized eigenvalues, 237
ginv, 234
goto, 33
goto, in IML, 241

Gram-Schmidt factorization, 238
grouped informat lists, 25
grouping, 46
gsorth, 238

hankel, 234
hbar, 61
hbound, 214
hdir, 231
help, 7
hermite, 234
high-resolution plots, 66
histogram, 62
homogen, 234

i, 228
if-then-else, 32
if-then-else, in IML, 239
ifft, 234
IML, 217
index operator :, 229
individual error rate, 175
infile, 23
infix operators, 222
informat, 24
informat, 26
input, 18
insert, 232
interleaving data sets, 20
interpol, 78
inv, 235
ipf, 238
iterative do, 34
iterative proportional fit, 238

j, 229

keep, 21
Kronecker product, 224
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Kruskal-Wallis test, 193

lbound, 214
libname, 22, 30
linear origramming, 238
link, in IML, 241
list, 28
list input, 23
list output, 28
loc, 230
log odds, 198
log window, 5
logical expression, 17
logical operators, 17, 208
logistic regression, 197
logit link function, 197
lostcard, 26
lp, 238

Mann-Whitney statistic, 191
master data set, 32
matched pairs design, 138
matrices in IML, 217
matrix addition, 223
matrix comparisons, 223
matrix division, 224
matrix elementwise multiplication,

225
matrix elementwise power, 225
matrix horizontal concatenation, 223
matrix maximum, 224
matrix minimum, 225
matrix multiplication, 225
matrix operators, 222
matrix power, 226
matrix subscripts, 226
matrix subtraction, 227
matrix transpose, 227

matrix vertical concatenation, 224
max, in IML, 230
maximum operator, 208
menu bar, 5
menu commands, 4
merge, 20
midpoints, 64
miltiple regression, 167
min, in IML, 230
minimum operator, 208
missing, 16
missing, 26
model, 84
modules, 242

ncol, 230
noncentral chi-square distribution,

179
noncentral F distribution, 179
noncentral Student distribution, 139
nonpaprametric analyses, 189
nonparametric, 139
nonparametric methods, 189
noprint, 49, 56
normal, 59
normal probability plot, 60
normal quantile plot, 69
notsorted, 40
nrow, 230
numeric variables, 16
nway, 55

odds, 198
one-to-one merging, 21
one-way ANOVA model, 173
operator priority, 208
operators, 17, 207
options, 51
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output, 28
output, 29, 54
output window, 7

p-th percentile, 68
pad, 24
pchart, 118
Pearson correlation coefficient, 80
pie charts, 60
plot, 59
pointer, 23
polyroot, 235
population distribution, 100
postfix operators, 222
power, 128
predicted, 85
prefix operators, 222
print, in IML, 220
priority of operators, 17
probability functions, 210
probit, 69
probit link function, 198
probnorm, 68
proc, 9
proc anova, 170
proc chart, 60
proc contents, 31
proc corr, 79
proc freq, 46, 87
proc gchart, 67
proc glm, 170
proc gplot, 77
proc iml, 217
proc logistic, 197
proc means, 51
proc npar1way, 189
proc plan, 98
proc plot, 75

proc print, 37
proc reg, 83
proc shewhart, 115
proc sort, 38
proc tabulate, 91
proc timeplot, 65
proc ttest, 141
proc univariate, 56
program editor window, 5
put, 27

random number functions, 212
random permutations, 98
range list, 16
rank, 235
ranktie, 235
read, 219
recoding, 213
proc reg, 159
relative frequency, 46
rename, 21
repeated sampling, 100
residual, 85
retain, 106
return, 33
root, 236
rowcat, 232
run, 11

sampling from distributions, 100
sampling without replacement, 98
SAS constants, 15
SAS data set, 14
SAS expression, 17
SAS functions, 17, 209
SAS name, 14
SAS statements, 9
SAS system viewer, 13
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SAS variables, 16
SAS/Graph, 66
SAS/QC, 115
scatterplot, 73
Scheffe’s multiple comparison pro-

cedure, 176
select-otherwise, 36
sequential analysis of variance, 171
set, 19
sign test, 139
simple do, 34
simulation, 107
simulations for confidence intervals,

126
simulations, in IML, 244
singular value decomposition, 238
solve, 236
special functions, 210
spectral decomposition, 237
ssq, in IML, 230
standard error of the estimate, 108
standardize, 68
standardized residuals, 161
statistical functions, 211
stem-and-leaf plot, 60
stop, 33
stop, in IML, 239
storage, 22
Student distribution, 135
studentized residuals, 161
subsetting if, 20
sum, in IML, 231
svd, 238
sweep, 236
symbol, 77

t confidence interval, 136
t test, 137

proc freq, 153
tables, 48
task bar, 5
title, 51
toeplitz, 236
trace, 231
transactions data set, 32
trignometric functions, 210
truncation functions, 209
Tukey’s studentized range test, 176
two-sample t confidence interval, 141
two-sample t test, 141
two-sample z confidence interval, 140
two-sample z test, 140
two-way ANOVA model, 181
Type I Sums of Squares, 171
Type III of Sums of Squares, 171

update, 31
use, 218

value, 78
var, 53
vbar, 61
vecdiag, 233

weight, 54
weight, 49
weighted correlation coefficient, 81
Wilcoxon rank sum statistic, 191
Wilcoxon rank sum test, 190
Wilcoxon signed rank statistic, 192

xbar chart, 116

z confidence interval, 124
z test, 125


