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Abstract

This thesis is concerned with the development of distributed optimization methods with
adaptive step-size control and event-triggered communication, where the focus is on
convex optimization problems with either nonseparable objective function but separa-
ble constraints or separable objective function but couplings in the constraints.
Regarding a practice related application of the developed algorithms, it is shown how
the convex direct current optimal power flow (DC-OPF) problem can be solved distribut-
edly with event-triggered and local communication in a multi-agent network. Moreover,
the combined application with a decomposition technique for linear matrix inequalities
is described which enables to distributedly solve a semidefinite dual of the nonconvex al-
ternating current optimal power flow (AC-OPF) problem with (close to) local and event-
triggered communication.

Numerical results for these applications confirm the good properties of the developed al-
gorithms and show that event-triggered communication yields a considerable reduction

of the information exchange in the optimization process.

Zusammenfassung

Diese Dissertation befasst sich mit der Entwicklung von verteilten Optimierungsverfah-
ren mit adaptiver Schrittweitensteuerung und ereignisbasierter Kommunikation fiir kon-
vexe Optimierungsprobleme, in denen entweder eine nicht separable Zielfunktion durch
separable Nebenbedingungen beschrankt ist oder eine separable Zielfunktion mit gekop-
pelten Nebenbedingungen betrachtet wird.

Hinsichtlich einer praxisbezogenen Anwendung der entwickelten Algorithmen wird ge-
zeigt, wie das konvexe DC-OPF Problem mit ereignisbasierter und lokaler Kommunika-
tion verteilt in einem Multi-Agentensystem gelost werden kann. Dartiiberhinaus wird die
kombinierte Anwendung mit einer Dekompositionstechnik fiir lineare Matrixungleichen
beschrieben, die es ermoglicht ein semidefinites duales Problem des nichtkonvexen AC-
OPF Problems mit (fast) lokaler und ereignisbasierter Kommunikation zu losen.

Die numerischen Ergebnisse zu diesen Anwendungen belegen die guten Eigenschaften
der entwickelten Algorithmen und zeigen, dass ereignisbasierte Kommunikation im Op-

timierungsprozess zu einer deutlichen Reduzierung des Informationsaustauschs fiihrt.
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Abbreviations

AC-OPF alternating current optimal power flow
ANA adaptive Nesterov-Algorithm

CcC consensus communication

CVv constraint violation

DANA distributed adaptive Nesterov-Algorithm

DANA-EC  distributed adaptive Nesterov-Algorithm with event-
triggered communication
DAPCA-EC distributed adaptive proximal center algorithm with event-

triggered communication

DC dual communication
DC-OPF direct current optimal power flow
DNA distributed Nesterov-Algorithm

DNA-EC distributed Nesterov-Algorithm with event-triggered com-
munication

DPCA-EC  distributed proximal center algorithm with event-triggered

communication
IDG information dependency graph
Li-Up Ly-updates
LMI linear matrix inequality
MCTpA maximal computation time per agent
NA Nesterov-Algorithm
NoCI number of consensus iterations
Nol number of iterations
PCA proximal center algorithm
PG primal gap
SDP semidefinite programming
Ssu step-size updates

TC total communication
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Notations

XxY

XY
Tr(X)
XeY
X1l
Re{X}
Im{X}

set of real numbers

set of complex numbers

set of nonnegative real numbers

closed subset of R

open subset of R

real vector space of dimension m
complex vector space of dimension m
subset of the vectors in IR™ with nonnegative components
set of symmetric n x n matrices

set positive semidefinite n X n matrices
Cartesian product of the sets X and Y
cardinality of the set X

transpose of X € C"*"

conjugate transpose of X € C"*"

X —Y € R"" is positive semidefinite
trace of X € C"*"

Frobenius product of X,Y € C"*"
Frobenius norm of X € C**"

real part of X € C"*"

imaginary part of X € C"*"

iii



iv

cos(x)
sin(x)
exp(x), e
f(xy)
Vf(x)

of
axi

Viif(X)
of (X)
f'(x)
O(f(x))

subblock [ of x € R™ with m; <m

either concatenation of x € R™ and y € R" to (xT,y")T €

R™*" or row vector for x,y € R (clear from the context)
1-norm of x € R”

Euclidean norm (2-norm) of x € R™

maximum norm of x € R™

standard Euclidean scalar product of x,y € R"
component-wise projection of x € R onto R

1-norm of x € R

smallest upper integer of x € R

cosine at x € R

sinus at x € R

exponential function at x € C

function value of f at (x7,y")T) € R"™*"
gradient of f at x € R"™

partial derivative of f w.r.t x; € R
partial derivative of f w.r.t X;; € R

set of subgradients of f w.r.t X € R™*"
derivative of f w.rtx € R

asymptotically bounded from above by f









1 Introduction

Distributed optimization is a relatively young topic in the optimization literature and re-
ceives growing attention as there is a need to find solutions for optimization problems re-
lated to large-scale networks which become increasingly important in an interconnected
and globalized world.

A good overview of network optimization problems and relevant literature can be found
in [Lem10, sec. 1.6] and to give a few examples, estimation problems are for instance
network problems, where the nodes of the network are sensors that locally measure a
disturbed signal which is then globally estimated by the collaboration of neighbored sen-
sors (e.g. [SFJ06, SBGO7]). An example for an application is target tracking, where the
location of multiple targets is estimated by a comparatively small number of navigation
satellites (for details see [SBGO7]).

Another class of problems is referred to as network utility maximization (e.g. [LL99,
PC06, NOOQ9]), where in its basic form the nodes of the network represent sources that
want to transmit data via a predetermined set of lines in the network at a rate that max-
imizes their utility. As the transmission capacities are limited and the lines are shared
among the sources, the allocation of the permitted transmission rates is done in a way
that the overall utility is maximized. A practical application is the TCP congestion con-
trol of the data transmission via the internet (for related literature see [PC06, [Lem1Q]).
Finally, the network optimization problem, that is focused on in the numerical part of
this thesis, is the problem of finding the minimal cost of real power generation in an
electrical power system which is a network that connects power generating units and
loads via branches (e.g. transmission lines). For the determination of the optimal real
power generation, constraints such as a balanced power flow within the network, lim-
its on the power generation, and limits on the power flow at the branches have to be
considered and the resulting optimization problem is referred to as alternating current
optimal power flow (AC-OPF) problem (e.g. [KB00, LL12, LZT12, DZG13]) or in its sim-
plified and linearized version as direct current optimal power flow (DC-OPF) problem
(e.g. [BBO3| JDROS, WL10]).
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The size and the spatial distribution of large-scale networks make the usage of cen-
tralized optimization methods obsolete, especially in the case of privacy concerns (e.g.
[JDR0O8, DUAH12, DMUH14a, DMUHI15]), where the subsystems in the network do not
want to share sensitive data and information with a central processor. To give an ex-
ample, in a power system network this sensitive data might be the cost of power pro-
duction as nowadays the power generating units belong to competitive power suppliers
(see section[£.1). Accordingly, in this respect the amount of produced power at a power
generating unit might be a sensitive information. Another aspect is the availability of
information in the optimization process that might not be given centrally as in wireless
sensor networks according to [NOQ9, sec. 1.1]. Finally, regardless of whether the consid-
ered optimization problem is related to a large-scale network or not, a parallelization of
the computations in an optimization process is obviously favorable with respect to the
complexity (for a comprehensive work on parallel computation see [BT89].

For this reasons, the goal in distributed optimization is to design optimization methods
that can be implemented in parallel by a number of agents (processors) placed at the
nodes of the network for a distributed computation of an optimal solution to a network
related problem, where each agent controls only a subblock of the optimization variable.
Generally, the agents need to exchange the iterates of their subblocks in the optimization
process in order to approach an optimal solution as they have no access to the optimiza-
tion variable as a whole. Regarding this information exchange, it is desirable that the
distributed algorithm is designed in a way that an agent does not need to communicate
with every other agent in the optimization process, and in the favorable case that the
communication topology of the multi-agent network coincides with the topology of the
considered large-scale network, the information exchange is referred to as being local.
Moreover, a large communication traffic is undesirable especially for capacity limited
wireless communication networks [WL10]. To this end, event-triggered communication
finds application in distributed optimization (e.g. [WL09a, WL09b, ZC10, WL10]), where
the agents use outdated information of other agents which is allowed to differ to a certain
extent from the up to date information. This extent is determined by a given threshold
that adjusts to the stage of the optimization process and thereby guarantees its conver-
gence.

Regarding the design of a distributed algorithm, the structure of the considered network
problem is crucial. Except for the AC-OPF problem which is nonconvex, the above
mentioned problems share in their basic form a separable structure, where a convex
(or concave) objective function is separable with respect to a partition of the optimiza-

tion variable into disjoint subblocks and constrained by nonseparable linear (in)equality



constraints that, however, can be decoupled by forming the corresponding Lagrangian
which is a classical approach in distributed optimization, called dual decomposition (e.g.
[LL99, PC06, ISBG07, NOQ9]). The Lagrangian is then separable with respect to the sub-
blocks of the primal optimization variable in the same way as the objective function of the
primal problem and this separability confers to the corresponding dual objective function
which at worst is constrained by nonnegativity constraints. In other words, the dual func-
tion can be evaluated at given feasible dual multipliers by minimizing (or maximizing)
the Lagrangian with respect to the primal subblocks in parallel, and moreover, the dual
optimal function value coincides with the optimal primal function value under mild as-
sumptions due the convexity (or concavity) of the primal problem and the linearity of the
constraints (details are given in section [3.1).

Finally, the concave (or convex) dual function is continuously differentiable if the La-
grangian is minimized uniquely for any given feasible dual multipliers which is for in-
stance the case if the primal objective function is strictly convex. Then, a first order al-
gorithm (a (projected) gradient scheme or an accelerated first order method) can be ap-
plied to maximize (or minimize) the dual objective function in a distributed manner (e.g.
[LL99, PC06, DMUH14a, DMUHI15]). However, if the primal objective function is only
convex, a subgradient scheme can be applied to the dual problem (e.g. [PCO06, [SBG07,
NOQ9]) or the primal objective function can be regularized with strongly convex func-
tions, yielding a smooth augmented dual objective function (e.g. [Nes05, NSO8]).

In this context, the proximal center algorithm (PCA) by Necoara and Suykens [NS08] (see
section[3.1) is an efficient dual decomposition method that is designed for the application
to convex problems with a separable convex objective function and dually decompos-
able linear constraints as described above. The authors of [NSO8|] apply a smoothing
technique from [Nes05], where the primal convex objective function is regularized with
(strongly convex) prox-functions that maintain its separability, yielding a continuously
differentiable dual augmented function that has the same separability features as the
dual function. Moreover, the augmented dual function has a Lipschitz continuous gra-
dient which allows the application of an optimal first order scheme by Nesterov [Nes05]
(see section2.1) and explains the efficiency of the PCA whose speed of convergence to the
optimal primal objective function value is in the order of O(1/k), where k is the number
of iterations, whereas the convergence speed of a subgradient scheme is in the order of
O(1/vk) according to [NS08].

Nesterov’s optimal first order method from [Nes05] is designed for convex optimization
problems, where a continuously differentiable convex objective function with Lipschitz

continuous gradient is constrained by a closed and convex subset of a real vector space.
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It is optimal in the way that its speed of convergence to the optimal objective function
value is of the order O(L/ kz), where L is the Lipschitz constant, whereas the conver-
gence speed of an applied gradient projection algorithm would be of the order O(1/k)
according to [Nes05]].

In this work, both algorithms are enhanced with an adaptive step-size control and event-

triggered communication, maintaining their efficiency (see chapter 2| & [3).

1.1 OQutline of this work

In chapter 2} we present an adaptive accelerated distributed gradient scheme with event-
triggered communication which is based on Nesterov’s optimal first order method from
[Nes05].

To this end, section 2.1 contains an introduction to Nesterov’s method which is designed
for convex optimization problems, where a continuously differentiable convex objective
function with Lipschitz continuous gradient is constrained by a closed and convex sub-
set of a real vector space. Nesterov’s algorithm basically consists in each iteration of
two simple strongly convex subproblems that contain only first order information which
yields that the algorithm in all is suitable for a parallel implementation in a multi-agent
network under mild assumptions such as the separability of the constraint set (see sec-
tion[2.2). We show how this distributed version can be enhanced with event-triggered
communication by introducing, similarly to [WL10, ZC10], outdated versions of the sub-
blocks of the optimization variable that are used by the agents in the optimization process
to compute their subblock of the gradient. The resulting distributed Nesterov-Algorithm
with event-triggered communication (DNA-EC) inherits the convergence speed of the or-
der O (L/k?) as well as the simple structure of the subproblems that are slightly modified
compared to their origins in order to handle the error due to event-triggered communi-
cation in the proof of convergence (see section[2.2).

In a next step, we enhance the DNA-EC by an adaptive step-size control to further accel-
erate the convergence of the algorithm. To this end, we firstly equip Nesterov’s algorithm
with an adaptive step-size control which is based on the work of Nesterov in [Nes13] and
the observation that the first subproblem in Nesterov’s algorithm is a projected gradient
step with step size 1/L which suggests to use instead step-sizes of the from 1/L; for
Ly < L in each iteration (see section2.3).

Secondly, we modify this step-size control in a way that it can be implemented in paral-
lel by using a consensus technique that is widely used in distributed optimization (e.g.
[SFJ06,ICCW10, DUAH12]) and is described in section
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Finally, these features are combined in the distributed adaptive Nesterov-Algorithm with
event-triggered communication (DANA-EC) that is presented together with the proofs of

convergence for different versions of it in section[2.5|

In chapter 3| we enhance the proximal center algorithm (PCA) by Necoara and Suykens
[NS08] with event-triggered communication and an adaptive step-size control by using
the results of chapter 2}

To this end, section contains an introduction to the PCA which is designed for the
application to convex problems with a separable convex objective function and nonsepa-
rable linear (in)equality constraints as described above.

In section we improve the convergence result for the PCA from [NS08] (see sec-
tion [3.1), where the number of iterations that is required to achieve a desired quality of
the approximate solution depends, i.a., on the Lipschitz constant of the gradient of the
augmented dual function. We show for a certain class of prox-functions that the Lips-
chitz constant can be analytically minimized with respect to the convexity parameters
of these prox-functions in order to reduce the number of iterations and moreover, that
it is possible to determine the analytical solutions of the optimal convexity parameters
distributedly by the application of the consensus technique described in section We
further improve the convergence result of the PCA by proposing a scaling technique that
provides an additional degree of freedom in the bounds on the quality of the approxi-
mate solution.

In section 3.2} we enhance the PCA by applying the developed DANA-EC instead of Nes-
terov’s scheme to maximize the dual augmented function which results in the distributed
adaptive proximal center algorithm with event-triggered communication (DAPCA-EC).
Finally, we give two convergence results in this section which differ in the choice of prox-
functions and the boundedness of the dual feasible set, however, in both cases we main-
tain the complexity of the PCA with O(1/k) iterations.

To prepare the application of the DAPCA-EC to distributedly (and with event-triggered
communication) solve network problems that arise in a power system network, we es-
tablish in detail the models of the nonconvex alternating current optimal power flow
(AC-OPF) problem as well as the convex direct current optimal power flow (DC-OPF)
problem in chapter

As mentioned above, we refer to the AC-OPF problem as the problem of finding the
minimal cost of real power generation subject to constraints such as the power balance

equations, real power generation limits, and limits on the power flow at the branches (e.g.
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transmission lines) (see section. As the AC-OPF problem is nonconvex, its simplified
linearization, the DC-OPF problem, is considered in practice if only the amount and cost
of real power production is of interest (see section[4.5).

For a better understanding of the model that underlies these problems, an introduction to
the structure of a power system and some important components is given in section
where we as well justify why it could be favorable to solve these optimization problems
in a distributed manner. Moreover, technical terms such as the phasor representations of
current and voltage as well as the definitions of real, reactive, and apparent power are
introduced in section |4.2| to prepare the derivation of the power balance equations (see
section that relate the difference of the produced and consumed power to the power

flowing in the network.

In chapter 5, we show how the DAPCA-EC can be applied to solve the DC-OPF problem
and the AC-OPF problem distributedly and with event-triggered communication.

In section we dually decompose the DC-OPF problem whose separable structure
allows to directly apply the DAPCA-EC after the regularization of the real power gener-
ation cost function. We determine the Lipschitz constant as well as the partial derivatives
of the augmented dual function and explicitly state the DAPCA-EC for this problem as
it can be implemented. Moreover, we discuss in detail that the communication of the
agents in the optimization process is fully local in the sense that it is sufficient for the
agents to use the branches of the power system network for the information exchange
with direct neighbors that are placed at the buses (nodes) of the power system. Finally,
we show that the subproblems in each iteration of the DAPCA-EC applied to solve the
DC-OPF problem have analytical solutions, superseding the need of solvers in the opti-
mization process.

To prepare the application of the DAPCA-EC to solve the AC-OPF problem in parallel
and with event-triggered communication, we show in section[5.2lhow a semidefinite op-
timization problem, where a separable and convex objective function is constrained by
a linear matrix inequality (LMI), can be solved distributedly by the DAPCA-EC. As the
LMI introduces a dual matrix multiplier in dual decomposition that would require global
information exchange among the agents, we apply the range-space conversion method
from Kim et al. [KKMY11] which relates to semidefinite matrix completion and enables
us to restate the LMI in a way that the dually decomposed problem can be solved dis-
tributedly by the DAPCA-EC with local communication if the sparsity structure of the
LMI is chordal and coincides with the topology of the multi-agent network. However,

for the case that this assumption is not satisfied, we show that the information exchange
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can be carried out almost locally by finding the minimal chordal extension of the graph
that represents the sparsity structure of the LMI. Finally, we determine the Lipschitz con-
stant as well as the partial derivatives of the augmented dual function and explicitly state
the DAPCA-EC applied to solve this class of semidefinite optimization problems in par-
allel and with event-triggered communication. We discuss in detail the communication
topology of the agents and give analytical solutions for the subproblems that have to be
solved in each iteration of the DAPCA-EC and partially are semidefinite problems them-
selves.

In section we consider the semidefinite dual of the AC-OPF problem as derived by
Lavaei and Low in [LL10, [LL12]. This dual is an LMI-constrained optimization problem
with separable and linear objective function whose optimum coincides with the opti-
mum of the nonconvex AC-OPF problem under assumptions that are usually satisfied in
practice as shown by the authors. Specifying the results from section we apply the
range-space conversion method to restate the LMI and solve the dual AC-OPF problem
by the application of the DAPCA-EC which is explicitly stated and can be implemented
by the agents with local information exchange if the considered power network is chordal
(e.g. distribution network) or with close to local communication if the considered power
system network is not chordal (e.g. transmission network) as will be discussed. Last but
not least, we proof nontrivial analytical solutions to the subproblems in the DAPCA-EC
applied to solve the dual of the AC-OPF problem and show how an approximate solution
of the AC-OPF problem can be derived distributedly from the computed approximate so-

lutions of its dual.

Finally, the numerical results for the application of different versions of the DAPCA-EC
to the DC-OPF problem and the dual of the AC-OPF problem are presented in chapter
6l For the numerical investigation we used the data of benchmark IEEE test cases that
represent portions of the American Electric Power System in the Midwestern US with 14,
30, and 57 buses (nodes).

In section we discuss the choice of different parameters for the DAPCA-EC such as
the threshold that determines the event-triggered communication and the start values
as well as the update parameters for the adaptive step-size control. Moreover, we show
how the scaling technique derived in section[3.1.1is applied.

In sections|6.2{and the numerical results for the IEEE 57 bus test case are exemplarily
discussed and compactly summarized for the DC-OPF problem and the dual of the AC-
OPF problem by the means of several tables that contain exhaustive data obtained by the

following way of investigation:
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In the first step, the PCA is compared with the DPCA-EC (DAPCA-EC without adaptive
step-size control) to find out to what extent the information exchange can be reduced
by event-triggered communication for a fixed number of iterations (given by the con-
vergence result for the PCA in section to achieve a predetermined accuracy of the
approximate solution. We anticipate that for this setting event-triggered communication
leads to considerable savings with respect to the information exchange.

Moreover, the comparison is repeated with a stopping-criterion for the primal gap and
the constraint violation at the approximate solution in each iteration of the DPCA-EC,
to firstly investigate the tightness of the convergence result for the PCA in section
and to secondly find out if there is a trade-off between the communication savings due
to the usage of event-triggered communication and the necessary number of iterations
to obtain a certain quality of the approximate solution. Remarkably, the results for this
test setting show that the number of iterations and thereby the information exchange can
be reduced by the application of the DPCA-EC (compared to the PCA) for a sufficiently
tight threshold despite the inaccuracy that is introduced by the usage of event-triggered
communication into the optimization process.

In the second step, the same stopping criterion is used to investigate how the adaptive
step-size strategy in the DAPCA-EC helps to reduce the number of iterations compared
to the DPCA-EC and it appears that the iterations can be reduced by up to four fifths. Fur-
thermore, the impact of event-triggered communication in combination with the adap-
tive step-size strategy is studied and the results show that the overall communication
can be crucially reduced if the threshold is tight enough. Finally, as the consensus tech-
nique for the distributed implementation of the adaptive step-size strategy is in all very
time and information consuming if it is executed in each iteration of the DAPCA-EC, we
propose several heuristics that execute the step-size update (and thereby the consensus
technique) only sporadically to reduce the information exchange as well as the compu-
tation time, keeping the good results of the DAPCA-EC with respect to the number of
iterations and the communication savings.

Similar results for the 14 and 30 bus test cases can be found in the appendix[7]
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Parts of this thesis are already published or in preparation for publication:

In [MUA14] (Meinel, Ulbrich, and Albrecht), we presented the distributed Nesterov-
Algorithm with event-triggered communication (DNA-EC), as well as the distributed
proximal center algorithm with event-triggered communication (DPCA-EC). We gave
convergence results for both and improved the accuracy estimates of the proximal center
algorithm by the application of a scaling technique as well as optimal convexity parame-
ters (or alternatively optimal scaling parameters). Moreover, we numerically investigated
the impact of event-triggered communication by the application of the DPCA-EC to DC-
OPF problem:s.

The preprint [MU14] (Meinel and Ulbrich) is in preparation for publication and contains
the enhancement of the DNA-EC and the DPCA-EC with the adaptive step-size control
that can be implemented distributedly by a consensus technique, yielding the DANA-EC
as well as the DAPCA-EC. Moreover, it contains how the LMI-constrained convex prob-
lem with separable structure can be solved distributedly by the D(A)PCA-EC to prepare
the application to the dual AC-OPF problem. Finally, the numerical results that show the
impact of the adaptive step-size strategy and event-triggered communication are part of

this preprint.
Further publications that are closely related to parts of this thesis:

In [DMUH14a, sec. 4] (Deroo, Meinel, Ulbrich, and Hirche) as well as [DMUH15, 3.3]
(Deroo, Meinel, Ulbrich, and Hirche), we applied the range-space conversion method
in combination with dual decomposition to solve an LMI-constrained strongly convex

stability related problem with a distributed version of the proximal center algorithm in
parallel (for details see section[5.2).
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1 Introduction



2 Distributed first order method with event-tiggering

In this chapter, an optimal first order scheme by Nesterov (NA is presented in sec-
tion 2.1 which is suitable for parallel implementation in a multi-agent network as shown
in section where the algorithm is additionally enhanced by event-triggered commu-
nication, yielding the distributed Nesterov-Algorithm with event-triggered communica-
tion (DNA-EC[2.2.5).

To accelerate the convergence speed of the DNA-EC[2.2.5} the algorithm is modified by an
adaptive step-size control in sections[2.3]-[2.5 yielding the distributed adaptive Nesterov-
Algorithm with event-triggered communication (DANA-EC[2.5.T). This is done firstly by
modifying the Nesterov-Algorithm[2.1.3]in section[2.3) resulting in the adaptive Nesterov-
Algorithm (ANA2.3.2). Secondly, in section [2.4]it is shown how the ANA can be imple-
mented distributedly which we call distributed adaptive Nesterov-Algorithm (DANA)
in the following and finally, in section the convergence of the DANA with event-
triggered communication (DANA-EC is shown.

2.1 Nesterov’s optimal first order method

The content of this section was essentially published in [MUA14, sec. 2.1] (Meinel, Ulbrich, and

Albrecht) and is reproduced here in similar form.

Nesterov’s optimal first order scheme [Nes05, sec. 3], which we denote in the following
by Nesterov-Algorithm (NA) for simplicity, is applicable for convex optimization prob-

lems

min f(x), (2.1)

where the constraint set Q C E is a closed and convex subset of a real vector space E, and
the objective function f: Q — R is convex and continuously differentiable with Lipschitz

continuous gradient, i.e., the gradient V f satisfies the following inequality [Nes05]:
IVF(x) = VWl <Llx —yllg YxyeQ, (22)

11



12 2 Distributed first order method with event-tiggering

where L > 0 is the Lipschitz constant and ||-|| . the norm that corresponds to the dual
space E* of E. However, in this work we consider the real vector space E = R", i.e., we
have |||z« = |-l = ||-]| [Nes05], where by ||-|| the Euclidean norm is denoted. It follows
that inequality becomes

IVf(x) =Vl <Llx—yll vxyeQ (2.3)

Before the Nesterov-Algorithm is stated, we introduce the term prox-function after giving

the definition of a strongly convex function by the following theorem.

Theorem 2.1.1. (Strongly convex function) [UU12, Theo. 6.3, 3.]
Let the function d(x): Q — R be continuously differentiable on an open environment of the
convex set Q. Then d(x) is strongly convex if and only if there exists a parameter y > 0 such that

the following inequality is satisfied for all x,y € Q:
d(y) —d(x) > Vd(x)"(y —x) +pl|lx - y|”. (24)

In [Nes05], the parameter ¢ = y/2 > 0 is called convexity parameter and the strongly
convexity property of a continuously differentiable function d(x) is equivalent to [BT89)
Prop. A.41]

(Vd(x) = Vd(y)' (y —x) 2o x —ylI* YxyeQ. (2.5)
The following definition of a prox-function and the corresponding center slightly extends
[NSO8, Def. 2.4] by additionally demanding continuously differentiability.

Definition 2.1.2. (Prox-function) [NS08| based on Def. 2.4]
A continuously differentiable function d(x): Q — R is called prox-function if it is strongly con-

vex and satisfies

d(x%) =0,
where
x* = argmin d(x)
xeQ
is called the center of Q.

Finally, the initialization of the Nesterov-Algorithm [Nes05, p. 135] is done by choosing
a prox-function d(x) with convexity parameter ¢ > 0 whose center (minimum) x° serves
as the starting point. Moreover, a positive sequence {ay },>o has to be chosen that occurs

in the following algorithm as well as the quantities

k
Q41 .
T = Arct’ where Ay —i;:)aci. (2.6)
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Algorithm 2.1.3. (Nesterov-Algorithm) [MUA14, Algo. 2.1]
For k > 0 do:

1. Compute V f(xF).

2. Find y* = argeerlin{<Vf(xk),y - xk> + % Hy - kaZ} :

L k . 4
3. Find z* = argmin{ —d(z) + } _a; <Vf(x]),z - x7> .
ze@ |7 j=0
4. Set x**1 =12k + (1 — 1)y~
We notice that some (redundant) constant terms are omitted in the argmin-problems of
Algorithm compared to the representation in [Nes05] in order to reveal its paral-
lelizable nature if the prox-function d(x) as well as Q have a suitable structure discussed
more detailed in the following section[2.2]

We end this introduction to Nesterov’s optimal first order scheme with the following
result which merges [Nes05, Lem. 1] with [Nes05| Theo. 2] (with adopted wording).

Theorem 2.1.4. [MUA14, Theo. 2.2]

Let the sequence {ay }x>o satisfy the condition
ag € (0, 1], a4 < Apy1, ax >0, k> 0. (2.7)

Then the relation

k
Af () =¥ = min{fﬂz) + Lo (£ + (V)2 ﬂ})}
1=

zeQ

holds for k > 0 and therefore
Ld (x°")
ky opty « 22\ )
PR = ) < =5,
where x°P! is an optimal solution to problem .

Proof. The proof is given in [Nes05, proof of Theo 2]. O

Finally, in [Nes05] the following choice of the sequence {ay }¢>0 is proposed which satis-
fies conditions in Theorem2.1.4]

Lemma 2.1.5. [Nes05, Lem. 2]
For k > 0 define ay = (k+ 1) /2. Then

2 (k+1)(k+2)
= — A = —
Tk +31 k 4 ’

and conditions are satisfied.



14 2 Distributed first order method with event-tiggering

Applying Lemma in Theorem yields the following estimate of the gap between
the function values at the optimal solution x°Pt and the iterate y* from step 2 of Algorithm
2.1.3|[Nes05, Theo. 2]:

opt 4Ld(x0pt)
69 = £ < oy

In other words, for a given accuracy € > 0 the gap is less than € if

ALd(x°Pt)
ck+1)(k+2) =

€

which immediately shows the complexity of O (v/L/¢) iterations for the Nesterov-Algo-
rithm as given in [Nes05], where for comparison it is also noted that the standard
gradient projection method applied to problem needs O (1/¢€) iterations.

2.2 Distributed Nesterov-Algorithm with event-triggering

The content of this section was essentially published in [MUA14, sec. 2.2] (Meinel, Ulbrich, and

Albrecht) and is reproduced here in similar form.

To be able to formulate Nesterov’s Algorithm[2.1.3]in a way that it can be implemented in
a distributed manner, we have to define a multi-agent network whose agents each control
a different subblock of the optimization variable x € Q C R™ of problem [2.I). To this
end, let the multi-agent network consist of s < m agents, where agent,, controls subblock
x; € R™ of x = (xlT,...,xsT)T € QCR™and )] _;m = m. For the ease of notation, we
will omit the transpose symbols in this work whenever a vector is composed of different
subvectors and the dimensions are clear from the context, e.g., x = (x1,...,%5) € Q.

It can be seen immediately that step 2 and 3 of Algorithm are executable in parallel
by the agents if the feasible set Q of problem as well as the prox-function d(x) are
block-separable according to the partitioning of the optimization variable x = (x,...,xs)

which yields the following assumptions.
Assumptions 2.2.1. (Separability of Q and d(x)) (cf. [MUA14| Ass. 2.5])

1. The feasible set Q € R™ of problem is block-separable in the following way:

S
Q=0Q1x...x Qs with x, € Oy CR™ and Y_m;=m.
=1
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2. The prox-function d(x) with convexity parameter o in Algorithm is separable accord-
ingly, i.e.,

d(x) = Zdl(xl) with x; € Q CR™,
=1

where d;: Q; — R is a prox-function with convexity parameter o for| =1,...,s

For example, with Assumptions step 3 of Algorithm can be written as

k . .
- — argmin{(l;d(z) +];)o¢j <Vf(x]),z _ x7>}

zeQ

s k s .
argmin {EZdl(zl)+Zocjz<V1f(xf),zz—x{>}

(21,0,25) €Q1 X... X Qs j=0 I=1

:ZS: rgmm{gdl Z] +sz]<vlf( )zl—x{>}, (2.8)

I=1 z€Q

where V, f(x) € R™ denotes subblock ! of the gradient of f(x). Obviously, the right-hand

side in can be solved in parallel by the agents, where agent,, solves subproblem

argmin{adl z1) th] <Vlf ,Z] — xl>} (2.9)

Z1€Q)

corresponding to subblock x; that he is responsible for.

However, agent,, needs to communicate with other agents in the multi-agent network
in order to be able to compute V,f(x¥) in each iteration. Generally, and especially for
problems arising in large-scale networks, subblock V; f(x) does not depend on all other
subblocks of the optimization variable, i.e., the communication topology of the multi-
agent network is usually not complete. In the following, we describe the communication
topology of the multi-agent network by a graph called information dependency graph
(IDG) which is defined as follows.

Definition 2.2.2. (Information dependency graph)

A graph with s nodes is called information dependency graph (IDG) if node | is connected to node
j by an undirected line provided that subblock V, f(x) of the gradient of the objective function in
problem depends on subblock x; # x; of the optimization variable x = (x1,...,Xs).
Moreover, the set Nipg (1) = {j1,.-., ]y, } denotes the set of i; neighbors of node I.

We notice that the IDG is defined as an undirected graph as the above dependencies
are mutual. Finally, with Assumptions it is straight forward to state a distributed
version of Algorithm which is called distributed Nesterov-Algorithm (DNA) in the

following.
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Algorithm 2.2.3. (DNA)
Forl=1,...,sand k > 0 do in parallel:

1. Compute ¥V, f(x*).

2. Find yf = aryglgglin{<vlf(xk),yl — xﬁ‘> + % Hyl — xf‘Hz}

k .
3. Find zf = argmin { gdl(zl) + ) a; <Vlf(x]),zl - x{> } :
=0

z1€Q)

]

4. Set x;‘H =Tz + (1 - )y}
5. Send xK1 to agenty, if | € Nipg(j)-

In step 5 of the DNA the iterates have to be exchanged in every iteration which may
result in a large communication traffic that is undesirable especially for capacity limited
wireless communication networks [WL10, sec. I]. To remedy this drawback, we enhance
the DNA with event-triggered communication similarly to [ZC10, sec. 2 - 3] and
[WL10, sec. 4] by defining an outdated vector x'* that is available to a genty, in iteration k
of the DNA

Definition 2.2.4. (Outdated subblocks of the optimization variable)

Without restriction and for the ease of notation assume that 0 € Q. For 1 =1,...,s and k > 0
let x'k = (xll’k,. ..,xi’k) € Q C R™ denote the outdated vector available to agent,, in iteration k,
whose subblocks satisfy

Hx;'k - fol <Ar ifj€ Nmg(l),

xé'k =0 ifj ¢ Nipg(I) U{l}, (2.10)

else,
for a given threshold Ay > 0 with Ay = 0.

In [ZC10], event-triggered communication is used for distributedly solving an uncon-
strained problem, where convergence is guaranteed if, i.a., the objective function is con-
tinuously differentiable with Lipschitz continuous gradient, whereas in [WL10] event-
triggered communication is applied to distributedly solve the DC-OPF problem by mini-
mizing a corresponding unconstrained augmented cost function with a gradient scheme,
where convergence is guaranteed for convex, strictly increasing, and differentiable cost
functions. In contrast to these approaches, our choice of the threshold Ay does not de-

pend on the state of the optimization variable subblocks as will be discussed.
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Finally, we propose the following distributed Nesterov-Algorithm with event-triggered
communication (DNA-EC) that extends the DNA by letting the agents use the out-
dated iterates x* from Definition instead of x¥, and by the addition of the separable

term

Lo ||y — =, (2.11)
in step 2 of the DNA which is necessary for the proof of convergence.

Algorithm 2.2.5. (DNA-EC) [MUA14, Algo. 2.7]
Forl=1,...,sand k > 0 do in parallel:

1. Compute V, f(x'F).

2. Find y’f = ag%erg]in{<vlf(xl/k>’yl — xf‘> + LAm; Hyz - x;“‘l + % Hyl - xé(Hz}

L k ) .

3. Find zF = argmin { —di(z) + ) _aj <Vlf(xl']),zl - x§> } :
z€Q 7 j=0

4. Set X' =1z + (1 — )y

5. Send x{ ™ if necessary: For j € Nipg (1)

if Hx{’k — xft1 H1 > Ayi1 then

k1 k41
set x{’ = x;{H and send xf’ o agenty,.
else
jk+1 ik , .
set x)’ = x)" and signal that no data will be sent.

Obviously, the DNA-EC coincides with the DNA for the choice Ay =0, k > 0,
as in this case we have V, f(x"*) = V, f(x*) for | = 1,...,s according to Definition
The larger the threshold Ay is chosen, the less exchange of iterates is needed in step 5,
and the less computations of V,f(x"*) in step 1 have to be executed. However, if Ay is
chosen too large, the DNA-EC may not converge or may need more iterations than the
DNA to compute a comparable solution which possibly results in a higher information
exchange, i.e., the choice of Ay is crucial.

Finally, the following example is given to show that the nice structures of the subprob-
lems in the DNA-EC often allow analytical solutions which is favorable with respect to

the computational efficiency.
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Example 2.2.6. [MUA14] Ex. 2.8]
For Q = Q1 X Qp X +-+ X Qy, with compact and convex sets Q; C R and d(z) = (¢/2) |z,
the subproblem in step 2 of Algorithm is given by

o= amin ) <yz—xf<>+Lwyz—xﬂ+;<yz—ﬁ>z}

_ {hf(yz) if yr— x>

hf(yl) nyl_xz
where
=A,
it () = (Vif ) + L) (=) + 2 (- o),
) = (TiFGH) — L) (= o) + 5 (=)
A
We have
hfL,(yl) A++L(yl—xl>—0<:>yl ——ATJr—kx;(,
' (y) = A +L(yz—xl)—0 =y :—ATHin‘,

and with Q; = [Ql,él] and A = LAy, the minimum yf over Q; for | =1,...,m is

Vi )+AL +xl if — Vi f (2 )+AL > 0.

yf‘:max{min{y‘l)pt,él},gl},where yf”t: _Vif(x L) AL_|_xl if  Vif(x L) AL <0,

x;‘ else.

Moreover, it is straight forward to see that the solution of the subproblem in step 3 of the DNA-EC

2.2.5|is given by
k Lj
o Vif(xt)
zfzmax{min{—zjo ]Llf( ),Ql}le}.
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We close this section with the proof of convergence of the DNA-EC in Theorem
2.2.12)which is prepared subsequently.

Lemma 2.2.7. [MUA14), Lem. 2.9]
Fory, x, x!* € Q and k > 0 the following inequality holds:
R Lk K - | L k||*
f) < () + X (Vif ) = xb) + Lo Y|y — x| + 5 v —#|
I=1 I=1

Proof. [MUA14, proof of Lem. 2.9]
Similar to [ZC10, proof of Theo. 1] or [BT89, proof of Prop. 5.1, p. 529], we apply the
Descent Lemma [BT89, Lem. 2.1, p. 203] which yields that the Lipschitz continuity as-

sumption of V f(x) is equivalent to

Fy) < £+ (VF), y =)+ 2 ly =l VryeQ

With the definition of x/* in (2.10), we have for x¥,y € Q that

Fl) < £+ (V) y =) + 2y~

= f(x") + ZS: (Vif %),y = xf)
=1

<V,f(xk) — Vif(x"),y - x5<> + é HI/ - kaZ

S

< F) + Y (Vi (), — o )

=1
I=1 ’

< A6 + L (T @) )
=1

-

+

N
Il
—_

kok Lk Lk

+ (X, jm)—( e X

H2 2.12)

) =]+ 3y

gk

2

7

° L
Loy =]+ 3y =
=1

where (2.12) is obtained by the usage of the Lipschitz continuity of V f(x) similarly to
[BT89] or [ZC10], and the Cauchy-Schwarz inequality [Beul4, sec. 10.3]. O

Lemma 2.2.8. [MUA14, Lem. 2.10]

The application of Lemma to y* = (y%,...,y%) computed in step 2 of the DNA-EC
yields the following inequality for k > O:

veQ (1=

o106 g e 1 o]+ ST}

Proof. Obvious. O
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In preparation for the last and main lemma that is needed for the proof of convergence of
the DNA-EC the following assumption is necessary to handle the error caused by

the usage of event-triggered communication.

Assumption 2.2.9. (Boundedness of Q)
The closed and convex feasible set Q of problem is bounded.

The boundedness of the set Q allows the definition of a diameter C of Q as

C= maxHx—yHl, (2.13)
yxeQ

where the 1-norm is chosen due to its separability. Following the notation in [Nes05, p.
133], define for k > 0 the problem

Mm

vk = mm{pk—i— —d(z +Zo¢]< )+

which is related to step 3 of the DNA-EC as

<V1f(xl'j),zl — x;>> }, (2.14)

1

I
—

Zk:argmln{pk+ —d(z —i—Z(x]( +i<vlf zl—x{>>} (2.15)

zeQ j 1=1

_argmm{ )+ th]2<vlf 1,z —x{>} (2.16)

zeQ

Here,
k
Ok = maxLC )_ ajA;, (2.17)
j=0

where #max is the maximal degree of the IDG, L is the Lipschitz constant of the gradient of
f(x) in problem (2.1), and &; are the a priori chosen positive parameters in the DNA-EC

. Finally, define

Fo=0 (2.18)
and
B = A1t ) (Vif (4) = Vif () i = 21) for k>1, (2.19)
=1

where the quantities Ax_; and 7¢_; are given in (2.6) for k > 1.
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The following lemma extends [Nes05, Lem. 1] by additionally considering event-triggered

communication.

Lemma 2.2.10. [MUA14] Lem. 2.11]
Let {ay }r>0 satisfy

g € (0/ 1]/ “%4_1 < Ak+1/ (220)
and set

= g2+ (1 - )y, (2.21)

where y* and z* are the optimal solutions in step 2 and 3 of the DNA-EC
Then the following inequality holds for k > 0:

k
¥ > Af(vF) + Y E;. (2.22)
j=0

Proof. [MUA14, proof of Lem. 2.11]
The proof follows [Nes05, proof of Lem. 1] and extends it by additionally considering

event-triggered communication. For k = 0 we have

d(2) 2 d() + V) (2 = 2) 43 |12 =P 2 5l =2,
> 2 2
=0 >0

due to the strongly convexity of d(z) and the fact that x° minimizes d(z) (cf. [BT89, Prop.
3.1]). It follows that

‘Porzréig{\pg/—f—id(z)—i—ao ( +i<vlf zlx?>)}
=0

—

=1

>0c0m1n{LHz—x0H + f(x )+i<vlf( )zl—x?>}

zeQ

= aof () = Aof (") + Eo,
=0

where the last inequality follows with Lemma Now assume that the relation ¥* >
Acf (k) + Z;'{:o E;j holds for some k € INp. As the function

hi(z) = o+ — d —I—Za,( x])—l—i:<vlf(xl'j),zl—x{>>
=1

is strongly convex with convexity parameter L, it follows that

L 2
o2 v+ Lo
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We obtain

zeQ

' L k+1 S ;
Y1 — min {Pk + maxLCxp11Dpy1 + d )+ Z &j ( )+ <V1f )iz = x{>> }

. k, L k||?
>minq ¥+ = Hz —z H + maxLCag 11 A1
z€Q 2

gy <f(xk+l) + i<vzf(xl’k+l)f z; — ;‘+1>> }
=1

. k L k 2 k
> mig (¥4 e H |

S
+06k+1< k+1 +E< lk+1 zl—x;‘+1>>}.
1

I=

Due to the convexity of f, the definition of x**! in (2.21), and the induction hypothesis,

we have

s (f(x"“) FY (Vi) 2 xé‘“>>
I=1

s k
> Aef(v") + <f(xk+1) +) <Vlf(xl’k+1)r 1= ;(+1>> +)E

=1

> Ay (f<xk+1) + <vf<xk+1>, - xk+1>>
+ Qg1 <f(xk+1) + i <Vlf(xl’k+l)f z] — f+1>> + Zk:Ej

=1
:Ak< k+l +lé< lk+1 yk_x;<+1>>
<i<vf k+l — Vi f(x lk+1 >>

=1

S
o (f k+1 )+ Z< lk+1 k+1
1=1

S

—Ak 1f( k+ +0¢k 1(2 Vlf lk+1

I=1

<i<vzf ) - V), (o — 2 >> Y E,

1=1 j=0

= Ern
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where the last equality follows with (2.21) and the fact that 7, = a1/ Ak as

S

21< xlA+1 yéc —x;{+1> +ak+1g<vlf(xl,k+l)lzl _x;(+1>
{ )2 - o)
Ml Z< (M4, 2y — 2 +2f — x;(+1>
= —Akal;< ) K ]/5(>

+ &g zi <Vlf(xl’k+1)rzz —z +(1— ) (Z? - yé‘) >
=1

:—AkaZ V,f(xl'k“ ,Z

Vif(x
Vlf(xl,k+l ,

S
= — (Ax + 1) ): <v,f(x’rk+1),z§ - yﬁ‘>
=}

+“k+1Z<sz (x"**1),2) — 2§ + 2§ — yf‘>

= Kj41 Z <Vlf(xl'k+1),zl — Z;c> .
I=1

The rest of the proof is almost identical to the final part of [NesOS, proof of Lem. 1]. From
condition (2 1-) 0) and T = g1/ Agq it follows that Ak+1 > 132 and we obtain
L 2
Y > A F(65D) + min {UmaxL(kaAkH Hz - ZkHl + Hz - zkH

zeQ

s k+1
e Y (V) 2 z5<>} Sy,
=1 j=0

2
= A f(Y) + Ay l’Zl’éiél{ﬂmaxLAkJrlTk Hz — zkH1 + A Hz — zkH
s ket . k+1
—|—Tkz<vlf(x’+ ),ZZ—ZI> —{—ZE]
=1 j=0
L 2
> Akﬂf(ka) + A1 mig{;ymaxLAkHTk Hz — ZkH1 + Erkz Hz — zkH
ze
s Ik . k+1
—|—Tkz<vlf(x' 1) 4 — zl> + Y E;. (2.23)
=1 j=0

Forz € Qlet

y=17z+ (1 - 1)y~

As 7 € [0,1], we have y € Q and with the definition of ¥ in (2.21) we can write

y— =g (z - 2).
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It follows that

: L 2 :
mm{qmaXLAkHTk Hz — zkHl + ETkz Hz — zkH + T <Z<Vlf(xl'k“),zl — zg‘>> }

zeQ =1

:mfé?rkw{"maxﬁAkﬂHy—xkﬂuﬁ;Hy—xkﬂwf+i<vlf<xz,k+1>,yl_x¢+l>}

e R | L)
%{L%MHW gl e B )
>fy*h) — f(x T, (2.24)

where the last inequality follows with Lemma [2.2.8]
Subst1tut1ng in ( ylelds YL > A f(yFHD) + ZkH Ej. O

Remark 2.2.11. (Concave objective function)
A revision of the proof of Lemma [2.2.10|shows that the application of the DNA-EC to max-
imize a concave and continuously differentiable function f: Q — R (on a closed and convex set

Q C R™ with Lipschitz continuous gradient) yields the following relation after k iterations:
k
Y <A + LB (2.25)
j=0

where

S . .
o B (50 E o).

z€Q e
Finally, the following convergence result for the DNA-EC can be given given which

extends [Nes05, Theo. 2].

Theorem 2.2.12. (Convergence of the DNA-EC [2.2.5) [MUA14, Theo. 2.12]
Let y* be generated by the DNA-EC with wy as in Lemma and Ay = BSF, where 5 €
(0,1) and B € R.. Then for k > 0 the inequality

- 061maxBLCY (8) + 4Ld (x°Pt)

F) = f(x) ok 1) (k1 2) (2.26)

holds, where x°P* is an optimal solution of problem (2.1), C is defined as in , and

g(6) = i:)éj =1 1 3 for 5 € (0,1).
=
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Proof. [MUA14, proof of Theo. 2.12]

To prove the theorem, we have to derive an upper bound for the left-hand side ¥* in
inequality (2.22) and a lower bound for ):] o Ej occurring in the right-hand side. We start
with

‘Yk—mln{pk+ —d(z +Zo¢]< x])+li;<vlf(xl'f),zl—x{>>}
—mm{pk—i—s_d —I—Za]( <Vf(x]) z—xf>>
+2"‘J <Z<sz 1) — V,f(xf),z,—x{>>}

<m1n{pk+§d —i—Zoc]( <Vf(x]) z—xf>>

‘ Hzl . x{H) } (2.27)

XOPt _ i Hl (2.28)

l] lJ j j
—|—Zo¢] (ZLH /'71 (x].],...,xjm)

k
< pr+ ;d(x"pt) + Acf (x%F) + Lipmax ) _ A ’
=
k L t t
o o
< Zi’lmaXLC];)lXjA]’ + Ed(x P ) + Akf(x P )

k .
= maxBLC Y _(j+1)0/ + gd(xOPf) + Arf(x°P)
j=1

L
< ’7maX5LC8/(‘5> + Ed(xOpt) + Akf<x0pt>r

where we used the Lipschitz continuity assumption of the gradient of f to obtain (2.27)
and the fact that f is convex (as it was done in [Nes05| proof of Theo. 2]) to obtain (2.28).

Similarly, we derive a lower bound for the accumulated error Z;-‘ZO E;

171 (Z (Vif () = Vif ()] - z;'1>> ‘

1=1
et =47

) 2
j+2

k
L E=-
=0

k

S
- j j Lj
> =Y Aj 1T <121L H(le,...,xjm) — (le . an

/=1

k
i—1 i—1
> ~TmaxL. ZAfflijlAj it ==

(j+1 ‘
> qmaXLCZA] 1T 1Aj = nmaXﬁLCZ]] Ly

j=

max LC
_%g’@)'
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Substituting these bounds in (2.22) results in

opty _ 4(37maxPLC'(8) + zd(xPY))
f(yk)_f(xp)< 2 (k+1)(k+2)

O]

The maximal degree #max of the IDG in ( is independent of the multi-agent network
size if the structure of the objective function f (x) in problem (2.1) is independent of the
dimension of the optimization variable which holds in general for network related prob-
lems with variable size.

Finally, the choice of the threshold Ay = 6% in Theorem guarantees the conver-
gence of the DNA-EC for 6 € (0,1), however, the particular choices of § > 0 and
0 € (0,1) decide if the algorithm outputs a solution with less information exchange com-

pared to the same solution obtained without event-triggered communication.

2.3 Adaptive Nesterov-Algorithm

The content of this section is in preparation for publication in [MUI4] (Meinel and Ulbrich).

In this section, we enhance Nesterov’s Algorithm with an adaptive step-size control
that is based on the work of Nesterov in [Nes13| sec. 3 - 4] and is proposed in [BCG11]

sec. 5.3] as well. This step-size control is motivated by the following observation.

Remark 2.3.1. (cf. [MUAT4] Rem. 2.4])
The subproblem in step 2 of the NA is a projected gradient step with step size 1/ L as accord-
ing to [BT89, sec. 3.3.2]

o =angmin{ {01060+ 5o}
:a%m{;m L 2 e

)

Remark suggests the application of step-sizes 1/L; with Ly < L for k > 0 in order to
reduce the number of iterations of the NA

= argmin { Hy —xk 4 lVf(xk)
veQ L
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To this end, we define similar to [Nes13, (2.7)] for Ly > 0 and x € Q the quantities F;_(x)
and ar, (x) € Q by

Fuu() =min { £+ (V=) + 5y = =

. L
a1, (x) = arg Fy, (x) = argmm{Vf(x)Ty Ly, - xuz}.
yeQ 2

Obviously, we have y* = ay (x¥) in step 2 of the NA
The adaptive Nesterov-Algorithm (ANA) is initialized just as the NA by choosing a

prox-function d(x) with convexity parameter ¢ > 0 which defines the starting point x° as

x¥ = argmind(x). (2.29)
x€Q

Moreover, choose v > 1, L_1 € (0,L], {ag }x>o with ax > 0, a9 € (0,1], and set 7; as well as
Ay as in (2.6) for k > 0.

Algorithm 2.3.2. (ANA)
For k > 0 do:

1. Compute V f(x*) and set Ly = Ly_.

ok k - T, . Lk k||?
2. Find y* = ar, (x*) = argmin { V f(x") y+—”y—x H .

veQ 2

3. Compute V f(y*) and f(y").

if

. L 2
F) < F (¢ = mm{f(x") (V)Y =) + Sy -] } (230)
yeQ 2
then
continue with step 4.

else

set Ly = Ly7y and go to step 2.
ok Lk : T
4. Find zZ* = argminq —d(z) + }_a;Vf(x/) "z 5.
zeQ |9 =0
5. Set x+1 =1z + (1 — 1)yt
In [Nes13) (3.1)] step 3 is applied in a gradient method whose accelerated version [Nes13|
(4.9)]) is similar to Algorithm with the difference, i.a., that there the parameter w1

is defined by a solution of a quadratic equation that depends on Ly and thus has to be de-

termined during the optimization process. Moreover, the step-size control implemented
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by is also proposed in [BCG11), sec. 5.3] for several optimal first order methods of
similar type (see Remark [2.4.2).

Inequality is always satisfied for y* = ar, (x¥) with Ly > L (cf. [Nes13, Rem. 1]) due
to the well known equivalency of the Lipschitz continuity of the gradient of f and
the following inequality [BT89, Lem. 2.1]:

Fy) < £+ (V@ =) + 5y =2l veyeQ @31)

Alternatively, Lemma 2.2.7)with A; = 0 for k > 0 can be applied.

It follows immediately that the ANA coincides with the NA if L.y =Landin
this case step 3 of the ANA [2.3.2]is redundant.

The convergence of the ANA follows immediately by substituting L with Ly in [Nes05|
proof of Lem. 1], however, it is additional shown in section as the ANA is a special
case of the distributed adaptive Nesterov-Algorithm with event-triggered communica-
tion (DANA-EC) that is derived in the subsequent sections.

2.4 Distributed adaptive Nesterov-Algorithm

The content of this section is in preparation for publication in [MUI4] (Meinel and Ulbrich).

As detailed in section[2.2} the subproblems in step 2 and 4 of the ANA]2.3.2can be solved
in parallel if Assumptions hold, i.e., if the feasible set Q of problem as well
as the prox-function d(x) are separable according to the partitioning of the optimization
variable x = (xy,...,x;) into s subblocks, each assigned to a different agent of a multi-
agent network. Unfortunately, this is not the case for step 3 of the algorithm as the evalu-
ation of f(y*) can not be done in parallel generally. To remedy this drawback, we consider
instead the following inequality that is also proposed in [BCG11), sec. 5.3] (however, for
different reasons (see Remark [2.4.2)) as it implies condition which is shown in the
following lemma, motivated by the Descent Lemma [BT89, Lem. 2.1, p. 203]:

ot = = (Vs - Vit ), 232

Lemma 2.4.1.
If <%, y* € Q with y* = ay, (x¥) satisfy then the following inequality holds:

£0) < min{ 7+ (VG —) + F J—h

yeQ
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Proof. 1t is well known that inequality

(Vi) x—y) < flx) = f(v) (2.33)
is satisfied for all x,y € Q if f is a convex function [UU12, Theo. 6.3]. It follows that
) < 5+ (VA =) + (VFH) = VA, =)
< S+ (VA =)+

where the last inequality follows with (2.32). O

Remark 2.4.2.

Shortly before the completion of this thesis, we learned that in [KCD15| the adaptive step-size
control implemented by is used in a fast gradient method that is applied for distributed
optimization in dual decomposition, however, a central coordinator is proposed to verify inequality
(see [KCD15| sec. 4.4]). The authors of [KCD15| adopted this step-size control from
[BCG11ll, where the implication from Lemma is used to prevent cancellation errors due to
the application of in several optimal first order methods (see [BCG11) sec. 5.3]).

Our motivation to use instead of is that the agents of the multi-agent net-
work can verify the inequality in parallel and with local communication by using a dis-
tributed averaging consensus technique that finds widespread application in distributed
optimization (see for instance [DUAH12] and therein [CCW10]). The following descrip-
tion of this consensus technique is taken from [CCW10, sec. 3 BJ:

Let A € R®*° be a symmetric, doubly stochastic (Ej Ajj =} Ajj = 1), and nonnegative
matrix that has positive diagonal entries and is compatible with the undirected graph
that represents the multi-agent network of agent,, ,...,agent,, ie., Aj=A4;>0 —
agenty and agent,; are neighbors or | = j. Moreover, for t =0,1,... and I =1,...,s define

the recursion

CHE+1) = Augi(H + ) ATi(H), (2.34)
jEN(I)

vi(t+1) = Agvf () + Y Ayk(p), (2.35)
jeN(I)

where N(I) is the index set of agent,,’s neighbors in the multi-agent network and

2

) =2 vt =]
v (0) = (Vif (%) = Vif (&), uf = xf).

Then the following theorem holds.
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Theorem 2.4.3. [CCW10, Theo. 1]

If the multi-agent network represented by A is connected, then

s r s k
740 X5 vE(0
S t—o0 5

lim () =

t—o0

and it follows that

(2.36)

Moreover, in [CCW10, proof of Theo. 1] it is shown that {¥(t) and v¥(¢) converge ge-
ometrically to Y75, Q;F(O) /s and ¥4 v]’.‘ (0)/s with t — oo. Finally, Theorem shows
that each agent,, can verify condition with local communication by checking if
Ck(t)/vf(t) > 1 is satisfied for sufficiently large ¢, and it follows that this modification
of the ANA can be implemented in parallel, resulting in the distributed adaptive
Nesterov-Algorithm (DANA) which coincides for Ay = 0 with the DANA-EC pre-
sented in the next section. Regarding the choice of the sufficiently large t, the following
stopping criterion for the consensus algorithm is proposed in [CCW10, (14)]:

Forl=1,...,s stop consensus if

|gk(t) — gkt — 1))
|ZF(t—=1)]

where €.ons > 0 is the desired accuracy.

[vi(H) —vi(t = 1)

< .
‘V;C(t - 1)’ g €COl’\S/ (2 37)

< €cons and

Remark 2.4.4. (Metropolis rule)
In [CCWI10, p. 1149], the following Metropolis rule from [XBL06, sec. 2] is described which
allows to build the components of the matrix A, that is used in recursion and , with

neighborhood information. Let

1+max(\Nl(l)|,|N(j)|) if (Lj)e&, 1#],
i=31=Yienangpy Ay i 1=], (2.38)

0 otherwise,

Al

where € is the set of lines of the graph that represents the multi-agent network.
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2.5 Distributed adaptive Nesterov-Algorithm with event-triggering

The content of this section is in preparation for publication in [MUI4] (Meinel and Ulbrich).

Finally, event-triggered communication can be incorporated into the DANA similarly as
in section[2.2} yielding the distributed adaptive Nesterov-Algorithm with event-triggered
communication (DANA-EC) .

To this end, let x'* € Q denote the outdated vector introduced in Definition and
moreover, let y'** € Q be defined accordingly with the difference that for y** the threshold
Ay = (Lx/L)Ay is considered.

The initialization of the DANA-EC is done by choosing a starting point x” according to
(2.29) and Assumptions.2.1} i.e., x° is the minimum of a prox-function d(x) = Y5_; d; (x;)
with convexity parameter ¢ > 0, where d(x°) = 0. Moreover, choose v > 1, L_; € (0,L],
{ay }k>0 with ax > 0, ag € (0,1], and set 7, as well as Ay as in for k > 0. Finally, let
y;.'*l = x? forl,j=1,...s.
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Algorithm 2.5.1. (DANA-EC)
Forl=1,...,sand k > 0 do in parallel:

1. Compute V,; f(x'*) and set Ly = Li_;.

2. Find y’f = argmin{vlﬂxl/k)Tyl + LAy Hyz — xﬂ‘l + % H]/l — x;(HZ}

yEeQ

3. if Ly <L then

(a) Send y¥ if necessary: For j € Nipg(1)
. k-1 L
if [ly;” " = villy > 7B then
set y;’k = yf and send y{’k to agenty,.
else

set y{’k = y{’k_l and signal that no data will be sent.

(b) Compute V,f(y'*) and check with consensus
if

% v~ x"H2 > IZS; (Vif (™) = Vif (%), yf = xf)

then
continue with step 4.
else

set Ly = Ly7y and go to step 2.

k .
4. Find zf = argmin{frkdl (z1) + Zocjvlf(xl'])Tzl}.
j=0

z1€Q)
5. Set xkT1 = gzk + (1 — )yt

6. Send x¥ ™1 if necessary: For j € Nipg(1)

if Hx{’k — xf |, > A1 then

k1 k41
set x) = x;‘H and send x] o agenty;.

else

set x{’kﬂ = x{’k and signal that no data will be sent.

(2.39)
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Remark 2.5.2.

1. The DANA-EC coincides with the DNA-EC for the choice L_y = L as in this
case step 3 of the DANA-EC is not executed.

2. Different from step 3 of the ANA it has to be checked in step 3 of the DANA-EC
if Ly < L which is due to the fact that condition might not be satisfied even
if Ly > L. However, we show in the following that the convergence of the DANA-EC is
already guaranteed if condition is satisfied for Ly < L or if y¥ in step 2 is computed
for some Ly > L.

Finally, as described in the previous section[2.4 condition (2.39) can be checked in parallel
with local communication by applying the averaging consensus technique with

2

7

() = 2 [ — o
v(0) = (Vif (%) = Vif (), f — f)

The rest of this section contains the proof of convergence of the DANA-EC To this
end, we define similarly as in section the quantities ka (x),dr, (x) € Qfor Ly > 0and
x,x'* € Q by

S
FLk(x):min{ +Z<sz yz—x1>+LkAkZ771Hy1—xz||1+*!|y—x|| }

yeQ =1

ir, (x) = argFy, (x )—argmm{zvzf ()T yl+LkAkZ771Hyl—x1||1+*!|y—x|\ }
yeQ I=1 =1

In the following lemma we show that condition (2.39) implies f(dr, (x)) < Fr, (x¥).

Lemma 2.5.3.

For y* = ay, (x*) € Q and x*,x%,y'* € Q, where y** satisfies with respect to y* for the
threshold A = (Li/L) Ay, inequality

L 2 ¢
HWE =2 (Vi) - T, )
1=1
from step 3 of the DANA-EC implies that

FyF) < B (+9). (2.40)
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Proof. The convexity of f and the Lipschitz continuity of its gradient yield

FF) < F(xF) + <Vf(yk),yk _ xk>

I=1 I=1
= £+ L (T =) + L (Vif) ~ Vi ot )
= =1

gf(x")+Z<sz(x"k),y5‘—ﬁ>+1221LH<y§i,---,y]m) W v = |

< () + ZS: <Vlf(xl’k)/y5‘ - xf‘> + LkAkgﬂl Hy’f - xf‘Hl + % Hyk - ka2~
0

To proof the convergence of the DANA-EC we derive a result in the following that
extends Lemma To this end, we have to modify the definition of p, (2.17) in section
for k > 0 by

k k
Pk = ﬂmakaCZa]‘AJ’ + Z (L] — Lj—l) C, (241)
j=0 =0

where C is the diameter of the set Q which is assumed to be bounded, i.e., Assumption
holds. The other quantities needed for the proof of Lemma are used here as

well and repeated for convenience, where
S .
yk — mm{pk—i—d +Za]< +Z<Vlf zl—x{>>} (2.42)
1=1
and

s
Ek = Ak,l’l'k,1 Z <Vlf(xk) — Vlf(xl'k),y;‘ _ Il{ 1> for k > 1, (243)
=1

where Ey = 0. The following lemma extends Lemma [2.2.10|from section
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Lemma 2.5.4.
Let {ay } x>0 satisfy

g € (0/ 1]1 ai+1 < Ak+1/

and set

k+1 k

M = 1k 4+ (1 - )k,

where y* and z* are the optimal solutions in step 2 and 4 of the DANA-EC
Then the following inequality holds for k > 0:

k
> Af(F) + L E;
=0

(2.44)

(2.45)

(2.46)

Proof. The proof follows the proof of Lemma(2.2.10} Due to the strongly convexity of d(z)

and the fact that xg = argmin, _d(z), it follows with the optimality condition for convex

problems that
T, — 40|
d(z) > > Hz x H .

Moreover, as Ly = L_1, Ag = 0, and «ag € (0,1] we obtain

I=1

. L :
T0%18{&+;d(z)+wo < +2<Vlf le?>>}
=0

>uc0m1n{LHz OHZ—i—f(xO)+i<vlf(xl'°),zl—x?>}

zeQ =1

> aof (v°) = Aof (v°) + Fo
=0

where the last inequality follows with Lemma if Ly < L or Lemma if Lo > L.
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Assume that Y% > A; f(y*) holds for some k € INy. We obtain

phHl > Izréin {0k + maxLi+1Ctgr 10611 + (Lgyr — L) C
L k+1 s
k“d +Z(x]< +Z<Vlfx] z,—x§>>}
=1
> rzrém {0k + maxLi+1Cagr 18611 + (Lgyr — L) C

Lk k+1

d )+ Z"‘J ( () + i<vlf(xl’j)/zl - x5>) }
=1

, L
> min {‘I’k + 7" Hz -~ zkH + Hmax L1 Cotg 18541 + (L — Li) C

+pi1 (f(ka) + i <V1f(xl’k+1)zzl - x;‘+1>) }
=1

Ly+Lgiq—L 2
kt Lis kHZ_ZkH

> min {‘I’k + fmaxLi-+10k-+18k+1 HZ — ZkH1 + 5

zeQ
TRt (f(xkﬂ) + Zs; <Vlf(xl’k+l)le - x%‘“>> } .
1=1

The rest of the proof works just like the final part of the proof of Lemma[2.2.10|by substi-
tuting L with Ly 1 and using Lemma[2.5.3]if Li;1 < L or Lemma[.2.7]if Ly > L. O

Finally, the convergence of the DANA-EC can be shown, extending Theorem [2.2.12

Theorem 2.5.5. (Convergence of the DANA-EC[2.5.1)
Let y* be generated by the DANA-EC with wy as in Lemma and Ay = BS*, where
0 €(0,1) and B € Ry. Then for k > 0 the inequality

opt oYLC (61maxfg’ (6) +4) + 4yLd(x)
Fy5) = F(x) < o(k+1)(k+2)

(2.47)

holds, where x°P* is an optimal solution of problem and

g(6) = géj =1 1(5 for 6 €(0,1).



2.5 Distributed adaptive Nesterov-Algorithm with event-triggering 37

Proof. The proof follows the proof of Theorem [2.2.12} We have to derive an upper bound
for ¥¥ in 1.; 6) and a lower bound for Z] _o Ej. Starting with ¥* we obtain

€Q

Tk_mm{kar B 4(z) +Z”‘J( x1)+g<vzf(xl,f),zz—x{>>}
_mln{pk—i— kd +ZO€]( <Vf(x]) Z_xj>>

k s . .
+Zo¢j (Z<V;f Vlf(x]),zl—x{>>}

=1

<m1n{pk+d +sz]< <Vf(x1> z—xf>)

zeQ
a_gw}

=
1

lJ lJ j j
+Zuc] (ZLH Jw (le,...,x] l)

k
< px+ %d(f’”) + Arf (x°P) 4 7 Lijmax ZD‘]'AJ ( X

k

L
SNCEES c+2;7maX7LcZ(x]A + L2 + Af (P
j=0 j=

; L
e BYLC Y4106 + (L — L) C + T2a(xP) + A f(xP")
j=1

< YLC (7maxBg’(6) +1) + %Ld(xof’t) + Arf(x°PY).

The lower bound for Z;‘:O E; is given by (see proof of Theorem 2.2.12)

k
LC
y B> - ImfC o)
j=0
Substituting these bounds in (2.46)) yields:

opt 4y (LC( HmaxBg' () + ) ,%d(xOPt))
F) = e < TSP .

Remark 2.5.6. (Efficiency estimate for DANA-EC[2.5.1)
From equation it can be seen that the DANA-EC has the same efficiency estimate as
the Nesterov-Algorithm which is of the order O (\/L/€) as described in section

If no event-triggered communication is applied, i.e., Ay = 0 for k > 0, the convergence
of the ANA and the DANA, respectively, follows immediately as a special case of
Theorem [2.5.5| (cf. [Nes05, Theo. 2]).
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Theorem 2.5.7. (Convergence of the (D)ANA)
Let y* be generated by the ANA.3.2with ay as in Lemma and A, = BS*, where 5 € (0,1)
and B € Ry. Then for k > 0 the inequality

4Lk(d(x°pt) + C(T)
o(k+1)(k+2)

Fh) = f(x¥) <
holds, where x°P* is an optimal solution of problem .

Proof. The proof is identical to the proof of Theorem considering that with Ay =0
for k > 0 it follows that /¥ = x! for I = 1,...,s, and the quantities px in 1} and Ej in
(2.43) become
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In this chapter, a version of the proximal center algorithm by Necoara and Suykens (PCA
is presented in section More precisely, this version of [NS08, Algo. 3.2] is a
simplification that does not guarantee monotonicity of the function values, however, for
the convergence theory this feature is irrelevant as mentioned in [NS08, sec. II B] (see
also [Nes05, sec. 3]), and we therefore neglect it as it hinders a full distributed implemen-
tation. However, for simplicity we use the term proximal center algorithm (PCA) in the
following.

In section the PCA is enhanced by the implementation of the DANA-EC which
yields the distributed adaptive proximal center algorithm with event-triggered commu-
nication (DAPCA-EC ).

3.1 Proximal center algorithm

The content of this section was essentially published in [MUA14, sec. 3.1] (Meinel, Ulbrich, and

Albrecht) and is reproduced here in similar form.

The proximal center algorithm is a dual decomposition method that applies Nesterov’s
accelerated first order scheme from section (NA 2.1.3) and a smoothing technique

from [Nes05, sec. 2] to find an approximate solution of a separable convex problem

n

Igéi)r(\;@(xi) (3.1a)
n

s.t. ZAixi = bA, (31b)
i=1
171
Y Bix; < b, (3.1¢)

i=1

where the set X = X; x --- x X, is separable with compact and convex sets X; € R™.

Moreover, the cost functions ®;: X; — R are continuous and convex functions that are

not required to be differentiable, and finally, the constraints in (3.1b) and (3.1c) are de-
fined by given matrices A; € R™4*™ and B; € R™8*™i as well as by € R™4 and bg € R™5.

39
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In the PCA, the separable structure of problem is exploited by forming its dual which
is then smoothed in a way that preserves the separability of the dual objective function
with respect to the subblocks of the primal optimization variable. To state the dual, con-
sider the Lagrangian [GKO02), sec. 6.2.1]

x ]/l, Zq) xl <Z%Aixi—bA,y>+<Z;‘Bixi—b3,)\>
1= 1=

of problem (3.1), where y € R4 are dual multipliers related to the equality constraints
(3.1b) and A € R™® are dual multipliers related to the inequality constraints (3.1c). The
dual problem of is then given by [GKO02, (6.6)]
max  f(u,A), (3.2)
(pA)ER™A xR'}B

where the dual objective function is defined as [GKO02, Def. 6.6]

f(pA) =min £(x,p,A)

xeX

—rrém{zcb xl <iAixi—bA, > <ZBJCZ bB, >} (33)
x i=1 i=1

It is well known from duality theory that the dual function f(y, A) is concave [GK02, Lem.
6.11]. Moreover, the optimal value of the dual problem (3.2)) coincides with the optimal
value of the primal problem (3.1) (i.e., strong duality holds) if the relative interior of the
feasible set of is not empty and if the optimal function value of is finite [GKO02,
Theo. 6.13] which is assumed in the following. Finally, the primal optimal solution x°P
of problem can be obtained by the evaluation of f((u,A)°P"), where (u, A)°P! are (not
necessarily unique) optimal dual multipliers that solve .

Obviously, the dual function can be evaluated distributedly by n agents which motivates
to solve the dual problem instead of the primal problem in distributed optimization,
however, as the primal solution x(u,A) of is not necessarily unique, the dual ob-
jective function may not be smooth and an iterative scheme for convex problems with
differentiable objective function, such as the Nesterov-Algorithm can not be ap-
plied to maximize the dual objective function in parallel. To remedy this drawback, the
authors of [NS08] propose to smooth the Lagrangian by (strongly convex) prox-functions
dy,: X; — R with convexity parameters oy, > 0 for i = 1,...,n that are scaled with a
smoothing parameter c > 0, yielding the augmented dual function

fe(p,A) = mm{zq) X;) <fAl-xi — bA,pt> + <iB1xi — bB,A> + cidxi(xi)}
i=1 i=1 i=1

xeX

—me}{@ (xi) + (Aixi ) + (Bixi, A) + cdy, (xi) } — (ba, p) — (bp,A)  (34)

X;€
i=1""
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which obviously is still evaluable in parallel with respect to the primal subblocks
X1,...,X,. Moreover, the augmented dual function f.(p,A) is continuously differentiable
and has a Lipschitz continuous gradient as shown in the following theorem which slightly

extends [NS08, Theo. 3.1], where only equality constraints are considered for (3.1):

Theorem 3.1.1. (Existence and Lipschitz continuity of V f,)
The augmented dual objective function f. in is continuously differentiable with

Y Aixi(p,A) — bA)

3.5
i—1 Bixi(p,A) — bp 29

Vie(pA) = (
where x;(p,A) are the unique arguments of the minima in (3.4). Furthermore, ¥ f. is Lipschitz
continuous with Lipschitz constant

. [l(AT BN
L — 1 1 . .

=R (3.6)
Proof. The continuously differentiability of f. is shown in [BT89, p.669] which is given as
a reference in [NSO8, proof of Theo. 3.1].
To prove the Lipschitz continuity of V f., we follow [NS08| proof of Theo. 3.1] and extend
it by additionally considering inequality constraints.
The first order optimal condition for problems with continuously differentiable objective
function that are constrained by a convex feasible set [BT89, Prop. 3.1] yields the follow-

ing inequalities for given Lagrange multipliers (y,A) and (v, 7):

<Zv®i(xi(%/\)) + Y ATu+ Y BIA+c) Vi, (xi(1,A)), xi(v, ) — xi(%)\)> >0,

i—1 i—1 i—1 i—1

<ZV<I>i(xi(1/,'y)) + ZAiTl/ + ZBiT’y + cZdei(xi(v,'y)),xi(y,/\) — xi(v,'y)> > (.
i=1 i=1 i=1 i=1

From the convexity of ®; it follows that ®; + d,, is strongly convex with convexity pa-
rameter oy, and with (2.5) as well as (2.4) we have

n

ogf@( (7)) + e Yd (x(0,7)) — LB (w,A) — ¢ Y d (i (1, 1)

i=1 i=1 i=1
—Z (v, 7) +i< ﬂ+BiT)\,xi(Vr“Y)—xi(H/7\)>f
— i=1
i (i (A id,(xz(y, ) - gcb<xi<v,v>>—cidx,.<xi<v,v>>

X(]/l,/\) - Xi(l/,')’)HZ + Z<AZTV+ BiT,)/Ixi(.u/A) - xi<vll)/)>'
i=1

i=1
_ Cox;
X
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Finally, the summation of both inequalities and the application of the Cauchy-Schwarz

inequality yields (with (u,A) = (u7,AT)T)

Y cox, || xi(p,A) = xi(v, ) I

i=1

<3 (AT (u=v) + B (A=), 5(07) = 10 ))

- <<A1TBZT> (1, A) = (v,7)),xi(v,7) — xi(ﬂ,/\)>

i=1

M:

() = (), (AL BE) () = (ALBT) ) )

Il
—

i

which is used to derive

IV fe(p, A) = Vfe(v,7)|

- [(arf) "t - (a87) (o)

i=1

2

2

n (AinBz’T)T 2
<y o cox, [|xi(v, ) — xi(u,A)||
i=1 i
2
< cox, ||xi(v,v) — xi(u, A)||
i—1 Cox; i=1
2
, (A.T,B.T)T " T T
[ [ Bl) xi(v,y) = (AT B]) x
£ B - oo () st - (A7) a0
« |lcar, B0
< ZT [, A) = (v NIV e, A) = V fe(v, 7).

=1 i

Dividing both sides of the above inequality by ||V f.(4,A) — Vfc(v,7)]|| proves the Lips-
chitz continuity of V f, with Lipschitz constant (3.6). O

In the PCA, the smoothed dual function f.(y,A) is iteratively maximized with the Neste-
rov-Algorithm 2.1.3|(cf. Remark [2.2.11) which is possible according to Theorem[3.1.1} To
state the PCA, we denote by Q4 X QB C R™a x ]RTB a closed and convex feasible set for
the dual multipliers (y,A) and consider the following augmented dual problem:

max (1, A). 3.7
(VIA)EQAXQBf(‘u ) 3.7

The initialization is done accordingly to the initialization of the Nesterov-Algorithm
by choosing a prox-function d(y,A): Qa x Qg — R (with convexity parameter o > 0)



3.1 Proximal center algorithm 43

which defines the starting point as (¢,1)% = argming,, ), x, 4 (u,A). Finally, the fol-
lowing version of [NS08, Algo. 3.2], that applies the NA to problem with
{ak}r>o chosen as in Lemma can be stated as

Algorithm 3.1.2. (PCA) [MUA14], Algo. 3.1]
For k > 0 do:

1. Given (u,A)* € Qa x Qp, fori=1,...,n compute

Xl = argmin{q)i(xi) + <yk,Aixi> + </\k, Bixi> + cdxi(xi)}.

xi€X;

noAXT =
2. Compute V fo((u,\)¥) = (Zl_l %i A).

n <

3. Find (u,h)* = argmax {<Vfc((y,)\)k),(u,h) — (y,/\)k> - %
(u,h)€QAX Qs

() = (o 0.

N‘-}—

k .
4. Find (v,t)* = argmax {—d Z
(vrt)eQAXQB o :

(VA AV o) - <m>f>}.

5. Set (u,A)+1 = ki( )k 4 ',ii;(u )k,

Obviously, the PCA can be implemented distributedly if the set Q4 x Qp and the
prox-function d(y, A) are separable according to Assumptions

To state a convergence result for the PCA[3.1.2] we denote in the following by M°P! x APt
the set of optimal dual multipliers for the dual problem (3.2) and assume that

MOPt x AopthA X QB 75@

The following lemma slightly extends [NS08, Lem. 3.3 and the conclusions afterwards]
by additionally considering inequality constraints and bounds the primal gap, i.e., the

distance from the optimal objective function value of problem (3.1):

Lemma 3.1.3. [MUA14) Lem. 3.2]
For every (u,A)%" € M%" x A%, (u,A) € Qa x Qp, and x; € X; fori=1,...,n, the following

inequalities hold:

=[G )]

Y Aixi—ba
(X7 Bix; — bg] "

‘ < icbi(xi) —fr< i@i(xi) — fo(u,A),  (3.8)
i=1

i=1

where fP' = fo((u,A)P") and [-]* denotes the projection onto R'E.
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Proof. [MUA14, proof of Lem. 3.2]
The proof combines [NS08, Rem. 3.8] with [NSO8, proof of Lem. 3.3], where the bounds

on the primal gap are given for equality constrained convex problems. The lower bound
of can be derived as follows:

foPt= " min {Zn:@i(xz <ZA xi —ba, u° > + <Zn:Bixi - bB,A°pt>}

x;€X;(i=1,....n) i=1

Si <i X — b, p° >+<2Bixi—b3,)\opt>

=1 i=1

n / Y opt
S Zq)i(xi) + ’21:1 Alxl bA‘ , “M ‘

i-1 Y.iq Bix; — b A°P!

i i Aixi — bal " | O]
S 2®Z(xl) + = Vi t

j 21:1 Bz-xl- — bB A°P

Vit Aixi —

[Zn B; iXi — bB

where the last inequality follows by the Cauchy-Schwarz inequality. The upper bound
on the primal gap is obvious as f°P* = fo((p,A)°Pt) > fo(u,A) forall (u,A) € Qa x Qp. O

n
< 2431'(951‘) + AP,

Define by [NSOS, sec. III A]

Dx, > gleaéd (x9) (3.9)
an upper bound on the value range of d,, over the compact set X; for i =1,...,n. The
upper bound on the primal gap given in can be expressed in terms of the primal it-
erates computed with the PCA3.1.2} such that no dual function evaluation is necessary as
shown in the following theorem which slightly extends [NS08| Theo. 3.4] by additionally

considering inequality constraints.

Theorem 3.1.4. [MUAT4] Theo. 3.9 with P(A) = 0]
After k iterations of the PCA the convex sum of the primal iterates (computed in step 1)

; k+1 k+2) for i=1,.

satisfies with (fi,A) = (u,h)* (computed in step 3) the following upper bound on the primal gap:

3 @i(5) — folRA) e} Dy~ max {(kf;) <2 bA,>

i=1 i—1 (nA)€Qax QB -1
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Proof. The proof is almost identical to [NS08, Theo. 3.4] and follows immediately from
the proof of Theorem (for A = 0) given in section[3.2] O

Finally, the following convergence result for the PCA can be given which slightly
extends [NS08, Theo. 3.7] by additionally considering inequality constraints. (For the
sake of comprehensibility, formulation is based on [NS08| Theo. 3.6 & Theo. 3.7].)

Theorem 3.1.5. [MUA14, Theo. 3.3]
Assume that Q4 x Qp = R™4 x R''® and the prox-function d(u,A) = (¢/2) || (1, A) ||2 For the

choicec =€/ Y}  Dx, in and
k1= {2, / LJ (3.10)

n T pT
Le= Yio er it [|€ ‘3 /Bi) H , (3.11)
N

1

where

after k iterations of the PCA the convex sum of the primal iterates (computed in step 1)

k
]+1 ]+1
; Er ) k—|-2) for i=1,. (3.12)

satisfies with (fi,A) = (u,h)* (computed in step 3) the following bounds on the primal gap:

=[G A7 <H<m>"*’fH /G +2> S (AA) <e,  (313)
i=1
as well as the following bound on the constraint violation:
Yo Aiki —ba ‘ < " 2
) <e( | AP+ I AP +2 ) (3.14)
| Dt <e(lwa+

Proof. Applying Lemma and Theorem the proof is almost identical to [NS08)
proof of Theo. 3.7] but will be given here for the sake of completeness as we additionally
consider inequality constraints in (3.1).

To obtain the upper bound on the primal gap in (3.13), consider the result of Theorem
B.14

i_ilq)i(fi) —fo(‘ﬁ,}\) S CiDXi — max { (kiLlc) <i1 bA, >

i=1 (1,A)EQAXQp

+ <2Bi£i — bB,/\>},
i=1
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where the maximization part has the solution

4L, u
max —_— AR — by, + B;%; — bg, A
(W\)GQAXQB{ (k+1)%c <Z ! V> <§ ’ >}

2
C (k+1)?| X Aiki—ba
8L [y Bigi —bg] " ||
It follows that
2
L A n (k+1)2 n:1 Aiaﬁi — bA n
®i(%) — fo(1,A) <cY Dy — <cY Dy, (3.15)
i; o z; 8L, [, Bi%; — bg] ™ 1—21

which immediately yields the right-hand side of (3.13) for the choice c =€/Y ;D
From Lemma the choice of ¢, and inequality (3.15) it follows that

Cilgayry)| EAdba | D2 R Ak ba
[Eia Bidi —bg]" || 8L (Y7 Bi%; — bg]*
yielding
(k+1)2 21 sz_ o H OptH 2:1:1A1£1—b14 _€<O.
8Lc [21 1B xl — b [2;_1:1 Bifi N bB]+ ~

In other words, the constraint violation is less than the largest root of

(k+1>22_ opt _
sV APy —e

which is given by the quadratic formula

0 0 (k+1) 4L,
(} #A) PtH+\/H (1, )P+ 5 ) e
With k 41 = [2/L/€], one obtains
2
" (HWWH 1+ BV ) =

(2vIL./e)
N (H(%M"WH + \/H(%A)OF*II2 +2> ¢

which gives the bound on the constraint violation in (3.14) and with Lemma the
lower bound on the primal gap in (3.13). O
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3.1.1 Minimal Lipschitz constant and scaling technique

The content of this section was essentially published in [MUA14, sec. 3.2 & 3.4] (Meinel, Ul-

brich, and Albrecht) and is reproduced here in similar form.

In this section, the convergence result from Theorem is improved for the following

choice of prox-functions
(Txi 2 .
dy,(x;) = > l|xi|© for i=1,...,n (3.16)

in the augmented dual function (3.4). Firstly, it is shown how the number of iterations in
Theorem [3.1.5/can be reduced by minimizing the Lipschitz constant with respect to
the convexity parameter oy, fori =1,...,n.

Secondly, a scaling technique is presented to compensate for a large value of || (u,A)°PY||
in the bounds on the primal gap given in Theorem [3.1.5

Firstly, for the above choice of prox-functions, we obtain the upper bounds

1

Dy, = 2 max x|
1

1

and it follows that the necessary number of iterations in Theorem is given by
= [2yf]
€

T Dy S lALBDT

where

L
e(ox) € 0y,
2
_ Y o maxyex, || Xty [[(AT, BD |
2¢ Oy,
_ O'ggdx 1 ﬂ
2¢ oy
. 2 2
with v = (|[(AT, BD)T||%, ..., |[(AL BD)T||))T, dx = (maxy,ex, [|x1]|7, .., maxy, ex, [|xa]*)7,

and ox = (0y,,...,0x,)T. In other words, the minimization of L.(cx) results in a mini-
mization of the necessary number of iterations.

T
Let U;)(pt be a minimum of L.(cx). Then (f;pt dx = { for some { > 0 and it follows that

U;pt /¢ minimizes L.(ox) as well. In other words, it is sufficient to solve

n .
argmin E 9 (3.17a)

ox>0 =1 Y

st dhoy =1. (3.17b)
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From the KKT-conditions [UU12, Theo. 16.14] it follows that an optimal solution of (3.17)

satisfies

T
—01 —On
( Optz +del""’0pt2+ﬂdxn) :O,
UX1 le

d)T(a;pt =1,
T
(a;’ff,...,a,g?t) >0
which yields

opt

ot = (3.18)

ot A/ Y for i=1 n
27:1 A /U]dxj dxi

Secondly, to obtain an additional degree of freedom in the bounds of the primal gap (3.13)
which allows to compensate for a large value of || (1, A)°Pt||, consider the following scaled

version of the primal problem (3.1) with scaling factor s > 1:

v [(xi(s)
x(sf)rél)r(l(s);@,( 5 ) (3.19a)
s.t. iAixi(s):bA(s), (3.19b)
i=1
Y Bxi(s) < by(s), (3.19)

where x(s) =sx, X(s) =sX, ba(s) =sba, and bp(s) =sbp fori=1,...,n.

Obviously, an optimal solution x°P* of problem (3.1) yields an optimal solution x°P'(s) =
sx°P* of the scaled problem (3.19), and it follows that the maximum of the corresponding
dual problem
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For the choice

dy (x;) = (;x’ x> for i=1,...,n, (3.20)

we obtain Dy, (s) = s?Dy, and with Theorem it follows that after

. 2\/2?_1Dx,.<s>2?_1H(A?,BDTHZ

€20y,

_ 25\/2?1 Dx; Yiq H(AiT,BiT)THZ

€ Oy

1

iterations of the PCA the following bounds on the primal gap hold:

— | (1 1o, AP + V = N Ay +2) e <Y (%) — ol h) <e,

i=1
(3.21)

as well as the following bound on the constraint violation:

s Y AR —ba
(Y0, Bi&; — g™

| <e (i 1% 5 e 2y +z) . em)

where £ is defined by (3.12) and (f;,A) = (u,h)* (computed in step 3). Obviously, the
increase of s tightens the lower bound in (3.21) and the upper bound in (3.22) more than

the decrease of € does, however, the impact on the number of iterations is the same.

3.2 Distributed adaptive proximal center algorithm with event-triggering

Parts of the content of this section were essentially published in [MUAI4, sec. 3.3] (Meinel,
Ulbrich, and Albrecht) to establish the DPCA-EC and are used in this section to develop the
DAPCA-EC which is in preparation for publication in [MUI14|] (Meinel and Ulbrich).

In this section, the distributed adaptive proximal center algorithm with event-triggered
communication (DAPCA-EC) is presented which enhances the PCA by the appli-
cation of the DANA-EC instead of the NA to maximize the augmented dual
objective function in order to find an approximate solution to problem (3.1).

To be able to apply the DANA-EC to the augmented dual problem (3.7), we assume
the set Q4 x Qp to be separable according to a given partition of the dual multipliers into
s subblocks as described in section 2.2] (Assumptions 2.2.1), where each subblock (j,A);
is controlled by an agent that is referred to as dual agent and denoted by agent , ,), in the

following.
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Moreover, a globally outdated version of the iterate (#,A) has to be defined such that the
(primal) agents agenty,,..., agent,, need to update their primal subblocks x1,...,x, only

once per iteration as will become clear when the DAPCA-EC is stated.

Definition 3.2.1. (Globally outdated vector)
Denote by (i, ) = ((1,A)%, ..., (11,A)) the globally outdated vector whose subblocks are avail-
able to the dual agents in iteration k > 0 and satisfy

H(ﬁ,i)?—-OLAJ?Hlf;Ak (3.23)
forl=1,...,s and a given threshold Ay > 0 with Ay = 0.

The globally outdated vector is a special case of Definition where the outdated
vector (u, Ak = ((y,/\)ll’k,...,(y,)t)é’k) € Qa x Qp CR™ x R'}? (available to agent, »),

in iteration k) is defined by

(3.24)

(‘u/)\);,k _ {(V/)_‘);( ifj € Nipg(l) U{l},

0 else,

forl,j=1,...,s. In other words, the dual agents use the same outdated information for
the computation of the subblocks V; fo((p, A)"*) = V, f.((1,A)F).

To initialize the following DAPCA-EC choose v > 1, L_; € (0,L.], and the starting
point (f,A)° = (u,A)? according to and Assumptions as the minimum of a
separable prox-function d(u,A) = Y;_,d;((u,A);) with convexity parameter o > 0, where
d((j1,A)%) = 0. Moreover, set (i1,h) ! = (ji,A)°. Finally, the DAPCA-EC can be stated as
follows, where its depiction is based on our DPCA-EC [MUA14, Algo. 3.6].

Algorithm 3.2.2. (DAPCA-EC) For k > 0 do in parallel:
Fori=1,...,n, given the required subblocks of (ji,A), agent.

1. computes

Xt = argmin{q)i(xi) + <ﬁk,Aixi> + <7\k, Bixz'> + Cdx,-(xi)}

x;€X;
and sends xﬁ.‘“ to the dual agents that require it.

_ ; k+1 :
Forl=1,...,s, given the blocks x; " that are necessary for the computation of

Vife((7,A)) = Vife((, M), agent v,

n k+1
Y1 Aixi T —ba

2. computes V, f-((i1i,1)*) =
p 1fe((1,A)7) (Eg&ﬁﬂ_%

) and sets Ly = Li_4,
1
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3. finds

(u,h)f =  argmax {<V;fc((ﬁ,7\)k),(%h)l>—

(h)1€(QaxQp)i
Ladse -+ = o) |, = 5 o = o)}

4. if Ly < L. then

(a) agent, ), sends (u , W)k to the primal agents that require it if necessary:
if (@R = )| > o then
agent,, ), sets (i fz)é‘ (u,h)k and sends (i1,h)k.
else

agent, », sets (i1,h)§ = (,h){ " and signals that no data will be sent.

Fori=1,...,n, given the required subblocks of(ﬂ,l_l)k, agent,,

(b) computes

yht! = argmin{q>i(xi) + <ak,Aixi> + <I_1k,B1-xi> + cdx,.(xi)},

x;€X;
and sends yf” to the dual agents that require it.

Forl=1,...,s, given the blocks y;‘“ that are necessary for the computation of

Vife((,1)") = Vi fe((u, 1)), agent,, ),

_ n 1 k+1 b
(c) computes V;f.((,h)*) = <ZZ" A ) and checks with consensus
l

k+1
By ™' —
if

5 e - AP ] < TR - T, ) - ()

then
continues with step 5,
else

sets Ly = L7y and goes to step 3,

k .
5. finds (v,t)f =  argmax {—ffkdl((v,t)z)—l-z(:)]_‘z_ <Vlfc((ﬁ A) ),(U,t)l>},
i=

(v,8)1€(QaxQB):

k+1

6. sets (u,A)ft! = T3

(v,8)f + (u,h)f,

k+3
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7. and sends ( ‘u, A)k“ to the primal agents that require it if necessary:
if H Ak — (u )t H > A1 then
agent(y,A)l sets (;2 A = (u, A)¥T and sends (i, ).

else

agent, ), sets (L, A)f 1 = (

i1, A)¥ and signals that no data will be sent.

Remark 3.2.3.

1. Step 3 of the DAPCA-EC differs from step 2 of the DANA-EC by containing
11 + 1 instead of 17; which follows from the definition of the globally outdated vector in (3.23
and (3.24). The convergence result for this slightly modified version of the DANA-EC is
obtained exactly as in Theorem [2.5.5|with 1yax + 1 instead of 1yax.

2. For the choice L_1 = L, the above algorithm implements a slightly modified version of the
DNA-EC and in this case Algorithm is referred to as DPCA-EC (IMUA14,
Algo. 3.6]) in the following.

3. As we mentioned in [DMUH15) sec. 3], the Lipschitz constant L. of V f. can be com-
puted in parallel with local communication by the application of the consensus technique,
provided that the number of agents in the multi—agent network is known to the agents. The
same holds for the optimal convexity parameters crx of the prox-functions that are

used to smooth the dual function.

As already stated in Remark the adaptive step-size condition in step 4c) of the
DAPCA-EC is used as well in a distributed dual decomposition method [KCD15, Algo.
4] that applies a fast gradient scheme, where, however, the condition is verified centrally.
If the matrices A; and B; in have a sparse structure, agent,, possibly does not need all
the subblocks of (f,A) in iteration k in order to compute his subblock xf“. To empha-
size this, we denote in the following by ( ﬁ,f\)x“k € Q4 X Qp the vector whose subblocks
coincide with the outdated subblocks of (i, A)¥ if they are necessary to update x/ ™ and
whose subblocks are zero if not. It follows that the event-triggered communication is
not only related to the exchange of dual iterates in step 4a) and step 7, but also to the
exchange of primal iterates as xk+1 = x’-‘ if (y,/\)xi'k = (y,/\)""'k_1 for k > 1, i.e., in this case
k“ does not need to be send again to the requesting dual agents.
To be able to proof the convergence of the DAPCA-EC[3.2.2} we have to assume that the

set Q4 % Qp is bounded as done in Assumptions
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Firstly, we extend Lemma 2.5.4]in the following by bounding the error that occurs due to

event-triggered communication with the following constant
P(A) =27LcC ((fmax + 1) Bg'(6) +2) (3.25)

that contains the update parameter v > 0, the Lipschitz constant L. given in (3.6), the
diameter C of Q4 x Qp defined according to (2.13), the threshold parameters é € (0,1)
and B > 0, and finally the derivative of the function g(¢) defined in Theorem2.5.5]

Lemma 3.2.4. [MUAT14] Lem. 3.8]

The following inequality holds for (u,h)* (computed in step 3) of the DAPCA-EC and

(1, A)* defined according to fork > 0:
k+1)(k+2 Le , ki .
DTS2 (> max { 1 ZJT (f(mA)

(u,h)€QaxQp o

+ (VA () = (@A)  —P(8).  (326)

Proof. [MUA14, proof of Lem. 3.8]
For the choice ay = (k+1) /2 in Lemma [2.5.4 and with Remark (which holds for

Lemma [2.5.4]|as well), we obtain

(e (k42 max | -g = Bragmy+ 3oL ‘
fel(w, 1)) uheQAXQB{ )+ 10 (e AY)
=4 i k
+ (VE((mAY), (1) <m>f>)} - LE
£

k
> max {—pk— 7LCd(u,h)+Zi<fc((Vr M)

(u,h)€QaxQpB 2

o ) k
+ (VAR M), (1) = (wAY)) b = Y E,
where p is defined by (2.41) combined with Remark ie.,

=

It can easily be shown (cf. with the proof of Theorem 2.5.5) that

P(A) £ P(A)
k
o< 4 and j§_1Ej§ 1
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which yields
D > | max {—“Vde(u,h) + 3 CE (fm)
A B j=
(VAR ()~ <y,A>f>)} - Pe)
With (3.24), we have
(VM) (1) = (, A)f}
— (VA(()) f>+g<vlfc (M) = Fufel (e AV), (1) — (1, 1))
> (Vi (. (1 AY) —LCIX;H AT = (A || o)y = G|
- <(m+1)4;
> (V£ (M), (1) = (1 A)) = (s + 1) Ledsy | (0,1) = (1]

<C

and accordingly

(VA M), (1) = (1A ) = (VLA () = (1,2 ) = (max + 1) LeCA,.

Finally, we obtain for all (u,/) € Q4 x Qp with the concavity of f, that

]é]zU (1 A)) +{ Vel — (mAY) - (nmax+1)LCCA]-)_P(2A)
z]éfz( A <m>f>)—3fi§A>
=§j+21 (Fellm ) + VAl — e + (A - (AY)) - 20
Z}ioj;l(fc UERGZAC ~(nay)) - 2
3 (@A) + (TR )~ B3~ ) 1c08) -
>y P () + (VAR (@A) — Pa).

~
I
o
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The following lemma provides an upper bound on the primal gap and extends Theorem

by additionally considering the error due to event-triggered communication.

Theorem 3.2.5. [MUA14, Theo. 3.9]
After k iterations of the DAPCA-EC , the convex sum of the primal iterates (computed in
step 1)

2(j+1)

J+1 -
T k+2) for i=1,.

H M»

satisfies with (i, A) = (u,h)* (computed in step 3) the following upper bound on the primal gap:

Y @i(%) — fo(p,A) <cY Dy, —  max {—(k‘fg%d(y,m

i=1 i (nA)€Qax QB

. S 4P(8)
Alxl - bA,l/l> + <§lel - bB,/\>} + m

Il
—_

_|_
—
-

—_

Proof. The proof is almost identical to [NSO8, proof of Theo. 3.4], however, extends it by
additionally considering inequality constraints in as well as the error that occurs due
to event-triggered communication, and will be given here for the sake of completeness:
From inequality in Lemma [3.2.4]it follows for any k > 0 that

2 3 4L S 2(j+1) 1)
i, o |- )+ R ()

+ (VLAY (mA) = (1,A))) } - m (3:27)
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where (ji,A)F is defined by (3.2.1). Moreover,

j O

Z 2(j+1) - _
(k+1)(k+2) \! =

j+1
1Al~xi — bA

(z:ﬂ_
i1

oY dy (6 +
i=1

S 2(j+1) 3
; k+1)(k+2) (fe(mA
k
)
Bixf-'+1—b]3
(

)

)( i l i=1
e+ (L v )+ (ol -
i1 i=1 i1
2(j+1) - j+1 - j+1
Lk ) \(G& ) el

n n .
+ ZAifo - bA/V> + <ZBiX§H — bB/A>>

Y @ () + <2A1x§“ —ba i
i=1

o <Vfc((ﬁ,7\)j)/(%)‘) - (P_"W»
>A%M—Wﬁy

!
:i@jq72@<f¢wﬁ5+<fAﬁ”—“ﬂ
o+

(3.28)

(3.30)

(3.31)

where (3.29) follows from step 1 of the DAPCA-EC , inequality (3.30) follows from
the nonnegativity of the prox-functions dy,, and inequality (3.31) is obtained by making

use of the convexity of ®; and the definition of £; fori =1,...

with (3.28) in (3.27) yields

i ax 4L,
i1 H/\)GQAXQB (k+1)

<_1

M:

., >}_ 4P(A)
B (k+1)2

,n. Finally, replacing (3.31)
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and the claim follows immediately as

We close this section with two convergence results for the DAPCA-EC[3.2.2] that both pro-
vide an efficiency estimate of the order O(1/¢), i.e., of the same order as the efficiency
estimate for the PCA given in Theorem 3.1.5

The following theorem is based on [NS08, Theo. 3.6] and extends it by additionally con-

sidering inequality constraints and event-triggered communication.

Theorem 3.2.6. [MUA14, Theo. 3.10]

Assume that Qu x Qg = {(1,4) € R™ X R™ : ]l < R, A0y < R} for some R >0
such that (u, )Pt € Mt x A" N Qa x Qp with ||(u,A)!|| < R. Denote by D a finite con-
stant with D > max, 1)eq,x 0y d(#,A). For the choice ¢ = €/ (2)_4 Dx,) with € > 0 in

and

k+1= {2 LcE(A)w,
€

where
| _ 258, Dx S [|(AL BN
¢ € oy,
and
2D + c4C ((Hax + 1) B (6) + 2
E8) (s +1) B3 (6) +2)

o
after k iterations of the DAPCA-EC the convex sum of primal iterates (computed in step 1)

sy 2G+D)  n
xi_g)(lc—l—l)(lc—i—Z)] for i=1,.

satisfies with (fi,A) = (u,h)* (computed in step 3) the following bounds on the primal gap:

/\ opt n R
‘!ﬂwJ%ySE — folp,A) < (3.32)

as well as the following bound on the constraint violation:

Y Aiki—ba
(Y7 Bigi — bg] "

€

< 3.33
| = RG] (4:39)
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Proof. [MUA14, proof of Theo. 3.10]

The proof follows [NS08, proof of Theo. 3.6] and extends it by additionally considering
inequality constraints and event-triggered communication. If we have a look at the result
of Theorem

n . n 4L,
(%) — fo(n,A) <cY Dy — BT (A
izzl (x) fo(lu ) C; X; max { (k+1)20- (:u )

(hA)EQAx QB

+<iAiaei—bA,> <ZBxl bp, A >}+(i1ﬁ32’ (3.34)

i=1

the task is to minimize the right-hand side of the inequality with respect to c.
For the maximization part we obtain with the definition of D and
Qa x Q= {(1,A) € R™ X RE®: |[tl| o < R, [|A ][ yay < R} that

4L, A
max ——————d(u,A) + AiXi —ba, B;x; — bg,
(WA)EQA* Qs { (k+1)%0 (h:A) <Z_Z1 Ak > <Z g >}

4,)/LC n R n R
+ Aixi —ba, Bi%; — b, A
R B v ) (s
LD | oIy A —ball +R[|YBig - b +
= A Xi — Up
(k+1)? S 1 = 1
4vL.D Y1 Aiki—ba
- (k1) [ Bii — be]
and for inequality (3.34) we obtain
n n A A L 4’)/LCD anl Aifi—bA 4P(A)
Z%CDi(xz') — fo(p,A) < CgDXi + k+ 120 [2,; Byt — by]* + k+1)2 (3.35)
1= 1= 1= 11
n 4yL.D  4P(A)
<cY Dy + . (3.36)
l; (k+1)%c * (k+1)2
With
n||(AT,BD)T|?
L= Y AACEDTIE an p(a) = 292, (e + 1) B0 +2),
. ¥,

—c) 4D 8C ((max +1) B8’ (6) +2)
h(C)—Cl_Zle,-+’YLc<(k+1)ZU+ G )
:céDxl +Z<é H(AiT;TiZT) I )4D+08C((?;r$2?ﬁg/(5)+2)'
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To get the minimum of & we have to solve

=Dy - (Z (A7, BT) H2> 4D + 08C (max + 1) B8 (6) +2) _

i=1 (k+1)%c

i=1 Xi

opt |(AFBT) H2 4D + 08C ((fjmax + 1) Bg'(6) + 2)
<:>C1I;— J (Z (k—i—l)ZO'Z?:lD .

l

As c in (3.4) has to be positive, we choose

. (AT, BI)T|*\ 4D + 08C ((max + 1) 8’ (5) + 2)
Pt k+1¢ (Z oD, . (3.37)

1

Finally, we get

h(eorty — 2 Jv (Z | (AT, BT >TH2> (4D + 08C ((fmax + 1) g'(6) +2)) £y Dy,

(o4

_l_
—_

and with

o

o J (Z (A, B) TH2> (4D + 08C (s +1)Bg'(8) + 2)) TV D,

1

we obtain the right-hand side of inequality (3.32) and the value for ¢ = c°P!, yielding

k+1=2 LCEGM)

With inequality and inequality (3.35), we get

A'Jei — bA
1B1 Az - bB]

4yL.D  4P(A)
< . = .
| e LDt Geripe e 1O

-l 2

The bound on the constraint violation (3.33) follows immediately by replacing ¢ with c°P*.
Finally, applying inequality yields the lower bound on the primal gap. O

For the choice d(i,A) = (¢/2)||(1,A)|)?, the following theorem states the convergence
of the DAPCA-EC extending the result in Theorem by considering event-

triggered communication.
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Theorem 3.2.7.
Assume that d(u,A) = (¢/2) || (4, A)||* with arbitrary o > 0, and that the convex and compact
set Qa x Qp CR™4 x R contains a (u,A)Pt € MP' x A" as well as the vector (u,A)* with

+
= (kjil) (ZA:? —bA> and AT = (k“ !ZB —bB] . (338)
c i=1
For the choice c =€/ (2Y} 1 Dx,) with € > 0 in and
b1 {2 LC2R(A)—‘/

€

where

2y Dx, Xy (AL BDT|)?
€ (U

1

L. =

and

R(A) =72C ((Wmax +1)Bg'(0) + 2) ’

after k iterations of the DAPCA-EC the convex sum of primal iterates (computed in step 1)

2(j+1) J+1
Z TR

satisfies with (fi,A) =

(u,
el (i OPfH \/ I opfu A
— D;( aA) <e (339
VaR(A) <% )se 6
as well as the following bound on the constraint violation:
CiaAdi—ba | ve (]G "*’fH \/ @ Ur’fll )
[0, Bix; — bp] " V2R(A) \ /2R(A

Proof. The proof combines [NS08| proof of Theo. 3.6] and [NS08, proof Theo. 3.7] and ex-

tends them by additionally considering inequality constraints and event-triggered com-

)k (computed in step 3) the following bounds on the primal gap:

munication.
As done in the proof of Theorem we minimize the right-hand side of the following
inequality (shown in Theorem 3.2.5) with respect to c:

Y ®i(2) — folid) <o Z ~ ke G000
: V/\)GQAXQB (k+1) o
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For the choice d(1,A) = (¢/2)]|(1,A) )%, the assumption (u,A)* € Q4 x Qp yields that

;rggﬁ{ (kZH)Z I +<; — b, >

2L, L
+¥61an (k+1)2 ||AH + <; —bg, A >}
2 +,2
k+1* | &, o (k .
87L. i:zlAZXZ ba 8L ZB X, — bp
2
o (k1?0 T Aiti = ba
~ 8yLe || [W Bixi—bgl" ||
and we obtain
- A - (k+1)? 1Ak —ba 4P(A)
®i(%:) — fo(ft,A) <c)_Dx, — + 2 (341)
; 1( 1) fO(V ) ZZX; X 8L, [Z?:lBifi_bB]Jr (k+1)2
" 4P(A)
<c DX,- + —5. (342)
Z.; (k+1)2
With
n AT BT
2 H = ) H and P(A):2'YLCC ((Wmax+1>‘3g/<5)+2) :LCR(A),
i=1 X;

the right-hand side of (3.42) can be expressed as a function % (c) with

h(c) :chxi —|—LC(4kI:_(?>>2
L1y (AT, BNT||* 4R(A)
; E = Oy, (k+1)%

The positive minimizer c°P* of h(c) is given by

n AT,BT T
h/(c) ‘ ZH i 4 H (;1(111)) =0

opt _ "H<A?,B?>TH2 4R(A)
‘:’CPJZ 7 (k+170D

yielding

m (|(ATBD)T|” 4R(A) ¢
(k+1)2 Z;DXZ'

O-Xi

2 n (AiT’Bz'T)T 2 n
2 B sy £,

i=1 Ox; i=1
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With

Jz ALEDE s,
i=1

the upper bound on the primal gap in (3.39) is obtained and the value for ¢ = ¢°P'. It
follows that

L:2R(A)
e

k+1=2

For the choice of ¢ = ¢°P!, inequality (3.41) can be written as

Yai(s) — fo(pd) < - EUE| B Asi=in
i=1 The || [Eiq Bifi — bg]
and with inequality (3.8), we obtain
2 AR —
(k+1) LA — ey | S bA+ <o
87Lc [z” B;%; — b YL, Bi%; — bg]

It follows that the constraint violation has to be smaller than the largest root of

k+1)2 o
L N P
yielding
Yi1Aiki—b 4L, o +1
H o ' b;f+‘ kll (H PtH+\/H (b, AP + ( )> (343)
i=1"14

as detailed in the proof of Theorem With k + 1 = 2/L:2R(A) /¢, inequality (3.43)

can be rewritten as
v€e ont 2 4R(A)
< P opt

yielding the bounds on the constraint violation (3.40) and with the lower bound on
the primal gap (3.39). O

Y Aiki—ba
(X7 Biti — bg] "




4 Model of the AC/DC optimal power flow problem

In this chapter, the nonconvex alternating current optimal power flow (AC-OPF) problem
as well as the direct current optimal power flow (DC-OPF) problem are described.

To this end, a short introduction to the structure of a power system and some important
components is given in section In section the phasor representations of current
and voltage as well as the definitions of real, reactive, and apparent power are presented
for a better understanding of the derivation of the power balance equations in section[4.3|
Finally, the AC/DC-OPF problems are given in sections 4.4/ and

4.1 Structure of a power system

The following introduction to the structure of a power system and some important com-
ponents follows [BV00], [Blu08] and [Cral2].

Broadly speaking, a power system can be divided into three areas, namely the power
generating units, where the power is generated, the loads, where the power is consumed,
and the transmission/distribution network, where the power is transferred from the gen-
erating units to the loads [BV00, sec. 1.0]. In Figure |4.1| the one-line diagram of a portion

of a power system is shown.

% generator Q
U

transformer

N N
l station bus

substation bus

transmission line

load ——

Figure 4.1: One-line diagram (follows [BV00, Fig. 1.10]).
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At a generating unit electrical energy is provided by the conversion of either fossil en-
ergy stored in fuels such as coal, gas, and oil, or nuclear energy, or renewable energy
such as geothermal, solar, and wind energy. Independent of its kind, the source energy
is used at a power plant to run generators which consist of a cylinder, called stator, that
has three single-phase windings symmetrically placed (120 degrees to each other) at its
boundary. Within the stator an electromagnet is rotated, inducing an alternating voltage
on each winding [BIu08, chap. 2].

Usually, a generator is capable to produce a voltage on the three single-phase windings
that is between 11 and 30 kV [BV00, sec. 1.6]. If a running generator is connected to a
closed three-line circuit, the generated voltage produces in each line an alternating cur-
rent flow whose strength depends on the admittance of the conductor [Blu08, chap. 1-2].
Due to the symmetrical shift (by 120 degrees) of each current flow in each of the three
conductors, the analysis of a three-phase system can be done with an equivalent single-
phase circuit diagram which simplifies the computations. We therefore consider only
single-phase components in the following [Cral2, sec. 2.3].

The advantage of using alternating current (AC), i.e., a current that is flowing back and
forth instead of direct current (DC), flowing only in one direction, is that the usage of
AC (current and voltage) provides the possibility of using high-voltage power lines (up
to 765 kV) in the transmission network to transport electrical power from the generating
units over long distances to the distribution networks that connect the loads with the
system. As the power loss in a transmission line depends quadratically on the current,
the generated voltage is raised with step-up transformers, placed at station buses near
the power plants (Figure [4.I), such that the transmitted power is kept constant with the
effect that the current is decreased and high losses are avoided [Blu08, chap. 3], [BV00,
sec. 1.6].

Basically, a single-phase transformer can be described as follows [Blu08, chap. 4]:

The alternating current flowing into the transformer produces a changing magnetic field
around a winding “A”. This changing magnetic field induces an alternating voltage at
a winding “B” which is separated from winding “A”. If the winding number of “B” is
smaller than winding number of “A”, i.e., the turns ratio of the transformer is bigger than
1, than the voltage on winding “B” is (proportionally to the turns ratio) bigger than the
voltage on winding “A”. On the other side, if the turns ratio is smaller than one, the
corresponding transformer is called step-down transformer.

These step-down transformers are placed at substation buses that connect the transmis-

sion network with the distribution network (0.12 to 34.5 kV), where the power is dis-
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tributed to industrial or domestic consumers which are not capable of transforming a
high voltage themselves. However, as seen in Figure there is a load directly con-
nected to the station bus which refers to an industrial consumer that is capable of con-
suming high voltage power or transforming the voltage himself [BV00, sec. 1.6], [Blu08,
chap. 4].

Finally, the loads in a power system can be divided into three categories, namely into
inductive, capacitive, and resistive loads [Blu08, chap. 1]:

Inductive loads such as motors contain windings, where magnetic fields are established
when current is flowing through the windings which is therefore said to lag behind the
voltage. The power consumed by an inductive load to establish a magnetic field is called
reactive power Q and the power that does the motor’s task is called real power P. The
extent of the delay or phase shift between the applied voltage and current is denoted by
the power factor angle ® which is detailed in section

For capacitive loads such as televisions, the current is leading the voltage and beside the
real power, negative reactive power is consumed, i.e., reactive power is provided. It is fa-
vorable to balance inductive and capacitive loads in a power system which is done by the
installation of phase-shifting transformers, shunt reactors, and shunt capacitors [Blu08,
chap. 4] that are used to control the real and reactive power flow.

Finally, resistive loads such as lightbulbs consume only real power.

Since the nineties the electric power industry in the United States is in the process of
deregulation [BV00, sec. 1.7]: Before the nineties the generation as well as the transmis-
sion and distribution of power was done by only one company in a certain part of the
country. To allow competition in the power supply market this monopoly was started to
be dissolved by selling the different portions of a power system to private companies.
Regarding this process, a central determination of the optimal power generation (which
is done by solving the AC-OPF problem with a central entity) may not be favorable if the
power generating companies want to keep certain information private such as the cost
or the amount of power generation. We later show that this information, i.a., does not
need to be exchanged, when the DAPCA-EC is applied to solve the AC-OPF and
the DC-OPF problem in a distributed manner.
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4.2 Real, reactive, and apparent power

On the basis of [BV00, [Cral2], we introduce the phasor representations of voltage and
current as well as the definitions of real, reactive, and apparent power which help to
better understand the notion of complex power and complex power flow, occurring in
the power balance equations derived in section [4.3]

All physical quantities in this and the following sections are regarded as per unit values,
i.e., SI units such as watt, volt-ampere reactive etc. are neglected [BV00, sec. 5.5].
Following [BV00, chap. 2], the alternating voltage and current at a bus of a power system

network can be expressed as

0 (t) = Viaxcos (wt + 0y) = Re {Vmaxejf)vejwt}’
i(t) = Imaxcos (wt + 6;) =Re {Imaxejezejwt}/

where Viax and Imax are the amplitudes of the oscillations, w is their frequency and 60y,

01 are their phase angles. Moreover, the instantaneous power is [BVOO, p. 23 - 24]
p(t) =v(t)i(t) = ViaxImaxcos (wt + 0y ) cos (wt 4 0;) for t € R.

Let ® = 6y — 0 € [—71/2,71/2] be the power factor angle [BV00, p. 24] which indicates
if the current is leading the voltage (® < 0) or lagging the voltage (® > 0) or in phase
with the voltage (® = 0) [BV00, sec. 2.2]. To combine the representations in [BV00] and

[Cral2], let f = t — 6y /w for t € R. The instantaneous power can then be written as

p(F) =0 (5)i(f) = ViaxImax cos (wt) cos (wt — P)
= VmaxImax cos (wt) (cos (wt) cos (®) + sin (wt) sin (P))

= Vinax Imax €05 (t)% 08 (@) 4 Vinax Imax c0s (wt) sin (wt ) sin (®)

= % cos (®) (1 4 cos (2wt)) + @ sin (2wt) sin (P) (4.1)
— 7‘/‘“&’;1““ cos (@) + 7Vmazlmax cos () cos (2wt) + Lna;lmax sin (®) sin (2wt)

= |V||I|cos (@) + |V||I| cos (®) cos (2wt) + |V||I|sin (P)sin (2wt), (4.2)

where the identities cos(wt)? = (1 + cos(2wt)) /2 and sin(wt) cos(wt) = sin(2wt) /2 were
used to obtain according to [Cral2), p. 21]. Moreover, V and I in are the effective
phasor representations of the voltage v(t) and the current i(¢) denoted by [BV00, p. 23]

Vimax joy - ang 1 — Lmax o (4.3)

=" NG
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The real power P is defined as the integral of p(f) over [0, T =27t/ w] [BVO0, p. 24 - 25]

1 /T . 1 T Oy 1 /T
P_?/o p(t)dt—?/o p(t—w>dt—T/O IV[|I]cos (D) dt

T 1 T
+/ |V]|I]cos(<1>)cos(2wt)dt+T/ |V||1|sin (P) sin (2wt ) dt
0 0

=0 =0
=|V||I|cos (P).

The reactive power Q is defined as the amplitude of the third term in [Cral2| p. 21],

ie.,
Q = [V|1]sin ().
The complex power S is given by [BV00, p. 26]
S=P+jQ=|V||I| (cos (P) +jsin (D)) = |V||I|O~0) = |V| |I|e T = V¥,

where V and I are the effective phasor representations of v(t) and i(t) in (4.3).
Finally, the apparent power [BV00, p. 28] is defined by |S| = \/P? + Q? = |V||I| which is
the amplitude of the instantaneous power p(f) as [Cral2, p. 21]

p(f) =|V||I|cos(®) + |V]||I|cos (P)cos (2wt) + |V]||I| sin (P) sin (2wt)
= |V||I|cos (®) + |V||I|cos (2wt — D).

For a visualization of the instantaneous power, the reactive power, and the real power
see [Cral2, Fig. 2.3].

4.3 Nodal network equations

In this section, we follow [ZMS11] [GS94] to derive the nodal network equations that are
constraints of the AC-OPF problem.

To this end, we identify the power system network with a graph that has n, nodes, repre-
senting the buses in the power system network, and n; edges that represent the branches
of the system, where a branch is a transmission line or a transformer that connects two
buses. Moreover, let \V}, be the set of buses and N be the set of generators, where each
generator is identified with the bus that it is connected to, i.e., Ng C M. (To be consistent
with Figure4.1/imagine there a bus between the generator and the transformer and a bus
between the load and the transformer.) Finally, let N] C A, X A, be the set of branches of
the power system network and denote by ny, = [Ny, g = | Ng|, and ny = | V| the number

of buses, generators, and branches following, the notation in [ZMS11, sec. 3.1].
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The model of either a transmission line or a transformer, i.e., of an element (i,j) € NV,
is given by the combined branch model shown in Figure which merges the repre-
sentations from [ZMS11) chap. 3] and [GS94, chap. 6 & sec. 9.6] (where the details
for the following definitions can be found) and shows two buses i,j € N}, with voltages

Vi and V; causing the currents [;; and I;;. Depending on the choice of the tap ratio

L 1:¢ Iij/t:-} Yi

. e
+ +

tiVi T yi/2 yi/2 4

Figure 4.2: Combined branch model® corresponding to branch I = (i,j) € N (follows
[ZMS11), Fig. 3.1] and [GS94, Fig. 6.7/9.7]).

t;j and the charging capacitance yij =1 / JX5i where xj; is the capacitive reactance of the
branch, the buses are connected either by a transmission line or a transformer with ad-
mittance y;; =1/ (ri]- + jxi]-), where 7;; is the resistance and x;; is the inductive reactance of
the branch. A transformer is modeled by setting the charging capacitance y;; = 0 and de-
pending on the transformer type, the tap ratio ¢;; is either real or complex. If t;; = 7;; € R,
where T;; is denoted as the turns ratio, the corresponding transformer changes only the
magnitude of the voltage V; and the current [;; as shown in Figure 4.2/ (and described in
section . If t;j = 1jjexp (ij]hift) with 7; € R4, the corresponding transformer changes
the magnitude and shifts the phase angles of the voltage V; and the current [;; by the
phase shift angle Gf]hift. On the other side a transmission line is modeled by setting the
tap ratio t;; = 1.

If connected by a transformer the current flows [;; and I;; between bus i and bus j are the
following [GS94, sec. 9.6]:

I = (V; — tVi) yij = —vijtii Vi + viiV, (4.4)
Ly = —t5I; = yy T3 Vi — yijtii Ve (4.5)

LCreated with the LaTeX package circuitikz which provides standardized circuit components.
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Accordingly, the current flow equations between bus i and bus j connected by a trans-
mission line are (cf. [ZMS11), sec. 3.2])

I]l (‘/] Vz) ]/1] + ‘/]7/ (46)
Yij
Lj=(Vi= V) yi + Vig (4.7)

Combining (4.4) with and (4.5) with (4.7) for a compact representation of the current

flow in the combined branch model yields

Yij

I]‘i = yl] + *2 V] — yijtij\/l-,
ylc] 2 *

Iij = yl] + *2 Ti]‘Vi — yijtij‘/j/

which can be expressed in terms of the branch admittance matrix YP* with I = (i,j) € M

by [ZMS11), sec. 3.2]
Iji 4

Yij *
ybr — ((]/ij + 7]) Tz% —Yijti )
l -_— .

where

Yij

—Yiiti Yt

According to [ZMS11, sec. 3.3], a generator placed at bus i is modeled as:
¢ = B 40,

where P? is the generated real and QF the generated reactive power.

A load at bus i is described as the complex power demand [ZMS11, sec. 3.4]
St =P +iQf,

where P{ is the real power demand and Q¢ the reactive power demand.
Finally, a shunt element (capacitor or reactor) placed at bus i is modeled by the admit-
tance [ZMS11), sec. 3.5]

yit = g5 +jbsh, (4.8)

where g is the conductance and b5" the susceptance of the shunt element.
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Incorporating the tap ratios of the transformers as well as the admittances of the shunt
elements, transmission lines, and transformers into the bus admittance matrix YPus
R"™>", the relation between the current injection I; at a bus i and the voltages V; at buses
j that are connected to bus i can be expressed as [ZMS11], sec. 3.6]

13
I = EY};“SV]' for i=1,...,m, (4.9)
=1

where YPU is defined as follows:
Let F, T € R"*" be the connection matrices given by [ZMS11, p. 17]

0 else,

{1 if 1 = (i,k) € N for some k € N,

(4.10)
. {1 if 1 = (k,i) € N, for some k € N,
i =

else .

Then the bus admittance matrix YP" is defined as [ZMS11), sec. 3.6]

¥YPus —FT diag ((y}’r> e (Y};’f) 11> F 4 F' diag ((Yf’r> TR (Y;lflr) 12) T
+ Trdiag (), . (Y0), VE+ TTaiag (i) (¥0) )T
+ diag (yih,...,yf};) .
Let F(i) = {j € N+ (ij) € Ni} and T()) = {j € My : (j,i) € M}, then it follows for
i,j € Np that

Yik;us :é [FH (Ylbr)n Fij+ By (Ylbr)lz Tij +Tii (Ylbr) 21 by + T (Ylbr) 22 le]

+ diag (yﬁh,. . ,y,ﬁ?) i

Tker() (e + 3 ) T+ Thery (v + %) +9" ifi=)

S if (i,j) € My, (4.11)
—Yjitji if (,i) € M,
‘O else .

With (4.11) the current injection (4.9) at bus i is explicitly given by

I = ( ). <yik+y2ik) Tt ) (ykz ykl)+yfh>v_ Y vitiVi— ) it
)

keF(i keT(i JEF(i) jeT(i)
=Y Li+ ), Il]—l—yShV

Z]EF ):JET( i)
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As described in section[4.2} the complex power injection S; = P; +jQ; at bus i is [ZMS11]
sec. 3.6]

b * L
Si= Vil =V YRV = X Vil Yl v,
i=1

JEF(i) YjeT(i)
h
= Zsi]'—f— ZSi]-JrSf,
YjcF(i) YieT(i)

where S¢h = Viyf’h* V;* denotes the complex power injected into bus i by the shunt element
(capacitor or reactor) and S;; = V;Ij; denotes the complex power flow from bus i to bus j
connected by a branch [ZMS11], sec. 3.6]:

Vi ((yz’j + %) Vi — ]/ijf?jVj) if (i,j) € My,
Vi ((yji + yj’c') Vi— yjifjiVj> if (j,i) € M.

Finally, for all i € MV, the AC power balance equations that relate the difference of the

Sij=Vilj; = (4.12)

produced and consumed power to the power flowing in the network are [ZMS11] sec.
3.6]
S&—sd ifie N,

S; = (4.13)
—Sf1 ifiGNb\Ng.

44 AC optimal power flow problem

After having established the nodal network equations in section we are now ready
to state the AC-OPF problem. The AC-OPF problem actually comprises all sorts of opti-
mization problems that arise in power system networks and depending on the objective
function and the constraints it finds application in the real-time control or operational
planning of a power system [Mom01) chap. 11 I]. In this work, however, we focus on the
fuel cost minimization problem which is of the latter type and is applied to reduce the
cost of real power generation subject to constraints such as the power balance equations,
real power generating limits, and limits on the power flow at the branches [MomO01, chap.
1111].

We follow the notation of [LL12, sec. II] and model the real power generation cost as a

quadratic function
2
C;i (P?) = anpP?" +a; P + ay, (4.14)

where a;,a;1,a;0 > 0 fori € Ng. This quadratic cost model coincides with the model in
the benchmark IEEE systems [Uni] that are used in this work for numerical results. Ad-

ditionally, the cost of reactive power production could be considered too, but according
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to [PMVDBO05), sec. I, the real power cost is of peculiar interest in the competition on
customers as the reactive power production is not explicitly charged.
Following [LL10, sec. I A] and [LL12, sec. II - I1I], the AC-OPF problem that we consider

is given by

i (P8

p%?vg Ci (P?) (4.15a)
g

st Vi = (plg . P;i) +i (Q;g - Q?) Vie N, (4.15b)
VilF = —pf —jQf Vie Ny \ N, (4.15¢)
S| < S5 V(i) € M, (4.15d)
|Sjil < S Y (i,f) €M, (4.15¢)
pmin < pg < pmax Vie N, (4.15f)
Q™ < QF < Q™ Vie N, (4.15g)
VR < V| < v Vie Ny, (4.15h)

where (4.15b) and (4.15c) are the power balance equations (4.13). The apparent power
flow capacities of each branch (i,j) € N are observed by the constraints (4.15d) and

, where S;; and Sj; are given in for (i,j) € Nj. Alternatively, limits on the
magnitude of the real power flow or the current flow at each branch can be considered,
but usually constraints (4.15d) and {#.15€) are used [ZMS11] sec. 5.1].

Finally, constraints (4.15f) and (4.15g) express the limits on the power generation, whereas
limits the voltage magnitude at each bus, preventing from overvoltage.

4.5 DC optimal power flow problem

The AC-OPF problem is a nonlinear and nonconvex problem whose optimal solution
provides voltage magnitudes and voltage phase angles as well as the optimal real and
reactive power generation for a cost-efficient operation of the power system, regarding
the real power cost. However, if only the amount and cost of real power production
is of interest, the DC-OPF problem can solved which is a linear and convex optimization
problem, where only the real power and the voltage phase angles are considered [ZMS11],
sec. 5.2] [PMVDBO05].

In fact, the DC-OPF problem is a linearized version of the AC-OPF problem obtained

under the following assumptions.
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Assumptions 4.5.1. [[ZMS1]] sec. 3.7], [PMVDBO05, sec. III]]

1. The branch resistances r;j can be ignored as r;; << x;j, yielding

1 Fij i J

T v 2 2 2 2 YT
Tij + JXij rl.j—i—xi]. rij—i—xi]. Xij

Yij

Moreover, the charging capacitances y;; can be ignored too.

2. The voltage amplitudes are in the vicinity of 1 p.u., i.e.,

V; ~ %,

3. The voltage angles are so close together that

shift
ij

shift

sin(Gi—Oj—i—Q )zei—9j+9i].

With these assumptions the approximations of the real part of the power flow balance
equations (4.15b), and real part of the power flow constraints (#.15d),([#.15¢) can be
derived similar to [ZMS11), sec. 3.7]: Applying Assumptions to the bus admittance
matrix Y®" defined by yields

— Yker() o — Tkery i T ifi=],
o i (i,f) € A,

Y}:gus ~ XT} ij
1 .
! if (j,i) € N,

5

0 else,

and for the approximate current injection at bus i we obtain

8 . . ) . ) . )
=Y Yo~ (— Y i % ’+y?h> i Y Ly Lt
=1

keF(i) ik keT (i) Yki jeE(i) i jeT(i) Vi
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It follows that the real power injection at bus i can be approximated by

Pi:Re{Si}zRe{el Z }
~ Re{e19 ( T3+ 2 +yfh*) i (4.16)
ik Xki

keT(i

EJG Z tz]e 0 — 619 Z ] t*e_lg}

JEF () ij JET(i) Xji

5h1ft 0. . 1 bhlft 0.
—Re{ —% Y —TZJ e et Y J e 191}

jeF () *i jeT(i) Vi
—Re {yfh* y J g letn) oy L“Tjiej@f_ef}m—ef) }
JeF(') Xij jeT(') xﬂ
=g+ ) —sm (ei T gghit ) Ly 7sm (91‘ g 9])
jEF(i) Xij ]ET Xji
~ght Y (ei + g5t ) + r L(o-eanit—g)
JEF(i) JET(i) Xji
_ osh Tij Tij Tji
JEFG) U jeT(i) jeF(i) i jeT(i) Vi
Tii o ,
4 Z lgisjhlft . Z le;:ihlft' (4.17)
jeF(i) Yij jeT(i) Xt
The approximated real power flows P;; = Re{S;;} and Pj; = Re{S;;} between bus i and

bus j, that are connected by branch (i, ]) €N, are accordmgly [ZM511], sec. 3.7]

* Y *
Pij:Re{Sij} ZRe{ViIij} Re{ ((yl] ) V yz] ) }
~ Re {ejei <—]T£e]9’ + ] t* ele > } = Re {ejei (]Tl%e_jei — ]tl]e_]9]> }
Xij Xij Xij Xij

shift i i (9, +gshift g,
_Red —e ) 7" e § = Re —Lﬁjé( )
x1] xi]'

_Tj (g pshift o\ o TP (g pohift _ g
xjj o <91 03 fi ) T xg (91 3 b ) (4.18)
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: 2 *
P = Re{S;;} :Re{V]I]l} - Re{vj ((yij + 2”) 1% _yijtijvi> }
%Re{ejei< J e 4 J ti ele> }:Re{ejef( )¢ ]ef—itle 91’)}
Xij Xij Xij xjj

i _igshift .o i i(6,—@shift_g,
:Re{_ele ] T]e ]911 ]91} :Re{_]Ti].e](/ ij )}

Xij Xij

_ G shift g\ ~ Y (9. _ pshift _ o
. s1n<9 6 91>”xij (9] 6; 91). (4.19)

and

To write the approximated real power flow and the approximated real power flow equa-
tions in a compact form, let I inc =« RM*m denote the network incidence matrix defined by
[GS94], sec. 7.5]

[M=F-T,

where F and T are the connection matrices (4.10). Moreover, we define the weighted
network incidence matrix similar to [WL10, sec. II] by
o g (1., )
xl 7 7 an 7
where 7;/x; = 7/ x;; for | = (i,j) € N}. Defining [ZMS11], sec. 3.7]
Bbus — IincTWinc — Iinchiag <T1 o Tnl) Iinc
x1 7 7 xnl 7
it follows for i,j € N, that

ZkeF + Z keT(i *. ifi = j,
Tij . ..
Bbus Z Imc mc — _XT; if (lr]) € M/
— if (j,i) € M,
0 else .

\

The approximated real power injection at bus i can be expressed in a compact manner as
[ZMS11], sec. 3.7]

nl . . . .
4.17) = ZBbuSG + ZW;?cglshlft 4 ngh — <Bbu39> ' 4 (Wlnchshlft> . + glsh’
=1 i i

where 6 € R™ is the vector containing the voltage phase angles and 6"t € R™ is the
vector of phase shift angles with ghift = Bf]hift forl = (i,j) € M. Foralli € N, the approx-
imated real power balance equations are then given by [ZMS11], sec. 3.7]

PF —Pd ifie N,

(Bbu59> + <WincT95hift) ' +g;;h — i i
! ! —pd if i € Np \ Ng.

1
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Accordingly, the approximated real power flows from bus i and from bus j at branch

I = (i,j) € N, are compactly written as [ZMS11] sec. 3.7]

4.18) = (W™0) + 63 and (4.19) = — (Wp) — o,

In sum, neglecting the reactive power and applying Assumptions to the AC-OPF
problem (4.15) yields the DC-OPF problem (cf. [ZMS11), sec. 5.2])

min ig;vg Ci (P?) (4.20a)
st. (B=0) + (Win'eht) 4 gh—pE_ Bl VieA,, (4.20b)
(B™=0) + (winelgehift) 4 goh — —pd Vie Ny \ N, (4.200)
|(wio) + i) < g VI=(ij) €N,  (420d)
|- (wie) — o3| < s VI = (i,j) € N, (4.20e)
Pt < pE < prax Vie N, (4.20f)
gmin < g; < gmax Vi € My, (4.20g)

where the constraints are the approximated versions of the constraints of the AC-OPF
problem (4.15) in the same order. For a compact representation of (4.20) note that con-
straint (4.20e) is redundant and let I8 € R"™*"s be the matrix defined by [ZMS11] sec.
3.3]

1 if generator j is connected to bus i,

0 else.

Moreover, define lAjEl — Pd 4 WincTeshift 4 gsh, Fmax — gmax __ Gshift, and Fmin — _gmax _
gshift, where SMaX € R™ is the vector containing S™ for | = (i,j) € M.
Then the DC-OPF problem (4.20) can be written as (cf. [ZMS11 sec. 5.2])

rI%i’rgliEZj\;fg C; (P?) (4.21a)
s.t. BPUS9 = [8Pp8 — pd, (4.21b)
Fmin < pincg < pmax, (4.21c)
pmin < pf < pmax Vie N, (4.21d)
gmin < g; < gmax Vi e Ny, (4.21e)

which is similar to the representation in [WL10, sec. 2] that we used in [MUA14, sec. 4],

however, a more exact model is considered here.
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In this chapter, the DC-OPF problem and the dual of the AC-OPF problem
are decomposed by dual decomposition to be able to apply the DAPCA-EC

In section[5.1} it is shown how the DAPCA-EC can be applied to maximize the augmented
dual of the DC-OPF problem and in section[5.3} the application of the DAPCA-EC to solve
the AC-OPF problem is stated.

Moreover, for both applications of the DAPCA-EC the communication topology is dis-
cussed, confirming that the communication is local with respect to the power system
network topology for the DC-OPF problem, and the same holds for the AC-OPF problem

if the network representing the power system is chordal.

5.1 Application of the DAPCA-EC to the DC-OPF problem

Parts of the content of this section were essentially published in [MUA14, sec. 4] (Meinel, Ul-
brich, and Albrecht) for the application of the DPCA-EC to the DC-OPF problem and are used in
this section for the application of the DAPCA-EC to the DC-OPF problem.

To be able to apply the DAPCA-EC to solve the DC-OPF problem

%i’gieNg C; (P#) (5.1a)
s.t. BP9 = [8p8 — pd, (5.1b)
Fmin < pyincg < pmax, (5.1¢)
pmin < p < pmax Vie N, (5.1d)
gmin < g; < gMmax Vi e Np. (5.1e)

in parallel and with local communication, the problem needs to be dually decomposed

after defining the compact sets

1

P = [p.min,Pimax} for ie Ny and ©; = [9?‘1“,9?“} for i € N

which allow the application of the convergence results derived in the previous sections.

77
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As described in section 3.1} the Lagrangian of with respect to the constraints (5.1D)
and (5.1¢) is given by

L(P85,0,u,A Z G pg ;Al ((WinC9>l _ I:lmax) + anllAHm ((_Winc9> me)

ze./\/g

+ Zyl ( IEPS). (Bbuse)i — 133) (5.2)

Smoothing the Lagrangian by the prox-functions d;(x;) = (0;/2)x? with 0; > 0 for i =

1,...,ng + ny, yields the following dual augmented function:

fe(w,A)=_ min {ZC (P%) + Xl;m((wime) — ™) (5.3)

Pig €P;, 6,€0; ZGNg

" D ((~we) +Fmo)

ieNg i=1

.
S R GO s ]

= Z min {Ci (Pig) +yipzf5 4 co; PgZ}

iENg Pingi
I inc bus COitng »
+ E@Hg& { <le§1.) (}\1 - AH—m) W Z y]B ) 0; + TQZ- }
= JEN(i)U{i}
n
+ 3 (Mo B = AF) — Zuz (5.4)
1=1

where for i € A}, the set N(i) = {j € My, : (i,j) € MV (j,i) € M} denotes the set of
buses that are connected to bus i by a branch, and L(i) = {l e M, : I = (i,j)VI=
(j,i) for some j € N}, } denotes the set of branches I that connect bus i with the power
system network. Both sets are similarly defined as in [WL10, sec. II] and indicate the
suitable structure of the decomposed DC-OPF problem with respect to local communica-

tion exchange for the determination of the primal variables.
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According to Theorem the partial derivatives of f, are given by

IR — (158 (), ~ (B0, 0)) P

[P -Tien 40 BZ'“S@'(M) —PiifieNg, 65
afca(])/\ll//\) _ (Wince(‘u/)\)) Fmax
— Z mce Flrnax, (56)
ieG(l
afc(“l/l,/\) _ incp. min
. (w OZ(V,A)) +F
= Z — Wi 6, A) + F, (5.7)
ieG(l

where the set G(I) = {i,j : 1 = (i,j)} contains the indices of buses that are connected
by branch [ for I € A}. Using the sets N(i) and G(I) in the above representation, where
G(1) is similarly defined as in [LL99, WL09a] (related to network utility maximization),
indicates the suitable structure of the partial derivatives of the augmented dual function
with respect to a local communication exchange.

Accordingly, with Theorem 3.1.1]the Lipschitz constant L. of V f; can be determined after
detecting the coefficient matrices of the primal variables P¥ and 6; in the constraints
and which are

1

. . T T
(B}?HST,w;ﬂCT,—w;“CT) eR™2 for 6; and — (eiT ,oT,oT) € R™*21 for pS,

where ¢; € R™ denotes the unit vector and B}’“S and Wl.inC are the ith columns of the
corresponding matrices. With Theorem it follows immediately that the Lipschitz

constant is given by

2
T

bus N 7inc T 1 7inc T
(Bi r VY s Y

2
np, H—(EE,OT,OT)TH
L= i

2 inc2
_ " Y ieN(i)ui} B]k"ius ‘—I-ZZleL(i) Wy i Z %‘ (5.8)

i=1 COitng iENg
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The Lagrangian of the DC-OPF problem does not need to be smoothen with respect
to the primal variables P? for i € NV, to obtain a continuously differentiable dual function

if the leading coefficients a;, of the quadratic cost functions
Ci (P?) = ﬂizpigz + a1 PP +ay
are positive. In this case it holds for all x,y € R that
(VCi(x) = VCi(y)" (x —y) =2ap (x —y)°,

showing the strongly convexity of C; with convexity parameter 2a;, according to (2.5).
Defining éi(Pig) =aj Pig + ajp it can easily be seen that the Lipschitz constant of the gra-

dient of the augmented dual function

. [ = 2a;
f(1,A) = ¥ min {cl- (PE) +yipl,g+gzpigz}

ieN, P €P:
¢ . inc bus CUi+”g 2
+ ) min Y (M =AW= ) B | 6+ 0
s N N ) JeN(HU{i} 2
n . 1, —
T (Al+anfn1“ - AlleaX> ~ Y P,
=1 i—1

whose partial derivatives are given by (5.5), and as well, is obtained by simply

exchanging co; with 2a;, in (5.8), yielding

2 L2
L ”Eb Y jeN(i)uli} B}’ius +2) geri) Wi N 1 59)
C h— . .

i=1 C(Ti+ﬂg ieNg 25112

Consider the following multi-agent network whose topology shall coincide with the
power system network: For i € N, agent; is responsible for updating the primal vari-
ables 6; and Pl.g (ifi € Ng) and is placed at bus i. Fori € MV, agent,,, controls the variable
y; and is identified with agent;. For | = (i,j) € N}, agent,, controls the variable A; and is
identified with agent; as well. Accordingly, agent), o controls the variable A;,, and is
identified with agent;.
The initialization of the DAPCA-EC to solve

A max o felwA) (5.10)

in parallel and with event-triggered communication, where Q, C R™ and Q) C ]Rff“ are

compact and convex sets that are assumed to contain an optimal dual multiplier (y,A )P,
is done in the following by choosing ¥ > 1, L_1 € (0, L], and the starting point (ji,A)° =
(1,1)? as the minimum of the separable prox-function d(u,A) = (¢/2) || (1, A) I|? with con-
vexity parameter o > 0 according to Assumptions[2.2.1] Moreover, let (i7,7) ' = (j1,A)°.
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Algorithm 5.1.1. (DAPCA-EC to solve the DC-OPF problem) For k > 0 do in parallel:
PoriENh,givenﬁ;‘ if j € N(i) U {i} and AF,A¥ L if L € L(i), agent;

1. computes

psil = argmin{C (P$) + f*Pf + —sz} if ieN,,

PISEP,' 2
9k+1 _ : )\k by Wmc —kaus 9 Cgi+”g 9.2
i —argmin Z ( l+n1) Z HjDji it 2 i ’
0;€0; IeL(i) JEN(i)U{i}

and sends 011 to agent,;, agent,,, and agent,,  if j € N(i) and I € L(i).

Fori € Nyand | € N, given the iterates Pz-g’k+1 and 95‘” that are necessary for the computation
of the partial derivatives of f.((fi,A)¥), agent,,, agent,,, and agenty, .,

2. compute
Vi = M - <1gpg,k+1> _ Z Rbusgk+1 _ pd
Hi a“l/ll i — ] i’
JEN(I)U{i}
fe((1,A
ko Ci mc k+1 _ pmax
V/\l - A, ze; 91 i
k — M Z Wzn09k+1 Fmin
A1+n, aAl+n1 Gl li 7

and set Ly = Ly_4,

3. find

L
uf = argmax {VVI;” — (11, + 1) LDy ‘,u —pf| - ?k(lf‘ - .“i'()z}'

neQy CR

hf = argmax {)‘VM (mr, +1) LkAk‘)\ AF| — Lk(A A2 }
/\GQ/\IC]R+

I’l;:Lm = argmax {/\V/\H-n (77/\1+n + 1) LAy ‘/\ )\l+n1 _

/\EQ/\PH” CR+

L
7"(A )\ﬁm)z}.
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4. if Ly < L. then

(a) agent,,, agenty, ,and agent,, . exchange information if necessary:

1f‘ 7k — yk "Ak then
agent,, sets ik = u¥ and sends ik to agent; if j € N(i).

else
agent; sets itf = a1
if (Ek—l - hk( > Lpy then

agent, sets h¥ = h¥ and sends hf to agent; if 1 € L(j).

and signals that no data will be sent.

else

agent,, sets hf = hk 1 and signals that no data will be sent.

and h*

Agenty,., proceeds accordingly with h¥ Ity

I+n
For i € Ny, given L‘t;‘ ifj € N(i) U {i} and h¥,h¥ Ln if L € L(i), agent;
(b) computes

1ﬁ5l.grk+1 — argmin{Ci(szg) + @i Pf + co; pg2} if i€ N,
Plng’P,‘

nk+1
01‘

:argmin Z (hk hl—i—n;)wmc Z _;(Bflus 9 + Z+ng92 ’
6;€0; IeL(i) JEN(i)U{i}

and sends 651 to agenty,, agent,,, and agent,,  if j € N(i) and I € L(i).

Fori € Ny and | € N, given the iterates lgl.g’kJrl and 051 that are necessary for the compu-
tation of the partial derivatives of f.((i1,h)¥), agent,,, agent,,, and agent,, oy

(c) compute
ofe (1) = (mpekt) - Y B
ou; i =TT i
! jeN(H)U{i}
afc(al’_:/hk) _ Z Wliz‘ncéZ‘(Jﬂ _ Flmaxl
! i€G(l)
afC (ﬂk/ h Z 1ncA7§+1 szn

ahl+"’ ieG(l

and check with consensus (section
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if
ny+2n;
3 2 (- wa)
ny+2n; ~ ~
L (VA@m = Vif (w9 (wh)f = (e 1)) (5.11)
=1
then

continue with step 5,
else

set Ly = Ly7y and goe to step 3,

5. find
1
vf = argmax Z I+ V{,}
v€Qy,; CR 2 j=0
1
5 = argmax { — t2+tz]+ V]A
reQx CR+ !
L 1
tﬁn[ = argmax — P4 tZ] + /\Z ,
teQuy,, CR+ 2 j=0 i
6. set
k+1 2
k+1 _ W k
Hi k+3l+k+3%’
k+1 2
Ak+1 hk s
kr3 Tkral
AR _ k+1 2

l+11] k+3hl+n[ k+3tl+n[’

7. and exchange information if necessary:
if ‘ﬁf — k+1’ > Ak+1 then
agent,,, sets ik ™' = p¥ ! and sends ¥t to agent; if j € N(i).
else
agent; sets ﬁf“ = ji¥ and signals that no data will be sent.
if ‘/_\5‘ — /\é‘“‘ > Aryq then
agenty, sets Ay = AT and sends A} to agent; if 1 € L(j).
else
hlas

agent,, sets = }\f and signals that no data will be sent.

Agenty,, proceeds accordingly with /\ﬁ; and Aﬁi
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Remark 5.1.2.

1. For the choice L_1 = L., the DAPCA-EC coincides with the DPCA-EC [MUA14,
Algorithm 4.1] applied to solve the DC-OPF problem.

2. Finally, the amount of power generation P, which may be considered as sensitive informa-
tion in a competitive power supplying environment, is controlled by the agent; placed at
bus/generator i and not exchanged in Algorithm[5.1.1}

Regarding the communication exchange of the agents in Algorithm it follows im-
mediately from the definition of the sets N(i), L(i), and G(I) that the iterates have to be
exchanged only locally in the above chosen multi-agent network, i.e., only agents placed
at neighboring buses have to communicate with each other, which is exemplarily de-
tailed for the first two steps of Algorithm in the following (and therefore also holds
for step4 b) and 4 ¢)):

In step 1, agent; only needs the iterate itf for the computation of Plfg’kle (if i € Ny) which
he controls himself. For the computation of 95.‘“, it follows from the definition of the sets
L(i) and N(i) that only iterates A¥, A oy
and neighboring agents in the power system network.

and ;2;-‘ are involved that are controlled by agent;

In step 2, agent; can compute the partial derivative with neighborhood information due
to the definition of N (i) and the fact that he controls P? (if i € Ng) as well as 6;. Accord-
ingly, agent,, and agent,,, are only compelled to communicate with neighboring agents
by the definition of G(I).

The parallel implementation of the consensus check in step 4 needs only local commu-
nication as well, as the multi-agent network has the same topology as the power system
network according to the above placement of agents.

Finally, we derive the following bounds on the numbers 7,,, 17,,, and 7,, o of the dual
variables that influence the corresponding partial derivatives V. f, V), f., and V), . fe:
The partial derivative of f. with respect to y; in step 2 of Algorithm[5.1.1]is given by

Z th}us g;c-i-l _ 13?

fe (i, A¥) _ (Igpg,m) 3
jEN(ULi)

a}li i
and involves the primal iterate Pf’kH if i € Ny and 0;.‘“ if j € N(i) U{i}. The computation
of

) _ co; o
pZS'kJr1 = ar%mm{Ci(Plg) + ;LtfP;g + 7113{%’2} if i€Ng
PP eP;
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involves the dual iterate fi¥ and is therefore controlled by agent; himself. On the other

side, for j € N (i) U {i} the computation of the primal iterate

9;<+1 — argmin{ ( Z (/\k Al—o—nl)wmc Z ‘ukaus) 9 + ]+ng9 }

6;c0; leL(j) teN(j)u{j}

involves the dual iterates A¥ and A;,, if I € L(j) as well as fif if t € N(j) U {j}. Asi¢€
N(j) U{j} it follows that agent,, controls one of the i1 with t € N(j) U {j} himself and it

can be seen that

me< ), RILDIFINGDIT= Y 3BING)
jENDU{i} JEN@U{i}

The partial derivative of f. with respect to A; is

fC( ‘ § ]/\7 Hk E
inc +1 max
1€G

and involves the primal iterate 05‘“ if i € G(I). Repeating the above argumentation it
follows that

< 2 2|L(#)| + [N(i) 23|N
ieG(! ieG(!
Accordingly,
oy < B PILOIEINGI = T 3ING)
ieG(l) ieG(l
Remark 5.1.3.

In [WLI0I (which as well as [LL99, WL09all (both related to network utility maximization) in-
spired the decomposition of the DC-OPF problem and the resulting local communication derived
above), it is shown that a reformulated version of the DC-OPF problem can be solved distribut-
edly with event-triggered and local communication by minimizing a corresponding unconstrained
augmented cost function with a gradient scheme which converges in case of strictly increasing,
convex, and differentiable objective cost functions. In [BBO3|, the power system is divided into
areas that are connected via tie-lines, resulting in an equivalent formulation of the DC-OPF prob-
lem that is separable with respect to each area up to coupling constraints that are related to the
tie-lines. An iterative scheme is proposed that uses local communication with respect to the tie-
line connections. In [[JDRO8|, the DC-OPF problem is decomposed node-wisely by fixing variables

(phase angles, multipliers) that have to be exchanged in the optimization process.
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5.2 Application of the DAPCA-EC to LMI-constrained problems

The content of this section follows [DMUH15) sec. 4] (Deroo, Meinel, Ulbrich, and Hirche) and
[DMUH14a, sec. 3.3] (Deroo, Meinel, Ulbrich, and Hirche), however, generalizes our results

from there. Moreover, this section is in preparation for publication in [MUI4] (Meinel and Ul-
brich).

In preparation for the distributed computation of an approximate solution to the AC-OPF
problem with the DAPCA-EC in the following section, we combine in this section
the range-space conversion method [KKMY11, sec. 5.2] with dual decomposition to solve
a convex problem, that is constrained by a linear matrix inequality (LMI), in a distributed
manner. We applied this combination as well in [DMUH15, sec. 4] and [DMUH14a, sec.
3.3] to solve an LMI-constrained strongly convex stability related problem with the dis-
tributed proximal center algorithm in parallel, where either local communication could
be achieved if the sparsity structure of the LMI is chordal or close to local communication
by considering a minimal chordal extension of the sparsity structure of the nonchrodal
LML

To generalize these results, consider the following LMI-constrained problem similar to
[KKMY11, sec. 7] and [LL12, prob. (21) - (22)]:

n

1;;1}1(1;@1'(361') (5.12a)
n .
st ) xA =0, (5.12b)

i=1

where ®;: R — R is a continuous and convex function, A’ € §" C R"*" are given sym-
metric matrices, and X C R" is a given compact and convex set that is component-wisely
block-separable, i.e., X = X X ... x X, with X; C R. By setting X; = {1}, we can consider
LMTI’s of the form Al + Y/, x; A’ = 0 too.

Unfortunately, applying dual decomposition to solve the convex problem (5.12) in par-
allel introduces a symmetric dual matrix-multiplier of dimension n x n that can only be
updated centrally by using global information as will be more clear if we have a look
at the dual problem of that is obtained with the corresponding Lagrangian [LL12,

App.]

xiAZW} = Z@i(xi) + ZXiAZ oW,
1 i=1 i=1

1

E(X,W) = i@i(xi) + TI'{

n
i=1 =
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where [GKO02, p. 161]

Tr( Zw” and AeW =Tr(AWT) = ZAU
i=1 i,j=1

It follows that the corresponding dual problem is given by [LL12, App.]

n

: (. A
rvr\}iz)(f(W) _Iv{/ligzllﬂl)%{q)l(xl) + x;A oW}.

The application of a subgradient scheme [GK02, Algo. 6.50] to maximize the dual func-
tion f(W) needs the following subgradient of the iterate W* in iteration k > 0 [GK02,
Lem. 6.23]:
fx LA e 9f (WH). (5.13)
i=1
In a multi-agent network consisting of n agents, where agent,, is responsible for updating
the primal iterate x¥ and agenty € {agenty,,...,agent,,} is responsible for updating the
dual iterate W* with the subgradient at W¥, agenty needs to communicate in each itera-
tion k > 0 with every agent,, # agenty to be able to compute ¢* in . This is certainly
not desirable with respect to sensitivity of information and the spatial distribution of a
large-scale network.
Taking these considerations into account, it is subsequently shown how to decompose
LMI with the range-space conversion method from [KKMY11] sec. 5.2], yielding
an equivalent problem to whose augmented dual problem can be solved by the
DAPCA-EC with local communication if the subsequent Assumptions are sat-
isfied, stated after the following definitions from [KKMY11} sec. 5.1]:
Let A(x) = Y/, x;A" denote the left-hand side of LMI . The range-space sparsity
pattern (in the following simply denoted as sparsity pattern) of A(x) is defined by

F={(Lj)eN xN : Aj(x)#0 forsome x € X, [ #j}, (5.14)
where N' = {1,...,n}. The corresponding range-space sparsity pattern graph is defined
by G = (N, F) which is an undirected graph by identifying (I,j) € F with (j,I) € F
A graph is called chordal if every cycle with more than 3 edges has an edge connecting

two nonadjacent nodes in the cycle [KKMY11} sec. 2.3].

Assumptions 5.2.1.

1. The sparsity pattern of A® is induced by the neighborhood of agenty, in the multi-agent
network, i.e., Aj; = 0if i ¢ {l,j}for 1 # jand Aj; = Al; =0 for i # j if agenty, and agenty,
are not neighbors. Moreover, A}, = 0 if agent,, is neither a neighbor of agent,, nor agent,,
himself.
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2. The graph G = (N, F) is chordal.

From the first assumption it follows that the sparsity pattern of A(x) is induced by the
sparsity pattern of the adjacency matrix that represents the multi-agent network, i.e.,
if agenty, and agenty; are not neighbors then (I,j) ¢ F (and (j,I) ¢ F). The chordality-
assumption of G = (N, F) that we made in [DMUH15, DMUHI14a] as well, ensures the
local communication of the agents in the optimization process as will be discussed in
detail below Algorithm As mentioned above, close to local communication can be
achieved if G = (N, F) is not chordal by finding a minimal chordal extension G = (N, F)
of G = (N, F). The communication topology of the agents that implement the DAPCA-
EC in parallel will then be described by G and might not be induced by the topology of

the multi-agent network anymore which is given by G.

Remark 5.2.2.

Computationally, a chordal extension of a graph G = (N, F) can be obtained by applying Cholesky
factorization to a positive definite matrix X that has the same sparsity structure as the adjacency
matrix of G as described in [FKMNOI), 2.1]: Let L be the lower-triangular matrix of the Cholesky
factorization of X (available in MATLAB with the function chol.m [KKMY11, Rem. 3.2]), i.e.,
X = LL™. Then the sparsity pattern F of L + LT yields a chordal extension G = (N, F) of G. Even
though the problem of finding a minimal chordal extension of G is NP-complete [Yan81), Theo.
11, heuristics such as the minimum-degree ordering (available in MATLAB with the function
symamd.m [KKMY11, Rem. 3.2]) exist to determine a permutation of X such that the Cholesky
factorization often yields minimal fill-ins in L which correspond to the additional edges in the

chordal extension of the graph.

To be able to apply the range-space conversion method, let Cy,...,C, € N denote the
maximal cliques of the graph G = (N, F) (that is chordal according to Assumptions|5.2.1),
i.e., the graph G; = (Cs,Cs x Cs N F) is a complete subgraph of G that is not contained in a
different complete subgraph of G [Gol04, p. 6]. The maximal cliques of a chordal graph G
can be found in O(|N| + |F|) time [Gol04] Theo. 4.17] and are computed in this work with
the MATLAB function maximalCligues provided by Jeffrey Wildman. Moreover, define by
[KKMY11] sec. 4]

S"(F,0)={X€eS) : X;;=0if I #jA(Lj) ¢ F}

the set of positive semidefinite matrices whose sparsity pattern is induced by F and let
[KKMY11] sec. 2.2]

S¢ ={Xes" : X;;=0if (I,j) ¢ Cs x Cs} fors=1,...,p
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be the set of positive semidefinite matrices whose sparsity pattern is induced by Cs x Cs,
where C; is a maximal clique of G = (N, F). The following theorem builds the basis of the
range-space conversion method and states that the left-hand side A(x) of LMI is
positive semidefinite if and only if it is decomposable by p positive semidefinite matrices
whose sparsity patterns are induced by the maximal cliques of the chordal graph that

represents the sparsity pattern of A(x).

Theorem 5.2.3. [KKMY11), Theo. 4.2]
A(x) € S'L(F,0) for x € X if and only if there exist W* € S$ for s =1,...,p which decompose
A(x) as

p
Alx) =) W°
s=1
Proof. The proof is given in [KKMYTT]. O

Obviously, constraint (5.12b)) can be decomposed with Theorem to [KKMY11), sec.
5.2]

P
ZWS—A(x):O and WSESSS for s=1,...,p, (5.15)
s=1

i.e., the positive semidefinite condition to A(x) in constraint (5.12b)) is reduced to the
positive semidefinite condition to W* for s = 1,..., p that can be ensured locally for every
maximal clique of G = (N, F) as will be shown.

Finally, the symmetry and the sparsity of the matrices in (5.15) are exploited in the range-
space conversion method by the following definitions from [KKMY11) sec. 2.2, sec. 5.2]:
For every (1,j) € N x N, define

1 it (k) €{(L)), (D},

Elj € R™" with (Elj)ik =
0 else,

and let

J(Cs)={(,j) €CsxCs : 1<I<j<m} fors=1,...,p,
p
J=UIC),
s=1

I(l,j)={s:1€Cs, jeCs} forevery (I,j) €].

With the above definitions, the n? equality constraints in (5.15) can be reduced to |]]|
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equality constraints, yielding that problem (5.12) can be stated as [KKMY11} sec. 5.2]

rgg)r(l;d)i(xi) (5.16a)

st. Eje Y W' —E;eA(x)=0 for (Lj)e], (5.16b)
sel'(1,f)

W? € S?j for s=1,...,p. (5.16¢)

Remark 5.2.4.

According to [KKMY11), sec. 5.1], the range-space conversion method can be applied even if G =
(N, F) is not chordal, as A(x) € S".(F,0) implies A(x) € S" (F,0) for some chordal extension
G=(N,F)of G, and Theoremholds for the maximal cliques Cy,...,C, of the chordal graph
G. However, the pair (1,]) € ] might not be identifiable with a line connecting agent; and agent;
in the multi-agent network anymore and therefore local communication may not be guaranteed as
will be discussed below Algorithm[5.2.6|

Problem (5.16)) can now be dually decomposed as done in the previous sections to prepare
the application of the DAPCA-EC To be able to apply the derived convergence
results from chapter (3| define the compact and convex set

WS — {w esS W= InRWS}, (5.17)

where Ryys > 0 for s =1,...,p and I, is the n X n identity matrix. We assume that W*
contains an optimal solution W*™" of problem 1) which can then be rewritten as

i &, (x; 1
XiEXIiI}’%/?EWS ; (xi) (>-18a)
st. Eje Y W' —Ej;eA(x)=0 for (Ij)e]. (5.18b)

sel'(1,j)

As explained in section the Lagrangian relaxation of problem (5.18) with respect to
constraint (5.18b) yields

ﬁ(x,Wl,...,Wp,A):ZH:QDZ-(JCZ-)—I— Y A (E,j. Y WSEljoA(x))
i=1

(L€l sel (L))

= iCI)i(xi) + Z Alj (Elj ° Z W5 — Elj ° iAixi)

sel'(L) i=1

n no
= Zd)i(xi) + Z A[jEle Z W* — Z Alel]'O xAlxi

i=1 (Lje] sel(1,f) (Lje] i=1

P
+ Z Z Alelj o W°5.

n .
= Z dDi(xi) — Z Alelj (] Alxi
' s=1(1,j)e](C)
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By smoothing the Lagrangian with scaled prox-functions dy, (x) and dw:(W) with con-
vexity parameter oy, > 0 and ows > 0, respectively, we obtain the smooth and concave

augmented dual function

i=1

CIDZ-(xi) — E Al]'Elj ° Aixz- + cdx,(xi)]

(LieT

= Z min { — Z Alelj ° Aixi + Cdxi (xi) } (5.19)

n
A) = i
fe(A) xexfww{i

p
+ Z Z Alelj o W? + des(ws)
s=1 | (1L)e](Gs)

15X (Lj)er

+ Z min { Z AjEjj @ WP + cdwys (W) } ) (5.20)
(Lj)

 WEWs )
4)ET(Cs)

With Theorem it follows immediately that the partial derivatives of f. are

Vafe(A)=Eje Y W(A)—Eje) Axi(A) for (Lj)e],
sel(1,f) i=1

where W*(A) and x;(A) solve (5.19) and (5.20). To determine the Lipschitz constant L.
of Vf. according to Theorem let v: R — R™ be the operator that concatenates
the columns of an 7 x 1 dimensional matrix to a vector of dimension 2. It follows that

constraint (5.18b)) can be stated as

n

v(Ey)" Y vV = Y ov(Ey) v (A)x=0 for (Lj)e], (2

ser(L,) i=1

i.e., the coefficient matrix of v(W?) in constraint (I, ) is V(El]> iff (1,j) € J(Cs) and 0T €

R else, yielding the overall coefficient matrix Ey, € RI/*"* of v(W*) with

(Ews)ik — { (V(Elj)T)ik ifi= (Z,]) c I(Cs),

0 else .

(5.22)

The determination of the coefficient matrix of x; in (5.21) is straight forward and given by
, ANT
Exl- = (V (E]l)TV (AZ) yeee, V (Enn)TV <A1>) S Rle,
yielding the following Lipschitz constant according to Theorem 3.1.1}

Ew 2 & ||Ee|?
L —ZH wsH IEx[I”

5.23
COWws ( )
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Remark 5.2.5.

In [DMUH15| \IDMUH144al, we applied the range-space conversion method combined with dual
decomposition as described above to a problem of the form (5.12), however, with strongly convex
objective function, and derived similar partial derivatives for the dual function as well as a similar
Lipschitz constant. The derived decomposed problem can be solved distributedly to test a suffi-
cient condition for Lyapunov stability of an LTI system with n subsystems. More precisely, the
developed test can be conducted to check if a block-diagonal matrix P exists which satisfies the

Lyapunov matrix inequality
ATP+ PA <0,

where the matrix A describes the interaction of the subsystems of an LTI system. For details it is
referred to [DMUHT5].

To state the DAPCA-EC, let Q = Q11 X ... X Quy CRUI be a compact and convex set that
contains an optimal dual multiplier A°P* of the dual problem of problem(5.18) (cf. chapter

3), and consider the corresponding augmented dual problem

rAngéfc(A)- (5.24)

To guarantee local information exchange when solving in parallel, agent ,; is iden-
tified either with agenty, or with agent,, for I 7 j. This setting is favorable as the index
pair (1,j) € ] canbe identified with a line connecting agenty, and agent,, in the multi-agent
network according to Assumptions Finally, agent,, is identified with agent,,.

The initialization of the DAPCA-EC is done according to the description in section
by choosing v > 1, L_1 € (0,L.], and the starting point A’ = A® as the minimum of the
separable prox-function d(A) = Y. i)y dij(Aj;), where dj;: Qj; — Ry is an arbitrary prox-
function with convexity parameter ¢ > 0. Moreover, let Y* denote the outdated vector
defined by and set Y~! = A®. The the DAPCA-EC can be stated as (cf. [DMUHITS5,
Algo. 3],[DMUH14a, Algo. 2])

Algorithm 5.2.6. (DAPCA-EC to solve (5.12)) For k > 0 do in parallel:

Fori=1,...,nand s =1,...p, given the required components of A¥, agent, and agentyys

1. compute
xF1 = argmin { @;(x;) — ) /_\ZEU o Alx; +cdy(x;) 7, (5.25)
xeXi (L]
W —argmind Y AfE;; e W° + cdws (W°) ¢, (5.26)
WIEWs | (L)€ (C)
and send x¥™ and WS*+1 to the dual agents that require it.
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; ; ; k+1 K1 ;
For (1,j) € ], given the iterates x; " and W***1 that are necessary for the computation of
Vijfe (A9), agenta,,

2. computes
n .
Vife(AY) =Eje Y W _E oY Alxit,
seT(1,)) i=1

and sets Ly = Ly_4,

3. finds
ki Lk k)2
Y = a{(gfgax Viife(A)Yyj — Lt (i + 1) Yy — Afy| — 5 (Ylj - Az;) . (5:27)
;€15

4. if Ly < L. then

(a) agenty, sends Yl’; to the primal agents that require it if necessary:
if ‘Yk 1_ l];’ > %’;Ak then
agenty,; sets Y}; = Yl];. and sends Y;;..
else

agenty,, sets Yl]; = Yl];._l and signals that no data will be sent.

Fori=1,...,nand s =1,...p, given the required components of Y, agent,, and agentys

(b) compute

yi@rl = argmin { ®;(x;) — Z Yl’;El]. o Alx; + cdy (xi) ¢, (5.28)
x;ieX; (l,j)e]
Vo1 — argmin ). Yl];‘Elj o W* + cdws(W°) ¢, (5:29)

WrEWs | (Lj)e)(Ss)
and send yf“ and V¥**1 to the dual agents that require it.

For (1,j) € ], given the iterates yf“ and V¥*+1 that are necessary for the computation of
Vljfc(l_/k), agentp,,

(c) computes

n
vl]fc El] Z Vs k41 El] ° ZAlyi‘ﬁLl/
i=1

seI'(1,f)

and checks with consensus (section
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—%5Z<ﬁﬁA@2§Z(ﬁﬁ@ﬂ—%ﬁ@ﬁ“ﬁ—Aw (5.30)
(Ljel (Lj)e]
then
continues with step 5,
else

sets Ly = L7y and goes to step 3,

5. finds
t+1
Zl = argmax ——d (Zy) + Z Viife(A )sz , (5.31)
ZI]GQI/
6. sets Ak+1 2 K —i—k+lYk

k+3 k+3°
7. and sends All‘].+1 to the primal agents that request it if necessary:
if ‘/_\é‘] — A;‘].“‘ > Ayy1 then
agenty,, sets /_\’l‘;rl = A;‘j*l and sends [\;‘j“.
else

agenty,,; sets /_\’fj+1 = /_\f‘]. and signals that no data will be sent.

Even though Algorithm consists of a subproblem in almost every step, analytical
solutions exist for all of them if V®;(x;), Vdy,(x;), Vdws (W?), Vd(A;j) can be determined

analytically and if the prox-functions are chosen as

i (x3) = Sixd, dws (W) = T WP, and d(Ay) = ZA%,
where || - ||r denotes the Frobenius norm [GKO02, p. 162]. In that case, the analytical
solutions to subproblems (5.25),(5.27),(5.28), and (5.3T) can be obtained as in Example
2.2.6|and therefore only the analytical solution for subproblem 6) (and thereby for
subproblem (5.29)) is derived by rewriting it similarly to Remark 2.3.1] - (Michael Ulbrich,

personal communication, June 17, 2013):

=XeS%s
—_— ~
k . . Ak cows
Wektl —argmm{ ) AjEj oW+ — HWSHF}
weews L jef(cy)
2
= argmm{XO W+ HWSHF}
wsews L €0
2
= argmin + W?
Wsews || COws F
= argmin ’SDST + WS

Wsews
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It follows with [Hig88| Theo. 2.1] that
Wkl — _sPST with Dj; = min(max(0,Dj;), Rys).

Finally, the matrices S and D can be efficiently obtained by the diagonalization of the

|Cs| x |Cs|-dimensional part of X/ (cows) that is nonzero.

Remark 5.2.7.

In [DMUH15, I DMUH14a] we applied the DPCA (without even-triggered communication) in-
stead of the DAPCA-EC and obtained similar analytical solutions (with the difference, that there
we did not need to consider compact feasible sets for the primal variables due to the strongly con-
vexity of the considered primal objective functions). This shows the remarkable advantage of the
application of the DAPCA-EC (or different versions of it) to a problem of the form that has
been decomposed with the range-space conversion method and dual decomposition as described

above.

Subsequently, it is verified that the communication exchange between the agents is local.

k+1 -

For the computation of x; " in step 1, agent,, requires the dual iterate Ak if Al = ;-l #0

and therefore Ak. is either controlled by agent,, himself or by a neighbor of agentxl. in the
multi-agent network The same holds for the computation of ka

The computation of W1 involves A;‘j for all (I,j) € J(Cs). It follows that agent s either
controls /_\;‘j by himself or /_\Z is controlled by a neighbor of agentys in the clique C;. The
same holds for the computation of V**+1,

Finally, agent 5, needs to compute Vj;f (AF) in step 2 which involves W+ for s € T(1, )
and (Aﬁj + A;l) X fori=1,...,n. Firstly, for (I,j) € J wehaves € T'(L,f) iff (I,j) € Cs x Cs,
i.e., W+l s either controlled by agent,, or by aneighbor of agent, ; in the clique Cs. Sec-
ondly, it follows immediately with Assumptions that the required iterates xf.‘“ are
either controlled by agent; or by neighbors of agent,,; in the multi-agent network. The
same holds for the computation of V;f(Y¥).

The parallel implementation of the consensus check in step 4 needs only local communi-
cation as well which follows from the definition of the consensus matrix A in section
and the setting of the multi-agent network.

Finally, in step 3 of Algorithm the number 7;; of dual variables that influence the
corresponding partial derivative V;f.(A) can be estimated as follows.

In step 2 of Algorithm[5.2.6] the partial derivative is

n .
Vl]fc El] Z W* k41 El] . ZAlxif-‘rl
seT' (L) i=1
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which on the one hand involves the primal iterate

W1 = argmin ) /_\]{]-Elj o W* + cdys (W®)
Weews | (Ljel(cs)

if s € T(1,j), where each iterate W***! depends on |J(C;)| dual iterates /_\é‘]-.

On the other hand, it follows for | # j and I € N(j) with Assumptions[5.2.1Jand the defini-
tion of the set | that the partial derivative V/; fo(A¥) additionally depends on the primal
iterates xf“ if A; J 40 and x;‘H and A{ J # 0. Moreover, with Assumptions 5.2.1|it can
be seen for | = j that V;;f.(A¥) depends on the primal iterate x{ ™! if i € N(j) U {j} and

Aj; # 0. Finally, each primal iterate

! =argmin{ @;(x;) — Y /_\ZEU o Alx; + cdy, (x;)
xieX; (Lpe]

involves according to Assumptions at most the dual iterate /_\5‘]. ifl=iand je N(i),

ifj=iand! € N(i),andif j=1and j € N(i) U {i}.

Altogether, we obtain that

mi< ), )+ 3} GINGI+1).

ser(L)) JEN(H)U{i}

5.3 Application of the DAPCA-EC to the AC-OPF problem

The content of this section is in preparation for publication in [MUI4] (Meinel and Ulbrich).

In this section, the range-space conversion method is applied in combination with dual
decomposition to a concave semidefinite dual of the nonconvex AC-OPF problem
derived in [LL10, [LL12], where [LL12] extends [LL10] by considering additional con-
straints such as line flow limits.

The application of the DAPCA-EC to the decomposed dual enables to compute a
solution to the AC-OPF problem in parallel and with event-triggered communication.
Furthermore, the communication exchange is local with respect to the power system
topology if the considered power network is chordal which holds for distribution and
subtransmission networks as they have a tree structure but not for transmission net-
works (such as the IEEE benchmark systems [Unil) as they have closed loops due to
stability reasons [Mom01) p. 4]. However, close to local communication can be achieved
for nonchordal power systems by finding minimal chordal extensions as described in the

previous section.
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Due to the nonconvexity of the NP-hard AC-OPF problem

i (P8
Pg%g‘/igfg (@F (Pl ) (5.32a)
st. Vil = (Pf = BY) +j(Qf - Q) Vie N, (5.32b)
ViI¥ = —pf —jQ¢ Vie Ny \ Ny, (5.32c)
|Sij] < S5 V(i,j) €M, (5.32d)
|Sjil < S Y (i,j) €M, (5.32e)
prin < pg < pmax Vie N, (5.32f)
anin < Q;g < Qmax Vie N, (5.32g)
ymin < |V < vmax Vi e N, (5.32h)

the authors of [LL12} [LL12] propose to solve a concave semidefinite dual problem con-
strained, i.a., by a linear matrix inequality (LMI) which can be stated after the following
definitions taken from [LL10, sec. 2] and [LL12, sec. 3], where the details on the deriva-
tion can be found.

Let £ C Np X N, be the symmetric relation which contains the indices of the branches
and their reversals, i.e., (t,m) € V] <= (t,m) € £ and (m,t) € £. Moreover, denote by

e1,...,en, the standard basis vectors in R™ and define for i € N}, and (t,m) € &:

Tyb h _ b T | ybus, T
Y; =eje; YU, Yi = (y? - Ym‘}s> ere; + Yinteie,,

Y 1 [ Re{Y; + YiT} Im{YiT - Y} Y 1 (Re{Yim + YL} Im{Y] — Yin}
i— 5 7 = 7
2 \Im{Y; = YT} Re{Y;+ YT} Im{ Yy, — YL} Re{Yin + YL}

m

2

% 1 Im{Y; + YZ.T} Re{Y; — YZ.T} _ 1 Im{ Y, + YL} Re{Yin — YL}
2\Re{YT - Y;} Im{Y;+YT} 2 \Re{YT —Yin} Im{Yp, + YT}

where the bus admittance matrix Y?"* is given by (4.11) and y5" is the shunt element (4.8)
for t € Np.
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Moreover, in [LL10, [LL12] the following variables are defined for i € N}, and (t,m) € £

that allow to formulate the semidefinite dual problem of (5.32) in a compact way:

i jmin y 6
x; = (/\?un,A;nax/)\;mn//\;nax’ﬂ{mn/l/l;’nax) RS,

1 2 3
1 1’1 T"tm Ttm  Ttm
 — i 4 — | .2 4 5 6
ri = A2 € S fori e N, , Ttm = | 5y Tim Tim | € So,
i T 3 5 6
rtm 7’tm rtm

andr;, =0¢€ S‘i fori € Ny \Ng. The above defined variables are the dual multipliers
corresponding to the constraints of an optimization problem derived in [LL12, sec. 3]
that is equivalent to the AC-OPF problem . Furthermore, define according to [LL10,
LL12] fori € Ny

e N A T [

where a;; = 0 and a; = 0 for i € Ny, \ Ng. (Recall that a;; and a;, are the coefficients of the
generator cost function C; for i € Nj.)
In [LL12, sec. 3], it is shown that a dual of (5.32) can be stated as

max Z i(xi, i) — Z Dy (T1m) (5.33a)
x; €RE, r; € S ieN, (tm)e€
Ttm € SEL
st. A(x,r) =0, (5.33b)

where

Z Y;(x;, 1) + Z Y (Fim),

ieNy (t,m)e&

®@;(x;,7;) =ARnpmin _ ymaxpmax 4 3 pd 4 jminomin _ Fmax Hmax
T Vo 1 V}ninvimin _pmaxymax2 g g2

Dy (Ttm) :(S%ax)%’}m + r?m + rtml

Y, (xi, 1) =AY+ A 4 M € R¥x 2,

Yo (Pem) =212 Y 4 273 i € R2MX200,

and ajy = 0 fori € N}, \ NVg.
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Finally, the following sufficient condition is provided in [LL12] which guarantees a zero
duality gap for the AC-OPF problem (5.32):

Theorem 5.3.1. [LL12| part 2 of Theo. 2]
The duality gap is zero for problem if its dual has an optimal solution (x%,r°P!) such

that the positive semidefinite matrix A(x%",r°P") has a zero eigenvalue of multiplicity 2.

Proof. The proof is given detailed in [LL12] and only sketched here:

In [LL12], an equivalent problem to the AC-OPF problem is formulated in the ma-
trix variable W € IR¥*2" constrained, i.a., by W = XX, where X = (Re{V}T,Im{V}T)T.
This constraint is denoted to be equivalent to the positive semidefiniteness of W and the
rank-one constraint rank{W} = 1. Relaxing this equivalent problem by removing the
rank-one constraint yields a semidefinite problem that is also the dual of and strong
duality is shown for this pair. Furthermore, it is derived from the KKT conditions of the
SDP and the 2-dimensionality assumption of the kernel of A(x°P!,r°P!) that an optimal
solution WOP! with rank{W°P'} = 1 can be constructed which solves the SDP and there-

fore solves the equivalent problem of the AC-OPF problem, i.e., strong duality holds for

the pair (5.32) and (5.33). O

Furthermore, in [LL12] sec. 4] it is discussed that this sufficient condition is satisfied

generally in practice and moreover the structure of A (x°Pt,r°P!) is stated as

(5.34)

A (xopt,ropt) — (

T (xopt/ 7,opt) T (xopt/ ropt)
_ T (xopt’ ropt) T (xopt, ropt)

which is helpful to derive a solution for the AC-OPF problem as will be shown below.
Finally, assuming problem (5.32) to be feasible, the following algorithm can be applied to
find a global optimum of the AC-OPF problem (5.32) if its dual satisfies Theorem[5.3.1]

Algorithm 5.3.2. [LL12,[LL10, Algorithm for Solving OPF (reduced version)]
1. Find a solution (x°P*, 1) of the dual problem .
2. Find a vector (vl ,v1)T # 0 in the kernel of A(x%",rP").

3. Find scalars (1,0 € R such that V' = ({1 +j{2)(v1 + jua) is an optimal solution of
.

As shown in [LL12, proof of Cor. 1], step 3in Algorithmis well-defined which is con-
cluded from the fact that subject to the sufficient condition in Theorem the SPD re-
laxation of the AC-OPF problem (5.32), that is mentioned in the proof sketch of Theorem
has a rank-one optimal solution WoPt = X°PtX°Pt" that satisfies A (x°P!, roPt) X°Pt =,
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Moreover, from the structure of A(x°P!,r°Pt) given in (5.34) it is deduced in [LLI2] that

T ,,T

besides (v],01)T the orthogonal vector (—vl,0T)T is in the kernel of A (x°Pt,7°Pt) as well,

and from the 2-dimensionality of the kernel the authors infer that
Re{Vort v —v
V) XP=g )+
Im{V°pt} (%) 4]

In the following we show how to implement each step of Algorithm distributedly

for some (1, {» € R.

in a multi-agent network that coincides with the power system network if it is chordal.
Here, the focus is on step 1, i.e., on finding a solution (x°P!, 7°P!) to the dual problem
in a distributed manner by applying the DAPCA-EC Thereby, the communication
can be kept local in the power system network (i.e., the branches of the power network
additionally serve as communication lines) if the LMI in the dual satisfies
Assumptions as discussed below Algorithm However, according to Remark
and Remark close to local communication can be achieved for nonchordal sys-
tems by finding minimal chordal extensions that induce the communication topology.
To determine an arbitrarily good approximation of the optimal solution (x°P!,7°Pt) dis-
tributedly with event-triggered and local (or close to local) communication in the first
step of Algorithm the dual is decomposed as described in section [5.2| to be able to
apply the DAPCA-EC

To this end, we denote in the following by agent,, ., the agent that is placed at bus i and
updates AN, Amax ymin max g min g max if j ¢ A, and additionally r; if i € V. Moreover,
denote for (t,m) € £ by agent,,, the agent that is placed at bus t and updates r,. Due
to the separability of the objective function each agent agent,. ,, and agent,, can
update his set of variables completely in parallel.

According to the sparsity pattern of A(x,r) in (5.33b) is given by

Fa(xr) = {(l,]) € 2Np X 2N Al]-(x,r) # 0 for some x € lR‘in‘ andr € ]RZWbH("g',l #]},
where 2Ap, = {1,...,2n, }. Obviously, F (., is contained in the sparsity pattern Fy of the

Ybus Ybus
Ybus Ybus ’ (535)

matrix

Moreover, the four cornered ny, x ny, blocks of Yi(xi,ri) € R?™*2" in (5.33b) satisfy the
first point in Assumptions for i € Ny, and if agent,,, is identified with agent,, ,, it
follows that the four cornered n;, x n;, blocks of th(rtm) in satisfy the first point
in Assumptions as well.
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Remark 5.3.3.

The graph G(2Ny, Fy) can be obtained by the graph G(N,, E) that represents the power system if
each bus (node) i is duplicated and the duplicate ny + i is connected to its original, the neighbors
of its original, and their duplicates. In other words, identifying bus i with its duplicate ny + 1,
the sparsity structure of A(x,r) in is contained in the sparsity structure of the admittance
matrix Y and if G(2Ny, Fy) is not chordal by itself, the chordal extension of G(2N,, Fy) denoted
by G(2Ny, Fy) can be obtained by the chordal extension G(N;, E) of G(N, E) as follows:

Let Cy,...,Cp C Ny be the maximal cliques of G(Ny,E), then 2Cy,...,2C, C 2N, are maximal
cliques of G(2Ny, Fy), where 2Cs = {i, ny +1i | i € Cs}.

Finally, the range-space conversion method described in section can be applied to
rewrite constraint (5.33b). To be able to apply the convergence results of the previous
sections, we define fori € Ng the compact sets X; = Xl.1 X ... X XZ-6, where X{ C R;. Fur-
thermore, we denote for i € Ny and (t,m) € € by R; and Ry, the following compact

sets
Ri= {r €S r LR, A= 1} and Ry = {r €SS 1 r<LR,,},

where R,, > 0 and R,,, > 0. Fori € A}, \ Ny we set R; = {0} C 4. Finally, we denote by
W? the compact set that is defined according to , and assume that W?, X;, R;, and
Rtm contain an optimal solution of problem (5.33).

With the range-space conversion method, problem can be stated as

max 2 D;(x;, 1) — Z Dy (74m) (5.36a)
i €X;, 1, €R; i€ (t,m)e&
Ttm € Rim, WS € W9
st. Ejje Y W°—E;eA(x,r)=0for(lj) €], (5.36b)

sel'(l,f)

where | = Ule J(2Cs), T'(1L,j) = {s: 1 €2Cs, j €2Cs}V (L,]) € ], and Ej; is defined as in
section[5.2] with m = 2ny,.
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The Lagrangian relaxation of problem (5.36)) with respect to constraint (5.36b) yields

Lx,r,W,A) =) @i(xi,ri) — Y. Pew(rim)

ieN, (t,m)e€

+ Y Aj|Eje ), W —Eje (Z Yi(xir) + Y Yiu(reom )
(Lpe] sel'(l,f) ieNy (t,m)e€

=Y | @i(xi,ri) — Y AjEjje Yi(xi,ri)

ieNy (Lj)e]

+ Z _q)tm(rtm) - Z Alelj.?tm(rtm)
(tm)e€ (Li)e]

+ Z Y AjE e W (5.37)

s=1(1,j)€](2Cs)

Smoothing the Lagrangian with scaled prox-functions dy, ., d;,,, and dys, where possible
choices are dys (W?) = (ows /2)||W?8||%, dy, r, (xi,7i) = (0, /2) ||xi||2 + (0,0, /2) ||ri||%, and

Ay (Tem) = (070, /2) || Ttm H%, yields the smooth and concave augmented dual function

iENb xi€X;, ri€ER; ,].)el

fe(A)=)_ max {q)i(xi/ﬂ') — Y AjEje Yi(xi,r) Cdxi,r,(xirri)}
(I

+ ) max {CDtm(rtm) ) Aszsz?tm(Vtm)Cdrm,(”tm)}
(1

(tmyeg TtmERim JeEl
p

+Y max ¢ Y AyEj;e W —cdws (W) o (5.38)
s VEWT (1 herecy)

The problems in the right-hand side of the above equation are separable with respect
to each decision variable due to the separability of the objective function and A(x,r) in
, however, for the sake of compact notation, we consider here the blocks (x;,7;),
Ttm, and W*,

With Theorem the partial derivatives of f, are given for (1,j) € ] by

Vljfc El] Z WS Z ?i(xi(A)/ Z th rtm ’ (539)
seT(Lf) ieNp (t,m)e€

where (x;(A),7i(A)), ran(A), and W?(A) solve the right-hand side of (5.38). To determine

the Lipschitz constant, the constraints in (5.36b) have to be sorted by the primal blocks

(xi,7i), rtm, and W¥ to identify the corresponding constraint coefficient matrices for (1,j) €
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] as follows:

Elj ® Z W* —
seT'(1,f)

:Elj L 2 W* — Z A Yi + il‘Yi + ﬂiMi} — 2 [Zr%thm + 21’?th,11]
seT(Lf) ieNy (t,m)e€

:El] ° Z Ws Z |:<_/\§nin + A;nax + an + 2\/11,21’11) Yz

sel'(1,) ieNy

(AR AP Y (=t ) M = Y 2 Y+ Zmeth]>
(t,m)e&

:Elj ° 2 W? + Z [Yi)\?ﬁn — Yi)\?lax + Yi)‘\?ﬁn — Yi/‘qnax
sel'(1,) ieNp

+ M, ‘umm M. ‘umax Yiz /gin azlY] + Z [ th2rt2m — thzr?m])
(t,m)e&

=Eje Y W+ Y (Eje(Yi, =Yy Yy, =Yi, Mj, —M;, —Y:2\/ap),

sel(Lj) ieNy

(Ainm/ )qnax/ A;mn’ R;nax/ Vﬁnm/ y{nax/ z)> E]] Z ﬂl‘lYi
ieNy
+ ) (Eje (—Ym2, —Yun2), (1 7))
(t,m)e€&
:El] Z Ws 2 El] hd (Yi/ _Yi/ Yi/ _Yi /Mi/ _Mi/ 0/ _Yi\/al _YZ‘\/EI 0) s

sel (L) ieNy
(A?un/ )qnax, /\;mn, A;nax’ y:mn’ Vmax 1 rll 1,11/ T12>>
- El] Z ﬂﬂY + E <El] Yfm/ _thl _YtWZ/ 0/ O/ _th/ O/ 0)/

ieNy (tm)e&

1 2 3 2 4 5 3 5 6
(rtm/ Temr Vemr Vemr Vims Vimr Vemr Vems rtm) > .

Define by Ey, € RV m?® for s =1,. .., p the constraint coefficient matrix of v(W;) as in
(5.22), i.e.,

(v(Ep)T), ifi=(Lj)€](2C),

0 else,

(EWs)ik =

and denote by Ey, ,. € R/*10 for i € A, the constraint coefficient matrix of (x;,v(r;)) with

(Ex,r,)ij = Ejj® (Yi, =Yi, Yi, =Yi, Mi, —M;, 0, —=Yi\/an, —Yi\/ap, 0) for (Lj) €]
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Moreover, let E,,, € R/* for (t,m) € £ be the constraint coefficient matrix of v (7, ) with
(El’ml)lj = El] L (0/ _YtMI _th/ _th/ 0/ O/ _th/ 0/ 0) for (l/]) S ]

Then it follows according to Theorem that the Lipschitz constant of the gradient of
fe(A) is given by
I

Ey, . Ey,, |I?
+ Z H Xi,li Z H 7’tm|| , (540)

s=1 Cows ieN, COxiyri (t,m)e€ €Ot

as described detailed in section

To state the DAPCA-EC, let Q = Q11 X ... X Qo 20, C RVl be a compact and convex set
that contains an optimal dual multiplier A°1Pt of the dual problem of problem (5.33), and
consider the augmented dual problem

max fc(A).

A€Q

Choose ¥ > 1, L1 € (0,L.], and the starting point AY = A as the minimum of the sep-
arable prox-function d(A) = Y jje;d1j(Aj), where dj;: Q;j — R4 is an arbitrary prox-
function with convexity parameter ¢ > 0. Moreover, let Y* denote the outdated vector
defined by and set Y1 = A",

Algorithm 5.3.4. (DAPCA-EC to solve (5.360)) For k > 0 do in parallel:
Fori€ Ny, (t,m) €€, and s =1,...,p, given the required components of A¥, agent,. ., agent,, ,

and agentys

1. compute
(AT, = argmax { @;(x;, ) — Y A Yi(xi,7i)
xi€X;, ri€ER; (Lje]
co. g
= 5 lillz = = illE (5.41)

rltcr—rii_l =argmax _q)tm(rtm) - Z /_\Il(]'Elj L4 ?tm(rtm)

Ttm € Rim (Lie]
co,
— 3}, (5.42)
W1 —argmax ) /_\ZEIJ- o W° — CUWS | WE|E S, (5.43)

Weews | (1j)e](2C;)

and send (x50, /K1) 01 and WK1 to the dual agents that require it.

For (1,]) € ], given the blocks (x¥*1,7%1), ¥l and Wek+1 that are necessary for the computa-
tion of Vi fe(A)F), agenty,,
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2. computes
Vl]fc Z El Ws,k+l_ Z El] ZY k+1 k+l
sel(1,j) (Lj)eJ] ieN,
= Y Eje Y Yum(righ
(LjeJ (t,m)e&E

and sets Ly = Ly_4,

3. finds
2
Yl]—argmm Vijfe(A )Y1]+LkAk(171]+1 ’Yl] A ‘—}— (Y1] Al]-> )
YIJEQI]

4. if Ly <L, then

(a) agenty, sends Yl’} to the primal agents that require it if necessary:
if ‘Yk 1_ l’;‘ > %’;Ak then
agent,, sets Yj; = Y[, and sends YJ;.
else

agenty, sets Yl’; = Yl’;_l and signals that no data will be sent.

Forie Ny, (t,m) € &, and s =1,...,p, given the required components of Y, agenty, ;.

agent,, and agentys

(b) compute

(yfﬂquﬂ) = argmax { ®;(x;,r;) — Z Y’;E oY, (xi,17)
x;€Xj, 1i€R; (Lj)eJ
Co. 0.
— x| — i}, (5.44)
qltc;jnrl =argmax cbfm rtm - Z El] .th rtm)
Ttm € Rim (Lje]
C0;
— 2 lrilI3 (5.45)

= COWws
Vo1 —argmax ) Yl'}EljoWS W

weews | (j)e](ac,)

— Wz g, (546)

and send (y¥™,q5*Y), qkr1, and VK1 to the dual agents that require it.
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For (1,j) € ], given the blocks (y¥™,q5™), qit1, and V51 that are necessary for the
computation of V; fo(Y¥), agenty,

(c) computes

vlij<Yk> — Z El] ° Vs,k+l _ Z El] Z Y k+1’qi<+l

seT'(1,f) (LjpeJ ieNp
— Y Eje Y Yu(qin'):
(Lje] (t,m)e€

and checks with consensus (section
if
% W;e] (v - Aﬁ})'2 > (I,JZ):@ (Vi (FF) = Vif(R9)) (v = )
then
continues with step 5,
else

sets Ly = L7y and goes to step 3,

. . L k t+1 _

5. finds ij = argmin { ;dl]'(le) + Z Zvljfc(At)le} ,
Zjj€Qyj t=0

Al = 2 ok k+1

6. set zk
sets 3% T k3

Yl],

7. and sends /_\kA+1 to the primal agents that request it if necessary:
if ‘/_\ Ak“‘ > A1 then
agenty,, sets Ak]+1 Ak]Jrl and sends /_\5‘;’1.
else

agenty,; sets /_\;‘;’1 = /_\;‘j and signals that no data will be sent.

Regarding our desire to keep the communication local (or close to local) with respect
to the branches of the considered power system, we identify agent,, for (,j) € ] with
o) ) if I € 2Ny \ NV, and choose the topology of

the multi-agent network to coincide with the topology of the considered power system

agenty, ,, if I € Ny, and with agent,

network. This setting is favorable as according to Remark the index pair (1,j) € |
can be identified with a branch in the power system if it is chordal.

Regarding the communication exchange of the consensus iterations in step 4 c) of Algo-
rithm we recall that it is determined by a symmetric Matrix A that is compatible
to the multi-agent network of agenty,,,...,agenty,, ,, , i-e., the information exchange is

local in the consensus phase with respect to the branches of the considered power system
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network. Moreover, as described above, the four cornered ny, x 1, blocks of ?i (x;,r;) and
Y (rtm) in (5.33b) satisfy the first point in Assumptions for the chosen multi-agent
network, and with Remark 5.3.3]it follows that the overall information exchange in Algo-
rithm can be kept local with respect to the branches of the power system network if
itis chordal as detailed in section[5.2} or close to local (cf. Remark[5.2.2Jand Remark[5.2.4)
if the power system is not chordal.

Finally, the analytical solutions of the subproblems in steps 1, 3,4 b), and 5 of Algorithm
5.3.4| can be determined according to Example and the description in section
where the analytical solution for W1 (and accordingly for V*%*1) is given. The same
approach can be applied to determine 51 (and gk1). However, the analytical solution
for (xf1,7%1) (and (y¥™,45"1)) is more difficult to obtain and will be derived in the fol-
lowing. To this end, we decompose the right-hand side of into smaller problems

that can be solved in parallel and obtain

(xfH, 75 = argmax { @i(x;, 1) — Y A@Eljo?i(x,-,ri) "’”H xill5 — "’”HrlHF
xi€X;, 1,€R; (LjeJ

= argmax {/\?H‘Pimin — AP 4 (—)ﬁnin +F A +an + 2\/@7’}) pd

xi€X;, ri€ER;

+ )‘&?nin Q?ﬁn o Zgnax anax 4 (_)_ﬁnin 4 ;wnax) Q;:l 4 ]/l;nin Vimin — max VmaXZ

+ag—ri— Y, /_\Z‘Elj * [(—/\?ﬁn + AT +an + 2\/@73) Y;

(Lj)el
S _ o T, r,
(A AP Y (g ) M| — P - S 13
Further decomposition yields
, . _ : Txori ) mi
/\lr.’“karl =argmax prin _ pd Z A]ijlj oY; | AT — i ;”r’ (/\?‘m)2 ,
Apinex (Liel
Amaxtt! =argmax — P Pf1 - Z A El] oY; | AT — LT;M" (A?ax)z ,
AP EX? (Lje]
APt —argmax | Q- Qf 4 ¥ AfE; oY, | Apin - S (A2 o,
Apinex? (Lj)e]
. _ -\ s COxry =
Jmaxt ! =argmax —Qmax . d Z A]f]-Elj oY | AN — 7;“7’ (Amax)y2 4
AP eXy (Lje]
. _ Ox. 1. :
y;nm o :argmax Vim1n2 + Z AZEIJ' ° Mi H;nm . ¢ ;url (‘ugmn)Z ,
urnexy (Li)el
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maxktl __ max2 Ak max _ C0xiri ( max\2
Hi =argmax{ | =V — Y ALE; e M; |y — — (1)
prexp S
k1 _ d Ak 1,2 SO 2
r; =argmax 2«/5[1'2131' — Al]-Eljo2\/ai2Yi rp — 1 — 21 i HriHF , (547)
r€R; (Lj)e]
where

R, = 7"684 cr LR AT =154
+ i

k+1

Asit is straightforward to determine analytical solutions for the iterates /\?‘mkﬂ, ce U,

we will only provide the analytical solution for ri‘“ in the following:

Lemma 5.3.5.
Subproblem has the optimal solution

i i 2
rl.l'l“rl = min («/Rri — 1,\3/ 4 +vD + \3/4 b \/5) and rl.z'kH = (rl.l’kH) ,

4coy, Xifi

where

~ 2 3
] 41
i=|2yaPi - Y AjEfe2yaY; | and D:< 4 ) +<C‘7“+> .

(1j)eJ 4C0—xi/7’i 3C0—xi/7'i

Proof. The application of the Schur complement in combination with [Zha05| Theo. 1.12]

yields that (5.47) can be rewritten with x = r! and y = ? as follows if R, > 1:

rf*1 =argmax {dx oy T cax,.,,l.xZ} (5.48)
X,y 2
sty — x? >0,
2
x
R, —y— > 0.
T Yy Rri —1=

Let (x°P!,y°Pt) be the optimal solution of (5.48) and assume that y°P' > (x°Pt)°. It follows
that

~ 2 COx; v 2

ax°Pt — coy, ,, (x°PY) 7 — yOoPt — 4;"’1 (y°PY)

<BXP = coyp, (x°P)? — (x°P1)” — L;'ri (xP)*.

Moreover, we have




5.3 Application of the DAPCA-EC to the AC-OPF problem 109

This contradicts that (x°P!,°P!) is an optimal solution of (5.48). It follows that we can
consider instead of (5.48) the equivalent problem

argmax {dx — (O +1) 2% — Mx4} (5.49)
X 2
st.x < /Ry, —1, (5.50)

where (5.50) is obtained by

2
X R,.
R, —x* — =R, —x*=—"C1_). 51
p— X R, —1 7, x<Rr,—1> (5.51)

As the objective function of (5.49) is strictly concave, the unique optimal solution x°P! can

be found by determining the root of the cubic polynomial

3 COx; r; 1 a
= S — =0. 52
f(X) o ( Caxi/ri )x * < 2CUX,‘J1‘> (5 ° )

=P =q

To this end Cardano’s method can be applied [Fis13| sec. 5.2]: As f(x) has a negative

discriminant

A(f) = —(4p° +27¢%),

equation (5.52) has exactly one real solution and the optimum x°P! is obtained by

v (V=14 T 4O )

O

Finally, we sketch how step 2 and step 3 of Algorithm 5.3.2]can be implemented in paral-
lel by using only neighborhood information.

Starting with step 2, the following optimization problem can be considered in order to
distributedly find a nonzero vector (vf,01)T # 0 in the kernel of A(x°Pt,7°Pt) (Michael

Ulbrich, personal communication, July 16, 2013):

min g7v + % o] s.t. A(x°P, 7Pty =0, (5.53)
vER?™ 2

where the optimal solution v°P! of satisfies v°Pt £ 0 if g & range(A(x°Pt,roP)).

Moreover, problem (5.53) is convex with a separable objective function and coupled lin-
ear constraints, i.e., it can be solved distributedly with event-triggered and local commu-
nication by the application of the DAPCA-EC Here, the strongly convexity of the
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objective function of makes a smoothing of the dual function unnecessary. There-
fore, it is possible to allow v € R*® in (5.53) as a straightforward revision of the corre-
sponding convergence proofs shows. Moreover, the application of the DAPCA-EC
ensures that the variables vy; and vy; are only known at bus i € N,.

According to [LL10, [LL12], the scalars {3, {» € R in step 3 of Algorithm that satisfy

VPt = (71 +i2)(v1 + jva), can be found by solving two equations of the abovementioned

(m —02) <C1> _ (Re{V"pt}>
v u )\ Im{V°Pt} )

Following [LL10, [LL12] (and Javad Lavaei, personal communication, August 1, 2013),

system

these equations can be obtained by letting the swing bus i € N, coincide with a bus,
where the voltage constraint is active in the optimum, and an agent placed at the corre-

sponding bus i can determine {; and {; by solving

<Uli _02i> <€1> _ (Vimin( or Vimax)>
i v ) \Q2 0 '

After that {; and (; are spread through the network. In contrast to a centralized approach,
where VP! is determined by a single entity and then spread through the network, the
value of v1; and vy; is only known at the corresponding bus i € A, in a distributed imple-
mentation of Algorithm[5.3.2]

Finally, Pl.gopt and Q?opt for i € Ng can be computed locally with each agent using neigh-
borhood information according to the power balance equation as

Vil; = Vi¥ien() Yl.jus*Vj*, where N (i) is the set of buses that are connected to bus i by a

branch.

Remark 5.3.6.

In [LZT12, ' DZG13I, OPF problems are solved distributedly by the application of semidefinite
matrix completion as well. In this works, however, a matrix completion technique (which differs
from the range-space conversion method for the decomposition of an LMI) is used to decompose a
matrix variable of an SDP that relaxes the OPF problem by neglecting a rank-1 constraint and for
which equivalence of the optimal solutions can be shown if the considered network has a special
structure (e.g., tree or lossless cycle [LZT12]). In [LZT12], two algorithms (primal and dual) are
proposed that use a (sub)gradient scheme, whereas in [DZG13| the alternating direction method
of multipliers is used. Similarly, the domain-space conversion method [KKMY11] is applied in
[Jab12] for the decomposition of a matrix variable to reduce the computation time of a primal-dual

interior-point solver that is applied to solve an OPF relaxation in semidefinite form.
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This chapter follows our numerical investigation of the DPCA-EC applied to the DC-OPF prob-
lem in [MUA14, sec. 4] (Meinel, Ulbrich, and Albrecht) and significantly extends it. Moreover,
the results that are related to the AC-OPF problem are in preparation for publication in [MUI4]
(Meinel and Ulbrich).

In this chapter, the numerical results of the DAPCA-EC applied to the DC-OPF problem
(5.1) and the dual of the AC-OPF problem (5.32) are presented. More precisely, the IEEE
benchmark test cases are considered for the analysis of the DPCA-EC (DAPCA-EC
with L_; = L) applied to the DC-OPF problem. The IEEE test cases are archived at [Uni]
and represent portions of the American Electric Power System in the Midwestern US,
where here the portions with 14, 30, and 57 buses are considered. The data for these test
cases were obtained in this work with MATPOWER [ZMST11]] which is a free scientific
tool for power flow analysis in MATLAB. (Moreover, Javad Lavaei was so friendly to
send us his model data for the IEEE 57 bus test case (related to [LL12]) for comparison,
personal communication, August 26, 2013). Partly, the data needed to be converted to
per unit, see for instance [ST06), sec. 3.1] and [BV0Q, sec. 5.5].

The implementation of the different versions of the DAPCA-EC was done in this work
with MATLAB R2014a [Matl14]. Additionally, the modeling toolbox YALMIP [LO4] for
optimization problems together with the solver SDPT3 [ITT99] were used to compute
the optimal solutions to the DC-OPF problems and the duals of the AC-OPF problems, as
well as the corresponding optimal dual multipliers as reference values for the determina-
tion of the primal gap and the constraint violation at the approximate solutions obtained
with the DAPCA-EC. SDPT3 is a semidefinite programming solver that is recommended
in the YALMIP Wiki. Finally, concerning the decomposition of the dual of the AC-OPF
problem as described in section [5.3|, the chordal extension of the graph that represents
the sparsity structure of LMI was determined according to Remark [5.2.2 with the
MATLAB functions chol.m and amd.m to obtain a chordal extension with minimal addi-
tional edges. Moreover, the maximal cliques of the chordalized graph were computed
with the MATLAB function maximalCliques provided by Jeffrey Wildman.

111
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In the following sections, the subsequent steps are carried out for each test case to inves-
tigate the DAPCA-EC.

In the first step, the PCA is compared with the DPCA-EC to find out to what extent
the communication exchange can be reduced by the usage of event-triggered communi-
cation for a pre-given number of iterations according to Theorem Moreover, the
comparison is repeated with a stopping-criterion for the primal gap and the constraint
violation, to firstly investigate the tightness of the pre-given number of iterations in The-
orem and to secondly find out if there is a trade-off between the communication
savings due to the usage of event-triggered communication and the necessary number of
iterations to obtain a desired accuracy.

In the second step, the same stopping criterion is used to investigate how the adaptive
step-size strategy in the DAPCA-EC helps to reduce the number of iterations compared
to the DPCA-EC. Furthermore, the impact of event-triggered communication in combi-
nation with the adaptive step-size strategy is studied. Finally, as the application of the
consensus technique in step 4 c) of the DAPCA-EC can be a bottleneck regarding
the computation time, it is examined if the algorithm still converges if the Li-updates in
step 4 ¢) are not allowed in every iteration.

The numerical results are presented in the following sections with numerous tables to

provide a compact overview. To this end, the following abbreviations are used:
PG : primal gap at approximate solution,

CV : constraint violation at approximate solution,

Nol : number of iterations of the DAPCA-EC,

NoClI : number of consensus iterations of the DAPCA-EC,

TC : total communication (number of exchanged primal and dual iterates plus exchanged

iterates in the consensus phase if the DAPCA-EC is considered),
DC : dual communication (number of exchanged dual iterates),
CC : consensus communication (number of exchanged iterates in the consensus phase),
Ly-Up : number of Li-updates in the DAPCA-EC,
LP® : maximal Ly in the DAPCA-EC,

MCTpA : maximal computation time per agent in seconds.
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6.1 Choice of parameters for the DAPCA-EC

For the implementation of the different versions of the DAPCA-EC, the convexity pa-
rameters of the prox-functions, that are used to smoothen the dual functions, were cho-
sen optimally as described in section resulting in a minimal Lipschitz constant and
thus reducing the necessary number of iterations according to the convergence results
derived in this work. As the convergence result of the PCA in Theorem 3.1.5 builds the
basis of comparison in the first step of the numerical investigation, the scaling technique
described in section was used to balance the bounds in Theorem The scaling
factor s and the accuracy € were chosen in a way that the absolute values of the upper

and lower bound on the primal gap

1 1 1 L
=5 12y <s [ Ge ) + \/sz e Ayere +2> e<) ®i(%) ~fP<e (61)
i=1

are approximately 1/100 of the absolute value of the primal gap at the starting point
which is zero (with appropriate dimension) according to the choice of the prox-function
in the initialization of Algorithmand Algorithm To give an example, if the pri-
mal gap at the starting point is —0.5 the choice € = 0.005 yields an upper bound in (6.1)
that is 1/100 of the absolute value of the primal gap at the starting point. Moreover, s has
to be chosen such that the lower bound in (6.1) is approximately —0.005 for € = 0.005.

Regarding the choice of the threshold Ay = B&*, which describes the extend of event-
triggered communication, numerical tests showed that the results are comparable if ei-
ther both parameters  and J are varied or only one of them. For the ease of presentation
only the parameter § was varied in this work for all test cases and the parameter J§ was

chosen as
okin/2 = 0,025, (6.2)

where ky, is the necessary number of iterations that is given by Theorem [3.1.5]to achieve
the required accuracy for given € and s. This choice is done in order to prevent 6* from
getting to small (> 0.025) before half of the necessary iterations are executed. Numerical
tests showed that with this choice of J, the potential of event-triggered communication

can be fully unlocked by solely varying the parameter B.
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Finally, for the step-size initialization of the DAPCA-EC the update parameter v > 1
and the starting value L_; € (0,L.) were chosen as follows, where L. is the Lipschitz
constant of the gradient of the augmented dual function, given by concerning the
DC-OPF problem, and by regarding the dual of the AC-OPF problem:

For a given test case and
(7,L_1) € {1.01,1.1,1.2,1.5,2,3} x {10—1,...,10—6} Le (6.3)

the results of the DAPCA-EC for A, = 0, i.e., without event-triggered communication,
were compared with respect to the number of iterations, the number of consensus itera-
tions and the computation time. The range of y in gives the amount by which Ly is
raised in step 4 ¢) of the DAPCA-EC if an update is necessary, i.e., by 1 %,...,300 %. The
pair (y,L_1) with the best results were chosen for further investigation of the DAPCA-
EC.

6.2 IEEE 57 bus test case (DC-OPF)

In this section, the numerical results of the application of the DAPCA-EC to the DC-OPF
problem are exemplarily discussed for the IEEE 57 bus test case [ZMS11) [Uni] with 7
generators and 80 branches. The results for the IEEE test cases with 14 and 30 buses from
[ZMS11] [Uni] can be found in the appendix 7}

Firstly, we compare the results of the PCA B.1.2]with the results of the DPCA-EC (DAPCA-
EC with L_; = L,) that are given in Table to find out to what extent the commu-
nication exchange can be reduced by the usage of event-triggered communication.
Regarding the optimal dual multipliers (p,A)°Pt € R¥ 1160 we have || (1, A)°Pt|| = 31.4364
and according to Theorem 3.1.5combined with the scaling technique described in section
the choice € = 0.4 and s = 62 yields the following bounds on the primal gap:

1 1 1
_QMWSZZ_sH(%AJWWI(sHULAPmH+‘VLZH@bAVWHZ+2>€

€e=04,
and the following bound on the constraint violation:

Bbush — [8Ps 4 pd
cA + € 1 opt 1 opt||2
[wm@—PMX] < (a4 Siwnemp+2) =003, @5
Fmin o Wincé
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where
Ps = Y 2G+D) P&/t € R and § = kfz 2001 gt cgm (66)
B j=0 (kﬁn + 1)(kﬁn + 2) B j=0 (kﬁn + 1)(kﬁn + 2) '

are the convex sums of the primal iterates and kg, = 130957 is the number of necessary

iterations given by Theorem It follows for the choice of ¢ in the threshold A, = B6*
that

okin/2 = 0.025

is satisfied by 6 ~ 0.9999. As described in section € and s were chosen such that
the absolute values of the bounds on the primal gap in (6.4) are approximately 1/100 of
the primal gap at the starting point (¢,A)? = 0 € R¥+1¢0 which is —41.0067. This value
coincides with the negative of the optimal function value f; Pt as P81 = 0 € R"s and for
each i € N, one has a9 = 0 in the quadratic power generation cost function C; (P?) (4.14).
Finally, the constraint violation at the starting point is 4.4571.

For a better overview, the above figures are resumed in the following list:
IEEE 57 bus test case (DC-OPF):

* Dimension of primal and dual variable space:

primal: 57 +7 =64, dual: 57 4+ 160 = 217,

* Accuracy € = 0.4 and scaling factor s = 62,
e Norm of optimal dual multipliers: ||(y,A)°P|| = 31.4364,
* Necessary number of iterations (Theorem 3.1.5): kg, = 130957,

* Bounds on primal gap at approximate solution (Theorem 3.1.5):

lower bound: — 0.4075, upper bound: 0.4, (6.7)

* Bound on constraint violation at approximate solution (Theorem 3.1.5):

0.013, (6.8)

e Primal gap at starting point (1,1)? =0 € R¥+160: —41.0067 = — Pt

* Constraint violation at starting point: 4.4571,

e Threshold for event-triggered communication (6.2): Ay ~ - 0.9999*.
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The abbreviations used in Table [6.1] and the following tables are given in the introduc-
tion of this chapter. The results in Table|6.1|are similar to the results in [MUA14, Table 1],
where we, however, considered a different objective function and a simpler model for the
DC-OPF problem. However, the impact of even-triggered communication is the same:
In row 1 of Table[6.1} we see the result of the PCA[3.1.2implemented in a distributed man-
ner without event-triggered communication which means that all iterates are exchanged
in every iteration, however, the exchange is local according to the discussion on the com-
munication topology of the multi-agent network in section As expected, the primal
gap (column 3) and the constraint violation at the approximate solution (column 4) of the
PCA satisfy the bounds and according to Theorem

In row 2 of Table the result of the DPCA-EC is given for the threshold Ay =0 -
0.9999F = 0 which means that an iterate is sent by a controlling agent only if it differs
from the previous iterate. This version of the DPCA-EC coincides with a not naive im-
plementation of the PCA, where an iterate is send only if it provides new information.
Obviously, the primal gap and the constraint violation in row 2 are the same as in row 1
as identical information is used in the optimization process, however, without explicitly
using event-triggered communication, the saving regarding the total communication is
33 % (column 5) and regarding the dual communication 67 % (column 6). This is due
to the fact that we have A°Pt = 0 € R'%" and according to the choice of the starting point
(1,A)?, the corresponding iterates stay zero in the optimization process and do not have
to be exchanged.

If event-triggered communication is introduced by choosing B > 0, the results in row 3 -
7 of Table|6.1| show that the total communication can be reduced by up to 42 % and the
dual communication by up to 76 %, still satisfying the bounds on the primal gap and
the constraint violation (6.8). If B is chosen larger as in row 8 and 9, the communication
savings are bigger too, however, the bound on the constraint violation is not satisfied
anymore by the approximate solutions of the DPCA-EC.

To see the pure impact of event-triggered communication, the same results are given in
Table |6.2| with the difference that the communication savings are considered in relation
to the result of the DPCA-EC with = 0.

It can be seen by the results in row 2 - 6 of Table [6.2] that the total communication can
still be reduced by up to 13 % and the dual communication by up to 27 %, satisfying the
bounds on the primal gap and the constraint violation which is quite a great
saving, considering the fact that 160 of 217 dual iterates do not need to be exchanged in
every iteration, even if no event-triggered communication is used. Moreover, the maxi-

mal computation time that an agent needs is given in the last column of Table
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B PG Ccv TC DC

1| - |-0.1094 | 0.0035 | 1.3e8 (100 %) | 6.3¢7 (100 %)
2 0 |-0.1094 | 0.0035 | 8.4e7 (67 %) | 2.1e7 (33 %)
3 | le-6 | -0.1135 | 0.0036 | 8.3e7 (66 %) | 2.0e7 (32 %)
4 | 5e-6 | -0.0985 | 0.0032 | 8.1e7 (65 %) | 1.9¢7 (30 %)
5| le-5 | -0.1186 | 0.0039 | 8.0e7 (64 %) | 1.8¢7 (29 %)
6 | 5e-5 | -0.0567 | 0.0051 | 7.6e7 (60 %) | 1.6e7 (26 %)
7 | le-4 | -0.1273 | 0.0093 | 7.3¢7 (58 %) | 1.5e7 (24 %)
8 | 5e-4 | -0.0747 | 0.0385 | 6.5¢7 (52 %) | 1.3e7 (20 %)
9 | 1e-3 | -0.0662 | 0.0520 | 6.0e7 (48 %) | 1.2¢7 (18 %)

Table 6.1: Results of the DPCA-EC - IEEE 57 bus (DC-OPF)

B PG CV TC DC MCTpA
1| 0 |-0.1094 | 0.0035 | 8.4e7 (100 %) | 2.1e7 (100%) | 6.9
2 | le-6 | -0.1135 | 0.0036 | 8.3e7 (99 %) | 2.0e7 (96 %) 7.1
3 | 5e-6 | -0.0985 | 0.0032 | 8.1e7 (97 %) | 1.9¢7 (89 %) 7.1
4 | 1e-5 | -0.1186 | 0.0039 | 8.0e7 (96 %) | 1.8¢7 (87 %) 7.1
5 | 5e-5 | -0.0567 | 0.0051 | 7.6e7 (90 %) | 1.6e7 (77 %) 6.8
6 | le-d | -0.1273 | 0.0093 | 7.3e7 (87 %) | 1.5¢7 (73 %) 6.8
7 | 5e-4 | -0.0747 | 0.0385 | 6.5¢7 (77 %) | 1.3¢7 (61 %) 6.7
8 | 1e-3 | -0.0662 | 0.0520 | 6.0e7 (72 %) | 1.2¢7 (55 %) 6.5

Table 6.2: Results of the DPCA-EC — IEEE 57 bus (DC-OPF)
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In the next step, we investigate the impact of event-triggered communication if the fol-
lowing stopping criterion is used in the DPCA-EC instead of the pre-given number kg, =
130957 of iterations which may not be necessary to obtain the primal gap of —0.1094 and
the constraint violation of 0.0035 in row 1 of Table

To this end, let

9j+1 € R™,

k k ;
2 _2UF1) paitt ¢ R and 0= Y 2(+1) (6.9)

(k+1)(k+2) = k+1)(k+2)

be the approximate solutions after k iterations.
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DAPCA-EC stopping criterion for the IEEE 57 bus test case (DC-OPF):
Fork>0

if

|primal gap at (6.9)| < 0.1094 and constraint violation at < 0.0035 (6.10)

then
stop.
else

continue.

In Table[6.3} the results of the DPCA-EC with stopping criterion are presented. The
result in row 1 shows that only 1.2467¢5 iterations (column 3) are needed to compute an
approximate solution without even-triggered communication which satisfies the same
primal gap and constraint violation as the solution in row 1 of Table This is not sur-
prising as the application of the (adaptive) Nesterov-Algorithm in the DAPCA-EC does
not guarantee monotonically increasing dual function values.

As can be seen in row 2 and 3 of Table event-triggered communication does not nec-
essarily result in a higher number of iterations, compared to the result in row 1, if g in
the threshold Ay = B6* is chosen small enough. Additionally, row 4 - 6 of Table|6.3|show
that the information exchange can still be reduced even if the number of iterations is
higher compared to the result obtained without event-triggered communication in row
1. However, if § is chosen to large, as in row 7 and 8, the error in the event-triggered

communication becomes so big that even more communication is required compared to

row 1.
B Nol TC DC MCTpA
1 0 | 1.2467e5 | 8.0e7 (100 %) | 2.0e7 (100 %) 6.7
2 | le-6 | 1.1907e5 | 7.5e7 (94 %) | 1.8e7 (91 %) 6.5
3 | be-6 | 1.2299e5 | 7.6e7 (95 %) | 1.7e7 (87 %) 6.6
4 | le-5 | 1.2640e5 | 7.7€7 (97 %) | 1.7€7 (87 %) 6.8
5 | be-5 | 1.2965e5 | 7.5e7 (94 %) | 1.6e7 (80 %) 6.8
6 | le-4 | 1.4384e5 | 8.1€7 (102 %) | 1.7€7 (87 %) 7.6
7 | 5e-4 | 1.8622e5 | 1.0e8 (126 %) | 2.2e7 (108 %) 9.6
8 | 1e-3 | 2.0254e5 | 1.1e8 (133 %) | 2.3e7 (115 %) 10.4

Table 6.3: Results of DPCA-EC with stopping criterion

6.10

— IEEE 57 bus (DC-OPF)
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Finally, the results of the DAPCA-EC are given in Table for the step-size pa-
rameters v = 1.5 and L_; = 10~*L. which were selected among the candidates in (6.3)
as described in section For the IEEE 57 bus DC-OPF problem, the corresponding

Lipschitz constant is
L. =1.7149¢9 (6.11)

according to (5.9). Moreover, for the computation of the results that are given in Table[6.4)
the stopping criterion (6.10) was used to find out to what extent the number of iterations
can be reduced by the adaptive step-size strategy in the DAPCA-EC compared to the re-
sults of the DPCA-EC in Table 6.3l which are obtained with the same stopping criterion.
Indeed, as can be seen in row 1 of Table that only 3.1e4 iterations are needed to com-
pute a solution without event-triggered communication which is a decrease compared to
the number of iterations of the DPCA-EC in row 1 of Table |6.3| by approximately 75 %.
In column 5 of the first row of Table the maximal Ly is given by 1.1e8 obtained after
16 Ly-updates (step 4 ¢) of the DAPCA-EC[.1.1). In other words, the smallest step-size
in the DAPCA-EC, which is the inverse of L'®, is approximately 15 times bigger than
the inverse of the Lipschitz constant L. which is the step-size in the DPCA-EC as
described in Remark However, due to the large number of consensus iterations
(column 6), to control the step-size distributedly in the DAPCA-EC the consensus
information exchange (column 9) is large too which results in a total information ex-
change (column 7) that is bigger compared to the results in Table Accordingly, the
maximal computation time of an agent (last column) is with 120.8 seconds bigger as well.
So, if no event-triggered communication is used, the consensus technique (section
is clearly a bottle-neck regarding the computation time as well as the amount of infor-
mation exchange. However, concerning the number of iterations of the DAPCA-EC, the
adaptive step-size strategy yields a reduction of up to 75 % which would save 75 % of the
computation time as well if the algorithm would be implemented centrally.

Remarkably, the results in row 2 - 8 of Table show that the application of event-
triggered communication can reduce the consensus communication drastically by up to
99% (row 2). This can be explained by the fact that the usage of outdated dual multipliers
in (5.11) makes consensus iterations unnecessary if the right-hand side in becomes
zero due to (i1,h)* = (71, A)¥. As the outdated dual iterates (7,/)* and (f,A)* correspond
both to the dual multipliers (y,A), it follows that equality (i,7)* = (j1,A)¥ is satisfied
much more often compared to the case, where by f = 0 no event-triggered communica-
tion is used.

However, regarding the maximal computation time, only for the choice g = 1e — 6 a result

was obtained in 6.3 seconds which is slightly faster compared to the results obtained with
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the DPCA-EC in Table If B is chosen larger, as can be seen in row 3 - 8, the number
of iterations and the computation times are larger compared to the results in Table [6.3|as
well.

To sum it up, even if event-triggered communication in combination with the consensus
technique can reduce the total information exchange as well as the maximal computation
time by up to 95 % compared to the result computed without event-triggered commu-
nication in row 1, the consensus technique is clearly a bottle-neck in the DAPCA-EC.
As a result, the application of the DAPCA-EC yields only for very tight thresholds
Ay = B&* approximate solutions that are slightly better than the solutions obtained by
the DPCA-EC with respect to the amount of information exchange and the computation
time. However, the DAPCA-EC needs much less iterations compared to the DPCA-EC

which was the main goal of the application of the adaptive step-size strategy.

B | Nol | Li-Up | L™ | NoCI TC DC CC MCTpA
1| 0 |31led| 16 | 1.1e8 | 1.1e7 | 1.7€9 (100 %) | 1.0e7 (100 %) | 1.7€9 (100 %) | 120.8
2| le6 | 47e4 | 18 |2.5e8 | 1.5e5 | 8.2e7(5%) | 1.4e7 (139 %) | 2.3e7 (1 %) 6.3
3[5e6|12e5| 23 |1.7e9 | 5.7e5 | 2.2e8(13%) | 3.1e7 (305 %) | 8.8e7 (5 %) 162
4(1e5|12e5| 23 |1.7e9 | 1.8¢5 | 1.5e8(9%) | 2.9e7 (286 %) | 2.8e7 (2 %) 115
5|5e5 | 14e5 | 23 | 1.7¢9 | 1.5e6 | 3.8¢8 (22 %) | 3.5¢7 (346 %) | 2.4e8 (14%) | 28.0
6| led | 14e5 | 23 | 1.7¢9 | 8.6e5 | 2.9e8 (17 %) | 3.7€7 (372%) | 1.3e8 (8 %) 213
7 | 5e-4 | 1.8¢5 | 23 | 1.7e9 | 4.8¢6 | 9.5e8 (55%) | 4.8¢7 (479 %) | 7.5¢8 (44 %) | 70.0
8|1e3 | 19e5| 23 | 1.7¢9 | 52e6 | 1.0e9 (58 %) | 4.9¢7 (487 %) | 8.1e8 (47 %) | 73.1

Table 6.4: Results of DAPCA-EC - IEEE 57 bus (DC-OPF)

To remedy the drawback that the consensus algorithm has to be executed at least once in
each iteration of the DAPCA-EC (more than once if an Li-update is necessary), we imple-
mented a simple heuristic that allows Li-updates only in the first iteration of the DAPCA-
EC as we observed for all AC/DC-OPF test cases that most of the Ly-updates were
done in iteration k = 1.

The results of the DAPCA-EC combined with this heuristic, denoted by H1 in the follow-
ing, can be seen in Table[6.5|which shows that 14 Li-updates are done in the first iteration
independent of the choice of f. Compared to the results of the DAPCA-EC in Table
the application of heuristic H1 reduces the number of consensus iterations by up to 97 %,
the total information exchange by up to 81 % and the maximal computation time by up
to 78 %. Moreover, row 2 - 4 of Table |6.4| show that the application of event-triggered
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communication reduces the total and dual communication by up to 23 % and 35 %.

Accordingly, compared to the results of the DPCA-EC in Table 6.3} the application of the
DAPCA-EC combined with heuristic H1 results in a reduction of the number of iterations
by up to 80 %, the amount of total information exchange by up to 79 %, and the maximal

computation time by up to 79 % as well.

B | Nol | Lt+Up | L™ | NoCI TC DC CC MCTpA
1| 0 [30e4| 14 |50e7 | 53e3 | 2.0e7 (100 %) | 4.9e6 (100 %) | 8.2¢5 (100 %) | 1.7
2 [ 1le6 | 3.0ed | 14 |5.0e7 | 5.3e3 | 1.9e7 (95 %) | 4.1e6 (85 %) | 8.2¢5 (100 %) | 1.7
3| 5e6 | 24ed | 14 | 5.0e7 | 5.3¢3 | 1.6e7 (77 %) | 3.1e6 (65 %) | 8.2¢5 (100 %) | 1.4
4| 1e5 | 26e4 | 14 | 5.0e7 | 5.3e3 | 1.7e7 (83 %) | 3.5¢6 (71 %) | 8.2¢5 (100 %) | 1.5
5|5e5 | 5.0e4 | 14 | 5.0e7 | 5.3e3 | 3.2e7 (156 %) | 6.9¢6 (142 %) | 8.2¢5 (100 %) | 2.7
6| led | 6.led | 14 | 5.0e7 | 5.3¢3 | 3.8¢7 (189 %) | 8.2¢6 (169 %) | 8.2¢5 (100 %) | 3.3
7 | 5e-d | 12e5 | 14 | 5.0e7 | 5.3e3 | 7.2¢7 (357 %) | 1.6e7 (321 %) | 8.2¢5(100%) | 6.5
8 |1le3|14e5| 14 |5.0e7 | 533 | 8.5e7 (421 %) | 1.8¢7 (379 %) | 8.2¢5 (100 %) | 7.9

Table 6.5: Results of DAPCA-EC with heuristic H1 — IEEE 57 bus (DC-OPF)

Even though the DAPCA-EC combined with heuristic H1 converges for all AC/DC-OPF
test cases that are considered in this work, we implemented the DAPCA-EC with two
other simple heuristics, H3 and H6, that may in general be more robust regarding the
convergence. In heuristic H3, the Li-updates are allowed in the first iteration of the
DAPCA-EC as well as in iteration k if k is a whole multiple of a rounded third of the
number of iterations of the DAPCA-EC for f = 0 from Table i.e., 3.1e4. Accordingly,
in heuristic H6, the Ly-updates are allowed in iteration k if k = 1 or if k is a whole multiple
of a rounded sixth of 3.1e4.

The results of the DAPCA-EC combined with H3 can be seen in Table [6.6| and with H6
in Table showing that this more robust heuristics on the one side yields much better
results compared the ones in Table[6.3|and Table[6.4} On the other side, slightly more iter-
ations as well as a higher number of consensus iterations as compared to the application
of H1 have to be accepted. Finally, the results in row 2-4 of Table |6.6|and Table [6.7|show
that event-triggered communication helps to reduce the total communication by up to
29 % and 32 %, respectively, as well as the dual communication by up to 39 % and 41 %,
respectively, and the consensus communication by up to 23 % and 34 %, respectively, if f

is chosen small enough.
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B Nol | Li-Up | L™ | NoCI TC DC CC MCTpA
1| 0 |3.5e4 17 1.7e8 | 6.8e3 | 2.4e7 (100 %) | 5.6e6 (100 %) | 1.1e6 (100 %) 2.0
2 | 1le-6 | 3.5e4 17 1.7e8 | 6.3e3 | 2.3e7 (97 %) | 5.1e6 (91 %) | 9.9e5 (93 %) 2.0
3 | 5e-6 | 4.1e4 17 1.7e8 | 6.5e3 | 2.6e7 (110 %) | 5.4e6 (96 %) | 1.0e6 (96 %) 2.3
4 | le-5 | 2.6e4 14 5.0e7 | 5.3e3 | 1.7e7 (71 %) | 3.5e6 (61 %) | 8.2e5 (77 %) 1.5
5 | 5e-5 | 5.0e4 14 5.0e7 | 5.6e3 | 3.2e7 (134 %) | 6.9e6 (122 %) | 8.8e5 (82 %) 2.8
6 | le-4 | 6.9¢4 15 7.5e7 | 5.9e3 | 4.3e7 (183 %) | 9.4e6 (167 %) | 9.2e5 (87 %) 3.8
7 | 5e-4 | 1.2e5 14 5.0e7 | 6.0e3 | 7.3e7 (307 %) | 1.6e7 (278 %) | 9.3e5 (88 %) 6.4
8 | le-3 | 1.4e5 16 1.1e8 | 6.2e3 | 8.1e7 (342 %) | 1.7e€7 (306 %) | 9.7e5 (91 %) 7.3
Table 6.6: Results of DAPCA-EC with heuristic H3 — IEEE 57 bus (DC-OPF)
B Nol | Li-Up | L™ | NoCI TC DC CC MCTpA
1| 0 |37e4 17 1.7e8 | 8.5e3 | 2.5e7 (100 %) | 5.9e6 (100 %) | 1.3e6 (100 %) 2.1
2 | 1le-6 | 3.7¢4 17 1.7e8 | 6.4e3 | 2.4e7 (98 %) | 5.5e6 (93 %) | 9.9e5 (75 %) 2.1
3 | 5e-6 | 3.5e4 16 1.1e8 | 6.2e3 | 2.2e7 (89 %) | 4.6e6 (78 %) | 9.7e5 (73 %) 2.0
4 | 1e-5 | 2.6e4 14 5.0e7 | 5.6e3 | 1.7e7 (68 %) | 3.5e6 (59 %) | 8.8e5 (66 %) 1.5
5 | 5e-5 | 5.0e4 14 5.0e7 | 5.9e3 | 3.2e7 (127 %) | 6.9e6 (117 %) | 9.3e5 (70 %) 2.8
6 | le-4 | 6.9¢4 15 7.5e7 | 6.6e3 | 4.3e7 (174 %) | 9.4e6 (160 %) | 1.0e6 (77 %) 3.8
7 | 5e-4 | 1.2¢5 | 14 | 5.0e7 | 7.0e3 | 7.3e7 (292 %) | 1.6e7 (266 %) | 1.1e6 (82 %) 6.5
8 | 1e-3 | 1.4e5 16 1.1e8 | 6.9e3 | 8.1e7 (325 %) | 1.7€7 (292 %) | 1.1e6 (81 %) 7.4

Table 6.7: Results of DAPCA-EC with heuristic H6 — IEEE 57 bus (DC-OPF)

Similar results of the DAPCA-EC applied to the DC-OPF problem for the IEEE 14
and 30 bus test cases [ZMS11] [Uni] can be found in the appendix 7}
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6.3 Graphical representation of the IEEE power system test cases

Before we discuss the results of the DAPCA-EC applied to solve the AC-OPF problems,
we have a look at the graphical representations of the IEEE test cases with 14, 30, and 57
buses from [ZMS11], [Unil] as well as their chordal extensions. As detailed in section [5.3
the chordal extension of a power system network describes the communication topology
of the agents that implement the DAPCA-EC to solve problem in parallel.

In Figure the IEEE 14 bus test case with 20 branches (solid lines) is depicted as well
as its chordal extension with 24 lines (solid and dotted lines). It follows that the commu-
nication topology of the agents does not coincide with the topology of the power system
network, however, only 4 additional edges are needed for the communication which are
approximately 5 % of the number of edges that would fill the 14 bus network to a com-
plete graph.

Figure 6.1: IEEE 14 bus system and its chordal extension.
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In Figure we see the IEEE 30 bus test case with 41 branches and its chordal extension
with 55 lines, i.e., only 14 additional edges are needed for the communication which are
approximately 3 % of the number of edges that would fill the 30 bus network to a com-
plete graph.

Figure 6.2: IEEE 30 bus system and its chordal extension (follows [DMUH14b, Fig. 3]).
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In Figure the IEEE 57 bus test case with 80 branches is depicted as well as its chordal
extension with 137 lines, i.e., only 57 additional edges are needed for the communication
which are approximately 3 % of the number of edges that would fill the 57 bus network
to a complete graph.

Figure 6.3: IEEE 57 bus system and its chordal extension.
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6.4 IEEE 57 bus test case (AC-OPF)

Building on section |6.2) where the results of the DAPCA-EC to the DC-OPF problem are
presented, we discuss in this section the results of the DAPCA-EC applied to the dual of
the AC-OPF problem for the IEEE 57 bus test case [ZMS11, [Uni] with 7 generators
and 80 branches as well. The results for the IEEE test cases with 14 and 30 buses from
[ZMS11] [Uni] can be found in the appendix 7}

As done in section we firstly compare the results of the DPCA-EC (DAPCA-EC
with L_; = L) for B = 0 with the results for § > 0 that are given in Table[6.8} to find out to
what extent the communication exchange can be reduced by the usage of event-triggered
communication.

Regarding the optimal dual multipliers A°P' € R”Y (see Remark to understand the
size of the dimension), we have || A°P!|| = 9.9463. According to Theorem combined
with the scaling technique described in section the choice € = 5.52 and s = 19 yields
the following bounds on the primal gap:

5700 =~ LA (1 e + 12 e +2)
S S S

<Y @i t) — Y Qunl(Pim) — fF < (6.12)
ieNy (t,m)e€
€ =552,

and the following bound on the constraint violation for |J| equality constraints in (5.36b):

E11 ® Yser(i1) W® — Eqp @ A(%,)

Eanyom, ® Yser(amy,2m) W* — E2nyon, ® A(£,7)

i(HAoptH + 512||A0Pt||2—|—2> =0.5902, (6.13)

where
2 =]ku s +({)Tk2 -k ¥ ERS, (6.14a)
i kz T s (6.140)
" _szo e e AL (6149
Wy 204D i g (6.14d)

a =0 (kfin + 1)(kﬁn + 2)
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are the convex sums of the primal iterates for i € M, (t,m) € £, and s =1,...,p = 52.
Here, the maximal cliques 2C; are defined as in Remark and one has 6 < 2C; <12
fors =1,...,52. The dimension of the primal variable space is given by 2793. Moreover,
kiin = 783884 is the number of necessary iterations given by Theorem[3.1.5 We notice that
the bounds in (6.12) and (6.13) follow immediately by rewriting the Frobenius product
in constraint (5.36b) of problem (5.36) in vectorized form, applying Theorem and
retrieve the notation with the Frobenius product.

It follows for the choice of § in the threshold A, = ﬁ&k, that

skin/2 — 0,025

is satisfied by é ~ 0.9999. As described in section € and s were chosen such that the
absolute values of the bounds on the primal gap in are approximately 1/100 of
the primal gap at the starting point A? = 0 € R”Y? which is —552.1739. The constraint
violation at the starting point is 2.0104e3.

For a better overview the above figures are resumed in the following list:
IEEE 57 bus test case (AC-OPF):

* Dimension of primal and dual variable space:

primal: 2793,  dual: 719,

* Accuracy € = 5.52 and scaling factor s = 19,
e Norm of optimal dual multipliers: || A°P!|| =9.9463,
* Necessary number of iterations (Theorem [3.1.5): kg, = 783884,

* Bounds on primal gap at approximate solution (Theorem [3.1.5):
lower bound: —5.8703, upper bound: 5.52, (6.15)
* Bound on constraint violation at approximate solution (Theorem 3.1.5):

0.5902, (6.16)

e Primal gap at starting point A” =0 € R7!%: —552.1739,
¢ Constraint violation at starting point: 2.0104¢3,

* Threshold for event-triggered communication : Ay =~ B - 0.9999*.
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In row 1 of Table the result of the DPCA-EC is given for the threshold Ay =0, i.e., no
event-triggered communication was used. As expected, the primal gap (column 3) and
the constraint violation at the approximate solution (column 4) satisfy the bounds
and according to Theorem 3.1.5

If event-triggered communication is introduced by choosing B > 0, the results in row 2 -
7 of Table|6.8 show that the total communication can be reduced by up to 11 % and the
dual communication by up to 21 %, still satisfying the bounds on the primal gap
and the constraint violation (6.16). If B is chosen larger as in row 8, the bound on the
primal gap is not satisfied anymore.

With respect to the results of the corresponding IEEE 57 bus DC-OPF problem in Table
where the total communication could be reduced by up to 13 % and the dual com-
munication by up to 27 %, the communication savings here are comparable. However,
the maximal computation times of an agent in the last column of Table 6.8 are not sur-

prisingly bigger compared to approximately 7 seconds for the DC-OPF problem in Table
6.2

B PG cv TC DC MCTpA
1| 0 | -0.9049 | 0.1527 | 4.8¢9 (100 %) | 2.4€9 (100 %) | 307.8
2 | 569 | -0.8601 | 0.1536 | 4.8¢9 (100 %) | 2.4€9 (99 %) | 307.6
3| 1e-8 | -0.8730 | 0.1553 | 4.8¢9 (99 %) | 2.4e9 (98 %) | 311.3
4| 5e-8 | -0.8799 | 0.1563 | 4.7€9 (97 %) | 2.3¢9(94%) | 304.8
5| le-7 | -0.8633 | 0.1564 | 4.6e9 (96 %) | 2.2¢9 (91 %) | 312.7
6 | 5e-7 | -0.2521 | 0.1721 | 4.4e9 (92 %) | 2.0e9 (83 %) | 309.7
7 | 1le-6 | 1.0127 | 0.2076 | 4.3e9 (89 %) | 1.9¢9 (79 %) | 313.7
8 | 5e-6 | 12.4716 | 0.4644 | 4.0e9 (83 %) | 1.7€9 (69 %) | 306.2

Table 6.8: Results of the DPCA-EC - IEEE 57 bus (AC-OPF)

Just like in section we investigate the impact of event-triggered communication if the
following stopping criterion is used in the DPCA-EC instead of the pre-given number
kg, = 783884 of iterations which may be not necessary to obtain the primal gap of —0.9049
and the constraint violation of 0.1527 in row 1 of Table
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To this end, let

(G+1)

2= ;M(Hz) AT eRS, (6.17a)
- ]é M%r{“ e s, (6.17b)
Prm = im Il cgb, (6.17¢)
W = f(k J{;{;}r 3V e (617d)

be the approximate solutions after k iterations for i € Ay, (t,m) € £,ands=1,...,p.
DAPCA-EC stopping criterion for the IEEE 57 bus test case (AC-OPF):
Fork >0

if
|primal gap at (6.17)| < 0.9049 and constraint violation at (6.17) <0.1527  (6.18)
then
stop.
else
continue.

In Table 6.9| the results of the DPCA-EC with stopping criterion (6.18)) are given.

As we observed for the DC-OPF problem in Table as well, the result in row 1 shows
that a similar number of iterations (column 3) is needed to compute an approximate so-
lution without event-triggered communication that satisfies the same primal gap and
constraint violation as the solution in row 1 of Table Actually, the number of itera-
tions in row 1 of Table|6.9|is slightly higher compared to row 1 of Table 6.8|as the values
of the primal gap and the constraint violation in are rounded off values given by
MATLAB.

Consistent with the observation made for the DC-OPF problem, row 4 - 6 of Table
show that the information exchange can still be reduced even if the number of iterations
is higher compared to the result obtained without event-triggered communication in row
1. However, if B is chosen to large, as in row 7 and 8, even more communication is re-

quired compared to row 1.
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B Nol TC DC MCTpA
1| 0 |7.8391e5 | 4.8¢9 (100 %) | 2.4e9 (100 %) | 3143
2 | 5e-9 | 7.8467e5 | 4.8¢9 (100 %) | 2.4¢9 (99 %) | 305.5
3| 1e-8 | 7.8739¢5 | 4.8¢9 (100%) | 2.4e9 (99 %) | 312.1
4| 5e-8 | 7.9017e5 | 4.7¢9 (98%) | 23¢9 (95%) | 315.6
5| le-7 | 7.8940e5 | 4.7¢9 (96 %) | 2.2¢9(92%) | 320.2
6 | 5e-7 | 8.4125e5 | 4.8¢9 (99 %) | 2.2¢9 (91%) | 338.7
7 | le-6 | 9.0544e5 | 5.1€9 (105%) | 2.3¢9 (95%) | 360.5
8 | 5e-6 | 3.216%6 | 1.9¢10 (393 %) | 9.2¢9 (379 %) | 1186.8

Table 6.9: Results of DPCA-EC with stopping criterion (6.18) — IEEE 57 bus (AC-OPF)

In Table the results of the DAPCA-EC are given for the step-size parameters
v=1.2and L_; = 10~2L,. The corresponding Lipschitz constant (5.40) is

Le = 8.4797¢11, (6.19)

compared to L, = 1.7149¢9 regarding the IEEE 57 bus DC-OPF problem. Stopping crite-
rion (6.18)) was used for the computation of the results given in Table to be able to
compare with the results of the DPCA-EC in Table

As can be seen in row 1 of Table only 1.5¢5 iterations are needed to compute a
solution without event-triggered communication which is a decrease, compared to the
number of iterations of the DPCA-EC in row 1 of Table by approximately 81 %. As
a reminder, the corresponding decrease concerning the IEEE 57 bus DC-OPF problem
amounts to 75 %, i.e., no significant difference can be observed here.

Similar to the results for the DC-OPF problem in Table the large number of consen-
sus iterations (column 6) in row 1 of Table results in a total information exchange
(column 7) that is bigger compared to the results in row 1 - 7 of Table However, the
results in row 2 - 7 of Table show here as well that the application of event-triggered
communication reduces the consensus communication by up to over 99 % which yields
a reduction of the total communication by up to 82 %.

Unlike the corresponding results for the DC-OPF problem in Table 6.4} the maximal com-
putation time could be reduced by approximately 66 %, compared to the results of the
DPCA-EC in Table which makes the application of the DAPCA-EC attractive
even if no heuristic is used. This can be explained by the fact that only 6 - 10 Ly-updates
needed to be executed due to the high starting value L_; = 1072L..
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B Nol | Ly-Up | L7* | NoClI TC DC CC MCTpA
1 0 1.5e5 7 3.0e10 | 4.9¢7 | 9.5e9 (100 %) | 9.5e8 (100 %) | 7.6e9 (100 %) 701.1
2 | 5e-9 | 1.4e5 6 2.5e10 | 1.4e5 | 1.7e9 (18 %) 8.3e8 (87 %) 2.2e7 (0 %) 102.9
3| 1le-8 | 1.4e5 6 2.5e10 | 1.4e5 | 1.7e9 (18 %) 8.3e8 (87 %) 2.2e7 (0 %) 104.5
4 | 5e-8 | 1.4e5 6 2.5e10 | 1.4e5 | 1.7e9 (18 %) 8.2e8 (86 %) 2.2e7 (0 %) 106.2
5| le-7 | 1.5e5 6 2.5e10 | 1.5e5 | 1.8e9 (19 %) 8.4e8 (88 %) 2.3e7 (0 %) 117.2
6 | 5e-7 | 1.8e5 6 2.5e10 | 1.9e5 | 2.2e9 (23 %) | 1.0e9 (106 %) | 2.9e7 (0 %) 143.6
7 | le-6 | 3.8e5 6 2.5e10 | 3.9e5 | 4.6e9 (48 %) | 2.1€9 (225 %) | 6.0e7 (1 %) 297.6
8 | 5e-6 | 1.4e6 10 5.3e10 | 1.1e7 | 1.8e10 (188 %) | 7.9€9 (829 %) | 1.7€9 (22 %) 1133.2

Table 6.10: Results of DAPCA-EC - IEEE 57 bus (AC-OPF)

Nevertheless, we investigate in the following if the heuristics H1, H3, and H6, described
in section can reduce the number of iterations and the maximal computation time
even more.

The results of the DAPCA-EC combined with heuristic H1 can be seen in Table |6.11
showing that 6 Ly-updates are done in the first iteration independent of the choice of j,
i.e., compared to the results in Table the number of iterations can not be further re-
duced by heuristic H1, however, the consensus iterations are reduced by up to 99 % as
well as the consensus communication which results in a further computation time reduc-
tion by up to 49 %.

Moreover, row 2 - 5 of Table show that the application of event-triggered communi-
cation does not have a remarkable impact in this case. However, compared to the results
of the DPCA-EC in Table|6.9, the application of the DAPCA-EC combined with heuristic
H1 results in a reduction of the number of iterations by up to 83 %, the amount of total
information exchange by up to 83 %, and the maximal computation time by up to 83 % as
well which coincides with the observations made for the IEEE 57 bus DC-OPF problem
in section

Finally, the results of the DAPCA-EC implemented with heuristics H3 and H6 can be
seen in Table and showing that this heuristics yield the same slightly worse
results compared to heuristic H1, since no more than 6 - 7 L-updates are needed which
are all done in the first iteration. Thus allowing additional updates in heuristics H3 and
H6 does not yield an improvement regarding the number of iterations and the maximal

computation time for this case.
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B Nol | Li-Up | L™ | NoCI TC DC CC MCTpA
1| 0 | 1.4e5 6 2.5e10 | 2.2e3 | 8.4e8 (100 %) | 4.2e8 (100 %) | 3.5e5 (100 %) 54.9
2 | 5e-9 | 1.4e5 6 2.5e10 | 2.2e3 | 8.4e8(99 %) | 4.1e8 (98 %) | 3.5e5 (100 %) 53.5
3| 1e-8 | 1.4e5 6 2.5e10 | 2.2e3 | 8.3e8 (99 %) | 4.1e8 (98 %) | 3.5e5 (100 %) 55.6
4 | 5e-8 | 1.4e5 6 2.5e10 | 2.2e3 | 8.3e8 (98 %) | 3.9e8 (93 %) | 3.5e5 (100 %) 56.1
5| 1le-7 | 1.5e5 6 2.5e10 | 2.2e3 | 8.5e8 (101 %) | 3.9e8 (93 %) | 3.5e5 (100 %) 58.6
6 | 5e-7 | 1.8e5 6 2.5e10 | 2.2e3 | 1.0e9 (121 %) | 4.5e8 (106 %) | 3.5e5 (100 %) 73.2
7 | le-6 | 3.8e5 6 2.5e10 | 2.2e3 | 2.2€9 (256 %) | 9.6e8 (229 %) | 3.5e5 (100 %) 148.7
8 | 5e-6 | 1.4e6 6 2.5e10 | 2.2e3 | 8.0e9 (950 %) | 3.8€9 (899 %) | 3.5e5 (100 %) | 487.8
Table 6.11: Results of DAPCA-EC with heuristic H1 — IEEE 57 bus (AC-OPF)
B Nol | Li-Up | L™ | NoCI TC DC CC MCTpA
1| 0 | 1.4e5 6 2.5e10 | 2.7e3 | 8.4e8 (100 %) | 4.2e8 (100 %) | 4.3e5 (100 %) 52.3
2 | 5e-9 | 1.4e5 6 2.5e10 | 2.2e3 | 8.4e8(99 %) | 4.1e8 (98 %) | 3.5e5 (81 %) 544
3| 1e-8 | 1.4e5 6 2.5e10 | 2.2e3 | 8.3e8(99 %) | 4.1e8 (98 %) | 3.5e5 (81 %) 54.1
4 | 5e-8 | 1.4e5 6 2.5e10 | 2.2e3 | 8.3e8 (98 %) | 3.9e8 (93 %) | 3.5e5 (81 %) 56.3
5| 1le-7 | 1.5e5 6 2.5e10 | 2.2e3 | 8.5e8 (101 %) | 3.9e8 (93 %) | 3.5e5 (81 %) 56.3
6 | 5e-7 | 1.8e5 6 2.5e10 | 2.2e3 | 1.0e9 (121 %) | 4.5e8 (106 %) | 3.5e5 (81 %) 70.4
7 | le-6 | 3.8e5 6 2.5e10 | 2.2e3 | 2.2€9 (256 %) | 9.6e8 (229 %) | 3.5e5 (81 %) 139.7
8 | be-6 | 1.4e6 7 3.0e10 | 2.6e3 | 8.0e9 (947 %) | 3.8€9 (897 %) | 4.0e5 (95 %) 477.1
Table 6.12: Results of DAPCA-EC with heuristic H3 — IEEE 57 bus (AC-OPF)
B Nol | Li-Up | L™ | NoCI TC DC CC MCTpA
1| 0 | 1.4e5 6 2.5e10 | 3.8e3 | 8.4e8 (100 %) | 4.2e8 (100 %) | 6.0e5 (100 %) 58.3
2 | 5e-9 | 1.4e5 6 2.5e10 | 2.2e3 | 8.4e8(99 %) | 4.1e8 (98 %) | 3.5e5 (58 %) 54.0
3| 1e-8 | 1.4e5 6 2.5e10 | 2.2e3 | 8.3e8(99 %) | 4.1e8 (98 %) | 3.5e5 (58 %) 53.9
4 | 5e-8 | 1.4e5 6 2.5e10 | 2.2e3 | 8.3e8 (98 %) | 3.9e8 (93 %) | 3.5e5 (58 %) 54.7
5| 1le-7 | 1.5e5 6 2.5e10 | 2.2e3 | 8.5e8 (101 %) | 3.9e8 (93 %) | 3.5e5 (58 %) 62.0
6 | 5e-7 | 1.8e5 6 2.5e10 | 2.2e3 | 1.0e9 (121 %) | 4.5e8 (106 %) | 3.5e5 (58 %) 75.9
7 | le-6 | 3.8¢5 6 2.5e10 | 2.2e3 | 2.2€9 (256 %) | 9.6e8 (229 %) | 3.5e5 (58 %) 154.2
8 | be-6 | 1.4e6 7 3.0e10 | 2.9e3 | 8.0e9 (947 %) | 3.8€9 (897 %) | 4.5e5 (75 %) 517.4

Table 6.13: Results of DAPCA-EC with heuristic H6 — IEEE 57 bus (AC-OPF)

Similar results of the DAPCA-EC applied to the dual of the AC-OPF problem (5.36) for
the IEEE 14 and 30 bus test cases [ZMS11, [Uni] can be found in the appendix
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7.1 Numerical results for the DC-OPF problem

7.1.1 IEEE 14 bus test case (DC-OPF)

In this section, the results of the DAPCA-EC applied to the DC-OPF problem for
the IEEE 14 bus test case [ZMS11), [Uni]] with 5 generators and 20 branches are presented
without further comment as they are similar to the results discussed detailed in section
for the IEEE 57 bus test case.

IEEE 14 bus test case (DC-OPF):

¢ Dimension of primal and dual variable space:
primal: 14 4+5=19, dual: 14 4+ 40 =54,

* Accuracy € = 0.07 and scaling factor s = 29,

e Norm of optimal dual multipliers: ||(u, A)°P|| = 14.5985,

e Lipschitz constant L. = 3.3556e7 (5.9),

¢ Necessary number of iterations (Theorem : kin = 43790,

* Bounds on primal gap at approximate solution (Theorem [3.1.5):
lower bound: —0.0706, upper bound: 0.07, (7.1)
* Bound on constraint violation at approximate solution (Theorem [3.1.5):
0.0048, (7.2)

e Primal gap at starting point (j,A)° =0 € R1*4+40: 76426 = — £,
¢ Constraint violation at starting point: 0.7473,

* Threshold for event-triggered communication : Ay ~ B -0.9998%,
* Step-size parameters for DAPCA-EC: vy =1.1and L_; = 1072L..
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B | PG | v TC DC MCTpA
1] 0 |-0.0167 | 0.0012 | 7.0e6 (100 %) | 1.8¢6 (100 %) | 2.2
2 | le-6 | -0.0170 | 0.0012 | 7.0e6 (100 %) | 1.7¢6 (99 %) | 2.2
3| 5e-6 | -0.0171 | 0.0012 | 6.9¢6 (99 %) | 1.7¢6 (96 %) | 2.2
4| 1e-5 | 0.0170 | 0.0012 | 6.9¢6 (98 %) | 1.7¢6 (94 %) | 2.2
5| 5e-5 | -0.0172 | 0.0013 | 6.7¢6 (96 %) | 1.5¢6 (86 %) | 2.2
6 | le-4 | -0.0143 | 0.0014 | 6.6e6 (94 %) | 1.4e6(82%) | 2.1
7 | 5e-4 | 0.0406 | 0.0013 | 6.3¢6 (89%) | 1.3¢6 (74%) | 2.1
8 | 1e-3 | 0.0735 | 0.0045 | 6.0e6 (86 %) | 1.2¢6 (70%) | 2.1

Table 7.1: Results of the DPCA-EC - IEEE 14 bus (DC-OPF)

DAPCA-EC stopping criterion for the IEEE 14 bus test case (DC-OPF):

Fork>0
if

|primal gap at (6.9)| < 0.0167 and constraint violation at <0.0012

then
stop.
else
continue.
B Nol TC DC MCTpA
1 0 4.2473e4 | 6.8e6 (100 %) | 1.7e6 (100 %) 2.1
2 | le-6 | 4.2333e4 | 6.8e6 (99 %) | 1.7e6 (99 %) 2.1
3 | be-6 | 4.2303e4 | 6.7e6 (99 %) | 1.6e6 (96 %) 2.1
4 | le-5 | 4.2317e4 | 6.6e6 (98 %) | 1.6e6 (94 %) 2.1
5 | be-5 | 4.4400e4 | 6.8e6 (100 %) | 1.5e6 (90 %) 2.2
6 | le-4 | 4.2105e4 | 6.3e6 (93 %) | 1.4e6 (81 %) 2.0
7 | 5e-4 | 5.3557e4 | 7.8e6 (115 %) | 1.7e6 (99 %) 2.6
8 | 1e-3 | 7.6406e4 | 1.1e7 (165 %) | 2.5e6 (149 %) 3.7

(7.3)

Table 7.2: Results of DPCA-EC with stopping criterion (7.3) — IEEE 14 bus (DC-OPF)
pping
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B Nol | Li-Up | L™ | NoCI TC DC CC MCTpA
1| 0 | 1.8e4 30 5.9e6 | 1.6e6 | 7.1e7 (100 %) | 1.4e6 (100 %) | 6.5e7 (100 %) 18.3
2 | le-6 | 2.0e4 32 7.1e6 | 5.2e4 | 8.6e6 (12 %) | 1.6e6 (114 %) | 2.1e6 (3 %) 24
3 | be-6 | 4.4e4 49 3.4e7 | 7.2e4 | 1.5e7 (21 %) | 2.9e6 (206 %) | 2.9e6 (4 %) 4.3
4 | le-5 | 4.5e4 49 3.4e7 | 3.7e4 | 1.2e7 (16 %) | 2.4e6 (168 %) | 1.5e6 (2 %) 3.3
5 | 5e-5 | 4.3e4 49 34e7 | 2.1e5 | 2.1e7 (29 %) | 2.9e6 (206 %) | 8.4e6 (13 %) 5.8
6| le-4 | 3.7¢4 48 3.3e7 | 4.0e5 | 2.8e7 (39 %) | 2.8e6 (201 %) | 1.6e7 (24 %) 7.8
7 | be-4 | 8.2e4 46 2.7e7 | 2.8e6 | 1.4e8 (193 %) | 6.4e6 (455 %) | 1.1e8 (169 %) 38.0
8 | 1e-3 | 8.9¢e4 46 2.7e7 | 2.7e6 | 1.4e8 (194 %) | 6.9e6 (485 %) | 1.1e8 (168 %) 36.3
Table 7.3: Results of DAPCA-EC - IEEE 14 bus (DC-OPF)
B Nol | Li-Up | L™ | NoCI TC DC CcC MCTpA
1| 0 |94e3 12 1.1e6 | 1.2e3 | 1.6e6 (100 %) | 3.8e5 (100 %) | 4.9e4 (100 %) 0.5
2 | le-6 | 1.1e4 12 1.1e6 | 1.2e3 | 1.8e6 (116 %) | 4.4e5 (116 %) | 4.9e4 (100 %) 0.6
3 | 5e-6 | 9.2e3 12 1.1e6 | 1.2e3 | 1.5e6 (97 %) | 3.6e5 (96 %) | 4.9e4 (100 %) 0.5
4 | le-5 | 9.8e3 12 1.1e6 | 1.2e3 | 1.6e6 (104 %) | 3.8e5 (102 %) | 4.9e4 (100 %) 0.5
5| 5e-5 | 9.3e3 12 1.1e6 | 1.2e3 | 1.5e6 (97 %) | 3.3e5 (88 %) | 4.9e4 (100 %) 0.5
6 | le-4 | 2.0e4 12 1.1e6 | 1.2e3 | 3.2e6 (205 %) | 7.4e5 (196 %) | 4.9e4 (100 %) 1.0
7 | 5e-4 | 6.0e4 12 1.1e6 | 1.2e3 | 9.6e6 (616 %) | 2.3e6 (608 %) | 4.9e4 (100 %) 3.0
8 | 1e-3 | 8.2e4 12 1.1e6 | 1.2e3 | 1.3e7 (830 %) | 3.1e6 (821 %) | 4.9e4 (100 %) 4.0
Table 7.4: Results of DAPCA-EC with heuristic H1 — IEEE 14 bus (DC-OPF)
B Nol | Li-Up | L™ | NoCI TC DC CC MCTpA
1| 0 | 1.8e4 38 1.3e7 | 3.8e3 | 3.1e6 (100 %) | 7.3e5 (100 %) | 1.5e5 (100 %) 0.9
2 | le-6 | 1.1e4 12 1.1e6 | 1.3e3 | 1.8e6 (59 %) | 4.4e5 (60 %) | 5.2e4 (34 %) 0.6
3 | 5e-6 | 9.2e3 12 1.1e6 | 1.3e3 | 1.5e6 (49 %) | 3.6e5 (50 %) | 5.2e4 (34 %) 0.5
4 | 1e-5 | 9.1e3 21 2.5e6 | 2.1e3 | 1.5e6 (50 %) | 3.5e5 (48 %) | 8.4e4 (55 %) 0.5
5 | be-5 | 9.3e3 12 1.1e6 | 1.2e3 | 1.5e6 (49 %) | 3.3e5 (46 %) | 4.9e4 (32 %) 0.5
6 | le-4 | 2.0e4 33 7.8e6 | 3.4e3 | 3.2e6 (106 %) | 7.2e5 (98 %) | 1.4e5 (89 %) 1.0
7 | be-4 | 5.9¢e4 21 2.5e6 | 2.3e3 | 9.4e6 (306 %) | 2.2e6 (304 %) | 9.2e4 (60 %) 29
8 | 1le-3 | 7.7e4 31 6.4e6 | 3.4e3 | 1.2e7 (398 %) | 2.9e6 (395 %) | 1.4e5 (88 %) 3.9

Table 7.5: Results of DAPCA-EC with heuristic H3 — IEEE 14 bus (DC-OPF)
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B | Nol | Li-Up | L™ | NoCI TC DC CC MCTpA
1| 0 | 1.9e4 | 36 | 1.0e7 | 3.9e3 | 3.1e6 (100 %) | 7.5e5 (100 %) | 1.6e5(100%) | 1.0
2| 1le6 | 1.2e4 | 24 |33e6 | 2.4e3 | 2.1e6 (65 %) | 4.9¢5 (65 %) | 9.5e4 (60 %) 0.6
3|5e6| 1.2e4 | 23 | 3.0e6 | 2.3e3 | 2.0e6 (63 %) | 4.6e5 (61 %) | 9.3e4 (59 %) 0.6
4| 1e5 [ 10.0e3 | 20 |2.3e6 | 2.2e3 | 1.7¢6 (53 %) | 3.8¢5 (51 %) | 8.8e4 (56 %) 0.5
5|5e5 | 1.led | 18 | 1.9e6 | 2.0e3 | 1.8¢6 (56 %) | 3.7€5 (49 %) | 8.led (51 %) 0.7
6| 1led | 1.8e4 | 30 |59e6 | 3.3e3 | 3.0e6 (94 %) | 6.5e5 (87 %) | 1.3e5 (84 %) 1.0
7| 5e-4 | 59e4 | 21 | 25e6 | 2.3e3 | 9.4e6 (298 %) | 2.2¢6 (296 %) | 9.ded (59 %) 3.0
8| 1e3| 7.8e4 | 28 | 4.8¢6 | 3.4e3 | 1.2¢7 (396 %) | 2.9e6 (394 %) | 1.3e5 (85 %) 40

Table 7.6: Results of DAPCA-EC with heuristic H6 — IEEE 14 bus (DC-OPF)




7.1 Numerical results for the DC-OPF problem 137

7.1.2 IEEE 30 bus test case (DC-OPF)

In this section, the results of the DAPCA-EC applied to the DC-OPF problem for
the IEEE 30 bus test case [ZMS11), [Uni]] with 6 generators and 41 branches are presented
without further comment as they are similar to the results discussed detailed in section
for the IEEE 57 bus test case.

IEEE 30 bus test case (DC-OPF):

* Dimension of primal and dual variable space:
primal: 30 + 6 =36, dual: 30 82 =112,

* Accuracy € = 0.005 and scaling factor s = 4,

e Norm of optimal dual multipliers: ||(y,A)P!|| = 2.0754,

e Lipschitz constant L. = 6.6003¢6 (5.9),

¢ Necessary number of iterations (Theorem : ken = 72666,

* Bounds on primal gap at approximate solution (Theorem 3.1.5):

lower bound: — 0.0053, upper bound: 0.005, (7.4)

* Bound on constraint violation at approximate solution (Theorem 3.1.5):

7.0284¢ — 4, (7.5)

e Primal gap at starting point (j,A)° =0 € R¥+82;: _05652 = — fP",

¢ Constraint violation at starting point: 0.3617,
e Threshold for event-triggered communication (6.2): Ay ~ B - 0.9998F,
* Step-size parameters for DAPCA-EC: vy =1.5and L_; = 10~*L..
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B | PG | v TC DC MCTpA
1| 0 |-0.0014 | 0.0007 | 2.4€7 (100 %) | 6.0e6 (100 %) | 3.8
2 | le-6 | -0.0014 | 0.0007 | 2.4e7 (99 %) | 5.8¢6(97%) | 3.8
3 | 5e-6 | -0.0014 | 0.0007 | 2.3¢7 (98 %) | 5.5e6(91%) | 3.7
4| 1e-5 | -0.0014 | 0.0007 | 2.3¢7 (97 %) | 53e6(89%) | 3.7
5 | 5e-5 | -0.0008 | 0.0006 | 2.2¢7 (93 %) | 4.8¢6(81%) | 3.7
6 | le-4 | -0.0010 | 0.0010 | 2.2¢7 (91%) | 4.6e6 (77%) | 3.6
7 | 5e-4 | 0.0030 | 0.0032 | 2.0e7 (83 %) | 4.0e6 (67 %) | 3.5
8 | 1e-3 | 0.0103 | 0.0066 | 1.9¢7 (79 %) | 3.7¢6 (62%) | 3.4

Table 7.7: Results of the DPCA-EC - IEEE 30 bus (DC-OPF)

DAPCA-EC stopping criterion for the IEEE 30 bus test case (DC-OPF):

Fork>0
if

|primal gap at (6.9)| < 0.0014 and constraint violation at <7.0284e — 4

then
stop.
else
continue.
B Nol TC DC MCTpA
1 0 6.8775e4 | 2.3e7 (100 %) | 5.7e6 (100 %) 3.6
2 | le-6 | 6.8875e4 | 2.2e7 (99 %) | 5.5e6 (97 %) 3.6
3 | be-6 | 6.8940e4 | 2.2e7 (98 %) | 5.2e6 (91 %) 3.5
4 | le-5 | 6.9260e4 | 2.2e7 (97 %) | 5.0e6 (89 %) 3.5
5 | be-5 | 6.7019e4 | 2.0e7 (90 %) | 4.4e6 (77 %) 3.4
6 | le-4 | 6.9818e4 | 2.1e7 (92 %) | 4.4e6 (78 %) 3.5
7 | 5e-4 | 9.3364e4 | 2.7e7 (118 %) | 5.7e6 (100 %) 4.6
8 | 1e-3 | 1.2311eb5 | 3.5e7 (156 %) | 7.8e6 (138 %) 6.0

(7.6)

Table 7.8: Results of DPCA-EC with stopping criterion - IEEE 30 bus (DC-OPF)
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B Nol | Li-Up | L™ | NoCI TC DC CC MCTpA
1] 0 |22e4 17 6.5e5 | 4.3e6 | 3.6e8 (100 %) | 3.5e6 (100 %) | 3.5e8 (100 %) 46.8
2 | 1le-6 | 3.3e4 19 1.5e6 | 1.1e5 | 3.0e7 (8 %) | 5.2e6 (147 %) | 8.8e6 (3 %) 4.2
3 | 5e-6 | 5.0e4 22 49e6 | 5.6e4 | 3.7€7 (10 %) | 7.8e6 (220 %) | 4.6e6 (1 %) 5.2
4 | 1le-5 | 6.1e4 23 6.6e6 | 3.9e4 | 3.2e7(9%) | 6.7e6 (189 %) | 3.2e6 (1 %) 4.7
5| 5e-5 | 6.1e4 23 6.6e6 | 7.6e4 | 3.9e7 (11 %) | 7.7e6 (216 %) | 6.3e6 (2 %) 5.6
6 | le-4 | 7.0e4 23 6.6e6 | 3.0e5 | 6.1e7 (17 %) | 8.7e6 (246 %) | 2.4e7 (7 %) 8.6
7 | be-4 | 1.0e5 23 6.6e6 | 1.6e5 | 6.5e7 (18 %) | 1.2e7 (347 %) | 1.3e7 (4 %) 9.5
8 | le-3 | 1.3e5 23 6.6e6 | 2.9e5 | 8.6e7 (24 %) | 1.5e7 (414 %) | 2.4e7 (7 %) 12.4
Table 7.9: Results of DAPCA-EC - IEEE 30 bus (DC-OPF)
B Nol | Li-Up | L™ | NoCI TC DC CcC MCTpA
1] 0 |23e4 16 4.3e5 | 2.8e3 | 8.6e6 (100 %) | 2.7e6 (100 %) | 2.3e5 (100 %) 1.2
2| le-6 | 1.8¢4 16 4.3e5 | 2.8e3 | 5.9e6 (68 %) | 1.3e6 (50 %) | 2.3e5 (100 %) 0.9
3 | 5e-6 | 1.8¢e4 16 4.3e5 | 2.8e3 | 5.8e6 (67 %) | 1.2e6 (45 %) | 2.3e5 (100 %) 1.0
4 | 1le-5 | 1.8e4 16 4.3e5 | 2.8e3 | 5.9e6 (68 %) | 1.2e6 (45 %) | 2.3e5 (100 %) 1.0
5| 5e-5 | 2.9¢e4 16 4.3e5 | 2.8e3 | 9.2e6 (107 %) | 2.0e6 (76 %) | 2.3e5 (100 %) 1.5
6 | le-4 | 4.2¢4 16 4.3e5 | 2.8e3 | 1.3e7 (156 %) | 2.9e6 (110 %) | 2.3e5 (100 %) 2.2
7 | be-4 | 8.8e4 16 4.3e5 | 2.8e3 | 2.8e7 (321 %) | 6.2e6 (229 %) | 2.3e5 (100 %) 45
8 | le-3 | 1.0e5 16 4.3e5 | 2.8e3 | 3.2e7 (372 %) | 7.2e6 (269 %) | 2.3e5 (100 %) 5.2
Table 7.10: Results of DAPCA-EC with heuristic H1 — IEEE 30 bus (DC-OPF)
B Nol | Li-Up | L™ | NoCI TC DC CC MCTpA
1] 0 |24ed 18 9.8e5 | 3.7e3 | 8.4e6 (100 %) | 2.2e6 (100 %) | 3.0e5 (100 %) 1.3
2 | le-6 | 1.8e4 16 4.3e5 | 2.8e3 | 5.9¢e6 (70 %) | 1.3e6 (61 %) | 2.3e5 (75 %) 1.0
3| 5e-6 | 2.1ed 17 6.5e5 | 2.9e3 | 6.8e6 (81 %) | 1.4e6 (65 %) | 2.4e5 (79 %) 1.1
4 | le-5 | 2.1e4 17 6.5e5 | 3.1e3 | 6.8e6 (80 %) | 1.4e6 (64 %) | 2.6e5 (85 %) 1.1
5 | be-5 | 2.9¢e4 16 4.3e5 | 2.8e3 | 9.2e6 (110 %) | 2.0e6 (92 %) | 2.3e5 (75 %) 1.5
6 | le-4 | 4.2¢4 16 4.3e5 | 3.3e3 | 1.3e7 (160 %) | 2.9e6 (134 %) | 2.7€5 (89 %) 2.2
7 | be-4 | 8.8e4 16 4.3e5 | 2.8e3 | 2.8e7 (329 %) | 6.2e6 (279 %) | 2.3e5 (75 %) 45
8 | le-3 | 1.0e5 16 4.3e5 | 3.2e3 | 3.2e7 (382 %) | 7.2e6 (327 %) | 2.6e5 (87 %) 5.2

Table 7.11: Results of DAPCA-EC with heuristic H3 — IEEE 30 bus (DC-OPF)
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B | Nol | Lt+Up | L™ | NoCI TC DC CC MCTpA
1| 0 |30e4| 19 | 1.5e6 | 45e3 | 1.0e7 (100 %) | 2.6e6 (100 %) | 3.7e5 (100 %) | 1.6
2| 1le-6 | 1.8e4 | 16 | 43¢5 | 2.8¢3 | 5.9e6 (57 %) | 1.3e6 (51%) | 2.3e5 (61 %) 0.9
3|5e6|21ed | 17 | 65e5 | 3.1e3 | 6.9e6 (67 %) | 1.5e6 (56 %) | 2.6e5 (69 %) 1.1
4[1e5|1.8e4 | 16 | 43e5 | 3.2e3 | 596 (57 %) | 1.2e6 (46 %) | 2.6€5 (70 %) 1.0
5|5e5 | 294 | 16 | 43¢5 | 3.0e3 | 9.3e6 (89 %) | 2.0e6 (78 %) | 2.4e5 (65 %) 15
6| le-d | 4.0ed | 17 | 65e5 | 323 | 1.3¢7 (123 %) | 2.8¢6 (107 %) | 2.6e5 (70 %) 2.1
7 | 5e-d | 88ed | 16 | 43¢5 | 3.2e3 | 2.8¢7 (266 %) | 6.2¢6 (236 %) | 2.6e5 (70 %) 45
8 |1e3|1.0e5 | 16 | 43¢5 | 3.8¢3 | 3.2¢7 (309 %) | 7.2e6 (276 %) | 3.1e5 (84 %) 5.3

Table 7.12: Results of DAPCA-EC with heuristic H6 — IEEE 30 bus (DC-OPF)
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7.2 Numerical results for the AC-OPF problem

7.2.1 IEEE 14 bus test case (AC-OPF)

In this section, the results of the DAPCA-EC applied to the dual of the AC-OPF problem
(5.36) for the IEEE 14 bus test case [ZMS11] [Uni] with 5 generators and 20 branches are

presented without further comment as they are similar to the results discussed detailed
in section [6.4] for the IEEE 57 bus test case.

IEEE 14 bus test case (AC-OPF):

* Dimension of primal and dual variable space:

primal: 575,  dual: 138,

¢ Accuracy € = 1.37 and scaling factor s =9,

e Norm of optimal dual multipliers: || A°P!|| = 4.7064,

* Lipschitz constant L. = 8.9064¢9 (5.40),

¢ Necessary number of iterations (Theorem : kin = 161259,

¢ Bounds on primal gap at approximate solution (Theorem 3.1.5)):

lower bound: —1.4549,  upper bound: 1.37, (7.7)

* Bound on constraint violation at approximate solution (Theorem 3.1.5):

0.3091, (7.8)

e Primal gap at starting point A” = 0 € R13: —137.8802,

¢ Constraint violation at starting point: 1.1549¢3,

¢ Threshold for event-triggered communication : Ay~ B -0.9999%,
* Step-size parameters for DAPCA-EC: y =1.1and L_; = 10~3L..
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B PG CV TC DC MCTpA
1| 0 [-0.2079 | 0.0797 | 2.1e8 (100 %) | 1.1e8 (100 %) | 16.7
2 | 5e-9 | -0.2095 | 0.0804 | 2.1e8 (100 %) | 1.1e8 (100 %) | 16.6
3 | 1e-8 | -0.2006 | 0.0788 | 2.1e8 (100 %) | 1.1e8 (100 %) | 16.9
4 | 5e-8 | -0.2069 | 0.0801 | 2.1e8(99 %) | 1.1e8(99 %) | 14.9
5| 1e-7 | -0.2170 | 0.0824 | 2.1e8(99 %) | 1.0e8 (98 %) | 15.0
6 | 5e-7 | -0.2013 | 0.0798 | 2.1e8 (97 %) | 1.0e8 (94%) | 15.0
7 | 1e-6 | -0.2008 | 0.0801 | 2.0e8 (95%) | 9.6e7 (90%) | 15.1
8 | 5e-6 | -0.1198 | 0.0867 | 1.9¢8 (91 %) | 8.8¢7 (82%) | 15.0

Table 7.13: Results of the DPCA-EC — IEEE 14 bus (AC-OPF)

DAPCA-EC stopping criterion for the IEEE 14 bus test case (AC-OPF):

Fork>0
if

|primal gap at (6.17)| < 0.2079 and constraint violation at (6.17) < 0.0797

then
stop.
else
continue.
B Nol TC DC MCTpA
1 0 1.6130e5 | 2.1e8 (100 %) | 1.1e8 (100 %) 14.9
2 | 5e-9 | 1.6194e5 | 2.1e8 (100 %) | 1.1e8 (100 %) 14.9
3 | 1e-8 | 1.59995 | 2.1e8 (99 %) | 1.1e8 (99 %) 15.0
4 | 5e-8 | 1.6233e5 | 2.1e8 (100 %) | 1.1e8 (100 %) 15.1
5 | le-7 | 1.6332e5 | 2.1e8 (100 %) | 1.1e8 (100 %) 15.1
6 | 5e-7 | 1.6066e5 | 2.1e8 (96 %) | 10.0e7 (93 %) 14.9
7 | 1le-6 | 1.6107e5 | 2.0e8 (95 %) | 9.6e7 (90 %) 14.9
8 | be-6 | 1.6393e5 | 2.0e8 (93 %) | 9.0e7 (84 %) 15.3

(7.9)

Table 7.14: Results of DPCA-EC with stopping criterion — IEEE 14 bus (AC-OPF)
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B Nol | Li-Up | L™ | NoCI TC DC CC MCTpA
1 0 | 4.0e4 43 5.4e8 | 3.5e6 | 2.5e8 (100 %) | 5.3e7 (100 %) | 1.4e8 (100 %) 49.6
2 | 5e-9 | 4.7¢4 46 7.1e8 | 8.1e5 | 1.6e8 (64 %) 6.2e7 (117 %) 3.2e7 (23 %) 18.6
3| 1le-8 | 4.6e4 45 6.5e8 | 3.4e5 | 1.3e8 (54 %) 6.0e7 (114 %) 1.4e7 (10 %) 12.7
4 | 5e-8 | 3.6e4 40 4.0e8 | 4.2e4 | 9.7e7 (40 %) 4.8e7 (90 %) 1.7e6 (1 %) 6.7
5 | 1e-7 | 3.0e4 36 2.8e8 | 3.3e4 | 7.9e7 (32 %) 3.8e7 (73 %) 1.3e6 (1 %) 5.4
6 | 5e-7 | 2.8e4 35 2.5e8 | 3.1e4 | 7.2e7 (29 %) 3.5e7 (66 %) 1.2e6 (1 %) 5.1
7 | le-6 | 5.0e5 47 7.9e8 | 3.4e7 | 2.7€9 (1090 %) | 6.6e8 (1253 %) | 1.4e9 (966 %) 4411
8 | be-6 | 1.1e6 48 8.6e8 | 8.8e7 | 6.5e9 (2643 %) | 1.5€9 (2818 %) | 3.5€9 (2509 %) | 1117.6

Table 7.15: Results of DAPCA-EC — IEEE 14 bus (AC-OPF)

B Nol | Li-Up | LP*® | NoClI TC DC CC MCTpA
1 0 | 29e4 35 2.5e8 | 3.0e3 | 3.8e7 (100 %) | 1.9e7 (100 %) | 1.2e5 (100 %) 2.7
2 | 5e-9 | 2.9¢e4 35 2.5e8 | 3.0e3 | 3.8e7 (99 %) 1.9€7 (99 %) | 1.2e5 (100 %) 2.7
3| 1le-8 | 2.7e4 35 2.5e8 | 3.0e3 | 3.6e7 (93 %) 1.8e7 (93 %) | 1.2e5 (100 %) 2.5
4 | 5e-8 | 2.7e4 35 2.5e8 | 3.0e3 | 3.5e7 (92 %) 1.7€7 (91 %) | 1.2e5 (100 %) 2.5
5| 1e-7 | 2.7e4 35 2.5e8 | 3.0e3 | 3.5e7 (92 %) 1.7€7 (90 %) | 1.2e5 (100 %) 2.5
6 | 5e-7 | 2.8e4 35 2.5e8 | 3.0e3 | 3.5e7 (91 %) 1.7e7 (87 %) | 1.2e5 (100 %) 2.7
7 | le-6 | 4.6eb 35 2.5e8 | 3.0e3 | 6.1e8 (1580 %) | 3.0e8 (1582 %) | 1.2e5 (100 %) 425
8 | 5e-6 | 1.0e6 35 2.5e8 | 3.0e3 | 1.4e9 (3603 %) | 6.9e8 (3608 %) | 1.2e5 (100 %) 95.8

Table 7.16: Results of DAPCA-EC with heuristic H1 — IEEE 14 bus (AC-OPF)

B Nol | Li-Up | L*®* | NoClI TC DC CC MCTpA
1 0 | 49e4 45 6.5e8 | 4.2e3 | 6.5e7 (100 %) | 3.2e7 (100 %) | 1.7€5 (100 %) 4.5
2 | 5e-9 | 4.9¢e4 45 6.5e8 | 4.0e3 | 6.5e7 (100 %) | 3.2e7 (100 %) | 1.6e5 (96 %) 4.6
3| 1e-8 | 2.7e4 35 2.5e8 | 3.0e3 | 3.6e7 (55 %) 1.8e7 (55 %) 1.2€5 (72 %) 2.6
4 | 5e-8 | 2.7e4 35 2.5e8 | 3.0e3 | 3.5e7 (55 %) 1.7e7 (54 %) 1.2€5 (72 %) 2.5
51 1le-7 | 2.7e4 35 2.5e8 | 3.0e3 | 3.5e7 (55 %) 1.7e7 (54 %) 1.2€5 (72 %) 2.5
6 | 5e-7 | 2.8e4 35 2.5e8 | 3.0e3 | 3.5e7 (54 %) 1.7e7 (51 %) 1.2€5 (72 %) 2.6
7 | 1le-6 | 4.6e5 42 4.9e8 | 6.2e3 | 6.1e8 (945 %) | 3.0e8 (945 %) | 2.5e5 (147 %) 427
8 | 5e-6 | 1.1e6 49 9.5e8 | 1.1e4 | 1.4e9 (2161 %) | 7.0e8 (2162 %) | 4.3e5 (260 %) 97.7

Table 7.17: Results of DAPCA-EC with heuristic H3 — IEEE 14 bus (AC-OPF)
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B | Nol | Li-Up | L™ | NoCI TC DC CC MCTpA
1| 0 [47e4| 44 |59e8 | 4.4e3 | 6.2e7(100%) | 3.1e7 (100 %) | 1.7e5 (100 %) | 4.4
2 [ 5e9 | 44ed | 43 | 54e8 | 39e3 | 5.8¢7(94%) | 2.9e7(94%) | 1.6e5 (90 %) 41
3|1e8|27e4 | 35 |25e8 | 3.1e3 | 3.6e7(58%) | 1.8e7 (57 %) | 1.25 (71 %) 25
4|5e8 |27ed | 35 |25e8 | 3.0e3 | 35e7(57%) | 1.7e7(56 %) | 1.2€5 (69 %) 2.5
5|1e7 | 2.7e4 | 35 | 25e8 | 3.0e3 | 3.5e7 (57 %) | 1.7e7 (56 %) | 1.2€5 (69 %) 2.5
6| 5e7 | 2.8¢4 | 35 | 25e8 | 3.0e3 | 3.5e7 (56 %) | 1.7e7 (54 %) | 1.2€5 (69 %) 2.6
7 | le-6 | 4.6e5 | 42 | 49e8 | 7.5¢3 | 6.0e8 (976 %) | 3.0e8 (976 %) | 3.0e5 (171 %) | 42.4
8 | 5e-6 | 1.0e6 | 45 | 6.5e8 | 1.6e4 | 1.4e9 (2230 %) | 6.9¢8 (2232 %) | 6.3¢5 (359 %) | 95.5

Table 7.18: Results of DAPCA-EC with heuristic H6 — IEEE 14 bus (AC-OPF)
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7.2.2 IEEE 30 bus test case (AC-OPF)

In this section, the results of the DAPCA-EC applied to the dual of the AC-OPF problem
for the IEEE 30 bus test case [ZMS11], [Uni] with 6 generators and 41 branches are
presented without further comment as they are similar to the results discussed detailed
in section [6.4! for the IEEE 57 bus test case.

IEEE 30 bus test case (AC-OPF):

¢ Dimension of primal and dual variable space:

primal: 1227,  dual: 310,

* Accuracy € = 1.77 and scaling factor s = 13,

e Norm of optimal dual multipliers: || A°Pt|| = 6.5599,

e Lipschitz constant L. = 3.3676¢10 (5.40),

* Necessary number of iterations (Theorem : kgn = 275870,

* Bounds on primal gap at approximate solution (Theorem 3.1.5):

lower bound: —1.7918,  upper bound: 1.77, (7.10)

* Bound on constraint violation at approximate solution (Theorem [3.1.5):

0.2731, (7.11)

e Primal gap at starting point A” =0 € R1%: —177.3612,

¢ Constraint violation at starting point: 1.6085¢3,

¢ Threshold for event-triggered communication : Ay =~ B - 0.9999,
* Step-size parameters for DAPCA-EC: y =1.2and L_; = 10~°L..
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B | PG | v TC DC MCTpA
1] 0 |-02736 | 0.0699 | 7.7¢8 (100 %) | 3.8¢8 (100 %) |  96.1
2 | 5e-9 | -0.2560 | 0.0692 | 7.7¢8 (100 %) | 3.8¢8 (100 %) | 93.4
3| 1e-8 | -0.2548 | 0.0695 | 7.6e8 (100 %) | 3.8¢8(99%) | 93.5
4 | 5e-8 | -0.2554 | 0.0700 | 7.6e8 (99 %) | 3.8¢8(98%) | 929
5| le-7 | -0.2581 | 0.0706 | 7.5¢8 (98 %) | 3.7e8(96%) | 92.1
6 | 5e-7 | -0.2573 | 0.0706 | 7.3e8 (95 %) | 3.4e8(89%) | 95.7
7 | le-6 | -0.2293 | 0.0721 | 7.1e8 (93 %) | 3.3¢8(86%) | 92.8
8 | 5e-6 | 0.1377 | 0.1002 | 6.7e8 (87 %) | 2.9¢8 (76 %) | 92.8

Table 7.19: Results of the DPCA-EC — IEEE 30 bus (AC-OPF)

DAPCA-EC stopping criterion for the IEEE 30 bus test case (AC-OPF):

Fork>0
if

|primal gap at (6.17)| < 0.2736 and constraint violation at (6.17) < 0.0699

then
stop.
else
continue.
B Nol TC DC MCTpA
1 0 2.7596e5 | 7.7e8 (100 %) | 3.8e8 (100 %) 95.0
2 | be-9 | 2.7459e5 | 7.6e8 (99 %) | 3.8e8 (99 %) 994
3 | 1le-8 | 2.7481e5 | 7.6e8 (99 %) | 3.8e8 (99 %) 96.2
4 | be-8 | 2.7603e5 | 7.6e8 (99 %) | 3.8e8 (98 %) 93.3
5| le-7 | 2.768%5 | 7.6e8 (99 %) | 3.7e8 (97 %) 93.5
6 | be-7 | 2.7764e5 | 7.3e8 (95 %) | 3.5e8 (90 %) 94.3
7 | le-6 | 2.7962e5 | 7.2e8 (94 %) | 3.3e8 (87 %) 96.6
8 | be-6 | 3.2525e5 | 8.1e8 (105 %) | 3.6e8 (94 %) 110.6

Table 7.20: Results of DPCA-EC with stopping criterion

7.12

— IEEE 30 bus (AC-OPF)
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B Nol | Li-Up | L™ | NoCI TC DC CC MCTpA
1] 0 |54e4 45 1.2€9 | 9.8e6 | 1.1e9 (100 %) 1.5e8 (100 %) 8.0e8 (100 %) 138.5
2 | 5e-9 | 7.2e4 48 2.1e9 | 8.7e4 4.0e8 (37 %) 2.0e8 (132 %) 7.1e6 (1 %) 471
3 | le-8 | 5.3e4 45 1.2€9 | 6.3e4 3.0e8 (27 %) 1.5e8 (97 %) 5.2e6 (1 %) 34.6
4 | 5e-8 | 3.7¢4 41 5.9e8 | 4.4e4 2.0e8 (19 %) 10.0e7 (66 %) 3.6e6 (0 %) 247
5| le-7 | 3.7¢e4 41 5.9e8 | 4.5e4 2.1e8 (19 %) 9.9¢e7 (66 %) 3.7e6 (0 %) 241
6 | 5e-7 | 1.5e6 48 2.1e9 | 2.4e8 | 2.8e10 (2516 %) | 4.1e9 (2708 %) | 2.0e10 (2443 %) | 3468.0
7 | le-6 | 1.9¢6 48 2.1e9 | 3.3e8 | 3.8e10 (3420 %) | 5.4e9 (3596 %) | 2.7e10 (3353 %) | 4734.9
8 | 5e-6 | 3.1e6 48 2.1e9 | 5.5e8 | 6.3e10 (5699 %) | 8.7e9 (5815 %) | 4.5e10 (5654 %) | 7727.9
Table 7.21: Results of DAPCA-EC — IEEE 30 bus (AC-OPF)
B Nol | Li-Up | LP*® | NoClI TC DC CC MCTpA

1] 0 |4.0e4 41 5.9e8 | 7.7e3 | 1.1e8 (100 %) | 5.6e7 (100 %) | 6.4e5 (100 %) 13.9

2 | 5e-9 | 3.7e4 41 59e8 | 7.7e3 | 1.0e8 (91 %) 5.1e7 (91 %) | 6.4e5 (100 %) 12.7

3| 1e-8 | 3.7e4 41 59e8 | 7.7e3 | 1.0e8 (91 %) 5.1e7 (90 %) | 6.4e5 (100 %) 13.3

4 | 5e-8 | 3.7¢4 41 5.9e8 | 7.7e3 | 1.0e8 (89 %) 4.9¢e7 (87 %) | 6.4e5 (100 %) 12.4

5| 1le-7 | 3.7e4 41 59e8 | 7.7e3 | 1.0e8 (89 %) 4.8e7 (86 %) | 6.4e5 (100 %) 12.2

6 | 5e-7 | 1.5e6 41 59e8 | 7.7e3 | 4.3e9 (3795 %) | 2.1e9 (3814 %) | 6.4e5 (100 %) | 518.1

7 | le-6 | 1.9e6 41 59e8 | 7.7e3 | 5.4e9 (4787 %) | 2.7€9 (4811 %) | 6.4e5 (100 %) | 619.8

8 | 5e-6 | 3.0e6 41 59e8 | 7.7e3 | 8.4e9 (7488 %) | 4.2€9 (7519 %) | 6.4e5 (100 %) | 986.9

Table 7.22: Results of DAPCA-EC with heuristic H1 — IEEE 30 bus (AC-OPF)
B Nol | Li-Up | L*®* | NoClI TC DC CC MCTpA

1| 0 |5.8e4 45 1.2e9 | 9.0e3 | 1.6e8 (100 %) | 8.1e7 (100 %) | 7.4e5 (100 %) 20.8

2 | 5e-9 | 3.7e4 41 5.9e8 | 7.8e3 | 1.0e8 (63 %) 5.1e7 (63 %) 6.4e5 (86 %) 13.0

3| 1e-8 | 3.7e4 41 5.9e8 | 7.8e3 | 1.0e8 (63 %) 5.1e7 (63 %) 6.4e5 (86 %) 12.8

4 | be-8 | 3.7¢4 41 5.9e8 | 7.8e3 | 1.0e8 (62 %) 4.9e7 (61 %) 6.4e5 (86 %) 12.6

5| 1le-7 | 3.7e4 41 5.9e8 | 7.8e3 | 1.0e8 (61 %) 4.8e7 (59 %) 6.4e5 (86 %) 12.4

6 | 5e-7 | 1.5e6 46 1.5e9 | 2.3e4 | 4.3e9 (2639 %) | 2.1e9 (2648 %) | 1.9e6 (253 %) | 520.7

7 | le-6 | 1.9e6 45 1.2e9 | 2.7e4 | 5.4e9 (3321 %) | 2.7€9 (3332 %) | 2.2e6 (304 %) | 628.2

8 | 5e-6 | 3.0e6 46 1.5e9 | 3.9e4 | 8.5e9 (5195 %) | 4.2€9 (5210 %) | 3.2e6 (430 %) | 1023.4

Table 7.23: Results of DAPCA-EC with heuristic H3 — IEEE 30 bus (AC-OPF)
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B | Nol | Li-Up | L™ | NoCI TC DC CC MCTpA
1| 0 |77e4| 48 |21e9 | 1.0e4 | 2.2e8 (100%) | 1.1e8 (100%) | 8.5e5(100%) | 28.3
2 |5e-9 (374 | 41 |59e8 | 7.8¢3 | 1.0e8(48%) | 5.1e7(47%) | 6.4e5(75%) | 135
3|1e-8|37e4 | 41 |59e8 | 7.8¢3 | 1.0e8(48%) | 5.1e7(47%) | 6.4e5(75%) | 12.8
4|5e-8|37e4| 41 |59e8 | 7.8¢3 | 1.0e8(47%) | 4.9¢7 (46%) | 6.4e5(75%) | 123
5|1e7 | 37e4 | 41 |59e8 | 7.8¢3 | 1.0e8(46%) | 4.8¢7(45%) | 6.4e5(75%) | 132
6| 5e-7 | 1.5e6 | 48 | 2.1e9 | 3.7ed | 4.2¢9 (1956 %) | 2.1e9 (1961 %) | 3.0e6 (358 %) | 504.0
7| 1e-6 | 1.9e6 | 49 | 2.6e9 | 4.5e4 | 5.4e9 (2503 %) | 2.7€9 (2510 %) | 3.7e6 (432 %) | 654.2
8| 5e-6|3.0e6 | 46 | 1.5e9 | 6.9e4 | 8.5¢9 (3929 %) | 4.2¢9 (3936 %) | 5.6e6 (665 %) | 989.7

Table 7.24: Results of DAPCA-EC with heuristic H6 — IEEE 30 bus (AC-OPF)
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