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Abstract

In this paper the notion of derivations on I'-generalized Boolean semiring are established, namely I'-(f, g) derivation and
I'-(f, g) generalized derivation. We also investigate the commutativity of prime I'-generalized Boolean semiring admitting
I'-(f, g) derivation and I'-(f, g) generalized derivation satisfying some conditions.
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1. Introduction

There has been a great deal of work concerning commutativity of prime rings and prime near rings with derivations or
generalized derivations satisfying certain differential identity (Ali, 2012; Asci, 2007; Bell, 2012; Rehman, 2011; Quadri,
2003). The notion of semiring was first introduced by H.S. Vandiver (Vandiver, 1934) in 1934 and a generalization of
semiring, [-semiring was first studied by M.K. Rao (Rao, 1995).

In 1987, H.E. Bell and G. Mason (Bell & Mason, 1987) introduced derivations on I'-near rings and studied some basic
properties. The concept of I'-derivations in I'-near ring was introduced by Jun, Kim and Cho (Jun, 2003). Then Asci(Asci,
2007) investigated some commutativity conditions for I'-near rings with derivations. Kazaz and Alkan (Kazaz & Alkan,
2008) introduced the notion of two-side I'-@ derivation of I'-near rings and investigated some commutativity of prime
and semiprime I'-near rings. In 2011, the notion of derivations in prime I'-semiring was introduced by M.A. Javed et al
(Javed et al, 2013). In 2013, K.K. Dey and A.C. Paul (Dey & Paul, 2013) studied on generalized derivations of prime
gamma ring. Later in 2014, M.R. Khan and M.M. Hasnain (Khan & Hasnain, 2014) introduced the notion of generalized
I'-derivation in I'-near rings and investigated some basic properties.

In this paper, we introduce the notion of I'-(f, g) derivations and I'-(f, g) generalized derivations on I'-generalized Boolean
semirings, and investigate some related properties. We also investigate some commutativity results for I'-generalized
Boolean semiring involving I'-(f, g) derivation and I'-(f, g) generalized derivation.

2. Preliminaries
We first recall some definitions and prove lemmas use in proving our main results.

A T'-generalized Boolean semiring (or simply ['-GB-semiring) is a triple (R, +,I), where
(1) (R, +) is an abelian group.

(2) T is a nonempty finite set of binary operations satisfying the following properties
(i) aab e Rforalla,be Randa €T,
(i) aa(b + ¢) = aab + aac forall a,b,c e Rand a € T,
(iii) aa(bBc) = (aab)Bc = (baa)Bc for all a,b,c € Rand a,B €T,
(iv) aa(bBc) = aB(bac) for all a,b,c e Rand a,B € T.

The following are some basic properties on I'-GB-semiring then the proof is straightforward and hence omitted. For any
a,b,c € Rand a € I', we have

@) —(-a) =a,

(i) a0 = 0,

(>iii) aa(=b) = —(aab),

@iv) aa(b — ¢) = (aab) — (aac),
v) —(a+b)=—-a-b,
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(vi)—(a—b)=—-a+b,

(vii) —(aa(b + ¢)) = —(aab) — (aac),

(viii) —(aa(b — ¢)) = —(aab) + (aac).

A nonempty subset [ of R is said to be a I'-ideal of R if

(1) (1, +) is a subgroup of (R, +),

@) raaelforallre R,acel,anda €T (i.e. RTI C 1),
B)(r+a)as—raselforallr,se R,ael,anda €.

An automorphism f on R is a I'T-isomorphism from R onto R if
(D) fla+Db) = f(a) + f(b),

(2) f(aab) = f(a)af(b) foralla,b € Rand @ €T

R is a prime I'-GB-semiring if xI'RTy = {0} for all x,y € R,then x =0 ory = 0.

For any x,y € R and @ € T, the symbol [x, y], will represent the commutator xay — yax and the symbol (x o y), stands for
skew-commutator xay + yax.

Next, the following are some basic properties of commutator and skew-commutator. The proofs of these properties are
straightforward and hence omitted.

@) [xay, zlg = xaly, zlg = yalx, zlp + zaly, xlg,

(ii) [x, yazlg = yalx, zlg = zalx,y]p + xaly, zlg,

(iii) (x o yaz)s = ya(x o 2)g = za(x 0 y)g + xaly, zlg,
(iv) (xay o 2)g = xa(y o 2)g = ya(x o 2)g + za[x, yls.
The center of R, written Z(R), is defined to be the set

Z(R) = {a € Rlaab = baa for all b € R and a € T’}

Next, we start with following lemmas which will be used extensively.
Lemma 2.1. Let R be a I'-GB-semiring. If x € Z(R) then yax € Z(R) and xay € Z(R) forallye Rand o €T.
Proof. Let x € Z(R),y,z € R, and @ € I'. Then

(yax)Bz = xa(yBz) = (Bz)ax = zB(yax) for all B € I'. So yax € Z(R). Since x € Z(R), xay = yax € Z(R). This completes
the proof.

Lemma 2.2. Let R be a prime I'-GB-semiring such that Oca = a for alla € R and @ € I" and let I # {0} be a I'-ideal of R.
Then for any x,y € R

(1) If xI'1 = {0}, then x = 0.
(ii) If IT'x = {0}, then x = 0.
(@iii) If xT'ITy = {0}, then x =0 or y = 0.

Proof. (i) Let x € R be such that xI'T = {0}. Since I # {0}, there exists nonzero z in I. We have xI'RT’z C xI'I = {0} and so
xI'RT’z = {0}. Since R is prime and z # 0, it follows that x = 0.

(ii) Let x € R be such that ITx = {0}. Since I # {0}, there exists nonzero z in I and since z87 = (0 + z)Br — 0Br € [ for all
reRandB e, zZI'R C I. We have zI'R['x C IT'x = {0} and so zI'RT'x = {0}. Since R is prime and z # 0, it follows that x =
0

(iii) Let x,y € R be such that xI'ITy = {0}. Then xI'RT'IT’y C xI'ITy = {0} and so xI'RTITy = {0}. Since R is prime, it
follows that x = 0 or IT'y = {0}. By (ii) we get y = 0.

Lemma 2.3. Let R be a prime I'-GB-semiring and A be a nonzero function from R into R. Then A(x) € Z(R) for all x € R
if and only if R is commutative.

Proof. If R is commutative, then it is obvious that A(x) € Z(R) for all x € R. Suppose that A(x) € Z(R) for all x € R. By
Lemma 2.1, we have A(x)ay € Z(R) for all y € R and a € I'. It follows that [A(x)ay,t]g =0 forall 7, x,y € Rand o, 8 € T

To show that R is commutative, let x,y € R and @ € R. Since A is a nonzero function on R, there exists z € R such that
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A(z) # 0. For any r € R and 8,y € I" we have

A(@)Bry[x, ylo = [AR)B(tyx), ¥]a = 0. So, A()TRI[x, ylo = {0}.

Since R is prime and A(z) # 0, [x, y], = 0. It follows that xay = yax. Thus R is commutative. This completes the proof.
Lemma 2.4. Let R be a prime I'-GB-semiring and A be a nonzero function from R into R.

If [A(x), ¥]e € Z(R) or (A(x) 0 y), € Z(R) for all x,y € R and « € I" then R is commutative.

Proof. First, assume that [A(x),yl, € Z(R) for all x,y € R and a € I'. Then we have [[A(x),Y]q,f]g = O for all # € R and
B € T'. Replacing y by A(z)yy, we obtain [[A(x), A(z)yyle,tlg =0 forall t,x,y,z € Rand @, B,y € I'. Then

[AX), ¥]oY[A@), tlg = [AX), yloY[AQ), Ll + 1Y[[A(X), Y]as A = [A(R)Y[AX), ylastlg = 0. for all #,x,y,z € R and
a,B,yel.

Now to show that R is commutative, let x,y € R and @ € I'. We obtain

[AG), VBV TAG), Yo = [AG), 1oBIAM), 1yyle = 0, for all £ € R and B,y € T
So [A(x), yI.T'RTTA(x), y], = {0}. Since R is prime, [A(x),y], = 0.

It follows that A(x) € Z(R). By Lemma 2.3, we get required result.

Next, assume that (A(x) o y), € Z(R) for all x,y € R and a € I'. Then we have [(A(x) 0 y)q,t]g =0forallt € Rand 5 € T.
Replacing y by A(z)yy, we obtain

[(A(x) 0 A(R)YY)qa, tlg =0 forall ¢, x,y,z € Rand @, 8,y € I'. Then

[A(2), tlgy(A(x) © y)o = (A(X) 0 y)aY[A2), tlg + tY[(A(X) © y)a, A(2)]g = [AR)Y(A(X) © Y)a, tlg = [(A(X) © A2)YY)astlg =0
forall¢,x,y,z € Rand a, B8,y € I'. Replacing y by yow, we get [A(z), tlgy(A(x) o yow), = 0 for all w € Rand ¢ € I'. Then

Ax)Y[A®R), 1oLy, wle = [AQ), tlgy A(X)S[y, wle = [A(2), tlgy(WO(A(X) 0 y)o + A(x)6y, wle) = [A(2), tlgy(A(x) 0 yow), = 0
for all w,t,x,y,z€ Rand a,B,v,6 €T.

Now to show R is commutative, let x,y € R and @ € I'. We obtain

A@)Bty[A(x), y]oOlsmy, x]o = ADBIA(X), y]oY[t0(sTy), x]o =0forall 5,7,z € Rand 8,9, m € I'. So A(2)T RT'[A(x), y].0[smy, x]a
= {0}. Since A # 0, there exists z € R such that A(z) # 0 and R is prime, [A(x),y],0[sny, x], = 0. And we have
[A(x), y]o0smly, x]o = 0. So [A(x), ][RI [y, x], = {0}. Since R is prime, [A(x),y], = 0 or [y, x], = 0.

If [A(x), y], = 0. It follows that A(x) € Z(R) by Lemma 2.3, R is commutative.
If [y, x], = 0, R is commutative. This completes the proof.

Lemma 2.5. Let R be a prime I'-GB-semiring and { be an automorphism on R. If there exists a nonzero z in R such that
7BL[x,y]a =0 o0r z8{(x o y), =0 for all x,y € Rand ,8 € I'. Then R is commutative.

Proof. Case 1 Assume that there exists a nonzero z in R such that z5{[x, y], = 0 for all x,y € R and «,8 € I'. Then for any
t,x,y € Rand a,f,y € I, we have

PL@)yLIx, ylo = 7BL(ty[x, y]o) = 7Lty x, ylo =0 forallz € Rand B,y €T
Since ¢ is surjective, zZI'RT'{[x, y], = 0. Since R is prime and z # 0, {[x,y], =0

Since £(0) = 0 and ¢ is injective, [x, y], = 0, it follows that R is commutative.

Case 2 Assume that there exists a nonzero z in R such that z8{[x, y], = O for all x,y € R and @, € I'. Similarly to case 1,
we have

PLOYLLx, Yo = LDV Yo + 0 = 2B YELx, YIa + 2BEGE(x © Do = ZBLY(x © Do + ty1X, Y]a) = 2BL(xyy 0 D)o = 0,
for all t € R and B,y € I'. We use the same argument in the proof of case 1, we conclude that R is commutative. This
completes the proof.

3. Derivations on I'-Generalized Boolean Semirings

In this section we establish derivations on I'- generalized Boolean semiring and investigate some results satisfying certain
identities involving these derivations.

Definition 3.1. Let R be a [-GB-semiring and let f and g be automorphisms on R. An additive mapping d : R — R is
called a I'-(f, g) derivation

d(xay) = f(x)ad(y) + d(x)ag(y) for all x,y e Rand @ € T.
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An additive mapping D : R — R is called a left (resp. right) I'-(f, g) generalized derivation if there exists nonzero I'-(f, g)
derivation d on R satisfiying

D(xay) = f(x)ad(y) + D(x)ag(y) (resp. D(xay) = f(x)aD(y) + d(x)ag(y))

forall x,ye Randa €T.

Lemma 3.2. Let R be a I'-GB-semiring and D be a left I'-(f, g) generalized derivation on R. Then
[f(ad(y) + D(x)ag(y)]Bg(z) = f(xad(y)Bg(z) + D(x)ag(y)Bg(2).

Proof. Let x,y,z € Rand a,8 € T, we have
D((xay)Bz) = [f(xay)Bd(z)+ D(xaz)Bg(z)
Saf(y)Bd(z) + (f(x)ad(y) + D(x)ag(y)Bg(z) and
S(0)ad(yBz) + D(x)ag(yBz)
fa(f(nBd(z) + d(y)Bg(z)) + D(x)ag(y)Bg(z)
fOaf(Pd(z) + f(Dad(y)Bg(z) + D(x)ag(y)Bg(2).
Since D((xay)Bz) = D(xa(yBz)),
(f(x)ad(y) + D(x)ag(y)Bg(z) = f(x)ad(y)Bg(z) + D(x)ag(y)Bg(z). This completes the proof.

Corollary 3.3. Let R be a '-GB-semiring. Let d be a I'-(f, g) derivation on R and f, g be automorphisms on R. Then

[f(ad(y) + d(x)ag(y)]Bg(z) = f(ad(y)Bg(z) + d(x)ag(y)Bg(z).

Lemma 3.4. Let R be a prime ['-GB-semiring. Let D be a nonzero I'-(f, g) generalized derivation on R and f, g be
automorphisms on R. If f(x)ad(y) + D(x)ag(y) € Z(R) for all x,y € R and « € I" then R is commutative.

D(xa(yBz))

4. Commutativity of I'-generalized Boolean Semirings

In this section, we show that I'-generalized Boolean semiring with derivations satisfying certain conditions are commuta-
tive.

Theorem 4.1. Let R be a prime ['-GB-semiring and let f, g be automorphisms on R. If d is a nonzero I'-(f, g) derivation
on R satisfying any one of the following

@ [d(x), gW]a = [f(0), 8W)]a>

@i1) d[x, yle = [f(x), §DW)]as

(i) (d(x) 0 g()a = (f(x) © 8o

(iv) d(x 0 y)o = (f(x) © g(¥))a;

(M) d(xoy)a = [f(x), g]a

(vi) d[x,yla = (f(x) © g())as

for all x,y € R and a € I". Then R is commutative.

Proof. (i) Assume that [d(x), g(»)]s = [f(x), ()], forall x,y € R and a € T'. Replacing x by zBx, we obtain [d(z8x), g(})]«
= [f(z8x), ()], for all x,y,z € R and o, 8 € . Then

d(zBx)ag(y) — g(y)ad(zBx) [f(zBx), g«
f(@)pd(x)ag(y) +d(2)Bg(x)ag(y) — g(af(2)Bd(x) — g(y)ad(z)Bg(x) J@BL (%), g))]a
J@PBLd(x), gM]a + dBIEX). gW]e = [RIBL(X), gD]a
d(2)Bg[x, yla 0.

Since d # 0, there exists z € R such that d(z) # 0. By Lemma 2.5, it follows that R is commutative.

The proof of (ii) - (vi) are obtained similarly to that of (i).

Theorem 4.2. Let R be a prime [-GB-semiring and f, g be automorphisms on R. If d is a nonzero I'-(f, g) derivation on
R such that

@) [d(x), ylo € Z(R), or
(i) (d(x) 0 y)a € Z(R),
for all x,y € R and a € I'. Then R is commutative.

Proof. This follows directly from Lemma 2.4.
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Theorem 4.3. Let R be a prime [-GB-semiring such that Owa = 0 for all @ € R and @ € T'. Let d be a nonzero I'-(f, f)
derivation on R where f is a nonzero automorphism on R. If

(1) d[x, Ve = [d(x), f(y)]a, or
(i) d(x 0 y)o = (d(x) © f())as
for all x,y € R and a € I'". Then R is commutative.

Proof. (i) Assume that d[x,y], = [d(x), f(¥)], for all x,y € R and @ € I'. Replacing x by z8x, we obtain d[z8x,y], =
[d(z8x), f(¥)], for all x,y,z € Rand a,B € I'. Then

d((zBx)ay — ya(zBx))
f(@Bx)ad(y) + d(zBx)a f(y) — f(y)ad(zpx) — d(y)af(z5x)
S@BLf(x), d(Y)]a

Hence f(z)B[f(x),d(y)], =0 for all x,y,z€ Rand a,B €T.

To show that R is commutative, let x,y € R and @ € I. Since f # 0, there exists z € R such that f(z) # 0. We have
J@BFOyLf(x),dW)]e = f(2)BLf(tyx),d(y)]e =0 forallz € Rand B,y €T.

Since f is surjective, f()[ RU[f(x), d(y)], = {0}.

Since R is prime and f(z) # O, [f(x),d(®)]s = 0.

And since f is surjective on R, d(y) € Z(R). By Lemma 2.3, it follows that R is commutative.

d(ZBx)af(y) = f(y)ad(zBx)
d(ZBx)a f(y) = f(y)ad(zBx)
0.

(ii) Using similar techniques as above, we obtain f(z)B8(f(x) o d(y)), =0 forall x,y,z€ Rand o, €T.
To show R is commutative, let x,y € R and a € T". Since f # 0, there exists z € R such that f(z) # 0. We have

F@BFOy(f(x) 0 d(y))a = f(2)B(f(tyx) 0 d(y))e =0 forallz € Rand B,y €T
Since f is surjective, f(2)IRT(f(x) o d(y))o = {0}

Since R is prime and f(z) # 0, (f(x) o d(¥)), =0 € Z(R) .

By Theorem 4.2(ii), it follows that R is commutative. This completes the proof.

Theorem 4.4. Let R be a nonzero prime I['-GB-semiring such that Oca =0 for alla € Rand @ € I"and f, g be automorphism
on R. Let D be a left I'-(f, g) generalized derivation on R satisfying

@ [D(x), gW]e = [f(%), §0)]a Or

(i1) (D(x) © g()a = (f(x) © g(1))as

for all x,y € R and a € T. If there exists 0 # z € R such that D(z) = 0, then R is commutative.

Proof. (i) Assume that [D(x), g(0)]. = [f(x),g(y)], forall x,y € Rand a € T.

Replacing x by z8x we obtain [D(z8x), g(y)]. = [f(z8x), g()].. For each x,y,z € Rand «,8 € " we have

D(zBx)ag(y) — g(y)aD(zpx) [f@Bf(x), g

(f(@)Bd(x) + D(x)Bg(x)ag(y) — g(a(f(2)Bd(x) + D(x)Bg(x)) F@BLF(X), g)]a
f(@Bd(x)ag(y) + D(x)Bg(x)ag(y) — gaf(2)Bd(x) — g(»)aD(x)Bg(x) F@BL(x), gW)]a

f@Bld(x), g]a + D(2)BIE(x), 8)]a f(z)ﬁ F(x),80)]a

S@Bd(x), g]e — [f(x), 8D)]a) + D(2)BL8(x), g

Hence f(2)B([d(x), g0)]o — [f (), g)]e) + D(2)Blg(x), g()]e = O forall x,y,z € Rand @, B € T.

To show R is commutative, let x,y € R and @ € I'. Since there exists 0 # z € R such that D(z) = 0, we have

S@Bg0y(d(x), g)]a — [f(x), 8(M)]a) f(@)B(gDyld(x), g)]a — &OyYLf(x), g()]a)
f@Bd(x), gty]e — Lf(x), gtyy)]a)
fBd(x), gtyy)la — [f(x), 8(tyy)]la)
+D(2)Blg(x), g(tyy)la

0

Thus f(2)Bg)y([d(x), gM)]e — [f(x),g()]e) =0 forallz,x,y,z € Rand a,B,y €.

Since g is surjective, f(z)['RI([d(x), g()]e — [f(x), g0)]a) =
Since f is injective, f(z) # 0. And R is prime, we have [d(x),g(y)]a - [f(x),g(]. = 0.
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Thus [d(x), gD)]e = [f(x),g()], for all x,y € Rand @ € T.
By Theorem 4.1(i), it follows that R is commutative.

(i1) Using similar techniques as above, we obtain

J@B(d(x) © g(¥))a = (f(x) © g)a) + D(2)B(8(x) © g(¥))o = O forall x,y,z € Rand @, B € T

To show R is commutative, let x,y € R and @ € I'. Since there exists 0 # z € R such that D(z) = 0, we have

S@BgOy((d(x) o g))e — (f(X) 0 8(M))a) = [f(2)BEDY(A(x) 0 g(¥)a — DY(f(X) 0 g(¥))a)
f(z)ﬁ((d(x) © g(WY))a - (f(X) © g(W}’))a)
= f(0Bd(x) o gltyy))e — (f(x) 0 g(tyy))e)
+D(z)B(g(x) o g(tyy))a
=0
Thus f(z)Bg(1)y((d(x) 0 g(¥)e — (f(x) 0 g(¥))e) =0 forall ¢, x,y,z € Rand @, B,y € T

The same argument in the proof of (i) and by Theorem 4.1(iii) we conclude that R is commutative. This completes the
proof.

Theorem 4.5. Let R be a prime I'-GB-semiring and f, g be automorphisms on R. Let D be a right I'-(f, g) generalized
derivation on R satisfying any one of the following

@) DIx, ylo = [f(0), §O)]a>

(i) D(x 0 y)o = (f(x) © §(¥))as

(iii) D(x 0 y)a = [f(x), §W)]as

(iv) D[x, ylo = (f(x) © g(1))as

for all x,y € R and @ € I'. Then R is commutative.

Proof. (i) Assume that D[x,y], = [f(x),g(y)], for all x,y € R and a € T". Replacing x by z8x, we obtain D[z8x,y], =
[f(z8x), g(»)]e. Foreach x,y,z € Rand a,8 € I we have

D(Blx.yle) = [f(2)Bf(x), g0)]a

Jf(@)BDLx, ylo + d(2)Bg[x, yla J@BL (%), 8W)]a
J@BMDLx,ylo = [f(x), gW)]a) + d(2)Bgx.y]e = O
d(@)Bglx.yla = 0.

To show that R is commutative, let x,y € R and @ € I'. Since d # 0, there exists z € R such that d(z) # 0, we have
d(z)Bglx,y], = 0. By Lemma 2.5, it follows that R is commutative.

The proof of (ii) - (iv) are obtained similarly to that of (i).

Theorem 4.6 Let R be a prime I['-GB-semiring and f, g be automorphisms on R. Let D be a nonzero left (resp. right)
I'-(f, g) generalized derivation on R such that

@ [D(x),yla € Z(R), or

(i) (D(x) © y)a € Z(R),

for all x,y € R and @ € I". Then R is commutative.
Proof. This follows directly from Lemma 2.4.

Theorem 4.7. Let R be a prime I'-GB-semiring such that Oaa = O for all a € R and @ € I'. Let f be a nonzero
automorphism on R. If D is a left ['-(f, f) generalized derivation on R such that

@) DIx, yla = [D(x), f()]a, OF

(i) D(x © y)o = (D(x) © f(}))a>

for all x,y € R and @ € I'. Then R is commutative.

Proof. (i) Assume that D[x, y], = [D(x), f(y)], forall x,y e Rand @ € T’
Replacing x by z8x, we obtain D[z8x, y], = [D(z8x), f(V)]a-

For each x,y,z € Rand a,8 € T, we have
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D(z8[x,yle) = D(gBx)af(y) — f()aD(z8x)
f@BdIx,ylo + D@)BS1x,¥]a d(zBx)a f(y) — f(y)aD(zBx)

F@Bf(ad(y)+f(2)Bdx)af(y)-f(@)Bf(ad(x)-f(2Bdy)af(x)+D@Bf(xX)af(y)-D@)Bfaf(x) = f(2)Bd(x)af(y)+
D@)Bf()af(y) = faf(2)Bd(x) - f(»aD)Bf(x)

so, f(2)BLf(x),d(y)] =0 forall x,y,ze Rand a,B €T.

To show that R is commutative, let x,y € R and @ € I'. Since f # 0, there exists z € R such that f(z) # 0, we have
F@BFOyLf (), dW]e = f(@)BLf(tyx),d(y)lo =0forallz € Rand B,y €T

Since f is surjective, f()I'RI[f(x),d(y)], = 0.

Since R is prime and f(z) # 0, [f(x),d(y)], = 0.

Since f is surjective, d(y) € Z(R). By Lemma 2.3, it follows that R is commutative.

(i1) Using similar techniques as above, we have, f(z)B(f(x) o d(y)), =0 for all x,y,z € Rand o,5 €T.
To show R is commutative, let x,y € R and a € I'. Since f # 0, there exists z € R such that f(z) # 0, we have
J@BFOy(f(x) o d(y)a = f(2)B(f(tyx) 0 d(y))e =0 forallze Rand B,y €

Since f is surjective, f(2)TRT(f(x) o d(¥))q = 0.

Since R is prime and f(z) # 0, (f(x) o d(y)), = 0 € Z(R).

By Theorem 4.2(ii), it follows that R is commutative. This completes the proof.
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