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Abstract

This thesis is concerned with the development of distributed optimization methods with

adaptive step-size control and event-triggered communication, where the focus is on

convex optimization problems with either nonseparable objective function but separa-

ble constraints or separable objective function but couplings in the constraints.

Regarding a practice related application of the developed algorithms, it is shown how

the convex direct current optimal power flow (DC-OPF) problem can be solved distribut-

edly with event-triggered and local communication in a multi-agent network. Moreover,

the combined application with a decomposition technique for linear matrix inequalities

is described which enables to distributedly solve a semidefinite dual of the nonconvex al-

ternating current optimal power flow (AC-OPF) problem with (close to) local and event-

triggered communication.

Numerical results for these applications confirm the good properties of the developed al-

gorithms and show that event-triggered communication yields a considerable reduction

of the information exchange in the optimization process.

Zusammenfassung

Diese Dissertation befasst sich mit der Entwicklung von verteilten Optimierungsverfah-

ren mit adaptiver Schrittweitensteuerung und ereignisbasierter Kommunikation für kon-

vexe Optimierungsprobleme, in denen entweder eine nicht separable Zielfunktion durch

separable Nebenbedingungen beschränkt ist oder eine separable Zielfunktion mit gekop-

pelten Nebenbedingungen betrachtet wird.

Hinsichtlich einer praxisbezogenen Anwendung der entwickelten Algorithmen wird ge-

zeigt, wie das konvexe DC-OPF Problem mit ereignisbasierter und lokaler Kommunika-

tion verteilt in einem Multi-Agentensystem gelöst werden kann. Darüberhinaus wird die

kombinierte Anwendung mit einer Dekompositionstechnik für lineare Matrixungleichen

beschrieben, die es ermöglicht ein semidefinites duales Problem des nichtkonvexen AC-

OPF Problems mit (fast) lokaler und ereignisbasierter Kommunikation zu lösen.

Die numerischen Ergebnisse zu diesen Anwendungen belegen die guten Eigenschaften

der entwickelten Algorithmen und zeigen, dass ereignisbasierte Kommunikation im Op-

timierungsprozess zu einer deutlichen Reduzierung des Informationsaustauschs führt.
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f ′(x) derivative of f w.r.t x ∈R
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1 Introduction

Distributed optimization is a relatively young topic in the optimization literature and re-

ceives growing attention as there is a need to find solutions for optimization problems re-

lated to large-scale networks which become increasingly important in an interconnected

and globalized world.

A good overview of network optimization problems and relevant literature can be found

in [Lem10, sec. 1.6] and to give a few examples, estimation problems are for instance

network problems, where the nodes of the network are sensors that locally measure a

disturbed signal which is then globally estimated by the collaboration of neighbored sen-

sors (e.g. [SFJ06, SBG07]). An example for an application is target tracking, where the

location of multiple targets is estimated by a comparatively small number of navigation

satellites (for details see [SBG07]).

Another class of problems is referred to as network utility maximization (e.g. [LL99,

PC06, NO09]), where in its basic form the nodes of the network represent sources that

want to transmit data via a predetermined set of lines in the network at a rate that max-

imizes their utility. As the transmission capacities are limited and the lines are shared

among the sources, the allocation of the permitted transmission rates is done in a way

that the overall utility is maximized. A practical application is the TCP congestion con-

trol of the data transmission via the internet (for related literature see [PC06, Lem10]).

Finally, the network optimization problem, that is focused on in the numerical part of

this thesis, is the problem of finding the minimal cost of real power generation in an

electrical power system which is a network that connects power generating units and

loads via branches (e.g. transmission lines). For the determination of the optimal real

power generation, constraints such as a balanced power flow within the network, lim-

its on the power generation, and limits on the power flow at the branches have to be

considered and the resulting optimization problem is referred to as alternating current

optimal power flow (AC-OPF) problem (e.g. [KB00, LL12, LZT12, DZG13]) or in its sim-

plified and linearized version as direct current optimal power flow (DC-OPF) problem

(e.g. [BB03, JDR08, WL10]).

1
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The size and the spatial distribution of large-scale networks make the usage of cen-

tralized optimization methods obsolete, especially in the case of privacy concerns (e.g.

[JDR08, DUAH12, DMUH14a, DMUH15]), where the subsystems in the network do not

want to share sensitive data and information with a central processor. To give an ex-

ample, in a power system network this sensitive data might be the cost of power pro-

duction as nowadays the power generating units belong to competitive power suppliers

(see section 4.1). Accordingly, in this respect the amount of produced power at a power

generating unit might be a sensitive information. Another aspect is the availability of

information in the optimization process that might not be given centrally as in wireless

sensor networks according to [NO09, sec. 1.1]. Finally, regardless of whether the consid-

ered optimization problem is related to a large-scale network or not, a parallelization of

the computations in an optimization process is obviously favorable with respect to the

complexity (for a comprehensive work on parallel computation see [BT89].

For this reasons, the goal in distributed optimization is to design optimization methods

that can be implemented in parallel by a number of agents (processors) placed at the

nodes of the network for a distributed computation of an optimal solution to a network

related problem, where each agent controls only a subblock of the optimization variable.

Generally, the agents need to exchange the iterates of their subblocks in the optimization

process in order to approach an optimal solution as they have no access to the optimiza-

tion variable as a whole. Regarding this information exchange, it is desirable that the

distributed algorithm is designed in a way that an agent does not need to communicate

with every other agent in the optimization process, and in the favorable case that the

communication topology of the multi-agent network coincides with the topology of the

considered large-scale network, the information exchange is referred to as being local.

Moreover, a large communication traffic is undesirable especially for capacity limited

wireless communication networks [WL10]. To this end, event-triggered communication

finds application in distributed optimization (e.g. [WL09a, WL09b, ZC10, WL10]), where

the agents use outdated information of other agents which is allowed to differ to a certain

extent from the up to date information. This extent is determined by a given threshold

that adjusts to the stage of the optimization process and thereby guarantees its conver-

gence.

Regarding the design of a distributed algorithm, the structure of the considered network

problem is crucial. Except for the AC-OPF problem which is nonconvex, the above

mentioned problems share in their basic form a separable structure, where a convex

(or concave) objective function is separable with respect to a partition of the optimiza-

tion variable into disjoint subblocks and constrained by nonseparable linear (in)equality
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constraints that, however, can be decoupled by forming the corresponding Lagrangian

which is a classical approach in distributed optimization, called dual decomposition (e.g.

[LL99, PC06, SBG07, NO09]). The Lagrangian is then separable with respect to the sub-

blocks of the primal optimization variable in the same way as the objective function of the

primal problem and this separability confers to the corresponding dual objective function

which at worst is constrained by nonnegativity constraints. In other words, the dual func-

tion can be evaluated at given feasible dual multipliers by minimizing (or maximizing)

the Lagrangian with respect to the primal subblocks in parallel, and moreover, the dual

optimal function value coincides with the optimal primal function value under mild as-

sumptions due the convexity (or concavity) of the primal problem and the linearity of the

constraints (details are given in section 3.1).

Finally, the concave (or convex) dual function is continuously differentiable if the La-

grangian is minimized uniquely for any given feasible dual multipliers which is for in-

stance the case if the primal objective function is strictly convex. Then, a first order al-

gorithm (a (projected) gradient scheme or an accelerated first order method) can be ap-

plied to maximize (or minimize) the dual objective function in a distributed manner (e.g.

[LL99, PC06, DMUH14a, DMUH15]). However, if the primal objective function is only

convex, a subgradient scheme can be applied to the dual problem (e.g. [PC06, SBG07,

NO09]) or the primal objective function can be regularized with strongly convex func-

tions, yielding a smooth augmented dual objective function (e.g. [Nes05, NS08]).

In this context, the proximal center algorithm (PCA) by Necoara and Suykens [NS08] (see

section 3.1) is an efficient dual decomposition method that is designed for the application

to convex problems with a separable convex objective function and dually decompos-

able linear constraints as described above. The authors of [NS08] apply a smoothing

technique from [Nes05], where the primal convex objective function is regularized with

(strongly convex) prox-functions that maintain its separability, yielding a continuously

differentiable dual augmented function that has the same separability features as the

dual function. Moreover, the augmented dual function has a Lipschitz continuous gra-

dient which allows the application of an optimal first order scheme by Nesterov [Nes05]

(see section 2.1) and explains the efficiency of the PCA whose speed of convergence to the

optimal primal objective function value is in the order of O(1/k), where k is the number

of iterations, whereas the convergence speed of a subgradient scheme is in the order of

O(1/
√

k) according to [NS08].

Nesterov’s optimal first order method from [Nes05] is designed for convex optimization

problems, where a continuously differentiable convex objective function with Lipschitz

continuous gradient is constrained by a closed and convex subset of a real vector space.
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It is optimal in the way that its speed of convergence to the optimal objective function

value is of the order O(L/k2), where L is the Lipschitz constant, whereas the conver-

gence speed of an applied gradient projection algorithm would be of the order O(1/k)

according to [Nes05].

In this work, both algorithms are enhanced with an adaptive step-size control and event-

triggered communication, maintaining their efficiency (see chapter 2 & 3).

1.1 Outline of this work

In chapter 2, we present an adaptive accelerated distributed gradient scheme with event-

triggered communication which is based on Nesterov’s optimal first order method from

[Nes05].

To this end, section 2.1 contains an introduction to Nesterov’s method which is designed

for convex optimization problems, where a continuously differentiable convex objective

function with Lipschitz continuous gradient is constrained by a closed and convex sub-

set of a real vector space. Nesterov’s algorithm basically consists in each iteration of

two simple strongly convex subproblems that contain only first order information which

yields that the algorithm in all is suitable for a parallel implementation in a multi-agent

network under mild assumptions such as the separability of the constraint set (see sec-

tion 2.2). We show how this distributed version can be enhanced with event-triggered

communication by introducing, similarly to [WL10, ZC10], outdated versions of the sub-

blocks of the optimization variable that are used by the agents in the optimization process

to compute their subblock of the gradient. The resulting distributed Nesterov-Algorithm

with event-triggered communication (DNA-EC) inherits the convergence speed of the or-

derO
(

L/k2) as well as the simple structure of the subproblems that are slightly modified

compared to their origins in order to handle the error due to event-triggered communi-

cation in the proof of convergence (see section 2.2).

In a next step, we enhance the DNA-EC by an adaptive step-size control to further accel-

erate the convergence of the algorithm. To this end, we firstly equip Nesterov’s algorithm

with an adaptive step-size control which is based on the work of Nesterov in [Nes13] and

the observation that the first subproblem in Nesterov’s algorithm is a projected gradient

step with step size 1/L which suggests to use instead step-sizes of the from 1/Lk for

Lk ≤ L in each iteration (see section 2.3).

Secondly, we modify this step-size control in a way that it can be implemented in paral-

lel by using a consensus technique that is widely used in distributed optimization (e.g.

[SFJ06, CCW10, DUAH12]) and is described in section 2.4.
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Finally, these features are combined in the distributed adaptive Nesterov-Algorithm with

event-triggered communication (DANA-EC) that is presented together with the proofs of

convergence for different versions of it in section 2.5.

In chapter 3, we enhance the proximal center algorithm (PCA) by Necoara and Suykens

[NS08] with event-triggered communication and an adaptive step-size control by using

the results of chapter 2.

To this end, section 3.1 contains an introduction to the PCA which is designed for the

application to convex problems with a separable convex objective function and nonsepa-

rable linear (in)equality constraints as described above.

In section 3.1.1, we improve the convergence result for the PCA from [NS08] (see sec-

tion 3.1), where the number of iterations that is required to achieve a desired quality of

the approximate solution depends, i.a., on the Lipschitz constant of the gradient of the

augmented dual function. We show for a certain class of prox-functions that the Lips-

chitz constant can be analytically minimized with respect to the convexity parameters

of these prox-functions in order to reduce the number of iterations and moreover, that

it is possible to determine the analytical solutions of the optimal convexity parameters

distributedly by the application of the consensus technique described in section 2.4. We

further improve the convergence result of the PCA by proposing a scaling technique that

provides an additional degree of freedom in the bounds on the quality of the approxi-

mate solution.

In section 3.2, we enhance the PCA by applying the developed DANA-EC instead of Nes-

terov’s scheme to maximize the dual augmented function which results in the distributed

adaptive proximal center algorithm with event-triggered communication (DAPCA-EC).

Finally, we give two convergence results in this section which differ in the choice of prox-

functions and the boundedness of the dual feasible set, however, in both cases we main-

tain the complexity of the PCA with O(1/k) iterations.

To prepare the application of the DAPCA-EC to distributedly (and with event-triggered

communication) solve network problems that arise in a power system network, we es-

tablish in detail the models of the nonconvex alternating current optimal power flow

(AC-OPF) problem as well as the convex direct current optimal power flow (DC-OPF)

problem in chapter 4.

As mentioned above, we refer to the AC-OPF problem as the problem of finding the

minimal cost of real power generation subject to constraints such as the power balance

equations, real power generation limits, and limits on the power flow at the branches (e.g.
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transmission lines) (see section 4.4). As the AC-OPF problem is nonconvex, its simplified

linearization, the DC-OPF problem, is considered in practice if only the amount and cost

of real power production is of interest (see section 4.5).

For a better understanding of the model that underlies these problems, an introduction to

the structure of a power system and some important components is given in section 4.1,

where we as well justify why it could be favorable to solve these optimization problems

in a distributed manner. Moreover, technical terms such as the phasor representations of

current and voltage as well as the definitions of real, reactive, and apparent power are

introduced in section 4.2 to prepare the derivation of the power balance equations (see

section 4.3) that relate the difference of the produced and consumed power to the power

flowing in the network.

In chapter 5, we show how the DAPCA-EC can be applied to solve the DC-OPF problem

and the AC-OPF problem distributedly and with event-triggered communication.

In section 5.1, we dually decompose the DC-OPF problem whose separable structure

allows to directly apply the DAPCA-EC after the regularization of the real power gener-

ation cost function. We determine the Lipschitz constant as well as the partial derivatives

of the augmented dual function and explicitly state the DAPCA-EC for this problem as

it can be implemented. Moreover, we discuss in detail that the communication of the

agents in the optimization process is fully local in the sense that it is sufficient for the

agents to use the branches of the power system network for the information exchange

with direct neighbors that are placed at the buses (nodes) of the power system. Finally,

we show that the subproblems in each iteration of the DAPCA-EC applied to solve the

DC-OPF problem have analytical solutions, superseding the need of solvers in the opti-

mization process.

To prepare the application of the DAPCA-EC to solve the AC-OPF problem in parallel

and with event-triggered communication, we show in section 5.2 how a semidefinite op-

timization problem, where a separable and convex objective function is constrained by

a linear matrix inequality (LMI), can be solved distributedly by the DAPCA-EC. As the

LMI introduces a dual matrix multiplier in dual decomposition that would require global

information exchange among the agents, we apply the range-space conversion method

from Kim et al. [KKMY11] which relates to semidefinite matrix completion and enables

us to restate the LMI in a way that the dually decomposed problem can be solved dis-

tributedly by the DAPCA-EC with local communication if the sparsity structure of the

LMI is chordal and coincides with the topology of the multi-agent network. However,

for the case that this assumption is not satisfied, we show that the information exchange
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can be carried out almost locally by finding the minimal chordal extension of the graph

that represents the sparsity structure of the LMI. Finally, we determine the Lipschitz con-

stant as well as the partial derivatives of the augmented dual function and explicitly state

the DAPCA-EC applied to solve this class of semidefinite optimization problems in par-

allel and with event-triggered communication. We discuss in detail the communication

topology of the agents and give analytical solutions for the subproblems that have to be

solved in each iteration of the DAPCA-EC and partially are semidefinite problems them-

selves.

In section 5.3, we consider the semidefinite dual of the AC-OPF problem as derived by

Lavaei and Low in [LL10, LL12]. This dual is an LMI-constrained optimization problem

with separable and linear objective function whose optimum coincides with the opti-

mum of the nonconvex AC-OPF problem under assumptions that are usually satisfied in

practice as shown by the authors. Specifying the results from section 5.2, we apply the

range-space conversion method to restate the LMI and solve the dual AC-OPF problem

by the application of the DAPCA-EC which is explicitly stated and can be implemented

by the agents with local information exchange if the considered power network is chordal

(e.g. distribution network) or with close to local communication if the considered power

system network is not chordal (e.g. transmission network) as will be discussed. Last but

not least, we proof nontrivial analytical solutions to the subproblems in the DAPCA-EC

applied to solve the dual of the AC-OPF problem and show how an approximate solution

of the AC-OPF problem can be derived distributedly from the computed approximate so-

lutions of its dual.

Finally, the numerical results for the application of different versions of the DAPCA-EC

to the DC-OPF problem and the dual of the AC-OPF problem are presented in chapter

6. For the numerical investigation we used the data of benchmark IEEE test cases that

represent portions of the American Electric Power System in the Midwestern US with 14,

30, and 57 buses (nodes).

In section 6.1, we discuss the choice of different parameters for the DAPCA-EC such as

the threshold that determines the event-triggered communication and the start values

as well as the update parameters for the adaptive step-size control. Moreover, we show

how the scaling technique derived in section 3.1.1 is applied.

In sections 6.2 and 6.4, the numerical results for the IEEE 57 bus test case are exemplarily

discussed and compactly summarized for the DC-OPF problem and the dual of the AC-

OPF problem by the means of several tables that contain exhaustive data obtained by the

following way of investigation:
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In the first step, the PCA is compared with the DPCA-EC (DAPCA-EC without adaptive

step-size control) to find out to what extent the information exchange can be reduced

by event-triggered communication for a fixed number of iterations (given by the con-

vergence result for the PCA in section 3.1) to achieve a predetermined accuracy of the

approximate solution. We anticipate that for this setting event-triggered communication

leads to considerable savings with respect to the information exchange.

Moreover, the comparison is repeated with a stopping-criterion for the primal gap and

the constraint violation at the approximate solution in each iteration of the DPCA-EC,

to firstly investigate the tightness of the convergence result for the PCA in section 3.1,

and to secondly find out if there is a trade-off between the communication savings due

to the usage of event-triggered communication and the necessary number of iterations

to obtain a certain quality of the approximate solution. Remarkably, the results for this

test setting show that the number of iterations and thereby the information exchange can

be reduced by the application of the DPCA-EC (compared to the PCA) for a sufficiently

tight threshold despite the inaccuracy that is introduced by the usage of event-triggered

communication into the optimization process.

In the second step, the same stopping criterion is used to investigate how the adaptive

step-size strategy in the DAPCA-EC helps to reduce the number of iterations compared

to the DPCA-EC and it appears that the iterations can be reduced by up to four fifths. Fur-

thermore, the impact of event-triggered communication in combination with the adap-

tive step-size strategy is studied and the results show that the overall communication

can be crucially reduced if the threshold is tight enough. Finally, as the consensus tech-

nique for the distributed implementation of the adaptive step-size strategy is in all very

time and information consuming if it is executed in each iteration of the DAPCA-EC, we

propose several heuristics that execute the step-size update (and thereby the consensus

technique) only sporadically to reduce the information exchange as well as the compu-

tation time, keeping the good results of the DAPCA-EC with respect to the number of

iterations and the communication savings.

Similar results for the 14 and 30 bus test cases can be found in the appendix 7.
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Parts of this thesis are already published or in preparation for publication:

In [MUA14] (Meinel, Ulbrich, and Albrecht), we presented the distributed Nesterov-

Algorithm with event-triggered communication (DNA-EC), as well as the distributed

proximal center algorithm with event-triggered communication (DPCA-EC). We gave

convergence results for both and improved the accuracy estimates of the proximal center

algorithm by the application of a scaling technique as well as optimal convexity parame-

ters (or alternatively optimal scaling parameters). Moreover, we numerically investigated

the impact of event-triggered communication by the application of the DPCA-EC to DC-

OPF problems.

The preprint [MU14] (Meinel and Ulbrich) is in preparation for publication and contains

the enhancement of the DNA-EC and the DPCA-EC with the adaptive step-size control

that can be implemented distributedly by a consensus technique, yielding the DANA-EC

as well as the DAPCA-EC. Moreover, it contains how the LMI-constrained convex prob-

lem with separable structure can be solved distributedly by the D(A)PCA-EC to prepare

the application to the dual AC-OPF problem. Finally, the numerical results that show the

impact of the adaptive step-size strategy and event-triggered communication are part of

this preprint.

Further publications that are closely related to parts of this thesis:

In [DMUH14a, sec. 4] (Deroo, Meinel, Ulbrich, and Hirche) as well as [DMUH15, 3.3]

(Deroo, Meinel, Ulbrich, and Hirche), we applied the range-space conversion method

in combination with dual decomposition to solve an LMI-constrained strongly convex

stability related problem with a distributed version of the proximal center algorithm in

parallel (for details see section 5.2).
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2 Distributed first order method with event-tiggering

In this chapter, an optimal first order scheme by Nesterov (NA 2.1.3) is presented in sec-

tion 2.1 which is suitable for parallel implementation in a multi-agent network as shown

in section 2.2, where the algorithm is additionally enhanced by event-triggered commu-

nication, yielding the distributed Nesterov-Algorithm with event-triggered communica-

tion (DNA-EC 2.2.5).

To accelerate the convergence speed of the DNA-EC 2.2.5, the algorithm is modified by an

adaptive step-size control in sections 2.3 - 2.5, yielding the distributed adaptive Nesterov-

Algorithm with event-triggered communication (DANA-EC 2.5.1). This is done firstly by

modifying the Nesterov-Algorithm 2.1.3 in section 2.3, resulting in the adaptive Nesterov-

Algorithm (ANA 2.3.2). Secondly, in section 2.4 it is shown how the ANA can be imple-

mented distributedly which we call distributed adaptive Nesterov-Algorithm (DANA)

in the following and finally, in section 2.5 the convergence of the DANA with event-

triggered communication (DANA-EC 2.5.1) is shown.

2.1 Nesterov’s optimal first order method

The content of this section was essentially published in [MUA14, sec. 2.1] (Meinel, Ulbrich, and

Albrecht) and is reproduced here in similar form.

Nesterov’s optimal first order scheme [Nes05, sec. 3], which we denote in the following

by Nesterov-Algorithm (NA) for simplicity, is applicable for convex optimization prob-

lems

min
x∈Q

f (x), (2.1)

where the constraint set Q⊆ E is a closed and convex subset of a real vector space E, and

the objective function f : Q→R is convex and continuously differentiable with Lipschitz

continuous gradient, i.e., the gradient ∇ f satisfies the following inequality [Nes05]:

‖∇ f (x)−∇ f (y)‖E∗ ≤ L‖x− y‖E ∀x,y ∈ Q, (2.2)

11
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where L > 0 is the Lipschitz constant and ‖·‖E∗ the norm that corresponds to the dual

space E∗ of E. However, in this work we consider the real vector space E = Rm, i.e., we

have ‖·‖E∗ = ‖·‖E = ‖·‖ [Nes05], where by ‖·‖ the Euclidean norm is denoted. It follows

that inequality (2.2) becomes

‖∇ f (x)−∇ f (y)‖ ≤ L‖x− y‖ ∀x,y ∈ Q. (2.3)

Before the Nesterov-Algorithm is stated, we introduce the term prox-function after giving

the definition of a strongly convex function by the following theorem.

Theorem 2.1.1. (Strongly convex function) [UU12, Theo. 6.3, 3.]

Let the function d(x) : Q → R be continuously differentiable on an open environment of the

convex set Q. Then d(x) is strongly convex if and only if there exists a parameter µ > 0 such that

the following inequality is satisfied for all x,y ∈ Q:

d(y)− d(x) ≥∇d(x)T(y− x) + µ‖x− y‖2 . (2.4)

In [Nes05], the parameter σ = µ/2 > 0 is called convexity parameter and the strongly

convexity property of a continuously differentiable function d(x) is equivalent to [BT89,

Prop. A.41]

(∇d(x)−∇d(y))T (y− x) ≥ σ‖x− y‖2 ∀x,y ∈ Q. (2.5)

The following definition of a prox-function and the corresponding center slightly extends

[NS08, Def. 2.4] by additionally demanding continuously differentiability.

Definition 2.1.2. (Prox-function) [NS08, based on Def. 2.4]

A continuously differentiable function d(x) : Q→R is called prox-function if it is strongly con-

vex and satisfies

d(x0) = 0,

where

x0 = argmin
x∈Q

d(x)

is called the center of Q.

Finally, the initialization of the Nesterov-Algorithm [Nes05, p. 135] is done by choosing

a prox-function d(x) with convexity parameter σ > 0 whose center (minimum) x0 serves

as the starting point. Moreover, a positive sequence {αk}k≥0 has to be chosen that occurs

in the following algorithm as well as the quantities

τk =
αk+1

Ak+1
, where Ak =

k

∑
i=0

αi. (2.6)
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Algorithm 2.1.3. (Nesterov-Algorithm) [MUA14, Algo. 2.1]

For k ≥ 0 do:

1. Compute ∇ f (xk).

2. Find yk = argmin
y∈Q

{〈
∇ f (xk),y− xk

〉
+

L
2

∥∥∥y− xk
∥∥∥2
}

.

3. Find zk = argmin
z∈Q

{
L
σ

d(z) +
k

∑
j=0

αj

〈
∇ f (xj),z− xj

〉}
.

4. Set xk+1 = τkzk + (1− τk)yk.

We notice that some (redundant) constant terms are omitted in the argmin-problems of

Algorithm 2.1.3 compared to the representation in [Nes05] in order to reveal its paral-

lelizable nature if the prox-function d(x) as well as Q have a suitable structure discussed

more detailed in the following section 2.2.

We end this introduction to Nesterov’s optimal first order scheme with the following

result which merges [Nes05, Lem. 1] with [Nes05, Theo. 2] (with adopted wording).

Theorem 2.1.4. [MUA14, Theo. 2.2]

Let the sequence {αk}k≥0 satisfy the condition

α0 ∈ (0, 1], α2
k+1 ≤ Ak+1, αk > 0, k ≥ 0. (2.7)

Then the relation

Ak f (yk) ≤ Ψk = min
z∈Q

{
L
σ

d(z) +
k

∑
j=0

αj

(
f (xj) +

〈
∇ f (xj),z− xj

〉)}
holds for k ≥ 0 and therefore

f (yk)− f (xopt) ≤ Ld(xopt)

σAk
,

where xopt is an optimal solution to problem (2.1).

Proof. The proof is given in [Nes05, proof of Theo 2].

Finally, in [Nes05] the following choice of the sequence {αk}k≥0 is proposed which satis-

fies conditions (2.7) in Theorem 2.1.4.

Lemma 2.1.5. [Nes05, Lem. 2]

For k ≥ 0 define αk = (k + 1)/2. Then

τk =
2

k + 3
, Ak =

(k + 1)(k + 2)
4

,

and conditions (2.7) are satisfied.
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Applying Lemma 2.1.5 in Theorem 2.1.4 yields the following estimate of the gap between

the function values at the optimal solution xopt and the iterate yk from step 2 of Algorithm

2.1.3 [Nes05, Theo. 2]:

f (yk)− f (xopt) ≤ 4Ld(xopt)

σ(k + 1)(k + 2)
.

In other words, for a given accuracy ε > 0 the gap is less than ε if

4Ld(xopt)

σ(k + 1)(k + 2)
≤ ε

which immediately shows the complexity of O
(√

L/ε
)

iterations for the Nesterov-Algo-

rithm 2.1.3 as given in [Nes05], where for comparison it is also noted that the standard

gradient projection method applied to problem (2.1) needs O (1/ε) iterations.

2.2 Distributed Nesterov-Algorithm with event-triggering

The content of this section was essentially published in [MUA14, sec. 2.2] (Meinel, Ulbrich, and

Albrecht) and is reproduced here in similar form.

To be able to formulate Nesterov’s Algorithm 2.1.3 in a way that it can be implemented in

a distributed manner, we have to define a multi-agent network whose agents each control

a different subblock of the optimization variable x ∈ Q ⊆ Rm of problem (2.1). To this

end, let the multi-agent network consist of s≤ m agents, where agentxl controls subblock

xl ∈ Rml of x = (xT
1 , . . . , xT

s )
T ∈ Q ⊆ Rm and ∑s

l=1 ml = m. For the ease of notation, we

will omit the transpose symbols in this work whenever a vector is composed of different

subvectors and the dimensions are clear from the context, e.g., x = (x1, . . . , xs) ∈ Q.

It can be seen immediately that step 2 and 3 of Algorithm 2.1.3 are executable in parallel

by the agents if the feasible set Q of problem (2.1) as well as the prox-function d(x) are

block-separable according to the partitioning of the optimization variable x = (x1, . . . , xs)

which yields the following assumptions.

Assumptions 2.2.1. (Separability of Q and d(x)) (cf. [MUA14, Ass. 2.5])

1. The feasible set Q ∈Rm of problem (2.1) is block-separable in the following way:

Q = Q1 × . . .×Qs with xl ∈ Ql ⊆Rml and
s

∑
l=1

ml = m.
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2. The prox-function d(x) with convexity parameter σ in Algorithm 2.1.3 is separable accord-

ingly, i.e.,

d(x) =
s

∑
l=1

dl(xl) with xl ∈ Ql ⊆Rml ,

where dl : Ql →R is a prox-function with convexity parameter σ for l = 1, . . . , s.

For example, with Assumptions 2.2.1 step 3 of Algorithm 2.1.3 can be written as

zk = argmin
z∈Q

{
L
σ

d(z) +
k

∑
j=0

αj

〈
∇ f (xj),z− xj

〉}

= argmin
(z1,...,zs)∈Q1×...×Qs

{
L
σ

s

∑
l=1

dl(zl) +
k

∑
j=0

αj

s

∑
l=1

〈
∇l f (xj),zl − xj

l

〉}

=
s

∑
l=1

argmin
zl∈Ql

{
L
σ

dl(zl) +
k

∑
j=0

αj

〈
∇l f (xj),zl − xj

l

〉}
, (2.8)

where∇l f (x)∈Rml denotes subblock l of the gradient of f (x). Obviously, the right-hand

side in (2.8) can be solved in parallel by the agents, where agentxl solves subproblem

argmin
zl∈Ql

{
L
σ

dl(zl) +
k

∑
j=0

αj

〈
∇l f (xj),zl − xj

l

〉}
, (2.9)

corresponding to subblock xl that he is responsible for.

However, agentxl needs to communicate with other agents in the multi-agent network

in order to be able to compute ∇l f (xk) in each iteration. Generally, and especially for

problems arising in large-scale networks, subblock ∇l f (x) does not depend on all other

subblocks of the optimization variable, i.e., the communication topology of the multi-

agent network is usually not complete. In the following, we describe the communication

topology of the multi-agent network by a graph called information dependency graph

(IDG) which is defined as follows.

Definition 2.2.2. (Information dependency graph)

A graph with s nodes is called information dependency graph (IDG) if node l is connected to node

j by an undirected line provided that subblock ∇l f (x) of the gradient of the objective function in

problem (2.1) depends on subblock xj 6= xl of the optimization variable x = (x1, . . . , xs).

Moreover, the set NIDG(l) = {j1, . . . , jηl} denotes the set of ηl neighbors of node l.

We notice that the IDG is defined as an undirected graph as the above dependencies

are mutual. Finally, with Assumptions 2.2.1 it is straight forward to state a distributed

version of Algorithm 2.1.3 which is called distributed Nesterov-Algorithm (DNA) in the

following.
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Algorithm 2.2.3. (DNA)

For l = 1, . . . , s and k ≥ 0 do in parallel:

1. Compute ∇l f (xk).

2. Find yk
l = argmin

yl∈Ql

{〈
∇l f (xk),yl − xk

l

〉
+

L
2

∥∥∥yl − xk
l

∥∥∥2
}

.

3. Find zk
l = argmin

zl∈Ql

{
L
σ

dl(zl) +
k

∑
j=0

αj

〈
∇l f (xj),zl − xj

l

〉}
.

4. Set xk+1
l = τkzk

l + (1− τk)yk
l .

5. Send xk+1
l to agentxj if l ∈ NIDG(j).

In step 5 of the DNA 2.2.3, the iterates have to be exchanged in every iteration which may

result in a large communication traffic that is undesirable especially for capacity limited

wireless communication networks [WL10, sec. I]. To remedy this drawback, we enhance

the DNA 2.2.3 with event-triggered communication similarly to [ZC10, sec. 2 - 3] and

[WL10, sec. 4] by defining an outdated vector xl,k that is available to agentxl in iteration k

of the DNA 2.2.3.

Definition 2.2.4. (Outdated subblocks of the optimization variable)

Without restriction and for the ease of notation assume that 0 ∈ Q. For l = 1, . . . , s and k ≥ 0

let xl,k =
(

xl,k
1 , . . . , xl,k

s

)
∈ Q⊆Rm denote the outdated vector available to agentxl in iteration k,

whose subblocks satisfy 

∥∥∥xl,k
j − xk

j

∥∥∥
1
≤ ∆k if j ∈ NIDG(l),

xl,k
j = 0 if j /∈ NIDG(l) ∪ {l} ,

xl,k
l = xk

l else,

(2.10)

for a given threshold ∆k ≥ 0 with ∆0 = 0.

In [ZC10], event-triggered communication is used for distributedly solving an uncon-

strained problem, where convergence is guaranteed if, i.a., the objective function is con-

tinuously differentiable with Lipschitz continuous gradient, whereas in [WL10] event-

triggered communication is applied to distributedly solve the DC-OPF problem by mini-

mizing a corresponding unconstrained augmented cost function with a gradient scheme,

where convergence is guaranteed for convex, strictly increasing, and differentiable cost

functions. In contrast to these approaches, our choice of the threshold ∆k does not de-

pend on the state of the optimization variable subblocks as will be discussed.
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Finally, we propose the following distributed Nesterov-Algorithm with event-triggered

communication (DNA-EC) that extends the DNA 2.2.3 by letting the agents use the out-

dated iterates xl,k from Definition 2.2.4 instead of xk, and by the addition of the separable

term

L∆kηl

∥∥∥yl − xk
l

∥∥∥
1

(2.11)

in step 2 of the DNA which is necessary for the proof of convergence.

Algorithm 2.2.5. (DNA-EC) [MUA14, Algo. 2.7]

For l = 1, . . . , s and k ≥ 0 do in parallel:

1. Compute ∇l f (xl,k).

2. Find yk
l = argmin

yl∈Ql

{〈
∇l f (xl,k),yl − xk

l

〉
+ L∆kηl

∥∥∥yl − xk
l

∥∥∥
1
+

L
2

∥∥∥yl − xk
l

∥∥∥2
}

.

3. Find zk
l = argmin

zl∈Ql

{
L
σ

dl(zl) +
k

∑
j=0

αj

〈
∇l f (xl,j),zl − xj

l

〉}
.

4. Set xk+1
l = τkzk

l + (1− τk)yk
l .

5. Send xk+1
l if necessary: For j ∈ NIDG(l)

if
∥∥∥xj,k

l − xk+1
l

∥∥∥
1
> ∆k+1 then

set xj,k+1
l = xk+1

l and send xj,k+1
l to agentxj .

else

set xj,k+1
l = xj,k

l and signal that no data will be sent.

Obviously, the DNA-EC 2.2.5 coincides with the DNA 2.2.3 for the choice ∆k = 0, k ≥ 0,

as in this case we have ∇l f (xl,k) =∇l f (xk) for l = 1, . . . , s according to Definition 2.2.4.

The larger the threshold ∆k is chosen, the less exchange of iterates is needed in step 5,

and the less computations of ∇l f (xl,k) in step 1 have to be executed. However, if ∆k is

chosen too large, the DNA-EC may not converge or may need more iterations than the

DNA to compute a comparable solution which possibly results in a higher information

exchange , i.e., the choice of ∆k is crucial.

Finally, the following example is given to show that the nice structures of the subprob-

lems in the DNA-EC often allow analytical solutions which is favorable with respect to

the computational efficiency.
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Example 2.2.6. [MUA14, Ex. 2.8]

For Q = Q1 × Q2 × · · · × Qm with compact and convex sets Qi ⊂ R and d(z) = (σ/2)‖z‖2,

the subproblem in step 2 of Algorithm 2.2.5 is given by

yk
l = argmin

yl∈Ql⊂R

{
∇l f (xl,k)

(
yl − xk

l

)
+ L∆kηl

∣∣∣yl − xk
l

∣∣∣+ L
2

(
yl − xk

l

)2
}

=

h+l (yl) if yl − xk
l ≥ 0,

h−l (yl) if yl − xk
l ≤ 0,

where

h+l (yl) =

=∆+︷ ︸︸ ︷(
∇l f (xl,k) + L∆kηl

)(
yl − xk

l

)
+

L
2

(
yl − xk

l

)2
,

h−l (yl) =
(
∇l f (xl,k)− L∆kηl

)
︸ ︷︷ ︸

∆−

(
yl − xk

l

)
+

L
2

(
yl − xk

l

)2
.

We have

h+l
′
(yl) = ∆+ + L

(
yl − xk

l

)
= 0 ⇐⇒ y+l = −∆+

L
+ xk

l ,

h−l
′
(yl) = ∆− + L

(
yl − xk

l

)
= 0 ⇐⇒ y−l = −∆−

L
+ xk

l ,

and with Ql = [Ql , Ql ] and ∆L = L∆kηl the minimum yk
l over Ql for l = 1, . . . ,m is

yk
l = max

{
min

{
yopt

l , Ql

}
, Ql

}
, where yopt

l =


−∇l f (xl,k)+∆L

L + xk
l if − ∇l f (xl,k)+∆L

L ≥ 0.

−∇l f (xl,k)−∆L
L + xk

l if − ∇l f (xl,k)−∆L
L ≤ 0.

xk
l else.

Moreover, it is straight forward to see that the solution of the subproblem in step 3 of the DNA-EC

2.2.5 is given by

zk
l = max

{
min

{
−

∑k
j=0 αj∇l f (xl,j)

L
, Ql

}
, Ql

}
.
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We close this section with the proof of convergence of the DNA-EC 2.2.5 in Theorem

2.2.12 which is prepared subsequently.

Lemma 2.2.7. [MUA14, Lem. 2.9]

For y, xk, xl,k ∈ Q and k ≥ 0 the following inequality holds:

f (y) ≤ f (xk) +
s

∑
l=1

〈
∇l f (xl,k),yl − xk

l

〉
+ L∆k

s

∑
l=1

ηl

∥∥∥yl − xk
l

∥∥∥
1
+

L
2

∥∥∥y− xk
∥∥∥2

.

Proof. [MUA14, proof of Lem. 2.9]

Similar to [ZC10, proof of Theo. 1] or [BT89, proof of Prop. 5.1, p. 529], we apply the

Descent Lemma [BT89, Lem. 2.1, p. 203] which yields that the Lipschitz continuity as-

sumption of ∇ f (x) is equivalent to

f (y) ≤ f (x) + 〈∇ f (x), y− x〉+ L
2
‖y− x‖2 ∀x,y ∈ Q.

With the definition of xl,k in (2.10), we have for xk,y ∈ Q that

f (y) ≤ f (xk) +
〈
∇ f (xk), y− xk

〉
+

L
2

∥∥∥y− xk
∥∥∥2

= f (xk) +
s

∑
l=1

〈
∇l f (xl,k),yl − xk

l

〉
+

s

∑
l=1

〈
∇l f (xk)−∇l f (xl,k),yl − xk

l

〉
+

L
2

∥∥∥y− xk
∥∥∥2

≤ f (xk) +
s

∑
l=1

〈
∇l f (xl,k),yl − xk

l

〉
+ L

s

∑
l=1

∥∥∥(xk
j1 , . . . , xk

jηl
)− (xl,k

j1
, . . . , xl,k

jηl
)
∥∥∥∥∥∥yl − xk

l

∥∥∥+ L
2

∥∥∥y− xk
∥∥∥2

(2.12)

≤ f (xk) +
s

∑
l=1

〈
∇l f (xl,k),yl − xk

l

〉
+ L∆k

s

∑
l=1

ηl

∥∥∥yl − xk
l

∥∥∥
1
+

L
2

∥∥∥y− xk
∥∥∥2

,

where (2.12) is obtained by the usage of the Lipschitz continuity of ∇ f (x) similarly to

[BT89] or [ZC10], and the Cauchy-Schwarz inequality [Beu14, sec. 10.3].

Lemma 2.2.8. [MUA14, Lem. 2.10]

The application of Lemma 2.2.7 to yk = (yk
1, . . . ,yk

s) computed in step 2 of the DNA-EC 2.2.5

yields the following inequality for k ≥ 0:

f (yk) ≤ f (xk) + min
y∈Q

{
s

∑
l=1

〈
∇l f (xl,k),yl − xk

l

〉
+ L∆k

s

∑
l=1

ηl

∥∥∥yl − xk
l

∥∥∥
1
+

L
2

∥∥∥y− xk
∥∥∥2
}

.

Proof. Obvious.
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In preparation for the last and main lemma that is needed for the proof of convergence of

the DNA-EC 2.2.5, the following assumption is necessary to handle the error caused by

the usage of event-triggered communication.

Assumption 2.2.9. (Boundedness of Q)

The closed and convex feasible set Q of problem (2.1) is bounded.

The boundedness of the set Q allows the definition of a diameter C of Q as

C = max
y,x∈Q

‖x− y‖1 , (2.13)

where the 1-norm is chosen due to its separability. Following the notation in [Nes05, p.

133], define for k ≥ 0 the problem

Ψk = min
z∈Q

{
ρk +

L
σ

d(z) +
k

∑
j=0

αj

(
f (xj) +

s

∑
l=1

〈
∇l f (xl,j),zl − xj

l

〉)}
, (2.14)

which is related to step 3 of the DNA-EC as

zk = argmin
z∈Q

{
ρk +

L
σ

d(z) +
k

∑
j=0

αj

(
f (xj) +

s

∑
l=1

〈
∇l f (xl,j),zl − xj

l

〉)}
(2.15)

= argmin
z∈Q

{
L
σ

d(z) +
k

∑
j=0

αj

s

∑
l=1

〈
∇l f (xl,j),zl − xj

l

〉}
. (2.16)

Here,

ρk = ηmaxLC
k

∑
j=0

αj∆j, (2.17)

where ηmax is the maximal degree of the IDG, L is the Lipschitz constant of the gradient of

f (x) in problem (2.1), and αj are the a priori chosen positive parameters in the DNA-EC

2.2.5 . Finally, define

E0 = 0 (2.18)

and

Ek = Ak−1τk−1

s

∑
l=1

〈
∇l f (xk)−∇l f (xl,k),yk−1

l − zk−1
l

〉
for k ≥ 1, (2.19)

where the quantities Ak−1 and τk−1 are given in (2.6) for k ≥ 1.
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The following lemma extends [Nes05, Lem. 1] by additionally considering event-triggered

communication.

Lemma 2.2.10. [MUA14, Lem. 2.11]

Let {αk}k≥0 satisfy

α0 ∈ (0, 1], α2
k+1 ≤ Ak+1, (2.20)

and set

xk+1 = τkzk + (1− τk)yk, (2.21)

where yk and zk are the optimal solutions in step 2 and 3 of the DNA-EC 2.2.5.

Then the following inequality holds for k ≥ 0:

Ψk ≥ Ak f (yk) +
k

∑
j=0

Ej. (2.22)

Proof. [MUA14, proof of Lem. 2.11]

The proof follows [Nes05, proof of Lem. 1] and extends it by additionally considering

event-triggered communication. For k = 0 we have

d(z) ≥ d(x0)︸ ︷︷ ︸
=0

+∇d(x0)T(z− x0)︸ ︷︷ ︸
≥0

+
σ

2

∥∥z− x0∥∥2 ≥ σ

2

∥∥z− x0∥∥2
,

due to the strongly convexity of d(z) and the fact that x0 minimizes d(z) (cf. [BT89, Prop.

3.1]). It follows that

Ψ0 = min
z∈Q

 ρ0︸︷︷︸
=0

+
L
σ

d(z) + α0

(
f (x0) +

s

∑
l=1

〈
∇l f (xl,0),zl − x0

l

〉)
≥ α0 min

z∈Q

{
L

2α0

∥∥z− x0∥∥2
+ f (x0) +

s

∑
l=1

〈
∇l f (xl,0),zl − x0

l

〉}
≥ α0 f (y0) = A0 f (y0) + E0︸︷︷︸

=0

,

where the last inequality follows with Lemma 2.2.8. Now assume that the relation Ψk ≥
Ak f (yk) + ∑k

j=0 Ej holds for some k ∈N0. As the function

hk(z) = ρk +
L
σ

d(z) +
k

∑
j=0

αj

(
f (xj) +

s

∑
l=1

〈
∇l f (xl,j),zl − xj

l

〉)

is strongly convex with convexity parameter L, it follows that

hk(z) ≥ Ψk +
L
2

∥∥∥z− zk
∥∥∥2

.
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We obtain

Ψk+1 = min
z∈Q

{
ρk + ηmaxLCαk+1∆k+1 +

L
σ

d(z) +
k+1

∑
j=0

αj

(
f (xj) +

s

∑
l=1

〈
∇l f (xl,j),zl − xj

l

〉)}

≥min
z∈Q

{
Ψk +

L
2

∥∥∥z− zk
∥∥∥2

+ ηmaxLCαk+1∆k+1

+αk+1

(
f (xk+1) +

s

∑
l=1

〈
∇l f (xl,k+1),zl − xk+1

l

〉)}

≥min
z∈Q

{
Ψk +

L
2

∥∥∥z− zk
∥∥∥2

+ ηmaxLαk+1∆k+1

∥∥∥z− zk
∥∥∥

1

+αk+1

(
f (xk+1) +

s

∑
l=1

〈
∇l f (xl,k+1),zl − xk+1

l

〉)}
.

Due to the convexity of f , the definition of xk+1 in (2.21), and the induction hypothesis,

we have

Ψk + αk+1

(
f (xk+1) +

s

∑
l=1

〈
∇l f (xl,k+1),zl − xk+1

l

〉)

≥ Ak f (yk) + αk+1

(
f (xk+1) +

s

∑
l=1

〈
∇l f (xl,k+1),zl − xk+1

l

〉)
+

k

∑
j=0

Ej

≥ Ak

(
f (xk+1) +

〈
∇ f (xk+1), yk − xk+1

〉)
+ αk+1

(
f (xk+1) +

s

∑
l=1

〈
∇l f (xl,k+1),zl − xk+1

l

〉)
+

k

∑
j=0

Ej

= Ak

(
f (xk+1) +

s

∑
l=1

〈
∇l f (xl,k+1),yk

l − xk+1
l

〉)

+ Ak

(
s

∑
l=1

〈
∇l f (xk+1)−∇l f (xl,k+1),yk

l − xk+1
l

〉)

+ αk+1

(
f (xk+1) +

s

∑
l=1

〈
∇l f (xl,k+1),zl − xk+1

l

〉)
+

k

∑
j=0

Ej

= Ak+1 f (xk+1) + αk+1

(
s

∑
l=1

〈
∇l f (xl,k+1),zl − zk

l

〉)

+ Ak

(
s

∑
l=1

〈
∇l f (xk+1)−∇l f (xl,k+1),τk(yk

l − zk
l )
〉)

︸ ︷︷ ︸
= Ek+1

+
k

∑
j=0

Ej,
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where the last equality follows with (2.21) and the fact that τk = αk+1/Ak+1 as

= Ak

s

∑
l=1

〈
∇l f (xl,k+1),yk

l − xk+1
l

〉
+ αk+1

s

∑
l=1

〈
∇l f (xl,k+1),zl − xk+1

l

〉
= −Akτk

s

∑
l=1

〈
∇l f (xl,k+1),zk

l − yk
l

〉
+ αk+1

s

∑
l=1

〈
∇l f (xl,k+1),zl − zk

l + zk
l − xk+1

l

〉
= −Akτk

s

∑
l=1

〈
∇l f (xl,k+1),zk

l − yk
l

〉
+ αk+1

s

∑
l=1

〈
∇l f (xl,k+1),zl − zk

l + (1− τk)
(

zk
l − yk

l

)〉
= − (Ak + αk+1)τk

s

∑
l=1

〈
∇l f (xl,k+1),zk

l − yk
l

〉
+ αk+1

s

∑
l=1

〈
∇l f (xl,k+1),zl − zk

l + zk
l − yk

l

〉
= αk+1

s

∑
l=1

〈
∇l f (xl,k+1),zl − zk

l

〉
.

The rest of the proof is almost identical to the final part of [Nes05, proof of Lem. 1]. From

condition (2.20) and τk = αk+1/Ak+1 it follows that Ak+1
−1 ≥ τk

2 and we obtain

Ψk+1 ≥ Ak+1 f (xk+1) + min
z∈Q

{
ηmaxLαk+1∆k+1

∥∥∥z− zk
∥∥∥

1
+

L
2

∥∥∥z− zk
∥∥∥2

+αk+1

s

∑
l=1

〈
∇l f (xl,k+1),zl − zk

l

〉}
+

k+1

∑
j=0

Ej

= Ak+1 f (xk+1) + Ak+1 min
z∈Q

{
ηmaxL∆k+1τk

∥∥∥z− zk
∥∥∥

1
+

L
2Ak+1

∥∥∥z− zk
∥∥∥2

+τk

s

∑
l=1

〈
∇l f (xl,k+1),zl − zk

l

〉}
+

k+1

∑
j=0

Ej

≥ Ak+1 f (xk+1) + Ak+1 min
z∈Q

{
ηmaxL∆k+1τk

∥∥∥z− zk
∥∥∥

1
+

L
2

τk
2
∥∥∥z− zk

∥∥∥2

+τk

s

∑
l=1

〈
∇l f (xl,k+1),zl − zk

l

〉}
+

k+1

∑
j=0

Ej. (2.23)

For z ∈ Q let

y = τkz + (1− τk)yk.

As τk ∈ [0,1], we have y ∈ Q and with the definition of xk+1 in (2.21) we can write

y− xk+1 = τk(z− zk).
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It follows that

min
z∈Q

{
ηmaxL∆k+1τk

∥∥∥z− zk
∥∥∥

1
+

L
2

τk
2
∥∥∥z− zk

∥∥∥2
+ τk

(
s

∑
l=1

〈
∇l f (xl,k+1),zl − zk

l

〉)}

= min
y∈τkQ+(1−τk)yk

{
ηmaxL∆k+1

∥∥∥y− xk+1
∥∥∥

1
+

L
2

∥∥∥y− xk+1
∥∥∥2

+
s

∑
l=1

〈
∇l f (xl,k+1),yl − xk+1

l

〉}

≥min
y∈Q

{
ηmaxL∆k+1

∥∥∥y− xk+1
∥∥∥

1
+

L
2

∥∥∥y− xk+1
∥∥∥2

+
s

∑
l=1

〈
∇l f (xl,k+1),yl − xk+1

l

〉}

≥min
y∈Q

{
L∆k+1

s

∑
l=1

ηl

∥∥∥yl − xk+1
l

∥∥∥
1
+

L
2

∥∥∥y− xk+1
∥∥∥2

+
s

∑
l=1

〈
∇l f (xl,k+1),yl − xk+1

l

〉}
≥ f (yk+1)− f (xk+1), (2.24)

where the last inequality follows with Lemma 2.2.8.

Substituting (2.24) in (2.23) yields Ψk+1 ≥ Ak+1 f (yk+1) + ∑k+1
j=0 Ej.

Remark 2.2.11. (Concave objective function)

A revision of the proof of Lemma 2.2.10 shows that the application of the DNA-EC 2.2.5 to max-

imize a concave and continuously differentiable function f : Q→ R (on a closed and convex set

Q ⊆Rm with Lipschitz continuous gradient) yields the following relation after k iterations:

Ψk ≤ Ak f (yk) +
k

∑
j=0

Ej, (2.25)

where

Ψk = max
z∈Q

{
−ρk −

L
σ

d(z) +
k

∑
j=0

αj

(
f (xj) +

s

∑
l=1

〈
∇l f (xl,j),zl − xj

l

〉)}
.

Finally, the following convergence result for the DNA-EC 2.2.5 can be given given which

extends [Nes05, Theo. 2].

Theorem 2.2.12. (Convergence of the DNA-EC 2.2.5) [MUA14, Theo. 2.12]

Let yk be generated by the DNA-EC 2.2.5 with αk as in Lemma 2.1.5 and ∆k = βδk, where δ ∈
(0,1) and β ∈R+. Then for k ≥ 0 the inequality

f (yk)− f (xopt) <
σ6ηmaxβLCg′(δ) + 4Ld(xopt)

σ(k + 1)(k + 2)
(2.26)

holds, where xopt is an optimal solution of problem (2.1), C is defined as in (2.13), and

g(δ) =
∞

∑
j=0

δj =
1

1− δ
for δ ∈ (0,1).
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Proof. [MUA14, proof of Theo. 2.12]

To prove the theorem, we have to derive an upper bound for the left-hand side Ψk in

inequality (2.22) and a lower bound for ∑k
j=0 Ej occurring in the right-hand side. We start

with

Ψk = min
z∈Q

{
ρk +

L
σ

d(z) +
k

∑
j=0

αj

(
f (xj) +

s

∑
l=1

〈
∇l f (xl,j),zl − xj

l

〉)}

= min
z∈Q

{
ρk +

L
σ

d(z) +
k

∑
j=0

αj

(
f (xj) +

〈
∇ f (xj), z− xj

〉)
+

k

∑
j=0

αj

(
s

∑
l=1

〈
∇l f (xl,j)−∇l f (xj),zl − xj

l

〉)}

≤min
z∈Q

{
ρk +

L
σ

d(z) +
k

∑
j=0

αj

(
f (xj) +

〈
∇ f (xj), z− xj

〉)
+

k

∑
j=0

αj

(
s

∑
l=1

L
∥∥∥(xl,j

j1
, . . . , xl,j

jηl
)− (xj

j1
, . . . , xj

jηl
)
∥∥∥∥∥∥zl − xj

l

∥∥∥)} (2.27)

≤ ρk +
L
σ

d(xopt) + Ak f (xopt) + Lηmax

k

∑
j=0

αj∆j

∥∥∥xopt − xj
∥∥∥

1
(2.28)

≤ 2ηmaxLC
k

∑
j=0

αj∆j +
L
σ

d(xopt) + Ak f (xopt)

= ηmaxβLC
k

∑
j=1

(j + 1)δj +
L
σ

d(xopt) + Ak f (xopt)

< ηmaxβLCg′(δ) +
L
σ

d(xopt) + Ak f (xopt),

where we used the Lipschitz continuity assumption of the gradient of f to obtain (2.27)

and the fact that f is convex (as it was done in [Nes05, proof of Theo. 2]) to obtain (2.28).

Similarly, we derive a lower bound for the accumulated error ∑k
j=0 Ej.

k

∑
j=0

Ej ≥ −
∣∣∣∣∣ k

∑
j=1

Aj−1τj−1

(
s

∑
l=1

〈
∇l f (xj)−∇l f (xl,j),yj−1

l − zj−1
l

〉)∣∣∣∣∣
≥ −

k

∑
j=1

Aj−1τj−1

(
s

∑
l=1

L
∥∥∥(xj

j1
, . . . , xj

jηl
)− (xl,j

j1
, . . . , xl,j

jηl
)
∥∥∥∥∥∥yj−1

l − zj−1
l

∥∥∥)

≥ −ηmaxL
k

∑
j=1

Aj−1τj−1∆j

∥∥∥yj−1
l − zj−1

l

∥∥∥
1

≥ −ηmaxLC
k

∑
j=1

Aj−1τj−1∆j = −ηmaxβLC
k

∑
j=1

j(j + 1)
4

2
j + 2

δj

> −ηmaxβLC
2

g′(δ).
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Substituting these bounds in (2.22) results in

f (yk)− f (xopt) <
4
( 3

2 ηmaxβLCg′(δ) + L
σ d(xopt)

)
(k + 1)(k + 2)

.

The maximal degree ηmax of the IDG in (2.26) is independent of the multi-agent network

size if the structure of the objective function f (x) in problem (2.1) is independent of the

dimension of the optimization variable which holds in general for network related prob-

lems with variable size.

Finally, the choice of the threshold ∆k = βδk in Theorem 2.2.12 guarantees the conver-

gence of the DNA-EC 2.2.5 for δ ∈ (0,1), however, the particular choices of β > 0 and

δ ∈ (0,1) decide if the algorithm outputs a solution with less information exchange com-

pared to the same solution obtained without event-triggered communication.

2.3 Adaptive Nesterov-Algorithm

The content of this section is in preparation for publication in [MU14] (Meinel and Ulbrich).

In this section, we enhance Nesterov’s Algorithm 2.1.3 with an adaptive step-size control

that is based on the work of Nesterov in [Nes13, sec. 3 - 4] and is proposed in [BCG11,

sec. 5.3] as well. This step-size control is motivated by the following observation.

Remark 2.3.1. (cf. [MUA14, Rem. 2.4])

The subproblem in step 2 of the NA 2.1.3 is a projected gradient step with step size 1/L as accord-

ing to [BT89, sec. 3.3.2]

yk = argmin
y∈Q

{〈
∇ f (xk),y− xk

〉
+

L
2

∥∥∥y− xk
∥∥∥2
}

= argmin
y∈Q

{
2
L

〈
∇ f (xk),y− xk

〉
+
∥∥∥y− xk

∥∥∥2
+

1
L2

∥∥∥∇ f (xk)
∥∥∥2
}

= argmin
y∈Q

{∥∥∥∥y− xk +
1
L
∇ f (xk)

∥∥∥∥2
}

.

Remark 2.3.1 suggests the application of step-sizes 1/Lk with Lk ≤ L for k ≥ 0 in order to

reduce the number of iterations of the NA 2.1.3.
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To this end, we define similar to [Nes13, (2.7)] for Lk > 0 and x ∈ Q the quantities FLk(x)

and aLk(x) ∈ Q by

FLk(x) = min
y∈Q

{
f (x) + 〈∇ f (x),y− x〉+ Lk

2
‖y− x‖2

}
,

aLk(x) = arg FLk(x) = argmin
y∈Q

{
∇ f (x)Ty +

Lk

2
‖y− x‖2

}
.

Obviously, we have yk = aL(xk) in step 2 of the NA 2.1.3.

The adaptive Nesterov-Algorithm (ANA) is initialized just as the NA 2.1.3 by choosing a

prox-function d(x) with convexity parameter σ > 0 which defines the starting point x0 as

x0 = argmin
x∈Q

d(x). (2.29)

Moreover, choose γ > 1, L−1 ∈ (0, L], {αk}k≥0 with αk > 0, α0 ∈ (0,1], and set τk as well as

Ak as in (2.6) for k ≥ 0.

Algorithm 2.3.2. (ANA)

For k ≥ 0 do:

1. Compute ∇ f (xk) and set Lk = Lk−1.

2. Find yk = aLk(xk) = argmin
y∈Q

{
∇ f (xk)Ty +

Lk

2

∥∥∥y− xk
∥∥∥2
}

.

3. Compute ∇ f (yk) and f (yk).

if

f (yk) ≤ FLk(xk) = min
y∈Q

{
f (xk) +

〈
∇ f (xk),y− xk

〉
+

Lk

2

∥∥∥y− xk
∥∥∥2
}

(2.30)

then

continue with step 4.

else

set Lk = Lkγ and go to step 2.

4. Find zk = argmin
z∈Q

{
Lk

σ
d(z) +

k

∑
j=0

αj∇ f (xj)Tz

}
.

5. Set xk+1 = τkzk + (1− τk)yk.

In [Nes13, (3.1)] step 3 is applied in a gradient method whose accelerated version [Nes13,

(4.9)]) is similar to Algorithm 2.3.2 with the difference, i.a., that there the parameter αk+1

is defined by a solution of a quadratic equation that depends on Lk and thus has to be de-

termined during the optimization process. Moreover, the step-size control implemented
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by (2.30) is also proposed in [BCG11, sec. 5.3] for several optimal first order methods of

similar type (see Remark 2.4.2).

Inequality (2.30) is always satisfied for yk = aLk(xk) with Lk ≥ L (cf. [Nes13, Rem. 1]) due

to the well known equivalency of the Lipschitz continuity of the gradient of f (2.3) and

the following inequality [BT89, Lem. 2.1]:

f (y) ≤ f (x) + 〈∇ f (x),y− x〉+ L
2
‖y− x‖2 ∀x,y ∈ Q. (2.31)

Alternatively, Lemma 2.2.7 with ∆k = 0 for k ≥ 0 can be applied.

It follows immediately that the ANA 2.3.2 coincides with the NA 2.1.3 if L−1 = L and in

this case step 3 of the ANA 2.3.2 is redundant.

The convergence of the ANA follows immediately by substituting L with Lk in [Nes05,

proof of Lem. 1], however, it is additional shown in section 2.5 as the ANA is a special

case of the distributed adaptive Nesterov-Algorithm with event-triggered communica-

tion (DANA-EC) that is derived in the subsequent sections.

2.4 Distributed adaptive Nesterov-Algorithm

The content of this section is in preparation for publication in [MU14] (Meinel and Ulbrich).

As detailed in section 2.2, the subproblems in step 2 and 4 of the ANA 2.3.2 can be solved

in parallel if Assumptions 2.2.1 hold, i.e., if the feasible set Q of problem (2.1) as well

as the prox-function d(x) are separable according to the partitioning of the optimization

variable x = (x1, . . . , xs) into s subblocks, each assigned to a different agent of a multi-

agent network. Unfortunately, this is not the case for step 3 of the algorithm as the evalu-

ation of f (yk) can not be done in parallel generally. To remedy this drawback, we consider

instead the following inequality that is also proposed in [BCG11, sec. 5.3] (however, for

different reasons (see Remark 2.4.2)) as it implies condition (2.30) which is shown in the

following lemma, motivated by the Descent Lemma [BT89, Lem. 2.1, p. 203]:

Lk

2

∥∥∥yk − xk
∥∥∥2
≥
〈
∇ f (yk)−∇ f (xk),yk − xk

〉
, (2.32)

Lemma 2.4.1.

If xk,yk ∈ Q with yk = aLk(xk) satisfy (2.32) then the following inequality holds:

f (yk) ≤min
y∈Q

{
f (xk) +

〈
∇ f (xk),y− xk

〉
+

Lk

2

∥∥∥y− xk
∥∥∥2
}

.
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Proof. It is well known that inequality

〈∇ f (y), x− y〉 ≤ f (x)− f (y) (2.33)

is satisfied for all x,y ∈ Q if f is a convex function [UU12, Theo. 6.3]. It follows that

f (yk) ≤ f (xk) +
〈
∇ f (xk),yk − xk

〉
+
〈
∇ f (yk)−∇ f (xk),yk − xk

〉
≤ f (xk) +

〈
∇ f (xk),yk − xk

〉
+

Lk

2

∥∥∥yk − xk
∥∥∥2

,

where the last inequality follows with (2.32).

Remark 2.4.2.

Shortly before the completion of this thesis, we learned that in [KCD15] the adaptive step-size

control implemented by (2.32) is used in a fast gradient method that is applied for distributed

optimization in dual decomposition, however, a central coordinator is proposed to verify inequality

(2.32) (see [KCD15, sec. 4.4]). The authors of [KCD15] adopted this step-size control from

[BCG11], where the implication from Lemma 2.4.1 is used to prevent cancellation errors due to

the application of (2.30) in several optimal first order methods (see [BCG11, sec. 5.3]).

Our motivation to use (2.32) instead of (2.30) is that the agents of the multi-agent net-

work can verify the inequality in parallel and with local communication by using a dis-

tributed averaging consensus technique that finds widespread application in distributed

optimization (see for instance [DUAH12] and therein [CCW10]). The following descrip-

tion of this consensus technique is taken from [CCW10, sec. 3 B]:

Let A ∈ Rs×s be a symmetric, doubly stochastic (∑j Al j = ∑l Al j = 1), and nonnegative

matrix that has positive diagonal entries and is compatible with the undirected graph

that represents the multi-agent network of agentx1 , . . . , agentxs , i.e., Al j = Ajl > 0 ⇐⇒
agentxl and agentxj are neighbors or l = j. Moreover, for t = 0,1, . . . and l = 1, . . . , s define

the recursion

ζk
l (t + 1) = Allζ

k
l (t) + ∑

j∈N(l)
Al jζ

k
j (t), (2.34)

νk
l (t + 1) = Allν

k
l (t) + ∑

j∈N(l)
Al jν

k
j (t), (2.35)

where N(l) is the index set of agentxl ’s neighbors in the multi-agent network and

ζk
l (0) =

Lk

2

∥∥∥yk
l − xk

l

∥∥∥2
,

νk
l (0) =

〈
∇l f (yk)−∇l f (xk),yk

l − xk
l

〉
.

Then the following theorem holds.
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Theorem 2.4.3. [CCW10, Theo. 1]

If the multi-agent network represented by A is connected, then

lim
t→∞

ζk
l (t) =

∑s
j=1 ζk

j (0)

s
and lim

t→∞
νk

l (t) =
∑s

j=1 νk
j (0)

s
for l = 1, . . . , s

and it follows that

lim
t→∞

ζk
l (t)

νk
l (t)

=
∑s

j=1 ζk
j (0)

∑s
j=1 νk

j (0)
. (2.36)

Moreover, in [CCW10, proof of Theo. 1] it is shown that ζk
l (t) and νk

l (t) converge ge-

ometrically to ∑s
j=1 ζk

j (0)/s and ∑s
j=1 νk

j (0)/s with t→ ∞. Finally, Theorem 2.4.3 shows

that each agentxl can verify condition (2.32) with local communication by checking if

ζk
l (t)/νk

l (t) ≥ 1 is satisfied for sufficiently large t, and it follows that this modification

of the ANA 2.3.2 can be implemented in parallel, resulting in the distributed adaptive

Nesterov-Algorithm (DANA) which coincides for ∆k = 0 with the DANA-EC 2.5.1 pre-

sented in the next section. Regarding the choice of the sufficiently large t, the following

stopping criterion for the consensus algorithm is proposed in [CCW10, (14)]:

For l = 1, . . . , s stop consensus if∣∣ζk
l (t)− ζk

l (t− 1)
∣∣∣∣ζk

l (t− 1)
∣∣ ≤ εcons and

∣∣νk
l (t)− νk

l (t− 1)
∣∣∣∣νk

l (t− 1)
∣∣ ≤ εcons, (2.37)

where εcons > 0 is the desired accuracy.

Remark 2.4.4. (Metropolis rule)

In [CCW10, p. 1149], the following Metropolis rule from [XBL06, sec. 2] is described which

allows to build the components of the matrix A, that is used in recursion (2.34) and (2.35), with

neighborhood information. Let

Al j =


1

1+max(|N(l)|,|N(j)|) if (l, j) ∈ E , l 6= j,

1−∑j∈N(l)\{l} Al j if l = j,

0 otherwise,

(2.38)

where E is the set of lines of the graph that represents the multi-agent network.
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2.5 Distributed adaptive Nesterov-Algorithm with event-triggering

The content of this section is in preparation for publication in [MU14] (Meinel and Ulbrich).

Finally, event-triggered communication can be incorporated into the DANA similarly as

in section 2.2, yielding the distributed adaptive Nesterov-Algorithm with event-triggered

communication (DANA-EC) .

To this end, let xl,k ∈ Q denote the outdated vector introduced in Definition 2.2.4 and

moreover, let yl,k ∈Q be defined accordingly with the difference that for yl,k the threshold

∆̃k = (Lk/L)∆k is considered.

The initialization of the DANA-EC is done by choosing a starting point x0 according to

(2.29) and Assumptions 2.2.1, i.e., x0 is the minimum of a prox-function d(x) = ∑s
l=1 dl(xl)

with convexity parameter σ > 0, where d(x0) = 0. Moreover, choose γ > 1, L−1 ∈ (0, L],

{αk}k≥0 with αk > 0, α0 ∈ (0,1], and set τk as well as Ak as in (2.6) for k ≥ 0. Finally, let

yl,−1
j = x0

j for l, j = 1, . . . s.
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Algorithm 2.5.1. (DANA-EC)

For l = 1, . . . , s and k ≥ 0 do in parallel:

1. Compute ∇l f (xl,k) and set Lk = Lk−1.

2. Find yk
l = argmin

yl∈Ql

{
∇l f (xl,k)Tyl + Lk∆kηl

∥∥∥yl − xk
l

∥∥∥
1
+

Lk

2

∥∥∥yl − xk
l

∥∥∥2
}

.

3. if Lk < L then

(a) Send yk
l if necessary: For j ∈ NIDG(l)

if
∥∥yj,k−1

l − yk
l

∥∥
1 >

Lk
L ∆k then

set yj,k
l = yk

l and send yj,k
l to agentxj .

else

set yj,k
l = yj,k−1

l and signal that no data will be sent.

(b) Compute ∇l f (yl,k) and check with consensus

if

Lk

2

∥∥∥yk − xk
∥∥∥2
≥

s

∑
l=1

〈
∇l f (yl,k)−∇l f (xl,k),yk

l − xk
l

〉
(2.39)

then

continue with step 4.

else

set Lk = Lkγ and go to step 2.

4. Find zk
l = argmin

zl∈Ql

{
Lk

σ
dl(zl) +

k

∑
j=0

αj∇l f (xl,j)Tzl

}
.

5. Set xk+1
l = τkzk

l + (1− τk)yk
l .

6. Send xk+1
l if necessary: For j ∈ NIDG(l)

if
∥∥xj,k

l − xk+1
l

∥∥
1 > ∆k+1 then

set xj,k+1
l = xk+1

l and send xj,k+1
l to agentxj .

else

set xj,k+1
l = xj,k

l and signal that no data will be sent.
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Remark 2.5.2.

1. The DANA-EC 2.5.1 coincides with the DNA-EC 2.2.5 for the choice L−1 = L as in this

case step 3 of the DANA-EC is not executed.

2. Different from step 3 of the ANA 2.3.2, it has to be checked in step 3 of the DANA-EC

2.5.1 if Lk < L which is due to the fact that condition (2.39) might not be satisfied even

if Lk ≥ L. However, we show in the following that the convergence of the DANA-EC is

already guaranteed if condition (2.39) is satisfied for Lk < L or if yk
l in step 2 is computed

for some Lk ≥ L.

Finally, as described in the previous section 2.4, condition (2.39) can be checked in parallel

with local communication by applying the averaging consensus technique with

ζk
l (0) =

Lk

2

∥∥∥yk
l − xk

l

∥∥∥2
,

νk
l (0) =

〈
∇l f (yl,k)−∇l f (xl,k),yk

l − xk
l

〉
.

The rest of this section contains the proof of convergence of the DANA-EC 2.5.1. To this

end, we define similarly as in section 2.3 the quantities F̃Lk(x), ãLk(x) ∈ Q for Lk > 0 and

x, xl,k ∈ Q by

F̃Lk(x) = min
y∈Q

{
f (x) +

s

∑
l=1

〈
∇l f (xl,k),yl − xl

〉
+ Lk∆k

s

∑
l=1

ηl ‖yl − xl‖1 +
Lk

2
‖y− x‖2

}
,

ãLk(x) = arg F̃Lk(x) = argmin
y∈Q

{
s

∑
l=1
∇l f (xl,k)Tyl + Lk∆k

s

∑
l=1

ηl ‖yl − xl‖1 +
Lk

2
‖y− x‖2

}
.

In the following lemma we show that condition (2.39) implies f (ãLk(xk)) ≤ F̃Lk(xk).

Lemma 2.5.3.

For yk = ãLk(xk) ∈ Q and xk, xl,k,yl,k ∈ Q, where yl,k satisfies (2.10) with respect to yk for the

threshold ∆̃k = (Lk/L)∆k, inequality

Lk

2

∥∥∥yk − xk
∥∥∥2
≥

s

∑
l=1

〈
∇l f (yl,k)−∇l f (xl,k),yk

l − xk
l

〉
from step 3 of the DANA-EC 2.5.1 implies that

f (yk) ≤ F̃Lk(xk). (2.40)



34 2 Distributed first order method with event-tiggering

Proof. The convexity of f and the Lipschitz continuity of its gradient yield

f (yk) ≤ f (xk) +
〈
∇ f (yk),yk − xk

〉
= f (xk) +

s

∑
l=1

〈
∇l f (xl,k),yk

l − xk
l

〉
+

s

∑
l=1

〈
∇l f (yk)−∇l f (xl,k),yk

l − xk
l

〉
= f (xk) +

s

∑
l=1

〈
∇l f (xl,k),yk

l − xk
l

〉
+

s

∑
l=1

〈
∇l f (yk)−∇l f (yl,k),yk

l − xk
l

〉
+

s

∑
l=1

〈
∇l f (yl,k)−∇l f (xl,k),yk

l − xk
l

〉
≤ f (xk) +

s

∑
l=1

〈
∇l f (xl,k),yk

l − xk
l

〉
+

s

∑
l=1

L
∥∥∥(yk

j1 , . . . ,yk
jηl
)− (yl,k

j1
, . . . ,yl,k

jηl
)
∥∥∥∥∥∥yk

l − xk
l

∥∥∥
+

s

∑
l=1

〈
∇l f (yl,k)−∇l f (xl,k),yk

l − xk
l

〉
≤ f (xk) +

s

∑
l=1

〈
∇l f (xl,k),yk

l − xk
l

〉
+ Lk∆k

s

∑
l=1

ηl

∥∥∥yk
l − xk

l

∥∥∥
1
+

Lk

2

∥∥∥yk − xk
∥∥∥2

.

To proof the convergence of the DANA-EC 2.5.1, we derive a result in the following that

extends Lemma 2.2.10. To this end, we have to modify the definition of ρk (2.17) in section

2.2 for k ≥ 0 by

ρk = ηmaxLkC
k

∑
j=0

αj∆j +
k

∑
j=0

(
Lj − Lj−1

)
C, (2.41)

where C is the diameter of the set Q which is assumed to be bounded, i.e., Assumption

2.2.9 holds. The other quantities needed for the proof of Lemma 2.2.10 are used here as

well and repeated for convenience, where

Ψk = min
z∈Q

{
ρk +

Lk

σ
d(z) +

k

∑
j=0

αj

(
f (xj) +

s

∑
l=1

〈
∇l f (xl,j),zl − xj

l

〉)}
(2.42)

and

Ek = Ak−1τk−1

s

∑
l=1

〈
∇l f (xk)−∇l f (xl,k),yk−1

l − zk−1
l

〉
for k ≥ 1, (2.43)

where E0 = 0. The following lemma extends Lemma 2.2.10 from section 2.2.
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Lemma 2.5.4.

Let {αk}k≥0 satisfy

α0 ∈ (0, 1], α2
k+1 ≤ Ak+1, (2.44)

and set

xk+1 = τkzk + (1− τk)yk, (2.45)

where yk and zk are the optimal solutions in step 2 and 4 of the DANA-EC 2.5.1.

Then the following inequality holds for k ≥ 0:

Ψk ≥ Ak f (yk) +
k

∑
j=0

Ej. (2.46)

Proof. The proof follows the proof of Lemma 2.2.10. Due to the strongly convexity of d(z)

and the fact that x0 = argminz∈Q d(z), it follows with the optimality condition for convex

problems that

d(z) ≥ σ

2

∥∥z− x0∥∥2
.

Moreover, as L0 = L−1, ∆0 = 0, and α0 ∈ (0,1] we obtain

Ψ0 = min
z∈Q

 ρ0︸︷︷︸
=0

+
L0

σ
d(z) + α0

(
f (x0) +

s

∑
l=1

〈
∇l f (xl,0),zl − x0

l

〉)
≥ α0 min

z∈Q

{
L0

2α0

∥∥z− x0∥∥2
+ f (x0) +

s

∑
l=1

〈
∇l f (xl,0),zl − x0

l

〉}
≥ α0 f (y0) = A0 f (y0) + E0︸︷︷︸

=0

,

where the last inequality follows with Lemma 2.5.3 if L0 < L or Lemma 2.2.7 if L0 ≥ L.
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Assume that Ψk ≥ Ak f (yk) holds for some k ∈N0. We obtain

Ψk+1 ≥min
z∈Q
{ρk + ηmaxLk+1Cαk+1∆k+1 + (Lk+1 − Lk)C

+
Lk+1

σ
d(z) +

k+1

∑
j=0

αj

(
f (xj) +

s

∑
l=1

〈
∇l f (xl,j),zl − xj

l

〉)}
≥min

z∈Q
{ρk + ηmaxLk+1Cαk+1∆k+1 + (Lk+1 − Lk)C

+
Lk

σ
d(z) +

k+1

∑
j=0

αj

(
f (xj) +

s

∑
l=1

〈
∇l f (xl,j),zl − xj

l

〉)}

≥min
z∈Q

{
Ψk +

Lk

2

∥∥∥z− zk
∥∥∥2

+ ηmaxLk+1Cαk+1∆k+1 + (Lk+1 − Lk)C

+αk+1

(
f (xk+1) +

s

∑
l=1

〈
∇l f (xl,k+1),zl − xk+1

l

〉)}

≥min
z∈Q

{
Ψk + ηmaxLk+1αk+1∆k+1

∥∥∥z− zk
∥∥∥

1
+

Lk + Lk+1 − Lk

2

∥∥∥z− zk
∥∥∥2

+αk+1

(
f (xk+1) +

s

∑
l=1

〈
∇l f (xl,k+1),zl − xk+1

l

〉)}
.

The rest of the proof works just like the final part of the proof of Lemma 2.2.10 by substi-

tuting L with Lk+1 and using Lemma 2.5.3 if Lk+1 < L or Lemma 2.2.7 if Lk+1 ≥ L.

Finally, the convergence of the DANA-EC 2.5.1 can be shown, extending Theorem 2.2.12.

Theorem 2.5.5. (Convergence of the DANA-EC 2.5.1)

Let yk be generated by the DANA-EC 2.5.1 with αk as in Lemma 2.1.5 and ∆k = βδk, where

δ ∈ (0,1) and β ∈R+. Then for k ≥ 0 the inequality

f (yk)− f (xopt) <
σγLC (6ηmaxβg′(δ) + 4) + 4γLd(xopt)

σ(k + 1)(k + 2)
(2.47)

holds, where xopt is an optimal solution of problem (2.1) and

g(δ) =
∞

∑
j=0

δj =
1

1− δ
for δ ∈ (0,1).
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Proof. The proof follows the proof of Theorem 2.2.12. We have to derive an upper bound

for Ψk in (2.46) and a lower bound for ∑k
j=0 Ej. Starting with Ψk we obtain

Ψk = min
z∈Q

{
ρk +

Lk

σ
d(z) +

k

∑
j=0

αj

(
f (xj) +

s

∑
l=1

〈
∇l f (xl,j),zl − xj

l

〉)}

= min
z∈Q

{
ρk +

Lk

σ
d(z) +

k

∑
j=0

αj

(
f (xj) +

〈
∇ f (xj), z− xj

〉)
+

k

∑
j=0

αj

(
s

∑
l=1

〈
∇l f (xl,j)−∇l f (xj),zl − xj

l

〉)}

≤min
z∈Q

{
ρk +

γL
σ

d(z) +
k

∑
j=0

αj

(
f (xj) +

〈
∇ f (xj), z− xj

〉)
+

k

∑
j=0

αj

(
s

∑
l=1

L
∥∥∥(xl,j

j1
, . . . , xl,j

jηl
)− (xj

j1
, . . . , xj

jηl
)
∥∥∥∥∥∥zl − xj

l

∥∥∥)}

≤ ρk +
γL
σ

d(xopt) + Ak f (xopt) + γLηmax

k

∑
j=0

αj∆j

∥∥∥xopt − xj
∥∥∥

1

≤
k

∑
j=0

(
Lj − Lj−1

)
C + 2ηmaxγLC

k

∑
j=0

αj∆j +
γL
σ

d(xopt) + Ak f (xopt)

= ηmaxβγLC
k

∑
j=1

(j + 1)δj + (Lk − L−1)C +
γL
σ

d(xopt) + Ak f (xopt)

< γLC
(
ηmaxβg′(δ) + 1

)
+

γL
σ

d(xopt) + Ak f (xopt).

The lower bound for ∑k
j=0 Ej is given by (see proof of Theorem 2.2.12)

k

∑
j=0

Ej > −
ηmaxβγLC

2
g′(δ).

Substituting these bounds in (2.46) yields:

f (yk)− f (xopt) <
4γ
(

LC
( 3

2 ηmaxβg′(δ) + 1
)
+ L

σ d(xopt)
)

(k + 1)(k + 2)
.

Remark 2.5.6. (Efficiency estimate for DANA-EC 2.5.1)

From equation (2.47) it can be seen that the DANA-EC 2.5.1 has the same efficiency estimate as

the Nesterov-Algorithm 2.1.3 which is of the order O
(√

L/ε
)

as described in section 2.1.

If no event-triggered communication is applied, i.e., ∆k = 0 for k ≥ 0, the convergence

of the ANA 2.3.2 and the DANA, respectively, follows immediately as a special case of

Theorem 2.5.5 (cf. [Nes05, Theo. 2]).
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Theorem 2.5.7. (Convergence of the (D)ANA)

Let yk be generated by the ANA 2.3.2 with αk as in Lemma 2.1.5 and ∆k = βδk, where δ ∈ (0,1)

and β ∈R+. Then for k ≥ 0 the inequality

f (yk)− f (xopt) ≤ 4Lk(d(xopt) + Cσ)

σ(k + 1)(k + 2)

holds, where xopt is an optimal solution of problem (2.1).

Proof. The proof is identical to the proof of Theorem 2.5.5, considering that with ∆k = 0

for k ≥ 0 it follows that xl,k = xl for l = 1, . . . , s, and the quantities ρk in (2.41) and Ek in

(2.43) become

ρk =
k

∑
j=0

(
Lj − Lj−1

)
C

Ek = 0.
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In this chapter, a version of the proximal center algorithm by Necoara and Suykens (PCA

3.1.2) is presented in section 3.1. More precisely, this version of [NS08, Algo. 3.2] is a

simplification that does not guarantee monotonicity of the function values, however, for

the convergence theory this feature is irrelevant as mentioned in [NS08, sec. II B] (see

also [Nes05, sec. 3]), and we therefore neglect it as it hinders a full distributed implemen-

tation. However, for simplicity we use the term proximal center algorithm (PCA) in the

following.

In section 3.2, the PCA is enhanced by the implementation of the DANA-EC 2.5.1 which

yields the distributed adaptive proximal center algorithm with event-triggered commu-

nication (DAPCA-EC 3.2.2 ).

3.1 Proximal center algorithm

The content of this section was essentially published in [MUA14, sec. 3.1] (Meinel, Ulbrich, and

Albrecht) and is reproduced here in similar form.

The proximal center algorithm is a dual decomposition method that applies Nesterov’s

accelerated first order scheme from section 2.1 (NA 2.1.3) and a smoothing technique

from [Nes05, sec. 2] to find an approximate solution of a separable convex problem

min
x∈X

n

∑
i=1

Φi(xi) (3.1a)

s.t.
n

∑
i=1

Aixi = bA, (3.1b)

n

∑
i=1

Bixi ≤ bB, (3.1c)

where the set X = X1 × · · · × Xn is separable with compact and convex sets Xi ∈ Rmi .

Moreover, the cost functions Φi : Xi → R are continuous and convex functions that are

not required to be differentiable, and finally, the constraints in (3.1b) and (3.1c) are de-

fined by given matrices Ai ∈RmA×mi and Bi ∈RmB×mi , as well as bA ∈RmA and bB ∈RmB .

39
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In the PCA, the separable structure of problem (3.1) is exploited by forming its dual which

is then smoothed in a way that preserves the separability of the dual objective function

with respect to the subblocks of the primal optimization variable. To state the dual, con-

sider the Lagrangian [GK02, sec. 6.2.1]

L(x,µ,λ) =
n

∑
i=1

Φi(xi) +

〈
n

∑
i=1

Aixi − bA,µ

〉
+

〈
n

∑
i=1

Bixi − bB,λ

〉
of problem (3.1), where µ ∈ RmA are dual multipliers related to the equality constraints

(3.1b) and λ ∈ RmB are dual multipliers related to the inequality constraints (3.1c). The

dual problem of (3.1) is then given by [GK02, (6.6)]

max
(µ,λ)∈RmA×R

mB
+

f (µ,λ), (3.2)

where the dual objective function is defined as [GK02, Def. 6.6]

f (µ,λ) = min
x∈X
L(x,µ,λ)

= min
x∈X

{
n

∑
i=1

Φi(xi) +

〈
n

∑
i=1

Aixi − bA,µ

〉
+

〈
n

∑
i=1

Bixi − bB,λ

〉}
. (3.3)

It is well known from duality theory that the dual function f (µ,λ) is concave [GK02, Lem.

6.11]. Moreover, the optimal value of the dual problem (3.2) coincides with the optimal

value of the primal problem (3.1) (i.e., strong duality holds) if the relative interior of the

feasible set of (3.1) is not empty and if the optimal function value of (3.1) is finite [GK02,

Theo. 6.13] which is assumed in the following. Finally, the primal optimal solution xopt

of problem (3.1) can be obtained by the evaluation of f ((µ,λ)opt), where (µ,λ)opt are (not

necessarily unique) optimal dual multipliers that solve (3.2).

Obviously, the dual function can be evaluated distributedly by n agents which motivates

to solve the dual problem instead of the primal problem in distributed optimization,

however, as the primal solution x(µ,λ) of (3.3) is not necessarily unique, the dual ob-

jective function may not be smooth and an iterative scheme for convex problems with

differentiable objective function, such as the Nesterov-Algorithm 2.1.3, can not be ap-

plied to maximize the dual objective function in parallel. To remedy this drawback, the

authors of [NS08] propose to smooth the Lagrangian by (strongly convex) prox-functions

dxi : Xi → R with convexity parameters σxi > 0 for i = 1, . . . ,n that are scaled with a

smoothing parameter c > 0, yielding the augmented dual function

fc(µ,λ) = min
x∈X

{
n

∑
i=1

Φi(xi) +

〈
n

∑
i=1

Aixi − bA,µ

〉
+

〈
n

∑
i=1

Bixi − bB,λ

〉
+ c

n

∑
i=1

dxi(xi)

}

=
n

∑
i=1

min
xi∈Xi
{Φi(xi) + 〈Aixi,µ〉+ 〈Bixi,λ〉+ cdxi(xi)} − 〈bA,µ〉 − 〈bB,λ〉 (3.4)
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which obviously is still evaluable in parallel with respect to the primal subblocks

x1, . . . , xn. Moreover, the augmented dual function fc(µ,λ) is continuously differentiable

and has a Lipschitz continuous gradient as shown in the following theorem which slightly

extends [NS08, Theo. 3.1], where only equality constraints are considered for (3.1):

Theorem 3.1.1. (Existence and Lipschitz continuity of ∇ fc)

The augmented dual objective function fc in (3.4) is continuously differentiable with

∇ fc(µ,λ) =

(
∑n

i=1 Aixi(µ,λ)− bA

∑n
i=1 Bixi(µ,λ)− bB

)
, (3.5)

where xi(µ,λ) are the unique arguments of the minima in (3.4). Furthermore, ∇ fc is Lipschitz

continuous with Lipschitz constant

Lc =
n

∑
i=1

∥∥(AT
i , BT

i )
T
∥∥2

cσxi

. (3.6)

Proof. The continuously differentiability of fc is shown in [BT89, p.669] which is given as

a reference in [NS08, proof of Theo. 3.1].

To prove the Lipschitz continuity of∇ fc, we follow [NS08, proof of Theo. 3.1] and extend

it by additionally considering inequality constraints.

The first order optimal condition for problems with continuously differentiable objective

function that are constrained by a convex feasible set [BT89, Prop. 3.1] yields the follow-

ing inequalities for given Lagrange multipliers (µ,λ) and (ν,γ):〈
n

∑
i=1
∇Φi(xi(µ,λ)) +

n

∑
i=1

AT
i µ +

n

∑
i=1

BT
i λ + c

n

∑
i=1
∇dxi(xi(µ,λ)), xi(ν,γ)− xi(µ,λ)

〉
≥ 0,〈

n

∑
i=1
∇Φi(xi(ν,γ)) +

n

∑
i=1

AT
i ν +

n

∑
i=1

BT
i γ + c

n

∑
i=1
∇dxi(xi(ν,γ)), xi(µ,λ)− xi(ν,γ)

〉
≥ 0.

From the convexity of Φi it follows that Φi + dxi is strongly convex with convexity pa-

rameter σXi and with (2.5) as well as (2.4) we have

0≤
n

∑
i=1

Φi(xi(ν,γ)) + c
n

∑
i=1

dxi(xi(ν,γ))−
n

∑
i=1

Φi(xi(µ,λ))− c
n

∑
i=1

dxi(xi(µ,λ))

−
n

∑
i=1

cσXi

2
‖xi(ν,γ)− xi(µ,λ)‖2 +

n

∑
i=1

〈
AT

i µ + BT
i λ, xi(ν,γ)− xi(µ,λ)

〉
,

0≤
n

∑
i=1

Φi(xi(µ,λ)) + c
n

∑
i=1

dxi(xi(µ,λ))−
n

∑
i=1

Φi(xi(ν,γ))− c
n

∑
i=1

dxi(xi(ν,γ))

−
n

∑
i=1

cσXi

2
‖xi(µ,λ)− xi(ν,γ)‖2 +

n

∑
i=1

〈
AT

i ν + BT
i γ, xi(µ,λ)− xi(ν,γ)

〉
.
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Finally, the summation of both inequalities and the application of the Cauchy-Schwarz

inequality yields (with (µ,λ) = (µT,λT)T)

n

∑
i=1

cσXi ‖xi(µ,λ)− xi(ν,γ)‖2

≤
n

∑
i=1

〈
AT

i (µ− ν) + BT
i (λ− γ) , xi(ν,γ)− xi(µ,λ)

〉
=

n

∑
i=1

〈(
AT

i , BT
i

)
((µ,λ)− (ν,γ)) , xi(ν,γ)− xi(µ,λ)

〉
=

n

∑
i=1

〈
(µ,λ)− (ν,γ),

(
AT

i , BT
i

)T
xi(ν,γ)−

(
AT

i , BT
i

)T
xi(µ,λ)

〉

which is used to derive

‖∇ fc(µ,λ)−∇ fc(ν,γ)‖2

=

∥∥∥∥∥ n

∑
i=1

[(
AT

i , BT
i

)T
xi(ν,γ)−

(
AT

i , BT
i

)T
xi(µ,λ)

]∥∥∥∥∥
2

≤
n

∑
i=1

∥∥∥(AT
i , BT

i
)T
∥∥∥2

cσXi

cσXi ‖xi(ν,γ)− xi(µ,λ)‖2

≤
n

∑
i=1

∥∥∥(AT
i , BT

i
)T
∥∥∥2

cσXi

n

∑
i=1

cσXi ‖xi(ν,γ)− xi(µ,λ)‖2

≤
n

∑
i=1

∥∥∥(AT
i , BT

i
)T
∥∥∥2

cσXi

n

∑
i=1

〈
(µ,λ)− (ν,γ) ,

(
AT

i , BT
i

)T
xi(ν,γ)−

(
AT

i , BT
i

)T
xi(µ,λ)

〉

≤
n

∑
i=1

∥∥∥(AT
i , BT

i
)T
∥∥∥2

cσXi

‖(µ,λ)− (ν,γ)‖‖∇ fc(µ,λ)−∇ fc(ν,γ)‖ .

Dividing both sides of the above inequality by ‖∇ fc(µ,λ)−∇ fc(ν,γ)‖ proves the Lips-

chitz continuity of ∇ fc with Lipschitz constant (3.6).

In the PCA, the smoothed dual function fc(µ,λ) is iteratively maximized with the Neste-

rov-Algorithm 2.1.3 (cf. Remark 2.2.11) which is possible according to Theorem 3.1.1. To

state the PCA, we denote by QA × QB ⊆ RmA ×R
mB
+ a closed and convex feasible set for

the dual multipliers (µ,λ) and consider the following augmented dual problem:

max
(µ,λ)∈QA×QB

fc(µ,λ). (3.7)

The initialization is done accordingly to the initialization of the Nesterov-Algorithm 2.1.3

by choosing a prox-function d(µ,λ) : QA × QB → R (with convexity parameter σ > 0)
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which defines the starting point as (µ,λ)0 = argmin(µ,λ)∈QA×QB
d(µ,λ). Finally, the fol-

lowing version of [NS08, Algo. 3.2], that applies the NA 2.1.3 to problem (3.7) with

{αk}k≥0 chosen as in Lemma 2.1.5, can be stated as

Algorithm 3.1.2. (PCA) [MUA14, Algo. 3.1]

For k ≥ 0 do:

1. Given (µ,λ)k ∈ QA ×QB, for i = 1, . . . ,n compute

xk+1
i = argmin

xi∈Xi

{
Φi(xi) +

〈
µk, Aixi

〉
+
〈

λk, Bixi

〉
+ cdxi(xi)

}
.

2. Compute ∇ fc((µ,λ)k) =

(
∑n

i=1 Aixk+1
i − bA

∑n
i=1 Bixk+1

i − bB

)
.

3. Find (u, h)k = argmax
(u,h)∈QA×QB

{〈
∇ fc((µ,λ)k), (u, h)− (µ,λ)k

〉
− Lc

2

∥∥∥(u, h)− (µ,λ)k
∥∥∥2
}

.

4. Find (v, t)k = argmax
(v,t)∈QA×QB

{
−Lc

σ
d(v, t) +

k

∑
j=0

j + 1
2

〈
∇ fc((µ,λ)j), (v, t)− (µ,λ)j

〉}
.

5. Set (µ,λ)k+1 = 2
k+3 (v, t)k + k+1

k+3 (u, h)k.

Obviously, the PCA 3.1.2 can be implemented distributedly if the set QA × QB and the

prox-function d(µ,λ) are separable according to Assumptions 2.2.1.

To state a convergence result for the PCA 3.1.2, we denote in the following by Mopt×Λopt

the set of optimal dual multipliers for the dual problem (3.2) and assume that

Mopt ×Λopt ∩QA ×QB 6= ∅.

The following lemma slightly extends [NS08, Lem. 3.3 and the conclusions afterwards]

by additionally considering inequality constraints and bounds the primal gap, i.e., the

distance from the optimal objective function value of problem (3.1):

Lemma 3.1.3. [MUA14, Lem. 3.2]

For every (µ,λ)opt ∈ Mopt ×Λopt, (µ,λ) ∈ QA ×QB, and xi ∈ Xi for i = 1, . . . ,n, the following

inequalities hold:

−
∥∥(µ,λ)opt∥∥∥∥∥∥∥ ∑n

i=1 Aixi − bA

[∑n
i=1 Bixi − bB]

+

∥∥∥∥∥ ≤ n

∑
i=1

Φi(xi)− f opt ≤
n

∑
i=1

Φi(xi)− f0(µ,λ), (3.8)

where f opt = f0((µ,λ)opt) and [·]+ denotes the projection onto R
mB
+ .
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Proof. [MUA14, proof of Lem. 3.2]

The proof combines [NS08, Rem. 3.8] with [NS08, proof of Lem. 3.3], where the bounds

on the primal gap are given for equality constrained convex problems. The lower bound

of (3.8) can be derived as follows:

f opt = min
xi∈Xi(i=1,...,n)

{
n

∑
i=1

Φi(xi) +

〈
n

∑
i=1

Aixi − bA,µopt

〉
+

〈
n

∑
i=1

Bixi − bB,λopt

〉}

≤
n

∑
i=1

Φi(xi) +

〈
n

∑
i=1

Aixi − bA,µopt

〉
+

〈
n

∑
i=1

Bixi − bB,λopt

〉

≤
n

∑
i=1

Φi(xi) +

〈(
|∑n

i=1 Aixi − bA|
∑n

i=1 Bixi − bB

)
,

(
|µopt|
λopt

)〉

≤
n

∑
i=1

Φi(xi) +

〈[
|∑n

i=1 Aixi − bA|
∑n

i=1 Bixi − bB

]+
,

(
|µopt|
λopt

)〉

≤
n

∑
i=1

Φi(xi) +

∥∥∥∥∥ ∑n
i=1 Aixi − bA

[∑n
i=1 Bixi − bB]

+

∥∥∥∥∥∥∥(µ,λ)opt∥∥ ,

where the last inequality follows by the Cauchy-Schwarz inequality. The upper bound

on the primal gap is obvious as f opt = f0((µ,λ)opt)≥ f0(µ,λ) for all (µ,λ)∈QA×QB.

Define by [NS08, sec. III A]

DXi ≥max
xi∈Xi

dxi(xi) (3.9)

an upper bound on the value range of dxi over the compact set Xi for i = 1, . . . ,n. The

upper bound on the primal gap given in (3.8) can be expressed in terms of the primal it-

erates computed with the PCA 3.1.2, such that no dual function evaluation is necessary as

shown in the following theorem which slightly extends [NS08, Theo. 3.4] by additionally

considering inequality constraints.

Theorem 3.1.4. [MUA14, Theo. 3.9 with P(∆) = 0]

After k iterations of the PCA 3.1.2, the convex sum of the primal iterates (computed in step 1)

x̂i =
k

∑
j=0

2(j + 1)
(k + 1)(k + 2)

xj+1
i for i = 1, . . . ,n

satisfies with (µ̂, λ̂) = (u, h)k (computed in step 3) the following upper bound on the primal gap:

n

∑
i=1

Φi(x̂i)− f0(µ̂, λ̂) ≤ c
n

∑
i=1

DXi − max
(µ,λ)∈QA×QB

{
− 4Lc

(k + 1)2σ
d(µ,λ) +

〈
n

∑
i=1

Ai x̂i − bA,µ

〉

+

〈
n

∑
i=1

Bi x̂i − bB,λ

〉}
.
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Proof. The proof is almost identical to [NS08, Theo. 3.4] and follows immediately from

the proof of Theorem 3.2.5 (for ∆ = 0) given in section 3.2.

Finally, the following convergence result for the PCA 3.1.2 can be given which slightly

extends [NS08, Theo. 3.7] by additionally considering inequality constraints. (For the

sake of comprehensibility, formulation is based on [NS08, Theo. 3.6 & Theo. 3.7].)

Theorem 3.1.5. [MUA14, Theo. 3.3]

Assume that QA ×QB = RmA ×R
mB
+ and the prox-function d(µ,λ) = (σ/2)‖(µ,λ)‖2. For the

choice c = ε/ ∑n
i=1 DXi in (3.4) and

k + 1 =

⌈
2

√
Lc

ε

⌉
(3.10)

where

Lc =
∑n

i=1 DXi

ε

∑n
i=1
∥∥(AT

i , BT
i )

T
∥∥2

σxi

, (3.11)

after k iterations of the PCA 3.1.2 the convex sum of the primal iterates (computed in step 1)

x̂i =
k

∑
j=0

2(j + 1)
(k + 1)(k + 2)

xj+1
i for i = 1, . . . ,n (3.12)

satisfies with (µ̂, λ̂) = (u, h)k (computed in step 3) the following bounds on the primal gap:

−
∥∥(µ,λ)opt∥∥(∥∥(µ,λ)opt∥∥+√‖(µ,λ)opt‖2 + 2

)
ε ≤

n

∑
i=1

Φi(x̂i)− f0(µ̂, λ̂) ≤ ε, (3.13)

as well as the following bound on the constraint violation:∥∥∥∥∥ ∑n
i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥ ≤ ε

(∥∥(µ,λ)opt∥∥+√‖(µ,λ)opt‖2 + 2
)

. (3.14)

Proof. Applying Lemma 3.1.3 and Theorem 3.1.4, the proof is almost identical to [NS08,

proof of Theo. 3.7] but will be given here for the sake of completeness as we additionally

consider inequality constraints in (3.1).

To obtain the upper bound on the primal gap in (3.13), consider the result of Theorem

3.1.4

n

∑
i=1

Φi(x̂i)− f0(µ̂, λ̂) ≤ c
n

∑
i=1

DXi − max
(µ,λ)∈QA×QB

{
− 4Lc

(k + 1)2σ
d(µ,λ) +

〈
n

∑
i=1

Ai x̂i − bA,µ

〉

+

〈
n

∑
i=1

Bi x̂i − bB,λ

〉}
,
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where the maximization part has the solution

max
(µ,λ)∈QA×QB

{
− 4Lc

(k + 1)2σ
d(µ,λ) +

〈
n

∑
i=1

Ai x̂i − bA,µ

〉
+

〈
n

∑
i=1

Bi x̂i − bB,λ

〉}

=
(k + 1)2

8Lc

∥∥∥∥∥ ∑n
i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥
2

.

It follows that

n

∑
i=1

Φi(x̂i)− f0(µ̂, λ̂) ≤ c
n

∑
i=1

DXi −
(k + 1)2

8Lc

∥∥∥∥∥ ∑n
i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥
2

≤ c
n

∑
i=1

DXi (3.15)

which immediately yields the right-hand side of (3.13) for the choice c = ε/ ∑n
i=1 DXi .

From Lemma 3.1.3, the choice of c, and inequality (3.15) it follows that

−
∥∥(µ,λ)opt∥∥∥∥∥∥∥ ∑n

i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥ ≤ ε− (k + 1)2

8Lc

∥∥∥∥∥ ∑n
i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥
2

,

yielding

(k + 1)2

8Lc

∥∥∥∥∥ ∑n
i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥
2

−
∥∥(µ,λ)opt∥∥∥∥∥∥∥ ∑n

i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥− ε ≤ 0.

In other words, the constraint violation is less than the largest root of

(k + 1)2

8Lc
y2 −

∥∥(µ,λ)opt∥∥y− ε

which is given by the quadratic formula

y =

∥∥(µ,λ)opt∥∥+√‖(µ,λ)opt‖2 +
(k + 1)2

2Lc
ε

 4Lc

(k + 1)2 .

With k + 1 =
⌈
2
√

Lc/ε
⌉
, one obtains

y ≤

∥∥(µ,λ)opt∥∥+
√
‖(µ,λ)opt‖2 +

(
2
√

Lc/ε
)2

2Lc
ε

 4Lc(
2
√

Lc/ε
)2

=

(∥∥(µ,λ)opt∥∥+√‖(µ,λ)opt‖2 + 2
)

ε

which gives the bound on the constraint violation in (3.14) and with Lemma 3.1.3 the

lower bound on the primal gap in (3.13).
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3.1.1 Minimal Lipschitz constant and scaling technique

The content of this section was essentially published in [MUA14, sec. 3.2 & 3.4] (Meinel, Ul-

brich, and Albrecht) and is reproduced here in similar form.

In this section, the convergence result from Theorem 3.1.5 is improved for the following

choice of prox-functions

dxi(xi) =
σxi

2
‖xi‖2 for i = 1, . . . ,n (3.16)

in the augmented dual function (3.4). Firstly, it is shown how the number of iterations in

Theorem 3.1.5 can be reduced by minimizing the Lipschitz constant (3.11) with respect to

the convexity parameter σxi for i = 1, . . . ,n.

Secondly, a scaling technique is presented to compensate for a large value of ‖(µ,λ)opt‖
in the bounds on the primal gap given in Theorem 3.1.5.

Firstly, for the above choice of prox-functions, we obtain the upper bounds

DXi =
σxi

2
max
xi∈Xi
‖xi‖2

and it follows that the necessary number of iterations in Theorem 3.1.5 is given by

k =

⌈
2

√
Lc

ε

⌉
− 1,

where

Lc(σX) =
∑n

i=1 DXi

ε

∑n
i=1
∥∥(AT

i , BT
i )

T
∥∥2

σxi

=
∑n

i=1 σxi maxxi∈Xi ‖xi‖2

2ε

∑n
i=1
∥∥(AT

i , BT
i )

T
∥∥2

σxi

=
σT

XdX

2ε

n

∑
i=1

vi

σxi

with v = (
∥∥(AT

1 , BT
1 )

T
∥∥2 , . . . ,

∥∥(AT
n , BT

n )
T
∥∥2
)T, dX = (maxx1∈X1 ‖x1‖2 , . . . ,maxxn∈Xn ‖xn‖2)T,

and σX = (σx1 , . . . ,σxn)
T. In other words, the minimization of Lc(σX) results in a mini-

mization of the necessary number of iterations.

Let σ
opt
X be a minimum of Lc(σX). Then σ

opt
X

T
dX = ζ for some ζ > 0 and it follows that

σ
opt
X /ζ minimizes Lc(σX) as well. In other words, it is sufficient to solve

argmin
σX>0

n

∑
i=1

vi

σxi

(3.17a)

s.t. dT
XσX = 1. (3.17b)
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From the KKT-conditions [UU12, Theo. 16.14] it follows that an optimal solution of (3.17)

satisfies (
−v1

σ
opt
x1

2 + µdX1 , . . . ,
−vn

σ
opt
x1

2 + µdXn

)T

= 0,

dT
Xσ

opt
X = 1,(

σ
opt
x1 , . . . ,σopt

xn

)T
> 0

which yields

σ
opt
xi =

1

∑n
j=1

√
vjdXj

√
vi

dxi

for i = 1, . . . ,n. (3.18)

Secondly, to obtain an additional degree of freedom in the bounds of the primal gap (3.13)

which allows to compensate for a large value of ‖(µ,λ)opt‖, consider the following scaled

version of the primal problem (3.1) with scaling factor s > 1 :

min
x(s)∈X(s)

n

∑
i=1

Φi

(
xi(s)

s

)
(3.19a)

s.t.
n

∑
i=1

Aixi(s) = bA(s), (3.19b)

n

∑
i=1

Bixi(s) ≤ bB(s), (3.19c)

where x(s) = sx, X(s) = sX, bA(s) = sbA, and bB(s) = sbB for i = 1, . . . ,n.

Obviously, an optimal solution xopt of problem (3.1) yields an optimal solution xopt(s) =

sxopt of the scaled problem (3.19), and it follows that the maximum of the corresponding

dual problem

f (µ(s),λ(s)) = min
x(s)∈X(s)

{
n

∑
i=1

Φi

(
xi(s)

s

)
+

〈
n

∑
i=1

Aixi(s)− bA(s),µ(s)

〉

+

〈
n

∑
i=1

Bixi(s)− bB(s),λ(s)

〉}

is obtained at (µ(s),λ(s))opt = (µ,λ)opt/s as

n

∑
i=1

Φi

(
xopt

i (s)
s

)
+

〈
n

∑
i=1

Aixi(s)− bA(s),
µopt

s

〉
+

〈
n

∑
i=1

Bixi(s)− bB(s),
λopt

s

〉

=
n

∑
i=1

Φi

(
sxopt

i
s

)
+

〈
s

n

∑
i=1

Aixi − sbA,
µopt

s

〉
+

〈
s

n

∑
i=1

Bixi − sbB,
λopt

s

〉

=
n

∑
i=1

Φi

(
xopt

i

)
+

〈
n

∑
i=1

Aix
opt
i − bA,µopt

〉
+

〈
n

∑
i=1

Bix
opt
i − bB,λopt

〉
.
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For the choice

dxi(xi) =
σxi

2
‖xi‖2 for i = 1, . . . ,n, (3.20)

we obtain DXi(s) = s2DXi and with Theorem 3.1.5 it follows that after

k =

2

√
∑n

i=1 DXi(s)∑n
i=1
∥∥(AT

i , BT
i )

T
∥∥2

ε2σxi

− 1

=

2
s
ε

√
∑n

i=1 DXi ∑n
i=1
∥∥(AT

i , BT
i )

T
∥∥2

σxi

− 1

iterations of the PCA 3.1.2, the following bounds on the primal gap hold:

−1
s
∥∥(µ,λ)opt∥∥(1

s
∥∥(µ,λ)opt∥∥+√ 1

s2 ‖(µ,λ)opt‖2 + 2

)
ε ≤

n

∑
i=1

Φi(x̂i)− f0(µ̂, λ̂) ≤ ε,

(3.21)

as well as the following bound on the constraint violation:

s

∥∥∥∥∥ ∑n
i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥ ≤ ε

(
1
s
∥∥(µ,λ)opt∥∥+√ 1

s2 ‖(µ,λ)opt‖2 + 2

)
, (3.22)

where x̂ is defined by (3.12) and (µ̂, λ̂) = (u, h)k (computed in step 3). Obviously, the

increase of s tightens the lower bound in (3.21) and the upper bound in (3.22) more than

the decrease of ε does, however, the impact on the number of iterations is the same.

3.2 Distributed adaptive proximal center algorithm with event-triggering

Parts of the content of this section were essentially published in [MUA14, sec. 3.3] (Meinel,

Ulbrich, and Albrecht) to establish the DPCA-EC and are used in this section to develop the

DAPCA-EC which is in preparation for publication in [MU14] (Meinel and Ulbrich).

In this section, the distributed adaptive proximal center algorithm with event-triggered

communication (DAPCA-EC) is presented which enhances the PCA 3.1.2 by the appli-

cation of the DANA-EC 2.5.1 instead of the NA 2.1.3 to maximize the augmented dual

objective function (3.4) in order to find an approximate solution to problem (3.1).

To be able to apply the DANA-EC 2.5.1 to the augmented dual problem (3.7), we assume

the set QA×QB to be separable according to a given partition of the dual multipliers into

s subblocks as described in section 2.2 (Assumptions 2.2.1), where each subblock (µ,λ)l

is controlled by an agent that is referred to as dual agent and denoted by agent(µ,λ)l
in the

following.



50 3 Distributed dual decomposition method with event-triggering

Moreover, a globally outdated version of the iterate (µ,λ)k has to be defined such that the

(primal) agents agentx1 , . . . , agentxn need to update their primal subblocks x1, . . . , xn only

once per iteration as will become clear when the DAPCA-EC is stated.

Definition 3.2.1. (Globally outdated vector)

Denote by (µ̄, λ̄)k = ((µ̄, λ̄)k
1, . . . , (µ̄, λ̄)k

s) the globally outdated vector whose subblocks are avail-

able to the dual agents in iteration k ≥ 0 and satisfy∥∥∥(µ̄, λ̄)k
l − (µ,λ)k

l

∥∥∥
1
≤ ∆k (3.23)

for l = 1, . . . , s and a given threshold ∆k ≥ 0 with ∆0 = 0.

The globally outdated vector is a special case of Definition 2.2.4, where the outdated

vector (µ,λ)l,k =
(
(µ,λ)l,k

1 , . . . , (µ,λ)l,k
s

)
∈ QA ×QB ⊆RmA ×R

mB
+ (available to agent(µ,λ)l

in iteration k) is defined by

(µ,λ)l,k
j =

(µ̄, λ̄)k
j if j ∈ NIDG(l) ∪ {l} ,

0 else,
(3.24)

for l, j = 1, . . . , s. In other words, the dual agents use the same outdated information for

the computation of the subblocks ∇l fc((µ,λ)l,k) =∇l fc((µ̄, λ̄)k).

To initialize the following DAPCA-EC 3.2.2, choose γ > 1, L−1 ∈ (0, Lc], and the starting

point (µ̄, λ̄)0 = (µ,λ)0 according to (2.29) and Assumptions 2.2.1 as the minimum of a

separable prox-function d(µ,λ) = ∑s
l=1 dl((µ,λ)l) with convexity parameter σ > 0, where

d((µ̄, λ̄)0) = 0. Moreover, set (ū, h̄)−1 = (µ̄, λ̄)0. Finally, the DAPCA-EC can be stated as

follows, where its depiction is based on our DPCA-EC [MUA14, Algo. 3.6].

Algorithm 3.2.2. (DAPCA-EC) For k ≥ 0 do in parallel:

For i = 1, . . . ,n, given the required subblocks of (µ̄, λ̄)k, agentxi

1. computes

xk+1
i = argmin

xi∈Xi

{
Φi(xi) +

〈
µ̄k, Aixi

〉
+
〈

λ̄k, Bixi

〉
+ cdxi(xi)

}
and sends xk+1

i to the dual agents that require it.

For l = 1, . . . , s, given the blocks xk+1
i that are necessary for the computation of

∇l fc((µ̄, λ̄)k) =∇l fc((µ,λ)l,k), agent(µ,λ)l

2. computes ∇l fc((µ̄, λ̄)k) =

(
∑n

i=1 Aixk+1
i − bA

∑n
i=1 Bixk+1

i − bB

)
l

and sets Lk = Lk−1,
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3. finds

(u, h)k
l = argmax

(u,h)l∈(QA×QB)l

{〈
∇l fc((µ̄, λ̄)k), (u, h)l

〉
−

Lk∆k (ηl + 1)
∥∥∥(u, h)l − (µ,λ)k

l

∥∥∥
1
− Lk

2

∥∥∥(u, h)l − (µ,λ)k
l

∥∥∥2
}

.

4. if Lk < Lc then

(a) agent(µ,λ)l
sends (u, h)k

l to the primal agents that require it if necessary:

if
∥∥∥(ū, h̄)k−1

l − (u, h)k
l

∥∥∥
1
> Lk

Lc
∆k then

agent(µ,λ)l
sets (ū, h̄)k

l = (u, h)k
l and sends (ū, h̄)k

l .

else

agent(µ,λ)l
sets (ū, h̄)k

l = (ū, h̄)k−1
l and signals that no data will be sent.

For i = 1, . . . ,n, given the required subblocks of (ū, h̄)k, agentxi

(b) computes

yk+1
i = argmin

xi∈Xi

{
Φi(xi) +

〈
ūk, Aixi

〉
+
〈

h̄k, Bixi

〉
+ cdxi(xi)

}
,

and sends yk+1
i to the dual agents that require it.

For l = 1, . . . , s, given the blocks yk+1
i that are necessary for the computation of

∇l fc((ū, h̄)k) =∇l fc((u, h)l,k), agent(µ,λ)l

(c) computes∇l fc((ū, h̄)k) =

(
∑n

i=1 Aiyk+1
i − bA

∑n
i=1 Biyk+1

i − bB

)
l

and checks with consensus

if

−Lk

2

∥∥∥(u, h)k − (µ,λ)k
∥∥∥2
≤

s

∑
l=1

〈
∇l f ((ū, h̄)k)−∇l f ((µ̄, λ̄)k), (u, h)k

l − (µ,λ)k
l

〉
then

continues with step 5,

else

sets Lk = Lkγ and goes to step 3,

5. finds (v, t)k
l = argmax

(v,t)l∈(QA×QB)l

{
−Lk

σ
dl((v, t)l) +

k

∑
j=0

j + 1
2

〈
∇l fc((µ̄, λ̄)j), (v, t)l

〉}
,

6. sets (µ,λ)k+1
l =

2
k + 3

(v, t)k
l +

k + 1
k + 3

(u, h)k
l ,
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7. and sends (µ,λ)k+1
l to the primal agents that require it if necessary:

if
∥∥∥(µ̄, λ̄)k

l − (µ,λ)k+1
l

∥∥∥
1
> ∆k+1 then

agent(µ,λ)l
sets (µ̄, λ̄)k+1

l = (µ,λ)k+1
l and sends (µ̄, λ̄)k+1

l .

else

agent(µ,λ)l
sets (µ̄, λ̄)k+1

l = (µ̄, λ̄)k
l and signals that no data will be sent.

Remark 3.2.3.

1. Step 3 of the DAPCA-EC 3.2.2 differs from step 2 of the DANA-EC 2.5.1 by containing

ηl + 1 instead of ηl which follows from the definition of the globally outdated vector in (3.23)

and (3.24). The convergence result for this slightly modified version of the DANA-EC is

obtained exactly as in Theorem 2.5.5 with ηmax + 1 instead of ηmax.

2. For the choice L−1 = Lc, the above algorithm implements a slightly modified version of the

DNA-EC 2.2.5 and in this case Algorithm 3.2.2 is referred to as DPCA-EC ([MUA14,

Algo. 3.6]) in the following.

3. As we mentioned in [DMUH15, sec. 3], the Lipschitz constant Lc (3.6) of∇ fc can be com-

puted in parallel with local communication by the application of the consensus technique,

provided that the number of agents in the multi-agent network is known to the agents. The

same holds for the optimal convexity parameters σ
opt
xi (3.18) of the prox-functions that are

used to smooth the dual function.

As already stated in Remark 2.4.2, the adaptive step-size condition in step 4c) of the

DAPCA-EC is used as well in a distributed dual decomposition method [KCD15, Algo.

4] that applies a fast gradient scheme, where, however, the condition is verified centrally.

If the matrices Ai and Bi in (3.4) have a sparse structure, agentxi possibly does not need all

the subblocks of (µ̄, λ̄)k in iteration k in order to compute his subblock xk+1
i . To empha-

size this, we denote in the following by (µ̄, λ̄)xi ,k ∈ QA × QB the vector whose subblocks

coincide with the outdated subblocks of (µ̄, λ̄)k if they are necessary to update xk+1
i and

whose subblocks are zero if not. It follows that the event-triggered communication is

not only related to the exchange of dual iterates in step 4a) and step 7, but also to the

exchange of primal iterates as xk+1
i = xk

i if (µ,λ)xi ,k = (µ,λ)xi ,k−1 for k≥ 1, i.e., in this case

xk+1
i does not need to be send again to the requesting dual agents.

To be able to proof the convergence of the DAPCA-EC 3.2.2, we have to assume that the

set QA ×QB is bounded as done in Assumptions 2.2.9.



3.2 Distributed adaptive proximal center algorithm with event-triggering 53

Firstly, we extend Lemma 2.5.4 in the following by bounding the error that occurs due to

event-triggered communication with the following constant

P(∆) = 2γLcC
(
(ηmax + 1)βg′(δ) + 2

)
(3.25)

that contains the update parameter γ > 0, the Lipschitz constant Lc given in (3.6), the

diameter C of QA × QB defined according to (2.13), the threshold parameters δ ∈ (0,1)

and β > 0, and finally the derivative of the function g(δ) defined in Theorem 2.5.5.

Lemma 3.2.4. [MUA14, Lem. 3.8]

The following inequality holds for (u, h)k (computed in step 3) of the DAPCA-EC 3.2.2 and

(µ̄, λ̄)k defined according to (3.23) for k ≥ 0:

(k + 1)(k + 2)
4

fc((u, h)k) ≥ max
(u,h)∈QA×QB

{
−γLc

σ
d(u, h) +

k

∑
j=0

j + 1
2

(
fc((µ̄, λ̄)j)

+
〈
∇ fc((µ̄, λ̄)j), (u, h)− (µ̄, λ̄)j

〉)}
− P(∆). (3.26)

Proof. [MUA14, proof of Lem. 3.8]

For the choice αk = (k + 1)/2 in Lemma 2.5.4 and with Remark 2.2.11 (which holds for

Lemma 2.5.4 as well), we obtain

(k + 1)(k + 2)
4

fc((u, h)k) ≥ max
(u,h)∈QA×QB

{
−ρk − Lk

σ
d(u, h) +

k

∑
j=0

j + 1
2

(
fc((µ,λ)j)

+
〈
∇ fc((µ̄, λ̄)j), (u, h)− (µ,λ)j

〉)}
−

k

∑
j=1

Ej

≥ max
(u,h)∈QA×QB

{
−ρk − γLc

σ
d(u, h) +

k

∑
j=0

j + 1
2

(
fc((µ,λ)j)

+
〈
∇ fc((µ̄, λ̄)j), (u, h)− (µ,λ)j

〉)}
−

k

∑
j=1

Ej,

where ρk is defined by (2.41) combined with Remark 3.2.3, i.e.,

ρk = (ηmax + 1)LkC
k

∑
j=0

j + 1
2

βδj +
k

∑
j=0

(
Lj − Lj−1

)
C.

It can easily be shown (cf. with the proof of Theorem 2.5.5) that

ρk ≤ P(∆)
4

and
k

∑
j=1

Ej ≤
P(∆)

4
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which yields

(k + 1)(k + 2)
4

fc((u, h)k) ≥ max
(u,h)∈QA×QB

{
−γLc

σ
d(u, h) +

k

∑
j=0

j + 1
2

(
fc((µ,λ)j)

+
〈
∇ fc((µ̄, λ̄)j), (u, h)− (µ,λ)j

〉)}
− P(∆)

2
.

With (3.24), we have〈
∇ fc((µ̄, λ̄)j), (u, h)− (µ,λ)j

〉
=
〈
∇ fc((µ,λ)j), (u, h)− (µ,λ)j

〉
+

s

∑
l=1

〈
∇l fc((µ,λ)l,j)−∇l fc((µ,λ)j), (u, h)l − (µ,λ)j

l

〉
≥
〈
∇ fc((µ,λ)j), (u, h)− (µ,λ)j

〉
− Lc

s

∑
l=1

∥∥∥(µ,λ)l,j − (µ,λ)j
∥∥∥︸ ︷︷ ︸

≤(ηl+1)∆j

∥∥∥(u, h)l − (µ,λ)j
l

∥∥∥
≥
〈
∇ fc((µ,λ)j), (u, h)− (µ,λ)j

〉
− (ηmax + 1)Lc∆j

∥∥∥(u, h)− (µ,λ)j
∥∥∥

1︸ ︷︷ ︸
≤C

and accordingly〈
∇ fc((µ,λ)j), (u, h)− (µ̄, λ̄)j

〉
≥
〈
∇ fc((µ̄, λ̄)j), (u, h)− (µ̄, λ̄)j

〉
− (ηmax + 1)LcC∆j.

Finally, we obtain for all (u, h) ∈ QA ×QB with the concavity of fc that

k

∑
j=0

j + 1
2

(
fc((µ,λ)j) +

〈
∇ fc((µ,λ)j), (u, h)− (µ,λ)j

〉
− (ηmax + 1)LcC∆j

)
− P(∆)

2

≥
k

∑
j=0

j + 1
2

(
fc((µ,λ)j) +

〈
∇ fc((µ,λ)j), (u, h)− (µ,λ)j

〉)
− 3P(∆)

4

=
k

∑
j=0

j + 1
2

(
fc((µ,λ)j) +

〈
∇ fc((µ,λ)j), (u, h)− (µ,λ)j + (µ̄, λ̄)j − (µ̄, λ̄)j

〉)
− 3P(∆)

4

≥
k

∑
j=0

j + 1
2

(
fc((µ̄, λ̄)j) +

〈
∇ fc((µ,λ)j), (u, h)− (µ̄, λ̄)j

〉)
− 3P(∆)

4

≥
k

∑
j=0

j + 1
2

(
fc((µ̄, λ̄)j) +

〈
∇ fc((µ̄, λ̄)j), (u, h)− (µ̄, λ̄)j

〉
− (ηmax + 1)LcC∆j

)
− 3P(∆)

4

≥
k

∑
j=0

j + 1
2

(
fc((µ̄, λ̄)j) +

〈
∇ fc((µ̄, λ̄)j), (u, h)− (µ̄, λ̄)j

〉)
− P(∆).
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The following lemma provides an upper bound on the primal gap and extends Theorem

3.1.4 by additionally considering the error due to event-triggered communication.

Theorem 3.2.5. [MUA14, Theo. 3.9]

After k iterations of the DAPCA-EC 3.2.2 , the convex sum of the primal iterates (computed in

step 1)

x̂i =
k

∑
j=0

2(j + 1)
(k + 1)(k + 2)

xj+1
i for i = 1, . . . ,n

satisfies with (µ̂, λ̂) = (u, h)k (computed in step 3) the following upper bound on the primal gap:

n

∑
i=1

Φi(x̂i)− f0(µ̂, λ̂) ≤ c
n

∑
i=1

DXi − max
(µ,λ)∈QA×QB

{
− 4γLc

(k + 1)2σ
d(µ,λ)

+

〈
n

∑
i=1

Ai x̂i − bA,µ

〉
+

〈
n

∑
i=1

Bi x̂i − bB,λ

〉}
+

4P(∆)
(k + 1)2 .

Proof. The proof is almost identical to [NS08, proof of Theo. 3.4], however, extends it by

additionally considering inequality constraints in (3.1) as well as the error that occurs due

to event-triggered communication, and will be given here for the sake of completeness:

From inequality (3.26) in Lemma 3.2.4 it follows for any k ≥ 0 that

fc(µ̂, λ̂) ≥ max
(µ,λ)∈QA×QB

{
− 4γLc

(k + 1)2σ
d(µ,λ) +

k

∑
j=0

2(j + 1)
(k + 1)(k + 2)

(
fc((µ̄, λ̄)j)

+
〈
∇ fc((µ̄, λ̄)j), (µ,λ)− (µ̄, λ̄)j

〉)}
− 4P(∆)

(k + 1)2 , (3.27)
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where (µ̄, λ̄)k is defined by (3.2.1). Moreover,

k

∑
j=0

2(j + 1)
(k + 1)(k + 2)

(
fc((µ̄, λ̄)j) +

〈
∇ fc((µ̄, λ̄)j), (µ,λ)− (µ̄, λ̄)j

〉)
(3.28)

=
k

∑
j=0

2(j + 1)
(k + 1)(k + 2)

(
n

∑
i=1

Φi(xj+1
i ) +

〈
n

∑
i=1

Aix
j+1
i − bA, µ̄

〉
+

〈
n

∑
i=1

Bix
j+1
i − bB, λ̄

〉

+c
n

∑
i=1

dxi(xj+1
i ) +

〈(
∑n

i=1 Aix
j+1
i − bA

∑n
i=1 Bix

j+1
i − bB

)
, (µ,λ)− (µ̄, λ̄)j

〉)
(3.29)

=
k

∑
j=0

2(j + 1)
(k + 1)(k + 2)

(
n

∑
i=1

Φi(xj+1
i ) +

〈
n

∑
i=1

Aix
j+1
i − bA, µ̄

〉
+

〈
n

∑
i=1

Bix
j+1
i − bB, λ̄

〉

+c
n

∑
i=1

dxi(xj+1
i ) +

〈
n

∑
i=1

Aix
j+1
i − bA,µ− µ̄

〉
+

〈
n

∑
i=1

Bix
j+1
i − bB,λ− λ̄

〉)

=
k

∑
j=0

2(j + 1)
(k + 1)(k + 2)

(
n

∑
i=1

Φi(xj+1
i ) + c

n

∑
i=1

dxi(xj+1
i )

+

〈
n

∑
i=1

Aix
j+1
i − bA,µ

〉
+

〈
n

∑
i=1

Bix
j+1
i − bB,λ

〉)

≥
k

∑
j=0

2(j + 1)
(k + 1)(k + 2)

(
n

∑
i=1

Φi(xj+1
i ) +

〈
n

∑
i=1

Aix
j+1
i − bA,µ

〉

+

〈
n

∑
i=1

Bix
j+1
i − bB,λ

〉)
(3.30)

≥
n

∑
i=1

Φi(x̂i) +

〈
n

∑
i=1

Ai x̂i − bA,µ

〉
+

〈
n

∑
i=1

Bi x̂i − bB,λ

〉
, (3.31)

where (3.29) follows from step 1 of the DAPCA-EC 3.2.2 , inequality (3.30) follows from

the nonnegativity of the prox-functions dxi , and inequality (3.31) is obtained by making

use of the convexity of Φi and the definition of x̂i for i = 1, . . . ,n. Finally, replacing (3.31)

with (3.28) in (3.27) yields

fc(µ̂, λ̂)−
n

∑
i=1

Φi(x̂i) ≥ max
(µ,λ)∈QA×QB

{
− 4γLc

(k + 1)2σ
d(µ,λ) +

〈
n

∑
i=1

Ai x̂i − bA,µ

〉

+

〈
n

∑
i=1

Bi x̂i − bB,λ

〉}
− 4P(∆)

(k + 1)2
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and the claim follows immediately as

fc(µ̂, λ̂) = min
x∈X

{
n

∑
i=1

Φi(xi) +

〈
n

∑
i=1

Aixi − bA, µ̂

〉
+

〈
n

∑
i=1

Bixi − bB, λ̂

〉
+ c

n

∑
i=1

dxi(xi)

}

≤min
x∈X

{
n

∑
i=1

Φi(xi) +

〈
n

∑
i=1

Aixi − bA, µ̂

〉
+

〈
n

∑
i=1

Bixi − bB, λ̂

〉}
+ c

n

∑
i=1

DXi

= f0(µ̂, λ̂) + c
n

∑
i=1

DXi .

We close this section with two convergence results for the DAPCA-EC 3.2.2 that both pro-

vide an efficiency estimate of the order O(1/ε), i.e., of the same order as the efficiency

estimate for the PCA given in Theorem 3.1.5.

The following theorem is based on [NS08, Theo. 3.6] and extends it by additionally con-

sidering inequality constraints and event-triggered communication.

Theorem 3.2.6. [MUA14, Theo. 3.10]

Assume that QA × QB =
{
(µ,λ) ∈RmA ×R

mB
+ : ‖µ‖max ≤ R, ‖λ‖max ≤ R

}
for some R > 0

such that (µ,λ)opt ∈ Mopt ×Λopt ∩ QA × QB with ||(µ,λ)opt|| < R. Denote by D a finite con-

stant with D ≥max(µ,λ)∈QA×QB
d(µ,λ). For the choice c = ε/(2∑n

i=1 DXi) with ε > 0 in (3.4)

and

k + 1 =

⌈
2

√
LcE(∆)

ε

⌉
,

where

Lc =
2∑n

i=1 DXi

ε

∑n
i=1
∥∥(AT

i , BT
i )

T
∥∥2

σxi

and

E(∆) = γ
2D + σ4C ((ηmax + 1)βg′(δ) + 2)

σ
,

after k iterations of the DAPCA-EC 3.2.2, the convex sum of primal iterates (computed in step 1)

x̂i =
k

∑
j=0

2(j + 1)
(k + 1)(k + 2)

xj+1
i for i = 1, . . . ,n

satisfies with (µ̂, λ̂) = (u, h)k (computed in step 3) the following bounds on the primal gap:

−
∥∥(µ,λ)opt

∥∥
R− ‖(µ,λ)opt‖ε ≤

n

∑
i=1

Φi(x̂i)− f0(µ̂, λ̂) ≤ ε, (3.32)

as well as the following bound on the constraint violation:∥∥∥∥∥ ∑n
i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥ ≤ ε

R− ‖(µ,λ)opt‖ . (3.33)
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Proof. [MUA14, proof of Theo. 3.10]

The proof follows [NS08, proof of Theo. 3.6] and extends it by additionally considering

inequality constraints and event-triggered communication. If we have a look at the result

of Theorem 3.2.5

n

∑
i=1

Φi(x̂i)− f0(µ̂, λ̂) ≤ c
n

∑
i=1

DXi − max
(µ,λ)∈QA×QB

{
− 4γLc

(k + 1)2σ
d(µ,λ)

+

〈
n

∑
i=1

Ai x̂i − bA,µ

〉
+

〈
n

∑
i=1

Bi x̂i − bB,λ

〉}
+

4P(∆)
(k + 1)2 , (3.34)

the task is to minimize the right-hand side of the inequality with respect to c.

For the maximization part we obtain with the definition of D and

QA ×QB =
{
(µ,λ) ∈RmA ×R

mB
+ : ‖µ‖max ≤ R, ‖λ‖max ≤ R

}
that

max
(µ,λ)∈QA×QB

{
− 4γLc

(k + 1)2σ
d(µ,λ) +

〈
n

∑
i=1

Ai x̂i − bA,µ

〉
+

〈
n

∑
i=1

Bi x̂i − bB,λ

〉}

≥− 4γLcD
(k + 1)2σ

+ max
µ∈QA

〈
n

∑
i=1

Ai x̂i − bA,µ

〉
+ max

λ∈QB

〈
n

∑
i=1

Bi x̂i − bB,λ

〉

=− 4γLcD
(k + 1)2σ

+ R

∥∥∥∥∥ n

∑
i=1

Ai x̂i − bA

∥∥∥∥∥
1

+ R

∥∥∥∥∥
[

n

∑
i=1

Bi x̂i − bB

]+∥∥∥∥∥
1

≥− 4γLcD
(k + 1)2σ

+ R

∥∥∥∥∥ ∑n
i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥
and for inequality (3.34) we obtain

n

∑
i=1

Φi(x̂i)− f0(µ̂, λ̂) ≤ c
n

∑
i=1

DXi +
4γLcD

(k + 1)2σ
− R

∥∥∥∥∥ ∑n
i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥+ 4P(∆)
(k + 1)2 (3.35)

≤ c
n

∑
i=1

DXi +
4γLcD

(k + 1)2σ
+

4P(∆)
(k + 1)2 . (3.36)

With

Lc =
n

∑
i=1

∥∥(AT
i , BT

i )
T
∥∥2

cσxi

and P(∆) = 2γLcC
(
(ηmax + 1)βg′(δ) + 2

)
,

we can express the right-hand side of (3.36) as a function h(c) with

h(c) = c
n

∑
i=1

Dxi + γLc

(
4D

(k + 1)2σ
+

8C ((ηmax + 1)βg′(δ) + 2)
(k + 1)2

)

= c
n

∑
i=1

Dxi +
γ

c

(
n

∑
i=1

∥∥(AT
i , BT

i )
T
∥∥2

σxi

)
4D + σ8C ((ηmax + 1)βg′(δ) + 2)

(k + 1)2σ
.
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To get the minimum of h we have to solve

h′(c) =
n

∑
i=1

Dxi −
γ

c2

(
n

∑
i=1

∥∥(AT
i , BT

i )
T
∥∥2

σxi

)
4D + σ8C ((ηmax + 1)βg′(δ) + 2)

(k + 1)2σ
= 0

⇐⇒ copt
1,2 = ±

√√√√γ

(
n

∑
i=1

∥∥(AT
i , BT

i )
T
∥∥2

σxi

)
4D + σ8C ((ηmax + 1)βg′(δ) + 2)

(k + 1)2σ ∑n
i=1 Dxi

.

As c in (3.4) has to be positive, we choose

copt =
1

k + 1

√√√√γ

(
n

∑
i=1

∥∥(AT
i , BT

i )
T
∥∥2

σxi

)
4D + σ8C ((ηmax + 1)βg′(δ) + 2)

σ ∑n
i=1 Dxi

. (3.37)

Finally, we get

h(copt) =
2

k + 1

√√√√γ

(
n

∑
i=1

∥∥(AT
i , BT

i )
T
∥∥2

σxi

)
(4D + σ8C ((ηmax + 1)βg′(δ) + 2))∑n

i=1 Dxi

σ

and with

k + 1 =
2
ε

√√√√γ

(
n

∑
i=1

∥∥(AT
i , BT

i )
T
∥∥2

σxi

)
(4D + σ8C ((ηmax + 1)βg′(δ) + 2))∑n

i=1 Dxi

σ
,

we obtain the right-hand side of inequality (3.32) and the value for c = copt, yielding

k + 1 = 2

√
LcE(∆)

ε
.

With inequality (3.8) and inequality (3.35), we get

(
R−

∥∥(µ,λ)opt∥∥)∥∥∥∥∥ ∑n
i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥ ≤ c
n

∑
i=1

DXi +
4γLcD

(k + 1)2σ
+

4P(∆)
(k + 1)2 = h(c).

The bound on the constraint violation (3.33) follows immediately by replacing c with copt.

Finally, applying inequality (3.8) yields the lower bound on the primal gap.

For the choice d(µ,λ) = (σ/2)‖(µ,λ)‖2, the following theorem states the convergence

of the DAPCA-EC 3.2.2, extending the result in Theorem 3.1.5 by considering event-

triggered communication.
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Theorem 3.2.7.

Assume that d(µ,λ) = (σ/2)‖(µ,λ)‖2 with arbitrary σ > 0, and that the convex and compact

set QA×QB ⊆RmA ×R
mB
+ contains a (µ,λ)opt ∈Mopt×Λopt as well as the vector (µ,λ)+ with

µ+ =
(k + 1)2σ

4Lc

(
n

∑
i=1

Ai x̂i − bA

)
and λ+ =

(k + 1)2σ

4Lc

[
n

∑
i=1

Bi x̂i − bB

]+
. (3.38)

For the choice c = ε/(2∑n
i=1 DXi) with ε > 0 in (3.4) and

k + 1 =

⌈
2

√
Lc2R(∆)

ε

⌉
,

where

Lc =
2∑n

i=1 DXi

ε

∑n
i=1
∥∥(AT

i , BT
i )

T
∥∥2

σxi

and

R(∆) = γ2C
(
(ηmax + 1)βg′(δ) + 2

)
,

after k iterations of the DAPCA-EC 3.2.2, the convex sum of primal iterates (computed in step 1)

x̂i =
k

∑
j=0

2(j + 1)
(k + 1)(k + 2)

xj+1
i for i = 1, . . . ,n

satisfies with (µ̂, λ̂) = (u, h)k (computed in step 3) the following bounds on the primal gap:

−
γε
∥∥(µ,λ)opt

∥∥√
2R(∆)

∥∥(µ,λ)opt
∥∥√

2R(∆)
+

√
‖(µ,λ)opt‖2

2R(∆)
+

2
γ

 ≤ n

∑
i=1

Φi(x̂i)− f0(µ̂, λ̂) ≤ ε, (3.39)

as well as the following bound on the constraint violation:∥∥∥∥∥ ∑n
i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥ ≤ γε√
2R(∆)

∥∥(µ,λ)opt
∥∥√

2R(∆)
+

√
‖(µ,λ)opt‖2

2R(∆)
+

2
γ

 . (3.40)

Proof. The proof combines [NS08, proof of Theo. 3.6] and [NS08, proof Theo. 3.7] and ex-

tends them by additionally considering inequality constraints and event-triggered com-

munication.

As done in the proof of Theorem 3.2.6, we minimize the right-hand side of the following

inequality (shown in Theorem 3.2.5) with respect to c:

n

∑
i=1

Φi(x̂i)− f0(µ̂, λ̂) ≤ c
n

∑
i=1

DXi − max
(µ,λ)∈QA×QB

{
− 4γLc

(k + 1)2σ
d(µ,λ)

+

〈
n

∑
i=1

Ai x̂i − bA,µ

〉
+

〈
n

∑
i=1

Bi x̂i − bB,λ

〉}
+

4P(∆)
(k + 1)2 .
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For the choice d(µ,λ) = (σ/2)‖(µ,λ)‖2, the assumption (µ,λ)+ ∈ QA ×QB yields that

max
µ∈QA

{
− 2γLc

(k + 1)2 ‖µ‖
2 +

〈
n

∑
i=1

Ai x̂i − bA,µ

〉}

+max
λ∈QB

{
− 2γLc

(k + 1)2 ‖λ‖
2 +

〈
n

∑
i=1

Bi x̂i − bB,λ

〉}

=
(k + 1)2

8γLc

∥∥∥∥∥ n

∑
i=1

Ai x̂i − bA

∥∥∥∥∥
2

+
(k + 1)2

8γLc

∥∥∥∥∥
[

n

∑
i=1

Bi x̂i − bB

]+∥∥∥∥∥
2

≥ (k + 1)2

8γLc

∥∥∥∥∥ ∑n
i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥
2

,

and we obtain

n

∑
i=1

Φi(x̂i)− f0(µ̂, λ̂) ≤c
n

∑
i=1

DXi −
(k + 1)2

8γLc

∥∥∥∥∥ ∑n
i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥
2

+
4P(∆)
(k + 1)2 (3.41)

≤c
n

∑
i=1

DXi +
4P(∆)
(k + 1)2 . (3.42)

With

Lc =
n

∑
i=1

∥∥(AT
i , BT

i )
T
∥∥2

cσxi

and P(∆) = 2γLcC
(
(ηmax + 1)βg′(δ) + 2

)
= LcR(∆),

the right-hand side of (3.42) can be expressed as a function h(c) with

h(c) = c
n

∑
i=1

DXi + Lc
4R(∆)
(k + 1)2

= c
n

∑
i=1

DXi +
1
c

n

∑
i=1

∥∥(AT
i , BT

i )
T
∥∥2

σxi

4R(∆)
(k + 1)2 .

The positive minimizer copt of h(c) is given by

h′(c) =
n

∑
i=1

DXi −
1
c2

n

∑
i=1

∥∥(AT
i , BT

i )
T
∥∥2

σxi

4R(∆)
(k + 1)2 = 0

⇐⇒ copt =

√√√√ n

∑
i=1

∥∥(AT
i , BT

i )
T
∥∥2

σxi

4R(∆)
(k + 1)2 ∑n

i=1 DXi

,

yielding

h(copt) = 2

√√√√ n

∑
i=1

∥∥(AT
i , BT

i )
T
∥∥2

σxi

4R(∆)
(k + 1)2

n

∑
i=1

DXi

=
2

k + 1

√√√√ n

∑
i=1

∥∥(AT
i , BT

i )
T
∥∥2

σxi

4R(∆)
n

∑
i=1

DXi .
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With

k + 1 =
2
ε

√√√√ n

∑
i=1

∥∥(AT
i , BT

i )
T
∥∥2

σxi

4R(∆)
n

∑
i=1

DXi ,

the upper bound on the primal gap in (3.39) is obtained and the value for c = copt. It

follows that

k + 1 = 2

√
Lc2R(∆)

ε
.

For the choice of c = copt, inequality (3.41) can be written as

n

∑
i=1

Φi(x̂i)− f0(µ̂, λ̂) ≤− (k + 1)2

8γLc

∥∥∥∥∥ ∑n
i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥
2

+ ε,

and with inequality (3.8), we obtain

(k + 1)2

8γLc

∥∥∥∥∥ ∑n
i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥
2

−
∥∥(µ,λ)opt∥∥∥∥∥∥∥ ∑n

i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥− ε ≤ 0.

It follows that the constraint violation has to be smaller than the largest root of

(k + 1)2

8γLc
y2 −

∥∥(µ,λ)opt∥∥y− ε,

yielding∥∥∥∥∥ ∑n
i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥ ≤ 4γLc

(k + 1)2

(∥∥(µ,λ)opt∥∥+√‖(µ,λ)opt‖2 +
ε(k + 1)2

2γLc

)
(3.43)

as detailed in the proof of Theorem 3.1.5. With k + 1 = 2
√

Lc2R(∆)/ε, inequality (3.43)

can be rewritten as∥∥∥∥∥ ∑n
i=1 Ai x̂i − bA

[∑n
i=1 Bi x̂i − bB]

+

∥∥∥∥∥ ≤ γε

2R(∆)

(∥∥(µ,λ)opt∥∥+√‖(µ,λ)opt‖2 +
4R(∆)

γ

)
,

yielding the bounds on the constraint violation (3.40) and with (3.8) the lower bound on

the primal gap (3.39).



4 Model of the AC/DC optimal power flow problem

In this chapter, the nonconvex alternating current optimal power flow (AC-OPF) problem

as well as the direct current optimal power flow (DC-OPF) problem are described.

To this end, a short introduction to the structure of a power system and some important

components is given in section 4.1. In section 4.2, the phasor representations of current

and voltage as well as the definitions of real, reactive, and apparent power are presented

for a better understanding of the derivation of the power balance equations in section 4.3.

Finally, the AC/DC-OPF problems are given in sections 4.4 and 4.5.

4.1 Structure of a power system

The following introduction to the structure of a power system and some important com-

ponents follows [BV00], [Blu08] and [Cra12].

Broadly speaking, a power system can be divided into three areas, namely the power

generating units, where the power is generated, the loads, where the power is consumed,

and the transmission/distribution network, where the power is transferred from the gen-

erating units to the loads [BV00, sec. 1.0]. In Figure 4.1 the one-line diagram of a portion

of a power system is shown.

generator

transformer

station bus

substation bus

transmission line

load

Figure 4.1: One-line diagram (follows [BV00, Fig. 1.10]).
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At a generating unit electrical energy is provided by the conversion of either fossil en-

ergy stored in fuels such as coal, gas, and oil, or nuclear energy, or renewable energy

such as geothermal, solar, and wind energy. Independent of its kind, the source energy

is used at a power plant to run generators which consist of a cylinder, called stator, that

has three single-phase windings symmetrically placed (120 degrees to each other) at its

boundary. Within the stator an electromagnet is rotated, inducing an alternating voltage

on each winding [Blu08, chap. 2].

Usually, a generator is capable to produce a voltage on the three single-phase windings

that is between 11 and 30 kV [BV00, sec. 1.6]. If a running generator is connected to a

closed three-line circuit, the generated voltage produces in each line an alternating cur-

rent flow whose strength depends on the admittance of the conductor [Blu08, chap. 1-2].

Due to the symmetrical shift (by 120 degrees) of each current flow in each of the three

conductors, the analysis of a three-phase system can be done with an equivalent single-

phase circuit diagram which simplifies the computations. We therefore consider only

single-phase components in the following [Cra12, sec. 2.3].

The advantage of using alternating current (AC), i.e., a current that is flowing back and

forth instead of direct current (DC), flowing only in one direction, is that the usage of

AC (current and voltage) provides the possibility of using high-voltage power lines (up

to 765 kV) in the transmission network to transport electrical power from the generating

units over long distances to the distribution networks that connect the loads with the

system. As the power loss in a transmission line depends quadratically on the current,

the generated voltage is raised with step-up transformers, placed at station buses near

the power plants (Figure 4.1), such that the transmitted power is kept constant with the

effect that the current is decreased and high losses are avoided [Blu08, chap. 3], [BV00,

sec. 1.6].

Basically, a single-phase transformer can be described as follows [Blu08, chap. 4]:

The alternating current flowing into the transformer produces a changing magnetic field

around a winding “A”. This changing magnetic field induces an alternating voltage at

a winding “B” which is separated from winding “A”. If the winding number of “B” is

smaller than winding number of “A”, i.e., the turns ratio of the transformer is bigger than

1, than the voltage on winding “B” is (proportionally to the turns ratio) bigger than the

voltage on winding “A”. On the other side, if the turns ratio is smaller than one, the

corresponding transformer is called step-down transformer.

These step-down transformers are placed at substation buses that connect the transmis-

sion network with the distribution network (0.12 to 34.5 kV), where the power is dis-
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tributed to industrial or domestic consumers which are not capable of transforming a

high voltage themselves. However, as seen in Figure 4.1, there is a load directly con-

nected to the station bus which refers to an industrial consumer that is capable of con-

suming high voltage power or transforming the voltage himself [BV00, sec. 1.6], [Blu08,

chap. 4].

Finally, the loads in a power system can be divided into three categories, namely into

inductive, capacitive, and resistive loads [Blu08, chap. 1]:

Inductive loads such as motors contain windings, where magnetic fields are established

when current is flowing through the windings which is therefore said to lag behind the

voltage. The power consumed by an inductive load to establish a magnetic field is called

reactive power Q and the power that does the motor’s task is called real power P. The

extent of the delay or phase shift between the applied voltage and current is denoted by

the power factor angle Φ which is detailed in section 4.2.

For capacitive loads such as televisions, the current is leading the voltage and beside the

real power, negative reactive power is consumed, i.e., reactive power is provided. It is fa-

vorable to balance inductive and capacitive loads in a power system which is done by the

installation of phase-shifting transformers, shunt reactors, and shunt capacitors [Blu08,

chap. 4] that are used to control the real and reactive power flow.

Finally, resistive loads such as lightbulbs consume only real power.

Since the nineties the electric power industry in the United States is in the process of

deregulation [BV00, sec. 1.7]: Before the nineties the generation as well as the transmis-

sion and distribution of power was done by only one company in a certain part of the

country. To allow competition in the power supply market this monopoly was started to

be dissolved by selling the different portions of a power system to private companies.

Regarding this process, a central determination of the optimal power generation (which

is done by solving the AC-OPF problem with a central entity) may not be favorable if the

power generating companies want to keep certain information private such as the cost

or the amount of power generation. We later show that this information, i.a., does not

need to be exchanged, when the DAPCA-EC 3.2.2 is applied to solve the AC-OPF and

the DC-OPF problem in a distributed manner.
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4.2 Real, reactive, and apparent power

On the basis of [BV00, Cra12], we introduce the phasor representations of voltage and

current as well as the definitions of real, reactive, and apparent power which help to

better understand the notion of complex power and complex power flow, occurring in

the power balance equations derived in section 4.3.

All physical quantities in this and the following sections are regarded as per unit values,

i.e., SI units such as watt, volt-ampere reactive etc. are neglected [BV00, sec. 5.5].

Following [BV00, chap. 2], the alternating voltage and current at a bus of a power system

network can be expressed as

v (t) = Vmax cos (ωt + θV) = Re
{

VmaxejθV ejωt
}

,

i (t) = Imax cos (ωt + θI) = Re
{

ImaxejθI ejωt
}

,

where Vmax and Imax are the amplitudes of the oscillations, ω is their frequency and θV ,

θI are their phase angles. Moreover, the instantaneous power is [BV00, p. 23 - 24]

p (t) = v (t) i (t) = Vmax Imax cos (ωt + θV)cos (ωt + θI) for t ∈R.

Let Φ = θV − θI ∈ [−π/2,π/2] be the power factor angle [BV00, p. 24] which indicates

if the current is leading the voltage (Φ < 0) or lagging the voltage (Φ > 0) or in phase

with the voltage (Φ = 0) [BV00, sec. 2.2]. To combine the representations in [BV00] and

[Cra12], let t̃ = t− θV/ω for t ∈R. The instantaneous power can then be written as

p (t̃) = v (t̃) i (t̃) = Vmax Imax cos (ωt)cos (ωt−Φ)

= Vmax Imax cos (ωt) (cos (ωt)cos (Φ) + sin (ωt)sin (Φ))

= Vmax Imax cos (ωt)2 cos (Φ) + Vmax Imax cos (ωt)sin (ωt)sin (Φ)

=
Vmax Imax

2
cos (Φ) (1 + cos (2ωt)) +

Vmax Imax

2
sin (2ωt)sin (Φ) (4.1)

=
Vmax Imax

2
cos (Φ) +

Vmax Imax

2
cos (Φ)cos (2ωt) +

Vmax Imax

2
sin (Φ)sin (2ωt)

= |V||I|cos (Φ) + |V||I|cos (Φ)cos (2ωt) + |V||I|sin (Φ)sin (2ωt) , (4.2)

where the identities cos(ωt)2 = (1+ cos(2ωt))/2 and sin(ωt)cos(ωt) = sin(2ωt)/2 were

used to obtain (4.1) according to [Cra12, p. 21]. Moreover, V and I in (4.2) are the effective

phasor representations of the voltage v(t) and the current i(t) denoted by [BV00, p. 23]

V =
Vmax√

2
ejθV and I =

Imax√
2

ejθI . (4.3)



4.3 Nodal network equations 67

The real power P is defined as the integral of p(t̃) over [0, T = 2π/ω] [BV00, p. 24 - 25]

P =
1
T

∫ T

0
p (t̃)dt̃ =

1
T

∫ T

0
p
(

t− θV

ω

)
dt =

1
T

∫ T

0
|V||I|cos (Φ)dt

+
∫ T

0
|V||I|cos (Φ)cos (2ωt)dt︸ ︷︷ ︸

=0

+
1
T

∫ T

0
|V||I|sin (Φ)sin (2ωt)dt︸ ︷︷ ︸

=0

=|V||I|cos (Φ) .

The reactive power Q is defined as the amplitude of the third term in (4.2) [Cra12, p. 21],

i.e.,

Q = |V||I|sin (Φ) .

The complex power S is given by [BV00, p. 26]

S = P + jQ = |V||I| (cos (Φ) + j sin (Φ)) = |V||I|ej(θV−θI) = |V|ejθV |I|e−jθI = VI∗,

where V and I are the effective phasor representations of v(t) and i(t) in (4.3).

Finally, the apparent power [BV00, p. 28] is defined by |S| =
√

P2 + Q2 = |V||I| which is

the amplitude of the instantaneous power p(t̃) as [Cra12, p. 21]

p (t̃) = |V||I|cos (Φ) + |V||I|cos (Φ)cos (2ωt) + |V||I|sin (Φ)sin (2ωt)

= |V||I|cos (Φ) + |V||I|cos (2ωt−Φ) .

For a visualization of the instantaneous power, the reactive power, and the real power

see [Cra12, Fig. 2.3].

4.3 Nodal network equations

In this section, we follow [ZMS11, GS94] to derive the nodal network equations that are

constraints of the AC-OPF problem.

To this end, we identify the power system network with a graph that has nb nodes, repre-

senting the buses in the power system network, and nl edges that represent the branches

of the system, where a branch is a transmission line or a transformer that connects two

buses. Moreover, let Nb be the set of buses and Ng be the set of generators, where each

generator is identified with the bus that it is connected to, i.e.,Ng ⊆Nb. (To be consistent

with Figure 4.1 imagine there a bus between the generator and the transformer and a bus

between the load and the transformer.) Finally, letNl ⊆Nb×Nb be the set of branches of

the power system network and denote by nb = |Nb|, ng = |Ng|, and nl = |Nl| the number

of buses, generators, and branches following, the notation in [ZMS11, sec. 3.1].
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The model of either a transmission line or a transformer, i.e., of an element (i, j) ∈ Nl,

is given by the combined branch model shown in Figure 4.2 which merges the repre-

sentations from [ZMS11, chap. 3] and [GS94, chap. 6 & sec. 9.6] (where the details

for the following definitions can be found) and shows two buses i, j ∈ Nb with voltages

Vi and Vj causing the currents Iij and Iji. Depending on the choice of the tap ratio

Vi

+

–

Iij
yijIij/t∗ij

Vj

–

+

tijVi

–

+

Iji

yc
ij/2 yc

ij/2

1 : t

Figure 4.2: Combined branch model1 corresponding to branch l = (i, j) ∈ Nl (follows

[ZMS11, Fig. 3.1] and [GS94, Fig. 6.7/9.7]).

tij and the charging capacitance yc
ij = 1/jxc

ij, where xc
ij is the capacitive reactance of the

branch, the buses are connected either by a transmission line or a transformer with ad-

mittance yij = 1/(rij + jxij), where rij is the resistance and xij is the inductive reactance of

the branch. A transformer is modeled by setting the charging capacitance yc
ij = 0 and de-

pending on the transformer type, the tap ratio tij is either real or complex. If tij = τij ∈R+,

where τij is denoted as the turns ratio, the corresponding transformer changes only the

magnitude of the voltage Vi and the current Iij as shown in Figure 4.2 (and described in

section 4.1). If tij = τij exp(jθshift
ij ) with τij ∈ R+, the corresponding transformer changes

the magnitude and shifts the phase angles of the voltage Vi and the current Iij by the

phase shift angle θshift
ij . On the other side a transmission line is modeled by setting the

tap ratio tij = 1.

If connected by a transformer the current flows Iji and Iij between bus i and bus j are the

following [GS94, sec. 9.6]:

Iji =
(
Vj − tijVi

)
yij = −yijtijVi + yijVj, (4.4)

Iij = −t∗ij Ij = yijτ
2
ijVi − yijt∗ijVj. (4.5)

1Created with the LaTeX package circuitikz which provides standardized circuit components.
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Accordingly, the current flow equations between bus i and bus j connected by a trans-

mission line are (cf. [ZMS11, sec. 3.2])

Iji =
(
Vj −Vi

)
yij + Vj

yc
ij

2
, (4.6)

Iij =
(
Vi −Vj

)
yij + Vi

yc
ij

2
. (4.7)

Combining (4.4) with (4.6) and (4.5) with (4.7) for a compact representation of the current

flow in the combined branch model yields

Iji =

(
yij +

yc
ij

2

)
Vj − yijtijVi,

Iij =

(
yij +

yc
ij

2

)
τ2

ijVi − yijt∗ijVj,

which can be expressed in terms of the branch admittance matrix Ybr
l with l = (i, j) ∈ Nl

by [ZMS11, sec. 3.2] (
Iij

Iji

)
= Ybr

l

(
Vi

Vj

)
,

where

Ybr
l =

(yij +
yc

ij
2

)
τ2

ij −yijt∗ij

−yijtij yij +
yc

ij
2

 .

According to [ZMS11, sec. 3.3], a generator placed at bus i is modeled as:

Sg
i = Pg

i + jQg
i ,

where Pg
i is the generated real and Qg

i the generated reactive power.

A load at bus i is described as the complex power demand [ZMS11, sec. 3.4]

Sd
i = Pd

i + jQd
i ,

where Pd
i is the real power demand and Qd

i the reactive power demand.

Finally, a shunt element (capacitor or reactor) placed at bus i is modeled by the admit-

tance [ZMS11, sec. 3.5]

ysh
i = gsh

i + jbsh
i , (4.8)

where gsh
i is the conductance and bsh

i the susceptance of the shunt element.
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Incorporating the tap ratios of the transformers as well as the admittances of the shunt

elements, transmission lines, and transformers into the bus admittance matrix Ybus ∈
Rnb×nb , the relation between the current injection Ii at a bus i and the voltages Vj at buses

j that are connected to bus i can be expressed as [ZMS11, sec. 3.6]

Ii =
nb

∑
j=1

Ybus
ij Vj for i = 1, . . . ,nb, (4.9)

where Ybus is defined as follows:

Let F, T ∈Rnl×nb be the connection matrices given by [ZMS11, p. 17]

Fli =

1 if l = (i,k) ∈ Nl for some k ∈ Nb,

0 else ,

Tli =

1 if l = (k, i) ∈ Nl for some k ∈ Nb,

0 else .

(4.10)

Then the bus admittance matrix Ybus is defined as [ZMS11, sec. 3.6]

Ybus =FT diag
((

Ybr
1

)
11

, . . . ,
(

Ybr
nl

)
11

)
F + FT diag

((
Ybr

1

)
12

, . . . ,
(

Ybr
nl

)
12

)
T

+ TT diag
((

Ybr
1

)
21

, . . . ,
(

Ybr
nl

)
21

)
F + TT diag

((
Ybr

1

)
22

, . . . ,
(

Ybr
nl

)
22

)
T

+ diag
(

ysh
1 , . . . ,ysh

nb

)
.

Let F(i) = {j ∈ Nb : (i, j) ∈ Nl} and T(i) = {j ∈ Nb : (j, i) ∈ Nl}, then it follows for

i, j ∈ Nb that

Ybus
ij =

nl

∑
l=1

[
Fli

(
Ybr

l

)
11

Fl j + Fli

(
Ybr

l

)
12

Tl j +Tli

(
Ybr

l

)
21

Fl j + Tli

(
Ybr

l

)
22

Tl j

]
+ diag

(
ysh

1 , . . . ,ysh
nb

)
ij

=



∑k∈F(i)

(
yik +

yc
ik
2

)
τ2

ik + ∑k∈T(i)

(
yki +

yc
ki
2

)
+ ysh

i if i = j,

−yijt∗ij if (i, j) ∈ Nl,

−yjitji if (j, i) ∈ Nl,

0 else .

(4.11)

With (4.11) the current injection (4.9) at bus i is explicitly given by

Ii =

(
∑

k∈F(i)

(
yik +

yc
ik
2

)
τ2

ik + ∑
k∈T(i)

(
yki +

yc
ki
2

)
+ ysh

i

)
Vi − ∑

j∈F(i)
yijt∗ijVj − ∑

j∈T(i)
yjitjiVj

= ∑
∑j∈F(i)

Iij + ∑
∑j∈T(i)

Iij + ysh
i Vi.
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As described in section 4.2, the complex power injection Si = Pi + jQi at bus i is [ZMS11,

sec. 3.6]

Si = Vi I∗i = Vi

nb

∑
j=1

Ybus
ij
∗
V∗j = ∑

∑j∈F(i)

Vi I∗ij + ∑
∑j∈T(i)

Vi I∗ij + Viysh
i
∗
V∗i

= ∑
∑j∈F(i)

Sij + ∑
∑j∈T(i)

Sij + Ssh
i ,

where Ssh
i = Viysh

i
∗V∗i denotes the complex power injected into bus i by the shunt element

(capacitor or reactor) and Sij = Vi I∗ij denotes the complex power flow from bus i to bus j

connected by a branch [ZMS11, sec. 3.6]:

Sij = Vi I∗ij =

Vi

((
yij +

yc
ij
2

)
τ2

ijVi − yijt∗ijVj

)
if (i, j) ∈ Nl,

Vi

((
yji +

yc
ji

2

)
Vi − yjitjiVj

)
if (j, i) ∈ Nl.

(4.12)

Finally, for all i ∈ Nb the AC power balance equations that relate the difference of the

produced and consumed power to the power flowing in the network are [ZMS11, sec.

3.6]

Si =

Sg
i − Sd

i if i ∈ Ng,

−Sd
i if i ∈ Nb \ Ng.

(4.13)

4.4 AC optimal power flow problem

After having established the nodal network equations in section 4.3, we are now ready

to state the AC-OPF problem. The AC-OPF problem actually comprises all sorts of opti-

mization problems that arise in power system networks and depending on the objective

function and the constraints it finds application in the real-time control or operational

planning of a power system [Mom01, chap. 11 I]. In this work, however, we focus on the

fuel cost minimization problem which is of the latter type and is applied to reduce the

cost of real power generation subject to constraints such as the power balance equations,

real power generating limits, and limits on the power flow at the branches [Mom01, chap.

11 II].

We follow the notation of [LL12, sec. II] and model the real power generation cost as a

quadratic function

Ci
(

Pg
i

)
= ai2Pg

i
2
+ ai1Pg

i + ai0, (4.14)

where ai2, ai1, ai0 ≥ 0 for i ∈ Ng. This quadratic cost model coincides with the model in

the benchmark IEEE systems [Uni] that are used in this work for numerical results. Ad-

ditionally, the cost of reactive power production could be considered too, but according
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to [PMVDB05, sec. I], the real power cost is of peculiar interest in the competition on

customers as the reactive power production is not explicitly charged.

Following [LL10, sec. II A] and [LL12, sec. II - III], the AC-OPF problem that we consider

is given by

min
Pg ,Qg ,V

∑
i∈Ng

Ci
(

Pg
i

)
(4.15a)

s.t. Vi I∗i =
(

Pg
i − Pd

i

)
+ j
(

Qg
i −Qd

i

)
∀i ∈ Ng, (4.15b)

Vi I∗i = −Pd
i − jQd

i ∀i ∈ Nb \ Ng, (4.15c)

|Sij| ≤ Smax
ij ∀ (i, j) ∈ Nl, (4.15d)

|Sji| ≤ Smax
ij ∀ (i, j) ∈ Nl, (4.15e)

Pmin
i ≤ Pg

i ≤ Pmax
i ∀i ∈ Ng, (4.15f)

Qmin
i ≤ Qg

i ≤ Qmax
i ∀i ∈ Ng, (4.15g)

Vmin
i ≤ |Vi| ≤ Vmax

i ∀i ∈ Nb, (4.15h)

where (4.15b) and (4.15c) are the power balance equations (4.13). The apparent power

flow capacities of each branch (i, j) ∈ Nl are observed by the constraints (4.15d) and

(4.15e), where Sij and Sji are given in (4.12) for (i, j) ∈ Nl. Alternatively, limits on the

magnitude of the real power flow or the current flow at each branch can be considered,

but usually constraints (4.15d) and (4.15e) are used [ZMS11, sec. 5.1].

Finally, constraints (4.15f) and (4.15g) express the limits on the power generation, whereas

(4.15h) limits the voltage magnitude at each bus, preventing from overvoltage.

4.5 DC optimal power flow problem

The AC-OPF problem is a nonlinear and nonconvex problem whose optimal solution

provides voltage magnitudes and voltage phase angles as well as the optimal real and

reactive power generation for a cost-efficient operation of the power system, regarding

the real power cost. However, if only the amount and cost of real power production

is of interest, the DC-OPF problem can solved which is a linear and convex optimization

problem, where only the real power and the voltage phase angles are considered [ZMS11,

sec. 5.2] [PMVDB05].

In fact, the DC-OPF problem is a linearized version of the AC-OPF problem obtained

under the following assumptions.
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Assumptions 4.5.1. [[ZMS11, sec. 3.7], [PMVDB05, sec. III]]

1. The branch resistances rij can be ignored as rij << xij, yielding

yij =
1

rij + jxij
=

rij

r2
ij + x2

ij
−

jxij

r2
ij + x2

ij
≈ − j

xij
.

Moreover, the charging capacitances yc
ij can be ignored too.

2. The voltage amplitudes are in the vicinity of 1 p.u., i.e.,

Vi ≈ ejθi .

3. The voltage angles are so close together that

sin
(

θi − θj + θ
shift
ij

)
≈ θi − θj + θ

shift
ij .

With these assumptions the approximations of the real part of the power flow balance

equations (4.15b), (4.15c) and real part of the power flow constraints (4.15d),(4.15e) can be

derived similar to [ZMS11, sec. 3.7]: Applying Assumptions 4.5.1 to the bus admittance

matrix Ybus defined by (4.11) yields

Ybus
ij ≈



−∑k∈F(i)
j

xik
τ2

ik −∑k∈T(i)
j

xki
+ ysh

i if i = j,
j

xij
t∗ij if (i, j) ∈ Nl,

j
xji

tji if (j, i) ∈ Nl,

0 else ,

and for the approximate current injection at bus i we obtain

Ii =
nb

∑
j=1

Ybus
ij Vj ≈

(
− ∑

k∈F(i)

j
xik

τ2
ik − ∑

k∈T(i)

j
xki

+ ysh
i

)
ejθi + ∑

j∈F(i)

j
xij

t∗ije
jθj + ∑

j∈T(i)

j
xji

tjiejθj .
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It follows that the real power injection at bus i can be approximated by

Pi = Re{Si} ≈ Re

{
ejθi

nb

∑
j=1

Ybus
ij
∗
e−jθj

}

≈ Re

{
ejθi

(
∑

k∈F(i)

j
xik

τ2
ik + ∑

k∈T(i)

j
xki

+ ysh
i
∗
)

e−jθi (4.16)

− ejθi ∑
j∈F(i)

j
xij

tije−jθj − ejθi ∑
j∈T(i)

j
xji

t∗jie
−jθj

}

= Re

{
ysh

i
∗ − ejθi ∑

j∈F(i)

j
xij

τije
jθshift

ij e−jθj − ejθi ∑
j∈T(i)

j
xji

τjie
−jθshift

ji e−jθj

}

= Re

{
ysh

i
∗ − ∑

j∈F(i)

j
xij

τije
j
(

θi+θshift
ij −θj

)
− ∑

j∈T(i)

j
xji

τjie
j
(

θi−θshift
ji −θj

)}

= gsh
i + ∑

j∈F(i)

τij

xij
sin
(

θi + θshift
ij − θj

)
+ ∑

j∈T(i)

τji

xji
sin
(

θi − θshift
ji − θj

)
≈ gsh

i + ∑
j∈F(i)

τij

xij

(
θi + θshift

ij − θj

)
+ ∑

j∈T(i)

τji

xji

(
θi − θshift

ji − θj

)
= gsh

i +

(
∑

j∈F(i)

τij

xij
+ ∑

j∈T(i)

τji

xji

)
θi − ∑

j∈F(i)

τij

xij
θj − ∑

j∈T(i)

τji

xji
θj

+ ∑
j∈F(i)

τij

xij
θshift

ij − ∑
j∈T(i)

τji

xji
θshift

ji . (4.17)

The approximated real power flows Pij = Re{Sij} and Pji = Re{Sji} between bus i and

bus j, that are connected by branch (i, j) ∈ Nl, are accordingly [ZMS11, sec. 3.7]

Pij = Re
{

Sij
}
= Re

{
Vi I∗ij

}
= Re

{
Vi

((
yij +

yc
ij

2

)
τ2

ijVi − yijt∗ijVj

)∗}

≈ Re
{

ejθi

(
− j

xij
τ2

ije
jθi +

j
xij

t∗ije
jθj

)∗}
= Re

{
ejθi

(
j

xij
τ2

ije
−jθi − j

xij
tije−jθj

)}
= Re

{
−ejθi

j
xij

τije
jθshift

ij e−jθj

}
= Re

{
− j

xij
τije

j
(

θi+θshift
ij −θj

)}
=

τij

xij
sin
(

θi + θshift
ij − θj

)
≈

τij

xij

(
θi + θshift

ij − θj

)
(4.18)
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and

Pji = Re
{

Sji
}
= Re

{
Vj I∗ji

}
= Re

{
Vj

((
yij +

yc
ij

2

)
Vj − yijtijVi

)∗}

≈ Re
{

ejθj

(
− j

xij
ejθj +

j
xij

tijejθi

)∗}
= Re

{
ejθj

(
j

xij
e−jθj − j

xij
t∗ije
−jθi

)}
= Re

{
−ejθj

j
xij

τije
−jθshift

ij e−jθi

}
= Re

{
− j

xij
τije

j
(

θj−θshift
ij −θi

)}
=

τij

xij
sin
(

θj − θshift
ij − θi

)
≈

τij

xij

(
θj − θshift

ij − θi

)
. (4.19)

To write the approximated real power flow and the approximated real power flow equa-

tions in a compact form, let Iinc ∈Rnl×nb denote the network incidence matrix defined by

[GS94, sec. 7.5]

Iinc = F− T,

where F and T are the connection matrices (4.10). Moreover, we define the weighted

network incidence matrix similar to [WL10, sec. II] by

Winc = diag
(

τ1

x1
, . . . ,

τnl

xnl

)
Iinc,

where τl/xl = τij/xij for l = (i, j) ∈ Nl. Defining [ZMS11, sec. 3.7]

Bbus = IincT
Winc = IincT

diag
(

τ1

x1
, . . . ,

τnl

xnl

)
Iinc,

it follows for i, j ∈ Nb that

Bbus
ij =

nl

∑
l=1

Iinc
li

τl

xl
Iinc
l j =



∑k∈F(i)
τik
xik

+ ∑k∈T(i)
τki
xki

if i = j,

− τij
xij

if (i, j) ∈ Nl,

− τji
xji

if (j, i) ∈ Nl,

0 else .

The approximated real power injection at bus i can be expressed in a compact manner as

[ZMS11, sec. 3.7]

(4.17) =
nb

∑
j=1

Bbus
ij θj +

nl

∑
l=1

Winc
li θshift

l + gsh
i =

(
Bbusθ

)
i
+
(

WincT
θshift

)
i
+ gsh

i ,

where θ ∈ Rnb is the vector containing the voltage phase angles and θshift ∈ Rnl is the

vector of phase shift angles with θshift
l = θshift

ij for l = (i, j) ∈Nl. For all i ∈Nb, the approx-

imated real power balance equations are then given by [ZMS11, sec. 3.7]

(
Bbusθ

)
i
+
(

WincT
θshift

)
i
+ gsh

i =

Pg
i − Pd

i if i ∈ Ng,

−Pd
i if i ∈ Nb \ Ng.
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Accordingly, the approximated real power flows from bus i and from bus j at branch

l = (i, j) ∈ Nl are compactly written as [ZMS11, sec. 3.7]

(4.18) =
(

Wincθ
)

l
+ θshift

ij and (4.19) = −
(

Wincθ
)

l
− θshift

ij .

In sum, neglecting the reactive power and applying Assumptions 4.5.1 to the AC-OPF

problem (4.15) yields the DC-OPF problem (cf. [ZMS11, sec. 5.2])

min
Pg ,θ

∑
i∈Ng

Ci
(

Pg
i

)
(4.20a)

s.t.
(

Bbusθ
)

i
+
(

WincT
θshift

)
i
+ gsh

i = Pg
i − Pd

i ∀i ∈ Ng, (4.20b)(
Bbusθ

)
i
+
(

WincT
θshift

)
i
+ gsh

i = −Pd
i ∀i ∈ Nb \ Ng, (4.20c)∣∣∣(Wincθ

)
l
+ θshift

ij

∣∣∣ ≤ Smax
ij ∀l = (i, j) ∈ Nl, (4.20d)∣∣∣−(Wincθ

)
l
− θshift

ij

∣∣∣ ≤ Smax
ij ∀l = (i, j) ∈ Nl, (4.20e)

Pmin
i ≤ Pg

i ≤ Pmax
i ∀i ∈ Ng, (4.20f)

θmin
i ≤ θi ≤ θmax

i ∀i ∈ Nb, (4.20g)

where the constraints are the approximated versions of the constraints of the AC-OPF

problem (4.15) in the same order. For a compact representation of (4.20) note that con-

straint (4.20e) is redundant and let Ig ∈ Rnb×ng be the matrix defined by [ZMS11, sec.

3.3]

Ig
ij =

1 if generator j is connected to bus i,

0 else .

Moreover, define P̃d = Pd + WincT
θshift + gsh, Fmax = Smax − θshift, and Fmin = −Smax −

θshift, where Smax ∈Rnl is the vector containing Smax
l for l = (i, j) ∈ Nl.

Then the DC-OPF problem (4.20) can be written as (cf. [ZMS11, sec. 5.2])

min
Pg ,θ

∑
i∈Ng

Ci
(

Pg
i

)
(4.21a)

s.t. Bbusθ = IgPg − P̃d, (4.21b)

Fmin ≤Wincθ ≤ Fmax, (4.21c)

Pmin
i ≤ Pg

i ≤ Pmax
i ∀i ∈ Ng, (4.21d)

θmin
i ≤ θi ≤ θmax

i ∀i ∈ Nb, (4.21e)

which is similar to the representation in [WL10, sec. 2] that we used in [MUA14, sec. 4],

however, a more exact model is considered here.



5 Distributedly solving the AC/DC optimal power flow problem

In this chapter, the DC-OPF problem (4.21) and the dual of the AC-OPF problem (4.15)

are decomposed by dual decomposition to be able to apply the DAPCA-EC 3.2.2.

In section 5.1, it is shown how the DAPCA-EC can be applied to maximize the augmented

dual of the DC-OPF problem and in section 5.3, the application of the DAPCA-EC to solve

the AC-OPF problem is stated.

Moreover, for both applications of the DAPCA-EC the communication topology is dis-

cussed, confirming that the communication is local with respect to the power system

network topology for the DC-OPF problem, and the same holds for the AC-OPF problem

if the network representing the power system is chordal.

5.1 Application of the DAPCA-EC to the DC-OPF problem

Parts of the content of this section were essentially published in [MUA14, sec. 4] (Meinel, Ul-

brich, and Albrecht) for the application of the DPCA-EC to the DC-OPF problem and are used in

this section for the application of the DAPCA-EC to the DC-OPF problem.

To be able to apply the DAPCA-EC 3.2.2 to solve the DC-OPF problem

min
Pg ,θ

∑
i∈Ng

Ci
(

Pg
i

)
(5.1a)

s.t. Bbusθ = IgPg − P̃d, (5.1b)

Fmin ≤Wincθ ≤ Fmax, (5.1c)

Pmin
i ≤ Pg

i ≤ Pmax
i ∀i ∈ Ng, (5.1d)

θmin
i ≤ θi ≤ θmax

i ∀i ∈ Nb. (5.1e)

in parallel and with local communication, the problem needs to be dually decomposed

after defining the compact sets

Pi =
[

Pmin
i , Pmax

i

]
for i ∈ Ng and Θi =

[
θmin

i ,θmax
i

]
for i ∈ Ng

which allow the application of the convergence results derived in the previous sections.

77
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As described in section 3.1, the Lagrangian of (5.1) with respect to the constraints (5.1b)

and (5.1c) is given by

L (Pg ,θ,µ,λ) = ∑
i∈Ng

Ci
(

Pg
i

)
+

nl

∑
l=1

λl

((
Wincθ

)
l
− Fmax

l

)
+

nl

∑
l=1

λl+nl

((
−Wincθ

)
l
+ Fmin

l

)
+

nb

∑
i=1

µi

(
(IgPg)i −

(
Bbusθ

)
i
− P̃d

i

)
. (5.2)

Smoothing the Lagrangian by the prox-functions di(xi) = (σi/2)x2
i with σi > 0 for i =

1, . . . ,ng + nb yields the following dual augmented function:

fc (µ,λ) = min
Pg

i ∈Pi , θi∈Θi

 ∑
i∈Ng

Ci
(

Pg
i

)
+

nl

∑
l=1

λl

((
Wincθ

)
l
− Fmax

l

)
(5.3)

+
nl

∑
l=1

λl+nl

((
−Wincθ

)
l
+ Fmin

l

)

+
nb

∑
i=1

µi

(
(IgPg)i −

(
Bbusθ

)
i
− P̃d

i

)
+ ∑

i∈Ng

cσi

2
Pg

i
2
+

nb

∑
i=1

cσi+ng

2
θ2

i


= ∑

i∈Ng

min
Pg

i ∈Pi

{
Ci
(

Pg
i

)
+ µiP

g
i +

cσi

2
Pg

i
2
}

+
nb

∑
i=1

min
θi∈Θi

{(
∑

l∈L(i)

(
λl − λl+nl

)
Winc

li − ∑
j∈N(i)∪{i}

µjBbus
ji

)
θi +

cσi+ng

2
θ2

i

}

+
nl

∑
l=1

(
λl+nl F

min
l − λl Fmax

l

)
−

nb

∑
i=1

µi P̃d
i , (5.4)

where for i ∈ Nb the set N(i) = {j ∈ Nb : (i, j) ∈ Nl ∨ (j, i) ∈ Nl} denotes the set of

buses that are connected to bus i by a branch, and L(i) = {l ∈ Nl : l = (i, j) ∨ l =

(j, i) for some j ∈ Nb} denotes the set of branches l that connect bus i with the power

system network. Both sets are similarly defined as in [WL10, sec. II] and indicate the

suitable structure of the decomposed DC-OPF problem with respect to local communica-

tion exchange for the determination of the primal variables.
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According to Theorem 3.1.1, the partial derivatives of fc are given by

∂ fc(µ,λ)
∂µi

= (IgPg(µ,λ))i −
(

Bbusθ(µ,λ)
)

i
− P̃d

i

=

Pg
i −∑j∈N(i)∪{i} Bbus

ij θj(µ,λ)− P̃d
i if i ∈ Ng,

−∑j∈N(i)∪{i} Bbus
ij θj(µ,λ)− P̃d

i if i ∈ Nb \ Ng,
(5.5)

∂ fc(µ,λ)
∂λl

=
(

Wincθ(µ,λ)
)

l
− Fmax

l

= ∑
i∈G(l)

Winc
li θi(µ,λ)− Fmax

l , (5.6)

∂ fc(µ,λ)
∂λl+nl

= −
(

Wincθi(µ,λ)
)
+ Fmin

l

= ∑
i∈G(l)

−Winc
li θi(µ,λ) + Fmin

l , (5.7)

where the set G(l) = {i, j : l = (i, j)} contains the indices of buses that are connected

by branch l for l ∈ Nl. Using the sets N(i) and G(l) in the above representation, where

G(l) is similarly defined as in [LL99, WL09a] (related to network utility maximization),

indicates the suitable structure of the partial derivatives of the augmented dual function

with respect to a local communication exchange.

Accordingly, with Theorem 3.1.1 the Lipschitz constant Lc of∇ fc can be determined after

detecting the coefficient matrices of the primal variables Pg
i and θi in the constraints (5.1b)

and (5.1c) which are(
Bbus

i
T

,Winc
i

T
,−Winc

i
T
)T
∈Rnb+2nl for θi and −

(
eT

i ,0T,0T
)T
∈Rnb+2nl for Pg

i ,

where ei ∈ Rnb denotes the unit vector and Bbus
i and Winc

i are the ith columns of the

corresponding matrices. With Theorem 3.1.1 it follows immediately that the Lipschitz

constant is given by

Lc =
nb

∑
i=1

∥∥∥∥(Bbus
i

T,Winc
i

T,−Winc
i

T
)T
∥∥∥∥2

cσi+ng

+ ∑
i∈Ng

∥∥∥−(eT
i ,0T,0T)T

∥∥∥2

cσi

=
nb

∑
i=1

∑j∈N(i)∪{i} Bbus
ji

2
+ 2∑l∈L(i)Winc

li
2

cσi+ng

+ ∑
i∈Ng

1
cσi

. (5.8)
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The Lagrangian (5.2) of the DC-OPF problem does not need to be smoothen with respect

to the primal variables Pg
i for i ∈Ng to obtain a continuously differentiable dual function

if the leading coefficients ai2 of the quadratic cost functions

Ci
(

Pg
i

)
= ai2Pg

i
2
+ ai1Pg

i + ai0

are positive. In this case it holds for all x,y ∈R that

(∇Ci (x)−∇Ci (y))
T (x− y) = 2ai2 (x− y)2 ,

showing the strongly convexity of Ci with convexity parameter 2ai2 according to (2.5).

Defining C̃i(Pg
i ) = ai1Pg

i + ai0 it can easily be seen that the Lipschitz constant of the gra-

dient of the augmented dual function

fc (µ,λ) = ∑
i∈Ng

min
Pg

i ∈Pi

{
C̃i
(

Pg
i

)
+ µiP

g
i +

2ai2

2
Pg

i
2
}

+
nb

∑
i=1

min
θi∈Θi

{(
∑

l∈L(i)

(
λl − λl+nl

)
Winc

li − ∑
j∈N(i)∪{i}

µjBbus
ji

)
θi +

cσi+ng

2
θ2

i

}

+
nl

∑
l=1

(
λl+nl F

min
l − λl Fmax

l

)
−

nb

∑
i=1

µi P̃d
i ,

whose partial derivatives are given by (5.5), (5.6) and (5.7) as well, is obtained by simply

exchanging cσi with 2ai2 in (5.8), yielding

Lc =
nb

∑
i=1

∑j∈N(i)∪{i} Bbus
ji

2
+ 2∑l∈L(i)Winc

li
2

cσi+ng

+ ∑
i∈Ng

1
2ai2

. (5.9)

Consider the following multi-agent network whose topology shall coincide with the

power system network: For i ∈ Nb, agenti is responsible for updating the primal vari-

ables θi and Pg
i (if i ∈ Ng) and is placed at bus i. For i ∈ Nb, agentµi controls the variable

µi and is identified with agenti. For l = (i, j) ∈ Nl, agentλl controls the variable λl and is

identified with agenti as well. Accordingly, agentλl+nl
controls the variable λl+nl and is

identified with agentj.

The initialization of the DAPCA-EC to solve

max
(µ,λ)∈Qµ×Qλ

fc(µ,λ) (5.10)

in parallel and with event-triggered communication, where Qµ ⊂Rnb and Qλ ⊂R
2nl
+ are

compact and convex sets that are assumed to contain an optimal dual multiplier (µ,λ)opt,

is done in the following by choosing γ > 1, L−1 ∈ (0, Lc], and the starting point (µ̄, λ̄)0 =

(µ,λ)0 as the minimum of the separable prox-function d(µ,λ) = (σ/2)‖(µ,λ)‖2 with con-

vexity parameter σ > 0 according to Assumptions 2.2.1. Moreover, let (ū, h̄)−1 = (µ̄, λ̄)0.
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Algorithm 5.1.1. (DAPCA-EC to solve the DC-OPF problem) For k ≥ 0 do in parallel:

For i ∈ Nb, given µ̄k
j if j ∈ N(i) ∪ {i} and λ̄k

l , λ̄k
l+nl

if l ∈ L(i), agenti

1. computes

Pg,k+1
i = argmin

Pg
i ∈Pi

{
Ci(Pg

i ) + µ̄k
i Pg

i +
cσi

2
Pg

i
2
}

if i ∈ Ng,

θk+1
i = argmin

θi∈Θi


 ∑

l∈L(i)
(λ̄k

l − λ̄k
l+nl

)Winc
li − ∑

j∈N(i)∪{i}
µ̄k

j Bbus
ji

 θi +
cσi+ng

2
θi

2

 ,

and sends θk+1
i to agentµj , agentλl , and agentλl+nl

if j ∈ N(i) and l ∈ L(i).

For i ∈ Nb and l ∈ Nl, given the iterates Pg,k+1
i and θk+1

i that are necessary for the computation

of the partial derivatives of fc((µ̄, λ̄)k), agentµi , agentλl , and agentλl+nl

2. compute

∇k
µi
=

∂ fc((µ̄, λ̄)k)

∂µi
=
(

IgPg,k+1
)

i
− ∑

j∈N(i)∪{i}
Bbus

ij θk+1
j − P̃d

i ,

∇k
λl
=

∂ fc((µ̄, λ̄)k)

∂λl
= ∑

i∈G(l)
Winc

li θk+1
i − Fmax

l ,

∇k
λl+nl

=
∂ fc((µ̄, λ̄)k)

∂λl+nl

= ∑
i∈G(l)

−Winc
li θk+1

i + Fmin
l ,

and set Lk = Lk−1,

3. find

uk
i = argmax

µ∈Qµi⊂R

{
µ∇k

µi
−
(
ηµi + 1

)
Lk∆k

∣∣∣µ− µk
i

∣∣∣− Lk

2
(µ− µk

i )
2
}

,

hk
l = argmax

λ∈Qλl
⊂R+

{
λ∇k

λl
− (ηλl + 1)Lk∆k

∣∣∣λ− λk
l

∣∣∣− Lk

2
(λ− λk

l )
2
}

,

hk
l+nl

= argmax
λ∈Qλl+nl

⊂R+

{
λ∇k

λl+nl
−
(

ηλl+nl
+ 1
)

Lk∆k

∣∣∣λ− λk
l+nl

∣∣∣− Lk

2
(λ− λk

l+nl
)2
}

.
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4. if Lk < Lc then

(a) agentµi , agentλl , and agentλl+nl
exchange information if necessary:

if
∣∣∣ūk−1

i − uk
i

∣∣∣ > Lk
Lc

∆k then

agentµi sets ūk
i = uk

i and sends ūk
i to agentj if j ∈ N(i).

else

agenti sets ūk
i = ūk−1

i and signals that no data will be sent.

if
∣∣∣h̄k−1

l − hk
l

∣∣∣ > Lk
Lc

∆k then

agentλl sets h̄k
l = hk

l and sends h̄k
l to agentj if l ∈ L(j).

else

agentλl sets h̄k
l = h̄k−1

l and signals that no data will be sent.

Agentλl+nl
proceeds accordingly with hk

l+nl
and h̄k

l+nl
.

For i ∈ Nb, given ūk
j if j ∈ N(i) ∪ {i} and h̄k

l , h̄k
l+nl

if l ∈ L(i), agenti

(b) computes

P̃g,k+1
i = argmin

Pg
i ∈Pi

{
Ci(Pg

i ) + ūk
i Pg

i +
cσi

2
Pg

i
2
}

if i ∈ Ng,

θ̃k+1
i = argmin

θi∈Θi


 ∑

l∈L(i)
(h̄k

l − h̄k
l+nl

)Winc
li − ∑

j∈N(i)∪{i}
ūk

j Bbus
ji

 θi +
cσi+ng

2
θi

2

 ,

and sends θ̃k+1
i to agentµj , agentλl , and agentλl+nl

if j ∈ N(i) and l ∈ L(i).

For i ∈ Nb and l ∈ Nl, given the iterates P̃g,k+1
i and θ̃k+1

i that are necessary for the compu-

tation of the partial derivatives of fc((ū, h̄)k), agentµi , agentλl , and agentλl+nl

(c) compute

∂ fc(ūk, h̄k)

∂ui
=
(

IgP̃g,k+1
)

i
− ∑

j∈N(i)∪{i}
Bbus

ij θ̃k+1
j − P̃d

i ,

∂ fc(ūk, h̄k)

∂hl
= ∑

i∈G(l)
Winc

li θ̃k+1
i − Fmax

l ,

∂ fc(ūk, h̄k)

∂hl+nl

= ∑
i∈G(l)

−Winc
li θ̃k+1

i + Fmin
l ,

and check with consensus (section 2.4)
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if

− Lk

2

nb+2nl

∑
l=1

(
(u, h)k

l − (µ,λ)k
l

)2
≤

nb+2nl

∑
l=1

(
∇l f ((ū, h̄)k)−∇l f ((µ̄, λ̄)k)

)(
(u, h)k

l − (µ,λ)k
l

)
(5.11)

then

continue with step 5,

else

set Lk = Lkγ and goe to step 3,

5. find

vk
i = argmax

v∈Qµi⊂R

{
−Lk

2
v2 + v

k

∑
j=0

j + 1
2
∇j

µi

}
,

tk
l = argmax

t∈Qλl
⊂R+

{
−Lk

2
t2 + t

k

∑
j=0

j + 1
2
∇j

λl

}
,

tk
l+nl

= argmax
t∈Qλl+nl

⊂R+

{
−Lk

2
t2 + t

k

∑
j=0

j + 1
2
∇j

λl+nl

}
,

6. set

µk+1
i =

k + 1
k + 3

uk
i +

2
k + 3

vk
i ,

λk+1
l =

k + 1
k + 3

hk
l +

2
k + 3

tk
l ,

λk+1
l+nl

=
k + 1
k + 3

hk
l+nl

+
2

k + 3
tk
l+nl

,

7. and exchange information if necessary:

if
∣∣∣µ̄k

i − µk+1
i

∣∣∣ > ∆k+1 then

agentµi sets µ̄k+1
i = µk+1

i and sends µ̄k+1
i to agentj if j ∈ N(i).

else

agenti sets µ̄k+1
i = µ̄k

i and signals that no data will be sent.

if
∣∣∣λ̄k

l − λk+1
l

∣∣∣ > ∆k+1 then

agentλl sets λ̄k+1
l = λk+1

l and sends λ̄k+1
l to agentj if l ∈ L(j).

else

agentλl sets λ̄k+1
l = λ̄k

l and signals that no data will be sent.

Agentλl+nl
proceeds accordingly with λk+1

l+nl
and λ̄k+1

l+nl
.
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Remark 5.1.2.

1. For the choice L−1 = Lc, the DAPCA-EC 5.1.1 coincides with the DPCA-EC [MUA14,

Algorithm 4.1] applied to solve the DC-OPF problem.

2. Finally, the amount of power generation Pg
i , which may be considered as sensitive informa-

tion in a competitive power supplying environment, is controlled by the agenti placed at

bus/generator i and not exchanged in Algorithm 5.1.1.

Regarding the communication exchange of the agents in Algorithm 5.1.1, it follows im-

mediately from the definition of the sets N(i), L(i), and G(l) that the iterates have to be

exchanged only locally in the above chosen multi-agent network, i.e., only agents placed

at neighboring buses have to communicate with each other, which is exemplarily de-

tailed for the first two steps of Algorithm 5.1.1 in the following (and therefore also holds

for step 4 b) and 4 c)):

In step 1, agenti only needs the iterate ūk
i for the computation of Pg,k+1

i (if i ∈ Ng) which

he controls himself. For the computation of θk+1
i , it follows from the definition of the sets

L(i) and N(i) that only iterates λ̄k
l , λ̄k

l+nl
, and µ̄k

j are involved that are controlled by agenti

and neighboring agents in the power system network.

In step 2, agenti can compute the partial derivative with neighborhood information due

to the definition of N(i) and the fact that he controls Pg
i (if i ∈ Ng) as well as θi. Accord-

ingly, agentλl and agentλl+nl
are only compelled to communicate with neighboring agents

by the definition of G(l).

The parallel implementation of the consensus check in step 4 needs only local commu-

nication as well, as the multi-agent network has the same topology as the power system

network according to the above placement of agents.

Finally, we derive the following bounds on the numbers ηµi , ηλl , and ηλl+nl
of the dual

variables that influence the corresponding partial derivatives ∇µi fc, ∇λl fc, and ∇λl+nl
fc:

The partial derivative of fc with respect to µi in step 2 of Algorithm 5.1.1 is given by

∂ fc(µ̄k, λ̄k)

∂µi
=
(

IgPg,k+1
)

i
− ∑

j∈N(i)∪{i}
Bbus

ij θk+1
j − P̃d

i

and involves the primal iterate Pg,k+1
i if i ∈Ng and θk+1

j if j ∈ N(i)∪{i}. The computation

of

Pg,k+1
i = argmin

Pg
i ∈Pi

{
Ci(Pg

i ) + µ̄k
i Pg

i +
cσi

2
Pg

i
2
}

if i ∈ Ng
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involves the dual iterate µ̄k
i and is therefore controlled by agenti himself. On the other

side, for j ∈ N(i) ∪ {i} the computation of the primal iterate

θk+1
j = argmin

θj∈Θj


 ∑

l∈L(j)
(λ̄k

l − λ̄k
l+nl

)Winc
l j − ∑

t∈N(j)∪{j}
µ̄k

t Bbus
tj

 θj +
cσj+ng

2
θj

2


involves the dual iterates λ̄k

l and λ̄l+nl if l ∈ L(j) as well as µ̄k
t if t ∈ N(j) ∪ {j}. As i ∈

N(j) ∪ {j} it follows that agentµi controls one of the ūk
t with t ∈ N(j) ∪ {j} himself and it

can be seen that

ηµi < ∑
j∈N(i)∪{i}

[2|L(j)|+ |N(j)|] = ∑
j∈N(i)∪{i}

3|N(j)|.

The partial derivative of fc with respect to λl is

∂ fc(µ̄k, λ̄k)

∂λl
= ∑

i∈G(l)
Winc

li θk+1
i − Fmax

l

and involves the primal iterate θk+1
i if i ∈ G(l). Repeating the above argumentation it

follows that

ηλl < ∑
i∈G(l)

[2|L(i)|+ |N(i)|] = ∑
i∈G(l)

3|N(i)|.

Accordingly,

ηλl+nl
< ∑

i∈G(l)
[2|L(i)|+ |N(i)|] = ∑

i∈G(l)
3|N(i)|.

Remark 5.1.3.

In [WL10] (which as well as [LL99, WL09a] (both related to network utility maximization) in-

spired the decomposition of the DC-OPF problem and the resulting local communication derived

above), it is shown that a reformulated version of the DC-OPF problem can be solved distribut-

edly with event-triggered and local communication by minimizing a corresponding unconstrained

augmented cost function with a gradient scheme which converges in case of strictly increasing,

convex, and differentiable objective cost functions. In [BB03], the power system is divided into

areas that are connected via tie-lines, resulting in an equivalent formulation of the DC-OPF prob-

lem that is separable with respect to each area up to coupling constraints that are related to the

tie-lines. An iterative scheme is proposed that uses local communication with respect to the tie-

line connections. In [JDR08], the DC-OPF problem is decomposed node-wisely by fixing variables

(phase angles, multipliers) that have to be exchanged in the optimization process.
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5.2 Application of the DAPCA-EC to LMI-constrained problems

The content of this section follows [DMUH15, sec. 4] (Deroo, Meinel, Ulbrich, and Hirche) and

[DMUH14a, sec. 3.3] (Deroo, Meinel, Ulbrich, and Hirche), however, generalizes our results

from there. Moreover, this section is in preparation for publication in [MU14] (Meinel and Ul-

brich).

In preparation for the distributed computation of an approximate solution to the AC-OPF

problem with the DAPCA-EC 3.2.2 in the following section, we combine in this section

the range-space conversion method [KKMY11, sec. 5.2] with dual decomposition to solve

a convex problem, that is constrained by a linear matrix inequality (LMI), in a distributed

manner. We applied this combination as well in [DMUH15, sec. 4] and [DMUH14a, sec.

3.3] to solve an LMI-constrained strongly convex stability related problem with the dis-

tributed proximal center algorithm in parallel, where either local communication could

be achieved if the sparsity structure of the LMI is chordal or close to local communication

by considering a minimal chordal extension of the sparsity structure of the nonchrodal

LMI.

To generalize these results, consider the following LMI-constrained problem similar to

[KKMY11, sec. 7] and [LL12, prob. (21) - (22)]:

min
x∈X

n

∑
i=1

Φi(xi) (5.12a)

s.t.
n

∑
i=1

xi Ai � 0, (5.12b)

where Φi : R→ R is a continuous and convex function, Ai ∈ Sn ⊆ Rn×n are given sym-

metric matrices, and X ⊆Rn is a given compact and convex set that is component-wisely

block-separable, i.e., X = X1× . . .×Xn with Xi ⊂R. By setting X1 = {1}, we can consider

LMI’s of the form A1 + ∑n
i=2 xi Ai � 0 too.

Unfortunately, applying dual decomposition to solve the convex problem (5.12) in par-

allel introduces a symmetric dual matrix-multiplier of dimension n× n that can only be

updated centrally by using global information as will be more clear if we have a look

at the dual problem of (5.12) that is obtained with the corresponding Lagrangian [LL12,

App.]

L(x,W) =
n

∑
i=1

Φi(xi) + Tr

{
n

∑
i=1

xi AiW

}
=

n

∑
i=1

Φi(xi) +
n

∑
i=1

xi Ai •W,
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where [GK02, p. 161]

Tr(W) =
n

∑
i=1

Wii and A •W = Tr(AWT) =
n

∑
i,j=1

AijWij.

It follows that the corresponding dual problem is given by [LL12, App.]

max
W�0

f (W) = max
W�0

n

∑
i=1

min
xi∈Xi

{
Φi(xi) + xi Ai •W

}
.

The application of a subgradient scheme [GK02, Algo. 6.50] to maximize the dual func-

tion f (W) needs the following subgradient of the iterate Wk in iteration k ≥ 0 [GK02,

Lem. 6.23]:

gk =
n

∑
i=1

xk+1
i Ai ∈ ∂ f (Wk). (5.13)

In a multi-agent network consisting of n agents, where agentxi is responsible for updating

the primal iterate xk
i and agentW ∈ {agentx1 , . . . , agentxn} is responsible for updating the

dual iterate Wk with the subgradient at Wk, agentW needs to communicate in each itera-

tion k≥ 0 with every agentxi 6= agentW to be able to compute gk in (5.13). This is certainly

not desirable with respect to sensitivity of information and the spatial distribution of a

large-scale network.

Taking these considerations into account, it is subsequently shown how to decompose

LMI (5.12b) with the range-space conversion method from [KKMY11, sec. 5.2], yielding

an equivalent problem to (5.12) whose augmented dual problem can be solved by the

DAPCA-EC 3.2.2 with local communication if the subsequent Assumptions 5.2.1 are sat-

isfied, stated after the following definitions from [KKMY11, sec. 5.1]:

Let A(x) = ∑n
i=1 xi Ai denote the left-hand side of LMI (5.12b). The range-space sparsity

pattern (in the following simply denoted as sparsity pattern) of A(x) is defined by

F =
{
(l, j) ∈ N ×N : Al j(x) 6= 0 for some x ∈ X, l 6= j

}
, (5.14)

where N = {1, . . . ,n}. The corresponding range-space sparsity pattern graph is defined

by G = (N , F) which is an undirected graph by identifying (l, j) ∈ F with (j, l) ∈ F.

A graph is called chordal if every cycle with more than 3 edges has an edge connecting

two nonadjacent nodes in the cycle [KKMY11, sec. 2.3].

Assumptions 5.2.1.

1. The sparsity pattern of Ai is induced by the neighborhood of agentxi in the multi-agent

network, i.e., Ai
l j = 0 if i /∈ {l, j} for l 6= j and Ai

ij = Ai
ji = 0 for i 6= j if agentxj and agentxi

are not neighbors. Moreover, Ai
ll = 0 if agentxl is neither a neighbor of agentxi nor agentxi

himself.
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2. The graph G = (N , F) is chordal.

From the first assumption it follows that the sparsity pattern of A(x) is induced by the

sparsity pattern of the adjacency matrix that represents the multi-agent network, i.e.,

if agentxl and agentxj are not neighbors then (l, j) /∈ F (and (j, l) /∈ F). The chordality-

assumption of G = (N , F) that we made in [DMUH15, DMUH14a] as well, ensures the

local communication of the agents in the optimization process as will be discussed in

detail below Algorithm 5.2.6. As mentioned above, close to local communication can be

achieved if G = (N , F) is not chordal by finding a minimal chordal extension G = (N , F)

of G = (N , F). The communication topology of the agents that implement the DAPCA-

EC in parallel will then be described by G and might not be induced by the topology of

the multi-agent network anymore which is given by G.

Remark 5.2.2.

Computationally, a chordal extension of a graph G = (N , F) can be obtained by applying Cholesky

factorization to a positive definite matrix X that has the same sparsity structure as the adjacency

matrix of G as described in [FKMN01, 2.1]: Let L be the lower-triangular matrix of the Cholesky

factorization of X (available in MATLAB with the function chol.m [KKMY11, Rem. 3.2]), i.e.,

X = LLT. Then the sparsity pattern F of L+ LT yields a chordal extension G = (N , F) of G. Even

though the problem of finding a minimal chordal extension of G is NP-complete [Yan81, Theo.

1], heuristics such as the minimum-degree ordering (available in MATLAB with the function

symamd.m [KKMY11, Rem. 3.2]) exist to determine a permutation of X such that the Cholesky

factorization often yields minimal fill-ins in L which correspond to the additional edges in the

chordal extension of the graph.

To be able to apply the range-space conversion method, let C1, . . . ,Cp ⊆ N denote the

maximal cliques of the graph G = (N , F) (that is chordal according to Assumptions 5.2.1),

i.e., the graph Gs = (Cs,Cs×Cs ∩ F) is a complete subgraph of G that is not contained in a

different complete subgraph of G [Gol04, p. 6]. The maximal cliques of a chordal graph G

can be found inO(|N |+ |F|) time [Gol04, Theo. 4.17] and are computed in this work with

the MATLAB function maximalCliques provided by Jeffrey Wildman. Moreover, define by

[KKMY11, sec. 4]

Sn
+(F,0) =

{
X ∈ Sn

+ : Xl j = 0 if l 6= j ∧ (l, j) /∈ F
}

the set of positive semidefinite matrices whose sparsity pattern is induced by F and let

[KKMY11, sec. 2.2]

S
Cs
+ =

{
X ∈ Sn

+ : Xl j = 0 if (l, j) /∈ Cs × Cs
}

for s = 1, . . . , p
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be the set of positive semidefinite matrices whose sparsity pattern is induced by Cs × Cs,

where Cs is a maximal clique of G = (N , F). The following theorem builds the basis of the

range-space conversion method and states that the left-hand side A(x) of LMI (5.12b) is

positive semidefinite if and only if it is decomposable by p positive semidefinite matrices

whose sparsity patterns are induced by the maximal cliques of the chordal graph that

represents the sparsity pattern of A(x).

Theorem 5.2.3. [KKMY11, Theo. 4.2]

A(x) ∈ Sn
+(F,0) for x ∈ X if and only if there exist Ws ∈ S

Cs
+ for s = 1, . . . , p which decompose

A(x) as

A(x) =
p

∑
s=1

Ws.

Proof. The proof is given in [KKMY11].

Obviously, constraint (5.12b) can be decomposed with Theorem 5.2.3 to [KKMY11, sec.

5.2]

p

∑
s=1

Ws − A(x) = 0 and Ws ∈ S
Cs
+ for s = 1, . . . , p, (5.15)

i.e., the positive semidefinite condition to A(x) in constraint (5.12b) is reduced to the

positive semidefinite condition to Ws for s = 1, . . . , p that can be ensured locally for every

maximal clique of G = (N , F) as will be shown.

Finally, the symmetry and the sparsity of the matrices in (5.15) are exploited in the range-

space conversion method by the following definitions from [KKMY11, sec. 2.2, sec. 5.2]:

For every (l, j) ∈ N ×N , define

El j ∈Rn×n with (El j)ik =

1 if (i,k) ∈ {(l, j), (j, l)} ,

0 else,

and let

J(Cs) = {(l, j) ∈ Cs × Cs : 1≤ l ≤ j ≤ n} for s = 1, . . . , p,

J =
p⋃

s=1

J(Cs),

Γ(l, j) = {s : l ∈ Cs, j ∈ Cs} for every (l, j) ∈ J.

With the above definitions, the n2 equality constraints in (5.15) can be reduced to |J|
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equality constraints, yielding that problem (5.12) can be stated as [KKMY11, sec. 5.2]

min
x∈X

n

∑
i=1

Φi(xi) (5.16a)

s.t. El j • ∑
s∈Γ(l,j)

Ws − El j • A(x) = 0 for (l, j) ∈ J, (5.16b)

Ws ∈ S
Cs
+ for s = 1, . . . , p. (5.16c)

Remark 5.2.4.

According to [KKMY11, sec. 5.1], the range-space conversion method can be applied even if G =

(N , F) is not chordal, as A(x) ∈ Sn
+(F,0) implies A(x) ∈ Sn

+(F,0) for some chordal extension

G = (N , F) of G, and Theorem 5.2.3 holds for the maximal cliques C1, . . . ,Cp of the chordal graph

G. However, the pair (l, j) ∈ J might not be identifiable with a line connecting agentl and agentj

in the multi-agent network anymore and therefore local communication may not be guaranteed as

will be discussed below Algorithm 5.2.6.

Problem (5.16) can now be dually decomposed as done in the previous sections to prepare

the application of the DAPCA-EC 3.2.2. To be able to apply the derived convergence

results from chapter 3, define the compact and convex set

W s =
{

W ∈ S
Cs
+ : W � InRWs

}
, (5.17)

where RWs > 0 for s = 1, . . . , p and In is the n × n identity matrix. We assume that W s

contains an optimal solution Wsopt
of problem (5.16) which can then be rewritten as

min
xi∈Xi ,Ws∈W s

n

∑
i=1

Φi(xi) (5.18a)

s.t. El j • ∑
s∈Γ(l,j)

Ws − El j • A(x) = 0 for (l, j) ∈ J. (5.18b)

As explained in section 3.1, the Lagrangian relaxation of problem (5.18) with respect to

constraint (5.18b) yields

L(x,W1, . . . ,Wp,Λ) =
n

∑
i=1

Φi(xi) + ∑
(l,j)∈J

Λl j

El j • ∑
s∈Γ(l,j)

Ws − El j • A(x)


=

n

∑
i=1

Φi(xi) + ∑
(l,j)∈J

Λl j

El j • ∑
s∈Γ(l,j)

Ws − El j •
n

∑
i=1

Aixi


=

n

∑
i=1

Φi(xi) + ∑
(l,j)∈J

Λl jEl j • ∑
s∈Γ(l,j)

Ws − ∑
(l,j)∈J

Λl jEl j •
n

∑
i=1

Aixi

=
n

∑
i=1

Φi(xi)− ∑
(l,j)∈J

Λl jEl j • Aixi

+
p

∑
s=1

∑
(l,j)∈J(Cs)

Λl jEl j •Ws.
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By smoothing the Lagrangian with scaled prox-functions dxi(x) and dWs(W) with con-

vexity parameter σxi > 0 and σWs > 0, respectively, we obtain the smooth and concave

augmented dual function

fc(Λ) = min
x∈X, Ws∈W s

 n

∑
i=1

Φi(xi)− ∑
(l,j)∈J

Λl jEl j • Aixi + cdxi(xi)


+

p

∑
s=1

 ∑
(l,j)∈J(Cs)

Λl jEl j •Ws + cdWs(Ws)


=

n

∑
i=1

min
xi∈Xi

Φi(xi)− ∑
(l,j)∈J

Λl jEl j • Aixi + cdxi(xi)

 (5.19)

+
p

∑
s=1

min
Ws∈W s

 ∑
(l,j)∈J(Cs)

Λl jEl j •Ws + cdWs(Ws)

 . (5.20)

With Theorem 3.1.1, it follows immediately that the partial derivatives of fc are

∇Λl j fc(Λ) = El j • ∑
s∈Γ(l,j)

Ws(Λ)− El j •
n

∑
i=1

Aixi(Λ) for (l, j) ∈ J,

where Ws(Λ) and xi(Λ) solve (5.19) and (5.20). To determine the Lipschitz constant Lc

of ∇ fc according to Theorem 3.1.1, let v : Rn×n → Rn2
be the operator that concatenates

the columns of an n× n dimensional matrix to a vector of dimension n2. It follows that

constraint (5.18b) can be stated as

v
(
El j
)T ∑

s∈Γ(l,j)
v (Ws)−

n

∑
i=1

v
(
El j
)T v

(
Ai
)

xi = 0 for (l, j) ∈ J, (5.21)

i.e., the coefficient matrix of v(Ws) in constraint (l, j) is v(El j)
T iff (l, j) ∈ J(Cs) and 0T ∈

R1×n2
else, yielding the overall coefficient matrix EWs ∈R|J|×n2

of v(Ws) with

(EWs)ik =


(
v(El j)

T)
ik if i = (l, j) ∈ J(Cs),

0 else .
(5.22)

The determination of the coefficient matrix of xi in (5.21) is straight forward and given by

Exi =
(

v (E11)
T v
(

Ai
)

, . . . ,v (Enn)
T v
(

Ai
))T
∈R|J|×1,

yielding the following Lipschitz constant according to Theorem 3.1.1:

Lc =
p

∑
s=1

‖EWs‖2

cσWs
+

n

∑
i=1

‖Exi‖
2

cσxi

. (5.23)
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Remark 5.2.5.

In [DMUH15, DMUH14a], we applied the range-space conversion method combined with dual

decomposition as described above to a problem of the form (5.12), however, with strongly convex

objective function, and derived similar partial derivatives for the dual function as well as a similar

Lipschitz constant. The derived decomposed problem can be solved distributedly to test a suffi-

cient condition for Lyapunov stability of an LTI system with n subsystems. More precisely, the

developed test can be conducted to check if a block-diagonal matrix P exists which satisfies the

Lyapunov matrix inequality

ATP + PA ≺ 0,

where the matrix A describes the interaction of the subsystems of an LTI system. For details it is

referred to [DMUH15].

To state the DAPCA-EC, let Q = Q11 × . . .×Qnn ⊆R|J| be a compact and convex set that

contains an optimal dual multiplier Λopt of the dual problem of problem(5.18) (cf. chapter

3), and consider the corresponding augmented dual problem

max
Λ∈Q

fc(Λ). (5.24)

To guarantee local information exchange when solving (5.24) in parallel, agentΛl j is iden-

tified either with agentxl or with agentxj for l 6= j. This setting is favorable as the index

pair (l, j)∈ J can be identified with a line connecting agentxl and agentxj in the multi-agent

network according to Assumptions 5.2.1. Finally, agentΛll is identified with agentxl .

The initialization of the DAPCA-EC is done according to the description in section 3.2

by choosing γ > 1, L−1 ∈ (0, Lc], and the starting point Λ̄0 = Λ0 as the minimum of the

separable prox-function d(Λ) = ∑(l,j)∈J dl j(Λl j), where dl j : Ql j→R+ is an arbitrary prox-

function with convexity parameter σ > 0. Moreover, let Ȳk denote the outdated vector

defined by (3.2.1) and set Ȳ−1 = Λ̄0. The the DAPCA-EC can be stated as (cf. [DMUH15,

Algo. 3],[DMUH14a, Algo. 2])

Algorithm 5.2.6. (DAPCA-EC to solve (5.12)) For k ≥ 0 do in parallel:

For i = 1, . . . ,n and s = 1, . . . p, given the required components of Λ̄k, agentxi and agentWs

1. compute

xk+1
i = argmin

xi∈Xi

Φi(xi)− ∑
(l,j)∈J

Λ̄k
ljEl j • Aixi + cdxi(xi)

 , (5.25)

Ws,k+1 = argmin
Ws∈W s

 ∑
(l,j)∈J(Cs)

Λ̄k
ljEl j •Ws + cdWs(Ws)

 , (5.26)

and send xk+1
i and Ws,k+1 to the dual agents that require it.
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For (l, j) ∈ J, given the iterates xk+1
i and Ws,k+1 that are necessary for the computation of

∇l j fc(Λ̄k), agentΛl j

2. computes

∇l j fc(Λ̄k) = El j • ∑
s∈Γ(l,j)

Ws,k+1 − El j •
n

∑
i=1

Aixk+1
i ,

and sets Lk = Lk−1,

3. finds

Yk
lj = argmax

Yl j∈Ql j

{
∇l j fc(Λ̄k)Yl j − Lk∆k(ηl j + 1)|Yl j −Λk

lj| −
Lk

2

(
Yl j −Λk

lj

)2
}

. (5.27)

4. if Lk < Lc then

(a) agentΛl j sends Ȳk
lj to the primal agents that require it if necessary:

if
∣∣∣Ȳk−1

l j −Yk
lj

∣∣∣ > Lk
Lc

∆k then

agentΛl j sets Ȳk
lj = Yk

lj and sends Ȳk
lj.

else

agentΛl j sets Ȳk
lj = Ȳk−1

l j and signals that no data will be sent.

For i = 1, . . . ,n and s = 1, . . . p, given the required components of Ȳk, agentxi and agentWs

(b) compute

yk+1
i = argmin

xi∈Xi

Φi(xi)− ∑
(l,j)∈J

Ȳk
ljEl j • Aixi + cdxi(xi)

 , (5.28)

Vs,k+1 = argmin
Ws∈W s

 ∑
(l,j)∈J(Cs)

Ȳk
ljEl j •Ws + cdWs(Ws)

 , (5.29)

and send yk+1
i and Vs,k+1 to the dual agents that require it.

For (l, j) ∈ J, given the iterates yk+1
i and Vs,k+1 that are necessary for the computation of

∇l j fc(Ȳk), agentΛl j

(c) computes

∇l j fc(Ȳk) = El j • ∑
s∈Γ(l,j)

Vs,k+1 − El j •
n

∑
i=1

Aiyk+1
i ,

and checks with consensus (section 2.4)
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if

−Lk

2 ∑
(l,j)∈J

(
Yk

lj −Λk
lj

)2
≤ ∑

(l,j)∈J

(
∇l j f (Ȳk)−∇l j f (Λ̄k)

)(
Yk

lj −Λk
lj

)
(5.30)

then

continues with step 5,

else

sets Lk = Lkγ and goes to step 3,

5. finds

Zk
lj = argmax

Zl j∈Ql j

{
−Lk

σ
d(Zl j) +

k

∑
t=0

t + 1
2
∇l j fc(Λ̄t)Zl j

}
, (5.31)

6. sets Λk+1
l j =

2
k + 3

Zk
lj +

k + 1
k + 3

Yk
lj,

7. and sends Λ̄k+1
l j to the primal agents that request it if necessary:

if
∣∣∣Λ̄k

lj −Λk+1
l j

∣∣∣ > ∆k+1 then

agentΛl j sets Λ̄k+1
l j = Λk+1

l j and sends Λ̄k+1
l j .

else

agentΛl j sets Λ̄k+1
l j = Λ̄k

lj and signals that no data will be sent.

Even though Algorithm 5.2.6 consists of a subproblem in almost every step, analytical

solutions exist for all of them if∇Φi(xi),∇dxi(xi),∇dWs(Ws),∇d(Λl j) can be determined

analytically and if the prox-functions are chosen as

dxi(xi) =
σxi

2
x2

i , dWs(Ws) =
σWs

2
‖Ws‖2

F , and d(Λl j) =
σ

2
Λ2

l j,

where ‖ · ‖F denotes the Frobenius norm [GK02, p. 162]. In that case, the analytical

solutions to subproblems (5.25),(5.27),(5.28), and (5.31) can be obtained as in Example

2.2.6 and therefore only the analytical solution for subproblem (5.26) (and thereby for

subproblem (5.29)) is derived by rewriting it similarly to Remark 2.3.1 (Michael Ulbrich,

personal communication, June 17, 2013):

Ws,k+1 = argmin
Ws∈W s

{ =X∈SCs︷ ︸︸ ︷
∑

(l,j)∈J(Cs)

Λ̄k
ljEl j •W +

cσWs

2
‖Ws‖2

F

}

= argmin
Ws∈W s

{
2

cσWs
X •W + ‖Ws‖2

F

}
= argmin

Ws∈W s

∥∥∥∥ X
cσWs

+ Ws
∥∥∥∥2

F

= argmin
Ws∈W s

∥∥∥SDST + Ws
∥∥∥2

F
.
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It follows with [Hig88, Theo. 2.1] that

Ws,k+1 = −SD̂ST with D̂ii = min(max(0, Dii), RWs).

Finally, the matrices S and D can be efficiently obtained by the diagonalization of the

|Cs| × |Cs|-dimensional part of X/(cσWs) that is nonzero.

Remark 5.2.7.

In [DMUH15, DMUH14a] we applied the DPCA (without even-triggered communication) in-

stead of the DAPCA-EC and obtained similar analytical solutions (with the difference, that there

we did not need to consider compact feasible sets for the primal variables due to the strongly con-

vexity of the considered primal objective functions). This shows the remarkable advantage of the

application of the DAPCA-EC (or different versions of it) to a problem of the form (5.12) that has

been decomposed with the range-space conversion method and dual decomposition as described

above.

Subsequently, it is verified that the communication exchange between the agents is local.

For the computation of xk+1
i in step 1 , agentxi requires the dual iterate Λ̄k

lj if Ai
l j = Ai

jl 6= 0

and therefore Λ̄k
lj is either controlled by agentxi himself or by a neighbor of agentxi in the

multi-agent network. The same holds for the computation of yk+1
i .

The computation of Ws,k+1 involves Λ̄k
lj for all (l, j) ∈ J(Cs). It follows that agentWs either

controls Λ̄k
lj by himself or Λ̄k

lj is controlled by a neighbor of agentWs in the clique Cs. The

same holds for the computation of Vs,k+1.

Finally, agentΛl j needs to compute∇l j fc(Λ̄k) in step 2 which involves Ws,k+1 for s ∈ Γ(l, j)

and (Ai
l j + Ai

jl)xk+1
i for i = 1, . . . ,n. Firstly, for (l, j)∈ J we have s∈ Γ(l, j) iff (l, j)∈Cs×Cs,

i.e., Ws,k+1 is either controlled by agentΛl j or by a neighbor of agentΛl j in the clique Cs. Sec-

ondly, it follows immediately with Assumptions 5.2.1 that the required iterates xk+1
i are

either controlled by agentΛl j or by neighbors of agentΛl j in the multi-agent network. The

same holds for the computation of ∇l j fc(Ȳk).

The parallel implementation of the consensus check in step 4 needs only local communi-

cation as well which follows from the definition of the consensus matrix A in section 2.4

and the setting of the multi-agent network.

Finally, in step 3 of Algorithm 5.2.6 the number ηl j of dual variables that influence the

corresponding partial derivative ∇l j fc(Λ) can be estimated as follows.

In step 2 of Algorithm 5.2.6, the partial derivative is

∇l j fc(Λ̄k) = El j • ∑
s∈Γ(l,j)

Ws,k+1 − El j •
n

∑
i=1

Aixk+1
i
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which on the one hand involves the primal iterate

Ws,k+1 = argmin
Ws∈W s

 ∑
(l,j)∈J(Cs)

Λ̄k
ljEl j •Ws + cdWs(Ws)


if s ∈ Γ(l, j), where each iterate Ws,k+1 depends on |J(Cs)| dual iterates Λ̄k

lj.

On the other hand, it follows for l 6= j and l ∈ N(j) with Assumptions 5.2.1 and the defini-

tion of the set J that the partial derivative ∇l j fc(Λ̄k) additionally depends on the primal

iterates xk+1
l if Al

l j 6= 0 and xk+1
j and Aj

l j 6= 0. Moreover, with Assumptions 5.2.1 it can

be seen for l = j that ∇l j fc(Λ̄k) depends on the primal iterate xk+1
i if i ∈ N(j) ∪ {j} and

Ai
jj 6= 0. Finally, each primal iterate

xk+1
i = argmin

xi∈Xi

Φi(xi)− ∑
(l,j)∈J

Λ̄k
ljEl j • Aixi + cdxi(xi)


involves according to Assumptions 5.2.1 at most the dual iterate Λ̄k

lj if l = i and j ∈ N(i),

if j = i and l ∈ N(i), and if j = l and j ∈ N(i) ∪ {i}.
Altogether, we obtain that

ηl j < ∑
s∈Γ(l,j)

|J(Cs)|+ ∑
j∈N(i)∪{i}

(3|N(j)|+ 1) .

5.3 Application of the DAPCA-EC to the AC-OPF problem

The content of this section is in preparation for publication in [MU14] (Meinel and Ulbrich).

In this section, the range-space conversion method is applied in combination with dual

decomposition to a concave semidefinite dual of the nonconvex AC-OPF problem (4.15)

derived in [LL10, LL12], where [LL12] extends [LL10] by considering additional con-

straints such as line flow limits.

The application of the DAPCA-EC 3.2.2 to the decomposed dual enables to compute a

solution to the AC-OPF problem in parallel and with event-triggered communication.

Furthermore, the communication exchange is local with respect to the power system

topology if the considered power network is chordal which holds for distribution and

subtransmission networks as they have a tree structure but not for transmission net-

works (such as the IEEE benchmark systems [Uni]) as they have closed loops due to

stability reasons [Mom01, p. 4]. However, close to local communication can be achieved

for nonchordal power systems by finding minimal chordal extensions as described in the

previous section.
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Due to the nonconvexity of the NP-hard AC-OPF problem

min
Pg ,Qg ,V

∑
i∈Ng

Ci
(

Pg
i

)
(5.32a)

s.t. Vi I∗i =
(

Pg
i − Pd

i

)
+ j
(

Qg
i −Qd

i

)
∀i ∈ Ng, (5.32b)

Vi I∗i = −Pd
i − jQd

i ∀i ∈ Nb \ Ng, (5.32c)

|Sij| ≤ Smax
ij ∀ (i, j) ∈ Nl, (5.32d)

|Sji| ≤ Smax
ij ∀ (i, j) ∈ Nl, (5.32e)

Pmin
i ≤ Pg

i ≤ Pmax
i ∀i ∈ Ng, (5.32f)

Qmin
i ≤ Qg

i ≤ Qmax
i ∀i ∈ Ng, (5.32g)

Vmin
i ≤ |Vi| ≤ Vmax

i ∀i ∈ Nb, (5.32h)

the authors of [LL12, LL12] propose to solve a concave semidefinite dual problem con-

strained, i.a., by a linear matrix inequality (LMI) which can be stated after the following

definitions taken from [LL10, sec. 2] and [LL12, sec. 3], where the details on the deriva-

tion can be found.

Let E ⊆ Nb ×Nb be the symmetric relation which contains the indices of the branches

and their reversals, i.e., (t,m) ∈ Nl ⇐⇒ (t,m) ∈ E and (m, t) ∈ E . Moreover, denote by

e1, . . . , enb the standard basis vectors in Rnb and define for i ∈ Nb and (t,m) ∈ E :

Yi = eieT
i Ybus, Ytm =

(
ysh

t −Ybus
tm

)
eteT

t + Ybus
tm eteT

m,

Yi =
1
2

Re{Yi + YT
i } Im{YT

i −Yi}

Im{Yi −YT
i } Re{Yi + YT

i }

 , Ytm =
1
2

Re{Ytm + YT
tm} Im{YT

tm −Ytm}

Im{Ytm −YT
tm} Re{Ytm + YT

tm}

 ,

Ȳi = −
1
2

Im{Yi + YT
i } Re{Yi −YT

i }

Re{YT
i −Yi} Im{Yi + YT

i }

 ,Ȳtm = −1
2

Im{Ytm + YT
tm} Re{Ytm −YT

tm}

Re{YT
tm −Ytm} Im{Ytm + YT

tm}

 ,

Mi =

eieT
i 0

0 eieT
i

 ,

where the bus admittance matrix Ybus is given by (4.11) and ysh
t is the shunt element (4.8)

for t ∈ Nb.
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Moreover, in [LL10, LL12] the following variables are defined for i ∈ Nb and (t,m) ∈ E
that allow to formulate the semidefinite dual problem of (5.32) in a compact way:

xi = (λmin
i ,λmax

i , λ̄min
i , λ̄max

i ,µmin
i ,µmax

i )T ∈R6
+,

ri =

(
1 r1

i

r1
i r2

i

)
∈ S4

+ for i ∈ Ng, rtm =


r1

tm r2
tm r3

tm

r2
tm r4

tm r5
tm

r3
tm r5

tm r6
tm

 ∈ S6
+,

and ri = 0 ∈ S4
+ for i ∈ Nb \ Ng. The above defined variables are the dual multipliers

corresponding to the constraints of an optimization problem derived in [LL12, sec. 3]

that is equivalent to the AC-OPF problem (5.32) . Furthermore, define according to [LL10,

LL12] for i ∈ Nb

λi = −λmin
i + λmax

i + ai1 + 2
√

ai2r1
i , λ̄i = −λ̄min

i + λ̄max
i , µi = −µmin

i + µmax
i ,

where ai1 = 0 and ai2 = 0 for i ∈ Nb \ Ng. (Recall that ai1 and ai2 are the coefficients of the

generator cost function Ci for i ∈ Ng.)

In [LL12, sec. 3], it is shown that a dual of (5.32) can be stated as

max
xi ∈R6

+, ri ∈ S4
+

rtm ∈ S6
+

∑
i∈Nb

Φi(xi,ri)− ∑
(t,m)∈E

Φtm(rtm) (5.33a)

s.t. A(x,r) � 0, (5.33b)

where

A(x,r) = ∑
i∈Nb

Ỹi(xi,ri) + ∑
(t,m)∈E

Ỹtm(rtm),

Φi(xi,ri) =λmin
i Pmin

i − λmax
i Pmax

i + λiPd
i + λ̄min

i Qmin
i − λ̄max

i Qmax
i

+ λ̄iQd
i + µmin

i Vmin
i

2 − µmax
i Vmax

i
2 + ai0 − r2

i ,

Φtm(rtm) =(Smax
tm )2r1

tm + r4
tm + r6

tm,

Ỹi(xi,ri) =λiYi + λ̄iȲi + µi Mi ∈R2nb×2nb ,

Ỹtm(rtm) =2r2
tmYtm + 2r3

tmȲtm ∈R2nb×2nb ,

and ai0 = 0 for i ∈ Nb \ Ng.
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Finally, the following sufficient condition is provided in [LL12] which guarantees a zero

duality gap for the AC-OPF problem (5.32):

Theorem 5.3.1. [LL12, part 2 of Theo. 2]

The duality gap is zero for problem (5.32) if its dual (5.33) has an optimal solution (xopt,ropt) such

that the positive semidefinite matrix A(xopt,ropt) has a zero eigenvalue of multiplicity 2.

Proof. The proof is given detailed in [LL12] and only sketched here:

In [LL12], an equivalent problem to the AC-OPF problem (5.32) is formulated in the ma-

trix variable W ∈R2nb×2nb constrained, i.a., by W = XXT, where X = (Re{V}T, Im{V}T)T.

This constraint is denoted to be equivalent to the positive semidefiniteness of W and the

rank-one constraint rank{W} = 1. Relaxing this equivalent problem by removing the

rank-one constraint yields a semidefinite problem that is also the dual of (5.33) and strong

duality is shown for this pair. Furthermore, it is derived from the KKT conditions of the

SDP and the 2-dimensionality assumption of the kernel of A(xopt,ropt) that an optimal

solution Wopt with rank{Wopt} = 1 can be constructed which solves the SDP and there-

fore solves the equivalent problem of the AC-OPF problem, i.e., strong duality holds for

the pair (5.32) and (5.33).

Furthermore, in [LL12, sec. 4] it is discussed that this sufficient condition is satisfied

generally in practice and moreover the structure of A (xopt,ropt) is stated as

A
(
xopt,ropt) = ( T (xopt,ropt) T̄ (xopt,ropt)

−T̄ (xopt,ropt) T (xopt,ropt)

)
(5.34)

which is helpful to derive a solution for the AC-OPF problem as will be shown below.

Finally, assuming problem (5.32) to be feasible, the following algorithm can be applied to

find a global optimum of the AC-OPF problem (5.32) if its dual satisfies Theorem 5.3.1.

Algorithm 5.3.2. [LL12, LL10, Algorithm for Solving OPF (reduced version)]

1. Find a solution (xopt,ropt) of the dual problem (5.33).

2. Find a vector (vT
1 ,vT

2 )
T 6= 0 in the kernel of A(xopt,ropt).

3. Find scalars ζ1,ζ2 ∈ R such that Vopt = (ζ1 + jζ2)(v1 + jv2) is an optimal solution of

(5.32).

As shown in [LL12, proof of Cor. 1], step 3 in Algorithm 5.3.2 is well-defined which is con-

cluded from the fact that subject to the sufficient condition in Theorem 5.3.1, the SPD re-

laxation of the AC-OPF problem (5.32), that is mentioned in the proof sketch of Theorem

5.3.1, has a rank-one optimal solution Wopt = XoptXoptT that satisfies A(xopt,ropt)Xopt = 0.
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Moreover, from the structure of A(xopt,ropt) given in (5.34) it is deduced in [LL12] that

besides (vT
1 ,vT

2 )
T the orthogonal vector (−vT

2 ,vT
1 )

T is in the kernel of A(xopt,ropt) as well,

and from the 2-dimensionality of the kernel the authors infer that(
Re{Vopt}
Im{Vopt}

)
= Xopt = ζ1

(
v1

v2

)
+ ζ2

(
−v2

v1

)
for some ζ1, ζ2 ∈R.

In the following we show how to implement each step of Algorithm 5.3.2 distributedly

in a multi-agent network that coincides with the power system network if it is chordal.

Here, the focus is on step 1, i.e., on finding a solution (xopt,ropt) to the dual problem (5.33)

in a distributed manner by applying the DAPCA-EC 3.2.2. Thereby, the communication

can be kept local in the power system network (i.e., the branches of the power network

additionally serve as communication lines) if the LMI (5.33b) in the dual (5.33) satisfies

Assumptions 5.2.1, as discussed below Algorithm 5.3.4. However, according to Remark

5.2.4 and Remark 5.2.2 close to local communication can be achieved for nonchordal sys-

tems by finding minimal chordal extensions that induce the communication topology.

To determine an arbitrarily good approximation of the optimal solution (xopt,ropt) dis-

tributedly with event-triggered and local (or close to local) communication in the first

step of Algorithm 5.3.2, the dual is decomposed as described in section 5.2 to be able to

apply the DAPCA-EC 3.2.2.

To this end, we denote in the following by agentxi ,ri the agent that is placed at bus i and

updates λmin
i ,λmax

i , λ̄min
i , λ̄max

i ,µmin
i ,µmax

i if i ∈Nb and additionally ri if i ∈Ng. Moreover,

denote for (t,m) ∈ E by agentrtm the agent that is placed at bus t and updates rtm. Due

to the separability of the objective function (5.33a) each agent agentxi ,ri and agentrtm can

update his set of variables completely in parallel.

According to (5.14) the sparsity pattern of A(x,r) in (5.33b) is given by

FA(x,r) =
{
(l, j) ∈ 2Nb × 2Nb : Al j(x,r) 6= 0 for some x ∈R

6|Nb|
+ and r ∈R2|Nb|+6|E |, l 6= j

}
,

where 2Nb = {1, . . . ,2nb}. Obviously, FA(x,r) is contained in the sparsity pattern FY of the

matrix (
Ybus Ybus

Ybus Ybus

)
. (5.35)

Moreover, the four cornered nb × nb blocks of Ỹi(xi,ri) ∈ R2nb×2nb in (5.33b) satisfy the

first point in Assumptions 5.2.1 for i ∈ Nb, and if agentrtm is identified with agentxt,rt it

follows that the four cornered nb × nb blocks of Ỹtm(rtm) in (5.33b) satisfy the first point

in Assumptions 5.2.1 as well.
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Remark 5.3.3.

The graph G(2Nb, FY) can be obtained by the graph G(Nb,E) that represents the power system if

each bus (node) i is duplicated and the duplicate nb + i is connected to its original, the neighbors

of its original, and their duplicates. In other words, identifying bus i with its duplicate nb + i,

the sparsity structure of A(x,r) in (5.33b) is contained in the sparsity structure of the admittance

matrix Y and if G(2Nb, FY) is not chordal by itself, the chordal extension of G(2Nb, FY) denoted

by G(2Nb, FY) can be obtained by the chordal extension G(Nb,E) of G(Nb,E) as follows:

Let C1, . . . ,Cp ⊆ Nb be the maximal cliques of G(Nb,E), then 2C1, . . . ,2Cp ⊆ 2Nb are maximal

cliques of G(2Nb, FY), where 2Cs = {i, nb + i | i ∈ Cs}.

Finally, the range-space conversion method described in section 5.2 can be applied to

rewrite constraint (5.33b). To be able to apply the convergence results of the previous

sections, we define for i ∈ Ng the compact sets Xi = X1
i × . . .× X6

i , where X j
i ⊂ R+. Fur-

thermore, we denote for i ∈ Ng and (t,m) ∈ E by Ri and Rtm the following compact

sets

Ri =
{

r ∈ S4
+ : r � I4Rri ∧ r11 = 1

}
and Rtm =

{
r ∈ S6

+ : r � I6Rrtm

}
,

where Rri > 0 and Rrtm > 0. For i ∈ Nb \ Ng we set Ri = {0} ⊂ S4
+. Finally, we denote by

W s the compact set that is defined according to (5.17), and assume thatW s, Xi, Ri, and

Rtm contain an optimal solution of problem (5.33).

With the range-space conversion method, problem (5.33) can be stated as

max
xi ∈ Xi, ri ∈ Ri

rtm ∈ Rtm, Ws ∈W s

∑
i∈Nb

Φi(xi,ri)− ∑
(t,m)∈E

Φtm(rtm) (5.36a)

s.t. El j • ∑
s∈Γ(l,j)

Ws − El j • A(x,r) = 0 for (l, j) ∈ J, (5.36b)

where J =
⋃p

s=1 J(2Cs), Γ(l, j) = {s : l ∈ 2Cs, j ∈ 2Cs}∀ (l, j) ∈ J, and El j is defined as in

section 5.2 with m = 2nb.
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The Lagrangian relaxation of problem (5.36) with respect to constraint (5.36b) yields

L(x,r,W,Λ) = ∑
i∈Nb

Φi(xi,ri)− ∑
(t,m)∈E

Φtm(rtm)

+ ∑
(l,j)∈J

Λl j

El j • ∑
s∈Γ(l,j)

Ws − El j •
(

∑
i∈Nb

Ỹi(xi,ri) + ∑
(t,m)∈E

Ỹtm(rtm)

)
= ∑

i∈Nb

Φi(xi,ri)− ∑
(l,j)∈J

Λl jEl j • Ỹi(xi,ri)


+ ∑

(t,m)∈E

−Φtm(rtm)− ∑
(l,j)∈J

Λl jEl j • Ỹtm(rtm)


+

p

∑
s=1

∑
(l,j)∈J(2Cs)

Λl jEl j •Ws. (5.37)

Smoothing the Lagrangian with scaled prox-functions dxi ,ri , drtm , and dWs , where possible

choices are dWs(Ws) = (σWs /2)‖Ws‖2
F, dxi ,ri(xi,ri) = (σxi ,ri /2)‖xi‖2 + (σxi ,ri /2)‖ri‖2

F, and

drtm(rtm) = (σrtm /2)‖rtm‖2
F, yields the smooth and concave augmented dual function

fc(Λ) = ∑
i∈Nb

max
xi∈Xi , ri∈Ri

Φi(xi,ri)− ∑
(l,j)∈J

Λl jEl j • Ỹi(xi,ri)− cdxi ,ri(xi,ri)


+ ∑

(t,m)∈E
max

rtm∈Rtm

−Φtm(rtm)− ∑
(l,j)∈J

Λl jEl j • Ỹtm(rtm)− cdrtm(rtm)


+

p

∑
s=1

max
Ws∈W s

 ∑
(l,j)∈J(2Cs)

Λl jEl j •Ws − cdWs(Ws)

 . (5.38)

The problems in the right-hand side of the above equation are separable with respect

to each decision variable due to the separability of the objective function and A(x,r) in

(5.36b), however, for the sake of compact notation, we consider here the blocks (xi,ri),

rtm, and Ws.

With Theorem 3.1.1 the partial derivatives of fc are given for (l, j) ∈ J by

∇l j fc(Λ) =El j •

 ∑
s∈Γ(l,j)

Ws(Λ)− ∑
i∈Nb

Ỹi(xi(Λ),ri(Λ))− ∑
(t,m)∈E

Ỹtm(rtm(Λ))

 , (5.39)

where (xi(Λ),ri(Λ)), rtm(Λ), and Ws(Λ) solve the right-hand side of (5.38). To determine

the Lipschitz constant, the constraints in (5.36b) have to be sorted by the primal blocks

(xi,ri), rtm, and Ws to identify the corresponding constraint coefficient matrices for (l, j) ∈
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J as follows:

El j •

 ∑
s∈Γ(l,j)

Ws − A(x,r)


=El j •

 ∑
s∈Γ(l,j)

Ws − ∑
i∈Nb

[
λiYi + λ̄iȲi + µi Mi

]
− ∑

(t,m)∈E

[
2r2

tmYtm + 2r3
tmȲtm

]
=El j •

 ∑
s∈Γ(l,j)

Ws − ∑
i∈Nb

[(
−λmin

i + λmax
i + ai1 + 2

√
ai2r1

i

)
Yi

+
(
−λ̄min

i + λ̄max
i

)
Ȳi +

(
−µmin

i + µmax
i

)
Mi

]
− ∑

(t,m)∈E

[
2r2

tmYtm + 2r3
tmȲtm

])

=El j •

 ∑
s∈Γ(l,j)

Ws + ∑
i∈Nb

[
Yiλ

min
i − Yiλ

max
i + Ȳiλ̄

min
i − Ȳiλ̄

max
i

+ Miµ
min
i −Miµ

max
i − Yi2

√
ai2r1

i − ai1Yi

]
+ ∑

(t,m)∈E

[
−Ytm2r2

tm − Ȳtm2r3
tm
])

=El j • ∑
s∈Γ(l,j)

Ws + ∑
i∈Nb

〈
El j •

(
Yi, −Yi, Ȳi, −Ȳi, Mi, −Mi, −Yi2

√
ai2
)

,(
λmin

i , λmax
i , λ̄min

i , λ̄max
i , µmin

i , µmax
i , r1

i

)〉
− El j • ∑

i∈Nb

ai1Yi

+ ∑
(t,m)∈E

〈
El j •

(
−Ytm2, −Ȳtm2

)
,
(
r2

tm, r3
tm
)〉

=El j • ∑
s∈Γ(l,j)

Ws + ∑
i∈Nb

〈
El j •

(
Yi, −Yi, Ȳi, −Ȳi , Mi,−Mi, 0, −Yi

√
ai2, −Yi

√
ai2, 0

)
,(

λmin
i , λmax

i , λ̄min
i , λ̄max

i , µmin
i , µmax

i , 1, r1
i , r1

i , r2
i

)〉
− El j • ∑

i∈Nb

ai1Yi + ∑
(t,m)∈E

〈
El j •

(
0, −Ytm, −Ȳtm, −Ytm, 0, 0, −Ȳtm, 0, 0

)
,(

r1
tm, r2

tm, r3
tm, r2

tm, r4
tm, r5

tm, r3
tm, r5

tm, r6
tm

)〉
.

Define by EWs ∈ R|J|×nb
2

for s = 1, . . . , p the constraint coefficient matrix of v(Ws) as in

(5.22), i.e.,

(EWs)ik =


(
v(El j)

T)
ik if i = (l, j) ∈ J(2Cs),

0 else ,

and denote by Exi ,ri ∈RJ×10 for i ∈ Nb the constraint coefficient matrix of (xi,v(ri)) with

(Exi ,ri)l j = El j •
(
Yi, −Yi, Ȳi, −Ȳi, Mi, −Mi, 0, −Yi

√
ai2, −Yi

√
ai2, 0

)
for (l, j) ∈ J.
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Moreover, let Ertm ∈RJ×9 for (t,m) ∈ E be the constraint coefficient matrix of v(rtm) with

(Ertm)l j = El j •
(
0, −Ytm, −Ȳtm, −Ytm, 0, 0, −Ȳtm, 0, 0

)
for (l, j) ∈ J.

Then it follows according to Theorem 3.1.1 that the Lipschitz constant of the gradient of

fc(Λ) is given by

Lc =
p

∑
s=1

‖EWs‖2

cσWs
+ ∑

i∈Nb

‖Exi ,ri‖2

cσxi ,ri

+ ∑
(t,m)∈E

‖Ertm‖2

cσrtm

, (5.40)

as described detailed in section 5.2.

To state the DAPCA-EC, let Q = Q11 × . . .× Q2nb2nb ⊂ R|J| be a compact and convex set

that contains an optimal dual multiplier Λopt of the dual problem of problem (5.33), and

consider the augmented dual problem

max
Λ∈Q

fc(Λ).

Choose γ > 1, L−1 ∈ (0, Lc], and the starting point Λ̄0 = Λ0 as the minimum of the sep-

arable prox-function d(Λ) = ∑(l,j)∈J dl j(Λl j), where dl j : Ql j → R+ is an arbitrary prox-

function with convexity parameter σ > 0. Moreover, let Ȳk denote the outdated vector

defined by (3.2.1) and set Ȳ−1 = Λ̄0.

Algorithm 5.3.4. (DAPCA-EC to solve (5.36)) For k ≥ 0 do in parallel:

For i ∈Nb, (t,m) ∈ E , and s = 1, . . . , p, given the required components of Λ̄k, agentxi ,ri , agentrtm ,

and agentWs

1. compute

(xk+1
i ,rk+1

i ) = argmax
xi∈Xi , ri∈Ri

Φi(xi,ri)− ∑
(l,j)∈J

Λ̄k
ljEl j • Ỹi(xi,ri)

− cσxi ,ri

2
‖xi‖2

2 −
σxi ,ri

2
‖ri‖2

F

}
, (5.41)

rk+1
tm =argmax

rtm∈Rtm

−Φtm(rtm)− ∑
(l,j)∈J

Λ̄k
ljEl j • Ỹtm(rtm)

− cσrtm

2
‖rtm‖2

F

}
, (5.42)

Ws,k+1 =argmax
Ws∈W s

 ∑
(l,j)∈J(2Cs)

Λ̄k
ljEl j •Ws − cσWs

2
‖Ws‖2

F

 , (5.43)

and send (xk+1
i ,rk+1

i ), rk+1
tm , and Ws,k+1 to the dual agents that require it.

For (l, j) ∈ J, given the blocks (xk+1
i ,rk+1

i ), rk+1
tm , and Ws,k+1 that are necessary for the computa-

tion of ∇l j fc(Λ̄)k), agentΛl j



5.3 Application of the DAPCA-EC to the AC-OPF problem 105

2. computes

∇l j fc(Λ̄k) = ∑
s∈Γ(l,j)

El j •Ws,k+1 − ∑
(l,j)∈J

El j • ∑
i∈Nb

Ỹi(xk+1
i ,rk+1

i )

− ∑
(l,j)∈J

El j • ∑
(t,m)∈E

Ỹtm(rk+1
tm ).

and sets Lk = Lk−1,

3. finds

Yk
lj = argmin

Yl j∈Ql j

{
∇l j fc(Λ̄k)Yl j + Lk∆k

(
ηl j + 1

) ∣∣∣Yl j −Λk
lj

∣∣∣+ Lk

2

(
Yl j −Λk

lj

)2
}

.

4. if Lk < Lc then

(a) agentΛl j sends Ȳk
lj to the primal agents that require it if necessary:

if
∣∣∣Ȳk−1

l j −Yk
lj

∣∣∣ > Lk
Lc

∆k then

agentΛl j sets Ȳk
lj = Yk

lj and sends Ȳk
lj.

else

agentΛl j sets Ȳk
lj = Ȳk−1

l j and signals that no data will be sent.

For i ∈ Nb, (t,m) ∈ E , and s = 1, . . . , p, given the required components of Ȳk, agentxi ,ri ,

agentrtm and agentWs

(b) compute

(yk+1
i ,qk+1

i ) = argmax
xi∈Xi , ri∈Ri

Φi(xi,ri)− ∑
(l,j)∈J

Ȳk
ljEl j • Ỹi(xi,ri)

− cσxi ,ri

2
‖xi‖2

2 −
σxi ,ri

2
‖ri‖2

F

}
, (5.44)

qk+1
tm =argmax

rtm∈Rtm

−Φtm(rtm)− ∑
(l,j)∈J

Ȳk
ljEl j • Ỹtm(rtm)

− cσrtm

2
‖rtm‖2

F

}
, (5.45)

Vs,k+1 =argmax
Ws∈W s

 ∑
(l,j)∈J(2Cs)

Ȳk
ljEl j •Ws − cσWs

2
‖Ws‖2

F

 , (5.46)

and send (yk+1
i ,qk+1

i ), qk+1
tm , and Vs,k+1 to the dual agents that require it.
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For (l, j) ∈ J, given the blocks (yk+1
i ,qk+1

i ), qk+1
tm , and Vs,k+1 that are necessary for the

computation of ∇l j fc(Ȳk), agentΛl j

(c) computes

∇l j fc(Ȳk) = ∑
s∈Γ(l,j)

El j •Vs,k+1 − ∑
(l,j)∈J

El j • ∑
i∈Nb

Ỹi(yk+1
i ,qk+1

i )

− ∑
(l,j)∈J

El j • ∑
(t,m)∈E

Ỹtm(qk+1
tm ).

and checks with consensus (section 2.4)

if

Lk

2 ∑
(l,j)∈J

(
Yk

lj −Λk
lj

)2
≥ ∑

(l,j)∈J

(
∇l j f (Ȳk)−∇l j f (Λ̄k)

)(
Yk

lj −Λk
lj

)
then

continues with step 5,

else

sets Lk = Lkγ and goes to step 3,

5. finds Zk
lj = argmin

Zl j∈Ql j

{
Lk

σ
dl j(Zl j) +

k

∑
t=0

t + 1
2
∇l j fc(Λ̄t)Zl j

}
,

6. sets Λk+1
l j =

2
k + 3

Zk
lj +

k + 1
k + 3

Yk
lj,

7. and sends Λ̄k+1
l j to the primal agents that request it if necessary:

if
∣∣∣Λ̄k

lj −Λk+1
l j

∣∣∣ > ∆k+1 then

agentΛl j sets Λ̄k+1
l j = Λk+1

l j and sends Λ̄k+1
l j .

else

agentΛl j sets Λ̄k+1
l j = Λ̄k

lj and signals that no data will be sent.

Regarding our desire to keep the communication local (or close to local) with respect

to the branches of the considered power system, we identify agentΛl j for (l, j) ∈ J with

agentxl ,rl if l ∈ Nb and with agentx(l−nb)
,r(l−nb)

if l ∈ 2Nb \ Nb and choose the topology of

the multi-agent network to coincide with the topology of the considered power system

network. This setting is favorable as according to Remark 5.3.3 the index pair (l, j) ∈ J

can be identified with a branch in the power system if it is chordal.

Regarding the communication exchange of the consensus iterations in step 4 c) of Algo-

rithm 5.3.4, we recall that it is determined by a symmetric Matrix A that is compatible

to the multi-agent network of agentΛ11 , ..., agentΛ2nb2nb
, i.e., the information exchange is

local in the consensus phase with respect to the branches of the considered power system
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network. Moreover, as described above, the four cornered nb× nb blocks of Ỹi(xi,ri) and

Ỹtm(rtm) in (5.33b) satisfy the first point in Assumptions 5.2.1 for the chosen multi-agent

network, and with Remark 5.3.3 it follows that the overall information exchange in Algo-

rithm 5.3.4 can be kept local with respect to the branches of the power system network if

it is chordal as detailed in section 5.2, or close to local (cf. Remark 5.2.2 and Remark 5.2.4)

if the power system is not chordal.

Finally, the analytical solutions of the subproblems in steps 1, 3, 4 b), and 5 of Algorithm

5.3.4 can be determined according to Example 2.2.6 and the description in section 5.2,

where the analytical solution for Ws,k+1 (and accordingly for Vs,k+1) is given. The same

approach can be applied to determine rk+1
tm (and qk+1

tm ). However, the analytical solution

for (xk+1
i ,rk+1

i ) (and (yk+1
i ,qk+1

i )) is more difficult to obtain and will be derived in the fol-

lowing. To this end, we decompose the right-hand side of (5.41) into smaller problems

that can be solved in parallel and obtain

(xk+1
i ,rk+1

i ) = argmax
xi∈Xi , ri∈Ri

Φi(xi,ri)− ∑
(l,j)∈J

Λ̄k
ljEl j • Ỹi(xi,ri)−

σxi ,ri

2
‖xi‖2

2 −
σxi ,ri

2
‖ri‖2

F


= argmax

xi∈Xi , ri∈Ri

{
λmin

i Pmin
i − λmax

i Pmax
i +

(
−λmin

i + λmax
i + ai1 + 2

√
ai2r1

i

)
Pd

i

+ λ̄min
i Qmin

i − λ̄max
i Qmax

i +
(
−λ̄min

i + λ̄max
i

)
Qd

i + µmin
i Vmin

i
2 − µmax

i Vmax
i

2

+ ai0 − r2
i − ∑

(l,j)∈J
Λ̄k

ljEl j •
[(
−λmin

i + λmax
i + ai1 + 2

√
ai2r1

i

)
Yi

+
(
−λ̄min

i + λ̄max
i

)
Ȳi +

(
−µmin

i + µmax
i

)
Mi

]
− σxi ,ri

2
‖xi‖2

2 −
σxi ,ri

2
‖ri‖2

F

}
.

Further decomposition yields

λmink+1

i =argmax
λmin

i ∈X1
i


Pmin

i − Pd
i + ∑

(l,j)∈J
Λ̄k

ljEl j • Yi

λmin
i − cσxi ,ri

2
(λmin

i )
2

 ,

λmaxk+1

i =argmax
λmax

i ∈X2
i


−Pmax

i + Pd
i − ∑

(l,j)∈J
Λ̄k

ljEl j • Yi

λmax
i − cσxi ,ri

2
(λmax

i )2

 ,

λ̄mink+1

i =argmax
λ̄min

i ∈X3
i


Qmin

i −Qd
i + ∑

(l,j)∈J
Λ̄k

ljEl j • Ȳi

 λ̄min
i − cσxi ,ri

2
(λ̄min

i )2

 ,

λ̄maxk+1

i =argmax
λ̄max

i ∈X4
i


−Qmax

i + Qd
i − ∑

(l,j)∈J
Λ̄k

ljEl j • Ȳi

 λ̄max
i − cσxi ,ri

2
(λ̄max

i )2

 ,

µmink+1

i =argmax
µmin

i ∈X5
i


Vmin

i
2
+ ∑

(l,j)∈J
Λ̄k

ljEl j •Mi

µmin
i − cσxi ,ri

2
(µmin

i )2

 ,
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µmaxk+1

i =argmax
µmax

i ∈X6
i


−Vmax

i
2 − ∑

(l,j)∈J
Λ̄k

ljEl j •Mi

µmax
i − cσxi ,ri

2
(µmax

i )2

 ,

rk+1
i =argmax

ri∈Ri


2
√

ai2Pd
i − ∑

(l,j)∈J
Λ̄k

ljEl j • 2
√

ai2Yi

 r1
i − r2

i −
cσxi ,ri

2
‖ri‖2

F

 , (5.47)

where

Ri =
{

r ∈ S4
+ : r � I4Rri ∧ r11 = 1

}
.

As it is straightforward to determine analytical solutions for the iterates λmink+1

i , . . . ,µmaxk+1

i ,

we will only provide the analytical solution for rk+1
i in the following:

Lemma 5.3.5.

Subproblem (5.47) has the optimal solution

r1,k+1
i = min

(√
Rri − 1, 3

√
ã

4cσxi ,ri

+
√

D + 3

√
ã

4cσxi ,ri

−
√

D

)
and r2,k+1

i =
(

r1,k+1
i

)2
,

where

ã =

2
√

ai2Pd
i − ∑

(l,j)∈J
Λ̄l jEk

lj • 2
√

ai2Yi

 and D =

(
− ã

4cσxi ,ri

)2

+

(
cσxi ,ri + 1

3cσxi ,ri

)3

.

Proof. The application of the Schur complement in combination with [Zha05, Theo. 1.12]

yields that (5.47) can be rewritten with x = r1
i and y = r2

i as follows if Rri > 1:

ri
k+1 =argmax

x,y

{
ãx− y− cσxi ,ri

2
y2 − cσxi ,ri x

2
}

(5.48)

s.t. y− x2 ≥ 0,

Rri − y− x2

Rri − 1
≥ 0.

Let (xopt,yopt) be the optimal solution of (5.48) and assume that yopt > (xopt)
2. It follows

that

ãxopt − cσxi ,ri

(
xopt)2 − yopt − cσxi ,ri

2
(
yopt)2

<ãxopt − cσxi ,ri

(
xopt)2 −

(
xopt)2 − cσxi ,ri

2
(
xopt)4 .

Moreover, we have (
xopt)2 −

(
xopt)2 ≥ 0,

Rri −
(

xopt)2 − (xopt)
2

Rri − 1
≥ Rri − yopt − (xopt)

2

Rri − 1
≥ 0.
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This contradicts that (xopt,yopt) is an optimal solution of (5.48). It follows that we can

consider instead of (5.48) the equivalent problem

argmax
x

{
ãx− (cσxi ,ri + 1) x2 − cσxi ,ri

2
x4
}

(5.49)

s.t. x ≤
√

Rri − 1, (5.50)

where (5.50) is obtained by

Rri − x2 − x2

Rri − 1
= Rri − x2

(
Rri

Rri − 1

)
. (5.51)

As the objective function of (5.49) is strictly concave, the unique optimal solution xopt can

be found by determining the root of the cubic polynomial

f (x) = x3 +

(
cσxi ,ri + 1

cσxi ,ri

)
︸ ︷︷ ︸

=p

x +

(
− ã

2cσxi ,ri

)
︸ ︷︷ ︸

=q

= 0. (5.52)

To this end Cardano’s method can be applied [Fis13, sec. 5.2]: As f (x) has a negative

discriminant

∆( f ) = −(4p3 + 27q2),

equation (5.52) has exactly one real solution and the optimum xopt is obtained by

xopt = min

√Rri − 1,
3

√
− q

2
+

√( q
2

)2
+
( p

3

)3
+

3

√
− q

2
−
√( q

2

)2
+
( p

3

)3

 .

Finally, we sketch how step 2 and step 3 of Algorithm 5.3.2 can be implemented in paral-

lel by using only neighborhood information.

Starting with step 2, the following optimization problem can be considered in order to

distributedly find a nonzero vector (vT
1 ,vT

2 )
T 6= 0 in the kernel of A(xopt,ropt) (Michael

Ulbrich, personal communication, July 16, 2013):

min
v∈R2nb

qTv +
σv

2
‖v‖2 s.t. A(xopt,ropt)v = 0, (5.53)

where the optimal solution vopt of (5.53) satisfies vopt 6= 0 if q /∈ range(A(xopt,ropt)).

Moreover, problem (5.53) is convex with a separable objective function and coupled lin-

ear constraints, i.e., it can be solved distributedly with event-triggered and local commu-

nication by the application of the DAPCA-EC 3.2.2. Here, the strongly convexity of the
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objective function of (5.53) makes a smoothing of the dual function unnecessary. There-

fore, it is possible to allow v ∈ R2nb in (5.53) as a straightforward revision of the corre-

sponding convergence proofs shows. Moreover, the application of the DAPCA-EC 3.2.2

ensures that the variables v1i and v2i are only known at bus i ∈ Nb.

According to [LL10, LL12], the scalars ζ1, ζ2 ∈R in step 3 of Algorithm 5.3.2, that satisfy

Vopt = (ζ1 + jζ2)(v1 + jv2), can be found by solving two equations of the abovementioned

system (
v1 −v2

v2 v1

)(
ζ1

ζ2

)
=

(
Re{Vopt}
Im{Vopt}

)
.

Following [LL10, LL12] (and Javad Lavaei, personal communication, August 1, 2013),

these equations can be obtained by letting the swing bus i ∈ Nb coincide with a bus,

where the voltage constraint is active in the optimum, and an agent placed at the corre-

sponding bus i can determine ζ1 and ζ2 by solving(
v1i −v2i

v2i v1i

)(
ζ1

ζ2

)
=

(
Vmin

i ( or Vmax
i )

0

)
.

After that ζ1 and ζ2 are spread through the network. In contrast to a centralized approach,

where Vopt is determined by a single entity and then spread through the network, the

value of v1i and v2i is only known at the corresponding bus i ∈Nb in a distributed imple-

mentation of Algorithm 5.3.2.

Finally, Pgopt

i and Qgopt

i for i ∈ Ng can be computed locally with each agent using neigh-

borhood information according to the power balance equation (4.15b) as

Vi I∗i = Vi ∑j∈N(i)Ybus
ij
∗V∗j , where N(i) is the set of buses that are connected to bus i by a

branch.

Remark 5.3.6.

In [LZT12, DZG13], OPF problems are solved distributedly by the application of semidefinite

matrix completion as well. In this works, however, a matrix completion technique (which differs

from the range-space conversion method for the decomposition of an LMI) is used to decompose a

matrix variable of an SDP that relaxes the OPF problem by neglecting a rank-1 constraint and for

which equivalence of the optimal solutions can be shown if the considered network has a special

structure (e.g., tree or lossless cycle [LZT12]). In [LZT12], two algorithms (primal and dual) are

proposed that use a (sub)gradient scheme, whereas in [DZG13] the alternating direction method

of multipliers is used. Similarly, the domain-space conversion method [KKMY11] is applied in

[Jab12] for the decomposition of a matrix variable to reduce the computation time of a primal-dual

interior-point solver that is applied to solve an OPF relaxation in semidefinite form.
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This chapter follows our numerical investigation of the DPCA-EC applied to the DC-OPF prob-

lem in [MUA14, sec. 4] (Meinel, Ulbrich, and Albrecht) and significantly extends it. Moreover,

the results that are related to the AC-OPF problem are in preparation for publication in [MU14]

(Meinel and Ulbrich).

In this chapter, the numerical results of the DAPCA-EC applied to the DC-OPF problem

(5.1) and the dual of the AC-OPF problem (5.32) are presented. More precisely, the IEEE

benchmark test cases are considered for the analysis of the DPCA-EC (DAPCA-EC 3.2.2

with L−1 = Lc) applied to the DC-OPF problem. The IEEE test cases are archived at [Uni]

and represent portions of the American Electric Power System in the Midwestern US,

where here the portions with 14, 30, and 57 buses are considered. The data for these test

cases were obtained in this work with MATPOWER [ZMST11] which is a free scientific

tool for power flow analysis in MATLAB. (Moreover, Javad Lavaei was so friendly to

send us his model data for the IEEE 57 bus test case (related to [LL12]) for comparison,

personal communication, August 26, 2013). Partly, the data needed to be converted to

per unit, see for instance [ST06, sec. 3.1] and [BV00, sec. 5.5].

The implementation of the different versions of the DAPCA-EC was done in this work

with MATLAB R2014a [Mat14]. Additionally, the modeling toolbox YALMIP [L0̈4] for

optimization problems together with the solver SDPT3 [TTT99] were used to compute

the optimal solutions to the DC-OPF problems and the duals of the AC-OPF problems, as

well as the corresponding optimal dual multipliers as reference values for the determina-

tion of the primal gap and the constraint violation at the approximate solutions obtained

with the DAPCA-EC. SDPT3 is a semidefinite programming solver that is recommended

in the YALMIP Wiki. Finally, concerning the decomposition of the dual of the AC-OPF

problem as described in section 5.3 , the chordal extension of the graph that represents

the sparsity structure of LMI (5.33b) was determined according to Remark 5.2.2 with the

MATLAB functions chol.m and amd.m to obtain a chordal extension with minimal addi-

tional edges. Moreover, the maximal cliques of the chordalized graph were computed

with the MATLAB function maximalCliques provided by Jeffrey Wildman.

111
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In the following sections, the subsequent steps are carried out for each test case to inves-

tigate the DAPCA-EC.

In the first step, the PCA 3.1.2 is compared with the DPCA-EC to find out to what extent

the communication exchange can be reduced by the usage of event-triggered communi-

cation for a pre-given number of iterations according to Theorem 3.1.5. Moreover, the

comparison is repeated with a stopping-criterion for the primal gap and the constraint

violation, to firstly investigate the tightness of the pre-given number of iterations in The-

orem 3.1.5, and to secondly find out if there is a trade-off between the communication

savings due to the usage of event-triggered communication and the necessary number of

iterations to obtain a desired accuracy.

In the second step, the same stopping criterion is used to investigate how the adaptive

step-size strategy in the DAPCA-EC helps to reduce the number of iterations compared

to the DPCA-EC. Furthermore, the impact of event-triggered communication in combi-

nation with the adaptive step-size strategy is studied. Finally, as the application of the

consensus technique in step 4 c) of the DAPCA-EC 3.2.2 can be a bottleneck regarding

the computation time, it is examined if the algorithm still converges if the Lk-updates in

step 4 c) are not allowed in every iteration.

The numerical results are presented in the following sections with numerous tables to

provide a compact overview. To this end, the following abbreviations are used:

PG : primal gap at approximate solution,

CV : constraint violation at approximate solution,

NoI : number of iterations of the DAPCA-EC,

NoCI : number of consensus iterations of the DAPCA-EC,

TC : total communication (number of exchanged primal and dual iterates plus exchanged

iterates in the consensus phase if the DAPCA-EC is considered),

DC : dual communication (number of exchanged dual iterates),

CC : consensus communication (number of exchanged iterates in the consensus phase),

Lk-Up : number of Lk-updates in the DAPCA-EC,

Lmax
k : maximal Lk in the DAPCA-EC,

MCTpA : maximal computation time per agent in seconds.
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6.1 Choice of parameters for the DAPCA-EC

For the implementation of the different versions of the DAPCA-EC, the convexity pa-

rameters of the prox-functions, that are used to smoothen the dual functions, were cho-

sen optimally as described in section 3.1.1, resulting in a minimal Lipschitz constant and

thus reducing the necessary number of iterations according to the convergence results

derived in this work. As the convergence result of the PCA in Theorem 3.1.5 builds the

basis of comparison in the first step of the numerical investigation, the scaling technique

described in section 3.1.1 was used to balance the bounds in Theorem 3.1.5. The scaling

factor s and the accuracy ε were chosen in a way that the absolute values of the upper

and lower bound on the primal gap

−1
s
∥∥(µ,λ)opt∥∥(1

s
∥∥(µ,λ)opt∥∥+√ 1

s2 ‖(µ,λ)opt‖2 + 2

)
ε ≤

n

∑
i=1

Φi(x̂i)− f opt ≤ ε (6.1)

are approximately 1/100 of the absolute value of the primal gap at the starting point

which is zero (with appropriate dimension) according to the choice of the prox-function

in the initialization of Algorithm 5.1.1 and Algorithm 5.3.4. To give an example, if the pri-

mal gap at the starting point is −0.5 the choice ε = 0.005 yields an upper bound in (6.1)

that is 1/100 of the absolute value of the primal gap at the starting point. Moreover, s has

to be chosen such that the lower bound in (6.1) is approximately −0.005 for ε = 0.005.

Regarding the choice of the threshold ∆k = βδk, which describes the extend of event-

triggered communication, numerical tests showed that the results are comparable if ei-

ther both parameters β and δ are varied or only one of them. For the ease of presentation

only the parameter β was varied in this work for all test cases and the parameter δ was

chosen as

δkfin/2 = 0.025, (6.2)

where kfin is the necessary number of iterations that is given by Theorem 3.1.5 to achieve

the required accuracy for given ε and s. This choice is done in order to prevent δk from

getting to small (> 0.025) before half of the necessary iterations are executed. Numerical

tests showed that with this choice of δ, the potential of event-triggered communication

can be fully unlocked by solely varying the parameter β.
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Finally, for the step-size initialization of the DAPCA-EC 3.2.2, the update parameter γ > 1

and the starting value L−1 ∈ (0, Lc) were chosen as follows, where Lc is the Lipschitz

constant of the gradient of the augmented dual function, given by (5.8) concerning the

DC-OPF problem, and by (5.40) regarding the dual of the AC-OPF problem:

For a given test case and

(γ, L−1) ∈ {1.01,1.1,1.2,1.5,2,3} ×
{

10−1, . . . ,10−6
}

Lc (6.3)

the results of the DAPCA-EC for ∆k = 0, i.e., without event-triggered communication,

were compared with respect to the number of iterations, the number of consensus itera-

tions and the computation time. The range of γ in (6.3) gives the amount by which Lk is

raised in step 4 c) of the DAPCA-EC if an update is necessary, i.e., by 1 %, . . . ,300 %. The

pair (γ, L−1) with the best results were chosen for further investigation of the DAPCA-

EC.

6.2 IEEE 57 bus test case (DC-OPF)

In this section, the numerical results of the application of the DAPCA-EC to the DC-OPF

problem (5.1) are exemplarily discussed for the IEEE 57 bus test case [ZMS11, Uni] with 7

generators and 80 branches. The results for the IEEE test cases with 14 and 30 buses from

[ZMS11, Uni] can be found in the appendix 7.

Firstly, we compare the results of the PCA 3.1.2 with the results of the DPCA-EC (DAPCA-

EC 3.2.2 with L−1 = Lc) that are given in Table 6.1, to find out to what extent the commu-

nication exchange can be reduced by the usage of event-triggered communication.

Regarding the optimal dual multipliers (µ,λ)opt ∈R57+160, we have ‖(µ,λ)opt‖= 31.4364

and according to Theorem 3.1.5 combined with the scaling technique described in section

3.1.1, the choice ε = 0.4 and s = 62 yields the following bounds on the primal gap:

−0.4075 = −1
s
∥∥(µ,λ)opt∥∥(1

s
∥∥(µ,λ)opt∥∥+√ 1

s2 ‖(µ,λ)opt‖2 + 2

)
ε

≤ ∑
i∈Ng

Ci

(
P̂g

i

)
− f opt

c ≤

ε = 0.4,

(6.4)

and the following bound on the constraint violation:∥∥∥∥∥∥∥∥
Bbusθ̂ − IgP̂g + P̃d[

Wincθ̂ − Fmax

Fmin −Wincθ̂

]+
∥∥∥∥∥∥∥∥ ≤

ε

s

(
1
s
∥∥(µ,λ)opt∥∥+√ 1

s2 ‖(µ,λ)opt‖2 + 2

)
= 0.013, (6.5)
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where

P̂g =
kfin

∑
j=0

2(j + 1)
(kfin + 1)(kfin + 2)

Pg,j+1 ∈Rng and θ̂ =
kfin

∑
j=0

2(j + 1)
(kfin + 1)(kfin + 2)

θ j+1 ∈Rnb (6.6)

are the convex sums of the primal iterates and kfin = 130957 is the number of necessary

iterations given by Theorem 3.1.5. It follows for the choice of δ in the threshold ∆k = βδk

that

δkfin/2 = 0.025

is satisfied by δ ≈ 0.9999. As described in section 6.1, ε and s were chosen such that

the absolute values of the bounds on the primal gap in (6.4) are approximately 1/100 of

the primal gap at the starting point (µ,λ)0 = 0 ∈ R57+160 which is −41.0067. This value

coincides with the negative of the optimal function value f opt
c as Pg,1 = 0 ∈ Rng and for

each i ∈ Ng one has ai0 = 0 in the quadratic power generation cost function Ci(Pg
i ) (4.14).

Finally, the constraint violation at the starting point is 4.4571.

For a better overview, the above figures are resumed in the following list:

IEEE 57 bus test case (DC-OPF):

• Dimension of primal and dual variable space:

primal: 57 + 7 = 64, dual: 57 + 160 = 217,

• Accuracy ε = 0.4 and scaling factor s = 62,

• Norm of optimal dual multipliers: ‖(µ,λ)opt‖ = 31.4364,

• Necessary number of iterations (Theorem 3.1.5): kfin = 130957,

• Bounds on primal gap at approximate solution (Theorem 3.1.5):

lower bound: − 0.4075, upper bound: 0.4, (6.7)

• Bound on constraint violation at approximate solution (Theorem 3.1.5):

0.013, (6.8)

• Primal gap at starting point (µ,λ)0 = 0 ∈R57+160: −41.0067 = − f opt
c ,

• Constraint violation at starting point: 4.4571,

• Threshold for event-triggered communication (6.2): ∆k ≈ β · 0.9999k.
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The abbreviations used in Table 6.1 and the following tables are given in the introduc-

tion of this chapter. The results in Table 6.1 are similar to the results in [MUA14, Table 1],

where we, however, considered a different objective function and a simpler model for the

DC-OPF problem. However, the impact of even-triggered communication is the same:

In row 1 of Table 6.1, we see the result of the PCA 3.1.2 implemented in a distributed man-

ner without event-triggered communication which means that all iterates are exchanged

in every iteration, however, the exchange is local according to the discussion on the com-

munication topology of the multi-agent network in section 5.1. As expected, the primal

gap (column 3) and the constraint violation at the approximate solution (column 4) of the

PCA satisfy the bounds (6.7) and (6.8) according to Theorem 3.1.5.

In row 2 of Table 6.1, the result of the DPCA-EC is given for the threshold ∆k = 0 ·
0.9999k = 0 which means that an iterate is sent by a controlling agent only if it differs

from the previous iterate. This version of the DPCA-EC coincides with a not naive im-

plementation of the PCA, where an iterate is send only if it provides new information.

Obviously, the primal gap and the constraint violation in row 2 are the same as in row 1

as identical information is used in the optimization process, however, without explicitly

using event-triggered communication, the saving regarding the total communication is

33 % (column 5) and regarding the dual communication 67 % (column 6). This is due

to the fact that we have λopt = 0 ∈ R160 and according to the choice of the starting point

(µ,λ)0, the corresponding iterates stay zero in the optimization process and do not have

to be exchanged.

If event-triggered communication is introduced by choosing β > 0, the results in row 3 -

7 of Table 6.1 show that the total communication can be reduced by up to 42 % and the

dual communication by up to 76 %, still satisfying the bounds on the primal gap (6.7) and

the constraint violation (6.8). If β is chosen larger as in row 8 and 9, the communication

savings are bigger too, however, the bound on the constraint violation is not satisfied

anymore by the approximate solutions of the DPCA-EC.

To see the pure impact of event-triggered communication, the same results are given in

Table 6.2 with the difference that the communication savings are considered in relation

to the result of the DPCA-EC with β = 0.

It can be seen by the results in row 2 - 6 of Table 6.2 that the total communication can

still be reduced by up to 13 % and the dual communication by up to 27 %, satisfying the

bounds on the primal gap (6.7) and the constraint violation (6.8) which is quite a great

saving, considering the fact that 160 of 217 dual iterates do not need to be exchanged in

every iteration, even if no event-triggered communication is used. Moreover, the maxi-

mal computation time that an agent needs is given in the last column of Table 6.2.
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β PG CV TC DC

1 - -0.1094 0.0035 1.3e8 (100 %) 6.3e7 (100 %)

2 0 -0.1094 0.0035 8.4e7 (67 %) 2.1e7 (33 %)

3 1e-6 -0.1135 0.0036 8.3e7 (66 %) 2.0e7 (32 %)

4 5e-6 -0.0985 0.0032 8.1e7 (65 %) 1.9e7 (30 %)

5 1e-5 -0.1186 0.0039 8.0e7 (64 %) 1.8e7 (29 %)

6 5e-5 -0.0567 0.0051 7.6e7 (60 %) 1.6e7 (26 %)

7 1e-4 -0.1273 0.0093 7.3e7 (58 %) 1.5e7 (24 %)

8 5e-4 -0.0747 0.0385 6.5e7 (52 %) 1.3e7 (20 %)

9 1e-3 -0.0662 0.0520 6.0e7 (48 %) 1.2e7 (18 %)

Table 6.1: Results of the DPCA-EC – IEEE 57 bus (DC-OPF)

β PG CV TC DC MCTpA

1 0 -0.1094 0.0035 8.4e7 (100 %) 2.1e7 (100 %) 6.9

2 1e-6 -0.1135 0.0036 8.3e7 (99 %) 2.0e7 (96 %) 7.1

3 5e-6 -0.0985 0.0032 8.1e7 (97 %) 1.9e7 (89 %) 7.1

4 1e-5 -0.1186 0.0039 8.0e7 (96 %) 1.8e7 (87 %) 7.1

5 5e-5 -0.0567 0.0051 7.6e7 (90 %) 1.6e7 (77 %) 6.8

6 1e-4 -0.1273 0.0093 7.3e7 (87 %) 1.5e7 (73 %) 6.8

7 5e-4 -0.0747 0.0385 6.5e7 (77 %) 1.3e7 (61 %) 6.7

8 1e-3 -0.0662 0.0520 6.0e7 (72 %) 1.2e7 (55 %) 6.5

Table 6.2: Results of the DPCA-EC – IEEE 57 bus (DC-OPF)

In the next step, we investigate the impact of event-triggered communication if the fol-

lowing stopping criterion is used in the DPCA-EC instead of the pre-given number kfin =

130957 of iterations which may not be necessary to obtain the primal gap of −0.1094 and

the constraint violation of 0.0035 in row 1 of Table 6.2.

To this end, let

P̂g =
k

∑
j=0

2(j + 1)
(k + 1)(k + 2)

Pg,j+1 ∈Rng and θ̂ =
k

∑
j=0

2(j + 1)
(k + 1)(k + 2)

θ j+1 ∈Rnb , (6.9)

be the approximate solutions after k iterations.
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DAPCA-EC stopping criterion for the IEEE 57 bus test case (DC-OPF):

For k ≥ 0

if

|primal gap at (6.9)| ≤ 0.1094 and constraint violation at (6.9) ≤ 0.0035 (6.10)

then

stop.

else

continue.

In Table 6.3, the results of the DPCA-EC with stopping criterion (6.10) are presented. The

result in row 1 shows that only 1.2467e5 iterations (column 3) are needed to compute an

approximate solution without even-triggered communication which satisfies the same

primal gap and constraint violation as the solution in row 1 of Table 6.2. This is not sur-

prising as the application of the (adaptive) Nesterov-Algorithm in the DAPCA-EC does

not guarantee monotonically increasing dual function values.

As can be seen in row 2 and 3 of Table 6.3, event-triggered communication does not nec-

essarily result in a higher number of iterations, compared to the result in row 1, if β in

the threshold ∆k = βδk is chosen small enough. Additionally, row 4 - 6 of Table 6.3 show

that the information exchange can still be reduced even if the number of iterations is

higher compared to the result obtained without event-triggered communication in row

1. However, if β is chosen to large, as in row 7 and 8, the error in the event-triggered

communication becomes so big that even more communication is required compared to

row 1.

β NoI TC DC MCTpA

1 0 1.2467e5 8.0e7 (100 %) 2.0e7 (100 %) 6.7

2 1e-6 1.1907e5 7.5e7 (94 %) 1.8e7 (91 %) 6.5

3 5e-6 1.2299e5 7.6e7 (95 %) 1.7e7 (87 %) 6.6

4 1e-5 1.2640e5 7.7e7 (97 %) 1.7e7 (87 %) 6.8

5 5e-5 1.2965e5 7.5e7 (94 %) 1.6e7 (80 %) 6.8

6 1e-4 1.4384e5 8.1e7 (102 %) 1.7e7 (87 %) 7.6

7 5e-4 1.8622e5 1.0e8 (126 %) 2.2e7 (108 %) 9.6

8 1e-3 2.0254e5 1.1e8 (133 %) 2.3e7 (115 %) 10.4

Table 6.3: Results of DPCA-EC with stopping criterion (6.10) – IEEE 57 bus (DC-OPF)



6.2 IEEE 57 bus test case (DC-OPF) 119

Finally, the results of the DAPCA-EC 5.1.1 are given in Table 6.4 for the step-size pa-

rameters γ = 1.5 and L−1 = 10−4Lc which were selected among the candidates in (6.3)

as described in section 6.1. For the IEEE 57 bus DC-OPF problem, the corresponding

Lipschitz constant is

Lc = 1.7149e9 (6.11)

according to (5.9). Moreover, for the computation of the results that are given in Table 6.4,

the stopping criterion (6.10) was used to find out to what extent the number of iterations

can be reduced by the adaptive step-size strategy in the DAPCA-EC compared to the re-

sults of the DPCA-EC in Table 6.3 which are obtained with the same stopping criterion.

Indeed, as can be seen in row 1 of Table 6.4 that only 3.1e4 iterations are needed to com-

pute a solution without event-triggered communication which is a decrease compared to

the number of iterations of the DPCA-EC in row 1 of Table 6.3 by approximately 75 %.

In column 5 of the first row of Table 6.4, the maximal Lk is given by 1.1e8 obtained after

16 Lk-updates (step 4 c) of the DAPCA-EC 5.1.1). In other words, the smallest step-size

in the DAPCA-EC, which is the inverse of Lmax
k , is approximately 15 times bigger than

the inverse of the Lipschitz constant Lc (6.11) which is the step-size in the DPCA-EC as

described in Remark 2.3.1. However, due to the large number of consensus iterations

(column 6), to control the step-size distributedly in the DAPCA-EC 5.1.1, the consensus

information exchange (column 9) is large too which results in a total information ex-

change (column 7) that is bigger compared to the results in Table 6.3. Accordingly, the

maximal computation time of an agent (last column) is with 120.8 seconds bigger as well.

So, if no event-triggered communication is used, the consensus technique (section 2.4)

is clearly a bottle-neck regarding the computation time as well as the amount of infor-

mation exchange. However, concerning the number of iterations of the DAPCA-EC, the

adaptive step-size strategy yields a reduction of up to 75 % which would save 75 % of the

computation time as well if the algorithm would be implemented centrally.

Remarkably, the results in row 2 - 8 of Table 6.4 show that the application of event-

triggered communication can reduce the consensus communication drastically by up to

99% (row 2). This can be explained by the fact that the usage of outdated dual multipliers

in (5.11) makes consensus iterations unnecessary if the right-hand side in (5.11) becomes

zero due to (ū, h̄)k = (µ̄, λ̄)k. As the outdated dual iterates (ū, h̄)k and (µ̄, λ̄)k correspond

both to the dual multipliers (µ,λ), it follows that equality (ū, h̄)k = (µ̄, λ̄)k is satisfied

much more often compared to the case, where by β = 0 no event-triggered communica-

tion is used.

However, regarding the maximal computation time, only for the choice β = 1e− 6 a result

was obtained in 6.3 seconds which is slightly faster compared to the results obtained with
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the DPCA-EC in Table 6.3. If β is chosen larger, as can be seen in row 3 - 8, the number

of iterations and the computation times are larger compared to the results in Table 6.3 as

well.

To sum it up, even if event-triggered communication in combination with the consensus

technique can reduce the total information exchange as well as the maximal computation

time by up to 95 % compared to the result computed without event-triggered commu-

nication in row 1, the consensus technique is clearly a bottle-neck in the DAPCA-EC.

As a result, the application of the DAPCA-EC 5.1.1 yields only for very tight thresholds

∆k = βδk approximate solutions that are slightly better than the solutions obtained by

the DPCA-EC with respect to the amount of information exchange and the computation

time. However, the DAPCA-EC needs much less iterations compared to the DPCA-EC

which was the main goal of the application of the adaptive step-size strategy.

β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 3.1e4 16 1.1e8 1.1e7 1.7e9 (100 %) 1.0e7 (100 %) 1.7e9 (100 %) 120.8

2 1e-6 4.7e4 18 2.5e8 1.5e5 8.2e7 (5 %) 1.4e7 (139 %) 2.3e7 (1 %) 6.3

3 5e-6 1.2e5 23 1.7e9 5.7e5 2.2e8 (13 %) 3.1e7 (305 %) 8.8e7 (5 %) 16.2

4 1e-5 1.2e5 23 1.7e9 1.8e5 1.5e8 (9 %) 2.9e7 (286 %) 2.8e7 (2 %) 11.5

5 5e-5 1.4e5 23 1.7e9 1.5e6 3.8e8 (22 %) 3.5e7 (346 %) 2.4e8 (14 %) 28.0

6 1e-4 1.4e5 23 1.7e9 8.6e5 2.9e8 (17 %) 3.7e7 (372 %) 1.3e8 (8 %) 21.3

7 5e-4 1.8e5 23 1.7e9 4.8e6 9.5e8 (55 %) 4.8e7 (479 %) 7.5e8 (44 %) 70.0

8 1e-3 1.9e5 23 1.7e9 5.2e6 1.0e9 (58 %) 4.9e7 (487 %) 8.1e8 (47 %) 73.1

Table 6.4: Results of DAPCA-EC – IEEE 57 bus (DC-OPF)

To remedy the drawback that the consensus algorithm has to be executed at least once in

each iteration of the DAPCA-EC (more than once if an Lk-update is necessary), we imple-

mented a simple heuristic that allows Lk-updates only in the first iteration of the DAPCA-

EC 5.1.1 as we observed for all AC/DC-OPF test cases that most of the Lk-updates were

done in iteration k = 1.

The results of the DAPCA-EC combined with this heuristic, denoted by H1 in the follow-

ing, can be seen in Table 6.5 which shows that 14 Lk-updates are done in the first iteration

independent of the choice of β. Compared to the results of the DAPCA-EC in Table 6.4,

the application of heuristic H1 reduces the number of consensus iterations by up to 97 %,

the total information exchange by up to 81 % and the maximal computation time by up

to 78 %. Moreover, row 2 - 4 of Table 6.4 show that the application of event-triggered
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communication reduces the total and dual communication by up to 23 % and 35 %.

Accordingly, compared to the results of the DPCA-EC in Table 6.3, the application of the

DAPCA-EC combined with heuristic H1 results in a reduction of the number of iterations

by up to 80 %, the amount of total information exchange by up to 79 %, and the maximal

computation time by up to 79 % as well.

β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 3.0e4 14 5.0e7 5.3e3 2.0e7 (100 %) 4.9e6 (100 %) 8.2e5 (100 %) 1.7

2 1e-6 3.0e4 14 5.0e7 5.3e3 1.9e7 (95 %) 4.1e6 (85 %) 8.2e5 (100 %) 1.7

3 5e-6 2.4e4 14 5.0e7 5.3e3 1.6e7 (77 %) 3.1e6 (65 %) 8.2e5 (100 %) 1.4

4 1e-5 2.6e4 14 5.0e7 5.3e3 1.7e7 (83 %) 3.5e6 (71 %) 8.2e5 (100 %) 1.5

5 5e-5 5.0e4 14 5.0e7 5.3e3 3.2e7 (156 %) 6.9e6 (142 %) 8.2e5 (100 %) 2.7

6 1e-4 6.1e4 14 5.0e7 5.3e3 3.8e7 (189 %) 8.2e6 (169 %) 8.2e5 (100 %) 3.3

7 5e-4 1.2e5 14 5.0e7 5.3e3 7.2e7 (357 %) 1.6e7 (321 %) 8.2e5 (100 %) 6.5

8 1e-3 1.4e5 14 5.0e7 5.3e3 8.5e7 (421 %) 1.8e7 (379 %) 8.2e5 (100 %) 7.9

Table 6.5: Results of DAPCA-EC with heuristic H1 – IEEE 57 bus (DC-OPF)

Even though the DAPCA-EC combined with heuristic H1 converges for all AC/DC-OPF

test cases that are considered in this work, we implemented the DAPCA-EC with two

other simple heuristics, H3 and H6, that may in general be more robust regarding the

convergence. In heuristic H3, the Lk-updates are allowed in the first iteration of the

DAPCA-EC as well as in iteration k if k is a whole multiple of a rounded third of the

number of iterations of the DAPCA-EC for β = 0 from Table 6.4, i.e., 3.1e4. Accordingly,

in heuristic H6, the Lk-updates are allowed in iteration k if k = 1 or if k is a whole multiple

of a rounded sixth of 3.1e4.

The results of the DAPCA-EC combined with H3 can be seen in Table 6.6 and with H6

in Table 6.7, showing that this more robust heuristics on the one side yields much better

results compared the ones in Table 6.3 and Table 6.4. On the other side, slightly more iter-

ations as well as a higher number of consensus iterations as compared to the application

of H1 have to be accepted. Finally, the results in row 2-4 of Table 6.6 and Table 6.7 show

that event-triggered communication helps to reduce the total communication by up to

29 % and 32 %, respectively, as well as the dual communication by up to 39 % and 41 %,

respectively, and the consensus communication by up to 23 % and 34 %, respectively, if β

is chosen small enough.
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β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 3.5e4 17 1.7e8 6.8e3 2.4e7 (100 %) 5.6e6 (100 %) 1.1e6 (100 %) 2.0

2 1e-6 3.5e4 17 1.7e8 6.3e3 2.3e7 (97 %) 5.1e6 (91 %) 9.9e5 (93 %) 2.0

3 5e-6 4.1e4 17 1.7e8 6.5e3 2.6e7 (110 %) 5.4e6 (96 %) 1.0e6 (96 %) 2.3

4 1e-5 2.6e4 14 5.0e7 5.3e3 1.7e7 (71 %) 3.5e6 (61 %) 8.2e5 (77 %) 1.5

5 5e-5 5.0e4 14 5.0e7 5.6e3 3.2e7 (134 %) 6.9e6 (122 %) 8.8e5 (82 %) 2.8

6 1e-4 6.9e4 15 7.5e7 5.9e3 4.3e7 (183 %) 9.4e6 (167 %) 9.2e5 (87 %) 3.8

7 5e-4 1.2e5 14 5.0e7 6.0e3 7.3e7 (307 %) 1.6e7 (278 %) 9.3e5 (88 %) 6.4

8 1e-3 1.4e5 16 1.1e8 6.2e3 8.1e7 (342 %) 1.7e7 (306 %) 9.7e5 (91 %) 7.3

Table 6.6: Results of DAPCA-EC with heuristic H3 – IEEE 57 bus (DC-OPF)

β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 3.7e4 17 1.7e8 8.5e3 2.5e7 (100 %) 5.9e6 (100 %) 1.3e6 (100 %) 2.1

2 1e-6 3.7e4 17 1.7e8 6.4e3 2.4e7 (98 %) 5.5e6 (93 %) 9.9e5 (75 %) 2.1

3 5e-6 3.5e4 16 1.1e8 6.2e3 2.2e7 (89 %) 4.6e6 (78 %) 9.7e5 (73 %) 2.0

4 1e-5 2.6e4 14 5.0e7 5.6e3 1.7e7 (68 %) 3.5e6 (59 %) 8.8e5 (66 %) 1.5

5 5e-5 5.0e4 14 5.0e7 5.9e3 3.2e7 (127 %) 6.9e6 (117 %) 9.3e5 (70 %) 2.8

6 1e-4 6.9e4 15 7.5e7 6.6e3 4.3e7 (174 %) 9.4e6 (160 %) 1.0e6 (77 %) 3.8

7 5e-4 1.2e5 14 5.0e7 7.0e3 7.3e7 (292 %) 1.6e7 (266 %) 1.1e6 (82 %) 6.5

8 1e-3 1.4e5 16 1.1e8 6.9e3 8.1e7 (325 %) 1.7e7 (292 %) 1.1e6 (81 %) 7.4

Table 6.7: Results of DAPCA-EC with heuristic H6 – IEEE 57 bus (DC-OPF)

Similar results of the DAPCA-EC applied to the DC-OPF problem (5.1) for the IEEE 14

and 30 bus test cases [ZMS11, Uni] can be found in the appendix 7.
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6.3 Graphical representation of the IEEE power system test cases

Before we discuss the results of the DAPCA-EC applied to solve the AC-OPF problems,

we have a look at the graphical representations of the IEEE test cases with 14, 30, and 57

buses from [ZMS11, Uni] as well as their chordal extensions. As detailed in section 5.3,

the chordal extension of a power system network describes the communication topology

of the agents that implement the DAPCA-EC 5.3.4 to solve problem (5.36) in parallel.

In Figure 6.1, the IEEE 14 bus test case with 20 branches (solid lines) is depicted as well

as its chordal extension with 24 lines (solid and dotted lines). It follows that the commu-

nication topology of the agents does not coincide with the topology of the power system

network, however, only 4 additional edges are needed for the communication which are

approximately 5 % of the number of edges that would fill the 14 bus network to a com-

plete graph.
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Figure 6.1: IEEE 14 bus system and its chordal extension.
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In Figure 6.2, we see the IEEE 30 bus test case with 41 branches and its chordal extension

with 55 lines, i.e., only 14 additional edges are needed for the communication which are

approximately 3 % of the number of edges that would fill the 30 bus network to a com-

plete graph.

1 2
3

4

5

6

7

8

9

10

11

12

13

14
151617

18

19

20

21

22

23

24

25

26

27

28

29
30

Figure 6.2: IEEE 30 bus system and its chordal extension (follows [DMUH14b, Fig. 3]).
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In Figure 6.3, the IEEE 57 bus test case with 80 branches is depicted as well as its chordal

extension with 137 lines, i.e., only 57 additional edges are needed for the communication

which are approximately 3 % of the number of edges that would fill the 57 bus network

to a complete graph.
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Figure 6.3: IEEE 57 bus system and its chordal extension.
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6.4 IEEE 57 bus test case (AC-OPF)

Building on section 6.2, where the results of the DAPCA-EC to the DC-OPF problem are

presented, we discuss in this section the results of the DAPCA-EC applied to the dual of

the AC-OPF problem (5.36) for the IEEE 57 bus test case [ZMS11, Uni] with 7 generators

and 80 branches as well. The results for the IEEE test cases with 14 and 30 buses from

[ZMS11, Uni] can be found in the appendix 7.

As done in section 6.2, we firstly compare the results of the DPCA-EC (DAPCA-EC 3.2.2

with L−1 = Lc) for β = 0 with the results for β > 0 that are given in Table 6.8, to find out to

what extent the communication exchange can be reduced by the usage of event-triggered

communication.

Regarding the optimal dual multipliers Λopt ∈ R719 (see Remark 5.3.3 to understand the

size of the dimension), we have ‖Λopt‖ = 9.9463. According to Theorem 3.1.5 combined

with the scaling technique described in section 6.1, the choice ε = 5.52 and s = 19 yields

the following bounds on the primal gap:

−5.8703 = −1
s
∥∥Λopt∥∥(1

s
∥∥Λopt∥∥+√ 1

s2 ‖Λopt‖2 + 2

)
ε

≤ ∑
i∈Nb

Φi(x̂i, r̂i)− ∑
(t,m)∈E

Φtm(r̂tm)− f opt
c ≤

ε = 5.52,

(6.12)

and the following bound on the constraint violation for |J| equality constraints in (5.36b):∥∥∥∥∥∥∥∥
E11 •∑s∈Γ(1,1) Ŵs − E11 • A(x̂, r̂)

...

E2nb2nb •∑s∈Γ(2nb,2nb)
Ŵs − E2nb2nb • A(x̂, r̂)

∥∥∥∥∥∥∥∥
≤ ε

s

(
1
s
∥∥Λopt∥∥+√ 1

s2 ‖Λopt‖2 + 2

)
= 0.5902, (6.13)

where

x̂i =
kfin

∑
j=0

2(j + 1)
(kfin + 1)(kfin + 2)

xj+1
i ∈R6, (6.14a)

r̂i =
kfin

∑
j=0

2(j + 1)
(kfin + 1)(kfin + 2)

rj+1
i ∈ S4, (6.14b)

r̂tm =
kfin

∑
j=0

2(j + 1)
(kfin + 1)(kfin + 2)

rj+1
tm ∈ S6, (6.14c)

Ŵs =
kfin

∑
j=0

2(j + 1)
(kfin + 1)(kfin + 2)

Ws,j+1 ∈ S2Cs (6.14d)
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are the convex sums of the primal iterates for i ∈ Nb, (t,m) ∈ E , and s = 1, . . . , p = 52.

Here, the maximal cliques 2Cs are defined as in Remark 5.3.3 and one has 6 ≤ 2Cs ≤ 12

for s = 1, . . . ,52. The dimension of the primal variable space is given by 2793. Moreover,

kfin = 783884 is the number of necessary iterations given by Theorem 3.1.5. We notice that

the bounds in (6.12) and (6.13) follow immediately by rewriting the Frobenius product

in constraint (5.36b) of problem (5.36) in vectorized form, applying Theorem 3.1.5, and

retrieve the notation with the Frobenius product.

It follows for the choice of δ in the threshold ∆k = βδk, that

δkfin/2 = 0.025

is satisfied by δ ≈ 0.9999. As described in section 6.1, ε and s were chosen such that the

absolute values of the bounds on the primal gap in (6.12) are approximately 1/100 of

the primal gap at the starting point Λ0 = 0 ∈ R719 which is −552.1739. The constraint

violation at the starting point is 2.0104e3.

For a better overview the above figures are resumed in the following list:

IEEE 57 bus test case (AC-OPF):

• Dimension of primal and dual variable space:

primal: 2793, dual: 719,

• Accuracy ε = 5.52 and scaling factor s = 19,

• Norm of optimal dual multipliers: ‖Λopt‖ = 9.9463,

• Necessary number of iterations (Theorem 3.1.5): kfin = 783884,

• Bounds on primal gap at approximate solution (Theorem 3.1.5):

lower bound: − 5.8703, upper bound: 5.52, (6.15)

• Bound on constraint violation at approximate solution (Theorem 3.1.5):

0.5902, (6.16)

• Primal gap at starting point Λ0 = 0 ∈R719: −552.1739,

• Constraint violation at starting point: 2.0104e3,

• Threshold for event-triggered communication (6.2): ∆k ≈ β · 0.9999k.
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In row 1 of Table 6.8, the result of the DPCA-EC is given for the threshold ∆k = 0, i.e., no

event-triggered communication was used. As expected, the primal gap (column 3) and

the constraint violation at the approximate solution (column 4) satisfy the bounds (6.15)

and (6.16) according to Theorem 3.1.5.

If event-triggered communication is introduced by choosing β > 0, the results in row 2 -

7 of Table 6.8 show that the total communication can be reduced by up to 11 % and the

dual communication by up to 21 %, still satisfying the bounds on the primal gap (6.15)

and the constraint violation (6.16). If β is chosen larger as in row 8, the bound on the

primal gap is not satisfied anymore.

With respect to the results of the corresponding IEEE 57 bus DC-OPF problem in Table

6.2, where the total communication could be reduced by up to 13 % and the dual com-

munication by up to 27 %, the communication savings here are comparable. However,

the maximal computation times of an agent in the last column of Table 6.8 are not sur-

prisingly bigger compared to approximately 7 seconds for the DC-OPF problem in Table

6.2.

β PG CV TC DC MCTpA

1 0 -0.9049 0.1527 4.8e9 (100 %) 2.4e9 (100 %) 307.8

2 5e-9 -0.8601 0.1536 4.8e9 (100 %) 2.4e9 (99 %) 307.6

3 1e-8 -0.8730 0.1553 4.8e9 (99 %) 2.4e9 (98 %) 311.3

4 5e-8 -0.8799 0.1563 4.7e9 (97 %) 2.3e9 (94 %) 304.8

5 1e-7 -0.8633 0.1564 4.6e9 (96 %) 2.2e9 (91 %) 312.7

6 5e-7 -0.2521 0.1721 4.4e9 (92 %) 2.0e9 (83 %) 309.7

7 1e-6 1.0127 0.2076 4.3e9 (89 %) 1.9e9 (79 %) 313.7

8 5e-6 12.4716 0.4644 4.0e9 (83 %) 1.7e9 (69 %) 306.2

Table 6.8: Results of the DPCA-EC – IEEE 57 bus (AC-OPF)

Just like in section 6.2, we investigate the impact of event-triggered communication if the

following stopping criterion is used in the DPCA-EC instead of the pre-given number

kfin = 783884 of iterations which may be not necessary to obtain the primal gap of−0.9049

and the constraint violation of 0.1527 in row 1 of Table 6.8.
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To this end, let

x̂i =
k

∑
j=0

2(j + 1)
(k + 1)(k + 2)

xj+1
i ∈R6, (6.17a)

r̂i =
k

∑
j=0

2(j + 1)
(k + 1)(k + 2)

rj+1
i ∈ S4, (6.17b)

r̂tm =
k

∑
j=0

2(j + 1)
(k + 1)(k + 2)

rj+1
tm ∈ S6, (6.17c)

Ŵs =
k

∑
j=0

2(j + 1)
(k + 1)(k + 2)

Ws,j+1 ∈ S2Cs (6.17d)

be the approximate solutions after k iterations for i ∈ Nb, (t,m) ∈ E , and s = 1, . . . , p.

DAPCA-EC stopping criterion for the IEEE 57 bus test case (AC-OPF):

For k ≥ 0

if

|primal gap at (6.17)| ≤ 0.9049 and constraint violation at (6.17) ≤ 0.1527 (6.18)

then

stop.

else

continue.

In Table 6.9 the results of the DPCA-EC with stopping criterion (6.18) are given.

As we observed for the DC-OPF problem in Table 6.3 as well, the result in row 1 shows

that a similar number of iterations (column 3) is needed to compute an approximate so-

lution without event-triggered communication that satisfies the same primal gap and

constraint violation as the solution in row 1 of Table 6.8. Actually, the number of itera-

tions in row 1 of Table 6.9 is slightly higher compared to row 1 of Table 6.8 as the values

of the primal gap and the constraint violation in (6.18) are rounded off values given by

MATLAB.

Consistent with the observation made for the DC-OPF problem, row 4 - 6 of Table 6.9

show that the information exchange can still be reduced even if the number of iterations

is higher compared to the result obtained without event-triggered communication in row

1. However, if β is chosen to large, as in row 7 and 8, even more communication is re-

quired compared to row 1.
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β NoI TC DC MCTpA

1 0 7.8391e5 4.8e9 (100 %) 2.4e9 (100 %) 314.3

2 5e-9 7.8467e5 4.8e9 (100 %) 2.4e9 (99 %) 305.5

3 1e-8 7.8739e5 4.8e9 (100 %) 2.4e9 (99 %) 312.1

4 5e-8 7.9017e5 4.7e9 (98 %) 2.3e9 (95 %) 315.6

5 1e-7 7.8940e5 4.7e9 (96 %) 2.2e9 (92 %) 320.2

6 5e-7 8.4125e5 4.8e9 (99 %) 2.2e9 (91 %) 338.7

7 1e-6 9.0544e5 5.1e9 (105 %) 2.3e9 (95 %) 360.5

8 5e-6 3.2169e6 1.9e10 (393 %) 9.2e9 (379 %) 1186.8

Table 6.9: Results of DPCA-EC with stopping criterion (6.18) – IEEE 57 bus (AC-OPF)

In Table 6.10 the results of the DAPCA-EC 5.3.4 are given for the step-size parameters

γ = 1.2 and L−1 = 10−2Lc. The corresponding Lipschitz constant (5.40) is

Lc = 8.4797e11, (6.19)

compared to Lc = 1.7149e9 regarding the IEEE 57 bus DC-OPF problem. Stopping crite-

rion (6.18) was used for the computation of the results given in Table 6.10, to be able to

compare with the results of the DPCA-EC in Table 6.9.

As can be seen in row 1 of Table 6.10 only 1.5e5 iterations are needed to compute a

solution without event-triggered communication which is a decrease, compared to the

number of iterations of the DPCA-EC in row 1 of Table 6.9, by approximately 81 %. As

a reminder, the corresponding decrease concerning the IEEE 57 bus DC-OPF problem

amounts to 75 %, i.e., no significant difference can be observed here.

Similar to the results for the DC-OPF problem in Table 6.4, the large number of consen-

sus iterations (column 6) in row 1 of Table 6.10 results in a total information exchange

(column 7) that is bigger compared to the results in row 1 - 7 of Table 6.9. However, the

results in row 2 - 7 of Table 6.10 show here as well that the application of event-triggered

communication reduces the consensus communication by up to over 99 % which yields

a reduction of the total communication by up to 82 %.

Unlike the corresponding results for the DC-OPF problem in Table 6.4, the maximal com-

putation time could be reduced by approximately 66 %, compared to the results of the

DPCA-EC in Table 6.9, which makes the application of the DAPCA-EC 5.3.4 attractive

even if no heuristic is used. This can be explained by the fact that only 6 - 10 Lk-updates

needed to be executed due to the high starting value L−1 = 10−2Lc.
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β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 1.5e5 7 3.0e10 4.9e7 9.5e9 (100 %) 9.5e8 (100 %) 7.6e9 (100 %) 701.1

2 5e-9 1.4e5 6 2.5e10 1.4e5 1.7e9 (18 %) 8.3e8 (87 %) 2.2e7 (0 %) 102.9

3 1e-8 1.4e5 6 2.5e10 1.4e5 1.7e9 (18 %) 8.3e8 (87 %) 2.2e7 (0 %) 104.5

4 5e-8 1.4e5 6 2.5e10 1.4e5 1.7e9 (18 %) 8.2e8 (86 %) 2.2e7 (0 %) 106.2

5 1e-7 1.5e5 6 2.5e10 1.5e5 1.8e9 (19 %) 8.4e8 (88 %) 2.3e7 (0 %) 117.2

6 5e-7 1.8e5 6 2.5e10 1.9e5 2.2e9 (23 %) 1.0e9 (106 %) 2.9e7 (0 %) 143.6

7 1e-6 3.8e5 6 2.5e10 3.9e5 4.6e9 (48 %) 2.1e9 (225 %) 6.0e7 (1 %) 297.6

8 5e-6 1.4e6 10 5.3e10 1.1e7 1.8e10 (188 %) 7.9e9 (829 %) 1.7e9 (22 %) 1133.2

Table 6.10: Results of DAPCA-EC – IEEE 57 bus (AC-OPF)

Nevertheless, we investigate in the following if the heuristics H1, H3, and H6, described

in section 6.2, can reduce the number of iterations and the maximal computation time

even more.

The results of the DAPCA-EC combined with heuristic H1 can be seen in Table 6.11,

showing that 6 Lk-updates are done in the first iteration independent of the choice of β,

i.e., compared to the results in Table 6.10, the number of iterations can not be further re-

duced by heuristic H1, however, the consensus iterations are reduced by up to 99 % as

well as the consensus communication which results in a further computation time reduc-

tion by up to 49 %.

Moreover, row 2 - 5 of Table 6.11 show that the application of event-triggered communi-

cation does not have a remarkable impact in this case. However, compared to the results

of the DPCA-EC in Table 6.9, the application of the DAPCA-EC combined with heuristic

H1 results in a reduction of the number of iterations by up to 83 %, the amount of total

information exchange by up to 83 %, and the maximal computation time by up to 83 % as

well which coincides with the observations made for the IEEE 57 bus DC-OPF problem

in section 6.2.

Finally, the results of the DAPCA-EC implemented with heuristics H3 and H6 can be

seen in Table 6.12 and 6.13, showing that this heuristics yield the same slightly worse

results compared to heuristic H1, since no more than 6 - 7 Lk-updates are needed which

are all done in the first iteration. Thus allowing additional updates in heuristics H3 and

H6 does not yield an improvement regarding the number of iterations and the maximal

computation time for this case.
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β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 1.4e5 6 2.5e10 2.2e3 8.4e8 (100 %) 4.2e8 (100 %) 3.5e5 (100 %) 54.9

2 5e-9 1.4e5 6 2.5e10 2.2e3 8.4e8 (99 %) 4.1e8 (98 %) 3.5e5 (100 %) 53.5

3 1e-8 1.4e5 6 2.5e10 2.2e3 8.3e8 (99 %) 4.1e8 (98 %) 3.5e5 (100 %) 55.6

4 5e-8 1.4e5 6 2.5e10 2.2e3 8.3e8 (98 %) 3.9e8 (93 %) 3.5e5 (100 %) 56.1

5 1e-7 1.5e5 6 2.5e10 2.2e3 8.5e8 (101 %) 3.9e8 (93 %) 3.5e5 (100 %) 58.6

6 5e-7 1.8e5 6 2.5e10 2.2e3 1.0e9 (121 %) 4.5e8 (106 %) 3.5e5 (100 %) 73.2

7 1e-6 3.8e5 6 2.5e10 2.2e3 2.2e9 (256 %) 9.6e8 (229 %) 3.5e5 (100 %) 148.7

8 5e-6 1.4e6 6 2.5e10 2.2e3 8.0e9 (950 %) 3.8e9 (899 %) 3.5e5 (100 %) 487.8

Table 6.11: Results of DAPCA-EC with heuristic H1 – IEEE 57 bus (AC-OPF)

β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 1.4e5 6 2.5e10 2.7e3 8.4e8 (100 %) 4.2e8 (100 %) 4.3e5 (100 %) 52.3

2 5e-9 1.4e5 6 2.5e10 2.2e3 8.4e8 (99 %) 4.1e8 (98 %) 3.5e5 (81 %) 54.4

3 1e-8 1.4e5 6 2.5e10 2.2e3 8.3e8 (99 %) 4.1e8 (98 %) 3.5e5 (81 %) 54.1

4 5e-8 1.4e5 6 2.5e10 2.2e3 8.3e8 (98 %) 3.9e8 (93 %) 3.5e5 (81 %) 56.3

5 1e-7 1.5e5 6 2.5e10 2.2e3 8.5e8 (101 %) 3.9e8 (93 %) 3.5e5 (81 %) 56.3

6 5e-7 1.8e5 6 2.5e10 2.2e3 1.0e9 (121 %) 4.5e8 (106 %) 3.5e5 (81 %) 70.4

7 1e-6 3.8e5 6 2.5e10 2.2e3 2.2e9 (256 %) 9.6e8 (229 %) 3.5e5 (81 %) 139.7

8 5e-6 1.4e6 7 3.0e10 2.6e3 8.0e9 (947 %) 3.8e9 (897 %) 4.0e5 (95 %) 477.1

Table 6.12: Results of DAPCA-EC with heuristic H3 – IEEE 57 bus (AC-OPF)

β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 1.4e5 6 2.5e10 3.8e3 8.4e8 (100 %) 4.2e8 (100 %) 6.0e5 (100 %) 58.3

2 5e-9 1.4e5 6 2.5e10 2.2e3 8.4e8 (99 %) 4.1e8 (98 %) 3.5e5 (58 %) 54.0

3 1e-8 1.4e5 6 2.5e10 2.2e3 8.3e8 (99 %) 4.1e8 (98 %) 3.5e5 (58 %) 53.9

4 5e-8 1.4e5 6 2.5e10 2.2e3 8.3e8 (98 %) 3.9e8 (93 %) 3.5e5 (58 %) 54.7

5 1e-7 1.5e5 6 2.5e10 2.2e3 8.5e8 (101 %) 3.9e8 (93 %) 3.5e5 (58 %) 62.0

6 5e-7 1.8e5 6 2.5e10 2.2e3 1.0e9 (121 %) 4.5e8 (106 %) 3.5e5 (58 %) 75.9

7 1e-6 3.8e5 6 2.5e10 2.2e3 2.2e9 (256 %) 9.6e8 (229 %) 3.5e5 (58 %) 154.2

8 5e-6 1.4e6 7 3.0e10 2.9e3 8.0e9 (947 %) 3.8e9 (897 %) 4.5e5 (75 %) 517.4

Table 6.13: Results of DAPCA-EC with heuristic H6 – IEEE 57 bus (AC-OPF)

Similar results of the DAPCA-EC applied to the dual of the AC-OPF problem (5.36) for

the IEEE 14 and 30 bus test cases [ZMS11, Uni] can be found in the appendix 7.
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7.1 Numerical results for the DC-OPF problem

7.1.1 IEEE 14 bus test case (DC-OPF)

In this section, the results of the DAPCA-EC applied to the DC-OPF problem (5.1) for

the IEEE 14 bus test case [ZMS11, Uni] with 5 generators and 20 branches are presented

without further comment as they are similar to the results discussed detailed in section

6.2 for the IEEE 57 bus test case.

IEEE 14 bus test case (DC-OPF):

• Dimension of primal and dual variable space:

primal: 14 + 5 = 19, dual: 14 + 40 = 54,

• Accuracy ε = 0.07 and scaling factor s = 29,

• Norm of optimal dual multipliers: ‖(µ,λ)opt‖ = 14.5985,

• Lipschitz constant Lc = 3.3556e7 (5.9),

• Necessary number of iterations (Theorem 3.1.5): kfin = 43790,

• Bounds on primal gap at approximate solution (Theorem 3.1.5):

lower bound: − 0.0706, upper bound: 0.07, (7.1)

• Bound on constraint violation at approximate solution (Theorem 3.1.5):

0.0048, (7.2)

• Primal gap at starting point (µ,λ)0 = 0 ∈R14+40: −7.6426 = − f opt
c ,

• Constraint violation at starting point: 0.7473,

• Threshold for event-triggered communication (6.2): ∆k ≈ β · 0.9998k,

• Step-size parameters for DAPCA-EC: γ = 1.1 and L−1 = 10−2Lc.
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β PG CV TC DC MCTpA

1 0 -0.0167 0.0012 7.0e6 (100 %) 1.8e6 (100 %) 2.2

2 1e-6 -0.0170 0.0012 7.0e6 (100 %) 1.7e6 (99 %) 2.2

3 5e-6 -0.0171 0.0012 6.9e6 (99 %) 1.7e6 (96 %) 2.2

4 1e-5 -0.0170 0.0012 6.9e6 (98 %) 1.7e6 (94 %) 2.2

5 5e-5 -0.0172 0.0013 6.7e6 (96 %) 1.5e6 (86 %) 2.2

6 1e-4 -0.0143 0.0014 6.6e6 (94 %) 1.4e6 (82 %) 2.1

7 5e-4 0.0406 0.0013 6.3e6 (89 %) 1.3e6 (74 %) 2.1

8 1e-3 0.0735 0.0045 6.0e6 (86 %) 1.2e6 (70 %) 2.1

Table 7.1: Results of the DPCA-EC – IEEE 14 bus (DC-OPF)

DAPCA-EC stopping criterion for the IEEE 14 bus test case (DC-OPF):

For k ≥ 0

if

|primal gap at (6.9)| ≤ 0.0167 and constraint violation at (6.9) ≤ 0.0012 (7.3)

then

stop.

else

continue.

β NoI TC DC MCTpA

1 0 4.2473e4 6.8e6 (100 %) 1.7e6 (100 %) 2.1

2 1e-6 4.2333e4 6.8e6 (99 %) 1.7e6 (99 %) 2.1

3 5e-6 4.2303e4 6.7e6 (99 %) 1.6e6 (96 %) 2.1

4 1e-5 4.2317e4 6.6e6 (98 %) 1.6e6 (94 %) 2.1

5 5e-5 4.4400e4 6.8e6 (100 %) 1.5e6 (90 %) 2.2

6 1e-4 4.2105e4 6.3e6 (93 %) 1.4e6 (81 %) 2.0

7 5e-4 5.3557e4 7.8e6 (115 %) 1.7e6 (99 %) 2.6

8 1e-3 7.6406e4 1.1e7 (165 %) 2.5e6 (149 %) 3.7

Table 7.2: Results of DPCA-EC with stopping criterion (7.3) – IEEE 14 bus (DC-OPF)
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β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 1.8e4 30 5.9e6 1.6e6 7.1e7 (100 %) 1.4e6 (100 %) 6.5e7 (100 %) 18.3

2 1e-6 2.0e4 32 7.1e6 5.2e4 8.6e6 (12 %) 1.6e6 (114 %) 2.1e6 (3 %) 2.4

3 5e-6 4.4e4 49 3.4e7 7.2e4 1.5e7 (21 %) 2.9e6 (206 %) 2.9e6 (4 %) 4.3

4 1e-5 4.5e4 49 3.4e7 3.7e4 1.2e7 (16 %) 2.4e6 (168 %) 1.5e6 (2 %) 3.3

5 5e-5 4.3e4 49 3.4e7 2.1e5 2.1e7 (29 %) 2.9e6 (206 %) 8.4e6 (13 %) 5.8

6 1e-4 3.7e4 48 3.3e7 4.0e5 2.8e7 (39 %) 2.8e6 (201 %) 1.6e7 (24 %) 7.8

7 5e-4 8.2e4 46 2.7e7 2.8e6 1.4e8 (193 %) 6.4e6 (455 %) 1.1e8 (169 %) 38.0

8 1e-3 8.9e4 46 2.7e7 2.7e6 1.4e8 (194 %) 6.9e6 (485 %) 1.1e8 (168 %) 36.3

Table 7.3: Results of DAPCA-EC – IEEE 14 bus (DC-OPF)

β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 9.4e3 12 1.1e6 1.2e3 1.6e6 (100 %) 3.8e5 (100 %) 4.9e4 (100 %) 0.5

2 1e-6 1.1e4 12 1.1e6 1.2e3 1.8e6 (116 %) 4.4e5 (116 %) 4.9e4 (100 %) 0.6

3 5e-6 9.2e3 12 1.1e6 1.2e3 1.5e6 (97 %) 3.6e5 (96 %) 4.9e4 (100 %) 0.5

4 1e-5 9.8e3 12 1.1e6 1.2e3 1.6e6 (104 %) 3.8e5 (102 %) 4.9e4 (100 %) 0.5

5 5e-5 9.3e3 12 1.1e6 1.2e3 1.5e6 (97 %) 3.3e5 (88 %) 4.9e4 (100 %) 0.5

6 1e-4 2.0e4 12 1.1e6 1.2e3 3.2e6 (205 %) 7.4e5 (196 %) 4.9e4 (100 %) 1.0

7 5e-4 6.0e4 12 1.1e6 1.2e3 9.6e6 (616 %) 2.3e6 (608 %) 4.9e4 (100 %) 3.0

8 1e-3 8.2e4 12 1.1e6 1.2e3 1.3e7 (830 %) 3.1e6 (821 %) 4.9e4 (100 %) 4.0

Table 7.4: Results of DAPCA-EC with heuristic H1 – IEEE 14 bus (DC-OPF)

β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 1.8e4 38 1.3e7 3.8e3 3.1e6 (100 %) 7.3e5 (100 %) 1.5e5 (100 %) 0.9

2 1e-6 1.1e4 12 1.1e6 1.3e3 1.8e6 (59 %) 4.4e5 (60 %) 5.2e4 (34 %) 0.6

3 5e-6 9.2e3 12 1.1e6 1.3e3 1.5e6 (49 %) 3.6e5 (50 %) 5.2e4 (34 %) 0.5

4 1e-5 9.1e3 21 2.5e6 2.1e3 1.5e6 (50 %) 3.5e5 (48 %) 8.4e4 (55 %) 0.5

5 5e-5 9.3e3 12 1.1e6 1.2e3 1.5e6 (49 %) 3.3e5 (46 %) 4.9e4 (32 %) 0.5

6 1e-4 2.0e4 33 7.8e6 3.4e3 3.2e6 (106 %) 7.2e5 (98 %) 1.4e5 (89 %) 1.0

7 5e-4 5.9e4 21 2.5e6 2.3e3 9.4e6 (306 %) 2.2e6 (304 %) 9.2e4 (60 %) 2.9

8 1e-3 7.7e4 31 6.4e6 3.4e3 1.2e7 (398 %) 2.9e6 (395 %) 1.4e5 (88 %) 3.9

Table 7.5: Results of DAPCA-EC with heuristic H3 – IEEE 14 bus (DC-OPF)
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β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 1.9e4 36 1.0e7 3.9e3 3.1e6 (100 %) 7.5e5 (100 %) 1.6e5 (100 %) 1.0

2 1e-6 1.2e4 24 3.3e6 2.4e3 2.1e6 (65 %) 4.9e5 (65 %) 9.5e4 (60 %) 0.6

3 5e-6 1.2e4 23 3.0e6 2.3e3 2.0e6 (63 %) 4.6e5 (61 %) 9.3e4 (59 %) 0.6

4 1e-5 10.0e3 20 2.3e6 2.2e3 1.7e6 (53 %) 3.8e5 (51 %) 8.8e4 (56 %) 0.5

5 5e-5 1.1e4 18 1.9e6 2.0e3 1.8e6 (56 %) 3.7e5 (49 %) 8.1e4 (51 %) 0.7

6 1e-4 1.8e4 30 5.9e6 3.3e3 3.0e6 (94 %) 6.5e5 (87 %) 1.3e5 (84 %) 1.0

7 5e-4 5.9e4 21 2.5e6 2.3e3 9.4e6 (298 %) 2.2e6 (296 %) 9.4e4 (59 %) 3.0

8 1e-3 7.8e4 28 4.8e6 3.4e3 1.2e7 (396 %) 2.9e6 (394 %) 1.3e5 (85 %) 4.0

Table 7.6: Results of DAPCA-EC with heuristic H6 – IEEE 14 bus (DC-OPF)
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7.1.2 IEEE 30 bus test case (DC-OPF)

In this section, the results of the DAPCA-EC applied to the DC-OPF problem (5.1) for

the IEEE 30 bus test case [ZMS11, Uni] with 6 generators and 41 branches are presented

without further comment as they are similar to the results discussed detailed in section

6.2 for the IEEE 57 bus test case.

IEEE 30 bus test case (DC-OPF):

• Dimension of primal and dual variable space:

primal: 30 + 6 = 36, dual: 30 + 82 = 112,

• Accuracy ε = 0.005 and scaling factor s = 4,

• Norm of optimal dual multipliers: ‖(µ,λ)opt‖ = 2.0754,

• Lipschitz constant Lc = 6.6003e6 (5.9),

• Necessary number of iterations (Theorem 3.1.5): kfin = 72666,

• Bounds on primal gap at approximate solution (Theorem 3.1.5):

lower bound: − 0.0053, upper bound: 0.005, (7.4)

• Bound on constraint violation at approximate solution (Theorem 3.1.5):

7.0284e− 4, (7.5)

• Primal gap at starting point (µ,λ)0 = 0 ∈R30+82: −0.5652 = − f opt
c ,

• Constraint violation at starting point: 0.3617,

• Threshold for event-triggered communication (6.2): ∆k ≈ β · 0.9998k,

• Step-size parameters for DAPCA-EC: γ = 1.5 and L−1 = 10−4Lc.
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β PG CV TC DC MCTpA

1 0 -0.0014 0.0007 2.4e7 (100 %) 6.0e6 (100 %) 3.8

2 1e-6 -0.0014 0.0007 2.4e7 (99 %) 5.8e6 (97 %) 3.8

3 5e-6 -0.0014 0.0007 2.3e7 (98 %) 5.5e6 (91 %) 3.7

4 1e-5 -0.0014 0.0007 2.3e7 (97 %) 5.3e6 (89 %) 3.7

5 5e-5 -0.0008 0.0006 2.2e7 (93 %) 4.8e6 (81 %) 3.7

6 1e-4 -0.0010 0.0010 2.2e7 (91 %) 4.6e6 (77 %) 3.6

7 5e-4 0.0030 0.0032 2.0e7 (83 %) 4.0e6 (67 %) 3.5

8 1e-3 0.0103 0.0066 1.9e7 (79 %) 3.7e6 (62 %) 3.4

Table 7.7: Results of the DPCA-EC – IEEE 30 bus (DC-OPF)

DAPCA-EC stopping criterion for the IEEE 30 bus test case (DC-OPF):

For k ≥ 0

if

|primal gap at (6.9)| ≤ 0.0014 and constraint violation at (6.9) ≤ 7.0284e− 4 (7.6)

then

stop.

else

continue.

β NoI TC DC MCTpA

1 0 6.8775e4 2.3e7 (100 %) 5.7e6 (100 %) 3.6

2 1e-6 6.8875e4 2.2e7 (99 %) 5.5e6 (97 %) 3.6

3 5e-6 6.8940e4 2.2e7 (98 %) 5.2e6 (91 %) 3.5

4 1e-5 6.9260e4 2.2e7 (97 %) 5.0e6 (89 %) 3.5

5 5e-5 6.7019e4 2.0e7 (90 %) 4.4e6 (77 %) 3.4

6 1e-4 6.9818e4 2.1e7 (92 %) 4.4e6 (78 %) 3.5

7 5e-4 9.3364e4 2.7e7 (118 %) 5.7e6 (100 %) 4.6

8 1e-3 1.2311e5 3.5e7 (156 %) 7.8e6 (138 %) 6.0

Table 7.8: Results of DPCA-EC with stopping criterion (7.6) – IEEE 30 bus (DC-OPF)
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β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 2.2e4 17 6.5e5 4.3e6 3.6e8 (100 %) 3.5e6 (100 %) 3.5e8 (100 %) 46.8

2 1e-6 3.3e4 19 1.5e6 1.1e5 3.0e7 (8 %) 5.2e6 (147 %) 8.8e6 (3 %) 4.2

3 5e-6 5.0e4 22 4.9e6 5.6e4 3.7e7 (10 %) 7.8e6 (220 %) 4.6e6 (1 %) 5.2

4 1e-5 6.1e4 23 6.6e6 3.9e4 3.2e7 (9 %) 6.7e6 (189 %) 3.2e6 (1 %) 4.7

5 5e-5 6.1e4 23 6.6e6 7.6e4 3.9e7 (11 %) 7.7e6 (216 %) 6.3e6 (2 %) 5.6

6 1e-4 7.0e4 23 6.6e6 3.0e5 6.1e7 (17 %) 8.7e6 (246 %) 2.4e7 (7 %) 8.6

7 5e-4 1.0e5 23 6.6e6 1.6e5 6.5e7 (18 %) 1.2e7 (347 %) 1.3e7 (4 %) 9.5

8 1e-3 1.3e5 23 6.6e6 2.9e5 8.6e7 (24 %) 1.5e7 (414 %) 2.4e7 (7 %) 12.4

Table 7.9: Results of DAPCA-EC – IEEE 30 bus (DC-OPF)

β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 2.3e4 16 4.3e5 2.8e3 8.6e6 (100 %) 2.7e6 (100 %) 2.3e5 (100 %) 1.2

2 1e-6 1.8e4 16 4.3e5 2.8e3 5.9e6 (68 %) 1.3e6 (50 %) 2.3e5 (100 %) 0.9

3 5e-6 1.8e4 16 4.3e5 2.8e3 5.8e6 (67 %) 1.2e6 (45 %) 2.3e5 (100 %) 1.0

4 1e-5 1.8e4 16 4.3e5 2.8e3 5.9e6 (68 %) 1.2e6 (45 %) 2.3e5 (100 %) 1.0

5 5e-5 2.9e4 16 4.3e5 2.8e3 9.2e6 (107 %) 2.0e6 (76 %) 2.3e5 (100 %) 1.5

6 1e-4 4.2e4 16 4.3e5 2.8e3 1.3e7 (156 %) 2.9e6 (110 %) 2.3e5 (100 %) 2.2

7 5e-4 8.8e4 16 4.3e5 2.8e3 2.8e7 (321 %) 6.2e6 (229 %) 2.3e5 (100 %) 4.5

8 1e-3 1.0e5 16 4.3e5 2.8e3 3.2e7 (372 %) 7.2e6 (269 %) 2.3e5 (100 %) 5.2

Table 7.10: Results of DAPCA-EC with heuristic H1 – IEEE 30 bus (DC-OPF)

β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 2.4e4 18 9.8e5 3.7e3 8.4e6 (100 %) 2.2e6 (100 %) 3.0e5 (100 %) 1.3

2 1e-6 1.8e4 16 4.3e5 2.8e3 5.9e6 (70 %) 1.3e6 (61 %) 2.3e5 (75 %) 1.0

3 5e-6 2.1e4 17 6.5e5 2.9e3 6.8e6 (81 %) 1.4e6 (65 %) 2.4e5 (79 %) 1.1

4 1e-5 2.1e4 17 6.5e5 3.1e3 6.8e6 (80 %) 1.4e6 (64 %) 2.6e5 (85 %) 1.1

5 5e-5 2.9e4 16 4.3e5 2.8e3 9.2e6 (110 %) 2.0e6 (92 %) 2.3e5 (75 %) 1.5

6 1e-4 4.2e4 16 4.3e5 3.3e3 1.3e7 (160 %) 2.9e6 (134 %) 2.7e5 (89 %) 2.2

7 5e-4 8.8e4 16 4.3e5 2.8e3 2.8e7 (329 %) 6.2e6 (279 %) 2.3e5 (75 %) 4.5

8 1e-3 1.0e5 16 4.3e5 3.2e3 3.2e7 (382 %) 7.2e6 (327 %) 2.6e5 (87 %) 5.2

Table 7.11: Results of DAPCA-EC with heuristic H3 – IEEE 30 bus (DC-OPF)
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β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 3.0e4 19 1.5e6 4.5e3 1.0e7 (100 %) 2.6e6 (100 %) 3.7e5 (100 %) 1.6

2 1e-6 1.8e4 16 4.3e5 2.8e3 5.9e6 (57 %) 1.3e6 (51 %) 2.3e5 (61 %) 0.9

3 5e-6 2.1e4 17 6.5e5 3.1e3 6.9e6 (67 %) 1.5e6 (56 %) 2.6e5 (69 %) 1.1

4 1e-5 1.8e4 16 4.3e5 3.2e3 5.9e6 (57 %) 1.2e6 (46 %) 2.6e5 (70 %) 1.0

5 5e-5 2.9e4 16 4.3e5 3.0e3 9.3e6 (89 %) 2.0e6 (78 %) 2.4e5 (65 %) 1.5

6 1e-4 4.0e4 17 6.5e5 3.2e3 1.3e7 (123 %) 2.8e6 (107 %) 2.6e5 (70 %) 2.1

7 5e-4 8.8e4 16 4.3e5 3.2e3 2.8e7 (266 %) 6.2e6 (236 %) 2.6e5 (70 %) 4.5

8 1e-3 1.0e5 16 4.3e5 3.8e3 3.2e7 (309 %) 7.2e6 (276 %) 3.1e5 (84 %) 5.3

Table 7.12: Results of DAPCA-EC with heuristic H6 – IEEE 30 bus (DC-OPF)
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7.2 Numerical results for the AC-OPF problem

7.2.1 IEEE 14 bus test case (AC-OPF)

In this section, the results of the DAPCA-EC applied to the dual of the AC-OPF problem

(5.36) for the IEEE 14 bus test case [ZMS11, Uni] with 5 generators and 20 branches are

presented without further comment as they are similar to the results discussed detailed

in section 6.4 for the IEEE 57 bus test case.

IEEE 14 bus test case (AC-OPF):

• Dimension of primal and dual variable space:

primal: 575, dual: 138,

• Accuracy ε = 1.37 and scaling factor s = 9,

• Norm of optimal dual multipliers: ‖Λopt‖ = 4.7064,

• Lipschitz constant Lc = 8.9064e9 (5.40),

• Necessary number of iterations (Theorem 3.1.5): kfin = 161259,

• Bounds on primal gap at approximate solution (Theorem 3.1.5):

lower bound: − 1.4549, upper bound: 1.37, (7.7)

• Bound on constraint violation at approximate solution (Theorem 3.1.5):

0.3091, (7.8)

• Primal gap at starting point Λ0 = 0 ∈R138: −137.8802,

• Constraint violation at starting point: 1.1549e3,

• Threshold for event-triggered communication (6.2): ∆k ≈ β · 0.9999k,

• Step-size parameters for DAPCA-EC: γ = 1.1 and L−1 = 10−3Lc.
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β PG CV TC DC MCTpA

1 0 -0.2079 0.0797 2.1e8 (100 %) 1.1e8 (100 %) 16.7

2 5e-9 -0.2095 0.0804 2.1e8 (100 %) 1.1e8 (100 %) 16.6

3 1e-8 -0.2006 0.0788 2.1e8 (100 %) 1.1e8 (100 %) 16.9

4 5e-8 -0.2069 0.0801 2.1e8 (99 %) 1.1e8 (99 %) 14.9

5 1e-7 -0.2170 0.0824 2.1e8 (99 %) 1.0e8 (98 %) 15.0

6 5e-7 -0.2013 0.0798 2.1e8 (97 %) 1.0e8 (94 %) 15.0

7 1e-6 -0.2008 0.0801 2.0e8 (95 %) 9.6e7 (90 %) 15.1

8 5e-6 -0.1198 0.0867 1.9e8 (91 %) 8.8e7 (82 %) 15.0

Table 7.13: Results of the DPCA-EC – IEEE 14 bus (AC-OPF)

DAPCA-EC stopping criterion for the IEEE 14 bus test case (AC-OPF):

For k ≥ 0

if

|primal gap at (6.17)| ≤ 0.2079 and constraint violation at (6.17) ≤ 0.0797 (7.9)

then

stop.

else

continue.

β NoI TC DC MCTpA

1 0 1.6130e5 2.1e8 (100 %) 1.1e8 (100 %) 14.9

2 5e-9 1.6194e5 2.1e8 (100 %) 1.1e8 (100 %) 14.9

3 1e-8 1.5999e5 2.1e8 (99 %) 1.1e8 (99 %) 15.0

4 5e-8 1.6233e5 2.1e8 (100 %) 1.1e8 (100 %) 15.1

5 1e-7 1.6332e5 2.1e8 (100 %) 1.1e8 (100 %) 15.1

6 5e-7 1.6066e5 2.1e8 (96 %) 10.0e7 (93 %) 14.9

7 1e-6 1.6107e5 2.0e8 (95 %) 9.6e7 (90 %) 14.9

8 5e-6 1.6393e5 2.0e8 (93 %) 9.0e7 (84 %) 15.3

Table 7.14: Results of DPCA-EC with stopping criterion (7.9) – IEEE 14 bus (AC-OPF)
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β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 4.0e4 43 5.4e8 3.5e6 2.5e8 (100 %) 5.3e7 (100 %) 1.4e8 (100 %) 49.6

2 5e-9 4.7e4 46 7.1e8 8.1e5 1.6e8 (64 %) 6.2e7 (117 %) 3.2e7 (23 %) 18.6

3 1e-8 4.6e4 45 6.5e8 3.4e5 1.3e8 (54 %) 6.0e7 (114 %) 1.4e7 (10 %) 12.7

4 5e-8 3.6e4 40 4.0e8 4.2e4 9.7e7 (40 %) 4.8e7 (90 %) 1.7e6 (1 %) 6.7

5 1e-7 3.0e4 36 2.8e8 3.3e4 7.9e7 (32 %) 3.8e7 (73 %) 1.3e6 (1 %) 5.4

6 5e-7 2.8e4 35 2.5e8 3.1e4 7.2e7 (29 %) 3.5e7 (66 %) 1.2e6 (1 %) 5.1

7 1e-6 5.0e5 47 7.9e8 3.4e7 2.7e9 (1090 %) 6.6e8 (1253 %) 1.4e9 (966 %) 441.1

8 5e-6 1.1e6 48 8.6e8 8.8e7 6.5e9 (2643 %) 1.5e9 (2818 %) 3.5e9 (2509 %) 1117.6

Table 7.15: Results of DAPCA-EC – IEEE 14 bus (AC-OPF)

β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 2.9e4 35 2.5e8 3.0e3 3.8e7 (100 %) 1.9e7 (100 %) 1.2e5 (100 %) 2.7

2 5e-9 2.9e4 35 2.5e8 3.0e3 3.8e7 (99 %) 1.9e7 (99 %) 1.2e5 (100 %) 2.7

3 1e-8 2.7e4 35 2.5e8 3.0e3 3.6e7 (93 %) 1.8e7 (93 %) 1.2e5 (100 %) 2.5

4 5e-8 2.7e4 35 2.5e8 3.0e3 3.5e7 (92 %) 1.7e7 (91 %) 1.2e5 (100 %) 2.5

5 1e-7 2.7e4 35 2.5e8 3.0e3 3.5e7 (92 %) 1.7e7 (90 %) 1.2e5 (100 %) 2.5

6 5e-7 2.8e4 35 2.5e8 3.0e3 3.5e7 (91 %) 1.7e7 (87 %) 1.2e5 (100 %) 2.7

7 1e-6 4.6e5 35 2.5e8 3.0e3 6.1e8 (1580 %) 3.0e8 (1582 %) 1.2e5 (100 %) 42.5

8 5e-6 1.0e6 35 2.5e8 3.0e3 1.4e9 (3603 %) 6.9e8 (3608 %) 1.2e5 (100 %) 95.8

Table 7.16: Results of DAPCA-EC with heuristic H1 – IEEE 14 bus (AC-OPF)

β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 4.9e4 45 6.5e8 4.2e3 6.5e7 (100 %) 3.2e7 (100 %) 1.7e5 (100 %) 4.5

2 5e-9 4.9e4 45 6.5e8 4.0e3 6.5e7 (100 %) 3.2e7 (100 %) 1.6e5 (96 %) 4.6

3 1e-8 2.7e4 35 2.5e8 3.0e3 3.6e7 (55 %) 1.8e7 (55 %) 1.2e5 (72 %) 2.6

4 5e-8 2.7e4 35 2.5e8 3.0e3 3.5e7 (55 %) 1.7e7 (54 %) 1.2e5 (72 %) 2.5

5 1e-7 2.7e4 35 2.5e8 3.0e3 3.5e7 (55 %) 1.7e7 (54 %) 1.2e5 (72 %) 2.5

6 5e-7 2.8e4 35 2.5e8 3.0e3 3.5e7 (54 %) 1.7e7 (51 %) 1.2e5 (72 %) 2.6

7 1e-6 4.6e5 42 4.9e8 6.2e3 6.1e8 (945 %) 3.0e8 (945 %) 2.5e5 (147 %) 42.7

8 5e-6 1.1e6 49 9.5e8 1.1e4 1.4e9 (2161 %) 7.0e8 (2162 %) 4.3e5 (260 %) 97.7

Table 7.17: Results of DAPCA-EC with heuristic H3 – IEEE 14 bus (AC-OPF)
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β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 4.7e4 44 5.9e8 4.4e3 6.2e7 (100 %) 3.1e7 (100 %) 1.7e5 (100 %) 4.4

2 5e-9 4.4e4 43 5.4e8 3.9e3 5.8e7 (94 %) 2.9e7 (94 %) 1.6e5 (90 %) 4.1

3 1e-8 2.7e4 35 2.5e8 3.1e3 3.6e7 (58 %) 1.8e7 (57 %) 1.2e5 (71 %) 2.5

4 5e-8 2.7e4 35 2.5e8 3.0e3 3.5e7 (57 %) 1.7e7 (56 %) 1.2e5 (69 %) 2.5

5 1e-7 2.7e4 35 2.5e8 3.0e3 3.5e7 (57 %) 1.7e7 (56 %) 1.2e5 (69 %) 2.5

6 5e-7 2.8e4 35 2.5e8 3.0e3 3.5e7 (56 %) 1.7e7 (54 %) 1.2e5 (69 %) 2.6

7 1e-6 4.6e5 42 4.9e8 7.5e3 6.0e8 (976 %) 3.0e8 (976 %) 3.0e5 (171 %) 42.4

8 5e-6 1.0e6 45 6.5e8 1.6e4 1.4e9 (2230 %) 6.9e8 (2232 %) 6.3e5 (359 %) 95.5

Table 7.18: Results of DAPCA-EC with heuristic H6 – IEEE 14 bus (AC-OPF)
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7.2.2 IEEE 30 bus test case (AC-OPF)

In this section, the results of the DAPCA-EC applied to the dual of the AC-OPF problem

(5.36) for the IEEE 30 bus test case [ZMS11, Uni] with 6 generators and 41 branches are

presented without further comment as they are similar to the results discussed detailed

in section 6.4 for the IEEE 57 bus test case.

IEEE 30 bus test case (AC-OPF):

• Dimension of primal and dual variable space:

primal: 1227, dual: 310,

• Accuracy ε = 1.77 and scaling factor s = 13,

• Norm of optimal dual multipliers: ‖Λopt‖ = 6.5599,

• Lipschitz constant Lc = 3.3676e10 (5.40),

• Necessary number of iterations (Theorem 3.1.5): kfin = 275870,

• Bounds on primal gap at approximate solution (Theorem 3.1.5):

lower bound: − 1.7918, upper bound: 1.77, (7.10)

• Bound on constraint violation at approximate solution (Theorem 3.1.5):

0.2731, (7.11)

• Primal gap at starting point Λ0 = 0 ∈R138: −177.3612,

• Constraint violation at starting point: 1.6085e3,

• Threshold for event-triggered communication (6.2): ∆k ≈ β · 0.9999k,

• Step-size parameters for DAPCA-EC: γ = 1.2 and L−1 = 10−5Lc.
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β PG CV TC DC MCTpA

1 0 -0.2736 0.0699 7.7e8 (100 %) 3.8e8 (100 %) 96.1

2 5e-9 -0.2560 0.0692 7.7e8 (100 %) 3.8e8 (100 %) 93.4

3 1e-8 -0.2548 0.0695 7.6e8 (100 %) 3.8e8 (99 %) 93.5

4 5e-8 -0.2554 0.0700 7.6e8 (99 %) 3.8e8 (98 %) 92.9

5 1e-7 -0.2581 0.0706 7.5e8 (98 %) 3.7e8 (96 %) 92.1

6 5e-7 -0.2573 0.0706 7.3e8 (95 %) 3.4e8 (89 %) 95.7

7 1e-6 -0.2293 0.0721 7.1e8 (93 %) 3.3e8 (86 %) 92.8

8 5e-6 0.1377 0.1002 6.7e8 (87 %) 2.9e8 (76 %) 92.8

Table 7.19: Results of the DPCA-EC – IEEE 30 bus (AC-OPF)

DAPCA-EC stopping criterion for the IEEE 30 bus test case (AC-OPF):

For k ≥ 0

if

|primal gap at (6.17)| ≤ 0.2736 and constraint violation at (6.17) ≤ 0.0699 (7.12)

then

stop.

else

continue.

β NoI TC DC MCTpA

1 0 2.7596e5 7.7e8 (100 %) 3.8e8 (100 %) 95.0

2 5e-9 2.7459e5 7.6e8 (99 %) 3.8e8 (99 %) 99.4

3 1e-8 2.7481e5 7.6e8 (99 %) 3.8e8 (99 %) 96.2

4 5e-8 2.7603e5 7.6e8 (99 %) 3.8e8 (98 %) 93.3

5 1e-7 2.7689e5 7.6e8 (99 %) 3.7e8 (97 %) 93.5

6 5e-7 2.7764e5 7.3e8 (95 %) 3.5e8 (90 %) 94.3

7 1e-6 2.7962e5 7.2e8 (94 %) 3.3e8 (87 %) 96.6

8 5e-6 3.2525e5 8.1e8 (105 %) 3.6e8 (94 %) 110.6

Table 7.20: Results of DPCA-EC with stopping criterion (7.12) – IEEE 30 bus (AC-OPF)
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β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 5.4e4 45 1.2e9 9.8e6 1.1e9 (100 %) 1.5e8 (100 %) 8.0e8 (100 %) 138.5

2 5e-9 7.2e4 48 2.1e9 8.7e4 4.0e8 (37 %) 2.0e8 (132 %) 7.1e6 (1 %) 47.1

3 1e-8 5.3e4 45 1.2e9 6.3e4 3.0e8 (27 %) 1.5e8 (97 %) 5.2e6 (1 %) 34.6

4 5e-8 3.7e4 41 5.9e8 4.4e4 2.0e8 (19 %) 10.0e7 (66 %) 3.6e6 (0 %) 24.7

5 1e-7 3.7e4 41 5.9e8 4.5e4 2.1e8 (19 %) 9.9e7 (66 %) 3.7e6 (0 %) 24.1

6 5e-7 1.5e6 48 2.1e9 2.4e8 2.8e10 (2516 %) 4.1e9 (2708 %) 2.0e10 (2443 %) 3468.0

7 1e-6 1.9e6 48 2.1e9 3.3e8 3.8e10 (3420 %) 5.4e9 (3596 %) 2.7e10 (3353 %) 4734.9

8 5e-6 3.1e6 48 2.1e9 5.5e8 6.3e10 (5699 %) 8.7e9 (5815 %) 4.5e10 (5654 %) 7727.9

Table 7.21: Results of DAPCA-EC – IEEE 30 bus (AC-OPF)

β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 4.0e4 41 5.9e8 7.7e3 1.1e8 (100 %) 5.6e7 (100 %) 6.4e5 (100 %) 13.9

2 5e-9 3.7e4 41 5.9e8 7.7e3 1.0e8 (91 %) 5.1e7 (91 %) 6.4e5 (100 %) 12.7

3 1e-8 3.7e4 41 5.9e8 7.7e3 1.0e8 (91 %) 5.1e7 (90 %) 6.4e5 (100 %) 13.3

4 5e-8 3.7e4 41 5.9e8 7.7e3 1.0e8 (89 %) 4.9e7 (87 %) 6.4e5 (100 %) 12.4

5 1e-7 3.7e4 41 5.9e8 7.7e3 1.0e8 (89 %) 4.8e7 (86 %) 6.4e5 (100 %) 12.2

6 5e-7 1.5e6 41 5.9e8 7.7e3 4.3e9 (3795 %) 2.1e9 (3814 %) 6.4e5 (100 %) 518.1

7 1e-6 1.9e6 41 5.9e8 7.7e3 5.4e9 (4787 %) 2.7e9 (4811 %) 6.4e5 (100 %) 619.8

8 5e-6 3.0e6 41 5.9e8 7.7e3 8.4e9 (7488 %) 4.2e9 (7519 %) 6.4e5 (100 %) 986.9

Table 7.22: Results of DAPCA-EC with heuristic H1 – IEEE 30 bus (AC-OPF)

β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 5.8e4 45 1.2e9 9.0e3 1.6e8 (100 %) 8.1e7 (100 %) 7.4e5 (100 %) 20.8

2 5e-9 3.7e4 41 5.9e8 7.8e3 1.0e8 (63 %) 5.1e7 (63 %) 6.4e5 (86 %) 13.0

3 1e-8 3.7e4 41 5.9e8 7.8e3 1.0e8 (63 %) 5.1e7 (63 %) 6.4e5 (86 %) 12.8

4 5e-8 3.7e4 41 5.9e8 7.8e3 1.0e8 (62 %) 4.9e7 (61 %) 6.4e5 (86 %) 12.6

5 1e-7 3.7e4 41 5.9e8 7.8e3 1.0e8 (61 %) 4.8e7 (59 %) 6.4e5 (86 %) 12.4

6 5e-7 1.5e6 46 1.5e9 2.3e4 4.3e9 (2639 %) 2.1e9 (2648 %) 1.9e6 (253 %) 520.7

7 1e-6 1.9e6 45 1.2e9 2.7e4 5.4e9 (3321 %) 2.7e9 (3332 %) 2.2e6 (304 %) 628.2

8 5e-6 3.0e6 46 1.5e9 3.9e4 8.5e9 (5195 %) 4.2e9 (5210 %) 3.2e6 (430 %) 1023.4

Table 7.23: Results of DAPCA-EC with heuristic H3 – IEEE 30 bus (AC-OPF)
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β NoI Lk-Up Lmax
k NoCI TC DC CC MCTpA

1 0 7.7e4 48 2.1e9 1.0e4 2.2e8 (100 %) 1.1e8 (100 %) 8.5e5 (100 %) 28.3

2 5e-9 3.7e4 41 5.9e8 7.8e3 1.0e8 (48 %) 5.1e7 (47 %) 6.4e5 (75 %) 13.5

3 1e-8 3.7e4 41 5.9e8 7.8e3 1.0e8 (48 %) 5.1e7 (47 %) 6.4e5 (75 %) 12.8

4 5e-8 3.7e4 41 5.9e8 7.8e3 1.0e8 (47 %) 4.9e7 (46 %) 6.4e5 (75 %) 12.3

5 1e-7 3.7e4 41 5.9e8 7.8e3 1.0e8 (46 %) 4.8e7 (45 %) 6.4e5 (75 %) 13.2

6 5e-7 1.5e6 48 2.1e9 3.7e4 4.2e9 (1956 %) 2.1e9 (1961 %) 3.0e6 (358 %) 504.0

7 1e-6 1.9e6 49 2.6e9 4.5e4 5.4e9 (2503 %) 2.7e9 (2510 %) 3.7e6 (432 %) 654.2

8 5e-6 3.0e6 46 1.5e9 6.9e4 8.5e9 (3929 %) 4.2e9 (3936 %) 5.6e6 (665 %) 989.7

Table 7.24: Results of DAPCA-EC with heuristic H6 – IEEE 30 bus (AC-OPF)
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